同角三角函数诱导公式练习题
三角函数诱导公式练习题集附答案解析
三角函数诱导公式练习题一、选择题(共21小题)1、已知函数f(x)=sin,g(x)=tan(π﹣x),则()A、f(x)与g(x)都是奇函数B、f(x)与g(x)都是偶函数C、f(x)是奇函数,g(x)是偶函数D、f(x)是偶函数,g(x)是奇函数2、点P(cos2009°,sin2009°)落在()A、第一象限B、第二象限C、第三象限D、第四象限3、已知,则=()A、B、C、D、4、若tan160°=a,则sin2000°等于()A、B、C、D、﹣5、已知cos(+α)=﹣,则sin(﹣α)=()A、﹣B、C、﹣D、6、函数的最小值等于()A、﹣3B、﹣2C、D、﹣17、本式的值是()A、1B、﹣1C、D、8、已知且α是第三象限的角,则cos(2π﹣α)的值是()A、B、C、D、9、已知f(cosx)=cos2x,则f(sin30°)的值等于()A、B、﹣C、0 D、110、已知sin(a+)=,则cos(2a﹣)的值是()A、B、C、﹣D、﹣11、若,,则的值为()A、B、C、D、12、已知,则的值是()A、B、C、 D、13、已知cos(x﹣)=m,则cosx+cos(x﹣)=()A、2mB、±2mC、D、14、设a=sin(sin20080),b=sin(cos20080),c=cos(sin20080),d=cos(cos20080),则a,b,c,d的大小关系是()A、a<b<c<dB、b<a<d<cC、c<d<b<aD、d<c<a<b15、在△ABC中,①sin(A+B)+sinC;②cos(B+C)+cosA;③tan tan;④,其中恒为定值的是()A、②③B、①②C、②④D、③④16、已知tan28°=a,则sin2008°=()A、B、C、D、17、设,则值是()A、﹣1B、1C、D、18、已知f(x)=asin(πx+α)+bcos(πx+β)+4(a,b,α,β为非零实数),f(2007)=5,则f(2008)=()A、3B、5C、1D、不能确定19、给定函数①y=xcos(+x),②y=1+sin2(π+x),③y=cos(cos(+x))中,偶函数的个数是()A、3B、2C、1D、020、设角的值等于()A、B、﹣C、D、﹣21、在程序框图中,输入f0(x)=cosx,则输出的是f4(x)=﹣csx()A、﹣sinxB、sinxC、cosxD、﹣cosx二、填空题(共9小题)22、若(﹣4,3)是角终边上一点,则Z的值为.23、△ABC的三个内角为A、B、C,当A为°时,取得最大值,且这个最大值为.24、化简:=25、化简:=.26、已知,则f(1)+f(2)+f(3)+…+f(2009)=.27、已知tanθ=3,则(π﹣θ)=.28、sin(π+)sin(2π+)sin(3π+)…sin(2010π+)的值等于.29、f(x)=,则f(1°)+f(2°)+…+f(58°)+f(59°)=.30、若,且,则cos(2π﹣α)的值是.答案与评分标准一、选择题(共21小题)1、已知函数f(x)=sin,g(x)=tan(π﹣x),则()A、f(x)与g(x)都是奇函数B、f(x)与g(x)都是偶函数C、f(x)是奇函数,g(x)是偶函数D、f(x)是偶函数,g(x)是奇函数考点:函数奇偶性的判断;运用诱导公式化简求值。
高考数学专题《同角三角函数的基本关系与诱导公式》习题含答案解析
专题5.2 同角三角函数的基本关系与诱导公式1.(2021·北京二中高三其他模拟)在平面直角坐标系xOy 中,角θ以Ox 为始边,终边与单位圆交于点34,55⎛⎫⎪⎝⎭,则tan()πθ-的值为( )A .43B .34C .43-D .34-【答案】C 【解析】由题意可得角的正弦和余弦值,由同角三角函数的基本关系可求出角的正切值,结合诱导公式即可选出正确答案.【详解】解:由题意知,43sin ,cos 55θθ==,则sin 4tan cos 3θθθ==,所以4tan()tan 3πθθ-=-=-,故选:C.2.(2021·全国高三其他模拟(理))已知1tan ,2α=则()cos cos 2παπα-⎛⎫+ ⎪⎝⎭=( )A .﹣12B .12C .2D .﹣2【答案】C 【解析】先用“奇变偶不变,符号看象限”将()cos cos 2παπα-⎛⎫+ ⎪⎝⎭化简为cos sin αα--,结合同角三角函数的基本关系来求解.【详解】因为1tan 2α=,所以()cos cos 2παπα-⎛⎫+ ⎪⎝⎭=cos sin αα--=1tan α=2.