华中师大版八年级上学期期中数学试卷E卷
华中师大版八年级上学期期中数学试卷2
华中师大版八年级上学期期中数学试卷新版姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2017八上·安陆期中) 下面四个手机应用图标中是轴对称图形的是()A . (A)B . (B)C . (C)D . (D)2. (2分)一张折叠型方桌子如图甲,其主视图如乙,已知AO=BO=50cm,CO=DO=30cm,现将桌子放平,要使桌面a距离地面m为40cm高,则两条桌腿需要叉开的角度∠AOB为()A . 150°B . 约105°C . 120°D . 90°3. (2分)等腰三角形的两条边分别为3cm和6cm,则它的周长为()A . 12B . 15C . 12或15D . 94. (2分)如图,已知在△ABC中,AB=AC,给出下列条件,不能使BD=CE的是()A . BD和CE分别为AC和AB边上的中线B . BD和CE分别为∠ABC和∠ACB的平分线C . BD和CE分别为AC和AB边上的高D . ∠ABD=∠BCE5. (2分) (2018九上·武昌期中) 如图,AB为⊙O的直径,C为⊙O上一点,其中AB=4,∠AOC=120°,P为⊙O上的动点,连AP,取AP中点Q,连CQ,则线段CQ的最大值为()A . 3B . 1+C . 1+3D . 1+6. (2分)如图,AB∥CD,∠C=80°,∠CAD=60°,则∠BAD的度数等于()A . 60°B . 50°C . 45°D . 40°7. (2分)如图:若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()A . 2B . 3C . 5D . 2.58. (2分)(2016·广元) 如图,五边形ABCDE中,AB∥CD,∠1,∠2,∠3分别是∠BAE,∠AED,∠EDC的外角,则∠1+∠2+∠3=()A . 90°B . 180°C . 120°D . 270°9. (2分)如图,已知平行四边形ABCD中,AB=3,AD=2,,则平行四边形ABCD的面积为A . 2B . 3C .D . 610. (2分)(2017·全椒模拟) 如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A . 44°B . 66°C . 88°D . 92°二、填空题 (共8题;共11分)11. (2分) (2015八下·潮州期中) 如果一个三角形是轴对称图形,且有一个角为60°,那么这个三角形是________,它有________条对称轴.12. (3分)如果一个多边形的每一外角都是30°,则这个多边形对角线的条数是________,它的内角和是________,它的外角和是________.13. (1分) (2017八下·南江期末) 如图, 平行四边形中, ,点为的中点,则 ________。
华师大版八年级上册数学期中考试试题附答案
华师大版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案)1.计算:56a a =( )A .30aB .11aC .31aD .12a 2.下列语句正确的是( )A2 B .-3是27的负的立方根C .4是16的算术平方根,即4=D .()21-的立方根是-13.下列算式中错误的有( )(1)2233()()a b a ab b a b +++=+ (2)2233()()a b a ab b a b -++=-(3)222(23)2123a b a ab b -=-+ (4)2211(41)8822a a a -=-+ A .1个 B .2个 C .3个 D .4个 4.下列命题是真命题的是( )A .一个三角形中至少有两个锐角B .若∠A 与∠B 是内错角,则A B ∠∠=C .如果两个角有公共边,那么这两个角一定是邻补角D .如果3.14a πb =,那么a b =5.若a ,b 均为正整数,且a >b <a b +的最小值是( )A .3B .4C .5D .66.在△ABC 和△A B C '''中,AB=A B '',∠B=∠B ',补充条件后仍不一定能保证△ABC ≌△A B C ''',则补充的这个条件是( )A .BC =BC '' B .A ∠=∠A ' C .AC =A C ''D .C ∠ =∠C ' 7.下列计算正确的是( ).A .(x+y)2=x 2+y 2B .(-12xy 2)3=-16 x 3y 6C .x 6÷x 3=x 2D 8.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为( )A .()()22a b a b a b -=+-B .()2222a b a ab b +=++C .()22a b a b -=-D .()2222a b a ab b -=-+ 9.如图所示,AB 、CD 相交于点O ,△AOC ≌△BOD ,点E 、F 分别在OA 、OB 上,要使△EOC ≌△FOD ,添加的一个条件不可能是( )A .∠OCE =∠ODFB .∠CEA =∠DFBC .CE =DFD .OE =OF 10.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD二、填空题 11.多项式-24ax a 与多项式244x x -+的公因式是______________.12.满足x <x 是_________________________。
(华师大版)初中数学八年级上册 期中测试试卷01及答案
期中测试一、选择题(本大题共10小题,共30分)1.下列不能用平方差公式计算的是( )A .(21)(21)a a +-B .(21)(21)a a ---C .()()a b a b +--D .()()a b b a +-2.下列计算正确的是( )A .66a a a ¸=B .67·a a a =C .222(3)6ab a b -=D .4222()()bc bc b c -¸-=-3.如图,在ABC △中,D 、E 分别是AC 、AB 上的点,在ADE BDE BDC △≌△≌△,则A Ð的度数是( )A .15°B .20°C .25°D .30°4.的叙述,错误的是( )A 是有理数B .面积为12C =D .的点5.课堂练习中,王莉同学做了如下4道因式分解题,你认为王莉做得不够完整的一道是( )A .()321x x x x -=-B .2222()x xy y x y ++=+C .22()x y xy xy x y -=-D .2269(3)ab ab a a b -+=-6.设432522024x x x x -++-能被x a -整除,则a 的值为( )A .2±B .3±C .2±,3D .3±,27.下列命题正确的有( )①2±是83a =的立方根为24=A .1个B .2个C .3个D .4个8.如图,120AOB Ð=°,OP 平分AOB Ð,且2OP =.若点M ,N 分别在OA ,OB 上,且PMN △为等边三角形,则满足上述条件的PMN △有( )A .1个B .2个C .3个D .无数个9.下列各多项式中,有公因式的是( )A .2()xy a b +与2()ab x y +B .22()x y m n -与()xy m n -C .()()a b a b +-与22a b +D .()()a b c m n -++与()()b c a m n +--10.如图,在已知的ABC △中,按以下步骤作图:①分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M ,N ;②作直线MN 交AB 于点D ,连接CD .若CD AC =,25B Ð=°,则ACB Ð的度数为( )A .90°B .95°C .100°D .105°二、填空题(本大题共6小题,共18分)11.已知等腰三角形一个内角的度数为70°,则它的其余两个内角的度数分别是________.12.已知实数x ,y 20132014的值为____________.13.如图,在ABC △中,AB AC =,40B Ð=°,点D 在线段BC 上运动(点D 不与点B ,C 重合),连接AD ,作40ADE Ð=°,DE 交线段AC 于点.E 当ADB Ð等于________度时,ADE △是等腰三角形.14.估算比较大小:(填“>”、“<”或“=”)12.14.已知222246140x y z x y z ++-+-+=,则23x y z +-=________.15.分解因式222ax ay 2axy ab +--得________.三、解答题(本大题共9小题,共72分)16.乘法公式的探究和应用.(1)如图中的左图,可以求出阴影部分的面积是________(写成两数平方差的形式);(2)如图中的右图,若将阴影部分裁剪下来,重新拼成一个长方形,它的宽是________,长是________,面积是________(写成多项式乘法的形式);(3)比较左、右两图的阴影部分面积,可以得到乘法公式________(用式子表达);(4)运用你所得到的公式,计算下列各题:10.39.7´①.()()22m n p m n p +--+②.17.在解决线段数量关系问题中,如果条件中有角平分线,经常采用下面构造全等三角形的解决思路,如:在图1中,若C 是MON Ð的平分线OP 上一点,点A 在OM 上,此时,在ON 上截取OB OA =,连接BC ,根据三角形全等判定()S A S ,容易构造出全等三角形OBC △和OAC △,参考上面的方法,解答下列(2)中的问题:如图2,在非等边ABC △中,60B Ð=°,AD ,CE 分别是BAC Ð,BCA Ð的平分线,且AD ,CE 交于点F .图1图2(1)填空:AFC Ð=________,CFD Ð=________,AFE Ð=________;(2)说明AC AE CD =+的理由.18.如图,在ABC △中,D 是AB 上一点,DF 交AC 于点E ,D E FE =,AE CE =,AB 与CF 有什么位置关系?说明你判断的理由.19.某种产品的商标如图所示,O 是线段AC ,BD 的交点,并且AC BD =,.AB CD =小明认为图中的两个三角形全等,他的思考过程是:在ABO △和DCO △中,.AC BD AOB DOC ABO DCO AB CD =ìïÐ=Ю@íï=îV V 你认为小明的思考过程正确吗?如果正确,他用的是判定三角形全等的哪个条件?如果不正确,请你增加一个条件,并说明你的理由.20.如图,已知90AOB Ð=°,OM 是AOB Ð的平分线,将三角尺的直角顶点P 在射线OM 上滑动,两直角边分别与OA ,OB 交于点C ,D ,求证:PC PD =.21.乘法公式的探究和应用图1图2(1)如图1,可以求出阴影部分的面积是________.(写成两数平方差的形式)(2)如图,若将阴影部分剪下来,重新拼成一个长方形,它的面积是________.(写成多项式乘积的形式)(3)比较左、右两图阴影部分的面积,可以得到乘法公式________.(用式子来表示)(4)运用你所得到的公式,计算()()2323x y x y -+-+.(5)下列纸片中有两张是边长为a 的正方形,三张是长为a ,宽为b 的长方形纸片,一张是边长为b 的正方形纸片,你能否将这些纸片拼成一个长方形,请你画出草图,并写出相应的等式.22.如图,点P 为AOB Ð的边OB 上一点,利用直尺和圆规作直线PE ,使PE OA ∥(保留作图痕迹,不写作法).23.已知ABN △和ACM △位置如图所示,AB AC =,AD AE =,12Ð=Ð.(1)求证:BD CE =;(2)求证:M N Ð=Ð.24.如图,点O 是等边ABC △内一点,D 是ABC △外的一点,110AOB Ð=°,BOC a Ð=,BOC ADC △≌△,60OCD Ð=°,连接OD .(1)求证:OCD △是等边三角形;(2)当150a =°时,试判断AOD △的形状,并说明理由;(3)AOD △能否为等边三角形?为什么?(4)探究:当a 为多少度时,AOD △是等腰三角形.期中测试答案解析一、1.【答案】C【解析】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.原式利用平方差公式的结构特征判断即可.解:下列不能用平方差公式计算的是()()222()2a b a b a b a ab b +--=-+=---,故选C 。
新华师大版八年级上学期期中数学试卷(附参考答案和评分标准)
新华师版八年级上学期期中复习备考数学测试卷时间:60分钟总分:120分考试用时:一、选择题(每小题 3 :分,共24分)1.卜列说法止确的是【 】(A ) 27的立方根是 3,记作•、27 3 (B ) 25的算术平方根是5 (C ) a 的立方根是∖ a(D )正数a 的算术平方根是,a2.有下列说法:①有理数和数轴上的点一 对应;②不带根号的数一定是有理数;③负数没有立方根;④. 17是17的平方根,其中正确的有【 】(A ) 0 个(B ) 1个(C ) 2 个(D ) 3 个23.在实数,0, 3 , 33.14,I4中,无理数有【 】(A ) 1 个 (B ) 2个 (C ) 3 个 (D ) 4 个4.在△ ABC 和厶A ' B'电;已知AB= A ' B ,∠ B= Z B',补充条件后仍不一定能保 证厶ABC A ' B',则补充的这个条件是(A) BC= B' C (B )Z A= Z A (C) AC= A ' C(D )Z C=Z C5.下列多项式相乘,结果为a 26a 16的是(A) 4 x 23x 2 x 2 x 3x (B) χ2 3χ 4 x 4 χ 1(C) 1 4x 4x 22x(A ) a 2 a 8(B ) a 2 a 8 (C ) a 2 a 8(D ) a2 a 86若 5a m1」2n 1b2a n b m10a 4b 4,则 m n的值为 (A )1(B ) 1(C ) 3【 】(D) 3【 】7.下列因式分解的结果正确的(D) Xy Xy Xy XXy y Xy8.已知:如图,B、C、E三点在同一条直线上,AC=CD, 下列结论不正确的是(A )∠ A和∠ D互为余角(B)∠ A= ∠ 2 ∠ B= ∠ E=90o ,AC 丄CD,则(C)△ ABC CED (D) ∠1=∠2[、填空题(每小题3分,共21分)9计算:14a3b2 21ab2 7ab210若9X2 mx 16是一个完全平方式,则m的值是11因式分解:a3 9a ___________________ .12._____________________________ 若 2X 4y2 1,则 4x16y__________________________ .13.下列命题:①对顶角相等;②同旁内角互补;③两点之间,线段最短;④直线都相等,其中真命题有14.如图,∠ E= ∠ F,∠ B= ∠ C,AE=AF,以下结论:① ∠ FAN= ∠EAM;②EM=FN ;③厶ACN ◎△ ABM;④CD=DN.其中正确的有 _15.如图,在Rt△ ABC 中,∠ ACB=90 ,BC=2 cm, CD丄AB,在AC上取一点E,使EC=BC,过点E 作EF 丄AC交CD的延长线于点F若EF=5 cm, 贝U AE= _______________ c m.填序号)•A三、解答题(共75分)16.(每小题5分,共15分)(1)计算:X X2y2 Xy y X2 X3y 3x2y2)因式分解:4a2 3b 4a 3b3)计算: x 3 x 417.先化简,再求值(每小题5分, 共10分)2(1) x y 2 2x x y ,其中 x 3, y 2;(2) X 2y 2 4y2 2xy 2x,其中 X 1, y 2.2 2 2 y2 Xy 的值.18.(8分)已知实数x,y满足X y 4, X y 36 ,求 X19.(8分)两位同学将一个二次三项式分解因式,一位同学因看错了一次项系数而分解成2x1x9 ,另一位同学因看错了常数项而分解成了 2x2x4,请将原多项式分解因式•20.(8分)有一个长方体游泳池,其长为4a2b,宽为ab2,高为ab,若要在该游泳池的四周及底面贴上边长为b的正方形防渗漏瓷砖,则需用这样的瓷砖多少块?(用含a,b的代数式表示)21.(8 分)已矢口:AE=DF, AE // DF, CE=BF. 求证:△ ABE DCF.B 第21题图22. (9分)如图所示,在△ AFD和厶BEC中,点A、E、F、C在同一条直线上,有下面四个论断:①AD=CB;②AE=CF;③∠ B= ∠ D;④AD // BC.请用其中三个作为条件,余下一个作为结论,编一道证明题,并写出证明过程•23.(9分)已知:如图,在△ ABC、△ ADE 中,∠ BAC= ∠ DAE=90 ,AB=AC,AD=AE, 点C、D、E三点在同一直线上,连接BD.求证:(BAD CAE;(2)试猜想BD、CE有何关系,并证明.EB C新华师版八年级上学期期中复习备考数学试卷参考答案、选择题(每小题3分,共24 分)二、填空题(每小题3分,共21分)29. 2a2 3 10. 24 11. a a 3 a 3 12.13.①③14.①②③15. 3部分题目提示:14.如图,∠ E= ∠ F,∠ B= ∠ C,AE=AF,以下结论:① ∠ FAN= ∠ EAM;②EM=FN ;③厶ACN ◎△ ABM;④CD=DN.其中正确的有________________ 填序号). 解:在△ ABE和厶ACF中E FB CAE AF•••△ ABE ACF (AAS )EAB FAC I AB ACEAB BAC FAC BAC ∙∙∙ EAM FAN ,故结论①正确;在厶AEM和厶AFN中E FAE AFEAM FAN •••△ AEM AFN (AAS )∙∙∙ EM FN ,故结论②正确;在厶ACN和厶ABM中C B∙∙∙ AC ABCAN BAM •••△ ACN ◎△ ABM (AAS )故结论③正确.15.如图,在Rt△ ABC 中,∠ ACB=90 ,BC=2 cm, CD 丄AB,在AC上取一点E,使EC=BC,过点E 作EF丄AC 交CD的延长线于点F若EF=5 cm, 贝U AE= cm.解:τ∠ ACB=90o, EF 丄AC∙∙∙ ACB FEC 90••• 1 2 90V CD⊥AB•△ BCD是直角三角形(直角三角形的两个锐角互余)• B 1 90V 1 2 90• B 2在厶ABC和厶FCE中ACB FECV BC CEB 2•△ ABCFCE (ASA)•AC FE 5 cm, BC CE 2 Cm•AE AC CE 5 2 3 cm.三、解答题(共75分)16.(每小题5分,共15分)(1)计算:xx2y2 Xy y x2 x3y 3x2y解:原式3 2 2 2 32 C 2Xy XyXyXy 3xyC 3 2 C 2 C 22x y 2x y 3x y2 2Xy —3 3(2)因式分解:4a2 3b 4a 3b2a 3b 2(3) 计算:X 3 X 4 X 1解:X3 X4 X 1 22 X 4x 3x 12 X22x 12 X 7x 12 2 X 2x 19x 11解:原式 4a2 12ab 9b217.