专题:数列的求和法(2)
高考数学专题03数列求和问题(第二篇)(解析版)
⾼考数学专题03数列求和问题(第⼆篇)(解析版)备战2020年⾼考数学⼤题精做之解答题题型全覆盖⾼端精品第⼆篇数列与不等式【解析版】专题03 数列求和问题【典例1】【福建省福州市2019-2020学年⾼三上学期期末质量检测】等差数列{}n a 的公差为2, 248,,a a a 分别等于等⽐数列{}n b 的第2项,第3项,第4项. (1)求数列{}n a 和{}n b 的通项公式;(2)若数列{}n c 满⾜12112n n nc c c b a a a ++++=L ,求数列{}n c 的前2020项的和.【思路引导】(1)根据题意同时利⽤等差、等⽐数列的通项公式即可求得数列{}n a 和{}n b 的通项公式; (2)求出数列{}n c 的通项公式,再利⽤错位相减法即可求得数列{}n c 的前2020项的和.解:(1)依题意得: 2324b b b =,所以2111(6)(2)(14)a a a +=++ ,所以22111112361628,a a a a ++=++解得1 2.a = 2.n a n ∴= 设等⽐数列{}n b 的公⽐为q ,所以342282,4b a q b a ==== ⼜2224,422.n n n b a b -==∴=?= (2)由(1)知,2,2.n n n a n b ==因为11121212n n n n nc c c c a a a a +--++++= ①当2n ≥时,1121212n n n c c c a a a --+++= ②由①-②得,2n n nc a =,即12n n c n +=?,⼜当1n =时,31122c a b ==不满⾜上式,18,12,2n n n c n n +=?∴=?≥ .数列{}n c 的前2020项的和34202120208223220202S =+?+?++?2342021412223220202=+?+?+?++?设2342020202120201222322019220202T =?+?+?++?+? ③,则34520212022202021222322019220202T =?+?+?++?+? ④,由③-④得:234202120222020222220202T -=++++-?2202020222(12)2020212-=-?-2022420192=--? ,所以20222020201924T =?+,所以2020S =202220204201928T +=?+.【典例2】【河南省三门峡市2019-2020学年⾼三上学期期末】已知数列{}n a 的前n 项和为n S ,且满⾜221n S n n =-+,数列{}n b 中,2+,对任意正整数2n ≥,113nn n b b -??+=.(1)求数列{}n a 的通项公式;(2)是否存在实数µ,使得数列{}3nn b µ+是等⽐数列?若存在,请求出实数µ及公⽐q 的值,若不存在,请说明理由;(3)求数列{}n b 前n 项和n T . 【思路引导】(1)根据n S 与n a 的关系1112n nn S n a S S n -=?=?-≥?即可求出;(2)假设存在实数µ,利⽤等⽐数列的定义列式,与题⽬条件1331n n n n b b -?+?=,⽐较对应项系数即可求出µ,即说明存在这样的实数;(3)由(2)可以求出1111(1)4312nn n b -??=?+?- ,所以根据分组求和法和分类讨论法即可求出.解:(1)因为221n S n n =-+,当1n =时,110a S ==;当2n ≥时,22121(1)2(1)123n n n a S S n n n n n -=-=-+-----=-.故*0,1 23,2,n n a n n n N =?=?-∈?…;(2)假设存在实数µ,使得数列{}3xn b µ?+是等⽐数列,数列{}n b 中,2133a b a =+,对任意正整数2n (113)n n b b -??+=.可得116b =,且1331n nn n b b -?+?=,由假设可得(n n n b b µµ--?+=-?+,即1334n n n n b b µ-?+?=-,则41µ-=,可得14µ=-,可得存在实数14µ=-,使得数列{}3nn b µ?+是公⽐3q =-的等⽐数列;(3)由(2)可得11111133(3)(3)444nn n n b b ---=-?-=?- ,则1111(1)4312nn n b -??=?+?- ,则前n 项和11111111(1)123643121212nn n T -=++?+?+-+?+?-?? ? ????????? 当n 为偶数时,111111*********n n n T ??- =+=- ???- 当n 为奇数时,11111115112311128312248313n n n nT ??- =+=-+=- ????- 则51,21248311,2883nn n n k T n k ?-=-=??-=(*k N ∈).【典例3】【福建省南平市2019-2020学年⾼三上学期第⼀次综合质量检查】已知等⽐数列{}n a 的前n 项和为n S ,且( )*21,nn S a a n =?-∈∈R N.(1)求数列{}n a 的通项公式;(2)设11n n n n a b S S ++=,求数列{}n b 的前n 项和n T .【思路引导】(1)利⽤临差法得到12n n a a -=?,再根据11a S =求得1a =,从⽽求得数列通项公式;(2)由题意得1112121n n n b +=---,再利⽤裂项相消法求和. 解:(1)当1n =时,1121a S a ==-.当2n ≥时,112n n n n a S S a --=-=?()*,因为{}n a 是等⽐数列,所以121a a =-满⾜()*式,所以21a a -=,即1a =,因此等⽐数列{}n a 的⾸项为1,公⽐为2,所以等⽐数列{}n a 的通项公式12n n a -=.(2)由(1)知21nn S =-,则11n n n n a b S S ++=,即()()1121121212121n n n n n n b ++==-----,所以121111111113377152121n n n n T b b b +?=++???+=-+-+-+???+- ? ? ? ?--?,所以11121n n T +=--.【典例4】【⼭东省⽇照市2019-2020学年上学期期末】已知数列{}n a 的⾸项为2,n S 为其前n 项和,且()120,*n n S qS q n +=+>∈N (1)若4a ,5a ,45a a +成等差数列,求数列{}n a 的通项公式;(2)设双曲线2221ny x a -=的离⼼率为n e ,且23e =,求222212323n e e e ne ++++L .【思路引导】(1)先由递推式()120,*n n S qS q n +=+>∈N 求得数列{}n a 是⾸项为2,公⽐为q 的等⽐数列,然后结合已知条件求数列通项即可;(2)由双曲线的离⼼率为求出公⽐q ,再结合分组求和及错位相减法求和即可得解. 解:解:(1)由已知,12n n S qS +=+,则212n n S qS ++=+,两式相减得到21n n a qa ++=,1n ≥.⼜由212S qS =+得到21a qa =,故1n n a qa +=对所有1n ≥都成⽴.所以,数列{}n a 是⾸项为2,公⽐为q 的等⽐数列. 由4a ,5a ,45+a a 成等差数列,可得54452=a a a a ++,所以54=2,a a 故=2q .所以*2()n n a n N =∈.(2)由(1)可知,12n n a q-=,所以双曲线2的离⼼率n e ==由23e ==,得q =.所以()()()()2122222123231421414n n e e e n e q n q -++++?=++++++ ()()()21214122n n n q nq -+=++++,记()212123n n T q q nq -=++++①()()2122221n n n q T q q n qnq -=+++-+②①-②得()()221222221111n n nnq q ---=++++-=-- 所以()()()()222222222211122121(1)111nn n n n n n n q nq q nq T n n q q q q --=-=-=-+?=-+----. 所以()()222212121242n n n n e e n e n +++++?=-++. 【典例5】已知数列{}n a 的各项均为正数,对任意*n ∈N ,它的前n 项和n S 满⾜()()1126n n n S a a =++,并且2a ,4a ,9a 成等⽐数列. (1)求数列{}n a 的通项公式;(2)设()111n n n n b a a ++=-,n T 为数列{}n b 的前n 项和,求2n T .【思路引导】(1)根据n a 与n S 的关系,利⽤临差法得到13n n a a --=,知公差为3;再由1n =代⼊递推关系求1a ;(2)观察数列{}n b 的通项公式,相邻两项的和有规律,故采⽤并项求和法,求其前2n 项和. 解:(1)Q 对任意*n ∈N ,有() ()1126n n n S a a =++,①∴当1a =时,有()()11111126S a a a ==++,解得11a =或2. 当2n ≥时,有()()1111126n n n S a a ---=++.②①-②并整理得()()1130n n n n a a a a --+--=. ⽽数列{}n a 的各项均为正数,13n n a a -∴-=.当11a =时,()13132n a n n =+-=-,此时2429a a a =成⽴;当12a =时,()23131n a n n =+-=-,此时2429a a a =,不成⽴,舍去.32n a n ∴=-,*n ∈N .(2)2122n n T b b b =+++=L 12233445221n n a a a a a a a a a a +-+-+-L()()()21343522121n n n a a a a a a a a a -+=-+-++-L242666n a a a =----L ()2426n a a a =-+++L246261862n n n n +-=-?=--.【典例6】【2020届湖南省益阳市⾼三上学期期末】已知数列{}n a 的前n 项和为112a =,()1122n n n S a ++=-. (1)求2a 及数列{}n a 的通项公式;(2)若()1122log n n b a a a =L ,11n n nc a b =+,求数列{}n c 的前n 项和n T . 【思路引导】(1)利⽤临差法将递推关系转化成2112n n a a ++=,同时验证2112a a =,从⽽证明数列{}n a 为等⽐数列,再利⽤通项公式求得n a ;(2)利⽤对数运算法则得11221nn c n n ??=+- ?+??,再⽤等⽐数列求和及裂项相消法求和,可求得n T 。
高中数学《求数列的和习题课二》专题突破含解析
习题课二 求数列的和题型一 分组分解求和【例1】 已知正项等比数列{a n }中,a 1+a 2=6,a 3+a 4=24.(1)求数列{a n }的通项公式;(2)数列{b n }满足b n =log 2a n ,求数列{a n +b n }的前n 项和.解 (1)设数列{a n }的公比为q (q >0),则{a 1+a 1·q =6,a 1·q 2+a 1·q 3=24,解得{a 1=2,q =2,∴a n =a 1·q n -1=2×2n -1=2n .(2)b n =log 22n =n ,设{a n +b n }的前n 项和为S n ,则S n =(a 1+b 1)+(a 2+b 2)+…+(a n +b n )=(a 1+a 2+…+a n )+(b 1+b 2+…+b n )=(2+22+…+2n )+(1+2+…+n )=2×(2n -1)2-1+n (1+n )2=2n +1-2+12n 2+12n .规律方法 1.若数列{c n }的通项公式为c n =a n ±b n ,且{a n },{b n }为等差或等比数列,可采用分组求和法求数列{c n }的前n 项和.2.若数列{c n }的通项公式为c n ={a n ,n 为奇数,b n ,n 为偶数,其中数列{a n },{b n }是等比数列或等差数列,可采用分组求和法求{c n }的前n 项和.【训练1】 已知等差数列{a n }的前n 项和为S n ,且a 1=1,S 3+S 4=S 5.(1)求数列{a n }的通项公式;(2)令b n =(-1)n -1a n ,求数列{b n }的前2n 项和T 2n .解 (1)设等差数列{a n }的公差为d ,由S 3+S 4=S 5可得a 1+a 2+a 3=a 5,即3a 2=a 5,∴3(1+d )=1+4d ,解得d =2,∴a n =1+(n -1)×2=2n -1.(2)由(1)可得b n =(-1)n -1×(2n -1),∴T 2n =(1-3)+(5-7)+…+[(4n -3)-(4n -1)]=(-2)·n=-2n.题型二 裂项相消法求和【例2】 已知数列{a n}的前n项和为S n,满足S2=2,S4=16,{a n+1}是等比数列.(1)求数列{a n}的通项公式;(2)若a n>0,设b n=log2(3a n+3),求数列{1b n b n+1}的前n项和.解 (1)设等比数列{a n+1}的公比为q,其前n项和为T n,因为S2=2,S4=16,所以T2=4,T4=20,易知q≠1,所以T2=(a1+1)(1-q2)1-q=4①,T4=(a1+1)(1-q4)1-q=20②,由②①得1+q2=5,解得q=±2.当q=2时,a1=13,所以a n+1=43×2n-1=2n+13;当q=-2时,a1=-5,所以a n+1=(-4)×(-2)n-1=-(-2)n+1.所以a n=2n+13-1或a n=-(-2)n+1-1.(2)因为a n>0,所以a n=2n+13-1,所以b n=log2(3a n+3)=n+1,所以1b n b n+1=1(n+1)(n+2)=1n+1-1n+2,所以数列{1b n b n+1}的前n项和为(12-13)+(13-14)+…+(1n+1-1n+2)=12-1n+2=n2(n+2).规律方法 (1)把数列的每一项拆成两项之差,求和时有些部分可以相互抵消,从而达到求和的目的.常见的拆项公式:(ⅰ)1n(n+1)=1n-1n+1;(ⅱ)1(2n-1)(2n+1)=12(12n-1-12n+1);(ⅲ)1n+n+1=n+1-n.(2)裂项原则:一般是前边裂几项,后边就裂几项直到发现被消去项的规律为止.(3)消项规律:消项后前边剩几项,后边就剩几项,前边剩第几项,后边就剩倒数第几项.【训练2】 设S n为等差数列{a n}的前n项和,已知S3=a7,a8-2a3=3.(1)求a n;(2)设b n=1S n,求数列{b n}的前n项和为T n.解 (1)设数列{a n}的公差为d,由题意得{3a1+3d=a1+6d,(a1+7d)-2(a1+2d)=3,解得a1=3,d=2,∴a n=a1+(n-1)d=2n+1.(2)由(1)得S n=na1+n(n-1)2d=n(n+2),∴b n=1n(n+2)=12(1n-1n+2).∴T n=b1+b2+…+b n-1+b n=12[(1-13)+(12-14)+…+(1n-1-1n+1)+(1n-1n+2)]=12(1+12-1n+1-1n+2)=34-12(1n+1+1n+2).题型三 错位相减法求和【例3】 已知{a n}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3.(1)求数列{a n}的通项公式;(2){b n}为各项非零的等差数列,其前n项和为S n,已知S2n+1=b n b n+1,求数列{b n a n}的前n 项和T n.解 (1)设{a n}的公比为q,由题意知:a1(1+q)=6,a21q=a1q2,又a n>0,解得:a1=2,q=2,所以a n=2n.(2)由题意知:S2n+1=(2n+1)(b1+b2n+1)2=(2n+1)b n+1,又S2n+1=b n b n+1,b n+1≠0,所以b n=2n+1.