故选:C练基础3.(2021·全国高一专题练习)已知3cos cos()2παπα⎛⎫-++= ⎪⎝⎭则1tan tan αα+=( )A .2B .-2C .13D .3【答案】A 【解析】用诱导公式化简,平方后求得sin cos αα,求值式切化弦后易得结论.【详解】3cos cos()sin cos 2παπααα⎛⎫-++=∴--= ⎪⎝⎭即21sin cos (sin cos )2,sin cos ,2αααααα+=∴+=∴=1sin cos 1tan 2tan cos sin sin cos αααααααα∴+=+==,故选:A .4.(2021·河南高三其他模拟(理))若1tan 2α=,则22sin sin cos ααα+=_______________________.【答案】45【解析】利用同角三角函数的基本关系式进行化简求值.【详解】因为12tan α=,所以222222224215sin sin cos tan tan sin sin cos sin cos tan ααααααααααα+++===++.故答案为:455.(2021·宁夏银川市·银川一中高三其他模拟(文))若3sin 2πθ⎛⎫+= ⎪⎝⎭[0,2)θπ∈,则θ=___________.【答案】116π【解析】根据三角函数的诱导公式,求得cos θ=[0,2)θπ∈,进而求得θ的值.【详解】由三角函数的诱导公式,可得3sin cos 2πθθ⎛⎫+=-= ⎪⎝⎭,即cos θ=,又因为[0,2)θπ∈,所以116πθ=.故答案为:116π.6.(2021·上海格致中学高三三模)已知α是第二象限角,且3sin 5α=,tan α=_________.【答案】34-【解析】根据角所在的象限,判断正切函数的正负,从而求得结果.【详解】由α是第二象限角,知4cos 5α===-,则sin 3tan cos 4ααα==-故答案为:34-7.(2021·上海高三二模)若sin cos k θθ=,则sin cos θθ⋅的值等于___________(用k 表示).【答案】21kk +【解析】由同角三角函数的关系得tan θk =,进而根据22sin cos sin cos sin cos θθθθθθ⋅⋅=+,结合齐次式求解即可.【详解】因为sin cos k θθ=,所以tan θk =,所以2222sin cos tan sin cos sin cos tan 11kk θθθθθθθθ⋅⋅===+++,故答案为:21k k +8.(2021·河北衡水市·高三其他模拟)函数log (3)2(0a y x a =-+>且a ≠1)的图象过定点Q ,且角a 的终边也过点Q ,则23sin α+2sin cos αα=___________.【答案】75【解析】首先可得点Q 的坐标,然后可得tan α,然后可求出答案.【详解】由题可知点Q (4,2),所以1tan ,2α=所以22223sin 2sin cos 3sin 2sin cos sin cos αααααααα++==+2211323tan 2tan 74211tan 514ααα⨯+⨯+==++故答案为:759.(2021·上海高三其他模拟)已知3sin 5x =,(,)2x ππ∈,则cos(π﹣x )=___________.【答案】45【解析】根据22sin cos 1x x += ,(,)2x ππ∈,求出cos x ,再用“奇变偶不变,符号看象限”求出cos(π﹣x ).【详解】解:因为3sin 5x =,(,)2x ππ∈,可得cos x =﹣=﹣45,所以cos(π﹣x )=﹣cos x =45.故答案为:45.10.(2020·全国高一课时练习)若2cos()3απ-=-,求sin(2)sin(3)cos(3)cos()cos()cos(4)απαπαππαπααπ-+--------的值.【答案】.【解析】利用诱导公式化简已知和结论,转化为给值求值的三角函数问题解决.【详解】原式=sin(2)sin(3)cos(3)cos (cos )cos παπαπαααα---+----=2sin sin cos cos cos ααααα--+=sin (1cos )cos (1cos )αααα---=-tan α,因为2cos()cos 3απα-=-=-,所以2cos 3α=,所以α为第一象限角或第四象限角.(1)当α为第一象限角时,sin α=所以sin tan cos ααα=,所以原式.