近世代数第二章答案之欧阳歌谷创编

合集下载

近世代数课后题答案修改版

近世代数课后题答案修改版
a1=56/8=7, b1=88/8=11, m1=96/8=12. 用辗转相除法求 p,q 满足 p a1+q m1=1,得 p=-5。 所 以 方 程 的 解 为 x ≡ pb1 (mod m1) ≡ -5 × 11(mod12) ≡ 5(mod12)。 或 x=5+12k(k 为任意整数)。 6. 解同余方程组: x≡3(mod5) x≡7(mod9) 解 按解同余方程组的三个步骤: 首先,计算 M=5×9=45, M1=9, M2=5. 其次,解两个一次同余式,由于这两个同余式有其特殊性:右端 都是 1,且(a,m)=1。因而 有时可用观察法得到 pa+qm=1,从而得到 p。 1) 9x≡1(mod5), 观察得到 -9+2×5=1, p=-1. 所以此一次同余式的一个特解为 c=-1≡4(mod5). 2)5x≡1(mod9), 观察得到 2×5-9=1, p=2. 所以此一次同余式的一个特解为 c=2(mod9). 最后,将得到的一次同余式的一个特解代入公式,得到同余方程 组的解: x=b1c1M1+b2c2M2=3×4×9+2×7×5(mod45)=43(mod45)。 7. 5 行多 1,6 行多 5,7 行多 4,11 行多 10,求兵数。
(2)在乘法表中任取一个 1,在同一列中必有一个 x,在同一行 中必有一个 y,设第四个顶点的元素为 z,见下图,
�
..........a-1.........................c...................
......
...........................................................
......

近世代数答案2

近世代数答案2

1畅 引论章 § 1 的设置是体现总导引中第 1 点思想 . 2畅 引论章的 § 2 是贯彻总导引中第三点思想 . 本教材主要讲群 、 环、 域三个 运算系统 . 本章第一节初步体现了研究代数运算系统的必要性 . 而 § 2 中从人们 熟悉的数域 , 整数环等例子为背景先引入一般域和环的定义 . 然后才引入只有一 个运算的系统 : 群 (半群 ) . 研究它们的基本性质时发现群是更基本的运算系统 . 这样在后面几章中就是先讲群 , 后讲域 、 环. 于是群中的一些运算性质 , 如剩余类 (陪集 ) , 商群 , 同态定理等都能在讲域 、环时应用 . 这种次序安排下 , 逻辑关系清 楚, 且数学处理上可以简便些 、 而 § 2 中先按域 、 环、 群次序引入定义却是更适合 人们的认知顺序 . 3畅 § 2 最后的定理非常重要 . 其一是引入一般域这种运算系统就是为了能 应用这个定理 . 其二 , 在本教材的开始就引入这个定理是为了使本教材的结构比 以前教材有较大的变化 . 以前教材在群论一章之后必须以很大篇幅讲环 , 主要是 讲因式分解唯一性定理 . 这几乎成了以前师范院校近世代数课程的主要部分 . 而 更有应用更有兴趣的域论部分就无法讲授 . 我们的处理可以在本教材的第二 、 三 章大量地讲域 (特别是有限域 )及其应用 . 而环只作为铺垫 , 占很少部分 . 其中用 到的多项式及线性空间的性质全可由上面所述的定理所提供 . 这种处理使本教 材的面貌焕然一新 . ・ 1 ・
引 论 章
1畅 代数问题的特点 , 代数学研究的对象与特点 . 2畅 域 、 环、 群 (半群 )的定义与相互联系 . 3畅 群 、 环、 域的基本运算性质 : 消去律 (加法与乘法 )及零因子 、单位元 (零 元 )和逆元 (负元 )的唯一性 、 广义结合律 、 方幂和倍数 . 4畅 一般域上关于多项式理论 、线性方程组理论 、 线性空间与线性变换的理 论的定理 .