令c n=b na n,则c n=2n+12n,因此T n=c1+c2+…+c n=32+522+723+…+2n-12n-1+2n+12n,又12T n=322+523+724+…+2n-12n+2n+12n+1,两式相减得12T n=32+(12+122+…+12n-1)-2n+12n+1=32+12[1-(12)n-1]1-12-2n+12n+1=52-2n+52n+1,所以T n=5-2n+5 2n.规律方法 1.一般地,如果数列{a n}是等差数列,{b n}是等比数列,求数列{a n·b n}的前n项和时,可采用错位相减法.2.用错位相减法求和时,应注意:(1)要善于识别题目类型,特别是等比数列公比为负数的情形.(2)在写出“S n”与“qS n”的表达式时应特别注意将两式“错项对齐”,以便于下一步准确地写出“S n -qS n”的表达式.【训练3】 已知数列{a n}的通项公式为a n=3n-1,在等差数列{b n}中,b n>0,且b1+b2+b3=15,又a1+b1,a2+b2,a3+b3成等比数列.(1)求数列{a n b n}的通项公式;(2)求数列{a n b n}的前n项和T n.解 (1)∵a n=3n-1,∴a1=1,a2=3,a3=9.∵在等差数列{b n}中,b1+b2+b3=15,∴3b2=15,则b2=5.设等差数列{b n}的公差为d,又a1+b1,a2+b2,a3+b3成等比数列,∴(1+5-d)(9+5+d)=64,解得d=-10或d=2.∵b n>0,∴d=-10应舍去,∴d=2,∴b1=3,∴b n=2n+1.故a n b n=(2n+1)·3n-1,n∈N*.(2)由(1)知T n=3×1+5×3+7×32+…+(2n-1)3n-2+(2n+1)3n-1,①3T n=3×3+5×32+7×33+…+(2n-1)3n-1+(2n+1)3n,②-2T n=3×1+2×3+2×32+2×33+…+2×3n-1-(2n+1)3n =3+2(3+32+33+…+3n-1)-(2n+1)3n=3+2×3-3n1-3-(2n+1)3n=3n-(2n+1)3n=-2n·3n.∴T n=n·3n,n∈N*.一、素养落地1.通过学习数列求和的方法,提升数学运算和逻辑推理素养.2.求数列的前n项和,一般有下列几种方法.(1)错位相减适用于一个等差数列和一个等比数列对应项相乘构成的数列求和.(2)分组求和把一个数列分成几个可以直接求和的数列.(3)裂项相消有时把一个数列的通项公式分成两项差的形式,相加过程消去中间项,只剩有限项再求和.(4)奇偶并项当数列通项中出现(-1)n或(-1)n+1时,常常需要对n取值的奇偶性进行分类讨论.(5)倒序相加例如,等差数列前n项和公式的推导方法.二、素养训练1.数列214,418,6116,…的前n项和S n为( )A.n2+1+12n+1B.n2+2-12n+1C.n(n+1)+12-12n+1D.n(n+1)+12n+1解析 S n=(2+4+6+…+2n)+(14+18+…+12n+1)=12n(2+2n)+14(1-12n)1-12=n(n+1)+12-12n+1.2.等比数列{a n }中,a 5=2,a 6=5,则数列{lg a n }的前10项和等于( )A.6 B.5 C.4D.3解析 ∵数列{a n }是等比数列,a 5=2,a 6=5,∴a 1a 10=a 2a 9=a 3a 8=a 4a 7=a 5a 6=10,∴lg a 1+lg a 2+…+lg a 10=lg(a 1·a 2·…·a 10)=lg(a 5a 6)5=5lg 10=5.故选B.答案 B 3.数列{2n (n +1)}的前2 020项和为________.解析 因为2n (n +1)=2(1n -1n +1),所以S 2 020=2(1-12+12-13+…+12 020-12 021)=2(1-12 021)=4 0402 021.答案 4 0402 0214.已知数列a n ={n -1,n 为奇数,n ,n 为偶数,则S 100=________.解析 由题意得S 100=a 1+a 2+…+a 99+a 100=(a 1+a 3+a 5+…+a 99)+(a 2+a 4+…+a 100)=(0+2+4+…+98)+(2+4+6+…+100)=5 000.答案 5 0005.在数列{a n }中,a 1=1,a n +1=2a n +2n ,n ∈N *.(1)设b n =a n 2n -1,证明:数列{b n }是等差数列;(2)在(1)的条件下求数列{a n }的前n 项和S n .(1)证明 由已知a n +1=2a n +2n ,得b n +1=a n +12n =2a n +2n 2n =a n2n -1+1=b n +1.∴b n +1-b n =1,又b 1=a 1=1.∴{b n }是首项为1,公差为1的等差数列.(2)解 由(1)知,b n =n ,a n2n -1=b n =n .∴a n =n ·2n -1.∴S n =1+2×21+3×22+…+n ×2n -1,两边同时乘以2得2S n =1×21+2×22+…+(n -1)·2n -1+n ·2n ,两式相减得-S n =1+21+22+…+2n -1-n ·2n =2n -1-n ·2n =(1-n )2n -1,∴S n =(n -1)×2n +1.三、审题答题示范(一) 数列求和问题【典型示例】 (12分)已知数列{a n }的前n 项和为S n ,且满足a 2=4,2S n =na n +n ①,n ∈N *.(1)求数列{a n }的通项公式;(2)若取出数列{a n }中的部分项a 2,a 6,a 22,…依次组成一个等比数列{c n },若数列{b n }满足a n =b n ·c n ,求证:数列{b n }的前n 项和T n <23.②联想解题看到①,想到a n =S n -S n -1(n ≥2),利用S n 与a n 的关系结合定义法或等差中项法证明数列{a n }为等差数列并求通项公式.看到②,想到利用错位相减法求数列{b n }的前n 项和T n ,从而得到T n 的取值范围,即可证明T n <23.满分示范(1)解 数列{a n }的前n 项和为S n ,且2S n =na n +n ,n ∈N *,当n =1时,2a 1=a 1+1,则a 1=1.当n ≥2时,a n =S n -S n -1①,a n +1=S n +1-S n ②.2分由②-①得,S n +1-2S n +S n -1=a n +1-a n ,所以(n +1)(a n +1+1)2-n (a n +1)+(n -1)(a n -1+1)2=a n +1-a n ,所以(n -1)a n +1+(n -1)a n -12=(n -1)a n ,即a n +1+a n -12=a n ,所以数列{a n }为等差数列.5分又a 1=1,且a 2=4,整理得a n =3n -2.6分(2)证明 由a2=4,a6=16,解得c n=4n,所以b n=(3n-2)×14n.8分则T n=1×14+4×142+…+(3n-2)×14n③,1 4T n=1×142+4×143+…+(3n-2)×14n+1④,9分由③-④得,34T n=14+3(142+…+14n)-(3n-2)×14n+1=12-3n+24n+1,解得T n=23-3n+23×4n<23.12分满分心得(1)利用数列的递推公式求通项公式主要应用构造法,即构造出等差、等比数列,或可应用累加、累乘求解的形式.(2)利用错位相减法求数列的和最容易出现运算错误,运算时要注意作差后所得各项的符号,所得等比数列的项数.(3)与数列的和有关的不等式证明问题,一般是先求和及其范围,再证明不等式.基础达标一、选择题1.已知数列{a n}的通项a n=2n+1,n∈N*,由b n=a1+a2+a3+…+a nn所确定的数列{b n}的前n项的和是( )A.n(n+2)B.12n(n+4)C.12n(n+5) D.12n(n+7)解析 ∵a1+a2+…+a n=n2(2n+4)=n2+2n.∴b n=n+2,∴{b n}的前n项和S n=n(n+5)2.答案 C2.数列12×5,15×8,18×11,…,1(3n-1)×(3n+2),…的前n项和为( )A.n3n+2B.n6n+4C.3n6n+4D.n+1n+2解析 由数列通项公式1(3n -1)(3n +2)=13(13n -1-13n +2),得前n 项和S n =13(12-15+15-18+18-111+…+13n -1-13n +2)=13(12-13n +2)=n6n +4.答案 B 3.1+(1+12)+(1+12+14)+…+(1+12+14+…+1210)的值为( )A.18+129B.20+1210C.22+1211D.18+1210解析 设a n =1+12+14+…+12n -1=1×[1-(12)n]1-12=2[1-(12)n],∴原式=a 1+a 2+…+a 11=2[1-(12)1]+2[1-(12)2]+…+2[1-(12)11]=2[11-(12+122+…+1211)]=2[11-12(1-1211)1-12]=2[11-(1-1211)]=2(11-1+1211)=20+1210.答案 B4.已知函数f (x )=21+x 2(x ∈R ),若等比数列{a n }满足a 1a 2 021=1,则f (a 1)+f (a 2)+f (a 3)+…+f (a 2 021)=( )A.2 021 B.2 0212C.2D.12解析 ∵函数f (x )=21+x 2(x ∈R ),∴f (x )+f(1x )=21+x 2+21+(1x)2=21+x 2+2x 2x 2+1=2.∵数列{a n}为等比数列,且a1·a2 021=1,∴a1a2 021=a2a2 020=a3a2 019=…=a2 021a1=1.∴f(a1)+f(a2 021)=f(a2)+f(a2 020)=f(a3)+f(a2 019)=…=f(a2 021)+f(a1)=2,∴f(a1)+f(a2)+f(a3)+…+f(a2 021)=2 021.故选A.答案 A5.定义np1+p2+…+p n为n个正数p1,p2,…,p n的“均倒数”.若已知数列{a n}的前n项的“均倒数”为13n+1,又b n=a n+26,则1b1b2+1b2b3+…+1b9b10=( )A.111B.1011C.910D.1112解析 由题意得na1+a2+…+a n=13n+1,所以a1+a2+…+a n=n(3n+1)=3n2+n,记数列{a n}的前n项和为S n,则S n=3n2+n.当n=1时,a1=S1=4;当n≥2时,a n=S n-S n-1=3n2+n-[3·(n-1)2+(n-1)]=6n-2.经检验a1=4也符合此式,所以a n=6n-2,n∈N*,则b n=a n+2 6=n,所以1b1b2+1b2b3+…+1b9b10=11×2+12×3+…+19×10=(1-12)+(12-13)+…+(19-110)=1-110=910.故选C.答案 C二、填空题6.设a n=1n+1+n,数列{a n}的前n项和S n=9,则n=________.解析 a n=1n+1+n=n+1-n,故S n=2-1+3-2+…+n+1-n=n+1-1=9.解得n=99.答案 997.在数列{a n}中,已知S n=1-5+9-13+17-21+…+(-1)n-1(4n-3),n∈N*,则S15+S22-S31的值是________.解析 S15=-4×7+a15=-28+57=29,S22=-4×11=-44,S31=-4×15+a31=-60+121=61,S15+S22-S31=29-44-61=-76.答案 -768.已知数列{a n }的前n 项和为S n ,且满足S n =2a n -1(n ∈N *),则数列{na n }的前n 项和T n 为________.解析 ∵S n =2a n -1(n ∈N *),∴n =1时,a 1=2a 1-1,解得a 1=1,n ≥2时,a n =S n -S n -1=2a n -1-(2a n -1-1),化为a n =2a n -1,∴数列{a n }是首项为1,公比为2的等比数列,∴a n =2n -1.∴na n =n ·2n -1.则数列{na n }的前n 项和T n =1+2×2+3×22+…+n ·2n -1.∴2T n =2+2×22+…+(n -1)×2n -1+n ·2n ,∴-T n =1+2+22+…+2n -1-n ·2n =1-2n1-2-n ·2n =(1-n )·2n -1,∴T n =(n -1)2n +1.答案 (n -1)2n +1三、解答题9.已知函数f (x )=2x -3x -1,点(n ,a n )在f (x )的图象上,数列{a n }的前n 项和为S n ,求S n .解 由题意得a n =2n -3n -1,S n =a 1+a 2+…+a n =(2+22+…+2n )-3(1+2+3+…+n )-n=2(1-2n )1-2-3·n (n +1)2-n =2n +1-n (3n +5)2-2.10.已知等差数列{a n }中,2a 2+a 3+a 5=20,且前10项和S 10=100.(1)求数列{a n }的通项公式;(2)若b n =1a n a n +1,求数列{b n }的前n 项和.解 (1)由已知得{2a 2+a 3+a 5=4a 1+8d =20,10a 1+10×92d =10a 1+45d =100,解得{a 1=1,d =2,所以数列{a n }的通项公式为a n =1+2(n -1)=2n -1.(2)b n =1(2n -1)(2n +1)=12(12n -1-12n +1),所以T n =12(1-13+13-15+…+12n -1-12n +1)=12(1-12n+1)=n2n+1.能力提升11.已知等差数列{a n}中,a3+a5=a4+7,a10=19,则数列{a n cos nπ}的前2 020项和为( )A.1 009B.1 010C.2 019D.2 020解析 设数列{a n}的公差为d,由{2a1+6d=a1+3d+7,a1+9d=19,解得{a1=1,d=2,∴a n=2n-1.设b n=a n cos nπ,∴b1+b2=a1cos π+a2cos 2π=2,b3+b4=a3cos 3π+a4cos 4π=2,…,∴数列{a n cos nπ}的前2 020项和S2 020=(b1+b2)+(b3+b4)+…+(b2 019+b2 020)=2×2 020 2=2 020.故选D.答案 D12.已知数列{a n}满足a1=1,a n+1=2a n+λ(λ为常数).(1)试探究数列{a n+λ}是不是等比数列,并求a n;(2)当λ=1时,求数列{n(a n+λ)}的前n项和T n.解 (1)因为a n+1=2a n+λ,所以a n+1+λ=2(a n+λ).又a1=1,所以当λ=-1时,a1+λ=0,数列{a n+λ}不是等比数列,此时a n+λ=a n-1=0,即a n=1;当λ≠-1时,a1+λ≠0,所以a n+λ≠0,所以数列{a n+λ}是以1+λ为首项,2为公比的等比数列,此时a n+λ=(1+λ)2n-1,即a n=(1+λ)2n-1-λ.(2)由(1)知a n=2n-1,所以n(a n+1)=n·2n,T n=2+2×22+3×23+…+n·2n,①2T n=22+2×23+3×24+…+n·2n+1,②①-②得:-T n=2+22+23+…+2n-n·2n+1=2(1-2n)1-2-n·2n+1=2n+1-2-n·2n+1=(1-n)2n+1-2.所以T n=(n-1)2n+1+2.创新猜想13.(多空题)设等差数列{a n}满足a2=5,a6+a8=30,则a n=________,数列{1a2n-1}的前n项和为________.解析 设等差数列{a n}的公差为d.∵{a n}是等差数列,∴a6+a8=30=2a7,解得a7=15,∴a7-a2=5d.又a2=5,则d=2.∴a n=a2+(n-2)d=2n+1.∴1a 2n -1=14n (n +1)=14(1n -1n +1),∴{1a 2n -1}的前n 项和为14(1-12+12-13+…+1n -1n +1)=14(1-1n +1)=n 4(n +1).答案 2n +1 n4(n +1)14.(多空题)设数列{a n }的前n 项和为S n ,已知a 1=1,2S n =(1-13n )a n +1,b n =(-1)n ·(log 3a n )2,则a n =________,数列{b n }的前2n 项和为________.解析 根据题意,数列{a n }满足2S n =(1-13n )a n +1①,则当n ≥2时,有2S n -1=(1-13n -1)a n ②,由①-②可得(1-13n )(a n +1-3a n )=0,所以a n +1-3a n =0,即a n +1=3a n (n ≥2).由2S n =(1-13n )a n +1,可求得a 2=3,a 2=3a 1,则数列{a n }是首项为1,公比为3的等比数列,所以a n =3n -1,b n =(-1)n ·(log 3a n )2=(-1)n ·(log 33n -1)2=(-1)n (n -1)2,则b 2n -1+b 2n =-(2n -2)2+(2n -1)2=4n -3.所以数列{b n }的前2n 项和T 2n =1+5+9+…+(4n -3)=n (1+4n -3)2=2n 2-n .答案 3n -1 2n 2-n。