(2)当α为第四象限角时,sin α=所以sin tan cos ααα=,所以原式.综上,原式=.1.(2021·全国高三其他模拟(理)(0)a a =>,则1tan 2=________(用含a 的式子表示).【解析】根据同角三角函数的相关公式,把根号下的式子变形为完全平方式,2111112sin cos sin cos 2222⎛⎫-=- ⎪⎝⎭,2111112sin cos sin cos 2222⎛⎫+=+ ⎪⎝⎭,再由11cos sin 022>>,开方即得1cos 22a =,再由22111tan 12cos 2+=即可得解.【详解】练提升=+=1111cos sin sin cos2222=-++12cos 2a ==,则1cos 22a =而22111tan 12cos 2+=,2214tan 12a∴=-又1tan 02>,1tan 2∴==.2.(2021·河北邯郸市·高三二模)当04x π<<时,函数22cos ()sin cos sin xf x x x x=-的最大值为______.【答案】-4【解析】化简函数得21()tan tan f x x x=-,再换元tan ,(0,1)t x t =∈,利用二次函数和复合函数求函数的最值.【详解】由题意得22222cos cos ()sin cos sin cos cos x x f x x x xx x =-所以21()tan tan f x x x =-,当04x π<<时,0tan 1x <<,设tan ,(0,1)t x t =∈所以2211()=11()24g t t t t =---,所以当12t =时,函数()g t 取最大值4-.所以()f x 的最大值为-4.故答案为:4-3.(2021·浙江高三其他模拟)已知πtan 34α⎛⎫+=- ⎪⎝⎭,则3πtan 4α⎛⎫-= ⎪⎝⎭______,sin cos αα=______.【答案】3 25【解析】由3ππtan tan 44αα⎛⎫⎛⎫-=-+⎪ ⎪⎝⎭⎝⎭可求,由和的正切公式求出tan α,再建立齐次式即可求出.【详解】3πππtan tan πtan 3444ααα⎡⎤⎛⎫⎛⎫⎛⎫-=-+=-+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.由πtan 1tan 341tan ααα+⎛⎫+==- ⎪-⎝⎭,得tan 2α=,故222sin cos tan 2sin cos sin cos tan 15αααααααα===++.故答案为:3;254.(2021·全国高一专题练习)如图,单位圆与x 轴正半轴的交点为A ,M ,N 在单位圆上且分别在第一、第二象限内,OM ON ⊥.若四边形OAMN 的面积为34,则AOM ∠=___________;若三角形AMN 的面积为25,则sin AOM ∠=___________.【答案】6π 35【解析】根据四边形OAMN 的面积,列出关于M 点纵坐标M y 的方程,求出M y ;即可根据三角函数的定义求出sin AOM ∠,进而可得AOM ∠;根据三角形AMN 的面积为25,得到M y 与N y 之间关系,再结合三角函数的定义,得到1cos sin 5AOM AOM ∠-∠=,利用同角三角函数基本关系,即可求出结果.【详解】若四边形OAMN 的面积为34,则3111142222MON MOA M M S S OM ON OA y y =+=⨯⨯+⨯⨯=+V V ,解得12M y =,由三角函数的定义可得1sin 2M AOM y ∠==,因为M 为第一象限内的点,所以AOM ∠为锐角,因此6AOM π∠=;若三角形AMN 的面积为25,则21115222MON MOA AMN OAMN AON AON M N S S S S S S y y ==-=-=+-+V V V V V ,即51N M y y -=,由三角函数的定义可得,sin M AOM y ∠=,sin N AON y ∠=,又sin sin cos 2N y AON AOM AOM π⎛⎫=∠=∠+=∠ ⎪⎝⎭,所以1cos sin 5AOM AOM ∠-∠=,由221cos sin 5sin cos 1AOM AOM AOM AOM ⎧∠-∠=⎪⎨⎪∠+∠=⎩解得3in 5s AOM ∠=或4in 5s AOM ∠=-,又AOM ∠为锐角,所以3in 5s AOM ∠=.故答案为:6π;35.5.(2021·河南高一期中(文))(1)已知角α的终边经过点()43P ,-,化简并求值:221cos sin cos sin cos tan 1a ααααα-+---;(2的值.