近世代数基础习题课答案到第二章9题

近世代数基础习题课答案到第二章9题

第一章 第二章第一章1. 如果在群G 中任意元素,a b 都满足222()ab a b =, 则G 是交换群. 证明: 对任意,a b G ∈有abab aabb =. 由消去律有ab ba =. □2. 如果在群G 中任意元素a 都满足2a e =,则G 是交换群.证明: 对任意,a b G ∈有222()ab e a b ==. 由上题即得. □3. 设G 是一个非空有限集合, 它上面的一个乘法满足:(1) ()()a bc ab c =, 任意,,a b c G ∈.(2) 若ab ac =则b c =.(3) 若ac bc =则a b =.求证: G 关于这个乘法是一个群.证明: 任取a G ∈, 考虑2{,,,}a a G ⋯⊆. 由于||G <∞必然存在最小的i +∈ 使得i a a =. 如果对任意a G ∈, 上述i 都是1,即, 对任意x G ∈都有2x x =, 我们断言G 只有一个元,从而是幺群. 事实上, 对任意,a b G ∈, 此时有:()()()ab ab a ba b ab ==, 由消去律, 2bab b b ==; 2ab b b ==,再由消去律, 得到a b =, 从而证明了此时G 只有一个元,从而是幺群.所以我们设G 中至少有一个元素a 满足: 对于满足i a a =的最小正整数i 有1i >. 定义e G ∈为1i e a -=, 往证e为一个单位元. 事实上, 对任意b G ∈, 由||G <∞, 存在最小的k +∈ 使得k ba ba =. 由消去律和i 的定义知k i =:i ba ba =, 即be b =.最后, 对任意x G ∈, 前面已经证明了有最小的正整数k使得k x x =. 如果1k =, 则2x x xe ==, 由消去律有x e =从而22x e e ==, 此时x 有逆, 即它自身.如果1k >, 则11k k k x x xe xx x x --====, 此时x 也有逆:1k x -. □注: 也可以用下面的第4题来证明.4. 设G 是一个非空集合, G 上有满足结合律的乘法. 如果该乘法还满足: 对任意,a b G ∈, 方程ax b =和ya b =在G 上有解, 证明: G 关于该乘法是一个群.证明: 取定a G ∈. 记ax a =的在G 中的一个解为e . 往证e 是G的单位元. 对任意b G ∈, 取ya b =的一个解c G ∈: ca b =.于是: ()()be ca e c ae ca b ====. 得证.对任意g G ∈, 由gx e =即得g 的逆. □5. 找两个元素3,x y S ∈使得222()xy x y =/.解: 取(12)x =, (13)y =. □6. 对于整数2n >, 作出一个阶为2n 的非交换群.解: 二面体群n D . □7. 设G 是一个群. 如果,a b G ∈满足1r a ba b -=, 其中r 是正整数, 证明: ii i r a ba b -=, i 是非负整数.证明: 对i 作数学归纳. □8. 证明: 群G 是一个交换群当且仅当映射1x x - 是群同构.证明: 直接验证. □9. 设S 是群G 的一个非空集合. 在G 上定义关系 为: ~a b 当且仅当1ab S -∈. 证明: 这个关系是一个等价关系当且仅当S G ≤. 证明: 直接验证. □10. 设n 是正整数. 证明: n 是 的子群且与 同构.证明: 直接验证. □11. 证明: 4S 的子集{(1),(12)(34),(13)(24),(14)(23)}B =是一个子群, 而且B 与4U 不同构. (n U 是全体n 次单位根关于复数的乘法组成的群).证明: 用定义验证B 是4S 的子群. 由于4U 中有4阶元而B 中的元的阶只能是1或2, 所以它们不可能同构. □12.证明: 2n 阶群的n 阶子群必然是正规子群.证明: 用正规子群的定义验证. □13. 设群G 的阶为偶数. 证明: G 中必有2阶元.证明: 否则, G 中的任意非单位元和它的逆成对出现, 从而, G的阶为奇数, 矛盾. □14. 设0110A ⎛⎫= ⎪⎝⎭, 2i 2i 0e e 0n n B ππ-⎛⎫ ⎪= ⎪ ⎪⎝⎭. 证明: 集合 22:{,,,,,,,}n n G B B B AB AB AB =⋯⋯关于矩阵的乘法是一个群, 而且这个群与二面体群n D 同构.证明: n D 有如下的表现: 21,|1,n n D T S T S TS ST -=〈===〉. 作2:GL ()n D ϕ→ : S A , T B . 直接验证ϕ是群单同态,而且im G ϕ=. □15. 设群G 满足: 存在正整数i 使得对任意,a b G ∈都有()k k k ab a b =, 其中,1,2k i i i =++. 证明: G 是一个交换群.证明: 由()i i i ab a b =和111()i i i ab a b +++=得:111()()()()()i i i i i i ab a b ab ab ab a b +++===, 从而, 1i i i i ba b a b +=, 即:i i ba a b =.同理可得: 11i i ba a b ++=. 于是:11()()i i i i a ba ba a b a ab ++===, 即: ab ba =. □16. 在群2()SL 中, 证明元素0110a -⎛⎫= ⎪⎝⎭的阶为4, 元素1101b --⎛⎫= ⎪-⎝⎭的 阶为3, 而ab 的阶为∞.证明: 直接验证. □17. 如果群G 为一个交换群, 证明G 的全体有限阶元素组成一个子群.证明: 设{|()}H g G o g =∈<∞. 显然e H ∈, 从而H 不是空集. 对任意,a b H ∈, 设()o a m =, ()o b n =, 则1()o b n -=;11()()mn m n ab a b e --==, 即: 1ab H -∈. □18. 如果群G 只有有限多个子群, 证明G 是有限群.证明: 首先证明: 对任意a G ∈有()o a <∞. 事实上, 设k a 〈〉为G 的由k a 生成的子群, 其中, 1k ≥是整数. 则242m a a a a 〈〉⊇〈〉⊇〈〉⊇⊇〈〉⊇ . 由于G 只有有限多 个子群, 所以必然存在m 使得2(1)22(2)m m m a a a ++〈〉=〈〉=〈〉= ,即 22(1)m t m a a +=.由消去律即得()o a <∞.于是G 的任意元素都包含在某个有限子群里, 而G 只有有限多个子群, 所以||G <∞. □19. 写出群n D 的全部正规子群.解: 已知: 212121{,,,,1,,,,,,|1},n n n n n D T T T T S ST ST ST S T S T TS ST ---=⋯=⋯〈====〉设H 是n D 的子群. 如果1H =则H 当然是n D 的正规子群.I (1) 设k H T =〈〉. 由于1k k k k ST S ST S SST T H ---===∈和k k TT T T H =∈. 所以k T 〈〉是n D 的正规子群.(2) 设{1,}H S S =〈〉=. 由于SSS S =和12TST ST --=, 所以{1,}H S S =〈〉=是n D 的正规子群当且仅当2n =.(3) 设k H ST =〈〉. 注意到()()1k k ST ST =, 所以{1,}k k H ST ST =〈〉=. 由于1k k TST T ST -=和()k k S ST S ST -=,所以{1,}k k H ST ST =〈〉=是n D 的正规子群当且仅当|2n k .II (1) 设,k k H T T '=〈〉. 则(,')k k H T =〈〉. 归结为I (1)的情形, 从而是n D 的正规子群. 一般地,1212(,,,),,,t t k k k k k k H T T T T ⋯=〈⋯〉=〈〉也是n D 的正规子群.(2) 设,k H S T =〈〉. 由于1k k TT T T -=, 12TST ST --=, k k ST S T -=, 所以,k H S T =〈〉是n D 的正规子群当且仅当存在m ∈ 使得|(2)n mk +. (注: 当1k =时,k n H S T D =〈〉=). 一般地, 设1,,,t k k H S T T =〈⋯〉. 则12(,,,),t k k k H S T ⋯=〈〉, 归结为刚讨论的情形.(3) 设,k k H ST ST '=〈〉. 或者, 更一般地,1212(,,,),,,t t k k k k k k H ST ST ST ST ⋯=〈⋯〉=〈〉. 归结为I (3)的情形,即: 1212(,,,),,,t tk k k k k k H ST ST ST ST ⋯=〈⋯〉=〈〉是n D 的正规子群 当且仅当12|2(,,,)t n k k k ⋯.□20. 设,H K 是群G 的子群. 证明: HK 为G 的子群当且仅当HK KH =. 证明: HK 为G 的子群当且仅当111()HK HK K H KH ---===. □21. 设,H K 是群G 的有限子群. 证明: ||||||||H K HK H K =⋂. 证明: 首先, HK 是形如Hk 的不交并; 其中k K ∈. 又, 12Hk Hk =当且仅当112k k K H -∈⋂. 所以, 这样的右陪集共有||||K H K ⋂ 个. 于是: ||||||||K HK H K H =⋂. □ 22. 设,M N 是群G 的正规子群, 证明:(1) MN NM =.(2) MN 是G 的正规子群.(3) 如果{}M N e ⋂=, 那么/MN N 与M 同构.证明: (1) 由1MNM N -⊆得MN NM ⊆. 同理, NM MN ⊆.(2) 由(1)和第20题, MN 确实是子群. 对任意g G ∈有111()()()g MN g gMg gNg MN ---=⊆. 所以MN 是G 的正规子群.(3) 如果mn m n ''=则11(){}m m n n M N e --''=∈⋂=, 从而,m m n n ''==. 即: MN 中的元素可以唯一地写为,,mn m M n N ∈∈的形式. 于是可以定义映射: :MN M σ→为mn m . 由于,M N 都是正规子群, 对任 意,m M n N ∈∈有111()(){}mn nm mnm n M N e ---=∈⋂=, 所 以mn nm =: 即此时, M 中的元素与N 中的元素可交 换. 由此可以验证σ是群同态. 显然σ是满的, 而且 ker N σ=. □23. 设G 是一个群, S 是G 的一个非空子集. 令(){|,}C S x G xa ax a S =∈=∀∈; 1(){|}N S x G x Sx S -=∈=. 证明: (1) (),()C S N S 都是G 的子群.(2) ()C S 是()N S 的正规子群.证明: 直接用定义验证. 以(2)为例. 对任意(),(),c C S n N S s S ∈∈∈,111111()()()()ncn s ncn nc n sn c n ------=. 设1n sn s S -'=∈, 即: 1s ns n -'=. 所以,1111111()()()()ncn s ncn nc n sn c n ns n s -------'===. 此即表明: 1()ncn C S -∈. □24. 证明: 任意2阶群都与乘法群{1,1}-同构. 证明: 设{,}G e a =. 作:{1,1}G σ→-为1e , 1a - . □25. 试定出所有的互不同构的4阶群.解: 设群G 的阶为4. 如果G 有4阶元, 则4G . 如果G 没有4阶元, 则G 的非单位元的阶都为2. 设{,,,}G e a b c =. 考虑第11题中的4S 的子群(Klein 四元群):{(1),(12),(34),(12)(34)}K =. 作映射: :G K σ→为:(1),(12),(34),(12)(34)e b a c . 则σ为群同构. 综上, 在同构意义下, 4阶群只能是4 或Klein 四元群. □26. 设p 是素数. 证明任意两个p 阶群都同构.证明: 只需证明任意p 阶群G 都同构于p . 由Lagrange 定理, G的任意非单位元a 的阶都为p , 从而21{,,,,}p G e a a a -=⋯, 从 而有良定的映射:p G σ→ 为: 1a . 此即为一个群同构.□27. 在集合S =⨯ 上定义(,)(,):(,);(,)(,):(,)a b c d a c b d a b c d ac bd ad bc +=++=++. 证明: S 在这两个运算下是一个有单位元的环. 证明: 直接验证. 零元素为(0,0), 单位元为(1,0). □28. 在 上重新定义加法⊕和 为: :,:a b ab a b a b ⊕==+ . 问 关于这两个运算是否是一个环.解: 不是. 关于⊕不是一个abel 群. □29. 设L 是一个有单位元的交换环. 在L 中定义: :1a b a b ⊕=+-,:a b a b ab =+- . 证明: 在这两个新的运算下, L 仍然是一个环, 且与原来的环同构.证明: 直接验证满足环的定义中的条件. 作:(,,)(,,)L L σ+→⊕ 为:1a a - . 验证σ是环同构. □30. 给出满足如下条件的环L 和子环S 的例子:(1) L 有单位元, 而S 没有单位元.(2) L 没有单位元, 而S 有单位元.(3) ,L S 都有单位元, 但不相同.(4) L 不交换, 但S 可交换.解: (1) ;2L S == .(2) 0|,20a L a b b ⎧⎫⎛⎫=∈∈⎨⎬⎪⎝⎭⎩⎭ , 0|00a S a ⎧⎫⎛⎫=∈⎨⎬ ⎪⎝⎭⎩⎭ . (3) 0|,0a L a b b ⎧⎫⎛⎫=∈∈⎨⎬ ⎪⎝⎭⎩⎭, 0|00a S a ⎧⎫⎛⎫=∈⎨⎬ ⎪⎝⎭⎩⎭ . (4) |,,,a L a b b c d c d ⎧⎫⎛⎫=∈⎨⎬⎪⎝⎭⎩⎭ , 0|0a S a a ⎧⎫⎛⎫=∈⎨⎬ ⎪⎝⎭⎩⎭ . 31. 环R 中的一个元L e 为一个左单位元, 如果对任意r R ∈有L e r r =.类似地可定义右单位元. 证明:(1) 如果环R 既有左单位元, 又有右单位元, 则R 有单位元.(2) 如果环R 有左单位元, 没有零因子, 则R 有单位元.(3) 如果环R 有左单位元但没有右单位元, 则R 至少有两个左单位元.证明: (1) 设,L R e e 分别为R 的左, 右单位元. 则L L R R e e e e ==为R的单位元.(2) 设L e 为R 的一个左单位元. 对任意0x R =∈/, 由22()0L xe x x x x -=-=得: L xe x =, 即L e 为R 的一个右单 位元. 由(1)即得.(3) 设L e 为R 的一个左单位元, 由于R 没有右单位元, 所以存在0z R =∈/使得L ze z =/. 令: :L L L f e z ze =+-. 则 L L f e =/且, 对任意r R ∈有0L L L f r e r zr ze r r r =+-=+=, 即: L f 为R 的另一个单位元. □32. 设F 为一个域. 证明: F 没有非平凡的双边理想.证明: 设0I F =⊆/为F 的一个理想. 取0x I =∈/, 有11x x F -=∈, 从而I F =. □33. 设R 是一个交换环, a R ∈.(1) 证明{|}Ra ra r R =∈是R 的一个理想.(2) 举例说明, 如果R 不是交换环, 那么Ra 不一定是一个(双边)理想.证明: (1) 直接验证.(2) 设|,,,a b R a b c d c d ⎧⎫⎛⎫=∈⎨⎬⎪⎝⎭⎩⎭ , 1010a ⎛⎫= ⎪⎝⎭. 则 0|,0r s Ra r s ⎧⎫⎛⎫=∈⎨⎬ ⎪⎝⎭⎩⎭. 显然, Ra 不是一个理想, 比如: 01010101a Ra ⎛⎫⎛⎫=∉ ⎪ ⎪⎝⎭⎝⎭. □34. 设I 为交换环R 的一个理想, 令: rad {|,}n I r I r I n +=∈∈∈ . 证明:rad I 为R 的理想, 称为I 的根.证明: 对任意,rad a b I ∈. 则存在正整数,m n 使得,m n a b I ∈. 由于 ()m n a b I +-∈, 从而rad a b I -∈.对任意rad a I ∈和r R ∈, 存在正整数m 使得m a I ∈. 从而()m m m ra r a I =∈, 即: rad ra I ∈. □35. 设F 为一个有单位元的交换环. 证明: 如果F 没有非平凡理想,则F 是一个域.证明: 对任意0a F =∈/, 由第33题(1)知, Fa 是F 的一个非零理想.由于F 没有非平凡理想, 所以Fa F =. 特别1Fa ∈, 即: 存在 b F ∈使得1ba =. □36. 设 是有理数域, ()n 是全体n 阶 上的矩阵组成的环. 证明:()n 没有非平凡的理想(没有非平凡理想的环称为单环). 证明: 设0I =/为()n 的一个理想. 取0A I =∈/. 则A 至少有一个 非零元素, 设为ij a . 由于I 是一个理想, 所以1ij ij ij ij E AE E I a ⎛⎫=∈ ⎪ ⎪⎝⎭, 其中ij E 表示(,)i j -元为1而其余元为0的基本矩阵. 由基本矩阵的乘法性质, ij jk ik E E E I =∈, 从而ki ik kk E E E I =∈, 1,2,,k n =⋯. 于是单位阵1nn kk k E E I ==∈∑, 从而()n I = . □37. 设R 是一个环, 0a R =∈/. 证明: 如果存在0b R ≠∈使得0aba =, 那么a 是一个左零因子或右零因子.证明: 由于0aba =, 所以, 如果0ba =/则a 是一个左零因子; 如果0ba =, 则a 是一个右零因子. □38. 环的一个元素a 成为幂零的, 如果存在正整数n 使得0n a =. 证明:对于有单位元环R 的任意幂零元a , 1a -是可逆的.证明: 21(1)(1)11n n a a a a a --+++⋯+=-=. □39. 证明: 在交换环中, 全部幂零元素组成一个理想.证明: 用定义直接验证: 在交换环中, 幂零元的差、积仍然幂零.□40. 设R 是有单位元的有限环. 如果,x y R ∈满足1xy =, 证明: 1yx =.证明: 作映射: ::f R R z yz → . 则f 是单射: 事实上, 如果 12yz yz =, 则12xyz xyz =, 即12z z =. 由于R 是有限集, 所以f是满射, 从而存在0z R ∈使得001()f z yz ==. 只需证明:0z x =. 事实上, 00001()()1z z xy z x yz x x ===== . □41. 设R 是一个有单位元的环. 证明: 如果存在,a b R ∈满足1ab =但1ba =/, 那么有无穷多x R ∈使得1ax =.证明: 注意到111()1n n n n a b ba a ab aba a ab ++++-=+-==, n ∈ . 所以只需证明1n n ba a +- (n ∈ )互不相同. 注意到1m m a b aa abb b =⋯⋯=, 对任意m ∈ 都成立.如果11n n k k ba a ba a ++-=-, (n k >). 则11111()0n n k k k k k ba a b ba b a b b b +++++-=-=-=, 即0n k n k ba a b ---=. 如果1n k -=则1ba ab ==, 矛盾.所以1n k ->. 从而10n k n k ba a ----=;11)(10n k n k n k ba a b b a ------=-=, 也得到矛盾. □42. 设R 是满足如下条件的环: R 至少有两个元素而且对任意0a R =∈/都存在唯一的元素b R ∈使得aba a =. 证明:(1) R 没有零因子.(2) bab b =.(3) R 有单位元.(4) R 是一个体.证明: (1) 设0a R =∈/使得0ax =. 由已知, 对于a 有唯一的b R ∈使得aba a =. 于是()a b x a aba +=. 由唯一性, b x b +=, 即: 0x =; 从而a 不是左零因子. 即: R 中的任意非零元都不 是左零因子; 从而R 也没有右零因子.(2) 由于()()a bab a ab aba aba ==, 再由唯一性即得bab b =.(3) 任取0a R =∈/, 取那个唯一的b R ∈使得aba a =. 往证ab就是一个单位元. 对任意0x R =∈/, 取那个唯一的y R ∈ 使得xyx x =. 由(2)有:()0b ab xy x babx bxyx bx bx -=-=-=.由(1), 0ab xy -=. 从而abx xyx x ==, 此即证明了ab 是左 单位元. 保持记号. 类似地有:()0a ba xy x abax axyx ax ax -=-=-=, 从而ba xy =, 于是xab xyx x ==, 此即证明了ab 是右单位元.(4) 由(3)可知, R 的每个非零元都有逆. □43. 设[0,1]C 是[0,1]上的连续函数组成的环. 证明:(1) 对于[0,1]C 的任意非平凡理想I , 都存在一个[0,1]θ∈使得对任意()f x I ∈都有()0f θ=.(2) ()[0,1]f x C ∈是一个零因子当且仅当零点集{[0,1]|()0}x f x ∈= 包含一个开区间.证明: (1) 若不然, 对任意[0,1]θ∈都存在()[0,1]g x C θ∈使得()0g θ=/. 由连续性, 存在一个包含θ的开区间[0,1]J θ⊆使得()g x θ在 J θ上恒为正或恒为负(0J 实际上是左闭右开的; 1J 实际上是左开右闭的). 另一方面, 由开覆盖定理, 存在有限多个i J θ, 使得[0,1]i i J θ=⋃. 定义2():(())ii g x g x θ=∑. 则 ()g x I ∈, 而且()0g x >. 于是11()()g x I g x =∈ , 与I 是非平凡理 想矛盾.(2) “⇒”: 设()f x 是[0,1]C 中的一个零因子: 存在0()[0,1]g x C =∈/使得()()0,[0,1]g x f x x ≡∈. 由于()0g x =/, 所以 存在[0,1]上的开区间J 使得()g x 在J 上恒为正或恒为负; 从而, ()f x 在J 上恒为0.“⇐”: 设存在[0,1]上的开区间J 使得()f x 在J 上恒为0. 作连 续函数()g x 使得: ()g x 在J 上恒不为0, 而在J 上恒为0, 从 而()()0f x g x ≡: 即()f x 是[0,1]C 中的一个零因子. □44. 设p = 为素域. (1) 求环()n 的元素个数.(2) 求群()n GL 的元素个数.(1) 解: 由于2dim ()n n = , 所以()n 的元素个数为2n p .(2) 解: 取定向量空间n 的一个基, 则()n GL 中的元与n 上 的可逆线性变换一一对应, 而可逆线性变换把基映为基. 所以, 只需求n 的基的个数. 注意到n 的元素个数为n p . 任取n 的一 个非零向量1α, 这样的取法有1n p -种. 取2n α∈ 使得12,αα线性 无关. 这样的2α能且只能从1n α-〈〉 中选取. 所以2α的选取方法有n p p -种. 类似地, 取3n α∈ 使得312,,ααα线性无关. 这样的3α 能且只能从12,n αα-〈〉 中选取. 所以3α的选取方法有2n p p -种(因为12,αα〈〉的维数是2). 继续这个过程, 我们得到n 的基的个 数为21()()()n n n n p p p p p p ---⋯-, 此即为所求. □45. 设K 是一个体, 0,a b K =∈/且1ab =/. 证明如下的华罗庚恒等式:1111(())a a b a aba -----+-=.证明: 由提示, 先证明引理: 对任意0,1x K =∈/,1111(1)(1(1))1(1)(((1)))x x x x x x -----+-=-+--11(1)(1)11x x x x x x -=-+--=-+=,所以, 111(1)(1)1x x ----=--成立. 注意到: 原恒等式等价于1111(1)(())a ba a b a -----=+-, 等价于11111(1)()ba a a b a ------=+-. 由引理,111111*********(1)((1)1)(1)((1))ba a a b a a a b a a a a b ----------------=-+=+-=+-111()a b a ---=+- 即为所要的等式. □第二章1. 设G 为有限群, N G , (||,|/|)1N G N =. 证明: 如果元素a G ∈的阶整除||N , 那么a N ∈.证明: 考虑自然满态: :/G G N π→. 记()a a π=. 由于()/o a a e G N =∈, 所以()|()o a o a . 如果()1o a =/, 则((),|/|)1o a G N =/, 矛盾. □2. 设c 为群G 的阶为rs 的元素, 其中(,)1r s =. 证明: c 可以表示成c ab =, 其中()o a r =, ()o b s =, 且,a b 都是c 的幂.证明: 由(,)1r s =知, 存在整数,u v 使得1ur vs +=. 于是1ur vs c c c c ==.令vs a c =和ur b c =. 则()()((),)(,)o c rs rs o a r o c vs rs vs s ====. 同理, ()o b s =. □3. 证明: 如果群G 中的元素a 的阶与正整数k 互素, 那么方程k x a =在 a 〈〉内恰有一解.证明: 设()o a n =. 于是存在整数,r s 使得1rn ks +=. (法一) 作映射::k f a a x x 〈〉→〈〉 . 只需证明f 是双射. 由于||a n 〈〉=<∞, 所以只需证明f 是单射. 若k k x y =, ,x y a ∈〈〉, 则1()1k xy -=. 从而1111()()rn ks s xy xy xy e e ----====, 即x y =.(法二) 首先1()s k rn a a a -==, 即方程k x a =在a 〈〉中有解. 若t a a ∈〈〉也是k x a =的一个解, 那么()t s k a e -=, 从而 1()()t s ks t s rn t s a e a a ----===, 即t s a a =. □4. 设G 是一个群. 证明: 对任意,a b G ∈有()()o ab o ba =. 证明: 注意到, 对任意正整数m , 1()()m m ab a ba b -=, 所以1()()m m ab a ba b e -==当且仅当1111()()m ba a b ba ----==当且仅当 ()m ba e =. □5. 设2n >. 证明: 有限群G 中阶为n 的元素个数是偶数. 证明: 注意到, 对任意g G ∈有1()()o g o g -=, 而且, ()2o g >当且仅当1g g -=/. □6. 证明: 当2n >时有(){}n Z S e =. 即: n S 是交换群当且仅当2n ≤. 证明: 注意到, 对任意n S σ∈和轮换12()r i i i ⋯有11212()(()()())r r i i i i i i σσσσσ-⋯=⋯. 设()n e z Z S =∈/, 则对任意 n S σ∈应该有1z z σσ-=. 不妨设z 分解为互不相交的轮换的乘积(必要的话, 可通过重新编号): (12)(...)...(...)z =⋯. 取 (23)σ=. 则()(1)3z σσ=但(1)2z =, 矛盾. □7. 证明: 有理数加群 的任意有限生成的子群是一个循环群. 证明: 设1212,,,n n n H m m m =〈⋯〉, 其中(,)1i i n m =, 1i ≤≤ . 令 12[,,,]t m m m =⋯ . 则1H t=〈〉. □ 8. 设G 是有限生成的交换群. 证明: 如果G 的这些生成元都是有限 阶的, 那么G 是一个有限群.证明: 设1,,n G a a =〈⋯〉且()i i o a m =. 则G 的任意元素具有形式:1212nt t t n a a a ⋯, 其中1i i t m ≤≤, 从而G 只有有限个元素. □ 9. 对任意群G 和正整数k , 令{|}k k G a a G =∈. 证明: 群G 是循环 群的成分必要条件是G 的任意非单位子群都是形如k G 的集合. 证明: 必要性. 设G g =〈〉. 则G 的任意非单位子群H 具有形式k H g =〈〉, 其中k 是某个正整数. 于是H 中的任意元素具有形 式()()k m m k g g =, 即k H G ⊆. 反之, k G 的任意元素具有形式 ()()m k k m g g =, 于是k H G =.充分性. 考虑12k k G G ≥-⋃.(i) 如果12k k G G ≥-⋃不是空集, 取12k k g G G ≥∈-⋃. 则G g =〈〉是无限循环群. 事实上, g e =/, 从而G 的子群g 〈〉形如k G . 如果2k ≥, 则k k g x G =∈, 与g 的选取矛盾. 所以1g G G 〈〉==. 另外, 如果此时G g =〈〉是有限群, 则2k k G G ≥=⋃, 也得到矛盾.(ii) 现在假设12k k G G ≥-⋃是空集. 则对任意e x G =∈/, 存在正整 数k 使得子群k x G 〈〉=. 若1k =则G x =〈〉是循环群. 特别,存在整数s 使得k s x x =, 此即表明, G 的任意元素都是有限阶的. (To be continued).。