数列的求和方法(专题)
例析数列求和的常用方法数列求和是数列教学内容的中心问题之一,也是近年高考命题的一个热点问题。
掌握一些求和的方法和技巧可以提高解决此问题的能力。
本文例析了一些求和的方法,仅供参考。
一、倒序相加法将一个数列倒过来排序(倒序),当它与原数列相加时,若有因式可提,并且剩余的项的和易于求得,则这样的数列可用倒序相加法求和。
如等差数列的求和公式2)(1n n a a n S +=的推导。
例1.已知)(x f 满足R x x ∈21,,当121=+x x 时,21)()(21=+x f x f ,若N n f nn f n f n f f S n ∈+-++++=),1()1()2()1()0( ,求n S 解:∵N n f nn f n f n f f S n ∈+-++++=),1()1()2()1()0( ,①. ∴+=)1(f S n N n f nf n f n n f ∈++++-),0()1()2()1( ,②,①+②整理后可得)1(41+=n S n 二、错位相减法(此法是学生错误率最高的,到高三还有近半数还计算错误,教学时要多用几课时练习巩固)这是推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列}{n n b a ⋅的前n 项和,其中}{n a 、}{n b 分别是等差数列和等比数列。
例2.求数列}2{n n ⋅的前n 项和n S 。
解:∵ n n n n n S 22)1(2322211321⨯+⨯-++⨯+⨯+⨯=-①,所以①-①2⨯错位相消得1132122222+-⨯-++++=-n n n n S ,所以12)1(2+⨯-+=n n n S 。
三、分组求和法所谓分组求和法,即将一个数列中的项拆成几项,转化成特殊数列求和。
例3.已知数列}{n a 满足1)21(-+=n n n a ,求其前n 项和n S 。
解:∵1131211)21()21(3)21(2)21(1----++++++++=n n n S )321(n ++++= ])21()21()21[(11211---++++n 12122)1(--++=n n n 四、公式法(恒等式法)利用已知的求和公式来求和,如等差数列与等比数列求和公式,再如n ++++ 3212)1(+=n n 、)12)(1(613212222++=++++n n n n 等公式。
数列求和常用方法(含答案)
数列专题 数列求和常用方法一、公式法例1在数列{a n }中,2a n =a n -1+a n +1(n ≥2),且a 2=10,a 5=-5.(1)求{a n }的通项公式;(2)求{a n }的前n 项和S n 的最大值.解: (1)因为2a n =a n -1+a n +1(n ≥2),所以a n +1-a n =a n -a n -1(n ≥2),所以数列{a n }为等差数列,设首项为a 1,公差为d ,则⎩⎪⎨⎪⎧a 2=a 1+d =10,a 5=a 1+4d =-5,解得⎩⎪⎨⎪⎧a 1=15,d =-5, 所以a n =a 1+(n -1)d =15-5(n -1)=-5n +20.(2)由(1)可知S n =na 1+n (n -1)2d =d 2n 2+⎝⎛⎭⎫a 1-d 2n =-52n 2+352n ,因为对称轴n =72, 所以当n =3或4时,S n 取得最大值为S 3=S 4=30. 跟踪练习1、已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (1)求{a n }的通项公式; (2)求b 1+b 3+b 5+…+b 2n -1. 解 (1)设等差数列{a n }的公差为d . 因为a 1=1,a 2+a 4=10, 所以2a 1+4d =10, 解得d =2. 所以a n =2n -1.(2)设等比数列{b n }的公比为q . 因为b 2b 4=a 5, 所以b 1q ·b 1q 3=9. 又b 1=1,所以q 2=3.所以b 2n -1=b 1q 2n -2=3n -1.则b 1+b 3+b 5+…+b 2n -1=1+3+32+…+3n -1=3n -12.二、分组转化法例2、已知公差不为0的等差数列{a n }的前n 项和为S n ,S 5=20,a 3是a 2,a 5的等比中项,数列{b n }满足对任意的n ∈N *,S n +b n =2n 2.(1)求数列{a n },{b n }的通项公式;(2)设c n ={b n −n 2,n 为偶数2a n,n 为奇数,求数列{c n }的前2n 项的和T 2n .解:(1)设数列{a n }的公差为d ,由题意得,⎩⎪⎨⎪⎧5a 1+10d =20,(a 1+2d )2=(a 1+d )(a 1+4d ),化简得⎩⎪⎨⎪⎧a 1+2d =4,a 1d =0, 因为d ≠0,所以a 1=0,d =2,所以a n =2n -2(n ∈N *),S n =n 2-n ,n ∈N *, 因为S n +b n =2n 2,所以b n =n 2+n (n ∈N *).(2)由(1)知,c n ={b n −n 2,n 为偶数2a n ,n 为奇数=⎩⎪⎨⎪⎧n ,n 为偶数,4n -1,n 为奇数,所以T 2n =c 1+c 2+c 3+c 4+…+c 2n -1+c 2n =(2+4+…+2n )+(40+42+…+42n -2) =n (2+2n )2+1-16n 1-16=n (n +1)+115(16n -1).跟踪练习1、已知在等差数列{a n }中,S n 为其前n 项和,且a 3=5,S 7=49. (1)求数列{a n }的通项公式;(2)若b n =2n a+a n ,数列{b n }的前n 项和为T n ,且T n ≥1 000,求n 的取值范围. 解 (1)由等差数列性质知,S 7=7a 4=49,则a 4=7, 故公差d =a 4-a 3=7-5=2, 故a n =a 3+(n -3)d =2n -1.(2)由(1)知b n =22n -1+2n -1, T n =21+1+23+3+…+22n -1+2n -1 =21+23+…+22n -1+(1+3+…+2n -1) =21-22n +11-4+n (1+2n -1)2=22n +13+n 2-23.易知T n 单调递增,且T 5=707<1 000,T 6=2 766>1 000, 故T n ≥1 000,解得n ≥6,n ∈N *.三、并项求和法例3、已知等差数列{a n }的前n 项和为S n ,a 5=9,S 5=25. (1)求数列{a n }的通项公式及S n ;(2)设b n =(-1)n S n ,求数列{b n }的前n 项和T n .解 (1)设数列{a n }的公差为d ,由S 5=5a 3=25得a 3=a 1+2d =5, 又a 5=9=a 1+4d ,所以d =2,a 1=1, 所以a n =2n -1,S n =n (1+2n -1)2=n 2.(2)结合(1)知b n =(-1)n n 2,当n 为偶数时, T n =(b 1+b 2)+(b 3+b 4)+(b 5+b 6)+…+(b n -1+b n )=(-12+22)+(-32+42)+(-52+62)+…+[-(n -1)2+n 2]=(2-1)(2+1)+(4-3)(4+3)+(6-5)(6+5)+…+[n -(n -1)][n +(n -1)] =1+2+3+…+n =n (n +1)2.当n 为奇数时,n -1为偶数, T n =T n -1+(-1)n·n 2=(n -1)n 2-n 2=-n (n +1)2. 综上可知,T n =(-1)n n (n +1)2.四、裂项相消法例4、已知数列{a n }的前n 项和为S n ,且2S n =3a n -3(n ∈N *).(1)求数列{a n }的通项公式;(2)若b n =1log 3a n ·log 3a n +1,求数列{b n }的前n 项和T n .解:(1)当n =1时,2a 1=3a 1-3,解得a 1=3;当n ≥2时,2a n =2S n -2S n -1=3a n -3-3a n -1+3=3a n -3a n -1,得a n =3a n -1, 因为a n ≠0,所以a na n -1=3,因为a 1=3, 所以数列{a n }是以3为首项,3为公比的等比数列,所以a n =3n . (2)因为log 3a n =log 33n =n ,所以b n =1log 3a n ·log 3a n +1=1n (n +1)=1n -1n +1,所以数列{b n }的前n 项和T n =⎝⎛⎭⎫11-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=nn +1. 跟踪练习1、已知数列{a n }的前n 项和为S n ,S n =2a n -1,数列{b n }是等差数列,且b 1=a 1,b 6=a 5.(1)求数列{a n }和{b n }的通项公式;(2)若c n =1b n b n +1,记数列{c n }的前n 项和为T n ,证明:3T n <1.解: (1)由S n =2a n -1,可得n =1时,a 1=2a 1-1,解得a 1=1;n ≥2时,S n -1=2a n -1-1,又S n =2a n -1,两式相减可得a n =S n -S n -1=2a n -1-2a n -1+1,即有a n =2a n -1,所以数列{a n }是首项为1,公比为2的等比数列,所以a n =2n -1.设等差数列{b n }的公差为d ,且b 1=a 1=1,b 6=a 5=16,可得d =b 6-b 16-1=3,所以b n =1+3(n -1)=3n -2.(2)证明:c n =1b n b n +1=1(3n -2)(3n +1)=13⎝ ⎛⎭⎪⎫13n -2-13n +1,所以T n =13⎝ ⎛⎭⎪⎫1-14+14-17+17-110+…+13n -2-13n +1=13⎝ ⎛⎭⎪⎫1-13n +1<13,则3T n <1.2、设{a n }是各项都为正数的单调递增数列,已知a 1=4,且a n 满足关系式:a n +1+a n =4+2a n +1a n ,n ∈N *.(1)求数列{a n }的通项公式;(2)若b n =1a n -1,求数列{b n }的前n 项和S n .解 (1)因为a n +1+a n =4+2a n +1a n ,n ∈N *,所以a n +1+a n -2a n +1a n =4,即(a n +1-a n )2=4,又{a n }是各项为正数的单调递增数列, 所以a n +1-a n =2,又a 1=2,所以{a n }是首项为2,公差为2的等差数列, 所以a n =2+2(n -1)=2n ,所以a n =4n 2.(2)b n =1a n -1=14n 2-1=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1,所以S n =b 1+b 2+…+b n =12⎝⎛⎭⎫1-13+12⎝⎛⎭⎫13-15+…+12⎝ ⎛⎭⎪⎫12n -1-12n +1 =12⎝ ⎛⎭⎪⎫1-12n +1=n2n +1.3、已知数列{a n }满足:a 1=2,a n +1=a n +2n . (1)求{a n }的通项公式; (2)若b n =log 2a n ,T n =1b 1b 2+1b 2b 3+…+1b n b n +1,求T n . 解 (1)由已知得a n +1-a n =2n ,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =2+2+22+…+2n -1=2+2(1-2n -1)1-2=2n .又a 1=2,也满足上式,故a n =2n . (2)由(1)可知,b n =log 2a n =n , 1b n b n +1=1n (n +1)=1n -1n +1,T n =1b 1b 2+1b 2b 3+…+1b n b n +1=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=n n +1,故T n =nn +1.五、错位相减法例5、在数列{a n }中,a 1=1,a n +1=a n -2a n a n +1. (1)求{a n }的通项公式;(2)若b n =3na n ,求数列{b n }的前n 项和S n .解:(1)∵a 1=1,a n +1=a n -2a n a n +1,∴a n ≠0,∴1a n =1a n +1-2⇒1a n +1-1a n =2,又∵1a 1=1,∴⎩⎨⎧⎭⎬⎫1a n 是以1为首项,2为公差的等差数列, ∴1a n =1+2(n -1)=2n -1,∴a n =12n -1(n ∈N *). (2)由(1)知:b n =(2n -1)×3n ,∴S n =1×3+3×32+5×33+7×34+…+(2n -1)×3n , 3S n =1×32+3×33+5×34+7×35+…+(2n -1)×3n +1,两式相减得-2S n =3+2×32+2×33+2×34+…+2×3n -(2n -1)×3n +1 =3+2(32+33+34+…+3n )-(2n -1)×3n +1 =3+2×32(1-3n -1)1-3-(2n -1)×3n +1=3+3n +1-9-(2n -1)×3n +1=2(1-n )×3n +1-6 ∴S n =(n -1)×3n +1+3. 跟踪练习1、已知数列{a n }满足:a 1=1,a n +1=2a n +n -1.(1)证明:数列{a n +n }是等比数列并求数列{a n }的前n 项和S n ; (2)设b n =(2n -1)·(a n +n ),求数列{b n }的前n 项和T n .解: (1)因为a n +1=2a n +n -1,所以a n +1+(n +1)=2a n +2n ,即a n +1+(n +1)a n +n=2,又a 1+1=2,所以数列{a n +n }是以2为首项2为公比的等比数列, 则a n +n =2·2n -1=2n ,故a n =2n -n ,所以S n =(2+22+…+2n )-(1+2+…+n )=2·(1-2n )1-2-n (1+n )2=2n +1-2-n (1+n )2.(2)由(1)得,b n =(2n -1)·(a n +n )=(2n -1)·2n , 则T n =2+3×22+5×23+…+(2n -1)·2n ,①2T n =22+3×23+5×24+…+(2n -3)·2n +(2n -1)·2n +1,②①-②得-T n =2+2×22+2×23+…+2×2n -(2n -1)·2n +1=2×(2+22+…+2n )-2-(2n -1)·2n +1=-(2n -3)·2n +1-6,所以T n =(2n -3)·2n +1+6.2、已知数列{a n }的前n 项和为S n ,对任意正整数n ,均有S n +1=3S n -2n +2成立,a 1=2.(1)求证:数列{a n -1}为等比数列,并求{a n }的通项公式; (2)设b n =na n ,求数列{b n }的前n 项和T n .