【答案】(1)15-(2)1.【解析】(1)利用三角函数定义得到3sin 5α=,4cos 5α=-,化简三角函数表达式代入即可得到结果;(2)利用同角基本关系式化简即可.【详解】(1)由题意知,3sin 5α=,4cos 5α=-.原式222sin sin cos sin sin cos 1cos ααααααα+=---2222sin sin cos sin cos sin cos cos αααααααα+=---()2222cos sin cos sin sin cos sin cos αααααααα+=---22sin cos sin cos sin cos αααααα=---22sin cos sin cos αααα-=-341sin cos 555αα=+=-=-;(2)原式=sin 40cos 40cos 40cos50︒-︒=︒-︒cos 40sin 401cos 40sin 40-==-︒︒︒︒.6.(2021·河南高一期中(文))已知sin 2cos 0αα+=.(1)求sin 2cos cos 5sin αααα--的值;(2)求33sin cos cos sin aααα+的值.【答案】(1)411-;(2)858-.【解析】(1)本题可根据sin 2cos 0αα+=得出tan 2α=-,然后根据同角三角函数关系即可得出结果;(2)本题可通过22sin cos 1αα+=求出2sin α、2cos α的值,然后通过同角三角函数关系即可得出结果.【详解】(1)因为sin 2cos 0αα+=,所以tan 2α=-,则sin 2cos tan 24cos 5sin 15tan 11αααααα--==---.(2)联立22sin 2cos 0sin cos 1αααα+=⎧⎨+=⎩,解得224sin 51cos 5αα⎧=⎪⎪⎨⎪=⎪⎩,则3322sin cos tan 185cos sin cos sin tan 8a ααααααα+=+=-.7.(2020·武汉市新洲区第一中学高一期末)在平面直角坐标系xOy 中,以x 轴非负半轴为始边作角0,2πα⎛⎫∈ ⎪⎝⎭,,2πβπ⎛⎫∈ ⎪⎝⎭,它们的终边分别与单位圆相交于A ,B 两点,已知点A ,B,.(1)求23sin sin cos 1ααα-+的值;(2)化简并求cos 的值.【答案】(1)195;(2)1-+【解析】(1)由已知条件可知求得sin α,tan α,已知式变形为2222223sin sin cos 3tan tan 3sin sin cos 111sin cos tan 1ααααααααααα---+=+=+++,代入可得答案;(2)由已知得cos β,sin β=.【详解】解:(1)由已知条件可知:cos α=0,2πα⎛⎫∈ ⎪⎝⎭,所以sin 0α>,sin α==,tan 7α=,2222223sin sin cos 3tan tan 3497193sin sin cos 1111sin cos tan 1505ααααααααααα--⨯--+=+=+=+=++,(2)cos β=,2πβπ⎛⎫∈ ⎪⎝⎭,所以sin 0β>,从而sin β==;1sin cos cos cos (1sin )1|cos |ββββ-===--=-+.8.(2021·全国高三专题练习(理))求函数sin cos sin cos y x x x x =+-(x ∈R )的值域.【答案】112⎡⎤-⎢⎥⎣⎦,【解析】令sin cos t x x =-=4x π⎛⎫⎡-∈ ⎪⎣⎝⎭,所以()2221111+++122221t y t t t t -=--=+=-,根据二次函数的性质可求得值域.【详解】令sin cos t x x =-=4x π⎛⎫⎡-∈ ⎪⎣⎝⎭,所以()2221111+++122221t y t t t t -=--=+=-,所以当t =24=-+x k ππ (k Z ∈)时,min y =12-;当1t =,即()114k x k ππ⎡⎤=++-⎣⎦(k Z ∈)时,max 1y =,因此函数y =sin cos sin cos y x x x x =+-的值域应为112⎡⎤-⎢⎥⎣⎦,.9.(2021·江苏高一月考)如图,锐角α的始边与x 轴的非负半轴重合,终边与单位圆交于点()11,A x y ,将射线OA 按逆时针方向旋转3π后与单位圆交于点()()2212,,B x y f x x α=+.(1)求()fα的取值范围;(2)若()fα=,求tan α的值.