近世代数习题解答张禾瑞二章

近世代数习题解答张禾瑞二章

近世代数习题解答第二章群论1群论1.全体整数的集合对于普通减法来说是不是一个群?证不是一个群,因为不适合结合律.2.举一个有两个元的群的例子.证G={1,-1}对于普通乘法来说是一个群.3.证明,我们也可以用条件1,2以及下面的条件4,5'来作群的定义:4'. G至少存在一个右单位元e,能让ae = a 对于G的任何元a都成立5 . 对于G的每一个元a,在G里至少存在一个右逆元 a ,能让aa eA_1证(1) 一个右逆元一定是一个左逆元,意思是由aa e 得a a = e因为由4 G有元a能使a'a =e1 1 1 '所以(a a)e = (a a)(a a )即a a = e(2)一个右恒等元e 一定也是一个左恒等元,意即由ae = a 得ea = a即ea = a这样就得到群的第二定义.(3)证ax二b可解取x = a这就得到群的第一定义.反过来有群的定义得到4,5'是不困难的.2单位元,逆元,消去律1.若群G的每一个元都适合方程x2二e,那么G就是交换群.证由条件知G中的任一元等于它的逆元,因此对a,b^G有ab = (ab),= b°a,= ba .2.在一个有限群里阶大于2的元的个数是偶数._1 n —1 n n —1 —1证(1)先证a的阶是n则a 的阶也是n . a e= (a ) (a ) e e若有m n 使(a ')m= e 即(a m)' = e因而a m=e‘ • a m=e 这与a的阶是n矛盾「a的阶等于a °的阶_4 _4 2(2)a的阶大于2,则a=a 若a=a : a=e 这与a的阶大于2矛盾(3) a b 贝U a「b'斗总起来可知阶大于2的元a与a双双岀现,因此有限群里阶大于2的元的个数一定是偶数3.假定G是个数一个阶是偶数的有限群,在G里阶等于2的元的个数一定是奇数.证根据上题知,有限群G里的元大于2的个数是偶数;因此阶<2的元的个数仍是偶数,但阶是1的元只有单位元,所以阶<2的元的个数一定是奇数.4.一个有限群的每一个元的阶都是有限的证a := G故a a2…a m…a n…€ G由于G是有限群,所以这些元中至少有两个元相等:m n n _ma =a (m n) 故a 二en - m是整数,因而a的阶不超过它.4群的同态假定在两个群G和G的一个同态映射之下,a》a,a和a的阶是不是一定相同?证不一定相同丄 c _1 +23 _1 +伍例如G 二{1, , }-2 2对普通乘法G,G都作成群,且(x^1 (这里x是G的任意元,1是G的元)由••可知G s G—1+&3 —1—iJ3但11的阶都是3.2 2而1的阶是1.5变换群1 11. ------------------------------------------ 假定I是集合的一个非变换,1会不会有一个左逆元T ,使得I =Z ?证我们的回答是回有的 A ={1,2,3,— }3f 2 3 f 44f 3 4-显然是一个非--- 变换但'二2.假定A是所有实数作成的集合.证明.所有A的可以写成x > ax b,a,b是有理数,a = 0形式的变换作成一个变换群.这个群是不是一个交换群?证(1) - : x—ax ■ bca,cb d是有理数ca尸0 ;是关闭的.⑵显然时候结合律⑶ a =1 b =0 则:Xr X而.J .二. ;所以构成变换群.又d X"x 1故1 - 21因而不是交换群3.假定S 是一个集合 A 的所有变换作成的集合,我们暂时仍用旧符号.:a 》a ' = .(a)来说明一个变换..证明,我们可以用.「2: a“【[.2(a)] = j.2(a)来规定一个S 的乘法,这个乘法也适合结合律,并且 对于这个乘法来说;还是S 的单位元.证 彳: a —. d (a)那么.「2: a “ i [ .2(a)] = i 2(a) 显然也是A 的一个变换. 现在证这个乘法适合结合律 : 故 (•1・2)・3 =・1(・2・3) 再证;还是S 的单位元4 .证明一个变换群的单位元一定是恒等变换证设;是是变换群G 的单位元G , G 是变换群,故.是—变换,因此对集合 A 的任意元a ,有A 的元b ,;(a) »( (a)) = ;• (b) = • (b) =a另证■- (x)(x)根据1.7.习题3知t i(x) =x5.证明实数域上一切有逆的 n n 矩阵乘法来说,作成一个群。

近世代数习题第二章资料讲解

近世代数习题第二章资料讲解

近世代数习题第二章第二章 群论近世代数习题第二章 第一组 1-13题;第二组 14-26题;第三组 27-39题;第四组 40-52题,最后提交时间为11月25日1、设G 是整数集,则G 对运算4++=b a b a ο是否构成群?2、设G 是正整数集,则G 对运算b a b a =ο是否构成群?3、证明:正整数对于普通乘法构成幺半群.4、证明:正整数对于普通加法构成半群,不含有左右单位元.5、G 是整数集,则G 对运算1=b a ο是否构成群?6、设b a ,是群G 中任意两元素. 证明:在G 中存在唯一元素x ,使得b axba =.7、设u 是群G 中任意取定的元素,证明:G 对新运算aub b a =ο也作成群.8、证:在正有理数乘群中,除1外,其余元素阶数都是无限.9、证:在非零有理数乘群中,1的阶是1,-1的是2,其余元素阶数都是无限.10、设群G 中元素a 阶数是n ,则m n e a m |⇔=.11、设群G 中元素a 阶数是n ,则 ),(||n m n a m =.,其中k 为任意整数. 设(m,n )=d,m=dk,n=dl,(k,l)=1. 则(a^m)^l=a^(ml)=a^(kdl)=(a^(n))^k=e. 设(a^m )^s=e,,即a^(ms)=e,所以n|ms,则l|ks,又因为(l,k)=1,所以l|s,即a^m 的阶数为l.12、证明:在一个有限群中,阶数大于2的元素个数一定是偶数.13、设G 为群,且n G 2||=,则G 中阶数等于2的一定是奇数.14、证明:如果群G 中每个元素都满足e x =2,则G 是交换群.对每个x ,从x^2=e 可得x=x^(-1),对于G 中任一元x ,y ,由于(xy )^2=e ,所以xy=(xy )^(-1)=y^(-1)*x(-1)=yx.或者 :(ab)(ba)=a(bb)a=aea=aa=e ,故(ab)的逆为ba ,又(ab)(ab)=e ,这是因为ab 看成G 中元素,元素的平方等于e. 由逆元的唯一性,知道ab=ba15、证明:n 阶群中元素阶数都不大于n .16、证明:p 阶群中有1-p 个p 阶元素,p 为素数.17、设群G 中元素a 阶数是n ,则)(|t s n a a t s -⇔=.18、群G 的任意子群交仍是子群.19、设G 为群,G b a ∈,,证明:a a bab bab k k =⇔=--11)(.20、证明:交换群中所有有限阶元素构成子群.21、证明:任何群都不能是两个真子群的并.证明:任何群都不能是两个真子群的并. 可以用反证法,设G=HUK ,H 、K 均为真子群,存在a,b\in G, a\not\in H,b\not\in K ,从而a\in K, b\in H. ab\in G, 则ab\in H 或ab\in K. 若ab\in H 得出矛盾,ab\in K ,也可得出矛盾.22、设G 为群,H a a G a G H n m ∈∈≤,,,,证明:若1),(=n m ,则H a ∈.23、证明:整数加群是无限循环群.24、证明:n 次单位根群为n 阶循环群.25、证明:循环群的子群仍是循环群.26、设>=<a G 为6阶循环群,给出它的所有生成元及所有子群.27、求模18的剩余类加群(Z 18,+,[0])的所有子群及这些子群的生成元.28、设群G 是24阶群,G 中元素a 的阶是6,则元素a 2的阶为?28、解: 在群G 中,对于ㄧa ㄧ=n ,a^r ∈G ,有ㄧa^r ㄧ=n/(n ,r ),所以由 ㄧa ㄧ=6 可得:ㄧa^2ㄧ=6/(6,2)=3.29、设H 1和H 2分别是群(G ,ο,e )的子群,并且| H 1 |=m ,| H 2 | =n ,m 、n 有限,(m ,n )=1,试证:H 1∩H 2={e }.30、设群中元素a 的阶数为无限,证明:t s a a t s ±=>⇔>=<<.31、设群中元素a 的阶数为n ,证明:),(),(n t n s a a t s =>⇔>=<<.32、设G 是交换群,e 是G 的单位元,n 是正整数,},,|{e a G a a H n =∈=问:H 是否是G 的子群?为什么?32解:H 是G 的子群. 下证:① 由e ∈H ,故H 为非空子集;②对于任意a ,b ∈H ,a^n=e ,b^n=e ,故[b^(-1)]^n=e ,因为G 是交换群,所以有:(a^n)* ﹛[b^(-1)]^n ﹜=aa ···a*[b^(-1)] [b^(-1)]···[b^(-1)]= ﹛a[b^(-1)] ﹜^n=e ,从而a[b^(-1)] ∈H ,故 H 是G 的子群. 证毕.(注:刚才a 和[b^(-1)]展开均为n 个相乘)33、设群G 中两元素满足1|)||,(|,==b a ba ab ,证明:>>=<<ab b a ,.34、证明:⎭⎬⎫⎩⎨⎧ΛΛ,!1,,21,1n 是有理数加群的一个生成系. 35、设b a ,是群G 的两个元,,ba ab =a 的阶是m ,b 的阶是n ,n m ,有限且)(),(,1),(b K a H n m ===,求K H I36、设S 3是3次对称群,a=(123)∈S 3.(1) 写出H =< a>的所有元素.(2) 计算H 的所有左陪集和所有右陪集.(3) 判断H 是否是S3的不变子群,并说明理由.37、在5次对称群S 5中,求(12)(145),(4521)-1以及(354)的阶数.37、解: (12)(145)的阶数为[2,3]=6 ; (4521)-1的阶数为4 ; (354)的阶数为3.38、设G 是一交换群,n 是一正整数,H 是G 中所有阶数是n 的因数的元素的集合. 试问:H 是否是G 的子群?为什么?39、设1||>M ,证明:M 的全体变换作成一个没有单位元的半群.40、设1||>M ,证明:M 的全体非双射变换关于变换的乘法不作成群.41、证明:不相连的循环相乘可以交换.42、将3S 所有元素用循环表示.43、将4S 所有元素用循环乘积表示.(1)(12), (13),(14),(23),(24),(34)(123),(124),(134),(132),(142),(143),(234),(243)(1234),(1243),(1324),(1342),(1423),(1432),(12)(34),(13)(24),(14)(23)44、3S 中不能同)123(交换的所有元素.45、写出5S 中阶数等于2的所有元素.46、置换δ与其逆1-δ具有相同的奇偶性.置换\delta=\delta_1\delta_2\cdots\delta_s,\delta_i 为对换,又因为(\delta_1\delta_2\cdots\delta_s )(\delta_s\delta_(s-1)\cdots\delta_1)=(1),从而得到\delta^{-1},进而得证结果.47、求下列置换的阶数)48)(3172(;)26)(5172(;⎪⎪⎭⎫ ⎝⎛641523123456. 48、设H ={(1),(123),(132)}是对称群S3的子群,写出H 的所有左陪集和所有右陪集,问H 是否是S3的不变子群?为什么?49、给出4S 的所有子群.50、证明:无限循环群的非e 子群指数均有限.H\not={e},H=(a^s)为G 的子群,其中s 为H 中所含元素的指数最小正整数. 证明G=a^0HUaHU\cdotsUa^{s-1}H,且a^iH 与a^jH 煤油交集,i\not=j.51、设G 是整数集,规定3-+=b a b a ο,证明:G 关于此运算构成群,并求出单位元.52、证明:指数是2的子群必是正规子群.53、证明:素数阶群是循环单群.54、设>=<a N 是群G 的一个正规子群,若N H ≤,则H 也是G 的正规子群.55、证明:若群G 的n 阶子群有且仅有一个,则此子群必为G 的正规子群.56、四次对称群4S 关于Klein 四元群4K 的商群44/K S 与3S 同构.57、证明:群中子群的共轭关系是一个等价关系.58、证明:n S 的所有对换构成一个共轭类.59、写出3S 的所有Sylow p -子群.60、证明:15阶群都是循环群.61、证明:200阶群不是单群.62、证明:196阶群必有一个阶数大于1的Sylow 子群,此子群为正规子群.28、解: 在群G 中,对于ㄧa ㄧ=n ,a^r ∈G ,有ㄧa^r ㄧ=n/(n ,r ),所以由 ㄧa ㄧ=6 可得:ㄧa^2ㄧ=6/(6,2)=3.32解:H 是G 的子群. 下证:① 由e ∈H ,故H 为非空子集;②对于任意a ,b ∈H ,a^n=e ,b^n=e ,故[b^(-1)]^n=e ,因为G 是交换群,所以有:(a^n)* ﹛[b^(-1)]^n ﹜=aa ···a*[b^(-1)] [b^(-1)]···[b^(-1)]=﹛a[b^(-1)] ﹜^n=e ,从而a[b^(-1)] ∈H ,故 H 是G 的子群. 证毕.(注:刚才a 和[b^(-1)]展开均为n 个相乘)37、解: (12)(145)的阶数为6 ; (4521)-1的阶数为4 ;(354)的阶数为3.。

