近世代数学习系列一 学习方法

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

近世代数学习方法

“近世代数”是一门比较抽象的学科,初学者往往感到虚无飘渺,困难重重。为此,下面介绍五种常用的学习方法。

一、通过例子来加深对基本理论的理解

针对“近世代数”课程的概念抽象、难于理解的特点,我们认为理解概念的一种有效方法是多举已学过的典型例子。例如,一元多项式环和整数环是主理想整环的例子,关于主理想整环的许多结论都是通过推广关于多项式和整数的结论得到;一个无零因子交换环的商域就是模仿整数环和有理数环间的关系构造的;整环里的因子分解理论就是分解质因数和多项式的因式分解理论的推广。

当我们学习“近世代数”时,就仅仅背下来一些命题、性质和定理,并不意味着真正地理解。要想真正理解,需要清楚这些命题、性质和定理的前提条件为什么是必要的?而达到这个目的的最有效的方法就是构造反例。通常的做法是:去掉一个前提条件后,构造一个结论不成立的例子,从而表明所去掉的前提条件是必要的。例如,关于素理想和极大理想的关系有结论:设R是含1交换环,则R的极大理想一定是素理想。那么这个结论的条件“含1”是必要的吗?这个问题的答案可从下面的例子容易得到。例:设R是所有偶数构成的环,Z表示整数环,则4Z是R的极大理想,但4Z不是R的素理想。

二、通过变换角度来寻求问题的解法

通过变换角度来寻求问题的解法是一种很普遍的解题方法,通常是将已知或未知较复杂的问题变换为等价的较简单的问题,或者是将新问题变换为已经解决的问题,或者是将未知与已知关系较少的问题变为已知与未知关系较多的问题等等。下面举例说明这种方法:

例:设是从G1到G2的满同态,N2是G2的不变子群,N1= -1(N2),证明G1/N1同构于G2/N2。

对于这个问题,我们不直接证明G1/N1同构于G2/N2,而是将问题进行变换,

先构造从G1到G2/N2的满同态,再证明N1是的核,然后根据同态基本定理知结论正确。

三、通过“同构”的观点将知识点(问题)归类

“同构”的概念非常重要,因为凡是具有同构性质的结构在本质上可看成是同一结构。这样就可以将对其中一个结构进行分析得到的性质迁移到其它结构上去。例如,在群结构理论下,一个由元a所生成的循环群G,它的构造完全可以由a的阶来决定: 如果a的阶无限,那么G与整数加群同构;如果a的阶是有限整数n,那么G与模n的剩余类加群同构。这样研究了整数加群和以n为模的剩余类加群,整个循环群就都在我们掌握之中了。

运用同构的观点来学习“近世代数”,有利于弄清群、环、域间的纵横关系,有利于全面、深刻、系统的理解所学的知识,也有利于培养分析、综合、抽象、概括的能力。

四、加强与其它课程的联系

在学习近世代数时,应该注意将所学的内容和其它课程相联系。例如:群论中的许多结论可依据高等代数的知识构造矩阵群来加以解释;环论中的许多结论可依据数论知识或多项式理论加以解释来加以解释。

五、通过重复加深理解

对于“近世代数”中很抽象的内容,需要反复阅读,逐渐推敲,从不同角度去理解本质所在。经常会出现这样的情况,读第一遍时明白了,而读第二遍时又糊涂了,这时要联系前后内容认真思考未明白的地方。实际上是第一遍没有真正明白,或者只明白了表面的东西,尚未理解本质所在。

上面仅就我们的理解提出了学习“近世代数”的五种方法

相关文档
最新文档