【答案】(1)32⎛⎫ ⎪ ⎪⎝⎭;(2【解析】(1)由三角函数的定义可得1cos x α=,2cos(3x πα=+,化简()f α6)πα+.根据2663πππα<+<,利用余弦函数的定义域和值域求得()f α的范围.(2)根据()f α=,求得3cos(654sin(65παπα⎧+=⎪⎪⎨⎪+=⎪⎩,再利用两角差的正弦余弦公式求出sin ,cos αα的值,从而得出结论.【详解】(1)由图知,3AOB π∠=,由三角函数的定义可得1cos x α=,2cos(3x πα=+,123()cos cos()cos cos cossin sincos 3332f x x πππαααααααα==+++-+=-=6)πα=+.角α为锐角,∴2663πππα<+<,∴1co 26s()πα-<+<∴623πα<+<,即()f α的范围是32⎛⎫⎪ ⎪⎝⎭.(2)因为()fα=,2663πππα<+<,6πα+=,3cos()65)46sin()65παπαπα⎧+=⎪⎪+=⇒⎨⎪+=⎪⎩,431sin sin66552ππαα⎡⎤⎛⎫=+-=⨯=⎪⎢⎥⎝⎭⎣⎦341cos cos66552ππαα⎡⎤⎛⎫=+-=+⨯=⎪⎢⎥⎝⎭⎣⎦sintancosααα∴===10.(2021·河南省实验中学高一期中)(1)已知sin()cos()tan(3)()3cos2fπθπθπθθπθ-+-=⎛⎫-⎪⎝⎭,求73fπ⎛⎫- ⎪⎝⎭的值(2)已知1sin cos5αα+=-,2παπ<<,求sin(3)cos(2)sin()sin2παπαπαα--++⎛⎫-++⎪⎝⎭的值.【答案】(1(2)17.【解析】(1)利用诱导公式、同角三角函数基本关系化简()fθ,然后再代值计算即可.(2)利用同角三角函数间的关系,将1sin cos5αα+=-平方求出sin cosαα的值,从而求出cos sinαα-的值,再由诱导公式将所求式子化简,即可得出答案.【详解】(1)()()sin cos tansin()cos()tan(3)()sin3sincos2fθθθπθπθπθθθπθθ⋅-⋅--+-===--⎛⎫-⎪⎝⎭所以77sin sin2sin3333fπππππ⎛⎫⎛⎫⎛⎫-=--=+==⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)由1sin cos 5αα+=-,则112sin cos 25αα+=,所以242sin cos 25αα=-由2παπ<<,则sin 0,cos 0αα><设cos sin 0t αα=-<,则2244912cos sin 12525t αα=-=+=由cos sin 0t αα=-<,所以7cos sin 5αα-=-1sin(3)cos(2)sin cos 157sin cos 7sin()sin 52παπαααπαααα---+++===-+⎛⎫--++ ⎪⎝⎭1.(2021·全国高考真题)若tan 2θ=-,则()sin 1sin 2sin cos θθθθ+=+( )A .65-B .25-C .25D .65【答案】C 【解析】将式子先利用二倍角公式和平方关系配方化简,然后增添分母(221sin cos θθ=+),进行齐次化处理,化为正切的表达式,代入tan 2θ=-即可得到结果.【详解】将式子进行齐次化处理得:()()()22sin sin cos 2sin cos sin 1sin 2sin sin cos sin cos sin cos θθθθθθθθθθθθθθ+++==+++()2222sin sin cos tan tan 422sin cos 1tan 145θθθθθθθθ++-====+++.故选:C .2.(2020·全国高考真题(理))已知π()0,α∈,且3cos28cos 5αα-=,则sin α=( )AB .23C .13D练真题【答案】A 【解析】3cos 28cos 5αα-=,得26cos 8cos 80αα--=,即23cos 4cos 40αα--=,解得2cos 3α=-或cos 2α=(舍去),又(0,),sin απα∈∴== 故选:A.3.(2019·北京高考真题(文))如图,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,是锐角,大小为β.