近世代数__第二版课后习题答案

近世代数__第二版课后习题答案

近世代数题解第一章基本概念§1. 11.4.5.近世代数题解§1. 22.3.近世代数题解§1. 31. 解 1)与3)是代数运算,2)不是代数运算.2. 解这实际上就是Mxxn个元素可重复的全排列数nn.3. 解例如AB=E与AB=AB—A—B.4.5.近世代数题解§1. 41.2.3.解 1)略 2)例如规定4.5.略近世代数题解§1. 51. 解 1)是自同态映射,但非满射和单射;2)是双射,但不是自同构映射3)是自同态映射,但非满射和单射.4)是双射,但非自同构映射.2.略3.4.5.§1. 61.2. 解 1)不是.因为不满足对称性;2)不是.因为不满足传递性;3)是等价关系;4)是等价关系.3. 解 3)每个元素是一个类,4)整个实数集作成一个类.4.则易知此关系不满足反身性,但是却满足对称性和传递性(若把Q换成实数域的任一子域均可;实际上这个例子只有数0和0符合关系,此外任何二有理数都不符合关系).5.6.证 1)略2)7.8. 9.10.11.12.第二章群§2. 1 群的定义和初步性质一、主要内容1.群和半群的定义和例子特别是一船线性群、n次单位根群和四元数群等例子.2.群的初步性质1)群中左单位元也是右单位元且惟一;2)群中每个元素的左逆元也是右逆元且惟一:3)半群G是群方程a x=b与y a=b在G中有解(a ,b∈G).4)有限半群作成群两个消去律成立.二、释疑解难有资料指出,群有50多种不同的定义方法.但最常用的有以下四种:1)教材中的定义方法.简称为“左左定义法”;2)把左单位元换成有单位元,把左逆元换成右逆元(其余不动〕.简称为“右右定义法”;3)不分左右,把单位元和逆元都规定成双边的,此简称为“双边定义法”;4)半群G再加上方程a x=b与y a=b在G中有解(a ,b∈G).此简称为“方程定义法”.“左左定义法”与“右右定义法”无甚差异,不再多说.“双边定\义法”缺点是定义中条件不完全独立,而且在验算一个群的实例时必须验证单位元和逆元都是双边的,多了一层手续(虽然这层手续一般是比较容易的);优点是:①不用再去证明左单位元也是右单位元,左逆元也是右逆元;②从群定义本身的条件直接体现了左与右的对称性.以施行“除法运算”,即“乘法”的逆运算.因此,群的‘方程定义法”直接体现了在群中可以施行“乘法与除法”运算.于是xx,可以施行乘法与除法运算的半群就是群.为了开阔视野,再给出以下群的另一定义.定义一个半群G如果满足以下条件则称为一个群:对Gxx任意元素a,在Gxx 都存在元素,对Gxx任意元素b都有(ab)=(ba)=b.这个定义与前面4种定义的等价性留给读者作为练习.2.在群的“方程定义法”中,要求方程a x=b与y a=b都有解缺一不可.即其中一个方程有解并不能保证另一个方程也有解.4.关于结合律若代数运算不是普通的运算(例如,数的普通加法与乘法,多项式的普通加法与乘法以及矩阵、变换和线性变换的普通加法或乘法),则在一般情况下,验算结合律是否成立比较麻烦.因此在代数系统有限的情况下,有不少根据乘法表来研究检验结合律是否成立的方法.但无论哪种方法,一般都不是太简单.5.关于消去律.根据教材推论2,对有限半群是否作成群只用看消去律是否成立.而消去律是否成立,从乘法表很容易看出,因为只要乘法表中每行和每列中的元素互异即可.6.在群定义中是否可要求有“左”单位元而每个元素有“右”逆元呢?答不可以,例如上面例2就可以说明这个问题,因为e1是左单位元,而e1与e2都有右逆元且均为e1.但G并不是群.7.群与对称的关系.1)世界万物,形态各异.但其中有无数大量事物部具有这样或那样的对称性.而在这些具有对称性的万事万物中,左右对称又是最为常见的.由群的定义本身可知,从代数运算到结合律,特别是左、右单位元和左、右逆元,均体现出左右对称的本质属性.2)几何对称.设有某一几何图形,如果我们已经找到了它的全部对称变换(即平常的反射、旋转、反演和平移变换的统称),则此对称变换的全体关于变换的乘法作成一个群,称为该图形的完全对称群.这个图形的对称性和它的完全对称群是密切相关的.凡对称图形(即经过对称变换保持不变的图形、亦即完成这种变换前后的图形重合),总存在若干个非恒等对称变换和恒等变换一起构成该图形的完全对称群.反之,如果一个图形存在着非平凡的对称变换,则该图形就是对称图形.不是对称的图形,就不能有非恒等的对称变换.显然,一个图形的对称程度越高,则该图形的对称变换就越多.也就是说它的完全对称群的阶数就越高,即图形对称程度的高低与其对称群的阶数密切相关.因此;这就启发人们用群去刽面对称图形及其性质,用群的理论去研究对称.所以人们就把群论说成是研究对称的数学理论.显然,每个n元多项式都有一个确定的n次置换群:例如n元多项式例6 任何n元对称多项式的置换群都是n次对称群.很显然,一个多元多项式的置换群的阶数越高,这个多元多项式的对称性越强.反之亦然.因此,我们通常所熟知的多元对称多项式是对称性最强的多项式.三、习题2.1解答1.略2.3.4. 5.6.§2. 2 群中元素的阶一、主要内容1.群中元素的阶的定义及例子.xx、无扭群与混合群的定义及例子.特别,有限群必为xx,但反之不成立.2.在群中若=n,则4.若G是交换群,又Gxx元素有最大阶m,则Gxx每个元素的阶都是m的因子.二、释疑解难在群中,由元素a与b的阶一般决定不了乘积ab的阶,这由教材中所举的各种例子已经说明了这一点.对此应十分注意.但是,在一定条件下可以由阶与决定阶,这就是教材xx定理4:4.一个群中是否有最大阶元?有限群中元素的阶均有限,当然有最大阶元.无限群中若元素的阶有无限的(如正有理数乘群或整数xx),则当然无最大阶元,若无限群中所有元素的阶均有限(即无限xx),则可能无最大阶元,如教材中的例4:下面再举两个(一个可换,另一个不可换)无限群有最大阶元的例子.5.利用元素的阶对群进行分类,是研究群的重要方法之一.例如,利用元素的阶我们可以把群分成三类,即xx、无扭群与混合群.而在xx中又可分出p—群p是素数),从而有2—群、3—群、5—群等等.再由教材§3. 9知,每个有限交换群(一种特殊的xx)都可惟一地分解为素幂阶循环p—群的直积,从而也可见研究p—群的重要意义.三、习题2.2解答1.2.3.4.5.推回去即得.6.§2. 3xx一、主要内容1.xx的定义和例子.特别是,特殊线性群(行列式等于l的方阵)是一般线性群(行列式不等于零的方阵)的xx.4.群的中心元和中心的定义.二、释疑解难1.关于真xx的定义.教材把非平凡的xx叫做真xx.也有的书把非G的于群叫做群G的真xx.不同的定义在讨论xx时各有利弊.好在差异不大,看参考书时应予留意.2.如果H与G是两个群,且HG,那么能不能说H就是G的xx?答:不能.因为xx必须是对原群的代数运算作成的群.例如,设G是有理数xx,而H是正有理数乘群,二者都是群,且HG但是不能说H是G的xx.答:不能这样认为.举例如下.例2设G是四元数群.则显然是G的两个xx且易知反之亦然.三、习题2.3解答1.证赂.2.证必要性显然,下证充分性.设子集H对群G的乘法封闭,则对Hxx任意元素a和任意正整数m都有am∈H.由于Hxx 每个元素的阶都有限,设=n ,则3.对非交换群一放不成立.例如,有理数域Qxx 全体2阶可逆方阵作成的乘群中,xx,的阶有限,都是2,但易知其乘积⎪⎪⎭⎫ ⎝⎛=1011ab的阶却无限.即其全体有限阶元素对乘法不封闭,故不能作成xx .4.证 由高等代数知,与所有n 阶可逆方阵可换的方阵为全体纯量方阵,由此即得证.5.证 因为(m ,n)=1,故存在整数s ,t 使 ms 十n t =1. 由此可得6.7.§2. 4循环群一、主要内容1.生成系和循环群的定义.2.循环群中元素的表示方法和xx的状况.3.循环群在同构意义下只有两类:整数xx和n次单位根乘群,其中n=1,2,3,….4.循环群的xx的状况.无限循环群有无限多个xx.n阶循环群有T(n)(n的正出数个数)个xx,且对n 的每个正因数k,有且仅有一个k阶xx.二、释疑解难1.我们说循环群是一类完全弄清楚了的群,主要是指以下三个方面:1)循环群的元素表示形式和运算方法完全确定.其xx的状况也完全清楚(无限循环群有两个xx,n阶循环群有个xx而且ak是xx(kn)=1);2)循环群的xx的状况完全清楚;3)在同构意义下循环群只有两类:一类是无限循环群,都与整数xx同构;另一类是n(n=1,2,…)阶循环群,都与n次单位根乘群同构.2.循环群不仅是一类完全弄清楚了的群,而且是一类比较简单又与其他一些群类有广泛联系的群类.例如由下一章§9可知,有限交换群可分解为一些素幂阶循环群的直积.更一般地,任何一个具有有限生成系的交换群都可分解成循环群的直积.由于循环群已完全在我们掌握之中,所以这种群(具有有限生成系的交换群)也是一类研究清楚了的群类.它在各种应用中有着非常重要的作用.例如在组合拓扑学中它就是一个主要的工具.三、习题§2. 4解答1.2.3.4. 5.6. 7.§2. 5 变换群一、主要内容1.变换群、双射变换群(特别是集合M上的对称群和n次对称群)和非双射变换群的定义及例子.2.变换群是双射变换群的充要条件;双射变换群与抽象群的关系.1)集合M上的变换群G是双射变换群G含有M的单或满)射变换;2)任何一个群都同一个(双射)变换群同构.3.有限集及无限集上非双射变换群的例子(例2和例3).二、释疑解难1.一般近世代数书中所说的“变换群”,都是由双射变换(关于变换乘法)所作成的群,即本教材所说的“双射变换群”.而本教材所说的“变换群”则是由一个集合上的一些变换(不一定是双射变换)作成的群.通过教材§5定理2和推论1可知,实际上变换群可分成两类:一类是双射变换群(全由双射变换作成的群,即通常近世代数书中所说的“变换群”),另一类是非双射变换群(全由非双射变换作成的群).在学习本书时应留意这种差异.2.本节教材定理2(若集合M上的变换群G含有M的单射或满射变换.则G必为M上的一个双射变换群,即G中的变换必全是双射变换)比有些书上相应的定理(若集合M上由变换作成的群G含有M的恒等变换,则G中的变换必全为双射变换)大为推广.因为后者要求G包含恒等变换(一个特殊的双射变换),而前者仅要求G 包含一个单(或满)射变换即可.因此,后音只是前者(本节教材定理2)的一个推论,一种很特殊的情况.两相比较,差异较大.这种差异也说明,M上的任何一个非双射变换群不仅不能包含恒等变换,而且xxM的任何单射或满射变换也不能包含.另外,在这里顺便指出,集合M上的任何双射变换群G的单位元必是M的恒等变换.3.集合M上的全体变换作成的集合T(M),对于变换的乘法作成一个有单位元的半群.在半群的讨论中,这是一类重要的半群.并且本节习题中第4题还指出,当>1时T(M)只能作成半群,而不能作成群.三、习题§2. 5解答1. 解作成有单位元半群,是单位元.但不作成群,因为无逆元.2.3. 解 G作成群:因为xx4.5.§2. 6 置换群一、主要内容1.任何(非循环)置换都可表为不相连循环之积,任何置换都可表为若干个对换之积,且对换个数的奇阴偶性不变.从而有奇、偶置换的概念,且全体n次置换xx、偶置换个数相等,各为个(n>1).2.k—循环的奇偶性、阶和逆元的确定方法,以及不相连循环乘积的奇偶性、阶和逆元的确定方法.1)k—循环与A有相反奇偶性.2)k—循环的阶为k.又(i1,i2…ik)-1=(ik,…,i2,i1 ).3)若分解为不相连循环之积.则其分解xx循环个数为奇时为奇置换,否则为偶置换.的阶为各因子的阶的最小公倍.其逆元可由k—循环的逆元来确定.3.由置换,求置换-1的方法.n次对称群sn的中心.4.传递群的定义、例子和简单性质.二、释疑解难1.研究置换群的重要意义和作用.除了教材中已经指出的(置换群是最早研究的一类群,而且每个有限的抽象群都同一个置换群同构)以外,研究置换群的重要意义和作用至少还有以下几方面:1) 置换群是一种具体的群,从置换乘法到判断置换的奇偶性以及求置换的阶和逆置换,都很具体和简单.同时它也是元素不是数的一种非交换群.在群的讨论中举例时也经常用到这种群.2) 在置换群的研究中,有一些特殊的研究对象是别的群所没有的.如置换中的不动点理论以及传递性和本原性理论等等.3) 置换群中有一些特殊的xx也是一般抽象群所没有的.例如,交代群、传递群、稳定xx和本原群等等.就教材所讲过的交代群和传递群的重要性便可以知道,介绍置换群是多么的重要.2.用循环与对换之积来表出置换的优越性.首先,书写大为简化,便于运算。

近世代数习题解答张禾瑞二章

近世代数习题解答张禾瑞二章

近世代数习题解答张禾瑞二章近世代数习题解答第二章群论1群论1.全体整数的集合对于普通减法来说是不是一个群?证不是一个群,因为不适合结合律.2.举一个有两个元的群的例子.证G={1,-1}对于普通乘法来说是一个群.3.证明,我们也可以用条件1,2以及下面的条件4,5'来作群的定义:4'. G至少存在一个右单位元e,能让ae = a 对于G的任何元a都成立5 . 对于G的每一个元a,在G里至少存在一个右逆元 a ,能让aa eA_1证(1) 一个右逆元一定是一个左逆元,意思是由aa e 得a a = e 因为由4 G有元a能使a'a =e1 1 1 '所以(a a)e = (a a)(a a )即a a = e(2)一个右恒等元e 一定也是一个左恒等元,意即由ae = a 得ea = a即ea = a这样就得到群的第二定义.(3)证ax二b可解取x = a这就得到群的第一定义.反过来有群的定义得到4,5'是不困难的.2单位元,逆元,消去律1.若群G的每一个元都适合方程x2二e,那么G就是交换群.证由条件知G中的任一元等于它的逆元,因此对a,b^G有ab = (ab),= b°a,= ba .2.在一个有限群里阶大于2的元的个数是偶数._1 n —1 n n —1 —1证(1)先证a的阶是n则a 的阶也是n . a e= (a ) (a ) e e若有m n 使(a ')m= e 即(a m)' = e因而a m=e‘ ? a m=e 这与a的阶是n矛盾「a的阶等于a °的阶_4 _4 2(2)a的阶大于2,则a=a 若a=a : a=e 这与a的阶大于2矛盾(3) a b 贝U a「b'斗总起来可知阶大于2的元a与a双双岀现,因此有限群里阶大于2的元的个数一定是偶数3.假定G是个数一个阶是偶数的有限群,在G里阶等于2的元的个数一定是奇数.证根据上题知,有限群G里的元大于2的个数是偶数;因此阶<2的元的个数仍是偶数,但阶是1的元只有单位元,所以阶<2的元的个数一定是奇数.4.一个有限群的每一个元的阶都是有限的证a := G故a a2…a m…a n…€ G由于G是有限群,所以这些元中至少有两个元相等:m n n _ma =a (m n) 故a 二en - m是整数,因而a的阶不超过它.4群的同态假定在两个群G和G的一个同态映射之下,a》a,a和a的阶是不是一定相同?证不一定相同丄 c _1 +23 _1 +伍例如G 二{1, , }-2 2对普通乘法G,G都作成群,且(x^1 (这里x是G的任意元,1是G的元)由??可知G s G—1+&3 —1—iJ3但11的阶都是3.2 2而1的阶是1.5变换群1 11. ------------------------------------------ 假定I是集合的一个非变换,1会不会有一个左逆元T ,使得I =Z ?证我们的回答是回有的 A ={1,2,3,— }3f 2 3 f 44f 3 4-显然是一个非--- 变换但'二2.假定A是所有实数作成的集合.证明.所有A的可以写成x > ax b,a,b是有理数,a = 0形式的变换作成一个变换群.这个群是不是一个交换群?证(1) - : x—ax ■ bca,cb d是有理数ca尸0 ;是关闭的.⑵显然时候结合律⑶ a =1 b =0 则:Xr X而.J .二. ;所以构成变换群.又d X"x 1故1 - 21因而不是交换群3.假定S 是一个集合 A 的所有变换作成的集合,我们暂时仍用旧符号.:a 》a ' = .(a)来说明一个变换..证明,我们可以用.「2:a“【[.2(a)] = j.2(a)来规定一个S 的乘法,这个乘法也适合结合律,并且对于这个乘法来说;还是S 的单位元.证彳: a —. d (a)那么.「2:a “ i [ .2(a)] = i 2(a) 显然也是A 的一个变换. 现在证这个乘法适合结合律:故 (?1?2)?3 =?1(?2?3) 再证;还是S 的单位元4 .证明一个变换群的单位元一定是恒等变换证设;是是变换群G 的单位元G , G 是变换群,故.是—变换,因此对集合 A 的任意元a ,有A 的元b ,;(a) ?( (a)) = ;? (b) = ? (b) =a另证■- (x)(x)根据1.7.习题3知t i(x) =x5.证明实数域上一切有逆的 n n 矩阵乘法来说,作成一个群。

近世代数习题解答2.doc

近世代数习题解答2.doc

近世代数习题解答第二章 群论1 群论1. 全体整数的集合对于普通减法来说是不是一个群?证 不是一个群,因为不适合结合律.2. 举一个有两个元的群的例子.证 }1,1{-=G 对于普通乘法来说是一个群.3. 证明, 我们也可以用条件1,2以及下面的条件 ''5,4来作群的定义:'4. G 至少存在一个右单位元e ,能让a ae = 对于G 的任何元a 都成立'5. 对于G 的每一个元a ,在G 里至少存在一个右逆元,1-a 能让 e aa =-1证 (1) 一个右逆元一定是一个左逆元,意思是由e aa =-1得e a a =-1因为由'4G 有元'a 能使e a a =-'1所以))(()('111a a a a e a a ---=e a a a e a a aa a ====----'1'1'11][)]([ 即 e a a =-1(2) 一个右恒等元e 一定也是一个左恒等元,意即 由 a ae = 得 a ea = a ae a a a a aa ea ====--)()(11 即 a ea =这样就得到群的第二定义. (3) 证 b ax =可解 取b a x 1-=b be b aa b a a ===--)()(11这就得到群的第一定义.反过来有群的定义得到''5,4是不困难的.2 单位元,逆元,消去律1. 若群G 的每一个元都适合方程e x =2,那么G 就是交换群.证 由条件知G 中的任一元等于它的逆元,因此对G b a ∈,有ba a b ab ab ===---111)(.2. 在一个有限群里阶大于2的元的个数是偶数.证 (1) 先证a 的阶是n 则1-a 的阶也是n .e e a a e a n n n ===⇒=---111)()(若有n m 〈 使e a m =-)(1 即 e a m =-1)(因而 1-=e a me a m=∴ 这与a 的阶是n 矛盾.a 的阶等于1-a 的阶 (2)a 的阶大于2, 则1-≠a a 若 e a a a =⇒=-21 这与a 的阶大于2矛盾(3) b a ≠ 则 11--≠b a总起来可知阶大于2的元a 与1-a 双双出现,因此有限群里阶大于2的元的个数一定是偶数3. 假定G 是个数一个阶是偶数的有限群,在G 里阶等于2的元的个数一定是奇数.证 根据上题知,有限群G 里的元大于2的个数是偶数;因此阶2≤的元的个数仍是偶数,但阶是1的元只有单位元,所以阶 2≤的元的个数一定是奇数.4. 一个有限群的每一个元的阶都是有限的.证 G a ∈故 G a a a a n m ∈ ,,,,,,2由于G 是有限群,所以这些元中至少有两个元相等: nma a = )(n m 〈 故 e amn =-m n -是整数,因而a 的阶不超过它.4 群的同态假定在两个群G 和-G 的一个同态映射之下,-→a a ,a 和-a 的阶是不是一定相同? 证 不一定相同 例如 }231,231,1{i i G +-+-= }1{=-G对普通乘法-G G ,都作成群,且1)(=x φ(这里x 是G 的任意元,1是-G 的元)由 φ可知 G ∽-G但231,231i i --+-的阶都是3. 而1的阶是1.5 变换群1. 假定τ是集合的一个非一一变换,τ会不会有一个左逆元1-τ,使得εττ=-1?证 我们的回答是回有的},3,2,1{ =A1τ: 1→1 2τ 1→12→1 2→3 3→2 3→4 4→3 4→5 … …τ显然是一个非一一变换但 εττ=-12. 假定A 是所有实数作成的集合.证明.所有A 的可以写成b a b ax x ,,+→是有理数,0≠a 形式的变换作成一个变换群.这个群是不是一个交换群? 证 (1) :τ b ax x +→ :λ d cx x +→:τλ d cb cax d b ax c x ++=++→)( d cb ca +,是有理数 0≠ca 是关闭的.(2) 显然时候结合律 (3) 1=a 0=b 则 :ε x x →(4):τ b ax +)(1:1ab x a x -+→-τ而 εττ=-1所以构成变换群.又 1τ: 1+→x x :2τ x x 2→ :21ττ )1(2+→x x :12ττ 12+→x x 故1221ττττ≠因而不是交换群.3. 假定S 是一个集合A 的所有变换作成的集合,我们暂时仍用旧符号τ:)('a a a τ=→来说明一个变换τ.证明,我们可以用21ττ: )()]([2121a a a ττττ=→来规定一个S 的乘法,这个乘法也适合结合律,并且对于这个乘法来说ε还是S 的单位元. 证 :1τ )(1a a τ→:2τ )(2a a τ→那么:21ττ )()]([2121a a a ττττ=→显然也是A 的一个变换. 现在证这个乘法适合结合律:)]()[(:)(321321a a ττττττ→)]]([[321a τττ= =→)]([:)(321321a a ττττττ)]]([[321a τττ 故 )()(321321ττττττ= 再证ε还是S 的单位元:ε )(a a a ε=→:ετ )()]([a a a ττε=→τ:τε )()]([a a a τετ=→ ∴ τεετ=4. 证明一个变换群的单位元一定是恒等变换。