先化简,再求值(每小题5分,共10 分)(1 ) X y 2 2x x y ,其中X 3, y 2;2解:X y 2x X y2 2 2X 2xy y 2x 2xy2 2X y当X 3,y 2时原式 32 229 4 5;2 2(2) X 2y 4y2 2xy 2x,其中X 1, y 2.解:X 2y 24y2 2xy 2x2 2 2X 4xy 4 y 4 y 2xy 2x2X 2xy 2x1X y2当X 1, y 2时原式18.4, X知实数36•∙XyXy的值.4,364020X, y满足364 36482 2X2 y2 Xy 20 8 20 8 28 19. (8分)两位同学将一个二次三项式分解因式,一位同学因看错了一次项系数而分解成2x1x9 ,另一位同学因看错了常数项而分解成了2x2x4 ,请将原多项式分解因式.解:2 X 1 X 92 X29X X 92 X210X92X220X182X2 X 42 X24X2X 82 X26X82X212X16由题意丁原多项式为2χ212χ18因式分解得:原式2 χ26χ 92 X3 220. (8分)有一个长方体游泳池,其长为4a2b ,宽为ab2,高为ab ,若要在该游泳池的四周及底面贴上边长为b 的正方形防渗漏瓷砖,则需用这样的瓷砖多少块?(用含a,b的代数式表示)解:C证明:V AE //DF••• 1 2V CE BF∙∙∙ CE EF BF EF∙∙∙ CF BE在厶ABE和厶DCF中AE DF1 2BE CF•••△ ABEDCF (SAS)22. (9分)证明略,答案不唯一•编写几何证明题时,应遵循下面的格式:已知:..................求证:...................4a2b ab2 2 4a2b ab 2 ab2 ab b2证明:4a3b38a3b22a2b3b24a3b 8a32a2b答:需用这样的瓷砖3 3 24a b 8a 2a b 块.21. (8 分)已知:AE=DF, AE // DF, CE=BF.求证:△ ABE DCF.(不必在一开始写“解”)23.(9分)已知:如图,在△ ABC、△ ADE 中,∠ BAC= ∠DAE=90 ,AB=AC,AD= AE,点C、D、E三点在同一直线上,连接BD.求证:(BAD CAE;(2)试猜想BD、CE有何关系,并证明.第11第12EB C∙∙∙ BAC CAD DAE CAD ∙∙∙ BAD CAE在厶BAD 和厶CAE 中AB ACBAD CAEAD AE •••△ BAD ◎ △ CAE (SAS ); (2)解: BD CE (这是数量关系)BD CE (这是位置关系)理由如下 :由(1)知:△ BAD ◎△ CAE∙∙∙ BD CE∙∙∙ ABD ACEτ∠ BAC=90o ,AB=AC•••△ ABC 是等腰直角二角形 ∙∙∙ ABC ACB 45V ABD DBC 45∙ ACE DBC 45∙ ACE DBC ACB 90 ∙ BDC 180 90 90 ∙ BD (1)证明: CE τ∠ BAC= ∠ DAE=90°。
华师大版八年级上册数学期中考试试卷及答案
华师大版八年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.4的平方根是( )A .±2B .-2C .2 D2的值应在( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间 3.下列各式计算正确的是( )A .2538a a a +=B .()222a b a b -=-C .3710a a a ⋅=D .()236a a -=- 4.把多项式a²-4a 分解因式,结果正确的是( )A .a (a-4)B .(a+2)(a-2)C .a(a+2)( a-2)D .(a -2 ) ²-4 5.如图的面积关系,可以得到的恒等式是( )A .m (a +b +c )=ma +mb +mcB .(a +b )(a ﹣b )=a 2﹣b 2C .(a ﹣b )2=a 2﹣2ab +b 2D .(a +b )2=a 2+2ab +b 26.若x 2+kx+20能在整数范围内因式分解,则k 可取的整数值有( )A .2个B .3个C .4个D .6个 7.如果代数式(x ﹣2)(x 2+mx+1)的展开式不含x 2项,那么m 的值为( ) A .2 B .12 C .-2 D .12- 8.如图,AD 平分∠BAC ,AB =AC ,则图中全等三角形的对数是( )A .2对B .3对C .4对D .5对 9.如图,点B 、C 、E 在同一条直线上,△ABC 与△CDE 都是等边三角形,则下列结论不一定成立的是( )A .△ACE ≌△BCDB .△BGC ≌△AFC C .△DCG ≌△ECFD .△ADB ≌△CEA 10.如图所示,AC=CD ,∠B=∠E=90°,AC ⊥CD ,则不正确的结论是( )A .AC BC CE =+B .A 2∠∠=C .ABC ≌CED D .A ∠与D ∠互余二、填空题11____.12.若(a+5)20=,则a 2018•b 2019=_____.13.如果x 2﹣Mx +9是一个完全平方式,则M 的值是_____.14.已知27b =9×3a+3,16=4×22b ﹣2,则a+b 的值为_____.15.如图,在等边△ABC 中,点D 为BC 边上的点,DE ⊥BC 交AB 于E ,DF ⊥AC 于F ,则∠EDF 的度数为_________.16.如图,AB =CD ,AC =DB ,∠ABD =25°,∠AOB =82°,则∠DCB =__________.三、解答题17.计算(1)2(6-.(2)(-x+2y) (-2y-x)18.分解因式.(1)4x3y - 4x2y2+xy3(2)m3(x﹣2)+m(2﹣x)19.如图,△ABC中,∠ABC=45°,BE⊥AC于点E,AD⊥BC于点D,BE与AD相交于F.求证:BF=AC.20.先化简,再求值:(2+a)(2﹣a)+a(a﹣5b)+3a5b3÷(﹣a2b)2,其中ab=﹣.=.连接CD 21.如图,在Rt△ABC中,90∠=,点D,F分别在AB,AC上,CF CBACB将线段CD绕点C按顺时针方向旋转90后得CE,连接EF.求证:△BCD≌△FCE;22.如图,点C,F,E,B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.23.如图,在四边形ABCD中,AB∥CD,∠1=∠2,DB=DC.(1)求证:△ABD≌△EDC;(2)若∠A=135°,∠BDC=30°,求∠BEC 的度数.24.已知:如图,已知线段AB、CD相交于点O,AD、CB的延长线交于点E,OA=OC,EA=EC,求证:∠A=∠C.25.如图,AB=AE,AC=AD,BD=CE,△ABC≌△AED吗?试证明.参考答案1.A【详解】4的平方根是±2.选A.点睛:辨析平方根与算术平方根,开平方与平方2.B【详解】解:∵34<<,∴415<<.故选B .的取值范围是解题关键.3.C【分析】根据整式的相关运算法则进行计算判断即可.【详解】A 选项中,因为538a a a +=,所以A 中计算错误;B 选项中,因为222()2a b a ab b -=-+,所以B 中计算错误;C 选项中,因为3710a a a ⋅=,所以C 中计算正确;D 选项中,因为326()a a -=,所以D 中计算错误.故选C.【点睛】熟记各个选项中所涉及的多项式运算的运算法则和完全平方公式是解答本题的关键. 4.A【详解】直接提取公因式a 即可:a 2-4a=a (a -4).故选A5.B【解析】【分析】分别求出两个图形的面积, 再根据两图形的面积相等即可得到恒等式.【详解】解:如图:图甲面积=(a+b)(a-b)图乙面积=a (a-b+b)-b×b=a2-b2,∵两图形的面积相等,∴关于a、b的恒等式为: (a+b) (a-b)=a2-b2.故选B.【点睛】点评: 本题考查了平方差公式的几何解释, 根据面积相等分别求出图形的面积是解题的关键.6.D【分析】把20分解成两个因数的积,k等于这两个因数的和.【详解】解:∵20=1×20=2×10=4×5=(-1)×(-20)=(-2)×(-10)=(-4)×(-5),∴k=21,12,9,-21,-12,-9,一共六个,故选D.【点睛】本题利用十字相乘法分解因式,对常数的正确分解是解题关键.7.A【分析】根据“代数式(x﹣2)(x2+mx+1)的展开式不含x2项”可知x2系数等于0,所以将代数式整理计算后合并同类项,即可得出x2的系数,令其等于0解答即可.【详解】原式=322++---222x mx x x mx()()32=+-+--2122x m x m x∵代数式不含x2项∴m-2=0,解得m=2故答案选A.【点睛】本题考查的是多项式的乘法和不含某项的问题,知道不含某项,代表某项的系数为0是解题的关键.8.B【分析】根据角平分线的性质及全等三角形的判定可求得图中的全等三角形有3对,分别是:△ABD≌△ACD,△BED≌△CED,△ABE≌△ACE.【详解】∵AD平分∠BAC,∴∠BAD=∠CAD,∵AB=AC,AD=AD,AE=AE,∴△ABD≌△ACD,△ACE≌△ABE(SAS),∴BD=CD,∠BDE=∠CDE,∵DE=DE,∴△CED≌△BED(SAS),所以共有3对全等三角形,故选B.【点睛】本题考查了全等三角形的判定定理和性质定理,能综合运用定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等,对应角相等.9.D【详解】试题分析:△ABC和△CDE是等边三角形BC=AC,CE=CD,60∠+∠=∠+∠=BCA ACD ECD ACD︒∠=∠=即BCA ECD︒60在△BCD和△ACE中CD CEACE BCD BC AC=⎧⎪∠=∠⎨⎪=⎩△BCD≌△ACE 故A项成立;在△BGC和△AFC中60 ACB ACDAC BCCAE CBD︒⎧∠=∠=⎪=⎨⎪∠=∠⎩△BGC≌△AFCB项成立;△BCD≌△ACE,在△DCG和△ECF中60 ACD DCECE CDCDB CEA︒⎧∠=∠=⎪=⎨⎪∠=∠⎩△DCG≌△ECFC项成立D项不成立.考点:全等三角形的判定定理.10.A【解析】【分析】利用同角的余角相等求出∠A=∠2,再利用“角角边”证明△ABC和△CDE全等,根据全等三角形对应边相等,对应角相等,即可解答.【详解】解:∵∠B=∠E=90°,∴∠A+∠1=90°,∠D+∠2=90°,∵AC⊥CD,∴∠1+∠2=90°,∴∠A=∠2,故B正确;∴∠A+∠D=90°,故D正确;在△ABC 和△CED 中,2A B EAC CD ==,=∠∠⎧⎪∠∠⎨⎪⎩∴△ABC ≌△CED (AAS ),故C 正确;∴AB=CE ,DE=BC ,∴BE=AB+DE ,故A 错误.故选:A .【点睛】本题考查全等三角形的判定与性质,等角的余角相等的性质,熟练掌握三角形全等的判定方法并确定出全等的条件∠A=∠2是解题关键.11.±3【详解】,∴9的平方根是3±.故答案为±3.12.15. 【分析】根据“(a+5)20=”可知a+5=0,5b-1=0,可得a 、b 的值,进而可以得出答案.【详解】∵(a+5)20=,∴a+5=0,5b-1=0解得a=-5,b=15∵()20182019020182018218=a b a b b ab b ⋅⋅⋅=⋅ ∴201811115=1=5555⎛⎫⨯⨯⨯ ⎪⎝⎭ 故答案为15. 【点睛】本题考查的是二次乘方与二次根式的非负性和积的乘方的逆用算,能够根据二次乘方与二次根式的非负性得出a 、b 的值是解题的关键.13.±6.【解析】试题解析:∵x 2-Mx+9是一个完全平方式,∴-M=±6,解得:M=±6 考点:完全平方式 .14.3【分析】根据“27b =9×3a+3”可得3b=a+5,根据“16=4×22b-2”可得2b=4,分别解出a ,b 的值即可得出答案.【详解】∵32793b a +⨯=,即32353333b a a ++=⨯=∴3b=a+5①∵221642b ⨯﹣=,即422222=222b b -⨯=∴2b=4②由②得b=2,代入①中解得a=1∴a+b=1+2=3故答案为3.【点睛】本题考查的是幂的乘方和同底数幂的乘法的逆运算,熟练掌握同底数幂相乘和幂的乘方的运算法则是解题的关键.15.60°【解析】∵△ABC 是等边三角形,∴∠A=∠B=60°.∵DE ⊥BC 交AB 于E ,DF ⊥AC 于F ,∴∠BDE=∠AFD=90°.∵∠AED 是△BDE 的外角,∴∠AED=∠B+∠BDE=60°+90°=150°,∴∠EDF=180°−∠A−∠AED−∠AFD=360°−60°−150°−90°=60°故答案为60°. 16.66°【解析】试题解析:在△ABC 和△DCB 中,AB CD AC DB BC CB =⎧⎪=⎨⎪=⎩, ∴△ABC ≌△DCB (SSS), ∴∠ACB =∠DBC ,∠ABC =∠DCB ,82AOB AOB ACB DBC ,,∠=∠=∠+∠ 41DBC ∴∠=,254166.DCB ABC ABD DBC ∴∠=∠=∠+∠=+=故答案为66.17.(1)1 ; (2) x 2﹣4y 2【分析】(1)根据根式和实数的运算法则,先算乘方与三次方,去掉根号后在从左至右依次计算即可;(2)利用平方差公式进行计算即可.【详解】解:(1)原式=3-12+12+4-6=1. (2)原式=(-x )2 ﹣(2y )2 =x 2﹣4y 2【点睛】本题考查的是根式和实数的运算,掌握乘法公式解题的关键.18.(1)xy (2x ﹣y )2;(2)m (x ﹣2)(m+1)(m ﹣1)【分析】(1)先用提公因式法将xy 提出,在根据完全平方公式进行因式分解;(2)将(2-x )提一个负号出去变形为(x-2),在作为公因式提出,之后再利用平方差公式进行因式分解.【详解】解:(1)原式=xy (4x 2﹣4xy+y 2)=xy (2x ﹣y )2(2)原式=m 3(x ﹣2)﹣m (x ﹣2)=m (x ﹣2)(m 2﹣1)=m (x ﹣2)(m+1)(m ﹣1)【点睛】本题考查的是因式分解的方法,熟练掌握提公因式法和公式法是解题的关键.19.见解析.【分析】根据等腰三角形腰长相等性质可得AD=BD ,利用“AAS”可证得△BDF ≌△ACD ,即可证明BF=AC .【详解】AD ⊥BD ,∠BAD =45°,∴AD =BD ,∵∠BFD =∠AFE ,∠AFE +∠CAD =90°,∠CAD +∠ACD =90°,∴∠BFD =∠ACD ,在△BDF 和△ACD 中,BFD ACD BDF ADC BD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BDF ≌△ACD (AAS ),∴BF =AC .【点睛】本题考查了全等三角形的判定和性质,求证△BDF ≌△ACD 是解题的关键.20.5【解析】试题分析:此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.原式的第一项利用平方差公式化简,第二项利用单项式乘以多项式法则计算,第三项先计算乘方运算,再计算除法运算,合并得到最简结果,最后把ab 的值代入化简后的式子计算即可试题解析:解:原式=4﹣a 2+a 2﹣5ab+3ab=4﹣2ab ,当ab=﹣12时,原式=4+1=5.考点:整式的混合运算—化简求值..21.见解析【分析】由题意可知∠ECD=∠ACB=90°,由此易得∠ECF=∠DCB ,由旋转的性质可得CE=CD ,结合已知条件CF=CB 即可由“SAS”证得△BCD ≌△FCE.【详解】∵CD 绕点 C 顺时针方向旋转 90 得 CE ,∴CD CE =,90DCE ∠=.∵90ACB ∠=,∴BCD ACD FCE ACD ∠+∠=∠+∠,∴BCD FCE ∠=∠, ∵在BCD 和FCE 中,,,,CB CF BCD FCE CD CE =⎧⎪∠=∠⎨⎪=⎩∴△BCD ≌△FCE .【点睛】熟悉“旋转的性质和全等三角形的判定方法”是解答本题的关键.22.CD ∥AB ,CD =AB ,证明见解析.【分析】试题分析:根据CE =BF ,可求证CF=BE ,再根据∠CFD =∠BEA ,DF =AE ,可证△DFC ≌△AEB ,利用全等三角形的性质可得: CD =AB ,∠C =∠B ,根据平行线的判定可证CD ∥AB .CD ∥AB ,CD =AB ,证明如下:∵CE =BF ,∴CE -EF =BF -EF ,∴CF =BE.在△DFC 和△AEB 中,∴△DFC ≌△AEB(SAS),∴CD =AB ,∠C =∠B ,∴CD ∥AB.请在此输入详解!23.(1)见解析;(2)∠BEC =45°.【分析】(1)通过AB ∥CD ,可得出ABD EDC =∠∠,再利用全等三角形的判定定理即可证明结论; (2)根据已知条件以及三角形内角和定理可求出∠=∠=︒1215,然后由∠=∠+∠2BEC BDC 即可得出答案.【详解】解:(1)证明:∵AB ∥CD ,∴∠ABD =∠EDC ,在△ABD 和△EDC 中,12DB DCABD EDC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABD ≌△EDC (ASA );(2)∵∠ABD =∠EDC =30°,∠A =135°,∴∠1=∠2=15°,∴∠BEC =∠BDC+∠2=30°+15°=45°.【点睛】本题考查的知识点是全等三角形的判定定理以及平行线的性质,掌握以上知识点是解此题的关键.24.证明见解析【分析】根据“SSS”证得△EAC ≌△EBC 即可得到结果.【详解】如图,连结OE在△OEA 和△OEC 中OA OCEA ECOE OE=⎧⎪=⎨⎪=⎩∴△OEA ≌△OEC (SSS )∴∠A =∠C (全等三角形的对应角相等)25.△ABC ≌△AED,证明见解析.【解析】【分析】由BD=CE ,得到BC=ED ,根据“边、边、边”判定定理可得△ABC ≌△AED .【详解】解:△ABC ≌△AED.证明:∵BD =CE ,∴BC +CD =CD +DE ,即BC =ED.在△ABC 与△AED 中, AB AEAC ADBC ED=⎧⎪=⎨⎪=⎩∴△ABC ≌△AED(SSS)【点睛】本题考查了全等三角形的判定与性质,证得BC=ED 是解题的关键.。
八年级数学期中模拟卷【测试范围:第11章~第13章】(华东师大版)(全解全析)
2024-2025学年八年级数学上学期期中模拟试卷(华东师大版)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:华东师大版第11章数的开方~第13章全等三角形。
5.难度系数:0.68。