解:(1)当n ≥2时,S n =3S n -1-2(n -1)+2,又S n +1=3S n -2n +2, 两式相减可得S n +1-S n =3S n -3S n -1-2,即a n +1=3a n -2, 即有a n +1-1=3(a n -1),令n =1,可得a 1+a 2=3a 1,解得a 2=2a 1=4,也符合a n +1-1=3(a n -1), 则数列{a n -1}是首项为1,公比为3的等比数列, 则a n -1=3n -1,故a n =1+3n -1. (2)由(1)知b n =na n =n +n ·3n -1,则T n =(1+2+…+n )+(1·30+2·31+3·32+…+n ·3n -1), 设M n =1·30+2·31+3·32+…+n ·3n -1, 3M n =1·3+2·32+3·33+…+n ·3n ,两式相减可得-2M n =1+3+32+…+3n -1-n ·3n =1-3n1-3-n ·3n , 化简可得M n =(2n -1)·3n +14.所以T n =12n (n +1)+(2n -1)·3n +14.3、设{a n }是公比不为1的等比数列,a 1为a 2,a 3的等差中项. (1)求{a n }的公比;(2)若a 1=1,求数列{na n }的前n 项和. 解 (1)设{a n }的公比为q , ∵a 1为a 2,a 3的等差中项, ∴2a 1=a 2+a 3=a 1q +a 1q 2,a 1≠0, ∴q 2+q -2=0, ∵q ≠1,∴q =-2.(2)设{na n }的前n 项和为S n , a 1=1,a n =(-2)n -1,S n =1×1+2×(-2)+3×(-2)2+…+n (-2)n -1,①-2S n =1×(-2)+2×(-2)2+3×(-2)3+…+(n -1)·(-2)n -1+n (-2)n ,② ①-②得,3S n =1+(-2)+(-2)2+…+(-2)n -1-n (-2)n =1-(-2)n 1-(-2)-n (-2)n =1-(1+3n )(-2)n3,∴S n =1-(1+3n )(-2)n9,n ∈N *.4、设数列{a n }满足a 1=3,a n +1=3a n -4n . (1)计算a 2,a 3,猜想{a n }的通项公式; (2)求数列{2n a n }的前n 项和S n .解 (1)由题意可得a 2=3a 1-4=9-4=5, a 3=3a 2-8=15-8=7,由数列{a n }的前三项可猜想数列{a n }是以3为首项,2为公差的等差数列,即a n =2n +1. (2)由(1)可知,a n ·2n =(2n +1)·2n ,S n =3×2+5×22+7×23+…+(2n -1)·2n -1+(2n +1)·2n ,①2S n =3×22+5×23+7×24+…+(2n -1)·2n +(2n +1)·2n +1,② 由①-②得,-S n =6+2×(22+23+…+2n )-(2n +1)·2n +1 =6+2×22×(1-2n -1)1-2-(2n +1)·2n +1=(1-2n )·2n +1-2, 即S n =(2n -1)·2n +1+2.5、已知正项数列{a n }的前n 项和为S n ,且a 2n +1=2S n +n +1,a 2=2. (1)求数列{a n }的通项公式a n ;(2)若b n =a n ·2n ,数列{b n }的前n 项和为T n ,求使T n >2 022的最小的正整数n 的值. 解 (1)当n ≥2时,由a 2n +1=2S n +n +1,a 2=2, 得a 2n =2S n -1+n -1+1,两式相减得a 2n +1-a 2n =2a n +1, 即a 2n +1=a 2n +2a n +1=(a n +1)2.∵{a n }是正项数列,∴a n +1=a n +1. 当n =1时,a 22=2a 1+2=4, ∴a 1=1,∴a 2-a 1=1,∴数列{a n }是以a 1=1为首项,1为公差的等差数列,∴a n =n . (2)由(1)知b n =a n ·2n =n ·2n ,∴T n =1×21+2×22+3×23+…+n ·2n , 2T n =1×22+2×23+…+(n -1)·2n +n ·2n +1, 两式相减得-T n =2·(1-2n )1-2-n ·2n +1=(1-n )2n +1-2, ∴T n =(n -1)2n +1+2.∴T n -T n -1=n ·2n >0, ∴T n 单调递增.当n =7时,T 7=6×28+2=1 538<2 022, 当n =8时,T 8=7×29+2=3 586>2 022, ∴使T n >2 022的最小的正整数n 的值为8.6、已知数列{a n }的前n 项和为S n ,a 1=-94,且4S n +1=3S n -9(n ∈N *).(1)求数列{a n }的通项公式;(2)设数列{b n }满足3b n +(n -4)a n =0(n ∈N *),记{b n }的前n 项和为T n .若T n ≤λb n ,对任意n ∈N *恒成立,求实数λ的取值范围.解 (1)因为4S n +1=3S n -9,所以当n ≥2时,4S n =3S n -1-9,两式相减可得4a n +1=3a n ,即a n +1a n =34.当n =1时,4S 2=4⎝⎛⎭⎫-94+a 2=-274-9,解得a 2=-2716, 所以a 2a 1=34.所以数列{a n }是首项为-94,公比为34的等比数列,所以a n =-94×⎝⎛⎭⎫34n -1=-3n+14n .(2)因为3b n +(n -4)a n =0, 所以b n =(n -4)×⎝⎛⎭⎫34n.所以T n =-3×34-2×⎝⎛⎭⎫342-1×⎝⎛⎭⎫343+0×⎝⎛⎭⎫344+…+(n -4)×⎝⎛⎭⎫34n ,① 且34T n =-3×⎝⎛⎭⎫342-2×⎝⎛⎭⎫343-1×⎝⎛⎭⎫344+0×⎝⎛⎭⎫345+…+(n -5)×⎝⎛⎭⎫34n +(n -4)×⎝⎛⎭⎫34n +1,② ①-②得14T n =-3×34+⎝⎛⎭⎫342+⎝⎛⎭⎫343+…+⎝⎛⎭⎫34n -(n -4)×⎝⎛⎭⎫34n +1 =-94+916⎣⎡⎦⎤1-⎝⎛⎭⎫34n -11-34-(n -4)×⎝⎛⎭⎫34n +1 =-n ×⎝⎛⎭⎫34n +1,所以T n =-4n ×⎝⎛⎭⎫34n +1.因为T n ≤λb n 对任意n ∈N *恒成立,所以-4n ×⎝⎛⎭⎫34n +1≤λ⎣⎡⎦⎤(n -4)×⎝⎛⎭⎫34n 恒成立,即-3n ≤λ(n -4)恒成立, 当n <4时,λ≤-3n n -4=-3-12n -4,此时λ≤1; 当n =4时,-12≤0恒成立,当n >4时,λ≥-3n n -4=-3-12n -4,此时λ≥-3. 所以-3≤λ≤1.。
高三数学数列求和2 优质课件
∵ n≥2,n 1≥1)
作业: 《全案》
速度训练:
P77
训练
5
1. 设 Sn 1234 (1)n1n , 则
S4m S2m1 S2m3( m N* )的值为(B)
(A)0 (B)3 (C)4 (D)随 m 的变化而变化
2.已知
S
1
1 22
1 32
…+
1 n2
系数是 Cn21 =
n(n 1) 2
.
∴
1
an
2
n(n 1)
=
2 n
2 n 1
∴
lim(
n
1
a1
1
a2
=2
1 ) lim(2 2 )
an
n
n 1
返回
例 3 分析: 第⑴小问直接翻译即可. 第⑵小问弄清 f (n) 的意义,然后检验 即可. 第⑶小问关键是求出 P1Pn 2 ? , 然后分析和的结果
xn
nxn nxn1 1 x
1
1 n xn nxn1 1 x
1 1 n xn nxn1
∴当 x 1时, Sn
1 x2
当 x 1时, Sn 1 2 3 4
;
n n1 n
2
返回
例 1.求和:
⑵113
1 35
…+
(2n
常需要求数列的和,而这些求和往往采 用特殊方法.
例 1 求和:
⑴1 2x 3x2 4x3 nxn1.
⑵
1 1 3
1 35
…+
(2n
专题二 数列前n项和的求法
专题二 数列前n 项和的求法咸丰一中 杨金煜一、公式求和法1.等差、等比数列的前n 项和公式 (1)等差数列:()()11122n n n a a n n S na d ++==+; (2)等比数列:()11111111n n n na q S a q a a q q q q =⎧⎪=-⎨-=≠⎪--⎩2.与自然数相关的前n 项和公式 ()()()()()()()()()()()22222333111221321212132421412615122n n n n n n n n n n n n n n n ++++=+++-=+++++=++++=+⎛⎫+++= ⎪⎝⎭例、设数列{a n }满足:a 1=1,a n +1=3a n ,n ∈N *.(1)求{a n }的通项公式及前n 项和S n ;(2)已知{b n }是等差数列,T n 为其前n 项和,且b 1=a 2,b 3=a 1+a 2+a 3,求T 20.二、分组求和法 :有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.分组求和法常见类型有:(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,可采用分组求和法求{a n }的前n 项和;(2)通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,c n ,n 为偶数,的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组求和法求和.(3)某些数列的求和是将数列分解转化为若干个可求和的新数列的和或差,从而求得原数列的和,这就要通过对数列通项结构特点进行分析研究,将数列的通项合理分解转化.特别注意在含有字母的数列中对字母的讨论.例、在等差数列{a n }中,已知公差d =2, a 2是a 1 与a 4 的等比中项.(1)求数列 {a n }的通项公式;(2)设 b n =()12n n a +,记 T n =-b 1+b 2-b 3+b 4-…+(-1)n b n ,求T n .三、错位相减(消)法 :这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{}n a 、{}n b 分别是等差数列和等比数列.例、等差数列{a n }的前n 项和为S n ,等比数列{b n }的公比为12,满足S 3=15,a 1+2b 1=3,a 2+4b 2=6.(1)求数列{a n },{b n }的通项a n ,b n ;(2)求数列{a n ·b n }的前n 项和T n .用错位相减法求和的注意事项(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.四、裂项相消法: 把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.常见的裂项相消:1、若数列{}n a 为等差数列,则111111n n n n a a d a a ++⎛⎫=- ⎪⎝⎭,具体表示为: ()()()()()()**2*21111111()1111111(,2)11121111111()41212122121k n n n n n n k k n n k n n n n n n n n n n n ⎛⎫=-=-∈ ⎪++++⎝⎭⎛⎫==-∈≥ ⎪--+-+⎝⎭⎛⎫==-∈ ⎪--+-+⎝⎭,为常数,k N n N n N2、()()()()()()*1111122112n N n n n n n n n ⎛⎫=-∈ ⎪ ⎪+++++⎝⎭; 3*1(k k =∈=为常数,k N 4、()()22221111422n n n n n ⎛⎫+=- ⎪ ⎪++⎝⎭; 5、()()()()()sin11tan 1tan ,tan 1tan tan 1tan 1tan1cos cos 1n n n n n n n n =+-+∙=+--+ 6、()()11111(1)1n n n n n a a b a a a b a b a b a b ++⎛⎫=-≠ ⎪-++++⎝⎭、为常数,;7、11lg lg lg n n n na a a a ++=-。
专题一 数列求和(2)裂项相消法+错位相减法
专题一(2)裂项相消法求数列前n 项和学习目标 1裂项相消法求和的步骤和注意事项 2使学生能用裂项相消法来解决分式数列的求和探究(一)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.例1、说明:(1)裂项相消法的关键就是将数列的每一项拆成二项或多项,使数列中的项出现有规律的抵消项,进而达到求和的目的。
即:把数列的通项拆成两项之差,在求和时一些正负项相互抵消,于是前n 项和变成首尾若干项之和. 适合于分式型数列的求和。
(2)利用裂项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项,再就是将通项公式裂项后,有时候需要调整前面的系数,使裂开的两项之差和系数之积与原通项公式相等.(3)一般地若{a n }是等差数列,则1a n a n +1=1d (1a n -1a n +1),1a n ·a n +2=12d (1a n -1a n +2).(4)此外根式在分母上时可考虑利用有理化因式相消求和.变式练习:项和的前)2(1,,531,421,311求数列n n n +⋅⋅⋅⨯⨯⨯.变式与拓展:1、项和的前)13)(23(1,,,741,411求数列n n n +-⋅⋅⋅⨯⨯例2、设{a n }是等差数列,且a n ≠0.求证1a 1a 2+1a 2a 3+…+1a n a n +1=na 1a n +1.证明:设{a n }的公差为d ,则1a 1a 2+1a 2a 3+…+1a n a n +1=⎝ ⎛⎭⎪⎫1a 1-1a 2·1a 2-a 1+⎝ ⎛⎭⎪⎫1a 2-1a 3·1a 3-a 2+…+⎝ ⎛⎭⎪⎫1a n -1a n +1·1a n +1-a n=1d ⎝ ⎛⎭⎪⎫1a 1-1a 2+1a 2-1a 3+…+1a n -1a n +1=1d ⎝ ⎛⎭⎪⎫1a 1-1a n +1=1d ·a 1+nd -a 1a 1a n +1=na 1a n +1. 所以1a 1a 2+1a 2a 3+…+1a n a n +1=n a 1a n +1.常见的拆项公式有:例3、已知数列{a n }:11,211+,3211++,…1123n+++,…,求它的前n 项和。
等比数列求和(二)
n
变式: (1)在等比数列 {an } 中, Sn 是其前 n 项的和, 求证 S7 , S14 S7 , S21 S14 也成等比数列。 (2)在等比数列 {an } 中,已知 S5 =10, S10 =50, 求S15 。
40
8、某市 2013 年共有 1 万辆燃油型公交车,有关部门计划于 2014 年 投入 128 辆电力型公交车,随后电力型公交车每年的投入比上一年 增加 50%,试问:(1)该市在 2020 年应该投入多少辆电力型公交车? 1 (2)到哪一年底,电力型公交车的数量开始超过该市公交车总量的 ? 3 (lg 657=2.82,lg 2=0.30,lg 3=0.48)
【反馈检测】 4 7 3n+1 * 1、设 f(n)=2+2 +2 +…+2 (n∈N ),则 f(n)等于( 2 n 2 n+1 2 n+2 2 n+3 A. (8 -1) B. (8 -1) C. (8 -1) D. (8 -1) 7 7 7 7
n S 3 a ,则 a = 2、等比数列的前 n 项和为 n
其中A 0, q 0且q 1, n N *
变式1、在等比数列{an}中,Sn是其前n项,求证:
S7 , S14 S7 , S21 S14 也成等比数列。 a (1 q 7 ) 1 S , 证明: 设该等比数列的公比为q,则: 7 1 q a1 (1 q14 ) a1 (1 q 7 ) a1q 7 (1 q 7 ) S14 S7 , 1 q 1 q 1 q a1 (1 q 21 ) a1 (1 q14 ) a1q14 (1 q 7 ) S21 S14 , 1 q 1 q 1 q a1 (1 q 7 ) a1q14 (1 q 7 ) a12 q14 (1 q7 )2 S7 (S21 S14 ) , 2 1 q 1 q (1 q) 2 14 7 2 a q (1 q ) 2 1 又 (S14 S7 ) , 2 (1 q)