图中阴影区域的面积的最大值为( )A .4β+4cos βB .4β+4sin βC .2β+2cos βD .2β+2sin β【答案】B 【解析】观察图象可知,当P 为弧AB 的中点时,阴影部分的面积S 取最大值,此时∠BOP =∠AOP =π-β, 面积S 的最大值为+S △POB + S △POA =4β+.故选:B .APB ∠2222βππ⨯⨯1||sin()2OPOB πβ-‖1||sin()2OP OA πβ+-‖42sin 2sin 44sin βββββ=++=+⋅4.(2017·北京高考真题(文))在平面直角坐标系中,角与角均以为始边,它们的终边关于轴对称.若,则_____.【答案】【解析】因为角与角的终边关于轴对称,所以,所以.5.(2018·北京高考真题(理))设函数f (x )=cos(ωx ―π6)(ω>0),若f (x )≤f (π4)对任意的实数x 都成立,则ω的最小值为__________.【答案】23【解析】因为f (x )≤f (π4)对任意的实数x 都成立,所以f (π4)取最大值,所以π4ω―π6=2k π(k ∈Z ),∴ω=8k +23(k∈Z ),因为ω>0,所以当k =0时,ω取最小值为23.6.(2017·全国高考真题(理))函数f (x )=s in 2x +3cosx ―34(x ∈0,__________.【答案】1【解析】化简三角函数的解析式,则f (x )=1―cos 2x +3cos x ―34=―cos 2x +3cos x +14= ―(cos x ―32)2+1,由x ∈[0,π2]可得cos x ∈[0,1],当cos x =32时,函数f (x )取得最大值1.xOy αβOx y 1sin 3α=sin β=13αβy 2,k k Z αβππ+=+∈()1sin sin 2sin 3k βππαα=+-==。
6.2(新课标)同角三角函数基本关系式及诱导公式(典型例题+习题+答案)2doc
同角三角函数基本关系式及诱导公式必修四:(新课标)同角三角函数基本关系式及诱导公式(典型例题+习题+答案)1. 同角三角函数的基本关系(1)平方关系:sin 2α+cos 2α=1.(2)商数关系:sin αcos α=tan α.2. 诱导公式1. (2011·大纲全国)已知α∈⎝⎛⎭⎫π,3π2,tan α=2,则cos α=________. 答案 -55解析 ∵tan α=2,∴sin αcos α=2,∴sin α=2cos α.又sin 2α+cos 2α=1,∴(2cos α)2+cos 2α=1,∴cos 2α=15.又∵α∈⎝⎛⎭⎫π,3π2,∴cos α=-55. 2. 若tan α=2,则2sin α-cos αsin α+2cos α的值为________.答案 34解析 原式=2tan α-1tan α+2=34.3. 已知α是第二象限的角,tan α=-12,则cos α=________.答案 -255解析 ∵α是第二象限的角,∴cos α<0.又sin 2α+cos 2α=1,tan α=sin αcos α=-12,∴cos α=-255.4. sin 43π·cos 56π·tan ⎝⎛⎭⎫-43π的值是________. 答案 -334解析 原式=sin ⎝⎛⎭⎫π+π3·cos ⎝⎛⎭⎫π-π6·tan ⎝⎛⎭⎫-π-π3 =⎝⎛⎭⎫-sin π3·⎝⎛⎭⎫-cos π6·⎝⎛⎭⎫-tan π3 =⎝⎛⎭⎫-32×⎝⎛⎭⎫-32×(-3)=-334.5. 已知cos ⎝⎛⎭⎫π6-α=23,则sin ⎝⎛⎭⎫α-2π3=________. 答案 -23解析 sin ⎝⎛⎭⎫α-2π3=sin ⎣⎡⎦⎤-π2-⎝⎛⎭⎫π6-α =-sin ⎣⎡⎦⎤π2+⎝⎛⎭⎫π6-α=-cos ⎝⎛⎭⎫π6-α=-23. 题型分析 深度剖析题型一 同角三角函数基本关系式的应用例1 已知在△ABC 中,sin A +cos A =15.(1)求sin A cos A 的值;(2)判断△ABC 是锐角三角形还是钝角三角形; (3)求tan A 的值.思维启迪:由sin A +cos A =15及sin 2A +cos 2A =1,可求sin A ,cos A 的值.解 (1)∵sin A +cos A =15①∴两边平方得1+2sin A cos A =125,∴sin A cos A =-1225.(2)由sin A cos A =-1225<0,且0<A <π,可知cos A <0,∴A 为钝角,∴△ABC 是钝角三角形. (3)∵(sin A -cos A )2=1-2sin A cos A=1+2425=4925,又sin A >0,cos A <0,∴sin A -cos A >0,∴sin A -cos A =75.