第一部分(选择题共30分)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1)2.下列运算正确的是()A.a3+a2=a5B.C.a2_a3=a5D.(a2)4=a6【答案】C【解析】A.a3和a2不是同类项,不能合并,故选项错误,不符合题意;B.,故选项错误,不符合题意;C.a2_a3=a5,故选项正确,符合题意;D.(a2)4=a8,故选项错误,不符合题意;故选C.3.如图AB=DE,∠B=∠E,添加下列条件仍不能判定△ABC≌△DEF的是()A.∠A=∠D B.∠ACB=∠DFE C.D.AC=DF【答案】D【解析】A.AB=DE,∠B=∠E,∠A=∠D,可利用ASA证明△ABC≌△DEF,故该选项不符合题意;B.AB=DE,∠B=∠E,∠ACB=∠DFE,可利用AAS证明△ABC≌△DEF,故该选项不符合题意;C.由可得出∠ACF=∠DFE,再结合AB=DE,∠B=∠E,可利用AAS证明△ABC≌△DEF,故该选项不符合题意;D.用AB=DE,∠B=∠E,AC=DF,SSA无法证明△ABC≌△DEF.故该选项符合题意;故选D.4.设a=a在两个相邻整数之间,则这两个整数是()A.2和3B.3和4C.4和5D.5和65.下列因式分解正确的是()A.2a2―4a=2(a2+a)B.―a2+4=(a+2)(a―2)C.a2―10a+25=a(a―10)+25D.a2―2a+1=(―a+1)2【答案】D【解析】A、2a2―4a=2a(a―2),该选项分解错误,不合题意;B、―a2+4=―(a2―4)=―(a+2)(a―2),该选项分解错误,不合题意;C、a2―10a+25=(a―5)2,该选项分解错误,不合题意;D、a2―2a+1=(1―a)2=(―a+1)2,该选项分解正确,符合题意;故选D.6.如图,点A 在DE 上,AC =EC ,∠1=∠2=∠3,则DE 等于( )A .BCB .ABC .DCD .AE +AC 【答案】B 【解析】令AB 、CD 交于点O ,则∵∠1=∠2,∠AOD =∠BOC,∴∠B =∠D ,∵∠2=∠3,,即∠ACB =∠ECD ,在和中,B =?D ACB =?ECD :cAC =EC,,∴AB =ED .故选B .7.如图,边长为2m +3的正方形纸片剪出一个边长为m +3的正方形之后,剩余部分可剪拼成一个长方形,若拼成的长方形一边长为m ,则拼成长方形的面积是( )A .4m 2+12m +9B .3m +6C .3m 2+6mD .2m 2+6m +9【解析】根据题意,得:(2m+3)2―(m+3)2=[(2m+3)+(m+3)][(2m+3)―(m+3)]=(3m+6)m=3m2+6m故选C.8.观察下列各式:,…,根据你发现的规律,若式子=a、b为正整数)符合以上规律,则a+b的平方根是().A.B.4C.―4D.∵,的平方根是;9.设a=x―2022,b=x―2024,c=x―2023.若a2+b2=16,则c2的值是( ) A.5B.6C.7D.8【答案】C【解析】,b=x―2024,c=x―2023,,a―b=2,∵a2+b2=16,∴(a―b)2+2ab=16,∴ c 2=(a ―1)(b +1)=ab +a ―b ―1=6+2―1=7,故选C .10.如图,在中,AB =AC ,点D 、F 是射线BC 上两点,且,若AE =AD ,∠BAD =∠CAF =15°,则下列结论中①是等腰直角三角形;②;③;④BC ―12EF =2AD ―CF .正确的有( )A .1个B .2个C .3个D .4个【答案】D【解析】∵,∴,∵∠BAD =∠CAF ,∴,又∵AB =AC ,∴是等腰直角三角形,故结论①正确;∵AB =AC ,,∴∠B =∠ACB =45°,在和中,AB =AC BAD =?CAE ADa =AE,∴,∴,∴,即,故结论②正确;∵,∴,∴,故结论,,∴,∴,第二部分(非选择题共90分)二、填空题:本题共8小题,每小题3分,共24分。
华师大版八年级(上)期中数学试卷及答案
华师大版八年级(上)期中数学试卷及答案一、选择题(每小题3分,共30分)请将唯一正确答案的序号涂在答题卡上。
1.4的平方根是()A.2B.﹣2C.±2D.2.在实数,,π,,,无理数有()A.2个B.3个C.4个D.5个3.下列各式中,计算正确的是()A.=±3B.(a2)3=a5C.a6÷a3=a2D.(2a3)2=4a64.若a x=3,a y=2,则a2x+y等于()A.6B.7C.8D.185.郑州市“旧城改造”中,计划在市内一块长方形空地上种植草皮,以美化环境.已知长方形空地的面积为(3ab+b)平方米,宽为b米,则这块空地的长为()A.3a米B.(3a+1)米C.(3a+2b)米D.(3ab2+b2)米6.多项式12ab3+8a3b的各项公因式是()A.ab B.2ab C.4ab D.4ab27.如图,AB=AC,添加下列一个条件后,仍无法确定△ABE≌△ACD的是()A.∠B=∠C B.BE=CD C.BD=CE D.∠ADC=∠AEB8.在实数范围内定义一种新运算“@”,其运算规则为:a@b=1﹣ab,如:2@5=1﹣2×5=﹣9,则22020@的值为()A.B.﹣C.D.﹣9.如图,将图①中大小相同的四个小正方形按图②所示的方式放置变为一个大正方形,根据两个图形中阴影部分的面积关系,可以验证(A.(a﹣b)2=a2﹣2ab+b2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=(a+b)2﹣4ab D.(a+b)(a﹣b)=a2﹣b210.如图,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D,下面四个结论:①∠ABE=∠BAD;②△CEB≌△ADC;③AB=CE;④AD﹣BE=DE,其中正确的序号是()A.①②④B.①②③C.①③④D.②③④二.填空题(每小题3分,共15分)11.=.12.已知(a+1)(a﹣2)=5,则代数式a﹣a2的值为.13.若二次三项式x2+6x+m2是关于x的完全平方式,则常数m=.14.如图,在△ACD中,∠CAD=90°,AC=6,AD=8,AB∥CD,E是CD上一点,BE交AD于点F,若EF=BF,则图中阴影部分的面积为.15.如图,一个直角三角形纸片,∠B=90°,AB=5cm,BC=12cm,AC=13cm,把纸片按如图所示折叠,使点B 落在边AC上的B'处,AE为折痕,则三角形CEB'的周长为cm.三.解答题(本大题共8个小题,满分75分)16.计算:(1)+|﹣2|﹣﹣()3÷()2;(2)1001×999﹣9992.17.因式分解(1)a3b﹣ab;(2)(x+y)2﹣(2x+2y﹣1).18.计算与化简(1)计算:(36a4b3﹣9a3b2+4a2b2)÷(﹣3ab)2;(2)先化简,再求值.(x﹣y)2+(3x﹣y)(x+y)﹣(x﹣2y)(x+2y),其中x,y满足(x+2)2+|y﹣3|=0.19.阅读下列文字,并解决问题.已知x2y=3,求2xy(x5y2﹣3x3y﹣4x)的值.分析:考虑到满足x2y=3的x,y的可能值较多,不可能逐一代入求解,故考虑整体思想,将x2y=3整体代入.解:2xy(x5y2﹣3x3y﹣4x)=2x6y3﹣6x4y2﹣8x2y=2(x2y)3﹣6(x2y)2﹣8x2y=2×33﹣6×32﹣8×3=﹣24.请你用上述方法解决问题:(1)已知ab=3,求(2a3b2﹣3a2b+4a)•(﹣2b)的值;(2)已知x﹣=2,求x2+的值.20.如图,幼儿园的滑梯有两个长度相等滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等.(1)△ABC与△DEF全等吗?(2)两个滑梯的倾斜角∠ABC与∠DFE的大小有什么关系.21.【教材呈现】:图①,图②,图③分别是华东师大版八年级上册数学教材第33页、第34页和第52页的图形,结合图形解决下列问题:(1)分别写出能够表示图①、图②中图形的面积关系的乘法公式:,.(2)图③是用四个长和宽分别为a,b的全等长方形拼成的一个正方形(所拼图形无重叠、无缝隙),写出代数式(a+b)2、(a﹣b)2、ab之间的等量关系:.【结论应用】根据上面(2)中探索的结论,回答下列问题:(3)当m+n=5,mn=﹣1时,求m﹣n的值;(4)设A=,B=m﹣3,化简(A+B)2﹣(A﹣B)2.22.如图①,在长方形ABCD中,AB=CD=8cm,BC=12cm,点P从点B出发,以2cm/s的速度沿BC向点C运动,设点P的运动时间为ts.(1)PC=cm;(用含t的代数式表示)(2)当t为何值时,△ABP≌△DCP?并说明理由.(3)如图②当点P从点B开始运动时,点Q同时从点C出发,以vcm/s的速度沿CD向点D运动,是否存在这样的v值,使得△ABP与△PQC全等?若存在,请求出v的值;若不存在,请说明理由.23.(1)观察猜想:如图①:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分别是BC,CD上的点且∠EAF=60°,延长FD到点G.使DG=BE,连结AG,则线段AG与AE的数量关系是,∠F AG=度;(2)探索发现:根据(1)及图①,探究线段BE,EF,FD之间的数量关系,其结论是,请说明理由;(3)拓展延伸:如图②,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述(2)中的结论是否仍然成立?(填“是”或“否”);(4)结论应用:如图③,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心O的距离相等,接到行动指令后,舰艇甲向正东方向以50海里/小时的速度前进,同时舰艇乙沿北偏东50°的方向以65海里/小时的速度前进,2小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°(∠EOF=70°),试求此时两舰艇之间的距离.(请直接写出结果)参考答案与试题解析一.选择题(共10小题)1.4的平方根是()A.2B.﹣2C.±2D.【分析】根据平方根的定义,求数4的平方根即可.【解答】解:4的平方根是±2.故选:C.2.在实数,,π,,,无理数有()A.2个B.3个C.4个D.5个【分析】根据无理数的定义可直接判定求解.【解答】解:在实数,,π,,,无理数有,π,,共3个,故选:B.3.下列各式中,计算正确的是()A.=±3B.(a2)3=a5C.a6÷a3=a2D.(2a3)2=4a6【分析】分别根据算术平方根的定义,幂的乘方运算法则,同底数幂的除法法则以及积的乘方运算法则逐一判断即可.【解答】解:A、,故本选项不合题意;B、(a2)3=a6,故本选项不合题意;C、a6÷a3=a3,故本选项不合题意;D、(2a3)2=4a6,故本选项符合题意;故选:D.4.若a x=3,a y=2,则a2x+y等于()A.6B.7C.8D.18【分析】直接利用幂的乘方运算法则结合同底数幂的乘法运算法则求出答案.【解答】解:∵a x=3,a y=2,∴a2x+y=(a x)2×a y=32×2=18.故选:D.5.郑州市“旧城改造”中,计划在市内一块长方形空地上种植草皮,以美化环境.已知长方形空地的面积为(3ab+b)平方米,宽为b米,则这块空地的长为()A.3a米B.(3a+1)米C.(3a+2b)米D.(3ab2+b2)米【分析】直接利用整式的除法运算法则计算得出答案.【解答】解:∵长方形空地的面积为(3ab+b)平方米,宽为b米,∴这块空地的长为:(3ab+b)÷b=(3a+1)米.故选:B.6.多项式12ab3+8a3b的各项公因式是()A.ab B.2ab C.4ab D.4ab2【分析】根据公因式定义,对各选项整理然后即可选出有公因式的项.【解答】解:12ab3c+8a3b=4ab(3b2c+2a2),则4ab是公因式,故选:C.7.如图,AB=AC,添加下列一个条件后,仍无法确定△ABE≌△ACD的是()A.∠B=∠C B.BE=CD C.BD=CE D.∠ADC=∠AEB【分析】根据全等三角形的判定方法对各选项进行判断.【解答】解:∵AB=AC,∠BAE=∠CAD,∴当∠B=∠C时,根据“ASA”可判断△ABE≌△ACD;当BD=CE,则AE=AD,根据“SAS”可判断△ABE≌△ACD;当∠AEB=∠ADC时,根据“AAS”可判断△ABE≌△ACD.故选:B.8.在实数范围内定义一种新运算“@”,其运算规则为:a@b=1﹣ab,如:2@5=1﹣2×5=﹣9,则22020@的值为()A.B.﹣C.D.﹣【分析】直接利用运算公式变形,进而计算得出答案.【解答】解:22020@=1﹣22020×=1﹣[2×(﹣)]2020×(﹣)=1+=.故选:C.9.如图,将图①中大小相同的四个小正方形按图②所示的方式放置变为一个大正方形,根据两个图形中阴影部分的面积关系,可以验证(A.(a﹣b)2=a2﹣2ab+b2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=(a+b)2﹣4ab D.(a+b)(a﹣b)=a2﹣b2【分析】根据图形阴影部分的面积的不同求法可得等式.【解答】解:阴影部分的面积是四个阴影小正方形的面积和,由拼图可得四个阴影小正方形可以拼成边长为(a ﹣b)的正方形,因此面积为(a﹣b)2,由图2可知,阴影部分的面积等于边长为a的正方形的面积减去之间十字架的面积,即:a2﹣2ab+b2,因此有(a﹣b)2=a2﹣2ab+b2,故选:A.10.如图,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D,下面四个结论:①∠ABE=∠BAD;②△CEB≌△ADC;③AB=CE;④AD﹣BE=DE,其中正确的序号是()A.①②④B.①②③C.①③④D.②③④【分析】证明BE∥AD,则可对①进行判断;证明∠BCE=∠CAD,则可根据“AAS”证明△CEB≌△ADC,则可对②进行判断;根据全等三角形的性质可对③④进行判断.【解答】解:∵BE⊥CE于点E,AD⊥CE于点D,∴BE∥AD,∴∠ABE=∠BAD,所以①正确;∵∠BCE+∠DCA=90°,∠DCA+∠CAD=90°,∴∠BCE=∠CAD,在△CEB和△ADC中,,∴△CEB≌△ADC(AAS),所以②正确;∴CE=AD,所以③错误;BE=CD,∴AD﹣BE=CE﹣CD=DE,所以④正确.故选:A.二.填空题(共5小题)11.=﹣2.【分析】因为﹣2的立方是﹣8,所以的值为﹣2.【解答】解:=﹣2.故答案为:﹣2.12.已知(a+1)(a﹣2)=5,则代数式a﹣a2的值为﹣7.【分析】先计算多项式乘多项式,再变形方程得结论【解答】解:∵(a+1)(a﹣2)=5,∴a2﹣a﹣2=5.即a2﹣a=7.∴a﹣a2=﹣7.故答案为:﹣7.13.若二次三项式x2+6x+m2是关于x的完全平方式,则常数m=±3.【分析】根据完全平方公式的定义,a2±2ab+b2=(a±b)2,解出即可.【解答】解:∵x2+6x+m2=(x+3)2,故m2=(±3)2=9.故答案为:±3.14.如图,在△ACD中,∠CAD=90°,AC=6,AD=8,AB∥CD,E是CD上一点,BE交AD于点F,若EF=BF,则图中阴影部分的面积为24.【分析】证明△BAF≌△EDF(ASA),则S△BAF=S△DEF,利用割补法可得阴影部分的面积.【解答】解:∵AB∥CD,∴∠BAD=∠D,在△BAF和△EDF中,,∴△BAF≌△EDF(ASA),∴S△BAF=S△DEF,∴图中阴影部分的面积=S四边形ACEF+S△AFB=S△ACD===24.故答案为:24.15.如图,一个直角三角形纸片,∠B=90°,AB=5cm,BC=12cm,AC=13cm,把纸片按如图所示折叠,使点B 落在边AC上的B'处,AE为折痕,则三角形CEB'的周长为20cm.【分析】由折叠的性质可得AB=AB'=5cm,BE=B'E,即可求解.【解答】解:由折叠可知:AB=AB'=5cm,BE=B'E,∴B'C=AC﹣AB'=13﹣5=8(cm),∴△CEB'的周长=EC+B'E+B'C=BE+EC+B'C=12+8=20(cm),故答案为:20.三.解答题16.计算:(1)+|﹣2|﹣﹣()3÷()2;(2)1001×999﹣9992.【分析】(1)根据算术平方根、绝对值、二次根式的性质以及有理数的乘方的法则进行计算即可;(2)利用乘法分配律进行计算即可.【解答】解:(1)+|﹣2|﹣﹣()3÷()2=4+2﹣﹣1﹣×16=4+2﹣﹣1﹣2=3﹣;(2)1001×999﹣9992=(1000+1)(1000﹣1)﹣9992=10002﹣1﹣9992=(1000+999)(1000﹣999)﹣1=1999﹣1=1998.17.因式分解(1)a3b﹣ab;(2)(x+y)2﹣(2x+2y﹣1).【分析】(1)直接提取公因式法ab,再利用公式法分解因式,即可得出答案;(2)直接利用完全平方公式分解因式得出答案.【解答】解:(1)a3b﹣ab=ab(a2﹣1)=ab(a+1)(a﹣1);(2)(x+y)2﹣(2x+2y﹣1)=(x+y)2﹣2(x+y)+1=(x+y﹣1)2.18.计算与化简(1)计算:(36a4b3﹣9a3b2+4a2b2)÷(﹣3ab)2;(2)先化简,再求值.(x﹣y)2+(3x﹣y)(x+y)﹣(x﹣2y)(x+2y),其中x,y满足(x+2)2+|y﹣3|=0.【分析】(1)根据积的乘方、多项式除以单项式可以解答本题;(2)根据完全平方公式、多项式乘多项式、平方差公式可以化简题目中的式子,然后根据(x+2)2+|y﹣3|=0,可以得到x、y的值,然后代入化简后的式子,即可解答本题.【解答】解:(1)(36a4b3﹣9a3b2+4a2b2)÷(﹣3ab)2=(36a4b3﹣9a3b2+4a2b2)÷9a2b2=4a2b﹣a+;(2)(x﹣y)2+(3x﹣y)(x+y)﹣(x﹣2y)(x+2y)=x2﹣2xy+y2+3x2+3xy﹣xy﹣y2﹣(x2﹣4y2)=x2﹣2xy+y2+3x2+3xy﹣xy﹣y2﹣x2+4y2=3x2+4y2,∵(x+2)2+|y﹣3|=0,∴x+2=0,y﹣3=0,解得x=﹣2,y=3,当x=﹣2,y=3时,原式=3×(﹣2)2+4×32=3×4+4×9=12+36=48.19.阅读下列文字,并解决问题.已知x2y=3,求2xy(x5y2﹣3x3y﹣4x)的值.分析:考虑到满足x2y=3的x,y的可能值较多,不可能逐一代入求解,故考虑整体思想,将x2y=3整体代入.解:2xy(x5y2﹣3x3y﹣4x)=2x6y3﹣6x4y2﹣8x2y=2(x2y)3﹣6(x2y)2﹣8x2y=2×33﹣6×32﹣8×3=﹣24.请你用上述方法解决问题:(1)已知ab=3,求(2a3b2﹣3a2b+4a)•(﹣2b)的值;(2)已知x﹣=2,求x2+的值.【分析】(1)根据单项式乘多项式的运算法矩形计算,根据积的乘方法则变形,把已知数据代入计算即可;(2)根据完全平方公式把原式变形,把已知数据代入计算即可.【解答】解:(1)∵ab=3,∴(2a3b2﹣3a2b+4a)•(﹣2b)=﹣4a3b3+6a2b2﹣8ab=﹣4(ab)3+6(ab)2﹣8ab=﹣4×33+6×32﹣8×3=﹣68;(2)∵x﹣=2,∴x2+=x2﹣2++2=(x﹣)2+2=22+2=6.20.如图,幼儿园的滑梯有两个长度相等滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等.(1)△ABC与△DEF全等吗?(2)两个滑梯的倾斜角∠ABC与∠DFE的大小有什么关系.【分析】(1)由图可得,△ABC与△DEF均是直角三角形,由已知可根据HL判定两三角形全等;(2)利用(1)中全等三角形的对应角相等,不难求解.【解答】解:(1)△ABC与△DEF全等.理由如下:在Rt△ABC与Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL);(2)∠ABC+∠DFE=90°,理由如下:由(1)知,Rt△ABC≌Rt△DEF,则∠ABC=∠DEF,∵∠DEF+∠DFE=90°,∴∠ABC+∠DFE=90°.21.