近世代数习题解答张禾瑞二章

近世代数习题解答张禾瑞二章

近世代数习题解答张禾瑞二章近世代数习题解答第二章群论1群论1. 全体整数的集合对于普通减法来说是不是一个群?证不是一个群,因为不适合结合律.2. 举一个有两个元的群的例子.证G={1,-1}对于普通乘法来说是一个群.3. 证明,我们也可以用条件1,2以及下面的条件4,5'来作群的定义:4'. G至少存在一个右单位元e,能让ae = a 对于G的任何元a都成立5 . 对于G的每一个元a,在G里至少存在一个右逆元 a ,能让aa eA_1证(1) 一个右逆元一定是一个左逆元,意思是由aa e 得a a = e 因为由4 G有元a能使a'a =e1 1 1 '所以(a a)e = (a a)(a a )即a a = e(2)一个右恒等元e 一定也是一个左恒等元,意即由ae = a 得ea = a即ea = a这样就得到群的第二定义.(3)证ax二b可解取x = a这就得到群的第一定义.反过来有群的定义得到4,5'是不困难的.2单位元,逆元,消去律1. 若群G的每一个元都适合方程x2二e,那么G就是交换群.证由条件知G中的任一元等于它的逆元,因此对a,b^G有ab = (ab),= b°a,= ba .2. 在一个有限群里阶大于2的元的个数是偶数._1 n —1 n n —1 —1证(1)先证a的阶是n则a 的阶也是n . a e= (a ) (a ) e e若有m n 使(a ')m= e 即(a m)' = e因而a m=e‘ ? a m=e 这与a的阶是n矛盾「a的阶等于a °的阶_4 _4 2(2) a的阶大于2,则a=a 若a=a : a=e 这与a的阶大于2矛盾(3) a b 贝U a「b'斗总起来可知阶大于2的元a与a双双岀现,因此有限群里阶大于2的元的个数一定是偶数3. 假定G是个数一个阶是偶数的有限群,在G里阶等于2的元的个数一定是奇数.证根据上题知,有限群G里的元大于2的个数是偶数;因此阶<2的元的个数仍是偶数,但阶是1的元只有单位元,所以阶<2的元的个数一定是奇数.4. 一个有限群的每一个元的阶都是有限的证a := G故a a2…a m…a n…€ G由于G是有限群,所以这些元中至少有两个元相等:m n n _ma =a (m n) 故a 二en - m是整数,因而a的阶不超过它.4群的同态假定在两个群G和G的一个同态映射之下,a》a,a和a的阶是不是一定相同?证不一定相同丄 c _1 +23 _1 +伍例如G 二{1, , }-2 2对普通乘法G,G都作成群,且(x^1 (这里x是G的任意元,1是G的元)由??可知G s G—1+&3 —1—iJ3但11的阶都是3.2 2而1的阶是1.5变换群1 11. --------------------------------------- 假定I是集合的一个非变换,1会不会有一个左逆元T ,使得I =Z ?证我们的回答是回有的 A ={1,2,3,— }3f 2 3 f 44f 3 4-显然是一个非--- 变换但'二2.假定A是所有实数作成的集合.证明.所有A的可以写成x > ax b,a,b是有理数,a = 0形式的变换作成一个变换群.这个群是不是一个交换群?证(1) - : x—ax ■ bca,cb d是有理数ca尸0 ;是关闭的.⑵显然时候结合律⑶ a =1 b =0则:Xr X 而.J .二. ;所以构成变换群.又d X"x 13. 故1 - 21因而不是交换群3.假定S 是一个集合 A 的所有变换作成的集合,我们暂时仍用旧符号.:a 》a' = .(a)来说明一个变换..证明,我们可以用.「2:a“【[.2(a)] = j.2(a)来规定一个S 的乘法,这个乘法也适合结合律,并且对于这个乘法来说;还是S 的单位元.证彳: a —. d (a)那么.「2:a “ i [ .2(a)] = i 2(a) 显然也是A 的一个变换. 现在证这个乘法适合结合律:故 (?1?2)?3 =?1(?2?3) 再证;还是S 的单位元4 .证明一个变换群的单位元一定是恒等变换证设;是是变换群G 的单位元G , G 是变换群,故.是—变换,因此对集合 A 的任意元a ,有A 的元b ,;(a) ?( (a)) = ;? (b) = ? (b) =a另证■- (x)(x)根据1.7.习题3知t i(x) =x 5.证明实数域上一切有逆的n n 矩阵乘法来说,作成一个群。

近世代数课后习题参考答案(张禾瑞) (1)

近世代数课后习题参考答案(张禾瑞) (1)

近世代数课后习题参考答案第二章群论1群论1. 全体整数的集合对于普通减法来说是不是一个群?证 不是一个群,因为不适合结合律.2. 举一个有两个元的群的例子.证 }1,1{-=G 对于普通乘法来说是一个群.3. 证明, 我们也可以用条件1,2以及下面的条件''5,4来作群的定义:'4. G 至少存在一个右单位元e ,能让a ae = 对于G 的任何元a 都成立'5. 对于G 的每一个元a ,在G 里至少存在一个右逆元,1-a 能让 e aa =-1证 (1) 一个右逆元一定是一个左逆元,意思是由e aa =-1得e a a =-1因为由'4G 有元'a 能使e a a =-'1 所以))(()('111a a a a e a a ---=e a a a e a a aa a ====----'1'1'11][)]([即 e a a =-1(2) 一个右恒等元e 一定也是一个左恒等元,意即 由 a ae = 得 a ea =a ae a a a a aa ea ====--)()(11即 a ea =这样就得到群的第二定义. (3) 证 b ax =可解 取b a x 1-=b be b aa b a a ===--)()(11这就得到群的第一定义.反过来有群的定义得到''5,4是不困难的.2单位元,逆元,消去律1. 若群G 的每一个元都适合方程e x =2,那么G 就是交换群. 证 由条件知G 中的任一元等于它的逆元,因此对G b a ∈,有ba a b ab ab ===---111)(.2. 在一个有限群里阶大于2的元的个数是偶数.证 (1) 先证a 的阶是n 则1-a 的阶也是n .e e a a e a n nn===⇒=---111)()(若有n m 〈 使e a m =-)(1 即 e a m =-1)(因而 1-=e a m e a m =∴ 这与a 的阶是n 矛盾.a 的阶等于1-a 的阶 (2)a 的阶大于2, 则1-≠a a 若 e a a a =⇒=-21 这与a 的阶大于2矛盾(3) b a ≠ 则 11--≠b a总起来可知阶大于2的元a 与1-a 双双出现,因此有限群里阶大于2的元的个数一定是偶数3. 假定G 是个数一个阶是偶数的有限群,在G 里阶等于2的元的个数一定是奇数.证 根据上题知,有限群G 里的元大于2的个数是偶数;因此阶2≤的元的个数仍是偶数,但阶是1的元只有单位元,所以阶 2≤的元的个数一定是奇数.4. 一个有限群的每一个元的阶都是有限的.证 G a ∈故 G a a a a nm∈ ,,,,,,2由于G 是有限群,所以这些元中至少有两个元相等:n m a a =)(n m 〈 故 e a m n =- m n -是整数,因而a 的阶不超过它.4群的同态假定在两个群G 和-G 的一个同态映射之下,-→a a ,a 和-a 的阶是不是一定相同? 证 不一定相同 例如 }231,231,1{i i G +-+-= }1{=-G对普通乘法-G G ,都作成群,且1)(=x φ(这里x 是G 的任意元,1是-G 的元)由 φ可知 G ∽-G 但231,231i i --+-的阶都是3.而1的阶是1.5变换群1. 假定τ是集合的一个非一一变换,τ会不会有一个左逆元1-τ,使得εττ=-1?证 我们的回答是回有的},3,2,1{ =A1τ: 1→1 2τ 1→12→1 2→3 3→2 3→4 4→3 4→5 ……τ显然是一个非一一变换但 εττ=-12. 假定A 是所有实数作成的集合.证明.所有A 的可以写成b a b ax x ,,+→是有理数,0≠a 形式的变换作成一个变换群.这个群是不是一个交换群? 证 (1) :τb ax x +→:λd cx x +→:τλd cb cax d b ax c x ++=++→)(d cb ca +,是有理数 0≠ca 是关闭的.(2) 显然时候结合律(3) 1=a 0=b 则 :εx x → (4) :τb ax +)(1:1ab x a x -+→-τ 而 εττ=-1所以构成变换群.又 1τ: 1+→x x:2τx x 2→:21ττ)1(2+→x x :12ττ12+→x x故1221ττττ≠因而不是交换群.3. 假定S 是一个集合A 的所有变换作成的集合,我们暂时仍用旧符号τ:)('a a a τ=→来说明一个变换τ.证明,我们可以用21ττ: )()]([2121a a a ττττ=→来规定一个S 的乘法,这个乘法也适合结合律,并且对于这个乘法来说ε还是S 的单位元. 证 :1τ)(1a a τ→:2τ)(2a a τ→那么:21ττ)()]([2121a a a ττττ=→ 显然也是A 的一个变换. 现在证这个乘法适合结合律:)]()[(:)(321321a a ττττττ→)]]([[321a τττ==→)]([:)(321321a a ττττττ)]]([[321a τττ故 )()(321321ττττττ= 再证ε还是S 的单位元:ε)(a a a ε=→:ετ)()]([a a a ττε=→τ:τε)()]([a a a τετ=→∴τεετ=4. 证明一个变换群的单位元一定是恒等变换。

近世代数课后习题参考答案

近世代数课后习题参考答案

近世代数课后习题参考答案第一章 基本概念1 集合1.A B ⊂,但B 不是A 的真子集,这个情况什么时候才能出现? 解 ׃只有在B A =时, 才能出现题中说述情况.证明 如下当B A =,但B 不是A 的真子集,可知凡是属于A 而B a ∉,显然矛盾; 若A B ⊂,但B 不是A 的真子集,可知凡属于A 的元不可能属于B ,故B A =2.假定B A ⊂,?=B A ,A ∩B=? 解׃ 此时, A ∩B=A,这是因为A ∩B=A 及由B A ⊂得A ⊂A ∩B=A,故A B A = ,B B A ⊃ , 及由B A ⊂得B B A ⊂ ,故B B A = ,2 映射1.A =}{100,3,2,1,⋯⋯,找一个A A ⨯到A 的映射. 解׃ 此时1),(211=a a φ A a a ∈21, 1212),(a a a =φ 易证21,φφ都是A A ⨯到A 的映射.2.在你为习题1所找到的映射之下,是不是A 的每一个元都是A A ⨯到A 的一个元的的象? 解׃容易说明在1φ之下,有A 的元不是A A ⨯的任何元的象;容易验证在2φ之下,A 的每个元都是A A ⨯的象.3 代数运算1.A ={所有不等于零的偶数}.找到一个集合D ,使得普通除法 是A A ⨯到D 的代数运算;是不是找的到这样的D ?解׃取D 为全体有理数集,易见普通除法是A A ⨯到D 的代数运算;同时说明这样的D 不只一个.2.=A }{c b a ,,.规定A 的两个不同的代数运算. 解׃a b c aa b ca b cb bc a a a a a c c a b bd a aca a a4 结合律1.A ={所有不等于零的实数}. 是普通除法:bab a = .这个代数运算适合不适合结合律? 解׃ 这个代数运算不适合结合律: 212)11(= , 2)21(1= ,从而 )21(12)11( ≠.2.A ={所有实数}. : b a b a b a =+→2),(这个代数运算适合不适合结合律?解׃ 这个代数运算不适合结合律c b a c b a 22)(++= ,c b a c b a 42)(++= )()(c b a c b a ≠ 除非0=c .3.A ={c b a ,,},由表所给的代数运算适合不适合结合律?解׃ 经过27个结合等式后可以得出所给的代数运算适合结合律.5 交换律1.A ={所有实数}. 是普通减法:b a b a -= .这个代数运算适合不适合交换律?解׃ 一般地a b b a -≠- 除非b a =.2.},,,{d c b a A =,由表a b c d a a b c d b b d a c c c a b d dd c a b所给出代数运算适合不适合交换律?a b c aa b cb bc a cc a b解׃ d d c = , a c d =从而c d d c ≠.故所给的代数运算不适合交换律.6 分配律假定:⊗⊕,是A 的两个代数运算,并且⊕适合结合律,⊕⊗,适合两个分配律.证明)()()()(22122111b a b a b a b a ⊗⊕⊗⊕⊗⊕⊗ )()()()(22211211b a b a b a b a ⊗⊕⊗⊕⊗⊕⊗= 证)()()()(22122111b a b a b a b a ⊗⊕⊗⊕⊗⊕⊗׃ =])[(])[(221121b a a b a a ⊗⊕⊕⊗⊕ =)()(2121b b a a ⊕⊗⊕=)]([)]([212211b b a b b a ⊕⊗⊕⊕⊗)()()()(22211211b a b a b a b a ⊗⊕⊗⊕⊗⊕⊗=7 一 一 映射、变换1.A ={所有0〉的实数},=-A {所有实数}.找一个A 与-A 间的意义映射.证 φ:a a a log =→-因为a 是大于零的实数,所以a log 是实数即 A a ∈,而--∈A a ,而且b a b a log log =⇒=.因此φ是A 到-A 的映射.又给了一个-A 的任意元-a ,一定有一个A 的元a ,满足-=a a log ,因此φ是A 到-A 的满射.a a a log =→-b b b log =→-若 b a ≠, 则 b a log log ≠.即 --≠⇒≠b a b a 因此φ又是A 到-A 的单射.总之,φ是A 到-A 的一一映射.2. A ={所有0≥的实数},=-A {所有实数-a ,10≤≤-a }. 找一个A 到-A 的满射. 证 a a a sin :=→-φ,容易验证φ是A 到-A 的满射.3.假定φ是A 与-A 间的一个一一映射,a 是A 的一个元.?)]([1=-A φφ?)]([1=-a φφ若φ是A 的一个一一变换,这两个问题的回答又该是什么?解׃ a a =-)]([1φφ, a a =-)]([1φφ未必有意义;当φ是A 的一一变换时,.)]([,)]([11a a a a ==--φφφφ8 同态1.A ={所有实数x },A 的代数运算是普通乘法.以下映射是不是A 到A 的一个子集-A 的同态满射?x x a →) x x b 2)→ 2)x x c → x x d -→) 证׃ )a 显然=-A {所有0≥的实数}.又由于 y x xy xy =→ 可知x x →是A 到-A 的同态满射.)b 由于)2)(2(2y x xy xy ≠→ ( 除非0=xy )所以x x 2→不是A 到-A 的同态满射.)c 由于222)()()(y x xy xy =→,易知2x x →是A 到-A 的同态满射.这里-A ={所有0≥的实数}.)d 一般来说,))((y x xy --≠-,:所以x x -→不是A 到-A 的同态满射 .2. 假定A 和-A 对于代数运算ο和-ο来说同态,-A 和=A 对于代数运算-ο和=ο来说同态,证明 A 和=A 对于代数运算ο和=ο来说同态。