数列求和的几种方法 2
3、求和 1 1 1 1 1 1 2 1 2 3 1 2 3 4 1 2 3 n 1 2 1 1 an 2 n(n 1) n(n 1) n n 1 2 2n Sn n 1
1 练习:已知数列an 的通项 an , n 1 n 求前n项和。 1 解: an n 1 n n 1 n S ( 2 1) ( 3 2)( 4 3)
将数列的每一项(实际就是通项)拆分成两项, 在求和时除前、后若干项外,中间各项相互抵消。 主要适用于通项公式为分式的形式
1 1 1 1 2、求和 1 3 3 5 5 7 (2n 1) 2n 1
1 1 1 1 an (2n 1)(2n 1) 2 2n 1 2n 1
1 1 11 1 11 1 原式 1 2 3 2 3 5 2 5 7 3、求和 1 1 1 1 1 1 1 1 n 1 2n 1 2 2n 1 1 1 n 1 2 21 2 n 1 2 3 1 S1 2 3 n n 2 3 1 2n 4 2n 1
2 3 4 n 1
练习:已知 a R, 求 Sn 1 2a 3a 4a n a ,
2 3 n 1
需讨论: a 1, a 0, a 1且a 0三种情况。
1 (n 1)a n nan 1 2 (1 a) Sn n(n 1) 2 (a 1) (a 1)
1 10n (1 9n)10n 1 n n 10 1 10 9 n (9n 1)10 1 Sn 81 适用于一个等差数列与一个等比数列的积数列 的求和 ,只需在原前n项和的基础上,乘以一 个公比q,再两式相减即可。
专题二数列的求和方法
一、公式法:
【例题1】设Sn为正项递增等比数列{an}的前n项和, 且2a3+2=a2+a4,a1a5=16,则S6的值为_______.
二、裂项相消法
(1) 1 1 1
1 1(1 1 )
n(n 1) n n 1 n(n k) k n n k
(2)
1
n 1 n
2n
1, 若bn
1 an an 1
求数列{bn }的前 n项和 Tn .
【同步练习】已知数列 {2an }是公比为4的等比数列,且满足
a2,
a4,
a7成等比数列,求数列
1
anan1
的前n项和Tn.
三、错位相减法
【例题3】已知数列{an}的前n项和为Sn,且满足Sn=2an-n. (1)求数列{an}的通项公式; (2)设bn=(2n+1)(an+1),求数列{bn}的前n项和Tn.
若f
(x)
2 1 x2
, 则f
(a1)
f
(a2 )
f
(a2025 )
___ .
sin
n
2
(1)n (2n 1),
其前n项和为Sn ,则S2024 _____.
六、倒序相加法
【例题6】若f (x) 2x ,则f 1 f 2 f 2024 ______.
2x 1 2025 2025
2025
【同步练习】已知正项 数列{an}是公比不为1的等比数列 , 且 lg a1 lg a2025 0,
n n 1
1
1( nk n)
n nk k
(3)
n(n
1 1)(n
2)
1 2
1 n(n 1)
高考数学复习考点题型专题讲解9 数列求和的常用方法
高考数学复习考点题型专题讲解专题9 数列求和的常用方法高考定位 近几年高考,数列求和常出现在解答题第(2)问,主要考查通过分组转化、错位相减、裂项相消等方法求数列的和,难度中档.1.(2021·新高考Ⅰ卷)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为20 dm×12 dm 的长方形纸,对折1次共可以得到10 dm×12 dm,20 dm×6 dm 两种规格的图形,它们的面积之和S 1=240 dm 2,对折2次共可以得到5 dm×12 dm ,10 dm×6 dm,20 dm×3 dm 三种规格的图形,它们的面积之和S 2=180 dm 2,以此类推,则对折4次共可以得到不同规格图形的种数为________;如果对折n 次,那么∑nk =1S k =________ dm 2. 答案 5 240⎝⎛⎭⎪⎫3-n +32n解析 依题意得,S 1=120×2=240(dm 2);S 2=60×3=180(dm 2);当n =3时,共可以得到5 dm×6 dm,52 dm×12 dm,10 dm×3 dm,20 dm×32 dm 四种规格的图形,且5×6=30,52×12=30,10×3=30,20×32=30,所以S 3=30×4=120(dm 2);当n =4时,共可以得到5 dm×3 dm,52 dm×6 dm,54 dm×12 dm,10 dm×32 cm ,20 dm×34dm 五种规格的图形,所以对折4次共可以得到不同规格图形的种数为5,且5×3=15,52×6=15,54×12=15,10×32=15,20×34=15,所以S 4=15×5=75(dm 2); ……所以可归纳S k =2402k ·(k +1)=240(k +1)2k(dm 2). 所以∑nk =1S k =240⎝⎛⎭⎪⎫1+322+423+…+n 2n -1+n +12n ,① 所以12×∑n k =1S k =240×⎝ ⎛⎭⎪⎫222+323+424+…+n 2n +n +12n +1,② 由①-②得,12·∑n k =1S k =240⎝ ⎛⎭⎪⎫1+122+123+124+…+12n -n +12n +1 =240⎝ ⎛⎭⎪⎪⎫1+122-12n×121-12-n +12n +1=240⎝ ⎛⎭⎪⎫32-n +32n +1,所以∑nk =1S k =240⎝⎛⎭⎪⎫3-n +32n dm 2. 2.(2021·新高考Ⅰ卷)已知数列{a n }满足a 1=1,a n +1=⎩⎨⎧a n +1,n 为奇数,a n +2,n 为偶数.(1)记b n =a 2n ,写出b 1,b 2,并求数列{b n }的通项公式; (2)求{a n }的前20项和.解 (1)因为b n =a 2n ,且a 1=1,a n +1=⎩⎨⎧a n +1,n 为奇数,a n +2,n 为偶数,所以b 1=a 2=a 1+1=2,b 2=a 4=a 3+1=a 2+2+1=5. 因为b n =a 2n ,所以b n +1=a 2n +2=a 2n +1+1=a 2n +1+1=a 2n +2+1=a 2n +3, 所以b n +1-b n =a 2n +3-a 2n =3,所以数列{b n }是以2为首项,3为公差的等差数列, 所以b n =2+3(n -1)=3n -1,n ∈N *. (2)因为a n +1=⎩⎨⎧a n +1,n 为奇数,a n +2,n 为偶数,所以k ∈N *时,a 2k =a 2k -1+1=a 2k -1+1, 即a 2k =a 2k -1+1,①a 2k +1=a 2k +2,② a 2k +2=a 2k +1+1=a 2k +1+1, 即a 2k +2=a 2k +1+1,③所以①+②得a 2k +1=a 2k -1+3,即a 2k +1-a 2k -1=3,所以数列{a n }的奇数项是以1为首项,3为公差的等差数列; ②+③得a 2k +2=a 2k +3,即a 2k +2-a 2k =3,又a 2=2,所以数列{a n }的偶数项是以2为首项,3为公差的等差数列.所以数列{a n }的前20项和S 20=(a 1+a 3+a 5+…+a 19)+(a 2+a 4+a 6+…+a 20)=10+10×92×3+20+10×92×3=300. 3.(2022·新高考Ⅰ卷)记S n 为数列{a n }的前n 项和,已知a 1=1,⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫S n a n 是公差为13的等差数列.(1)求{a n }的通项公式; (2)证明:1a 1+1a 2+…+1a n<2.(1)解 法一 因为a 1=1,所以S 1a 1=1,又⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫S n a n 是公差为13的等差数列,所以S n a n =1+(n -1)×13=n +23.因为当n ≥2时,a n =S n -S n -1, 所以S n S n -S n -1=n +23(n ≥2),所以S n -S n -1S n =3n +2(n ≥2),整理得S n S n -1=n +2n -1(n ≥2), 所以S 2S 1·S 3S 2·…·S n -1S n -2·S n S n -1=41×52×…·n +1n -2·n +2n -1=n (n +1)(n +2)6(n ≥2),所以S n =n (n +1)(n +2)6(n ≥2),又S 1=1也满足上式, 所以S n =n (n +1)(n +2)6(n ∈N *),则S n -1=(n -1)n (n +1)6(n ≥2),所以a n =n (n +1)(n +2)6-(n -1)n (n +1)6=n (n +1)2(n ≥2),又a 1=1也满足上式, 所以a n =n (n +1)2(n ∈N *).法二 因为a 1=1,所以S 1a 1=1,又⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫S n a n 是公差为13的等差数列,所以S n a n =1+(n -1)×13=n +23,所以S n =n +23a n .因为当n ≥2时,a n =S n -S n -1=n +23a n -n +13a n -1,所以n +13a n -1=n -13a n (n ≥2),所以a n a n -1=n +1n -1(n ≥2),所以a 2a 1·a 3a 2·…·a n -1a n -2·a n a n -1=31×42×53×…·n n -2·n +1n -1=n (n +1)2(n ≥2), 所以a n =n (n +1)2(n ≥2),又a 1=1也满足上式, 所以a n =n (n +1)2(n ∈N *).(2)证明 因为a n =n (n +1)2,所以1a n =2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1, 所以1a 1+1a 2+…+1a n =2[⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝⎛⎭⎪⎫1n -1-1n +⎝ ⎛⎭⎪⎫1n -1n +1]=2⎝⎛⎭⎪⎫1-1n +1<2.热点一 分组求和与并项求和1.若数列{c n }的通项公式为c n =a n ±b n ,或c n =⎩⎨⎧a n ,n 为奇数,b n ,n 为偶数,且{a n },{b n }为等差或等比数列,可采用分组求和法求数列{c n }的前n 项和.2.若数列的通项公式中有(-1)n 等特征,根据正负号分组求和.例1(2022·济宁一模)已知等差数列{a n }的前n 项和为S n ,且a 5=9,S 7=49. (1)求数列{a n }的通项公式;(2)设b n =⎩⎨⎧a n ,n ≤10,2b n -10,n >10,求数列{b n }的前100项和.解 (1)设等差数列{a n }的公差为d , 则⎩⎨⎧a 1+4d =9,7a 1+21d =49,解得⎩⎨⎧a 1=1,d =2, 所以a n =1+2(n -1)=2n -1(n ∈N *). (2)因为b n =⎩⎨⎧a n ,n ≤10,2b n -10,n >10,所以数列{b n }的前100项和为(b 1+b 2+…+b 10)+(b 11+b 12+…+b 20)+(b 21+b 22+…+b 30)+…+(b 91+b 92+…+b 100)=(a 1+a 2+…+a 10)+2(a 1+a 2+…+a 10)+22(a 1+a 2+…+a 10)+…+29(a 1+a 2+…+a 10)=(1+2+22+…+29)(a 1+a 2+…+a 10)=1-2101-2×10×(1+19)2 =102 300.规律方法 分组求和的基本思路是把各项中结构相同的部分归为同一组,然后再求和. 训练1 已知数列{a n }的前n 项和S n =n 2+n 2,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和. 解 (1)当n =1时,a 1=S 1=1; 当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n .a 1也满足a n =n ,故数列{a n }的通项公式为a n =n (n ∈N *). (2)由(1)知a n =n ,故b n =2n +(-1)n n . 记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ). 记A =21+22+…+22n ,B =-1+2-3+4-…+2n , 则A =2(1-22n )1-2=22n +1-2,B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n . 故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2(n ∈N *). 热点二 裂项相消法求和裂项常见形式:(1)分母两项的差等于常数 1(2n -1)(2n +1)=12⎝⎛⎭⎪⎫12n -1-12n +1; 1n (n +k )=1k ⎝ ⎛⎭⎪⎫1n -1n +k . (2)分母两项的差与分子存在一定关系 2n (2n -1)(2n +1-1)=12n -1-12n +1-1;n +1n 2(n +2)2=14⎣⎢⎡⎦⎥⎤1n 2-1(n +2)2. (3)分母含无理式1n +n +1=n +1-n .例2 已知数列{a n }满足a 1+2a 2+3a 3+…+na n =(n -1)2n +1+2. (1)求数列{a n }的通项公式;(2)求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1log 2a n log 2a n +2的前n 项和T n .解 (1)由题意可知a 1+2a 2+3a 3+…+na n =(n -1)2n +1+2,① 当n ≥2时,a 1+2a 2+3a 3+…+(n -1)a n -1=(n -2)2n +2,② ①-②得na n =(n -1)2n +1-(n -2)2n , 即a n =2n ,当n =1时,a 1=2满足上式, 所以a n =2n (n ∈N *).(2)因为log 2a n =log 2 2n =n ,所以1log 2a n ·log 2a n +2=1n (n +2)=12⎝ ⎛⎭⎪⎫1n -1n +2.所以T n=12⎝⎛1-13+12-14+13-15+…+⎭⎪⎫1n-1-1n+1+1n-1n+2=12⎝⎛⎭⎪⎫1+12-1n+1-1n+2=34-2n+32(n+1)(n+2).规律方法裂项相消法就是把数列的每一项分解,使得相加后项与项之间能够相互抵消,但在抵消的过程中,有的是依次项抵消,有的是间隔项抵消.训练2(2022·武汉模拟)已知正项等差数列{a n}满足:a3n=3a n(n∈N*),且2a1,a3+1,a8成等比数列.(1)求{a n}的通项公式;(2)设c n=2a n+1(1+2a n)(1+2a n+1),求数列{c n}的前n项和R n.解(1)设等差数列{a n}的公差为d,由a3n=3a n得a1+(3n-1)d=3[a1+(n-1)d].则a1=d,所以a n=a1+(n-1)d=nd.又2a1,a3+1,a8成等比数列,所以(a3+1)2=2a1·a8,即(3d+1)2=2d·8d.所以7d2-6d-1=0,解得d=1或d=-17,因为{a n}为正项数列,所以d>0,所以d=1,所以a n =n (n ∈N *).(2)由(1)可得c n =2a n +1(1+2a n )(1+2a n +1)=2n +1(1+2n )(1+2n +1)=2⎝ ⎛⎭⎪⎫11+2n -11+2n +1, 所以R n =2⎣⎢⎡⎝ ⎛⎭⎪⎫11+21-11+22+⎦⎥⎤⎝ ⎛⎭⎪⎫11+22-11+23+…+⎝ ⎛⎭⎪⎫11+2n -11+2n +1 =2⎝ ⎛⎭⎪⎫13-11+2n +1. 