【教材呈现】:图①,图②,图③分别是华东师大版八年级上册数学教材第33页、第34页和第52页的图形,结合图形解决下列问题:(1)分别写出能够表示图①、图②中图形的面积关系的乘法公式:(a+b)2=a2+2ab+b2,(a﹣b)2=a2﹣2ab+b2.(2)图③是用四个长和宽分别为a,b的全等长方形拼成的一个正方形(所拼图形无重叠、无缝隙),写出代数式(a+b)2、(a﹣b)2、ab之间的等量关系:(a+b)2=(a﹣b)2+4ab.【结论应用】根据上面(2)中探索的结论,回答下列问题:(3)当m+n=5,mn=﹣1时,求m﹣n的值;(4)设A=,B=m﹣3,化简(A+B)2﹣(A﹣B)2.【分析】(1)根据图①、图②中各个部分面积之间的关系得出乘法公式;(2)根据大正方形的面积等于小正方形面积与4个矩形面积的和可得答案;(3)由(2)的结论,根据关系式可求答案;(4)由完全平方公式可得(A+B)2﹣(A﹣B)2=4AB,再代入求值即可.【解答】解:(1)图①大正方形的边长为a+b,根据各个部分面积之间的关系可得,(a+b)2=a2+2ab+b2,图②中,最大的正方形的边长为a,较小的正方形的边长为a﹣b,最小的正方形的边长为b,根据各个部分面积之间的关系得,(a﹣b)2=a2﹣2ab+b2,故答案为:(a+b)2=a2+2ab+b2,(a﹣b)2=a2﹣2ab+b2;(2)根据大正方形的面积等于小正方形面积与4个矩形面积的和可得,(a+b)2=(a﹣b)2+4ab,故答案为:(a+b)2=(a﹣b)2+4ab;(3)由(2)可得,(m+n)2=(m﹣n)2+4mn,∵m+n=5,mn=﹣1,∴25=(m﹣n)2﹣4,即(m﹣n)2=9,∴m﹣n=±3,答:m﹣n的值为±3;(4)由完全平方公式得,(A+B)2﹣(A﹣B)2=A2+2A•B+B2﹣A2+2A•B﹣B2=4A•B,当A=,B=m﹣3时,原式=4××(m﹣3)=m2﹣9.22.如图①,在长方形ABCD中,AB=CD=8cm,BC=12cm,点P从点B出发,以2cm/s的速度沿BC向点C运动,设点P的运动时间为ts.(1)PC=(12﹣2t)cm;(用含t的代数式表示)(2)当t为何值时,△ABP≌△DCP?并说明理由.(3)如图②当点P从点B开始运动时,点Q同时从点C出发,以vcm/s的速度沿CD向点D运动,是否存在这样的v值,使得△ABP与△PQC全等?若存在,请求出v的值;若不存在,请说明理由.【分析】(1)根据P点的运动速度可得PC的长;(2)根据全等三角形的性质即可得出BP=CP即可;(3)可分两种情况:①△ABP≌△PCQ得到BP=CQ,AB=PC,②△ABP≌△QCP得到BA=CQ,PB=PC,然后分别计算出t的值,进而得到v的值.【解答】解:(1)点P从点B出发,以2cm/秒的速度沿BC向点C运动,点P的运动时间为t秒时,BP=2tcm,则PC=(12﹣2t)cm;故答案为:(12﹣2t);(2)当t=3时,△ABP≌△DCP,理由:∵BP=2t,CP=12﹣2t,∵△ABP≌△DCP,∴BP=CP,∴2t=12﹣2t,∴t=3,则当t为3时,△ABP≌△DCP;(3)①当BP=CQ,AB=PC时,△ABP≌△PCQ,∵AB=8cm,∴PC=8cm,∴BP=12﹣8=4(cm),∴2t=4,解得:t=2,∴CQ=BP=4,v×2=4,解得:v=2;②当BA=CQ,PB=PC时,△ABP≌△QCP,∵PB=PC,∴BP=PC=6cm,∴2t=6,解得:t=3,CQ=AB=8,v×3=8,解得:v=,综上所述,当v=2或时,△ABP与△PQC全等.23.(1)观察猜想:如图①:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分别是BC,CD上的点且∠EAF=60°,延长FD到点G.使DG=BE,连结AG,则线段AG与AE的数量关系是AG =AE,∠F AG=60度;(2)探索发现:根据(1)及图①,探究线段BE,EF,FD之间的数量关系,其结论是EF=BE+FD,请说明理由;(3)拓展延伸:如图②,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述(2)中的结论是否仍然成立?是(填“是”或“否”);(4)结论应用:如图③,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心O的距离相等,接到行动指令后,舰艇甲向正东方向以50海里/小时的速度前进,同时舰艇乙沿北偏东50°的方向以65海里/小时的速度前进,2小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°(∠EOF=70°),试求此时两舰艇之间的距离.(请直接写出结果)【分析】(1)观察猜想:证明△ABE≌△ADG(SAS),AE=AG,∠BAE=∠DAG,则∠EAF=∠F AG=60°,可求出答案;(2)探索发现:延长FD到点G,使DG=BE,连接AG,得到△AEF≌△AGF,证明EF=FG,得到答案;(3)拓展延伸:连接EF,延长AE,BF相交于点C,利用全等三角形的性质证明EF=AE+FB.(4)结论应用:连接EF,延长AE,BF相交于点C,首先证明,∠FOE=∠AOB,利用结论EF=AE+BF求解即可.【解答】解:(1)观察猜想:在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠F AG=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠F AG=60°,故答案为:AE=AG,60;(2)探索发现:由(1)知:△ABE≌△ADG,∴BE=DG,在△AEF和△GAF中,,∴△AEF≌△AGF(SAS),∴EF=GF,∴EF=FG=DF+DG=BE+FD.故答案为:EF=BE+FD.(3)拓展延伸:EF=BE+FD仍然成立.理由:如图②,延长FD到点G,使DG=BE,连接AG,∵∠B+∠ADC=180°,∠ADG+∠ADC=180°,∴∠B=∠ADG,又∵AB=AD,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,又∵∠EAF=∠BAD,∴∠F AG=∠F AD+∠DAG=∠F AD+∠BAE=∠BAD﹣∠EAF,=∠BAD﹣∠BAD=∠BAD,∴∠EAF=∠GAF.在△AEF和△AGF中,,∴△AEF≌△AGF(SAS),∴EF=FG,又∵FG=DG+DF=BE+DF,∴EF=BE+FD.故答案为:是.(4)结论应用:如图③,连接EF,延长AE,BF相交于点C,在四边形AOBC中,∵∠AOB=30°+90°+20°=140°,∠FOE=70°=∠AOB,又∵OA=OB,∠OAC+∠OBC=60°+120°=180°,符合探索延伸中的条件,∴结论EF=AE+FB成立.即,EF=AE+FB=2×(50+65)=230(海里).答:此时两舰艇之间的距离为230海里.。
华师大版数学八年级(上)期中测试试卷(含解析)
八年级(上)期中数学试卷一、用心选一选(每小题3分,共48分,每个小题给出的四个选项中,只有一个选项符合题意)1.是一个数的算术平方根,则这个数为()A.4B.1C.D.±2.若分式的值为0,则()A.x=±1B.x=1C.x=﹣1D.x=03.下列实数中,属于无理数的是()A.﹣3B.3.14C.D.4.下列命题中,为真命题的是()A.对顶角相等B.同位角相等C.若a2=b2,则a=b D.若a>b,则﹣2a>﹣2b5.近似数39.37亿是精确到()A.百分位B.千万位C.百万位D.亿位6.下列变形中,正确的是()A.=B.=C.=a﹣b D.无7.如图,已知点B、E、C、F在一条直线上,∠A=∠D,∠B=∠DFE,添加以下条件,不能判定△ABC≌△DFE 的是()A.BE=CF B.AB=DF C.∠ACB=∠DEF D.AC=DE8.如图是数学老师给玲玲留的习题,玲玲经过计算得出的正确的结果为()A.1B.2C.3D.49.如图,AC=BC,AE=CD,AE⊥CE于点E,BD⊥CD于点D,AE=7,BD=2,则DE的长是()A.7B.5C.3D.210.有一个数值转换器,程序如图所示,当输入的数x为81时,输出的数y的值是()A.9B.3C.D.±11.如图,实数﹣6在数轴上表示的大致位置是()A.点A B.点B C.点C D.点D12.一艘轮船在静水中的最大航速为40km/h,它以最大航速沿河顺流航行100km所用时间,和它以最大航速沿河逆流航行80km所用时间相等,设河水的流速vkm/h,则可列方程为()A.=B.C.D.13.关于x的分式方程有增根,则a的值为()A.2B.3C.4D.514.已知,则的值是()A.B.﹣C.2D.﹣215.若关于x的方程=1的解是正数,则a的取值范围是()A.a>﹣1B.a>﹣1且a≠0C.a<﹣1D.a<﹣1且a≠﹣316.在△ABC中,AB=AC,AB>BC,点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC,若△ABC的面积为18,则△ACF与△BDE的面积之和是()A.6B.8C.9D.12二、仔细填一填(每小题3分,共12分)17.比较实数的大小:3(填“>”、“<”或“=”).18.2÷m×=.19.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=.20.如图,已知△ABC中,AB=AC=24厘米,∠ABC=∠ACB,BC=16厘米,点D为AB的中点.如果点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.当点Q的运动速度为厘米/秒时,能够在某一时刻使△BPD与△CQP全等.三、用心答一答,相信你一定能行!(共包括6道大题,60分)21.(8分)解方程:﹣=1.四、(8分)22.(8分)已知实数a、b满足|a﹣5|+=0(1)求a,b的值;(2)求a+b﹣1的立方根.五、(10分)23.(10分)已知在△ABC与△ABD中,AC=BD,∠C=∠D=90°,AD与BC交于点E.(1)求证:AE=BE;(2)若AC=3,BC=4,求△ACE的周长.六、(10分)24.(10分)老师在黑板上书写了一个代数式的正确计算结果,随后用字母A代替了原代数式的一部分,如下:(A﹣)÷=(1)求代数式A,并将其化简;(2)原代数式的值能等于﹣1吗?请说明理由.七、(12分)25.(12分)甲、乙两家园林公司承接了某项园林绿化工程,已知乙公司单独完成此项工程所需要的天数是甲公司单独完成所需要天数的1.5倍,如果甲公司先单独工作10天,再由乙公司单独工作15天,这样恰好完成整个工程的.(1)求甲、乙两公司单独完成这项工程各需多少天?(2)园林部门要求完成该绿化工程的时间不得超过30天,甲、乙公司合作若干天后,甲公司另有项目离开,剩下的过程由乙公司单独完成,求甲、乙两公司至少合作多少天.26.(12分)问题背景:(1)如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分别是BC.CD上的点且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG.再证明≌,可得出结论,他的结论应是.请你按照小王同学的思路写出完整的证明过程.实际应用(2)如图2,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的一处,舰艇乙在指挥中心南偏东70°的B处,且两舰艇到指挥中心的距离相等接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里,小时的速度前进,1.2小时后,指挥中心观测到甲、乙两舰艇分别到达E,F 处.且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离是海里(直接写出答案).参考答案与试题解析一、用心选一选(每小题3分,共48分,每个小题给出的四个选项中,只有一个选项符合题意)1.是一个数的算术平方根,则这个数为()A.4B.1C.D.±【分析】根据算术平方根的定义即可求出这个数.【解答】解:∵()2=∴该数为故选:C.【点评】本题考查算术平方根的定义,解题的关键是正确理解算术平方根的定义,本题属于基础题型.2.若分式的值为0,则()A.x=±1B.x=1C.x=﹣1D.x=0【分析】直接利用分式的值为零则分子为零,分母不等于零,即可得出答案.【解答】解:∵分式的值为0,∴|x|﹣1=0且x+1≠0,解得:x=1.故选:B.【点评】此题主要考查了分式的值为零的条件,正确把握相关定义是解题关键.3.下列实数中,属于无理数的是()A.﹣3B.3.14C.D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、﹣3是整数,是有理数,故A选项错误;B、3.14是小数,是有理数,故B选项错误;C、是有限小数,是有理数,故C选项错误.D、是无理数,故D选项正确故选:D.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.下列命题中,为真命题的是()A.对顶角相等B.同位角相等C.若a2=b2,则a=b D.若a>b,则﹣2a>﹣2b【分析】分别判断四个选项的正确与否即可确定真命题.【解答】解:A、对顶角相等为真命题;B、两直线平行,同位角相等,故为假命题;C、a2=b2,则a=±b,故为假命题;D、若a>b,则﹣2a<﹣2b,故为假命题;故选:A.【点评】主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5.近似数39.37亿是精确到()A.百分位B.千万位C.百万位D.亿位【分析】根据近似数的精确度求解.【解答】解:近似数39.37亿是精确到百万位.故选:C.【点评】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.6.下列变形中,正确的是()A.=B.=C.=a﹣b D.无【分析】按照分式的基本性质逐个分析验证即可.【解答】解:选项A:等式的坐标已经是最简分式,没法变为右边,故A不正确;选项B:左边已经是最简分式,分子除以了m,分母除以了n,不符合分式的基本性质,故不正确;选项C:分子是分母的平方,故可以约掉分母,变为(a﹣b),故C成立;综上,只有C正确.故选:C.【点评】本题考查了分式的基本性质在分式化简中的应用,熟练掌握分式的基本性质并正确运用,是解题的关键.7.如图,已知点B、E、C、F在一条直线上,∠A=∠D,∠B=∠DFE,添加以下条件,不能判定△ABC≌△DFE 的是()A.BE=CF B.AB=DF C.∠ACB=∠DEF D.AC=DE【分析】根据全等三角形的判定方法对各选项进行判断.【解答】解:∵∠A=∠D,∠B=∠DFE,∴当BE=CF时,即BC=EF,△ABC≌△DFE(AAS);当AB=DF时,即BC=EF,△ABC≌△DFE(ASA);当AC=DE时,即BC=EF,△ABC≌△DFE(AAS).故选:C.【点评】本题考查了全等三角形的判定:灵活运用全等三角形的5种判定方法.若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.8.如图是数学老师给玲玲留的习题,玲玲经过计算得出的正确的结果为()A.1B.2C.3D.4【分析】先根据分式混合运算的法则把原式进行化简,再把a+b=ab=3代入进行计算即可.【解答】解:原式=+2=+2,当a+b=ab=3时,原式=+2=3.故选:C.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.9.如图,AC=BC,AE=CD,AE⊥CE于点E,BD⊥CD于点D,AE=7,BD=2,则DE的长是()A.7B.5C.3D.2【分析】根据垂直的定义得到∠AEC=∠D=90°,根据全等三角形的性质即可得到结论.【解答】解:∵AE⊥CE于点E,BD⊥CD于点D,∴∠AEC=∠D=90°,在Rt△AEC与Rt△CDB中,∴Rt△AEC≌Rt△CDB(HL),∴CE=BD=2,CD=AE=7,∴DE=CD﹣CE=7﹣2=5,故选:B.【点评】本题考查了全等三角形的判定与性质,解答本题的关键是根据已知条件判定三角形的全等.10.有一个数值转换器,程序如图所示,当输入的数x为81时,输出的数y的值是()A.9B.3C.D.±【分析】根据开方运算,可得算术平方根.【解答】解:=9,=3,y=.故选:C.【点评】本题考查了算术平方根,求算术平方根,依据程序进行计算是解题的关键.11.如图,实数﹣6在数轴上表示的大致位置是()A.点A B.点B C.点C D.点D【分析】先估算出的取值范围,再由不等式的基本性质即可得出结论.【解答】解:∵16<21<25,∴4<<5,∴﹣2<﹣6<﹣1,∴实数﹣6在数轴上表示的大致位置是B点.故选:B.【点评】本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.12.一艘轮船在静水中的最大航速为40km/h,它以最大航速沿河顺流航行100km所用时间,和它以最大航速沿河逆流航行80km所用时间相等,设河水的流速vkm/h,则可列方程为()A.=B.C.D.【分析】根据“以最大航速沿河顺流航行100km所用时间,和它以最大航速沿河逆流航行80km所用时间相等”建立方程即可得出结论.【解答】解:设河水的流速vkm/h,则以最大航速沿江顺流航行的速度为(40+v)km/h,以最大航速逆流航行的速度为(40﹣v)km/h,根据题意得,=,故选:C.【点评】此题是由实际问题抽象出分式方程,主要考查了水流问题,找到相等关系是解本题的关键.13.关于x的分式方程有增根,则a的值为()A.2B.3C.4D.5【分析】先去分母,化成整式方程,再根据增根为使得分母为0的值,将其代入变形后的整式方程即可解出a.【解答】解:在方程两边同时乘以(x﹣4)得x+1=a,∵方程有增根,即x=4满足方程x+1=a,将x=4代入得4+1=a,∴a=5故选:D.【点评】本题考查了分式方程的增根,正确理解增根的含义是解题的关键.14.已知,则的值是()A.B.﹣C.2D.﹣2【分析】观察已知和所求的关系,容易发现把已知通分后,再求倒数即可.【解答】解:∵,∴﹣=,∴,∴=﹣2.故选:D.【点评】解答此题的关键是通分,认真观察式子的特点尤为重要.15.若关于x的方程=1的解是正数,则a的取值范围是()A.a>﹣1B.a>﹣1且a≠0C.a<﹣1D.a<﹣1且a≠﹣3【分析】先求出方程的解,根据解是正数列出不等式,即可解答.【解答】解:在方程两边同乘x﹣1得:3x+a=x﹣1,解得:x=,∵方程的解是正数,∴解得a<﹣1且a≠﹣3.故选:D.【点评】本题考查了分式方程的解、一元一次不等式,解决本题的关键是根据方程的解是正数得出不等式.16.在△ABC中,AB=AC,AB>BC,点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC,若△ABC的面积为18,则△ACF与△BDE的面积之和是()A.6B.8C.9D.12【分析】根据ASA证明△ABE≌△CAF,得出△ACF与△BDE的面积之和等于△ABD的面积,由CD=2BD,△ABC的面积为18,可求出△ABD的面积为6,即可得出答案.