近世代数习题解答张禾瑞二章

近世代数习题解答张禾瑞二章

近世代数习题解答第二章 群论1 群论1. 全体整数的集合对于普通减法来说是不是一个群?证 不是一个群,因为不适合结合律. 2. 举一个有两个元的群的例子.证 }1,1{-=G 对于普通乘法来说是一个群. 3. 证明, 我们也可以用条件1,2以及下面的条件 ''5,4来作群的定义:'4. G 至少存在一个右单位元e ,能让a ae = 对于G 的任何元a 都成立'5. 对于G 的每一个元a ,在G 里至少存在一个右逆元,1-a 能让 e aa =-1证 (1) 一个右逆元一定是一个左逆元,意思是由e aa =-1得e a a =-1因为由'4G 有元'a 能使e a a =-'1所以))(()('111a a a a e a a ---= 即 e a a =-1(2) 一个右恒等元e 一定也是一个左恒等元,意即 由 a ae = 得 a ea = 即 a ea =这样就得到群的第二定义. (3) 证b ax =可解取b a x 1-=这就得到群的第一定义.反过来有群的定义得到''5,4是不困难的.2 单位元,逆元,消去律1. 若群G 的每一个元都适合方程e x=2,那么G 就是交换群.证 由条件知G 中的任一元等于它的逆元,因此对G b a ∈,有ba a b ab ab ===---111)(.2. 在一个有限群里阶大于2的元的个数是偶数.证 (1) 先证a 的阶是n 则1-a 的阶也是n .e e a a e a n n n ===⇒=---111)()(若有n m 〈 使e a m=-)(1 即 e a m =-1)(因而 1-=e a m e a m =∴ 这与a 的阶是n 矛盾.a 的阶等于1-a 的阶 (2) a 的阶大于2, 则1-≠a a 若 e a a a =⇒=-21 这与a 的阶大于2矛盾(3)b a ≠ 则 11--≠b a总起来可知阶大于2的元a 与1-a 双双出现,因此有限群里阶大于2的元的个数一定是偶数3. 假定G 是个数一个阶是偶数的有限群,在G 里阶等于2的元的个数一定是奇数.证 根据上题知,有限群G 里的元大于2的个数是偶数;因此阶2≤的元的个数仍是偶数,但阶是1的元只有单位元,所以阶 2≤的元的个数一定是奇数.4. 一个有限群的每一个元的阶都是有限的.证G a ∈故 G a a a a nm∈ ,,,,,,2由于G 是有限群,所以这些元中至少有两个元相等: nma a = )(n m 〈 故 e amn =-m n -是整数,因而a 的阶不超过它.4 群的同态假定在两个群G 和-G 的一个同态映射之下,-→a a ,a 和-a 的阶是不是一定相同? 证 不一定相同例如 }231,231,1{i i G +-+-=对普通乘法-G G ,都作成群,且1)(=x φ(这里x 是G 的任意元,1是-G 的元)由 φ可知 G ∽-G但231,231i i --+-的阶都是3. 而1的阶是1.5 变换群1. 假定τ是集合的一个非一一变换,τ会不会有一个左逆元1-τ,使得εττ=-1?证 我们的回答是回有的},3,2,1{ =A1τ: 1→1 2τ 1→12→1 2→3 3→2 3→4 4→3 4→5 … …τ显然是一个非一一变换但 εττ=-12. 假定A 是所有实数作成的集合.证明.所有A 的可以写成b a b ax x ,,+→是有理数,0≠a 形式的变换作成一个变换群.这个群是不是一个交换群? 证 (1) :τb ax x +→d cb ca +,是有理数0≠ca 是关闭的.(2) 显然时候结合律 (3) 1=a 0=b 则 :ε x x →而εττ=-1所以构成变换群.又 1τ: 1+→x x故1221ττττ≠因而不是交换群.3. 假定S 是一个集合A 的所有变换作成的集合,我们暂时仍用旧符号τ:)('a a a τ=→ 来说明一个变换τ.证明,我们可以用21ττ: )()]([2121a a a ττττ=→来规定一个S 的乘法,这个乘法也适合结合律,并且对于这个乘法来说ε还是S 的单位元.证 :1τ )(1a a τ→那么:21ττ )()]([2121a a a ττττ=→ 显然也是A 的一个变换. 现在证这个乘法适合结合律: 故 )()(321321ττττττ= 再证ε还是S 的单位元4. 证明一个变换群的单位元一定是恒等变换。

近世代数习题答案

近世代数习题答案

绪论部分:7.由1))((11111111121112121==----------a a a a a a a a a a a a a a m m m m m m m ,故11121121)(----=a a a a a a m m .对第2个问题,上面一段正是证明了它的充分性,再证必要性.设121=⋅u a a a m ,则任意i ,1)(111=--u a a a a a m i i i ,故每个i a 有逆元素.注:直接根据逆元的定义和广义结合律证明.8.11)1(11)1)(1()1(=+-=-+-=-+-=+-=-ba ba ca ab b ba babca bca ba bca ba d babcababca ba ba bca ba d -+-=-+=-1)1)(1()1(.11)1(1=+-=-+-=ba ba a ab bc ba即1-ba 在R 内也可逆又由c abc cab c ab ab c =+=+=-=-11,1)1()1(得.故cab)ab(11abcab ab 1bca)b a(11adb 1++=++=++=+c abc =+=1.注:直接根据结合律和环中乘法对加法的分配律验证. 第一章: 第一节:5.设⎪⎪⎭⎫ ⎝⎛=a b a A 0,⎪⎪⎭⎫ ⎝⎛=c d c B 0,其中a,b,c,d 都是复数,a ≠0且c ≠0,则 ⎪⎪⎭⎫⎝⎛+=ac bc ad ac AB 0也和A,B 具有相同的形式. 显然, ⎪⎪⎭⎫ ⎝⎛=1001I 是单位元且⎪⎪⎪⎪⎭⎫⎝⎛-=a a b ab a C 1012是A 的逆矩阵.又矩阵乘法满足结合律,故结论得证.注:根据群的定义直接验证,需要说明AB 也和A,B 具有相同的形式.7.对,G a ∈a 有右逆b.b 又有右逆a ',这时a 为b 的左逆.由ab e a b ==',得到()()a a ab a b a a '='='=,可知a a '=.这样e ab ba ==,即b 是a 的逆.12.设{}s g g G ,,1 =.由性质(2),G ag ag G a s ⊆∈∀},{,1 ,且是s 个不同的元,故G ag ag s =}{1 .同样由性质(3)可得,G a g a g s =},{1 。

近世代数期末考试题库之欧阳歌谷创编

近世代数期末考试题库之欧阳歌谷创编

近世代数模拟试题一欧阳歌谷(2021.02.01)一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1、设A =B =R(实数集),如果A 到B 的映射ϕ:x →x +2,∀x ∈R ,则ϕ是从A 到B 的( )A 、满射而非单射B 、单射而非满射C 、一一映射D 、既非单射也非满射2、设集合A 中含有5个元素,集合B 中含有2个元素,那么,A 与B 的积集合A ×B 中含有( )个元素。

A 、2B 、5C 、7D 、103、在群G 中方程ax=b ,ya=b , a,b ∈G 都有解,这个解是( )乘法来说A 、不是唯一B 、唯一的C 、不一定唯一的D 、相同的(两方程解一样)4、当G 为有限群,子群H 所含元的个数与任一左陪集aH 所含元的个数( )A 、不相等B 、0C 、相等D 、不一定相等。

5、n 阶有限群G 的子群H 的阶必须是n 的( )A 、倍数B 、次数C 、约数D 、指数二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。