热点三 错位相减法求和如果数列{a n }是等差数列,{b n }是等比数列,那么求数列{a n ·b n }的前n 项和S n 时,可采用错位相减法.用其法求和时,应注意:(1)等比数列的公比为负数的情形;(2)在写“S n ”和“qS n ”的表达式时应特别注意将两式“错项对齐”,以便准确写出“S n -qS n ”的表达式.例3(2022·广州调研)从①S n ,2S n +1,3S n +2成等差数列,且S 2=49;②a 2n +1=13a n (2a n -5a n+1),且a n >0;③2S n +a n -t =0(t 为常数)这三个条件中任选一个补充在横线处,并给出解答.已知数列{a n }的前n 项和为S n ,a 1=13,________,其中n ∈N *.(1)求{a n }的通项公式;(2)记b n =log 13a n +1,求数列{a n ·b n }的前n 项和T n .注:如果选择多个条件分别解答,按第一个解答计分. 解 (1)若选条件①.因为S n ,2S n +1,3S n +2成等差数列,所以4S n +1=S n +3S n +2, 即S n +1-S n =3(S n +2-S n +1), 所以a n +1=3a n +2, 又S 2=49,a 1=13,所以a 2=S 2-a 1=19,即a 2=13a 1,所以a n +1=13a n ,即a n +1a n =13,又a 1=13,所以数列{a n }是首项为13,公比为13的等比数列,所以a n =13n (n ∈N *).若选条件②.由a 2n +1=13a n (2a n -5a n +1), 得3a 2n +1=a n (2a n -5a n +1),即3a 2n +1+5a n +1a n -2a 2n =0,所以(a n +1+2a n )(3a n +1-a n )=0, 因为a n >0,所以3a n +1-a n =0,即a n +1a n =13,又a 1=13, 所以数列{a n }是首项为13,公比为13的等比数列,所以a n =13n (n ∈N *).若选条件③.因为2S n +a n -t =0,所以n ≥2时,2S n -1+a n -1-t =0, 两式相减并整理, 得a n =13a n -1(n ≥2),即a n a n -1=13(n ≥2),又a 1=13, 所以数列{a n }是首项为13,公比为13的等比数列,所以a n =13n (n ∈N *).(2)由(1)知,a n +1=13n +1, 所以b n =log 13a n +1=log 1313n +1=n +1,所以a n ·b n =(n +1)×13n =n +13n ,所以T n =23+332+433+…+n +13n ,所以13T n =232+333+434+…+n +13n +1,两式相减,得23T n =23+⎝ ⎛⎭⎪⎫132+133+…+13n -n +13n +1=23+132⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n -11-13-n +13n +1=23+13×12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n -1-n +13n +1=56-12×13n -n +13n +1, 所以T n =⎝ ⎛⎭⎪⎫56-12×13n -n +13n +1×32=54-2n +54×3n .易错提醒 一要先“错项”再“相减”;二要注意最后一项的符号.训练3(2022·潍坊模拟)已知等比数列{a n}的前n项和为S n,且a1=2,S3=a3+6.(1)求数列{a n}的通项公式;(2)设b n=log2a n,求数列{a n b n}的前n项和T n.解(1)设数列{a n}的公比为q,由a1=2,S3=a3+6,得a1(1+q+q2)=6+a1q2,解得q=2,所以a n=2n(n∈N*).(2)由(1)可得b n=log2a n=n,所以a n b n=n·2n,Tn=1×2+2×22+3×23+…+n×2n,2T n=1×22+2×23+…+(n-1)2n+n·2n+1,所以-T n=2+22+…+2n-n·2n+1=2(1-2n)1-2-n·2n+1=2n+1-2-n·2n+1,所以T n=(n-1)2n+1+2.一、基本技能练1.已知数列{a n}满足a n+1-a n=2(n∈N*),a1=-5,则|a1|+|a2|+…+|a6|=( )A.9B.15C.18D.30答案 C解析∵a n+1-a n=2,a1=-5,∴数列{a n}是公差为2的等差数列,∴a n=-5+2(n-1)=2n-7,数列{a n}的前n项和S n=n(-5+2n-7)2=n2-6n(n∈N*).令a n=2n-7≥0,解得n≥7 2,∴n≤3时,|a n|=-a n;n≥4时,|an|=a n.则|a1|+|a2|+…+|a6|=-a1-a2-a3+a4+a5+a6=S6-2S3=62-6×6-2×(32-6×3)=18.2.(2022·深圳模拟)在数列{a n}中,a1=3,a m+n=a m+a n(m,n∈N*),若a1+a2+a3+…+ak=135,则k等于( )A.10B.9C.8D.7答案 B解析令m=1,由a m+n=a m+a n可得a n+1=a1+a n,所以a n+1-a n=3,所以{a n}是首项为a1=3,公差为3的等差数列,an=3+3(n-1)=3n,所以a1+a2+a3+…+a k=k(a1+a k)2=k(3+3k)2=135,整理可得k2+k-90=0,解得k=9或k=-10(舍去).3.数列{a n }满足a n +1+(-1)na n =2n -1,则{a n }的前60项和为( ) A.3 690 B.3 660 C.1 845 D.1 830 答案 D解析 因为a n +1+(-1)n a n =2n -1,故有a 2-a 1=1,a 3+a 2=3,a 4-a 3=5,a 5+a 4=7,a 6-a 5=9,a 7+a 6=11,…,a 50-a 49=97.从而可得a 3+a 1=2,a 4+a 2=8,a 5+a 7=2,a 8+a 6=24,a 9+a 11=2,a 12+a 10=40,a 13+a 15=2,a 16+a 14=56,…从第一项开始,依次取2个相邻奇数项的和都等于2,从第二项开始,依次取2个相邻偶数项的和构成以8为首项,以16为公差的等差数列. 所以{a n }的前60项和为15×2+⎝ ⎛⎭⎪⎫15×8+15×142×16=1 830. 4.在等差数列{a n }中,a 3+a 5=a 4+7,a 10=19,则数列{a n cos n π}(n ∈N *)的前2 023项和为( ) A.1 011 B.1 010 C.-2 023 D.-2 022 答案 C解析 由题意得a 3+a 5=2a 4=a 4+7,解得a 4=7, 所以公差d =a 10-a 410-4=19-76=2,则a 1=a 4-3d =7-3×2=1, 所以a n =2n -1,设b n=a n cos nπ,则b1+b2=a1cos π+a2cos 2π=-a1+a2=2,b3+b4=a3cos 3π+a4cos 4π=-a3+a4=2,……,∴数列{a n cos nπ}(n∈N*)的前2 023项和S2 023=(b1+b2)+(b3+b4)+…+(b2 021+b2 022)+b2 023=2×1 011-4 045=-2 023.5.已知函数f(x)=x a的图象过点(4,2),令a n=1f(n+1)+f(n)(n∈N*),记数列{a n}的前n项和为S n,则S2 023等于( ) A. 2 023+1 B. 2 024-1C. 2 023-1D. 2 024+1答案 B解析函数f(x)=x a的图象过点(4,2),则4a=2,解得a=12,则f(x)=x,a n =1f(n+1)+f(n)=1n+1+n=n+1-n,则S2 023=(2-1)+(3-2)+…+( 2 023- 2 022)+( 2 024- 2 023)=2 024-1.6.(多选)已知等差数列{a n}的前n项和为S n,公差d=1.若a1+3a5=S7,则下列结论一定正确的是( )A.a5=1B.S n最小时n=3C.S1=S6D.S n存在最大值答案AC解析 由已知得a 1+3(a 1+4×1)=7a 1+7×62×1,解得a 1=-3.对于选项A ,a 5=-3+4×1=1,故A 正确. 对于选项B ,a n =-3+n -1=n -4,因为a 1=-3<0,a 2=-2<0,a 3=-1<0,a 4=0,a 5=1>0, 所以S n 的最小值为S 3或S 4,故B 错误. 对于选项C ,S 6-S 1=a 2+a 3+a 4+a 5+a 6=5a 4, 又因为a 4=0,所以S 6-S 1=0,即S 1=S 6,故C 正确. 对于选项D ,因为S n =-3n +n (n -1)2=n 2-7n2,所以S n 无最大值,故D 错误.7.(2022·无锡模拟)12+12+4+12+4+6+12+4+6+8+…+12+4+6+…+2 022=________. 答案1 0111 012解析 根据等差数列的前n 项和公式, 可得2+4+6+…+2n =n (2+2n )2=n (n +1),因为1n (n +1)=1n -1n +1,所以12+12+4+12+4+6+12+4+6+8+…+12+4+6+…+2 022=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫11 011-11 012=1-11 012=1 0111 012.8.(2022·嘉兴测试)数列{a n }满足a 1+2a 2+3a 3+…+na n =2n,则a 1a 24+a 2a 342+…+a 9a 1049的值为________. 答案710解析 对于a 1+2a 2+3a 3+…+na n =2n ,当n ≥2时,a 1+2a 2+3a 3+…+(n -1)a n -1=2n -1, 两式相减得na n =2n -1,则a n =2n -1n,n ≥2,又a 1=21=2不符合上式,则a n=⎩⎨⎧2,n =1,2n -1n ,n ≥2,当k ≥2时,a k a k +14k=2k -1·2k (k +1)k ·22k =12·1k (k +1)=12·⎝⎛⎭⎪⎫1k -1k +1, ∴a 1a 24+a 2a 342+…+a 9a 1049=14a 1a 2+12×⎝ ⎛⎭⎪⎫12-13+12×⎝ ⎛⎭⎪⎫13-14+…+12×⎝ ⎛⎭⎪⎫19-110 =14×2×22-12+12×⎝ ⎛⎭⎪⎫12-110=710. 9.设各项均为正数的等差数列{a n }首项为1,前n 项的和为S n ,且S n =(a n +1)24(n ∈N *),设b n =2n ·a n ,则数列{b n }的前n 项和T n =________. 答案 (2n -3)2n +1+6(n ∈N *) 解析 由题意4S n =(a n +1)2,① 4S n +1=(a n +1+1)2,②两式相减得4a n +1=(a n +1+1)2-(a n +1)2, 即(a n +1-a n -2)(a n +1+a n )=0,∵a n>0,∴a n+1+a n≠0,a n+1-a n=2,∴{a n}是公差为2的等差数列,∵a1=1,∴a n=a1+(n-1)d=2n-1,b n=2n a n=(2n-1)2n.由错位相减法可求得T n=(2n-3)2n+1+6(n∈N*).10.斐波那契数列因意大利数学家斐波那契以兔子繁殖为例引入,故又称为“兔子数列”,即1,1,2,3,5,8,13,21,34,55,89,144,233,….在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数,斐波那契数列在现代物理及化学等领域也有着广泛的应用.斐波那契数列{a n}满足:a1=a2=1,a n+2=a n+a n(n∈N*),则1+a3+a5+a7+a9+…+a2 023是斐波那契数列{a n}中的第________项. +1答案 2 024解析依题意,得1+a3+a5+a7+a9+…+a2 023=a2+a3+a5+a7+a9+…+a2 023=a4+a5+a7+a9+…+a2 023=a6+a7+a9+…+a2 023=…=a2 022+a2 023=a2 024.11.已知等差数列{a n}的前n项和为S n,且S4=S5=-20.(1)求数列{a n}的通项公式;(2)已知数列{b n}是以4为首项,4为公比的等比数列,若数列{a n}与{b n}的公共项为a m,记m由小到大构成数列{c n},求{c n}的前n项和T n.解(1)设等差数列{a n}的公差为d,由S4=S5=-20,得4a1+6d=5a1+10d=-20,解得a1=-8,d=2,则a n =-8+2(n -1)=2n -10(n ∈N *).(2)数列{b n }是以4为首项,4为公比的等比数列, ∴b n =4·4n -1=4n (n ∈N *). 又依题意2m -10=4n , ∴m =10+4n2=5+22n -1,则T n =5n +2(1-4n )1-4=5n +22n +1-23.12.已知各项均为正数的等差数列{a n }满足a 1=1,a 2n +1=a 2n +2(a n +1+a n ).(1)求{a n }的通项公式;(2)记b n =1a n +a n +1,求数列{b n }的前n 项和S n .解 (1)各项均为正数的等差数列{a n }满足a 1=1,a 2n +1=a 2n +2(a n +1+a n ),整理得(a n +1+a n )(a n +1-a n ) =2(a n +1+a n ), 由于a n +1+a n ≠0, 所以a n +1-a n =2,故数列{a n }是以1为首项,2为公差的等差数列. 所以a n =2n -1. (2)由(1)可得b n =1a n +a n +1=12n -1+2n +1=2n +1-2n -12,所以S n =12×(3-1+5-3+…+2n +1-2n -1)=12(2n +1-1).二、创新拓展练13.(多选)(2022·扬州调研)已知数列{a n }的前n 项和为S n ,则下列说法正确的是( )A.若S n =n 2-1,则{a n }是等差数列 B.若S n =2n -1,则{a n }是等比数列 C.若{a n }是等差数列,则S 99=99a 50D.若{a n }是等比数列,且a 1>0,q >0,则S 2n -1·S 2n +1>S 22n 答案 BC解析 对于A ,若S n =n 2-1,则有a 1=S 1=0,a 2=S 2-S 1=22-12=3,a 3=S 3-S 2=32-22=5,2a 2≠a 1+a 3,此时数列{a n }不是等差数列,故A 错误;对于B ,若S n =2n -1,则当n =1时,有a 1=S 1=1,当n ≥2时,有a n =S n -S n -1=2n -2n-1=2n -1,故a n =2n -1,a n +1a n=2,此时数列{a n }是等比数列,故B 正确; 对于C ,由等差数列的性质可得S 99=99(a 1+a 99)2=99a 50,故C 正确;对于D ,因为当a 1>0,q =1时,有a n =a 1,S 2n -1·S 2n +1=(2n -1)(2n +1)a 21=(4n 2-1)a 21,S 22n =(2na 1)2=4n 2a 21,此时S 2n -1·S 2n +1<S 22n ,故D 错误.综上,故选BC.14.已知数列{a n }满足a 1+2a 2+4a 3+…+2n -1a n =n2,将数列{a n }按如下方式排列成新数列:a 1,a 2,a 2,a 2,a 3,a 3,a 3,a 3,a 3,…,,…,则新数列的前70项和为________. 答案4716解析 由a 1+2a 2+4a 3+…+2n -1a n =n2,①得a 1+2a 2+4a 3+…+2n -2a n -1=n -12(n ≥2),②①-②得2n -1a n =12,即a n =12n (n ≥2),又a 1=12,即a n =12n ,由1+3+5+…+(2n -1)=n 2=64, 得n =8.