【解答】解:∵∠1=∠2=∠BAC,∠1=∠BAE+∠ABE,∠BAC=∠BAE+∠CAF,∠2=∠FCA+∠CAF,∴∠ABE=∠CAF,∠BAE=∠FCA,在△ABE和△CAF中,,∴△ABE≌△CAF(ASA),∴△ACF的面积=△ABE的面积,∴△ACF与△BDE的面积之和=△ABE与△BDE的面积之和,∵△ABC的面积为18,CD=2BD,∴△ABD的面积=×18=6,∴△ACF与△BDE的面积之和=△ABD的面积=6;故选:A.【点评】本题主要考查了全等三角形的判定与性质,三角形的面积计算,三角形的外角性质等知识点;熟练掌握三角形面积关系,证明三角形全等是解题的关键.二、仔细填一填(每小题3分,共12分)17.比较实数的大小:3>(填“>”、“<”或“=”).【分析】根据3=>计算.【解答】解:∵3=,>,∴3>.故答案是:>.【点评】本题考查了实数的大小比较的应用,主要考查了学生的比较能力.18.2÷m×=.【分析】根据分式的运算法则即可求出答案.【解答】解:原式=2××=,故答案为:【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.19.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=55°.【分析】求出∠BAD=∠EAC,证△BAD≌△CAE,推出∠2=∠ABD=30°,根据三角形的外角性质求出即可.【解答】解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△BAD和△CAE中,∴△BAD≌△CAE(SAS),∴∠2=∠ABD=30°,∵∠1=25°,∴∠3=∠1+∠ABD=25°+30°=55°,故答案为:55°.【点评】本题考查了全等三角形的性质和判定,三角形的外角性质的应用,解此题的关键是推出△BAD≌△CAE.20.如图,已知△ABC中,AB=AC=24厘米,∠ABC=∠ACB,BC=16厘米,点D为AB的中点.如果点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.当点Q的运动速度为4或6厘米/秒时,能够在某一时刻使△BPD与△CQP全等.【分析】求出BD的长,要使△BPD与△CQP全等,必须BD=CP或BP=CP,得出方程12=16﹣4x或4x=16﹣4x,求出方程的解即可.【解答】解:设经过x秒后,使△BPD与△CQP全等,∵AB=AC=24厘米,点D为AB的中点,∴BD=12厘米,∵∠ABC=∠ACB,∴要使△BPD与△CQP全等,必须BD=CP或BP=CP,即12=16﹣4x或4x=16﹣4x,解得:x=1或x=2,x=1时,BP=CQ=4,4÷1=4;x=2时,BD=CQ=12,12÷2=6;即点Q的运动速度是4或6,故答案为:4或6【点评】本题考查了全等三角形的判定的应用,关键是能根据题意得出方程,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.三、用心答一答,相信你一定能行!(共包括6道大题,60分)21.(8分)解方程:﹣=1.【分析】观察可得最简公分母是(x+1)(x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘(x+1)(x﹣1),得:x(x+1)﹣3=(x+1)(x﹣1),解得:x=2.检验:把x=2代入(x+1)(x﹣1)=3≠0,即x=2是原分式方程的解;则原方程的解为:x=2.【点评】此题考查了分式方程的求解方法.注意转化思想的应用,注意解分式方程一定要验根.四、(8分)22.(8分)已知实数a、b满足|a﹣5|+=0(1)求a,b的值;(2)求a+b﹣1的立方根.【分析】(1)根据非负数的性质列出方程求出a、b的值;(2)把ab的值代入所求代数式计算,再求得立方根即可.【解答】解:(1)∵|a﹣5|+=0,a﹣5=0,b2﹣16=0,解得a=5,b=±4;(2)当a=5,b=4时,a+b﹣1=5+4﹣1=8,∴=2;当a=5,b=﹣4时,a+b﹣1=5﹣4﹣1=0,∴=0.【点评】本题考查了非负数的性质以及立方根:几个非负数的和为0时,这几个非负数都为0.五、(10分)23.(10分)已知在△ABC与△ABD中,AC=BD,∠C=∠D=90°,AD与BC交于点E.(1)求证:AE=BE;(2)若AC=3,BC=4,求△ACE的周长.【分析】(1)由AAS证得△ACE≌△BDE(AAS),即可得出结论;(2)由(1)得:AE=BE,则△ACE的周长=AC+AE+CE=AC+BE+CE=AC+BC=3+4=7.【解答】(1)证明:在△ACE和△BDE中,,∴△ACE≌△BDE(AAS),∴AE=BE;(2)解:∵AC=3,BC=4,由(1)得:AE=BE,∴△ACE的周长=AC+AE+CE=AC+BE+CE=AC+BC=3+4=7.【点评】本题考查了全等三角形的判定与性质、三角形周长的计算等知识,熟练掌握全等三角形的判定与性质是解题的关键.六、(10分)24.(10分)老师在黑板上书写了一个代数式的正确计算结果,随后用字母A代替了原代数式的一部分,如下:(A﹣)÷=(1)求代数式A,并将其化简;(2)原代数式的值能等于﹣1吗?请说明理由.【分析】(1)根据题目中的等式可以求得代数式A,并将其化简;(2)先判断,然后根据判断说明理由即可.【解答】解:(1)∵(A﹣)÷=∴[A﹣]=∴(A﹣)=∴A﹣=∴A=∴A=∴A=;(2)原代数式的值不能等于﹣1,理由:若原代数式的值等于﹣1,则=﹣1,得x=0,当x=0时,原代数式中的除式等于0,原代数式无意义,故原代数式的值不能等于﹣1.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.七、(12分)25.(12分)甲、乙两家园林公司承接了某项园林绿化工程,已知乙公司单独完成此项工程所需要的天数是甲公司单独完成所需要天数的1.5倍,如果甲公司先单独工作10天,再由乙公司单独工作15天,这样恰好完成整个工程的.(1)求甲、乙两公司单独完成这项工程各需多少天?(2)园林部门要求完成该绿化工程的时间不得超过30天,甲、乙公司合作若干天后,甲公司另有项目离开,剩下的过程由乙公司单独完成,求甲、乙两公司至少合作多少天.【分析】(1)题中有两个等量关系,“乙公司单独完成所需要的天数是甲公司单独完成所需天数的1.5倍”,这是说明甲乙两队工作天数的关系,因此若设甲公司单独x天完成,则乙公司单独完成此工程的天数为1.5x;另一个等量关系:甲公司单独工作10天,再由乙公司单独工作15天,这样就可完成整个工程的三分之二.可得:甲公司单独工作10天完成的工作量+乙公司单独工作15天完成的工作量=.(2)设甲、乙两公司合作a天可完成整个工程,等量关系为:甲公司工作a天完成的工作量+乙公司工作30天完成的工作量≥1,依此列出不等式求解即可.【解答】解:(1)设甲公司单独x天完成,则乙公司单独完成此工程的天数为1.5x,由题意得+=,解得:x=30.经检验,x=30是原方程的解.则1.5x=45.答:甲、乙两公司单独完成这项工程各需30天、45天;(2)设甲、乙两公司合作a天可完成整个工程,由题意得a+≥1,解得a≥10.答:甲、乙两公司合作至少10天.【点评】本题考查分式方程的应用,一元一次不等式的应用,分析题意,找到合适的等量关系与不等关系是解决问题的关键.26.(12分)问题背景:(1)如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分别是BC.CD上的点且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG.再证明△AEF≌△AGF,可得出结论,他的结论应是EF=BE+DF.请你按照小王同学的思路写出完整的证明过程.实际应用(2)如图2,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的一处,舰艇乙在指挥中心南偏东70°的B处,且两舰艇到指挥中心的距离相等接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里,小时的速度前进,1.2小时后,指挥中心观测到甲、乙两舰艇分别到达E,F 处.且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离是168海里(直接写出答案).【分析】(1)如图1,延长FD到点G.使DG=BE.连结AG,证明△ABE≌△ADG,根据全等三角形的性质得到AE=AG,证明△AEF≌△AGF,得得EF=FG,证明结论;(2)如图2,连接EF,延长AE、BF相交于点C,根据题意得到∠EOF=∠AOB,OA=OB,∠OAC+∠OBC=180°,根据图1的结论计算.【解答】解:(1)△AEF≌△AGF,EF=BE+DF.理由如下:在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;故答案为△AEF;△AGF;EF=BE+DF;(2)如图2,连接EF,延长AE、BF相交于点C,∵∠AOB=30°+90°+(90°﹣70°)=140°,∠EOF=70°,∴∠EOF=∠AOB,∵OA=OB,∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°,∴符合(1)中的条件,∴结论EF=AE+BF成立,即EF=1.2×(60+80)=168(海里).故答案为:168.【点评】考查了四边形综合题,掌握全等三角形的判定与性质,等腰直角三角形的性质,题目的综合性较强,难度较大,解题的关键是正确的作出辅助线构造全等三角形,解答时,注意类比思想的应用.。
华师大版八年级上册数学期中试卷
华师大版八年级上册数学期中试卷(时间:120分钟满分140分)温馨提示:1.全卷分原卷和答题卷.原卷共6页,满分为140分,考试时间为120分钟.2.请将班级、学号、姓名、座位号分别填写在原卷和答题卷密封线内规定的位置上.3.答题时,请将答案填写在答题卷相应的位置上,选择题必须将对应的选项位置用2B 铅笔涂黑、涂满.非选择题答案必须按照题号顺序在答题卷各题目相应规定区域内作答,做在原卷上或超出答题区域书写以及字迹马虎难辨的答案无效.一、选择题(本大题10小题,每小题3分,共30分)1.下列图形中,不是轴对称图形的是( )A .B .C .D . 2.下列计算中正确的是( )A .2352a b a +=B .44a a a ÷=C .248a a a ⋅=D .()326a a -=-3.如图,已知AE CF =,AFD CEB ∠=∠,那么添加下列一个条件后,仍无法判定ADF CBE ≅的是( )A .A C ∠=∠B .AD CB =C .BE DF =D .//AD BC4.在代数式2x x 、12、212x +、3xy π、3x y +、1a m+中,分式的个数有( ) A .2个 B .3个 C .4个 D .5个5. 2.5PM 是指大气中直径小于或等于()2510000001m m m μμ=..的颗粒,也称为可入肺颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害.25m μ.用科学记数法可表示为( )A .52.510m -⨯B .70.2510m -⨯C .52510m -⨯D .62.510m -⨯ 6.若将x y xy+中的字母x 、y 的值分别扩大为原来的4倍,则分式的值( ) A .扩大为原来的4倍 B .缩小为原来的116C .缩小为原来的14D .不变 7.若关于x 的分式方程3144x m x x++=--有增根,则m 的值是( ) A .1- B .3 C .0 D .0或38.已知1x x +=,则1x x-的值为( )A B .2± C .D9.在ABC 中,10AB =,AC =BC 边上的高6AD =,则另一边BC 等于( )A .10B .8C .6或10D .8或1010.已知:如图,在长方形ABCD 中,4AB =,6AD =.延长BC 到点E ,使2CE =,连接DE ,动点P 从点B出发,以每秒2个单位的速度沿BC CD DA --向终点A 运动,设点Р的运动时间为t 秒,当t 的值为( )秒时,ABP 和DCE 全等.A .1B .1或3C .1或7D .3或7二、填空题(本大题6小题,每小题4分,共24分) 11.若分式211x x --的值为0,则.x =________. 12.如果点()2,P b -和点(),3Q a -关于x 轴对称,则a b +的值是____________.13.已知264x kx ++是完全平方式,则常数k 等于_______.14.如图所示,ABC 中,BC 的垂直平分线交AB 于点E ,若ABC 的周长为10,4BC =,则ACE 的周长是_________.15.已知:2m a =,2n b =,则2?32m n+用含a 、b 的式子可以表示为________.16.如图,等边ABC 的边长为4,AD 是BC 边上的中线,F 是AD 边上的动点,E 是AC 边上一点,若AE=2,当EF+CF 取得最小值时,则ECF ∠的度数为_________.17.定义:若两个二次根式a 、b 满足a b c ⋅=,且c 是有理数,则称a 与b 是关于c 的共轭二次根式.若是关于2的共轭二次根式,则m 的值为____________.三、解答题(一)(每小题6分,共18分)18.计算:)(201|2|2312-⎛⎫-++ ⎪⎝⎭.19.先化简,再求值:22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中x = 20.如图,在Rt ABC 中,90BCA ∠=︒,12AC =,13AB =,点D 是Rt ABC 外一点,连接DC ,DB ,且4CD =,3BD =.求四边形ABDC 的面积.四、解答题(二)(每小题8分,共32分)21.如图,ABC 中,90BAC ∠=︒,AD BC ⊥,垂足为D .(1)尺规作图:作ABC ∠的平分线,分别交AD ,AC 于P ,Q 两点(不要求写作法,保留作图痕迹);22.我市计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙两队先合做10天,那么余下的工程由乙队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合做来完成.则该工程施工费用是多少?23.为了解“停课不停学”过程中学生对网课内容的喜爱程度,某校开展了一次网上问卷调查.随机抽取部分学生,按四个类别统计,其中A 表示“很喜欢”,B 表示“喜欢”,C 表示“一般”,D 表示“不喜欢”,并将调查结果绘制成如图两幅不完整的统计图.请根据图中提供的信息,解决下列问题:(1)这次共抽取______名学生进行统计调查,扇形统计图中D 类所在扇形的圆心角度数为_______;(2)将条形统计图补充完整;(3)若该校共有4000名学生,估计该校表示“喜欢”的B 类学生大约有多少人?各类学生人数条形统计图各类学生人数扇形统计图24.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:(231+=,善于思考的小明进行了以下探索:设(2a m +=+(其中a 、b 、m 、n 均为整数),则有2222a m n +=++.222a m n ∴=+,2b mn =.这样小明就找到了一种把部分a +的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a 、b 、m 、n 均为正整数时,若(2a m +=+,用含m 、n 的式子分别表示a 、b ,得a = _________,b =_________;(2)试着把7+化成一个完全平方式.(3)若a 是216的立方根,b 是16五、解答题(三)(每小题10分,共20分)25.阅读下列材料:材料1、将一个形如2x px q ++的二次三项式因式分解时,如果能满足q mn =且p m n =+,则可以把2x px q ++因式分解成(()()x m x n ++(1)()()24313x x x x ++=++ (2)()()241262x x x x --=-+ 材料2、因式分解:(x+y)^{2}+2(x+y)+1解:将“x y +”看成一个整体,令x y A +=,则原式()22211A A A =++=+再将“A ”还原,得:原式()21x y =++上述解题用到“整体思想”,整体思想是数学解题中常见的一种思想方法.材料3、因式分解:44x +.分析:这个二项式既无公因式可提,也不能直接利用公式,怎么办呢?19世纪的法国数学家苏菲·热门抓住了该式只有两项,而且属于平方和()2222x+的形式,要使用公式就必须添一项24x ,随即将此项24x 减去,即可得44224444x x x x +=++-()()222222242(2)x x x x =+-=+-()()222222x x x x =++-+人们为了纪念苏菲·热门给出这一解法,就把它叫做“热门定理”.请你解答下列问题:(1)根据材料1,把268x x -+分解因式为____________x^{2}-6 x+8(2)结合上述材料,完成下面小题:①分解因式:()()243x y x y -+-+;②分解因式:()()22223m m m m ++--.③分解因式:444x y +.26.在学习全等三角形知识时、数学兴趣小组发现这样一个模型:它是由两个共顶点且顶角相等的等腰三角形构成.在相对位置变化的同时,始终存在一对全等三角形.通过资料查询,他们得知这种模型称为“手拉手模型”兴趣小组进行了如下操作:(1)如图1、两个等腰三角形ABC 和ADE 中,AB AC =,AE AD =,BAC DAE ∠=∠,连接BD 、CE 、如果把小等腰三角形的腰长看作小手,大等腰三角形的腰长看作大手,两个等腰三角形有公共顶点,类似大手拉着小手,这个就是“手拉手模型”,在这个模型中,和ADB 全等的三角形是______,此时BD 和CE 的数量关系是_________﹔(2)如图2、两个等腰直角三角形ABC 和ADE 中,AB AC =,AE AD =,90BAC DAE ∠=∠=︒,连接BD ,CE ,两线交于点P ,请判断线段BD 和CE 的数量关系和位置关系,并说明理由;(3)如图3,已知ABC ,请完成作图:以AB 、AC 为边分别向ABC 外作等边ABD 和等边ACE (尺规作图,保留作图痕迹),连接BE ,CD ,两线交于点P ,并直接写出线段BE 和CD 的数量关系及PBC PCB ∠+∠的度数.六、解答题(四)(共12分)27.如图所示,直线AB 交x 轴于点(),0A a ,交y 轴于点()0,B b ,且a 、b ()240a -=.(1)如图1,若C 的坐标为()1,0-,且AH BC ⊥于点H ,AH 交OB 于点P ,试求点Р的坐标;(2)如图2,连接OH ,求证45OHP ∠=︒;(3)如图3,若点D 为AB 的中点,点M 为y 轴正半轴上一动点,连接MD ,过D 作DN DM ⊥交x 轴于N点,当M 点在y 轴正半轴上运动的过程中,式子BDM ADN S S -的值是否发生改变?如发生改变,求出该式子的值的变化范围;若不改变,求该式子的值.。