错填、不填均无分。

1、设集合{}1,0,1-=A ;{}2,1=B ,则有=⨯A B ---------。

2、若有元素e ∈R 使每a ∈A ,都有ae=ea=a ,则e 称为环R 的--------。

3、环的乘法一般不交换。

如果环R 的乘法交换,则称R 是一个------。

4、偶数环是---------的子环。

5、一个集合A 的若干个--变换的乘法作成的群叫做A 的一个--------。

6、每一个有限群都有与一个置换群--------。

7、全体不等于0的有理数对于普通乘法来说作成一个群,则这个群的单位元是---,元a 的逆元是-------。

8、设I 和S 是环R 的理想且R S I ⊆⊆,如果I 是R 的最大理想,那么---------。

近世代数第二章答案

近世代数第二章答案

近世代数第二章群论答案之杨若古兰创作§1. 群的定义1.全体整数的集合对于普通减法来说是不是一个群?解:不是,因为普通减法不是适合结合律.例如2.举一个有两个元的群的例.解:令G=,e a{},G的乘法由下表给出首先,容易验证,这个代数运算满足结合律(1) ()(),,= ∈x y z x y z x y z G因为,因为ea ae a==,若是元素e在(1)中出现,那么(1)成立.(参考第一章,§4,习题3.)若是e不在(1)中出现,那么有而(1)仍成立.其次,G有左单位元,就是e;e有左逆元,就是e,a有左逆元,就是a.所所以G一个群.读者可以考虑一下,以上运算表是如何作出的.3.证实,我们也能够用条件Ⅰ,Ⅱ和上面的条件IV',V'来做群的定义:IV'G里至多存在一个右逆元1a-,能让对于G的任何元a都成立;V'对于G的每一个元a,在G里至多存在一个右逆元1a-,能让解:这个题的证法完整平行于本节中关于可以用条件I,II,IV,V来做群定义的证实,但读者必定要本人写一下.§2. 单位元、逆元、消去律1.若群G的每一个元都适合方程2=x e,那么G是交换群.解:令a和b是G的任意两个元.由题设另一方面因而有()()()()ab ab ab ba.利用消去律,得=所所以G交换群.2.在一个无限群里,阶大于2的元的个数必定是偶数.解:令G是一个无限群.设G有元a而a的阶>2n.考察1a-.我们有设正整数<m n而()1=m-,那么同上可得=m a e,与n是a的a e阶的假设矛盾.如许,n也是1a-的阶,易见1a a-≠.否则21-a aa e==与>2n的假设矛盾.如许,我们就有一对分歧的阶大于2的元a和1a-.设G还有元b,b a≠,1≠,而且b的阶大于2.那么1b-的阶b a-也大于2,而且1b b-≠.-≠.我们也有1b a否则1111----===e b b aa b a消去1b-得1--.如许,除a和=b a=b a-,与假设矛盾.同样可证111a-外,又有一对分歧的阶大于2的元b和1b-.因为G是无限群,而G的阶大于2的元老是成对出现,所以G里这类元的个数必定是偶数.G是一个阶是偶数的无限群.在G里阶等于2的元的个数必定是奇数.解:由习题2知,G里阶大于2的元的个数是偶数.但G只要一个阶是1的元,就是单位元e.因而因为的阶是偶数,得G里阶等于2的元的个数是奇数.4.一个无限群的每一个元的阶都无限.解:令G是一个无限群而a是的任一元素,那么不克不及都不相等.是以存在正整数 i,j,i j,使i j=,用j a-a a乘两边,得(1)i j a e-=如许,存在正整数i j-,使(1)成立,是以也存在最小的正整数m,使m a e=,这就是说,元a的阶是m.4.群的同态假定在两个群G和G的一个同态映照之下,a a→.a与a的阶是不是必定不异?解:纷歧定.例如,令G是本章1中例2所给出的群而G是该节中例1所给出的的群.那么读者容易证实:φn g→n是G的任意元是G到G的一个同态映照.但G的每一元0n≠都是无穷阶的,而g 的阶是1.5.变换群1.假定τ是集合A的一个非逐个变换.τ会不会有一个左逆元1τ-使得1?ττε-=解:可能有.例如令A ={所有正整数},则τ: 11→,1n n →-1n明显是A 的一个非逐个变换.而A 的变换1τ-: 1n n →+n A ∈就能使1.ττε-=2. 假定A 是所有实数作成的集合.证实,所有A 的可以写成x ax b →+a 和b 是有理数, 0a ≠方式的变换作成一个变换群.这个群是不是一个变换群? 解:令G 是由一切上述变换作成的集合.考察G 的任何两个元素 τ: x ax b →+a 和b 是有理数, 0a ≠λ: x cx d →+c 和d 是有理数, 0c ≠那么τλ: ()()x x ax b c ax b d τλλ→=+=++这里ca 和d cb +都是有理数,而且0ca ≠.所以τλ仍属于G .结合律对普通变换都成立,所以对上述变换同样成立. 单位变换ε: x x →属于G .容易验证,τ在G 中有逆,即1τ-: 1()b x x a a→+-是以G 作为一个变换群.但G 不是一个交换群.令1τ: 1x x →+2τ: 2x x →那么12ττ: 122()(1)22x x x x τττ→=+=+ 21ττ: 211()(2)21x x x x τττ→==+ 3. 假定S 是一个集合A 的所有变换作成的集合.我们临时用符号 τ: '()a a a τ→=来说明一个变换τ.证实,我们可以用12ττ: 1212[()]()a a a ττττ→=来规定一个乘法,这个乘法也适合结合律而且对于这个乘法来说,ε还是S 的单位元.解:令1τ和2τ是S 的任意两个元而a 是A 的任意一个元.那么2()a τ和12[()]a ττ都是A 的独一确定的元.是以如上规定12ττ仍是S 的一个独一确定的元而我们得到了一个S 的乘法.令3τ也是一个任意元,那么所以123123()()ττττττ=而乘法适合结合律.令τ是S 的任意元.因为对一切a A ∍,都有()a a ε=,所以即εττετ==而ε仍是S 的单位元.4. 证实,一个变换群的单位元必定是恒等变换.解:设G 是由某一集合A 的变换构成一个变换群,而ε是G 的单位元.任取G 的一个元τ和A 的一个元a .因为εττ=,有 因为τ是A 的一个逐个变换,所以a a ε=而ε是A 的恒等变换. 5. 证实,实数域上一切有逆的n n ⨯矩阵对于矩阵乘法来说,作成一个群.解:这个题的解法很容易,这里从略.6. 置换群1. 找出所有3s 不克不及和123231⎛⎫ ⎪⎝⎭交换的元. 解:3s 有6个元:123123⎛⎫ ⎪⎝⎭,123132⎛⎫ ⎪⎝⎭,123213⎛⎫ ⎪⎝⎭, 123231⎛⎫ ⎪⎝⎭,123312⎛⎫ ⎪⎝⎭,123321⎛⎫ ⎪⎝⎭. 其中的123123⎛⎫ ⎪⎝⎭,123231⎛⎫ ⎪⎝⎭,123312⎛⎫ ⎪⎝⎭=2123231⎛⎫ ⎪⎝⎭ 明显可以和123231⎛⎫⎪⎝⎭交换.通过计算,易见其它三个元不克不及和123231⎛⎫ ⎪⎝⎭交换. 2. 把3s 的所有元写成不相连的轮回置换的乘积.解:123123⎛⎫ ⎪⎝⎭=(1),123132⎛⎫ ⎪⎝⎭=(2 3) 123213⎛⎫ ⎪⎝⎭=(1 2),123321⎛⎫ ⎪⎝⎭=(1 3),123231⎛⎫ ⎪⎝⎭=(1 2 3)123312⎛⎫ ⎪⎝⎭=(1 3 2) 3.证实:(ⅰ)两个不相连的轮回置换可以交换; (ⅱ) 解:(ⅰ)看的两个不相连的轮回置换σ和τ.我们考察乘积στ使数字1,2,…,n 如何变动.有三种情况.(a ) 数字在σ中出现,而且σ把酿成j.这时候因为σ和τ不相连,j 不在τ中出现,因此τ使j 不变,所以στ仍把酿成j. (b ) 数字k 在τ中出现,而且τ把k 酿成.这时候不在σ中出现,因此σ使k 不变,所以στ仍把酿成.(c ) 数字m 不在σ和τ中出现.这时候στ使m 不动.如上考察τσ使数字1,2,…,n 如何变动,明显得到同样的结果.是以στ=τσ.(ⅱ)因为,所以4.证实一个轮回置换的阶是. 解:一个轮回置换π=的一次方,二次方,…,次方分别把酿成.同理把2i 酿成2i ,…,把酿成.是以.由上面的分析,若是,那么.这就证实了,π的阶是.5.证实的每一个元都可以写成(1 2),(1 3),…,(1 n )这个轮回置换中的若干个的乘积.解:因为每一个置换都可以写成不相连的轮回置换的乘积,所以只须证实,一个轮回置换可以写成若干个(1 )形的置换的乘积.设π是一个轮回置换.我们分两个情形加以讨论. (a ) 1在π中出现,这时候π可以写成容易验算(b ) 1不在π中出现,这时候§1. 证实,一个轮回群必定是交换群.解:设轮回群G ()a =.那么G 的任何两个元都可以写成m a 和n a (m ,n 是整数)的方式.但m n m n n m n m a a a a a a ++===所所以G 一个交换群.2.假定群的元a 的阶是n.证实的阶是,这里d=( r ,n )是r 和n 的最大公因子.解:因为d |r ,r=ds ,所以 此刻证实, 就是的阶.设的阶为.那么.令得但而是的阶,所以 而 因而| .(参看本节定理的第二种情形.) 为了证实 ,只须反过来证实| .由 而n 是a 的阶,同上有n |r , 因此| .但d 是n 和r 的最大公因子,所以互素而有 .G.证实:也生成G,假如(r,n)=1 (这就是说r和n互素).解:由习题2,的阶是n.所以互不不异.但G只要n个元,所以,而生成G.4.假定G是轮回群,而且G与同态.证实也是轮回群.解:因为G与同态,也是一个群.设G()a=,而在G到的同态满射φ下, .看的任意元 .那么在φ下,有.如许,的每一元都是的一个乘方而()=.G a5.假定G是无穷阶的轮回群,是任何轮回群.证实G与同态.解:令G()a=,)(aG=.定义Φ:我们证实,φ是G到的一个同态满射.(ⅰ)因为G是无穷阶的轮回群,G的任何元都只能以一种方法写成的方式,所以在φ之下,G的每一个元有一个独一确定的象,而φ是G到的一个映照.(ⅱ)的每一个元都可以写成的方式,是以它在φ之下是G 的元的象,而φ是G到的一个满射.(ⅲ)所以φ是G到的一个同态满射.§8. 子群1.找出的所有子群.解:明显有以下子群:本人;((1))={(1)};((1 2))={(1 2),(1)};((1 3))={(1 3),(1)};((2 3))={(2 3),(1)};((1 2 3))={(1 2 3),(1 3 2),(1)}.若的一个子群H含有(1 2),(1 3)这两个2-轮回置换,那么H含有(1 2 )(1 3)=(1 2 3 ),(1 2 3) (1 2)=(2 3)因此H=.同理,若是的一个子群含有两个2-轮回置换(2 1),(2 3)或(3 1),(3 2),这个子群也必定是.用完整类似的方法,读者也能够算出,若是的一个子群含有一个2-轮回置换和一个3-轮回置换,那么这个子群也必定是.是以上面给出的6个子群是的所有子群.2.证实,群G的两个子群的交集也是G的子群.解:设和是G的子群.令e是G的单位元.那么e属于,因此而令a,b .那么a,b属于 .但是子群.所以属于,因此属于 .这就证实了,是G的子群.3.取的子集S {(1 2) ,(1 2 3)}.S生成的子群包含哪些元?一个群的两个分歧的子集会不会生成不异的子群?解:见习题1的解.4.证实,轮回群的子群也是轮回群.解:设轮回群G=(a)而H是G的一个子群.若H只含单位元e=a0,则H=(e)是轮回群.若H不但含单位元,那么因为H是子群,它必定含有元a m,其中m是正整数.令是最小的使得属于H的正整数,我们证实,这时候 .看H的任一元a t.令t=iq+r 0≤r<i那么a i=a iq a r.因为a t和a iq都属于H,有a r=a-iq a t∈H因而由假设r=0,a t=(a i)q而H=(a i).5.找出模12的剩余类加群的所有子群.解:模12的剩余类加群G是一个阶为12的轮回群.是以由题4,G的子群都是轮回群,容易看出:([0])=[0]([1])=([5])=([7])=([11])=G([2])=([10])={[2],[4],[6],[8],[10],[0]}([3])=([9])={[3],[6],[9],[0]}([4])=([8])={[4],[8],[0]}([6])={[6],[0]}是G的所有子群.G的一个非空子集而且H的每一个元的阶都无限.证实,H作成一个子集的充要条件是:a,b∈H⇒ab∈H解:由本节定理1,条件明显是须要的.要证实条件也是充分的,由同必定理,只须证实:a∈H⇒a-1∈H设a∈H,因为H的每一元的阶都无限,所以a的阶是某一正整数n而a-1=a n-1.因而由所给条件得a-1∈H.§9. 子群的陪集1.证实,阶是素数的群必定是轮回群.解:设群G的阶为素数p,在G中取一元a≠e,则a生成G 的一个轮回子群(a).设(a)的阶为n,那么n≠1.但由定理2,n│p,所以n=p而G=(a)是一个轮回群.2.证实,阶是p m的群(p是素数,m≥1)必定包含一个阶是p的子群.解:设群G的阶是p m.在G中取一元a≠e,那么由定理3,a 的阶n│p m.但n≠1,所以n=p t,t≥1,若t=1,那么d的阶为p,(a)是一个阶为p的子群.若t>1,可取b=a p1-t,那么b的阶为p,而(b)是一个阶为p的子群.3.假定a和b是一个群G的两个元,而且ab=ba,又假定a的阶是m,b的阶是n,而且(m,n)=1.证实:ab的阶是mn.解:设ab的阶是k.由ab=ba,得(ab)mn=a mn b mn=e是以k│mn.我们反过来证实,mn│k.由 e=(ab)kn=a kn b kn=a kn 和a的阶为m,得m│kn,但(m,n)=1,所以m││k.又由(m,n)=1,得mn│k.如许,ab的阶k=mn.4.假定~是一个群G的元间的一个等价关系,而且对于G的任意元三个元a,x,x’来说ax~ax’ x~x’证实,与G的单位元e等价的元所作成的集合是G的一个子群.解:令H是与e等价的元所作成的集合.因为e~e,所以H不空.设a,b∈H,那么a~e,b~e,b~e可写成a-1ab~a-1a是以由题设,ab~a~e而ab∈H.a~e可写成ae~aa-1,是以由题设,e~a-1而a-1∈H.如许,H作成G的一个子群.5.我们直接下右陪集H a的定义如下:H a刚好包含G的可以写成h a (h∈H)方式的元.由这个定义推出以下事实:G的每一个元属于而且只属于一个右陪集.解:取任意元a∈G,因为H是一个子群,单位元e∈H,是以a=e a∈H a这就是说,元a属于右陪集H a.设a∈H b,a∈H c,那么a=h b=h2c (h1,h2∈H)1由此得,b=11h -h 2c,而H b 的任意元hb=112h c h h -∈H c因此H b ⊂H c ,同样可证H c ⊂H b ,如许H b=H c 而a 只能属于一个右陪集.6.若我们把同构的群看成一样的,一共只存在两个阶是4的群,它们都是交换群.解:先给出两个阶是4的群.模4的剩余类加群G 1={[0],[1],[2],[3]}. G 1的元[1]的阶是4而G 1是[1]所生成的轮回群([1]).s 4的子群 B 4={(1),(1 2)(3 4),(1 3)(2 4),(1 4)(2 3)} 叫作克莱因四元群.B 4是s 4的子群容易验证,我们有[(1 2)(3 4)]2=[(1 3)(2 4)]2=[(1 4)(2 3)]2=(1)(1 2)(3 4)(1 3)(2 4)=(1 3)(2 4)(1 2)(3 4)=(1 4)(2 3)(1 3)(2 4)(1 4)(2 3)=(1 4)(2 3)(1 3)(2 4)=(1 2)(3 4)(1 4)(2 3)(1 2)(3 4)=(1 2)(3 4)(1 4)(2 3)=(1 3)(2 4)这两个群明显都是交换群.此刻证实,任何阶是4的群都和以上两个群之一同构. 设G 是一个阶为4的群.那么G 的元的阶只能是1,2或4若G 有一个阶为4的元d ,那么G=(d )是一个轮回群, 而G 与G 1同构.若G 没有阶为4的元,那么除单位元e 外,G 的其他3个元的阶都是2,是以有G={e,a,b,c} a2=b2=c2=e因为G是群,有ab∈G,我们证实ab=c由ab=e将得ab=a2和b=a ,这不成能.由ab=a将得b=e,也不成能由ab=b将得a=e,也不成能.是以只能ab=c,同样可证ab=ba=c, bc=cb=a, ca=ac=b比较G和B的代数运算,易见G和B4同构.弥补题:利用6题证实,一个无限非交换群至多有6个元.§10.不变子群商群1.假定群G的不变子群N的阶是2.证实,G的中间包含N.解:令N={e,n},这里e是G的单位元,取G的任意元a.因为N是一个不变子群,有aN=Na,即{a,an}={a,na}所以an=na.如许,N的两个元e和n都可以和G的任何元a交换,所以N属于G的中间.2.证实,两个不变子群的交集还是不变子群.解令N1和N2是群G的两个不变子群.那么N1⋂N2是G的一个子群(§8.习题2).我们进一步证实,N1⋂N2是G的一个不变子群.令a∈G,n∈N1⋂N2,那么n∈N1,n∈N2,但N1和N2是不变子群,所以ana-1∈N1, ana-1∈N2,因此ana-1∈N1⋂N2因而由定理2,N1⋂N2是一个不变子群.3.证实,指数是2的子群必定是不变子群.解:令G是一个群而N是G的一个指数为2的子群.若n∈N,那么明显有nN=Nn.设b∈G,b-∈∈N.那么因为N的指数是2,G被分成两个左陪集N和bN;G也被分成两个右陪集N和Nb.是以bN=Nb,如许,对于G的任何元a来说,aN=Na是G 的一个不变子群.4.假定H是G的子群,N是G的不变子群,证实,HN是G的子群.解:因为H和N都不空,所以HN也不空.设 a∈HN , b∈HN .那么a=h1n1 , b=h2n2(h1,h2∈ H ,n1,n2∈N )a b1-=h1n1n12-h12-=h1n'h12- (n'=n1n12-)因为N是一个不变子集,有N h12-=h12-N ,n'h12-=h12-n (n∈N)由是得a b1-=(h1h12-)n∈HN,HN是一个子群.5. 举例证实,G的不变子集N的不变子群N1未必是G的不变子群(取G=S4).解:令G=S4,N={(1),(12)(34),(13)(24),(14)(23)}N1={(1),(12)(34)}已知N是G的一个子群(上节习题6).我们证实,N是G的一个不变子群.为了证实这一点,我们考察,是否对一切π∈S4,等式(a)πNπ1-=N成立.因为任何π都可以写成(1i)形的2一轮回置换的乘积.(§6.习题5),我们只须对(1i)形的π来看等式(a)是否成立.又因为N的元的对称性,我们只须看π=(12)的情形.但(12){(1),(12)(34),(13)(24),(14)(23)}(12)={(1),(12)(34),(14)(23),(13)(24)}所以N是S4的一个不变子群.因为N是交换群,N1当然是N的一不变子群.但N1不是S4的一个不变子群.因为(13)[(12)(34)](13)=(14)(23)∈-N16. 一个群G的可以写成a1-b1-ab方式的元叫作换位子.证实;(i)所有无限个换位子的乘积作成的集合C是G的一个不变子群;(ii) G/C是交换群;(iii)若N是G的一个不变子集,而且G/N是交换群,那么 N⊃C解:(i),C的两个元的乘积仍是无限个换位子的乘积,因此仍是C的一个元.一个换位子的逆仍是一个换位子,所以C的一个元的逆仍是C的一个元.如许C是一个子群.对于a∈G,c∈C ,ac a1-=(ac a1-c1-) c∈C ,所以C是G的一个不变子群.(ii)令a,b∈G .那么a1-b1-ab=c∈C.由此得ab=bac, abC=bacC=baC即aCbC=bCaC而G/C是交换群.(iii)因为G/N是交换群,所以对G的任何两个元a和b(aN)(bN)= (bN) (aN), abN=baN由此得 ab=ban (n∈N) a1-b1-ab= n∈N.如许N含有一切换位子,是以含有C.弥补题.令π和(i1i2 (i)k)属于Sn.证实π1-(i1i2…i k)π=(i x1i x2…i x k)§1.我们看一个集合A到集合A-的满射Φ.证实.若A的子集S 是A-的子集S-的逆象;S-是S的象,但若S-是S的象,S纷歧定S-的逆象.解:(i)设S是S-的逆象.这时候对任一元a∈S,存在元a-∈S-,使Φ(a)=a-,是以φ(S)⊂S-.反过来,对任一a-∈S-,存在a ∈S,使Φ(a)=a-,是以S-⊂φ(S).如许S-=φ(S),即S-是S的象.(ii)令A={1 ,2,3,4},A-={2,4},A到A-的满射是Φ: 1→2 ,2→2 ,3→4 ,4→4取S={1,3}.那么S的象S-={2,4}.但S-的逆象是A≠S2.假定群G与群G-同态,N-是G-的一个不变子群,N是N-的逆象.证实,G/N≅G-/N-.解:设所给G到G-同态满射是Φ: a→a-=Φ(a)我们要建立一个G/N到G-/N-的同构映照.定义ψ: aN →a-N-若aN=bN,那么b1-a∈N.因为N-是N φ之下的象,有b1-=b1-a-∈N-,a-N-=b-N-a所所以ψG/N到G-/N-的一个映照.设a-N-∈G-/N-而Φ(a)=a-,那么ψ: aN →a-N-所所以ψG/N到G-/N-的一个满射.若aN≠ bN ,那么b1-a∈-N .因为N是N-的逆象,由此得b1-=b1-a-∈-N-,a-N-≠b-N-a所所以ψG/N到G-/N-间的一个逐个映照.3.假定G和G-是两个无限轮回群,它们的阶各是m和n.证实,G与G-同态,当而且只当n|m的时候.解:设G与G-同态,那么由定理2,G/N≅G-,这里N是G到G-的同态满射的核.所以G/N的阶是n.但G/N的阶等于不变子群N在G里的指数,所以由§9的定理2它能整除G的阶m.由此得n|m.反过来设n|m. 令G=(a), G-=(a-).定义Φ:a k→a k若a h=a k,那么m|h-k.因而由n|m ,得n|h-k而a h-=a k-.如许Φ是G到G-的一个映照.容易证实,Φ是G到G-的一个同态满射.是以G与G-同态.4.假定G是一个轮回群,N是G的一个子群.证实,G/N也是轮回群.解:轮回群G是交换群,所以G的子群N是不变子群,而G/N成心义.设G=(a). 容易证实G/N=(aN). 所以G/N 也是轮回群.。

近世代数习题解答张禾瑞二章

近世代数习题解答张禾瑞二章

近世代数习题解答张禾瑞二章近世代数习题解答第二章群论1群论1. 全体整数的集合对于普通减法来说是不是一个群?证不是一个群,因为不适合结合律.2. 举一个有两个元的群的例子.证G={1,-1}对于普通乘法来说是一个群.3. 证明,我们也可以用条件1,2以及下面的条件4,5'来作群的定义:4'. G至少存在一个右单位元e,能让ae = a 对于G的任何元a都成立5 . 对于G的每一个元a,在G里至少存在一个右逆元 a ,能让aa eA_1证(1) 一个右逆元一定是一个左逆元,意思是由aa e 得a a = e 因为由4 G有元a能使a'a =e1 1 1 '所以(a a)e = (a a)(a a )即a a = e(2)一个右恒等元e 一定也是一个左恒等元,意即由ae = a 得ea = a即ea = a这样就得到群的第二定义.(3)证ax二b可解取x = a这就得到群的第一定义.反过来有群的定义得到4,5'是不困难的.2单位元,逆元,消去律1. 若群G的每一个元都适合方程x2二e,那么G就是交换群.证由条件知G中的任一元等于它的逆元,因此对a,b^G有ab = (ab),= b°a,= ba .2. 在一个有限群里阶大于2的元的个数是偶数._1 n —1 n n —1 —1证(1)先证a的阶是n则a 的阶也是n . a e= (a ) (a ) e e若有m n 使(a ')m= e 即(a m)' = e因而a m=e‘ ? a m=e 这与a的阶是n矛盾「a的阶等于a °的阶_4 _4 2(2) a的阶大于2,则a=a 若a=a : a=e 这与a的阶大于2矛盾(3) a b 贝U a「b'斗总起来可知阶大于2的元a与a双双岀现,因此有限群里阶大于2的元的个数一定是偶数3. 假定G是个数一个阶是偶数的有限群,在G里阶等于2的元的个数一定是奇数.证根据上题知,有限群G里的元大于2的个数是偶数;因此阶<2的元的个数仍是偶数,但阶是1的元只有单位元,所以阶<2的元的个数一定是奇数.4. 一个有限群的每一个元的阶都是有限的证a := G故a a2…a m…a n…€ G由于G是有限群,所以这些元中至少有两个元相等:m n n _ma =a (m n) 故a 二en - m是整数,因而a的阶不超过它.4群的同态假定在两个群G和G的一个同态映射之下,a》a,a和a的阶是不是一定相同?证不一定相同丄 c _1 +23 _1 +伍例如G 二{1, , }-2 2对普通乘法G,G都作成群,且(x^1 (这里x是G的任意元,1是G的元)由??可知G s G—1+&3 —1—iJ3但11的阶都是3.2 2而1的阶是1.5变换群1 11. --------------------------------------- 假定I是集合的一个非变换,1会不会有一个左逆元T ,使得I =Z ?证我们的回答是回有的 A ={1,2,3,— }3f 2 3 f 44f 3 4-显然是一个非--- 变换但'二2.假定A是所有实数作成的集合.证明.所有A的可以写成x > ax b,a,b是有理数,a = 0形式的变换作成一个变换群.这个群是不是一个交换群?证(1) - : x—ax ■ bca,cb d是有理数ca尸0 ;是关闭的.⑵显然时候结合律⑶ a =1 b =0则:Xr X 而.J .二. ;所以构成变换群.又d X"x 13. 故1 - 21因而不是交换群3.假定S 是一个集合 A 的所有变换作成的集合,我们暂时仍用旧符号.:a 》a' = .(a)来说明一个变换..证明,我们可以用.「2:a“【[.2(a)] = j.2(a)来规定一个S 的乘法,这个乘法也适合结合律,并且对于这个乘法来说;还是S 的单位元.证彳: a —. d (a)那么.「2:a “ i [ .2(a)] = i 2(a) 显然也是A 的一个变换. 现在证这个乘法适合结合律:故 (?1?2)?3 =?1(?2?3) 再证;还是S 的单位元4 .证明一个变换群的单位元一定是恒等变换证设;是是变换群G 的单位元G , G 是变换群,故.是—变换,因此对集合 A 的任意元a ,有A 的元b ,;(a) ?( (a)) = ;? (b) = ? (b) =a另证■- (x)(x)根据1.7.习题3知t i(x) =x 5.证明实数域上一切有逆的n n 矩阵乘法来说,作成一个群。