令S =12+322+523+ (1528)则12S =122+323+…+1328+1529, 两式相减得12S =12+2×122+2×123+…+2×128-1529=12+12⎝⎛⎭⎪⎫1-1271-12-1529,∴S =749256,所以新数列的前70项和为749256+629=4716. 15.函数y =[x ]称为高斯函数,[x ]表示不超过x 的最大整数,如[0.9]=0,[lg 99]=1.已知数列{a n }满足a 3=3,且a n =n (a n +1-a n ),若b n =[lg a n ],则数列{b n }的前2 023项和为________. 答案 4 962解析 因为a n =n (a n +1-a n ), 所以(1+n )a n =na n +1, 即a n +1n +1=a nn, 所以⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n n 为常数数列,所以ann=a33=1,所以a n=n,记{b n}的前n项和为T n,当1≤n≤9时,0≤lg a n<1,b n=0;当10≤n≤99时,1≤lg a n<2,b n=1;当100≤n≤999时,2≤lg a n<3,b n=2;当1 000≤n≤2 023时,3≤lg a n<4,b n=3;所以T2 023=[lg a1]+[lg a2]+…+[lg a2 023]=9×0+90×1+900×2+1 024×3=4 962.16.对于任意一个有穷数列,可以通过在该数列的每相邻两项之间插入这两项的和,构造一个新的数列.现对数列1,5进行构造,第1次得到数列1,6,5,第2次得到数列1,7,6,11,5,依次类推,第n次得到数列1,x1,x2,x3,…,5.记第n次得到的数列的各项之和为S n,则{S n}的通项公式S n=________.答案3+3n+1解析由题意可知,第n次得到数列1,x1,x2,x3, (5)第1次得到数列1,6,5,第2次得到数列1,7,6,11,5,第3次得到数列1,8,7,13,6,17,11,16,5,第4次得到数列1,9,8,15,7,20,13,19,6,23,17,28,11,27,16,21,5. ……第n次得到数列1,x1,x2,x3, (5)所以S1=6+6=6+2×31,S 2=6+6+18=6+2×31+2×32,S 3=6+6+18+54=6+2×31+2×32+2×33,S 4=6+6+18+54+162=6+2×31+2×32+2×33+2×34, ……,即S n =6+2(31+32+…+3n ) =6+2×3(1-3n )1-3=3+3n +1.17.(2022·泰州模拟)在①S n =2a n +1-3,a 2=94,②2S n +1-3S n =3,a 2=94,③点(a n ,S n )(n ∈N *)在直线3x -y -3=0上这三个条件中任选一个,补充到下面的问题中,并解答. 已知数列{a n }的前n 项和为S n ,________. (1)求{a n }的通项公式;(2)若b n =na n,求{b n }的前n 项和T n . 解 (1)方案一 选条件①. ∵S n =2a n +1-3,∴当n ≥2时,S n -1=2a n -3, 两式相减,整理得a n +1=32a n (n ≥2).∵a 2=94,∴a 1=S 1=2a 2-3=32,a 2=32a 1,∴a n +1a n =32(n ∈N *),∴数列{a n }是以32为首项,32为公比的等比数列,∴a n =32×⎝ ⎛⎭⎪⎫32n -1=⎝ ⎛⎭⎪⎫32n(n ∈N *). 方案二 选条件②. ∵2S n +1-3S n =3,∴当n ≥2时,2S n -3S n -1=3, 两式相减,整理得a n +1=32a n (n ≥2).∵2(a 1+a 2)-3a 1=3,a 2=94,∴a 1=32,a 2=32a 1,∴a n +1a n =32(n ∈N *), ∴数列{a n }是以32为首项,32为公比的等比数列,∴a n =32×⎝ ⎛⎭⎪⎫32n -1=⎝ ⎛⎭⎪⎫32n(n ∈N *). 方案三 选条件③.∵点(a n ,S n )(n ∈N *)在直线3x -y -3=0上, ∴S n =3a n -3,∴S n +1=3a n +1-3, 两式相减,整理得a n +1=32a n ,当n =1时,a 1=3a 1-3,得a 1=32,∴数列{a n }是以32为首项,32为公比的等比数列,∴a n =32×⎝ ⎛⎭⎪⎫32n -1=⎝ ⎛⎭⎪⎫32n(n ∈N *). (2)由(1)可得b n =n ·⎝ ⎛⎭⎪⎫23n,则T n =1·⎝ ⎛⎭⎪⎫231+2·⎝ ⎛⎭⎪⎫232+…+n ·⎝ ⎛⎭⎪⎫23n,∴23T n =1·⎝ ⎛⎭⎪⎫232+2·⎝ ⎛⎭⎪⎫233+…+n ·⎝ ⎛⎭⎪⎫23n +1,两式相减得13T n =23+⎝ ⎛⎭⎪⎫232+⎝ ⎛⎭⎪⎫233+…+⎝ ⎛⎭⎪⎫23n -n ·⎝ ⎛⎭⎪⎫23n +1=23×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫23n1-23-n ·⎝ ⎛⎭⎪⎫23n +1=2-2n +63×⎝ ⎛⎭⎪⎫23n,∴T n =6-(2n +6)×⎝ ⎛⎭⎪⎫23n.。
数列的求和(第2课时)高二数学(人教A版2019选择性必修第二册)
(2)若 = − 3 ,求数列{
解(2):∵设 =
∴
1
+1
1
4
=
1
,∴
3
1
2×2(+1)
1
2
=
1
2
= − 3 = −
1
4(+1)
1
3
1 1
4
= ( −
1
∴ = [(1 − ) + ( − ) + ⋯ + ( −
1
3 3
(20 × 1.05) × (1 − 1.05 )
3 2 27
=
− (7.5 + 6 + 1.5) = 420 × 1.05 − − − 420.
1 − 1.05
2
4
4
当 = 5时,5 ≈ 63.5.
所以,从今年起5年内,通过填埋方式处理的垃圾总量约为63.5万吨.
例析
例12.某牧场今年初生的存栏数为1200,预计以后每年存栏数
的增长率为8%,且在每年年底卖出100头牛.设牧场从今年起每
年年初的计划存栏数依次为,1 ,2 ,3 , ⋯.
(3)求10 = 1 + 2 + 3 + ⋯ + 10 的值(精确到1).
(3)由(2)可知,数列{ − 1250}是以-50为首项,1.08为公比的等比数列,
则:(1 − 1250) + (2 − 1250) + (3 − 1250) + ⋯ + (10 − 1250)
(2):将+1 − = ( − )化成+1 = − + .
专题二、数列的求和方法
专题二:数列的求和数列的求和除记住一些公式外,还应注重对通项公式的分析与整理,根据其特征求和。
1、等差数列求和________________n S ==;2、等比数列求和______,1_______________,1n q S q ===⎧⎨≠⎩;3、1234...n +++++= ;2468...2n +++++= ;()1357...21n +++++-= ; 2222(1)(21)1236n n n n ++++++=; 23333(1)1232n n n +⎡⎤++++=⎢⎥⎣⎦; 例1、等比数列{n a }中,21n n S =-,求2222123...n a a a a ++++变式1:等比数列{n a }中,n S 为数列{n a }的前n 项和,已知7157,75,S S ==n T 为数列n S n ⎧⎫⎨⎬⎩⎭的前n 项和,求n T把一个数列分成几个可以直接求和的数列。
例2、求和:1111123...2482n n ++++变式1:()()()12235435...235n n ----⨯+-⨯++-⨯变式2:求数列{}2(21)n -的前n 项和。
变式3:已知数列{n a }的通项公式为221n n a n =+-,求前n S ;如果一个数列倒过来与原数列相加可提取公因式,且剩余项易求和,就用此法。
例3:已知()xf x =(1)求证:()()11f x f x -+=;(2)求(5)(4)(5)(6)S f f f f =-+-+++;(3)若数列{}n a 的通项为1001n n a f ⎛⎫= ⎪⎝⎭,求前1000项的和1000S练习:求和:2222sin 1sin 2sin 3...sin 89++++例4:23432333433n n S n =+++++。
变式1:23234(1)n n S a a a n a =+++++。
(注意要讨论a )例5:数列{}n a 满足111,2n n n a a a +=-=,(1)求数列{}n a 的通项公式n a ;(2)令n n b na =,求数列{}n b 的前n 项和n S变式:已知单调递增的等比数列{}n a 满足:23428a a a ++=且32a +是2a ,4a 的等差中项,(1)求数列{}n a 的通项公式n a ;(2)若11232log ,n n n n n b a a S b b b b ==++++,求使1250n n S n ++>成立的正整数n 的最小值。
数列专题:数列求和的6种常用方法(原卷版)
数列专题:数列求和的6种常用方法一、几种数列求和的常用方法1、分组转化求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减.2、裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和.3、错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和即可用错位相减法求解.4、倒序相加法:如果一个数列{}n a 与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.二、公式法求和常用公式公式法主要适用于等差数列与等比数列.1、等差数列{}n a 的前n 项和11()(1)22++==+n n n a a n n S na d 2、等比数列{}n a 的前n 项和111(1)11,,=⎧⎪=-⎨≠⎪-⎩n n na q S a q q q 3、一些常见的数列的前n 项和:①112123(1)==++++=+∑nk k n n n ;122462(1)==++++=+∑nk k n n n ②21(21)135(21)=-=++++-=∑n k k n n ;③22222116123(1)(21)==++++=++∑nk k n n n n ;④3333321(1)2123[]=+=++++=∑nk n n k n 三、裂项相消法中常见的裂项技巧1、等差型裂项(1)111(1)1=-++n n n n (2)1111()()=-++n n k k n n k(3)21111()4122121=---+n n n (4)1111(1)(2)2(1)(1)(2)⎡⎤=-⎢⎥+++++⎣⎦n n n n n n n (5)211111()(1)(1)(1)2(1)(1)==---+-+n n n n n n n n n(6)22111414(21)(21)⎡⎤=+⎢⎥-+-⎣⎦n n n n (7)1111(1)(2)(3)3(1)(2)(1)(2)(3)⎡⎤=-⎢⎥++++++++⎣⎦n n n n n n n n n n (8)2222211111)(()+=-++n n n n n (9)222211112)42)((⎡⎤+=-⎢⎥++⎣⎦n n n n n 2、根式型裂项=1=-k12=(1)1111(1)1++=+-++n n n n n n 3、指数型裂项(1)11112(21)(21)11(21)(21)(21)(21)2121++++---==-------n n n n n n n n n (2)113111()(31)(31)23131++=-----n nn n n (3)122(1)21111(1)2(1)2122(1)2-++-⎛⎫==-⋅=- ⎪+⋅+⋅+⋅+⋅⎝⎭n n n n nn n n n n n n n n n n (4)1111(41)31911333(2)2(2)22-+--⎛⎫⎡⎤-⋅=-⋅=- ⎪⎢⎥+++⎣⎦⎝⎭n n n n n n n n n n n (5)11(21)(1)(1)(1)(1)++⋅---=-++n n n n n n n n (6)222111(1)2(1)(1)(42)2(1)(42)2(1)2(1)2(1)2+++-++++-++-++==⋅⋅+⋅+⋅+⎡⎤⎣⎦n n n n n n n n n n n n n n n n n n n n n n 1111(1)1111(1)(1)(1))22(1)2222(1)2++++⎡⎤⎡⎤---=+-+=-+⎢⎥⎢⎥⋅+⋅⋅+⋅⎣⎦⎣⎦n n n n n n n n nn n n n n 4、对数型裂项11log log log ++=-n a n aa a n na a a 四、错位相减法求和步骤形如n n n A B C =⋅,其中{}n B 为等差数列,首项为1b ,公差为d ;{}n C 为等比数列,首项为1c ,公比为q .对数列{}n A 进行求和,首先列出n S ,记为①式;再把①式中所有项同乘等比数列{}n C 的公比q ,即得n q S ⋅,记为②式;然后①②两式错开一位作差,从而得到{}n A 的前n 项和。
几种常见数列求和方法的归纳
几种常见数列求和方法的归纳1.公式法:即直接用等差、等比数列的求和公式求和。
主要适用于等差,比数列求和。
(1)等差数列的求和公式:d n n na a a n S n n 2)1(2)(11-+=+=(等差数列推导用到特殊方法:倒序相加)(2)等比数列的求和公式⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn (切记:公比含字母时一定要讨论)(3)222221(1)(21)1236nk n n n k n =++=++++=∑(不作要求,但要了解)例:(1)求=2+4+6+ (2)(2)求=x+++…+(x )2.倒序相加:适用于:数列距离首尾项距离相同的两项相加和相同。
例:(1)求证:等差数列{}的前n 项和d n n na a a n S n n 2)1(2)(11-+=+=(2)2222sin 1sin 2sin 3sin 89++++ .3.分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和。
例:(1)求和:(1)个n n S 111111111++++=81109101--+n n(2)22222)1()1()1(n n n x x x x x x S ++++++=当1±≠x 时,n x x x x S n n n n 2)1()1)(1(22222+-+-=+ 当n S x n 4,1=±=时4.裂项相消法:把数列的通项拆成两项之差、正负相消剩下首尾若干项。
(分式求和常用裂项相消)常见的拆项公式:111)1(1+-=+n n n n ,)121121(21)12)(12(1+--=+-n n n n , 1111()(2)22n n n n =-++,)12)(12(11)12)(12()2(2+-+=+-n n n n n ,=例:(1)求和:1111,,,,,132435(2)n n ⨯⨯⨯+.(2)求和)12)(12()2(534312222+-++⋅+⋅=n n n S n12)1(2++=n n n S n5.错位相减法:比如{}{}.,,2211的和求等比等差n n n n b a b a b a b a +++ (适用于:等差数列乘以等比数列的通项求和)例:求和:23,2,3,,,n a a a na当1a =时,123n S =+++ (1)2n n n ++=, 当1a ≠时,212(1)(1)n n n na n a aS a ++-++=-6.合并求和法:如求22222212979899100-++-+- 的和。
3-5 数列的求和方法2
7.设函数f(x)=xm+ax的导数为f’(x)=2x+1,则数列 的前n项和为
A。 B。 C。 D。
8.数列 的前10项之和为
9.若
10.已知{ }的前n项和 的值为
11.已知数列{ }的通项公式是 项和为
12.已知数列{ }满足: 的前n项和
.为_________________.