华师大版八年级上册数学期中考试试题及答案
华师大版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案)1.若24,a =1=-,则+a b 的值是( )A .1B .-3C .1或-3D .-1或32.在 -1,0,1 )A .B .-1C .0D .13.在112,0.16166166616666,3.1415926,1000π四个数中无理数有几个( ) A .1个B .2个C .3个D .4个 4.下列各式从左到右的变形是分解因式的是A .2222()()a b a b a b a -=+-+B .2()22a b c ab ac +=+C .3222(1)x x x x x -+=-D .221(1)x x x x+=+ 5.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把正确结果的最后一项染黑了,正确的结果为2912a ab -+( ),则被染黑的这一项应是( )A .22bB .23bC .24bD .24b - 6.下列运算正确的是( )A .3a+2a =5a 2B .(﹣a )3•(﹣a 2)=﹣a 5C .3a 2﹣2a =aD .(2a 3b 2﹣4ab 4)÷(﹣2ab 2)=2b 2﹣a 27.若3x 2﹣5x +1=0,则5x (3x ﹣2)﹣(3x +1)(3x ﹣1)=( )A .﹣1B .0C .1D .﹣2 8.给出下列4个命题:①同旁内角互补;②相等的角是对顶角;③等角的补角相等;④两直线平行,同位角相等.其中,假命题的个数为( )A .1B .2C .3D .49.如图,已知:AC =DF ,AC ∥FD ,AE =DB ,判断△ABC ≌△DEF 的依据是( )A .SSSB .SASC .ASAD .AAS 10.如图,CD ⊥AB 于点D ,点E 在CD 上,下列四个条件:①AD =ED ;②∠A =∠BED ;③∠C =∠B ;④AC =EB ,将其中两个作为条件,不能判定△ADC ≌△EDB 的是A .①②B .①④C .②③D .②④二、填空题11.已知有理数 x , y , z 满足0= ,那么 ()2x yz - 的平方根为________. 12.100100(4)(0.25)-⨯-=__________ ;2205204206-⨯=_______13.已知a =2019x+2016,b =2019x+2017,c =2019x+2018,则多项式a 2+b 2+c 2﹣ab ﹣bc ﹣ac 的值为_____.14.如图,点D 、E 分别在线段AB ,AC 上,AE=AD ,不添加新的线段和字母,要使△ABE ≌△ACD ,需添加的一个条件是_____(只写一个条件即可).15.设a ,b a b <<,是,则a b =____. 16.如果29x mx -+是一个完全平方式,则m 的值是____.三、解答题17.计算下列各题:①|1②(-1)20193. 18.分解因式: (1)2(2)36a b a b --+(2)24()x y x y --19.规定两正数a ,b 之同的一种运算,记作:E(a ,b),如果a c =b ,那么E(a ,b)=c .例如23=8,所以E(2,8)=3(1)填空:E(3,27)= ,E 11,216⎛⎫ ⎪⎝⎭= (2)小明在研究这和运算时发现一个现象:E(3n ,4n )=E(3,4)小明给出了如下的证明:设E(3n ,4n )=x ,即(3n )x =4n ,即(3n ,4n )=4n ,所以3x =4,E(3,4)=x ,所以E(3n ,4n )=E(3,4),请你尝试运用这种方法说明下面这个等式成立:E(3,4)+E(3,5)=E(3,20)20.先化简,再求值;当240x -,求()()()()32322524x y x y x y x y x ⎡⎤+--+-÷⎣⎦的值21.如图,点M 、N 在线段AC 上,AM =CN ,AB//CD ,AB =CD .(1)请说明△ABN ≌△CDM 的理由;(2)线段BM 与DN 平行吗?说明理由.22.如图所示,A ,E ,F ,C 在一条直线上,AE CF =,过E ,F 分别作DE AC ⊥,BF AC ⊥,垂足分别为E ,F ,且AB CD =.(1)ABF ∆与CDE ∆全等吗?为什么?(2)求证:EG FG =.23.如图,已知在△ABC 中,AB =AC ,BC =12厘米,点D 为AB 上一点且BD =8厘米,点P 在线段BC 上以2厘米/秒的速度由B 点向C 点运动,设运动时间为t ,同时,点Q 在线段CA 上由C 点向A 点运动.(1)用含t 的式子表示PC 的长为 ;(2)若点Q的运动速度与点P的运动速度相等,当t=2时,三角形BPD与三角形CQP是否全等,请说明理由;24.如图,点B,E,C,F在一条直线上,AB=DE,AC =DF,BE=CF.求证:△ABC ≌△DEF;25.如图所示,在四边形ABCD中,CD∥AB,∠ABC的平分线与∠BC D的平分线相交于点F,BF与CD的延长线交于点E,连接CE.求证:(1)△BCE是等腰三角形.(2)BC=AB+CD参考答案1.C【分析】根据题意,利用平方根,立方根的定义求出a ,b 的值,再代入求解即可.【详解】解:24,a =1,=-2,a ∴=±1b =-,∴当2,a =-1b =-时,213a b +=--=-;∴当2,a =1b =-时,211a b +=-=.故选:C .【点睛】本题考查的知识点是平方根以及立方根的定义,根据定义求出a ,b 的值是解此题的关键. 2.A【分析】实数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】根据实数比较大小的方法,可得<-1<0,∴在-1,0,这四个数中,最小的数是故选A .【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小. 3.A【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.【详解】解:112,0.16166166616666,3.1415926属于有理数;1000π属于无理数.则有1个无理数.故应选A【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.C【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,据此逐项判断即可.【详解】∵(a+b)(a−b)+a2不是几个整式的积的形式,∴从左到右的变形不是分解因式,∴选项A不符合题意;∵2ab+2ac不是几个整式的积的形式,∴从左到右的变形不是分解因式,∴选项B不符合题意;∵x3−2x2+x=x(x−1)2,∴∴从左到右的变形是分解因式,∴选项C符合题意;∵(11x)不是整式,∴从左到右的变形不是分解因式,∴选项D不符合题意.故选:C.【点睛】此题主要考查了因式分解的意义和应用,要熟练掌握,解答此题的关键是要明确:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.5.C【分析】利用完全平方公式的结构特征判断即可.解:∵9a2+12ab+4b2=(3a+2b)²,∴被染黑的这一项应是4b2,故选:C.【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.6.D【分析】直接利用合并同类项法则以及整式的乘除运算法则分别化简得出答案.【详解】解:A、3a+2a=5a,故此选项错误;B、(-a)3•(-a2)=a5,故此选项错误;C、3a2-2a,无法计算,故此选项错误;D、(2a3b2-4ab4)÷(-2ab2)=2b2-a2,正确.故选:D.【点睛】此题主要考查了合并同类项以及整式的乘除运算,正确掌握相关运算法则是解题关键.7.A【分析】先利用单项式乘多项式的法则以及平方差公式进行计算,再合并同类项,化为2(3x2﹣5x)+1,然后将3x2﹣5x=﹣1整体代入计算即可.【详解】∵3x2﹣5x+1=0,∴3x2﹣5x=﹣1,∴5x(3x﹣2)﹣(3x+1)(3x﹣1)=15x2﹣10x﹣9x2+1=6x2﹣10x+1=2(3x2﹣5x)+1=2×(﹣1)+1=﹣1.【点睛】本题主要考查整式的混合运算,掌握单项式乘多项式的法则,平方差公式以及合并同类项法则,是解题的关键.8.B【分析】根据平行线的判定方法对①进行判断;据对顶角的定义对②进行判断;根据平行线的性质对④进行判断;根据补角的定义对③进行判断.【详解】两直线平行,同旁内角互补,所以①错误;相等的角不一定是对顶角,所以②错误;等角的补角相等,所以③正确;两条平行直线被第三条直线所截,同位角相等,所以④正确;;故选B.【点睛】本题主要考查了平行线的性质及判定,对顶角的性质等,熟练掌握各性质定理是解答此题的关键.9.B【分析】根据两直线平行内错角相等,再根据SAS 即可证明ABC DEF ∆≅∆.【详解】解://AC FD ,∴CAD ADF ∠=∠,AE DB =,ED AB ∴=,AC DF =,在△ABC 和△DEF 中AC DF CAD ADF AB DE =⎧⎪∠=∠⎨⎪=⎩()ABC DEF SAS ∴∆≅∆,故选B .【点睛】本题主要考查了全等三角形的判定,关键是根据两直线平行内错角相等解答.10.C【分析】根据全等三角形的判定定理以及直角三角形全等判定定理依次进行判断即可.【详解】A :∵CD ⊥AB∴∠CDA=∠BDE又∵AD =ED ;②∠A =∠BED∴△ADC ≌△EDB (ASA )所以A 能判断二者全等;B :∵CD ⊥AB∴△ADC 与△EDB 为直角三角形∵AD=ED,AC=EB∴△ADC ≌△EDB (HL )所以B 能判断二者全等;C :根据三个对应角相等无法判断两个三角形全等,所以C 不能判断二者全等;D :∵CD ⊥AB∴∠CDA=∠BDE又∵∠A =∠BED ,AC =EB∴△ADC ≌△EDB (AAS )所以D 能判断二者全等;所以答案为C 选项.【点睛】本题主要考查了三角形全等判定定理的运用,熟练掌握相关概念是解题关键.11.±2【分析】结合题意,根据绝对值的非负性得到x=0, y-1=0, z-2=0,即可得到x ,y ,z ,再代入()2x yz -计算即可得到答案.【详解】解:由题意得:x=0, y-1=0, z-2=0, 则y=1, z=2.∴(x-yz)2=(0-1×2)2=4.则(x-yz)2的平方根为±2.【点睛】本题考查平方根和绝对值的非负性,解题的关键是掌握绝对值的非负性.12.1 1.【分析】根据同底数幂的法则和平方差公式进行计算即可.【详解】()100100100(4)(0.25)40.251-⨯-=⨯=()()22222052042062052051205120520511-⨯=--+=-+=故答案为1;1【点睛】本题考查同底数幂相乘及运用平方差公式进行简便运算,熟记运算法则是关键.13.3【分析】根据a=2019x+2016,b=2019x+2017,c=2019x+2018,可以得到a-b 、a-c 、b-c 的值,然后利用完全平方公式将题目中的式子变形,即可求得所求式子的值.【详解】解:∵a=2019x+2016,b=2019x+2017,c=2019x+2018,∴a-b=-1,a-c=-2,b-c=-1,∴a 2+b 2+c 2-ab-bc-ac =2222222222a b c ab bc ac ++--- =222()()()2a b a c b c -+-+-=222(1)(2)(1)2-+-+- =3,故答案为:3.【点睛】本题考查因式分解的应用,解答本题的关键是明确题意,利用因式分解的方法解答. 14.∠B=∠C (答案不唯一).【详解】由题意得,AE=AD ,∠A=∠A (公共角),可选择利用AAS 、SAS 、ASA 进行全等的判定,答案不唯一:添加,可由AAS 判定△ABE ≌△ACD ;添加AB=AC 或DB=EC 可由SAS 判定△ABE ≌△ACD ;添加∠ADC=∠AEB 或∠BDC=∠CEB ,可由ASA 判定△ABE ≌△ACD .15.9【分析】a 、b 的值,代入求出即可.【详解】∵23,∴a =2,b =3,∴b a =32=9.故答案为:9.【点睛】本题考查了估算无理数的大小的应用,关键是求出a 、b 的值.16.±6【分析】利用完全平方公式的结构特征判断即可得到m 的值.【详解】∵29x mx -+是一个完全平方式,∴6m -=±,解得:6m =±,故答案为:±6.【点睛】本题考查了完全平方式,熟练掌握完全平方公式的结构特征是解本题的关键.17.(1)43-;(2)-1.【分析】(1)去掉绝对值,然后利用二次根式乘法运算法则计算,最后做加减即可;(2)算乘方、化简立方根,然后利用二次根式乘法运算法则计算,最后相加即可.【详解】解:(1)原式-1-23×12 =43-;(2)原式=-1+2-3+1=-1.【点睛】本题考查了实数的混合运算,解题的关键是牢记有关法则的情况下认真的计算. 18.(1)()(2)23a b a b ---;(2)2(2)x y -【分析】(1)把后面两项当作整体,然后各项提取公因式(a-2b )即可;(2)先去括号,然后根据完全平方公式分解 .【详解】解:(1)原式=()()()()2232223a b a b a b a b ---=---;(2)原式=()222442x yx y x y -+=-.【点睛】本题考查因式分解,根据具体整式的特点选用合适的方法分解因式是解题关键. 19.(1)3;4;(2)证明见解析.【分析】(1)根据规定的两数之间的运算法则:知4311327,,216⎛⎫== ⎪⎝⎭ 从而可得答案;(2)设E (3,4)=x ,E (3,5)=y ,根据定义得:34,35,x y ==利用同底数幂的乘法可得答案.【详解】解:(1)∵3327,=∴E (3,27)=3; ∵411,216⎛⎫= ⎪⎝⎭ ∴11,4,216E ⎛⎫= ⎪⎝⎭ 故答案为:3;4;(2)设E (3,4)=x ,E (3,5)=y ,则34,35,x y ==∴3334520,x y x y +=•=⨯=∴E (3,20)=x+y ,∴E (3,4)+E (3,5)=E (3,20).【点睛】本题是利用新定义考查幂的运算的逆运算,掌握幂的运算,同底数幂的乘法运算是解题的关键.20.2x y -,-4【分析】原式中括号中利用平方差公式,以及多项式乘以多项式法则计算,再利用多项式除以单项式法则计算得到最简结果,利用非负数的性质求出x 与y 的值,代入计算即可求出值.【详解】原式=()222294510244x y x xy xy y x ⎡⎤--+--÷⎣⎦=()222294510244x y x xy xy y x ---++÷=()2484x xy x -÷=2x y -,由|240x -,得到240x -=,10x y -+=,解得:x =2,y =3,则原式=26-=4-.【点睛】本题考查非负数的性质和整式的混合运算,掌握绝对值,算术平方根的非负性,以及整式的混合运算法则为解题关键.21.(1)见解析;(2)BM//DN ,理由见解析【分析】(1)由SAS 证明△ABN ≌△CDM 即可;(2)首先证明△ABM ≌△CDN 得到∠AMB=∠DNC ,求出∠BMN=∠DNM ,即可得出结论.【详解】(1)证明:∵AB//CD ,∴∠A =∠C ,∵AM =AN ,∴AN =CM ,在△ABN 和△CDM 中,AB CD A C AN CM =⎧⎪∠=∠⎨⎪=⎩,∴△ABN ≌△CDM (SAS );(2)BM//DN ,理由如下:在△ABM 和△CDN 中,AB CD A C AM CN =⎧⎪∠=∠⎨⎪=⎩,∴△ABM ≌△CDN (SAS ),∴∠AMB =∠DNC ,∵∠AMB+∠BMN =180°,∠DNC+∠MND =180°,∴∠BMN =∠DNM ,∴BM//DN .【点睛】本题考查了全等三角形的判定和性质、平行线的判定与性质;解题的关键是证明三角形全等,属于中考常考题型.22.(1)ABF ∆与CDE ∆全等,理由见解析;(2)见解析【分析】(1)由垂直的定义得出∠AFB=∠CED=90°,证出AF=CE ,由HL 证明Rt △ABF ≌Rt △CDE 即可;(2)由全等三角形的性质得出BF=DE ,证明△DEG ≌△BFG (AAS ),即可得出EG=FG .【详解】(1)ABF ∆与CDE ∆全等,理由如下:DE AC ⊥,BF AC ⊥,90AFB CED ∴∠=∠=︒,AE CF =,AE EF CF EF ∴++=,即AF CE =,在Rt ABF ∆和Rt CDE ∆中,AB CDAF CE =⎧⎨=⎩,Rt Rt ()ABF CDE HL ∴∆∆≌;(2)证明:Rt Rt ()ABF CDE HL ∆∆≌,BF DE ∴=,在DEG ∆和BFG ∆中,GED GFBDGE BGF DE BF∠=∠⎧⎪∠=∠⎨⎪=⎩,()DEG BFG AAS ∴∆∆≌,∴EG =FG..【点睛】本题考查了全等三角形的判定与性质、垂直的定义;证明三角形全等是解题的关键. 23.(1)(12﹣2t )cm ;(2)全等,理由见解析【分析】(1)先表示出BP ,根据PC=BC-BP ,可得出答案;(2)根据时间和速度分别求得两个三角形中的边的长,根据SAS 判定两个三角形全等.【详解】解:(1)根据题意,则BP=2t,则PC=BC﹣BP=12﹣2t;故答案为:(12﹣2t)cm.(2)当t=2时,BP=CQ=2×2=4厘米,∵BD=8厘米.又∵PC=BC﹣BP,BC=12厘米,∴PC=12﹣4=8厘米,∴PC=BD,又∵AB=AC,∴∠B=∠C,在△BPD和△CQP中,BD PCB C BP CQ=⎧⎪∠=∠⎨⎪=⎩,∴△BPD≌△CQP(SAS);【点睛】此题考查了全等三角形的判定,主要运用了路程=速度×时间的公式,要求熟练运用全等三角形的判定和性质.24.见解析【分析】根据SSS证明三角形全等即可;【详解】证明:∵BE=CF,∴BE+EC=CF+EC,∴BC=EF,在△ABC和△DEF中,∵AB DE AC DF BC EF=⎧⎪=⎨⎪=⎩,∴△ABC ≌△DEF(SSS).【点睛】本题主要考查了全等三角形的判定,准确分析证明是解题的关键.25.(1)见解析;(2)见解析【分析】(1)根据角平分线的性质得到12ABF CBF ABC ∠=∠=∠,在根据平行线的性质得到ABF E ∠=∠,进而得到E CBF ∠=∠,即可得到结果(2)根据角平分线的性质和平行线的性质得到90BFC ∠=︒,证明△ABF ≌△DEF ,即可得到结果;【详解】(1)∵BF 平分∠ABC , ∴12ABF CBF ABC ∠=∠=∠, ∵CD ∥AB ,∴ABF E ∠=∠,∴E CBF ∠=∠,∴BC=CE ,∴△BCE 是等腰三角形.(2)∵CF 平分∠BCE , ∴12BCF BCE ∠=, ∵CD ∥AB ,∴180ABC BCE ∠+∠=︒,∴90CBF BCF ∠+∠=︒,∴90BFC ∠=︒,即 CF ⊥BE ,又BC=CE ,∴BF=EF ,在△ABF 和△DEF 中,∵ABF E AFB DFE BF EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABF ≌△DEF ;∴AB=DE ,∴BC=CE=DE+CD=AB+CD,因此BC=AB+CD.【点睛】本题主要考查了角平分线的性质,平行线的性质,全等三角形的证明,准确分析判断是解题的关键.。