数字电子技术基础课后答案之欧阳学创编

数字电子技术基础课后答案之欧阳学创编

第一章逻辑代数基础时间:2021.03.03 创作:欧阳学1.1 、用布尔代数的基本公式和规则证明下列等式。

1.2 、求下列函数的反函数。

1.3 、写出下列函数的对偶式。

1.4 、证明函数 F 为自对偶函数。

1.5 、用公式将下列函数化简为最简“与或”式。

1.6 、逻辑函数。

若 A 、B 、C 、D 、的输入波形如图所示,画出逻辑函数 F 的波形。

1.7 、逻辑函数 F 1 、 F 2 、 F 3 的逻辑图如图 2 — 35 所示,证明 F 1 =F 2 =F 3 。

1.8 、给出“与非”门、“或非”门及“异或”门逻辑符号如图2 — 36 ( a )所示,若 A 、 B 的波形如图 2 — 36 ( b ),画出 F 1 、 F 2 、 F 3 波形图。

1.9 、用卡诺图将下列函数化为最简“与或”式。

1.10 、将下列具有无关最小项的函数化为最简“与或”式;1.11 、用卡诺图将下列函数化为最简“与或”式;1.12 用卡诺图化简下列带有约束条件的逻辑函数1.13 、用最少的“与非”门画出下列多输出逻辑函数的逻辑图。

第二章门电路2.1 由 TTL 门组成的电路如图 2.1 所示,已知它们的输入短路电流为 I is =1.6mA ,高电平输入漏电流 I iH = 40。

试问:当 A=B=1 时, G 1 的灌电流(拉,灌)为3.2mA ;A=0 时, G 1 的拉电流(拉,灌)为120。

2.2 图 2.2 中示出了某门电路的特性曲线,试据此确定它的下列参数:输出高电平 U OH = 3V ;输出低电平 U OL = 0.3V ;输入短路电流 I iS = 1.4mA ;高电平输入漏电流 I iH = 0.02mA ;阈值电平 U T = 1.5V ;开门电平 U ON = 1.5V ;关门电平 U OFF = 1.5V ;低电平噪声容限 U NL = 1.2V ;高电平噪声容限U NH = 1.5V ;最大灌电流I OLmax = 15mA ;扇出系数 N= 10 .2.3 TTL 门电路输入端悬空时,应视为高电平;(高电平,低电平,不定)此时如用万用表测量其电压,读数约为 1.4V (3.6V , 0V , 1.4V )。

近世代数答案3

近世代数答案3

代数扩张 .进而 ,E 中全部代数元作成 F 的一个扩域 .
倡 8畅 令 E = Q ( u) .
(1) 设 u3 - u2 + u + 2 = 0 .试把( u2 + u + 1)( u2 - u )和 ( u - 1 ) - 1 表成 au2
+ bu + c 的形式 ,a ,b ,c ∈ Q .
f2 (α1 ,α2 ,… ,αt ) ≠ 0
= 由 F 及 S 的元尽可能地多次作加减乘除所得的元素的集合
= 含 F 及 S 的最小的域 .
单扩张的构造 :
F(α) =
f1 (α) f2 (α)
橙 f1 ( x ) ,f2 ( x ) ∈ F[ x ] ,f2 ( α) ≠ 0

若 α 为 F 上代数元 ,f ( x )是以 α 为根的 F 上不可约多项式( α 的极小多项式) , 其次数为 n ,则 F( α)是 F 上 n 维线性空间 ,而 1 ,α ,… ,αn - 1是它的一组基 .பைடு நூலகம்
倡 4畅 E 车 F 为域扩张 ,α1 ,α2 ,… ,αt ∈ E ,[ F( αi ) :F] = ni ,i = 1 ,2 ,… ,t ,则
[ F(α1 ,… ,αt ) :F] ≤ n1 n2 … nt . 倡 5畅 F 炒 E 为有限次域扩张 ,则必为代数扩张 .
倡 6畅 F 炒 E 为有限次域扩张 ,则有 α1 ,… ,αt ∈ E ,使得 E = F(α1 ,… ,αt ) . 7畅 F 炒 E 为域扩张 ,S 炒 E 且 S 中每个元皆是 F 上代数元 ,则 F( S )是 F 上
1010101010101
7畅 令 H = 0 1 1 0 0 1 1 0 0 1 1 0 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

近世代数第二章群论答案欧阳歌谷(2021.02.01)§1. 群的定义1.全体整数的集合对于普通减法来说是不是一个群?解:不是,因为普通减法不是适合结合律。

例如2.举一个有两个元的群的例。

解:令G=,e a{},G的乘法由下表给出首先,容易验证,这个代数运算满足结合律(1) ()(),,= ∈x y z x y z x y z G因为,由于ea ae a==,若是元素e在(1)中出现,那么(1)成立。

(参考第一章,§4,习题3。

)若是e不在(1)中出现,那么有而(1)仍成立。

其次,G有左单位元,就是e;e有左逆元,就是e,a有左逆元,就是a。

所以G是一个群。

读者可以考虑一下,以上运算表是如何作出的。

3.证明,我们也可以用条件Ⅰ,Ⅱ以及下面的条件IV',V'来做群的定义:IV'G里至少存在一个右逆元1a-,能让对于G的任何元a都成立;V'对于G的每一个元a,在G里至少存在一个右逆元1a-,能让解:这个题的证法完全平行于本节中关于可以用条件I,II,IV,V 来做群定义的证明,但读者一定要自己写一下。

§2. 单位元、逆元、消去律1. 若群G 的每一个元都适合方程2=x e ,那么G 是交换群。

解:令a 和b 是G 的任意两个元。

由题设另一方面于是有()()()()=ab ab ab ba 。

利用消去律,得所以G 是交换群。

2. 在一个有限群里,阶大于2的元的个数一定是偶数。

解:令G 是一个有限群。

设G 有元a 而a 的阶>2n 。

考察1a -。

我们有设正整数<m n 而()1=ma e -,那么同上可得=m a e ,与n 是a 的阶的假设矛盾。

这样,n 也是1a -的阶,易见1a a -≠。

否则 21==a aa e -与>2n 的假设矛盾。

这样,我们就有一对不同的阶大于2的元a 和1a -。

设G 还有元b ,b a ≠,1b a -≠,并且b 的阶大于2。

那么1b -的阶也大于2,并且1b b -≠。

我们也有1b a -≠。

否则1111===e b b aa b a ----消去1b -得1=b a -,与假设矛盾。

同样可证11=b a --。

这样,除a 和1a -外,又有一对不同的阶大于2的元b 和1b -。

由于G 是有限群,而G 的阶大于2的元总是成对出现,所以G 里这种元的个数一定是偶数。

3.假定G是一个阶是偶数的有限群。

在G里阶等于2的元的个数一定是奇数。

解:由习题2知,G里阶大于2的元的个数是偶数。

但G只有一个阶是1的元,就是单位元e。

于是由于的阶是偶数,得G里阶等于2的元的个数是奇数。

4.一个有限群的每一个元的阶都有限。

解:令G是一个有限群而a是的任一元素,那么不能都不相等。

因此存在正整数i,j,i j,使i ja a=,用j a-乘两边,得(1)i j-=a e这样,存在正整数i j-,使(1)成立,因此也存在最小的正整数m,使m a e=,这就是说,元a的阶是m。

4.群的同态假定在两个群G和G的一个同态映射之下,a a→。

a与a的阶是不是一定相同?解:不一定。

例如,令G是本章1中例2所给出的群而G是该节中例1所给出的的群。

那么读者容易证明→n是G的任意元:φn g是G到G的一个同态映射。

但G的每一元0n≠都是无限阶的,而g 的阶是1。

5.变换群1.假定τ是集合A的一个非一一变换。

τ会不会有一个左逆元1τ-使得1?-=ττε解:可能有。

例如令A ={所有正整数},则τ: 11→,1n n →-1n显然是A 的一个非一一变换。

而A 的变换1τ-: 1n n →+n A ∈就能使1.ττε-=2. 假定A 是所有实数作成的集合。

证明,所有A 的可以写成x ax b →+a 和b 是有理数, 0a ≠形式的变换作成一个变换群。

这个群是不是一个变换群? 解:令G 是由一切上述变换作成的集合。

考察G 的任何两个元素 τ: x ax b →+a 和b 是有理数, 0a ≠λ: x cx d →+c 和d 是有理数, 0c ≠那么τλ: ()()x x ax b c ax b d τλλ→=+=++这里ca 和d cb +都是有理数,并且0ca ≠。

所以τλ仍属于G 。

结合律对一般变换都成立,所以对上述变换也成立。

单位变换ε: x x →属于G 。

容易验证,τ在G 中有逆,即1τ-: 1()b x x a a→+- 因此G 作为一个变换群。

但G 不是一个交换群。

令1τ: 1x x →+2τ: 2x x →那么12ττ: 122()(1)22x x x x τττ→=+=+ 21ττ: 211()(2)21x x x x τττ→==+ 3. 假定S 是一个集合A 的所有变换作成的集合。

我们暂时用符号 τ: '()a a a τ→=来说明一个变换τ。

证明,我们可以用12ττ: 1212[()]()a a a ττττ→=来规定一个乘法,这个乘法也适合结合律并且对于这个乘法来说,ε还是S 的单位元。

解:令1τ和2τ是S 的任意两个元而a 是A 的任意一个元。

那么2()a τ和12[()]a ττ都是A 的唯一确定的元。

因此如上规定12ττ仍是S 的一个唯一确定的元而我们得到了一个S 的乘法。

令3τ也是一个任意元,那么所以123123()()ττττττ=而乘法适合结合律。

令τ是S 的任意元。

由于对一切a A ∍,都有()a a ε=,所以即εττετ==而ε仍是S 的单位元。

4. 证明,一个变换群的单位元一定是恒等变换。

解:设G 是由某一集合A 的变换组成一个变换群,而ε是G 的单位元。

任取G 的一个元τ和A 的一个元a 。

由于εττ=,有由于τ是A 的一个一一变换,所以a a ε=而ε是A 的恒等变换。

5. 证明,实数域上一切有逆的n n ⨯矩阵对于矩阵乘法来说,作成一个群.解:这个题的解法很容易,这里从略。

6. 置换群1. 找出所有3s 不能和123231⎛⎫ ⎪⎝⎭交换的元。

解:3s 有6个元:123123⎛⎫ ⎪⎝⎭,123132⎛⎫ ⎪⎝⎭,123213⎛⎫ ⎪⎝⎭, 123231⎛⎫ ⎪⎝⎭,123312⎛⎫ ⎪⎝⎭,123321⎛⎫ ⎪⎝⎭。

其中的123123⎛⎫ ⎪⎝⎭,123231⎛⎫ ⎪⎝⎭,123312⎛⎫ ⎪⎝⎭=2123231⎛⎫ ⎪⎝⎭ 显然可以和123231⎛⎫⎪⎝⎭交换。

通过计算,易见其它三个元不能和123231⎛⎫ ⎪⎝⎭交换。

2. 把3s 的所有元写成不相连的循环置换的乘积。

解:123123⎛⎫ ⎪⎝⎭=(1),123132⎛⎫ ⎪⎝⎭=(2 3) 123213⎛⎫ ⎪⎝⎭=(1 2),123321⎛⎫ ⎪⎝⎭=(1 3),123231⎛⎫ ⎪⎝⎭=(1 2 3) 123312⎛⎫ ⎪⎝⎭=(1 3 2) 3.证明:(ⅰ)两个不相连的循环置换可以交换; (ⅱ)解:(ⅰ)看的两个不相连的循环置换σ和τ。

我们考察乘积στ使数字1,2,…,n如何变动。

有三种情况。

(a)数字在σ中出现,并且σ把变成j。

这时由于σ和τ不相连,j不在τ中出现,因而τ使j不变,所以στ仍把变成j。

(b)数字k在τ中出现,并且τ把k变成。

这时不在σ中出现,因而σ使k不变,所以στ仍把变成。

(c)数字m不在σ和τ中出现。

这时στ使m不动。

如上考察τσ使数字1,2,…,n如何变动,显然得到同样的结果。

因此στ=τσ。

(ⅱ)由于,所以4.证明一个循环置换的阶是。

解:一个循环置换π=的一次方,二次方,…,次方分别把变成。

同理把i变成2i,…,把变成。

因此2。

由上面的分析,若是,那么。

这就证明了,π的阶是。

5.证明的每一个元都可以写成(1 2),(1 3),…,(1 n)这个循环置换中的若干个的乘积。

解:由于每一个置换都可以写成不相连的循环置换的乘积,所以只须证明,一个循环置换可以写成若干个(1 )形的置换的乘积。

设π是一个循环置换。

我们分两个情形加以讨论。

(a ) 1在π中出现,这时π可以写成容易验算(b ) 1不在π中出现,这时§7.循环群1. 证明,一个循环群一定是交换群。

解:设循环群G ()a =。

那么G 的任何两个元都可以写成m a 和n a (m ,n 是整数)的形式。

但m n m n n m n m a a a a a a ++===所以G 是一个交换群。

2.假定群的元a 的阶是n 。

证明的阶是,这里d=( r ,n )是r 和n 的最大公因子。

解:由于d |r ,r=ds ,所以 现在证明, 就是的阶。

设的阶为。

那么。

令得但而是的阶,所以 而 于是| 。

(参看本节定理的第二种情形。

) 为了证明 ,只须反过来证明| 。

由 而n 是a 的阶,同上有n |r , 因而|。

但d 是n 和r 的最大公因子,所以互素而有 。

3.假定a 生成一个阶是n 的循环群G 。

证明:也生成G ,假如(r,n )=1 (这就是说r 和n 互素)。

解:由习题2,的阶是n 。

所以互不相同。

但G只有n个元,所以,而生成G。

4.假定G是循环群,并且G与同态。

证明也是循环群。

解:由于G与同态,也是一个群。

设G()a=,而在G到的同态满射φ下,。

看的任意元。

那么在φ下,有。

这样,的每一元都是的一个乘方而()=。

G a5.假定G是无限阶的循环群,是任何循环群。

证明G与同态。

解:令G()a=,)G=。

定义Φ:我们证明,φ是G到(a的一个同态满射。

(ⅰ)由于G是无限阶的循环群,G的任何元都只能以一种方法写成的形式,所以在φ之下,G的每一个元有一个唯一确定的象,而φ是G到的一个映射。

(ⅱ)的每一个元都可以写成的形式,因此它在φ之下是G 的元的象,而φ是G到的一个满射。

(ⅲ)所以φ是G到的一个同态满射。

§8. 子群1.找出的所有子群。

解:显然有以下子群:本身;((1))={(1)};((1 2))={(1 2),(1)};((1 3))={(1 3),(1)};((2 3))={(2 3),(1)};((1 2 3))={(1 2 3),(1 3 2),(1)}。

若的一个子群H含有(1 2),(1 3)这两个2-循环置换,那么H 含有(1 2 )(1 3)=(1 2 3 ),(1 2 3) (1 2)=(2 3)因而H=.同理,若是的一个子群含有两个2-循环置换(2 1),(2 3)或(3 1),(3 2),这个子群也必然是。

用完全类似的方法,读者也可以算出,若是的一个子群含有一个2-循环置换和一个3-循环置换,那么这个子群也必然是。

因此上面给出的6个子群是的所有子群。

2.证明,群G的两个子群的交集也是G的子群。

解:设和是G的子群。

令e是G的单位元。

那么e属于,因而而令a,b。

相关文档
最新文档