2.数列1,(1+2),(1+2+22),…,(1+2+22+…+2n-1),…的前n项和等于()
A. B. C. D.
3.设 =()
A.-1B.0C.1D.2
4.数列1, ()
A. B. C. D.
5.数列{ }的前n项和 ()
A. B. C. D.
6.数列{ }的通项公式为 则数列{ }的前n项和为
例题分析:
[例1]解答下述问题:(1)已知数列 的通项公式 ,求它的前n项和.
[解析]
(II)已知数列 的通项公式 求它的前n项和.
[解析]
练习:1. 2.
3. 4. 5.
(III)求和:
[解析]
(Ⅳ)已知数列
[解析]
练习:Sn=1+2x+3x2+…+nxn-1
(Ⅴ)求和
[解析]
[评析]例1讨论了数列求和的各种方法,关键是准确抓住数列通项公式呈现的规律,然后选定一种求和方法,并作出相应的变换.
12.设数列{ }中, 中5的倍数的项依次记为
,(I)求 的值.
(II)用k表示 ,并说明理由.
(III)求和:
13.数列{ }的前n项和为 ,且满足
(I)求 与 的关系式,并求{ }的通项公式;(II)求和
数列求和的8种常用方法(最全)
数列求和的8种常用方法(最全)一、前言在高中数学以及各类应用数学问题中,数列求和问题是非常常见的。
解决数列求和问题不仅需要对常用数列的规律进行深刻的理解,还需要掌握多种数列求和的方法。
本文将介绍数列求和的八种常用方法,并且会结合具体的数列实例来进行讲解。
尽力做到对每一种方法的介绍都能够做到极致详细,希望对读者有所帮助。
二、数列求和的8种常用方法1. 等差数列求和公式对于一个首项为$a_1$,公差为$d$,共有$n$ 项的等差数列,其求和公式为:$$S_n = \frac{n}{2}(2a_1 + (n-1)d)$$其中,$S_n$ 代表前$n$ 项的和。
举例:求和数列$1,3,5,7,9$ 的和。
分析:此数列的首项为1,公差为2,总共有5项。
解答:$$S_5 = \frac{5}{2}(2\times 1 + (5-1)\times 2)=25$$因此,数列$1,3,5,7,9$ 的和为25。
2. 等比数列求和公式对于一个首项为$a_1$,公比为$q$,共有$n$ 项的等比数列,其求和公式为:$$S_n = \frac{a_1(1-q^n)}{1-q}$$其中,$S_n$ 代表前$n$ 项的和。
举例:求和数列$2,4,8,16,32$ 的和。
分析:此数列的首项为2,公比为2,总共有5项。
解答:$$S_5=\frac{2\times (1-2^5)}{1-2}=-62$$因此,数列$2,4,8,16,32$ 的和为-62。
3. 几何级数通项公式求和对于一般形式为$a_1r^{n-1}$ 的数列,其求和公式为:$$S_n = \frac{a_1(1-r^n)}{1-r}$$其中,$S_n$ 代表前$n$ 项的和。
举例:求和数列$1,-\frac{1}{2},\frac{1}{4},-\frac{1}{8},\frac{1}{16}$ 的和。
分析:此数列的首项是1,公比是$-\frac{1}{2}$,总共有5项。
专题2数列的求和课件——高三数学一轮复习
1
1
1 1
1
3. 2
(
)
4n 1 (2n 1)(2n 1) 2 2n 1 2n 1
题型四 裂项相消法
4.
1
n 1 n
n n 1
1
1
5.
( n k n)
n nk k
1
6. log a (1 ) log a (n 1) log a n(a 0且a 1)
a14=b4.
(1)求{an}的通项公式; an=2n-1
bn=3n-1
(2)设cn=an+bn,求数列{cn}的前n项和Sn.
解
由题意知cn=an+bn=(2n-1)+3n-1,
则数列{cn}的前n项和为Sn=[1+3+…+(2n-1)]+(1+3+9+…+3n-1)
n1+2n-1 1-3n 2 3n-1
1
1
1
1
(
)] =
.
2n 1 2 n 3
6 4n 6
题型四 裂项相消法
练2
[2021·惠州市高三调研考试试题]记Sn为等差数列{an}的前n项和,
若a4+a5=20,S6=48.
(1)求数列{an}的通项公式;
1
1
(2)设bn=
,Tn为数列{bn}的前n项和,证明Tn< .
+1
3S n 1 (2)1 (2) 2 (2) n 1 n (2) n
n
1
(3
n
1)(
2)
1 (2) n
=
n (2) n . 所以 S n
数列求和的方法
n = n+1
列项公式的常见标志:
1 (1) = n(n+ 1)
(3) 1 n + n+ 1 =
.
1 (2) = (2n - 1)(2n + 1)
.
. (4)等差数列中
1 =与首末两端等距离的两项之和 相等的数列,都可以用倒序相加法求前 n项和. 如等差数列前n项和求和公式。
2 3 n
Sn
.
例
2 2an a1 = , a n + 1 = 3 1 an + 1 - 1} 是等比数列; (1)证明数列 { a n n (2)求数列 { } 的前n项和 S . n an
设数列 {a n }中,有
6、并项求和: 一个数列的前n项和中,可两两结合求 解,则称之为并项求和,若通项形如 an =(-1)nf(n)的摆动数列求和,可用 此法。 求数列Sn=12-22+32-42+…+992-1002
2.求特殊数列的和一般先要分析其通项 公式,再根据数列的特点选择适当的方 法或技巧求解,同时要注意数列共有多 少项.
高一数学必修五第二章 《数列》
数列求和的方法
1.公式法: 等差数列前n项和公式:
n(n 1)d S n na1 2
n(a1 an ) Sn 2
等比数列的前n项和公式:
当q=1时,Sn=na1;
a (1 q ) a a q 1 1 n 当q≠1时, S n = = 1- q 1- q
n
2.分组求和法
1 1 1 1 S n = 1 + 4 + 7 + L + [(3n - 2) + n ] 2 4 8 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习 f 练 .设 ( x) =
1
x
2 + 2 值 +…+ f (5) + f (6)的
,求 (−5) + f (−4) +…+ f (0) f
五、分组求和法 分组求和法:通过把数列的通项分解成几项, 分组求和法:通过把数列的通项分解成几项,从而出 通项分解成几项 现几个等差数列或等比数列,再根据公式进行求和。 现几个等差数列或等比数列,再根据公式进行求和。
(
)
(
)
解: an = 1 + 2 + 2 + … + 2 Q
2
n−1
∴ Sn = a1 + a2 + …
+ an
1× ( 2 − 1) n = = 2 −1 2 −1
= ( 2 − 1) + ( 22 − 1) + … +(2n −1)
= 2 + 2 2 + … +2 n − n 2(1 − 2n ) n +1 = −n = 2 −n−2 1− 2
四、倒序相加法 倒序求和法:是推导等差数列前n 倒序求和法:是推导等差数列前n项和的方法
4x 1 2 3 f ,求 f 例 .设 ( x) = x + f 2008 +L 4 +2 2008 2007 +f 值 的 2008 2008
裂项相消
分组求和
作业
(1)求数列 7,77,777 ,7777,…的前 项和 求数列 的前n项和 项和.
(2)数列 an}的通项公式an=n· 3n+1,求Sn. 数列{ 的通项公式 数列 求
1 (3)求数列 项和. (3)求数列 前n项和. 1+ 2 + 3+…+ n
−3n + 1 ,n为奇数 nx ( n + 1) 2 −2− Sn = 2 3n ,n为偶数 2
S n = 2 n +1
六、通项分析法 通过对数列的通项进行分析、整理, 通过对数列的通项进行分析、整理,从中发现数列 通项进行分析 求和的方法,这也是求数列前n项和的一种基本方法 项和的一种基本方法. 求和的方法,这也是求数列前 项和的一种基本方法.
1 1 1 5 和 例 .求 Sn =1+ 1+ + 1+ + +L+ 2 2 4 n−1 1 1 1 1 1+ + +L+ n−1 Sn = 2n − 2 + 2 4 − 2 2
练习 1.求数列 求数列5,55,555, …,555…5的和 S = 5 10n+1 −10− 9n 求数列 的和 n 5 81 n an = 10 − 1 n个 个 9 2.求 2.求 数 列1,(1 + 2),(1 + 2 + 2 2 ), … 1 + 2 + 2 2 + … + 2 n −1 ) ( 的 前 n项 和 。 n
(
)
数列求和常见的方法: 数列求和常见的方法: 二、错位相减法——推导等比数列前n项和的方法 错位相减法——推导等比数列前n ——推导等比数列前 常应用于型如{a 注:“错位相减法”求和,常应用于型如 nbn}的数列 错位相减法”求和 常应用于型如 的数列 求和,其中 其中{a 为等差数列 为等差数列, 为等比数列. 求和 其中 n}为等差数列 {bn} 为等比数列 三、裂项相消法: 裂项相消法: 常见的拆项公式
1 1 1 1 4 数 1 例 .求 列 , 3 ,5 ,L, ( 2n−1) + n ,L 前 项 . 的 n 和 2 4 8 2 1 2 Sn = n + 1 − n 关键是: 注:关键是:分析通项 2
练习.求和: 练习 求和:Sn=(2-x)+(22-2x)+(23-3x)+…+(2n-nx). 求和
数列求和常见的方法: 数列求和常见的方法: 一、公式法 1. 等差数列求和公式: 等差数列求和公式:
n(a1 + an ) n(n−1) Sn = d = na1 + 2 2
2. 等比数列求和公式: 等比数列求和公式:
Байду номын сангаас
(q = 1) na1 Sn = a1 1− qn a1 − anq (q ≠ 1) 1− q = 1− q
总结: 总结: 常见求和方法 直接求和 公式法) (公式法) 倒序求和 错位相减 适用范围及方法 等差、或等比数列用求和公式, 等差、或等比数列用求和公式, 常数列直接运算。 常数列直接运算。 等差数列的求和方法 数列{ anbn}的求和,其中 n}是等差 的求和, 数列 的求和 其中{a 是等差 数列, 是等比数列。 数列,{bn}是等比数列。 是等比数列 把数列中的每一项都拆成两项或 几项的差, 几项的差,从而产生一些可以相 消的项, 消的项,最后剩下有限的几项 把通项分解成几项, 把通项分解成几项,从而出现几个 等差数列或等比数列进行求和。 等差数列或等比数列进行求和。