2023-2024学年度上学期八年级期中测试题数学附详细答案
2023-2024学年度上学期八年级期中测试题数学本试卷包括三道大题,共24小题,共4页.全卷满分120分.考试时间为90分钟. 注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效.一、选择题(每小题3分,共24分)1.在实数√3,0,−0.33,10中,其中无理数是A.√3B.0C.−0.33D.10 2.64的算术平方根是A.√8B.8C.±8D.16 3.下列计算正确的是A.a+a=a 2B.a 2·a 2=2a 2C.(−ab) 2=ab 2D.(2a) 2÷4a=a 4.下列计算正确的是A.√9=±3B.√9=−3C.√273=3 D.−√273=3 5.若等腰三角形的两边长分别为2、4,则它周长为A.8B.10C.8或10D.10或12 6.下列分解因式正确的是A.a 2+a+1=a(a+1)+1B.a 2−ab=a(a −1)C.a 2−4b 2=(a+2b)(a −2b)D.a 2+2ab+b 2=(a −b)27.如图,A 、B 两点分别位于一个池塘的两端,小明想用绳子测量A 、B 之间的距离,但绳子不够长.他通过思考又想到了这样一个方法:先在地上取一个可以直接到达A 、B 的点C ,连接AC 并延长到点D ,使CD=CA ;连接BC 并延长到点E ,使CE=CB ,连接DE 并且测出DE 的长即为A 、B 之间的距离.图中△ABC ≌△DEC 的数学理由是 A.SSS B.SAS C.ASA D.AAS8.如图,在△ABA 1中,AB=A 1B ,∠B=20°.在A 1B 上取一点C ,延长AA 1到点A 2,使A 1A 2=A 1C ,连结A 2C ;在A 2C 上取一点D ,延长A 1A 2到点A 3,使A 2A 3=A 2D ,连结A 3D ;……,按此操作进行下去,在以点A 5为顶角顶点的等腰三角形的底角的度数为 A.20° B.10° C.5° D.2.5° 二、填空题(每小题3分,共18分) 9.16的平方根为_______.10.命题“内错角相等”是______命题(填“真”或“假”). 11.若a+b=3,则a 2−b 2+6b 的值为_______.12.如图,△ABC ≌△DBE ,点B 在线段AE 上,若∠C=25°,则∠BDE 的度数是_____.13.如图,在△ABC 中,AB=AC ,点D 为BC 的是中点,连结AD ,在边AC 上截取AD=AE.若∠BAD=20°,则∠EDC 的大小为____度.14.如图,四边形ABCD 中,AB=BC ,∠ABC=90°,对角线BD ⊥CD.若BD=6,CD=1,则四(第12题)AB ED C(第13题)ABCEDA(第14题)BDC(第7题)(第8题)B C DE A 12 A3 A4 A n边形ABCD 的面积为_____.三、解答题(本大题10小题,共78分)15.(6分)计算:(1)(6ab)2÷4a 2. (2)(a+b)(a −3b). 16.(6分)因式分解下列各题:(1)a 2−9. (2)a 2+12a+36. 17.(6分)如图,AB=AE ,AC=AD ,∠BAD=∠EAC ,∠D=43°,求∠C 的大小.18.(7分)先化简,再求值:(2x +1)(2x −1)− x (4x −3),其中x =120.19.(7分)图①、图②、图③均是4×4的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,△ABC 的顶点均在格点上.只用无刻度的直尺,在给定的网格中按要求画图,所画图形的顶点均在格点上,不要求写出画法,并保留作图痕迹.(1)在图①中画△BCD ,使△BCD 与△ABC 全等.(2)在图②中画△BCE ,使△BCE 与△ABC 的面积相等,但不全等.(3)在图③中画△FGH ,使△FGH 与△ABC 全等,且所作的三角形有一条边经过AC 的中点.(第19题)图③AC B图② AC B图①AC BA(第17题)ECDB20.(7分)先化简,再求值:(2a −b)2−(a −2b)(a+2b)−2a(a-2b),其中a=√5,b=1. 21.(8分)如图①,在△ABC 中,AB=5,AC=4,∠ABC 和∠ACB 的平分线交于点D ,过点D 作EF ∥BC ,分别交边AB 、AC 于E 、F 两点. (1)求△AEF 的周长.(2)如图②,在△ABC 中,AB=5,AC=4,∠ABC 和∠ACG 的平分线交于点D ,过点D 作EF ∥BC ,分别交边AB 、AC 于E 、F 两点.若AC=4AF ,则△AEF 的周长为________.22.(9分)【探究】在△ABC 中,AB=AC ,D 是边BC 上一点,以AD 为一边在AD 的右侧作△ADE 使AE=AD ,∠DAE=∠BAC ,连结CE. (1)求证:△BAD ≌△CAE.(2)若∠BAC=α,求∠DCE 的大小(用含α的代数式表示).【应用】若∠BAC=50°,且△DCE 的两个锐角的度数之比为1︰4,则∠DAC 的大小为_____度.23.(10分)【教材原题】观察图①,用等式表示下图中图形的面积的运算为_________.ABEC(第22题)D(第21题)图②A BC GDEFA图①CEF DB【类比探究】观察图②,用等式表示图中阴影部分图形的面积和为___________. 【应用】(1)根据图②所得的公式,若a+b=10,ab=5,则a 2+b 2=___________. (2)若x 满足(11−x )(x −8)=2,求(11−x )2+(x −8)2的值.【拓展】如图③,某学校有一块梯形空地ABCD ,AC ⊥BD 于点E ,AE=DE ,BE=CE.该校计划在△AED 和△BEC 区域内种花,在△CDE 和△ABE 的区域内种草.经测量种花区域的面积和为252,AC=7,直接写出种草区域的面积和.24.(12分)如图,在△ABC 中,∠ABC=90°,AB=4,BC=6,点B 在直线m 上,点M 是直线m 上点B 左边的一点,且BM=2,∠ABM=60°.动点P 从点A 出发,以每秒1个单位长度的速度沿折线AB-BC 向终点C 匀速运动;同时动点Q 从C 点出发,以每秒3个单位长度的速度沿折线沿CB-BA 向终点A 匀速运动.分别过点P 、点Q 作PD ⊥m 于D ,QE ⊥m 于E.设点P 的运动时间为t(s). (1)用含t 的代数式表示BQ 的长.(2)当点Q 在边BC 上时,求证:∠PBD=∠BQE.(3)连结PM 、QM ,在不添加辅助下和连结其它线段的条件下,当图中存在等边三角形时,求t 的值.(4)当△PBD 与△BQE 全等时,直接写出t 的值.A(第23题)图①图②图③D CBabab a 2b 2花 草草=++ 花E2023-2024学年度上学期八年级期中测试题参考答案数学本试卷包括三道大题,共24小题,共4页.全卷满分120分.考试时间为90分钟. 注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效.一、选择题(每小题3分,共24分)1.在实数√3,0,−0.33,10中,其中无理数是A.√3B.0C.−0.33D.10 1.解:√3是无限不循环小数,是无理数,故选A 。
华师大版八年级上册数学期中考试试题含答案
华师大版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案)1.下列说法正确的是()A.16的平方根是4 B5±C.-8的立方根是-2 D.1的立方根是±12.下列计算正确的是()A.a3+a3=a6B.(-2x)3=-8x3C.(y3)2y4=y9D.623÷=a a a3.某同学不小心把一块三角形的玻璃打碎成了三块,如图所示,现要到玻璃店去配一块完全一样的玻璃,需要带去三块玻璃中的()A.第①块B.第②块C.第③块D.第①②块4.下列语句中,不是命题的是()A.同位角相等B.整数和分数都是有理数C.内错角相等,两直线平行D.过点A作直线AB∥CD5.若一个正数的两个平方根分别是2m-4与3m-1,则m的值是()A.1 B.-1 C.-3 D.-3或16.下列因式分解正确的是()A.x2+9=(x+3)2B.a2+2a+4=(a+2)2C.a3-4a2=a2(a-4)D.1-4x2=(1+4x)(1-4x)7)A.点P B.点Q C.点M D.点N8.如图,已知AC=BD,BM=CN,根据下列条件能够判定△ABM≌△DCN的是()A.BM∥CN B.∠A=∠D C.AM∥DN D.∠M=∠N9.通过计算,比较图1,图2中阴影部分的面积,可以验证的算式是()A .()a b x ab ax -=-B .()()2a x b x ab ax bx x --=--+C .()()a x b x ab ax bx --=--D .()b a x ab bx -=-10.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD二、填空题11____.12.若249x mx ++是一个完全平方式,则m 的值是_______.13.如图,将△ABC 绕点A 旋转180°与△AED 重合,若∠B =34°,∠BAC =87°,AB =12cm ,BC =15cm ,则∠D = ,AE = .14.如果213n m x y -与35m x y -是同类项,那么代数式2221m mn n -++的值是______. 15.如图,在△ABC 中,AD ⊥BC ,BE ⊥AC ,垂足分别为点D 、E ,AD 与BE 相交于点F. 若BF =AC ,AD =12cm ,则BD 的长为______.16.如图,在等边三角形ABC 中,BD=CE,AD,BE 交于点F,则AFE ∠=_________;三、解答题17.计算:(1()223- (2)112213233x x x x ⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭ (3)2[(2)(2)(2)2(2)]2x y x y x y x x y x -+-+--÷18.如图,数轴上表示1的点分别为A ,B ,点B 和点C 关于点A 对称.(1)请求出点C 到原点O 的距离d 1,以及点B 到表示2的点的距离d 2,并比较d 1、d 2的大小.(2)设点C 表示的数是x ,请计算:23x π-+-.19.已知,如图,AB =AC ,BD =CD ,DE ⊥AB 于点E ,DF ⊥AC 于点F.求证:(1)△ACD ≌△ABD ;(2)DE =DF.20即23<.的整数部分是22.现已知m 是n 的小数部分,求m -n 的值.21.先化简,再求值:()()()221222ab ab a b ab ⎡⎤+--+÷-⎣⎦,其中a ,b 满足等式30.2a -=22.如图,是方城县潘河的某一段,现要测量河的宽度(即河两岸相对的两点A 、B 间的距离),先在AB 的垂线BF 上取两点C 、D ,使BC =CD ,再定出BF 的垂线DE ,使点A 、C 、E 在同一条直线上,直接在河岸上测量DE 的长度就知道河的宽度AB 了,你知道这是为什么吗?请先判断DE 和AB 大小关系,然后说明理由.23.同学们知道数学中的整体思想吗?在解决某些问题时,常常需要运用整体的方式对问题进行处理,如:整体思考、整体变形、把一个式子看作整体等,这样可以使问题简化并迅速求解.试运用整体的数学思想方法解决下列问题:(1)把下列各式分解因式:①()()11x x x --- ②()()221a b a b ++++ (2)①已知12,,2a b ab +==则22a b ab +的值为 . ②已知226,3,x y x y -=+=那么x y -= .③已知3,2,a b ab +==求22a b +的值.24.如图,△ABC,△CDE均是等腰直角三角形,∠ACB=∠DCE=90°,点E在AB上,求证:△CDA≌△CEB.25.问题背景:如图①,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E、F分别是BC、CD上的点.且∠EAF=60°.探究图中线段BE、EF、FD之间的数量关系.解法探究:小明同学通过思考,得到了如下的解决方法.延长FD到点G,使DG=BE,连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,从而可得结论.(1)请先写出小明得出的结论,并在小明的解决方法的提示下,写出所得结论的理由. 解:线段BE、EF、FD之间的数量关系是:.理由:延长FD到点G,使DG=BE,连结AG.(以下过程请同学们完整解答)(2)拓展延伸:如图②,在四边形ABCD中,AB=AD,若∠B+∠D=180°,E、F分别是BC、CD上的点.且∠EAF=12∠BAD,则(1)中的结论是否仍然成立?若成立,请再把结论写一写;若不成立,请直接写出你认为成立的结论.参考答案1.C【分析】根据平方根、算术平方根和立方根的定义求解即可.【详解】解:A. 16的平方根是±4,故本选项错误;B. 5=,故本选项错误;C. -8的立方根是-2,正确;D. 1的立方根是1,故本选项错误;故选C.【点睛】本题考查了平方根、算术平方根以及立方根,正确把握定义是解题关键.2.B【分析】根据合并同类项、积的乘方、幂的乘方以及同底数幂除法法则逐项计算即可.【详解】解:A. a3+a3=2a3,故本选项错误;B. (-2x)3=-8x3,正确;C. (y3)2y4=y6·y4=y10,故本选项错误;D. 624÷=,故本选项错误,a a a故选:B.【点睛】本题考查了合并同类项、积的乘方、幂的乘方以及同底数幂除法,熟练掌握运算法则是解题关键.3.C【分析】根据全等三角形的判定,已知两角和夹边,就可以确定一个三角形.【详解】解:根据全等三角形的判定可知,第三块玻璃包括了两角和它们的夹边,能配一块完全一样的玻璃,其余选项均不满足全等三角形的判定定理,故只有带③去才能配一块完全一样的玻璃,故选C.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL,做题时要根据已知条件进行选择运用.4.D【分析】根据命题的定义进行判断即可.【详解】解:A、两直线平行,同位角相等,原命题是假命题;B、整数和分数都是有理数,是真命题;C、内错角相等,两直线平行,是真命题;D、过点A作直线AB∥CD,不是命题;故选:D.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”的形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.5.A【分析】根据平方根的定义得出2m−4+3m−1=0,求解即可得出答案.【详解】解:∵一个正数的两个平方根分别是2m−4与3m−1,∴2m−4+3m−1=0,∴m=1;故选A.【点睛】本题考查了平方根的定义,能得出关于m的方程是解此题的关键,注意:一个正数有两个平方根,它们互为相反数.【分析】试题分析:A、B无法进行因式分解;C正确;D、原式=(1+2x)(1-2x)故选C,考点:因式分解【详解】请在此输入详解!7.B【分析】【详解】解:∵23,∴Q,故选:B.【点睛】本题考查了实数与数轴和估算无理数的大小等知识点,8.A【分析】根据线段和差可得AB=CD,根据SAS选择证明三角形全等的条件即可.【详解】解:∵AC=BD,∴AC+CB=BD+CB,即AB=CD,∵BM=CN,∴当∠ABM=∠NCD时,△ABM≌△DCN,结合各选项可知,由BM∥CN可推出∠ABM=∠NCD,故选A.【点睛】本题考查全等三角形的判定,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.【分析】图1阴影部分面积等于阴影长方形面积;图2中阴影部分面积等于大长方形减去两个空白长方形面积再加上中间交叉的小正方形面积,然后根据面积相等可得答案.【详解】解:图1中阴影部分面积=(a−x)(b−x),图2中阴影部分面积=ab−ax−bx+x2,由图形可知,图1,图2中阴影部分的面积相等,∴(a−x)(b−x)=ab−ax−bx+x2,故选:B.【点睛】本题考查了多项式乘以多项式的几何背景,正确表示出阴影部分的面积是解题的关键.10.D【详解】A.添加∠A=∠D可利用AAS判定△ABC≌△DCB,故此选项不合题意;B.添加AB=DC可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C.添加∠ACB=∠DBC可利用ASA定理判定△ABC≌△DCB,故此选项不合题意;D.添加AC=BD不能判定△ABC≌△DCB,故此选项符合题意.故选D.11.±3【详解】,±.∴9的平方根是3故答案为±3.12.±14【分析】根据完全平方公式的结构特征求解即可.【详解】解:∵222++=++是一个完全平方式,497x mx x mx∴m =±14,故答案为:±14. 【点睛】本题考查完全平方公式,解题的关键是正确理解完全平方公式,本题属于基础题型. 13.59° 12cm .【分析】根据旋转的性质得出∠D =∠C ,AE =AB ,进而求出即可.【详解】解:∵将△ABC 绕点A 旋转180°与△AED 重合,∴△ABC ≌△AED ,∴∠D =∠C ,AE =AB =12cm ,∵∠B =34°,∠BAC =87°,∴∠C =180°−34°−87°=59°,∴∠D =59°,故答案为:59°,12cm .【点睛】此题主要考查了旋转的性质以及三角形内角和定理的运用,根据已知得出∠C 的度数是解题关键.14.2【分析】根据同类项的定义,列出关于m ,n 的方程,求解即可得出m 、n 的值,再代入所求式子计算即可.【详解】解:∵213n m x y -与35m x y -是同类项,∴213n m m -=⎧⎨=⎩,解得23n m =⎧⎨=⎩, ∴222221()1(32)12m mn n m n -++=-+=-+=,故答案为:2【点睛】本题考查了同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同,属于基础题.15.12cm【分析】根据同角的余角相等可得∠DBF=∠DAC,然后由条件可证明△BDF≌△ADC,根据全等三角形的性质可得BD=AD=12cm.【详解】解:∵AD⊥BC,BE⊥AC,∴∠BDF=∠ADC=∠BEC=90°,∴∠DBF+∠C=∠C+∠DAC=90°,∴∠DBF=∠DAC,在△BDF和△ADC中,BDF ADCDBF DAC BF AC∠∠⎧⎪∠∠⎨⎪⎩===,∴△BDF≌△ADC(AAS),∴BD=AD,∵AD=12cm,∴BD=12cm.故答案为:12cm.【点睛】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(对应边相等、对应角相等)是解题的关键.16.60°【分析】根据等边三角形的性质可得AB=BC,∠ABC=∠C=60°,然后利用“边角边”证明△ABD和△BCE全等,根据全等三角形对应角相等可得∠BAD=∠CBE,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠AFE=∠ABC,从而得解.【详解】解:在等边△ABC中,AB=BC,∠ABC=∠C=60°,在△ABD和△BCE中,∵60AB BC ABC C BD CE =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABD ≌△BCE (SAS ),∴∠BAD=∠CBE ,在△ABF 中,∠AFE=∠BAD+∠ABF=∠CBE+∠ABF=∠ABC=60°,即∠AFE=60°.故答案为:60°.【点睛】本题考查了等边三角形的性质,全等三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,证明△ABD 和△BCE 全等是解本题的难点,也是关键. 17.(1)-1;(2)4x -;(3)y x --.【分析】(1)直接化简各数进而得出答案;(2)直接去括号进而合并同类项得出答案;(3)直接利用乘法公式及单项式乘多项式法则去括号进而合并同类项,根据多项式除以单项式的法则得出答案.【详解】解:(1)原式2411=-+=-;(2)原式22224x x x x x =---=-;(3)原式22222[(44)(4)(42)]2x xy y x y x xy x =-++---÷()22222444422x xy y x y x xy x =-++--+÷()2222xy x x =--÷ y x =--.【点睛】此题主要考查了整式的混合运算以及实数的混合运算,熟练掌握运算法则是解题关键. 18.(1)d 1=d 2=,d 1=d 2;(2+π−3.【分析】(1)由对称可知AB =AC ,根据两点间距离的求法列方程求出C 点表示的数,然后再表示出d1、d2即可;(2)由x的值去绝对值符号,计算即可.【详解】解:(1)∵点B和点C关于点A对称,∴AB=AC,1=1−x,∴x=,∴C点表示∴d1=,∵d2=,∴d1=d2;(2)∵x=∴|x−2|+|3−π|=2|+|3−π|(π−3π−3.【点睛】本题考查实数与数轴;熟练掌握实数与数轴的关系,数轴上点的距离求法,绝对值的性质是解题的关键.19.(1)见解析;(2)见解析.【分析】(1)利用SSS可直接证明△ACD≌△ABD;(2)利用全等三角形对应角相等得到∠EAD=∠FAD,即AD为角平分线,再由DE⊥AB,DF⊥AC,利用角平分线的性质即可得证.【详解】证明:(1)在△ACD和△ABD中,AC AB CD BD AD AD ⎧⎪⎨⎪⎩===,∴△ACD≌△ABD(SSS);(2)∵△ACD≌△ABD,∴∠EAD=∠FAD,即AD平分∠EAF,∵DE⊥AE,DF⊥AF,∴DE=DF.【点睛】此题考查了全等三角形的判定和性质以及角平分线的性质,熟练掌握全等三角形的判定与性质是解本题的关键.20.9【分析】的范围,进而求出m 、n ,计算即可.【详解】解:∵119<<16,∴34<,∴6<<7,∴m =6,n 3,∴m−n =6−3)=9【点睛】本题考查的是估算无理数的大小,掌握“逼近法”估算无理数大小是解题的关键. 21.1ab +;-1.【分析】先算括号内的多项式乘多项式,合并同类项,再算多项式除以单项式得到最简结果,然后根据非负数的性质求出a 、b 的值,最后代入求出即可.【详解】解:原式()()2222222a b ab a b ab =---+÷-()()22ab a b ab =--÷-1ab =+;∵a ,b 满足等式302a -=, ∴302a -=,403b +=, ∴32a =,43b =-, ∴原式341121123ab ⎛⎫=+=⨯-+=-+=- ⎪⎝⎭. 【点睛】本题考查了算术平方根,绝对值的非负性和整式的化简求值,能正确根据整式的运算法则进行化简是解此题的关键.22.AB =DE ,理由见解析.【分析】首先由BF ⊥AB ,DE ⊥BD ,可得∠ABC =∠CDE =90°,再由条件BC =CD ,∠ACB =∠ECD ,利用ASA 证出△ABC ≌△EDC ,根据全等三角形对应边相等可得到AB =DE .【详解】解:AB =DE ,理由:∵BF ⊥AB ,DE ⊥BD ,∴∠ABC =∠CDE =90°,在△ABC 和△EDC 中,ABC CDE CB CD ACB ECD ∠∠⎧⎪⎨⎪∠∠⎩===,∴△ABC ≌△EDC (ASA ),∴AB =DE ,∴在河岸上测量DE 的长度就知道河的宽度AB 了.【点睛】此题主要考查了全等三角形的应用,关键是掌握判定两个三角形全等的方法:SSS 、SAS 、ASA 、AAS 、HL .23.(1)①()21x -;②()21a b ++;(2)①1;②2;③5.【分析】(1)①原式提取公因式()1x -即可;②原式利用完全平方公式分解即可;(2)①原式提取公因式ab 进行因式分解,然后整体代入即可求值;②已知等式利用平方差公式进行因式分解,即可求出所求式子的值;③原式利用完全平方公式变形,把已知等式代入计算即可求出值.【详解】解:(1)①原式=()()()2111x x x --=-;②原式=()21a b ++;(2)①∵12,2a b ab +==, ∴原式=ab (a +b )=1;②∵()()226x y x y x y -=+-=,3x y +=,∴x−y =2;③∵a +b =3,ab =2,∴原式=()22945a b ab +-=-=.【点睛】此题考查了提公因式法与公式法分解因式,完全平方公式以及平方差公式的应用,熟练掌握公式及法则是解本题的关键.24.证明见解析.【分析】根据等腰直角三角形的性质得出CE=CD ,BC=AC ,再利用全等三角形的判定证明即可.【详解】解:∵△ABC 、△CDE 均为等腰直角三角形,∠ACB=∠DCE=90°,∴CE=CD ,BC=AC ,∴∠ACB ﹣∠ACE=∠DCE ﹣∠ACE ,∴∠ECB=∠DCA , 在△CDA 与△CEB 中,{BC ACECB DAC EC DC=∠=∠=,∴△CDA ≌△CEB .【点睛】本题考查全等三角形的判定;等腰直角三角形.25.(1)EF =BE +FD ,理由见解析;(2)结论EF =BE +FD 仍然成立,理由见解析.【分析】(1)延长FD 到点G .使DG =BE .连结AG ,即可证明△ABE ≌△ADG ,可得AE =AG ,再证明△AEF ≌△AGF ,可得EF =FG ,即可解题;(2)延长FD 到点G .使DG =BE .连结AG ,求出∠B =∠ADG ,即可证明△ABE ≌△ADG ,可得AE =AG ,再证明△AEF ≌△AGF ,可得EF =FG ,即可解题.【详解】证明:(1)EF=BE+FD;理由:延长FD到点G,使DG=BE,连结AG.在△ABE和△ADG中,DG BEB ADG AB AD⎧⎪∠∠⎨⎪⎩===,∴△ABE≌△ADG(SAS),∴AE=AG,BE=DG,∠BAE=∠DAG,∵∠EAF=12∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD−∠EAF=∠EAF,即∠EAF=∠GAF,在△AEF和△AGF中,AE AGEAF GAF AF AF⎧⎪∠∠⎨⎪⎩===,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+FD;(2)结论EF=BE+FD仍然成立;理由:如图②,延长FD到点G.使DG=BE.连结AG,∵∠B+∠ADF=180°,∠ADG+∠ADF=180°,∴∠B=∠ADG,在△ABE和△ADG中,DG BEB ADG AB AD⎧⎪∠∠⎨⎪⎩===,∴△ABE≌△ADG(SAS),∴AE=AG,BE=DG,∠BAE=∠DAG,∵∠EAF=12∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD−∠EAF=∠EAF,即∠EAF=∠GAF,在△AEF和△AGF中,AE AGEAF GAF AF AF⎧⎪∠∠⎨⎪⎩===,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+FD.【点睛】本题主要考查了全等三角形的判定和性质,通过作辅助线构造全等三角形,并两次证明全等是解题的关键.。
华师大版八年级上册数学期中考试试卷及答案
河南沈丘外语中学2021年八年级〔上〕期中数学试卷〔华师版〕一. 选择题〔每题3分,共30分.每题都有四个选项,其中有且只有一个选项是正确的〕 1、以下说法正确的选项是…………………………………………… 〔 〕 A .1的立方根是1±; B .24±=; C 、81的平方根是3±; D 、0没有平方根; 2、在以下实数中,无理数是〔 〕A .35-B .2πC .01.0D .327-3、 以下计算结果正确的选项是. …………………( )A.. 336x x x += B. 34b b b ⋅= C. 326428a a a ⋅= D. 22532a a -=.4、 以下多项式相乘,结果为1662-+a a 的是………………… 〔 〕 A. )8)(2(--a a B. )8)(2(-+a a C. )8)(2(+-a a D. )8)(2(++a a5、如m x +与3+x 的乘积中不含..x 的一次项....,那么m 的值为…………………〔 〕 A .3- B .3 C . 0D . 16、以下式子从左到右的变形中,属于因式分解的是 …………………( )A 、2(1)(1)1x x x +-=-B 、221(2)1x x x x -+=-+C 、22()()a b a b a b -=+- D 、()()mx my nx ny m x y n x y +++=+++7.由以下条件不能判断△ABC 是直角三角形的是〔 〕A .∠A :∠B :∠C=3:4:5 B .∠A :∠B :∠C=2:3:5C .∠A -∠C =∠BD .222AC BC AB =-8、如下图:求黑色局部〔长方形〕的面积为…………………( )A 、24B 、30C 、48D 、18 9、估算324+的值是…………………( ) A .在5和6之间 B .在6和7之间 C .在7和8之间D .在8和9之间10.和数轴上的点一一对应的数是…………………( )A 、分数B 、有理数C 、无理数D 、实数 二.填空题〔每空3分,共27分〕 11. 33x =,那么x =______12, 假设5,4m nx x ==.那么m nx-=_______.13.如图1,在边长为a 的正方形中剪去一个边长为b 的小正形〔a >b 〕,把剩下局部拼成一个 梯形〔如图2〕,利用这两幅图形面积,可以验证的乘法公式是 14. 计算:x 3.(2x 3)2÷()24x =___________15.分解因式,直接写出结果)(6)(4)(8a x c x a b a x a ---+-=16.3=-b a ,2=b a ,那么22b a +的值为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华中师大版八年级上学期期中数学试卷E卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共6题;共12分)
1. (2分)下列每一组数据中的三个数值分别为三角形的三边长,构成钝角三角形的是()
A . 3、4、5
B . 3、3、5
C . 4、4、5
D . 3、4、4
2. (2分)在平行四边形、等腰梯形、等腰三角形、矩形、菱形五个图形中,既是中心对称图形又是轴对称图形的有()
A . 1个
B . 2个
C . 3个
D . 4个
3. (2分)如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧,分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,下列结论:
①AD是∠BAC的平分线;②∠ADB=120°;③AD=BD;④DB=2CD.
其中正确的结论共有()
A . 4个
B . 3个
C . 2个
D . 1个
4. (2分)如图,AB∥CD,E是BC延长线上一点,若∠B=50°,∠D=20°,则∠E的度数为()
A . 20°
B . 30°
C . 40°
D . 50°
5. (2分)如图所示,八年级某同学书上的图形(三角形)不小心被墨迹污染了一部分,但他很快就根据所学知识,画出一个与书上完全一样的三角形,那么这两个三角形全等的依据是()
A . SSS
B . SAS
C . ASA
D . AAS
6. (2分)在△AB C和△DEF中,已知AB=4cm,BC=6cm,∠B=60°,DE=6cm,DF=4cm,∠E+∠F=120°,则△ABC和△DEF的关系是()
A . △ABC和△DEF不全等
B . △ABC≌△DEF
C . △ABC≌△FDE
D . 无法确定
二、填空题 (共8题;共8分)
7. (1分)点P(﹣2,3)关于x轴的对称点的坐标是________.
8. (1分)如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,E是AC中点,若DE=2,则AB的长为________
9. (1分)四边形的外角和是________度.
10. (1分)桥梁拉杆,电视塔底座,都是三角形结构,这是利用三角形的________ 性.
11. (1分)如图,已知正方形ABCD的边长为4,点E在CD边上,EC=3DE,点F在AD边上(异于点C),且∠AFE=∠AFB,则BF长为________.
12. (1分)如图,在Rt△ABC中,∠C=90°,∠B=40°,点D在边BC上,BD=2CD,把△ABC绕点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,则m=________.
13. (1分)如图所示,∠AOB=45°,OP平分∠AOB,PC∥OB,PD⊥OB,如果PC=6,那么PD=________.
14. (1分)等腰三角形ABC在平面直角坐标系中的位置如图所示,已知点A(﹣6,0),点B在原点,CA=CB=5,把等腰三角形ABC沿x轴正半轴作无滑动顺时针翻转,第一次翻转到位置①,第二次翻转到位置②…依此规律,第15次翻转后点C的横坐标是________.
三、解答题 (共12题;共115分)
15. (5分)一个等腰三角形的一边长为8cm,周长为20cm,求其他两边的长.
16. (5分)如图,已知直线l1∥l2 , l3、l4和l1、l2分别交于点A、B、C、D,点P 在直线l3或l4上且不与点A、B、C、D重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.(1)若点P在图(1)位置时,求证:∠3=∠1+∠2;
(2)若点P在图(2)位置时,请直接写出∠1、∠2、∠3之间的关系;
(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明.
17. (5分)某游乐场有两个长度相同的滑梯,要想使左边滑梯BC的高度AC与右边滑梯EF的水平方向的长度DF相等,则两个滑梯的倾斜角∠ABC与∠DFE的大小必须满足什么关系?说明理由.
18. (5分)如图ABCD是一个正方形花园,E、F是它的两个门,且DE=CF,要修建两条路BE和AF,这两条路等长吗?它们有什么位置关系?请证明你的猜想.
19. (5分)如图,为了测量出池塘两端A、B之间的距离,先在地面上取一点C,使∠ACB=90°,然后延长BD至D,使CD=BC,那么只要测量出AD的长度就得到A,B两点之间的距离,你能说明其中的道理吗?
20. (15分)已知点A(﹣2,﹣1),B(3,1),C(1,4).
(1)在直角坐标系中描出点A、B、C,画出△ABC.
(2)求出△ABC的面积.
(3)作出△ABC在坐标系中关于y轴对称的△A1B1C1 .
21. (10分)如图,在四边形ABCD中,AB∥CD,∠1=∠2,DB=DC.
(1)求证:△ABD≌△EDC;
(2)若∠A=135°,∠BDC=30°,求∠BCE的度数.
22. (10分)“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a,b,c,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.(1)用记号(a,b,c)(a≤b≤c)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形.请列举出所有满足条件的三角形.(2)用直尺和圆规作出三边满足a<b<c的三角形(用给定的单位长度,不写作法,保留作图痕迹).
23. (15分)如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.
(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;
(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△ACN为等腰直角三角形;
(3)将图1中△BCE绕点B旋转到图3位置时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.
24. (15分)在△ABC中,BC=AC,∠BCA=90°,P为直线AC上一点,过A作AD⊥BP 于D,交直线BC于Q.
(1)如图1,当P在线段AC上时,求证:BP=AQ.
(2)当P在线段AC的延长线上时,请在图2中画出图形,并求∠CPQ.
(3)如图3,当P在线段AC的延长线上时,∠DBA=时,AQ=2BD.
25. (10分)如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.
(1)求证:BD=CE;
(2)若AB=2,AD=1,把△ADE绕点A旋转,
①当∠EAC=90°时,求PB的长;
②直接写出旋转过程中线段PB长的最小值与最大值.
26. (15分)探究题
(1)理解证明:
如图1,∠MAN=90°,射线AE在这个角的内部,点B,C在∠MAN的边AM,AN上,且AB=AC,CF⊥AE于点F,BD⊥AE于点D.证明△ABD≌△CAF;
(2)类比探究:
如图2,点B,C在∠MAN的边AM、AN上,点E,F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求证:△ABE≌△CAF;
(3)如图3,在△ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为15,则△ACF与△BDE的面积之和为多少?
参考答案一、选择题 (共6题;共12分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
二、填空题 (共8题;共8分)
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
三、解答题 (共12题;共115分)
15-1、
16-1、
17-1、
18-1、19-1、20-1、
20-2、
20-3、
21-1、
21-2、
22-1、
22-2、23-1、
23-2、
23-3、24-1、
24-2、24-3、
25-1、
25-2、
26-1、26-2、26-3、。