②∴由①,②可得sin A =45,cos A =-35,∴tan A =sin A cos A =45-35=-43.探究提高 (1)对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,已知其中一个式子的值,其余二式的值可求.转化的公式为(sin α±cos α)2=1±2sin αcos α;(2)关于sin α,cos α的齐次式,往往化为关于tan α的式子.(1)已知tan α=2,求sin 2α+sin αcos α-2cos 2α; (2)已知sin α=2sin β,tan α=3tan β,求cos α. 解 (1)sin 2α+sin αcos α-2cos 2α =sin 2α+sin αcos α-2cos 2αsin 2α+cos 2α=tan 2α+tan α-2tan 2α+1=45.(2)∵sin α=2sin β,tan α=3tan β,∴sin 2α=4sin 2β,① tan 2α=9tan 2β,② 由①÷②得:9cos 2α=4cos 2β,③ ①+③得:sin 2α+9cos 2α=4,∵cos 2α+sin 2α=1,∴cos 2α=38,即cos α=±64.题型二 三角函数的诱导公式的应用例2(1)已知cos ⎝⎛⎭⎫π6+α=33,求cos ⎝⎛⎭⎫5π6-α的值; (2)已知π<α<2π,cos(α-7π)=-35,求sin(3π+α)·tan ⎝⎛⎭⎫α-72π的值. 思维启迪:(1)将π6+α看作一个整体,观察π6+α与5π6-α的关系.(2)先化简已知,求出cos α的值,然后化简结论并代入求值.解 (1)∵⎝⎛⎭⎫π6+α+⎝⎛⎭⎫5π6-α=π,∴5π6-α=π-⎝⎛⎭⎫π6+α. ∴cos ⎝⎛⎭⎫5π6-α=cos ⎣⎡⎦⎤π-⎝⎛⎭⎫π6+α =-cos ⎝⎛⎭⎫π6+α=-33, 即cos ⎝⎛⎭⎫5π6-α=-33.(2)∵cos(α-7π)=cos(7π-α)=cos(π-α)=-cos α=-35,∴cos α=35.∴sin(3π+α)·tan ⎝⎛⎭⎫α-72π =sin(π+α)·⎣⎡⎦⎤-tan ⎝⎛⎭⎫72π-α=sin α·tan ⎝⎛⎭⎫π2-α =sin α·sin ⎝⎛⎭⎫π2-αcos ⎝⎛⎭⎫π2-α=sin α·cos αsin α=cos α=35.探究提高 熟练运用诱导公式和基本关系式,并确定相应三角函数值的符号是解题的关键.另外,切化弦是常用的规律技巧.(1)化简:tan (π+α)cos (2π+α)sin ⎝⎛⎭⎫α-3π2cos (-α-3π)sin (-3π-α);(2)已知f (x )=sin (π-x )cos (2π-x )tan (-x +π)cos ⎝⎛⎭⎫-π2+x ,求f ⎝⎛⎭⎫-31π3的值. 解 (1)原式=tan αcos αsin ⎣⎡⎦⎤-2π+⎝⎛⎭⎫α+π2cos (3π+α)[-sin (3π+α)]=tan αcos αsin ⎝⎛⎭⎫π2+α(-cos α)sin α=tan αcos αcos α(-cos α)sin α=-tan αcos αsin α=-sin αcos α·cos αsin α=-1.(2)∵f (x )=sin x ·cos x ·(-tan x )sin x=-cos x ·tan x =-sin x ,∴f ⎝⎛⎭⎫-31π3=-sin ⎝⎛⎭⎫-31π3=sin 31π3 =sin ⎝⎛⎭⎫10π+π3=sin π3=32. 题型三 三角函数式的化简与求值例3 (1)已知tan α=13,求12sin αcos α+cos 2α的值;(2)化简:tan (π-α)cos (2π-α)sin ⎝⎛⎭⎫-α+3π2cos (-α-π)sin (-π-α).思维启迪:三角函数式的化简与求值,都是按照从繁到简的形式进行转化,要认真观察式子的规律,使用恰当的公式.解 (1)因为tan α=13,所以12sin αcos α+cos 2α=sin 2α+cos 2α2sin αcos α+cos 2α=tan 2α+12tan α+1=23. (2)原式=-tan α·cos (-α)·sin ⎝⎛⎭⎫-α-π2cos (π-α)·sin (π-α)=tan α·cos α·sin ⎝⎛⎭⎫α+π2-cos α·sin α=sin αcos α·cos α-sin α=-1.探究提高 在三角变换中,要注意寻找式子中的角,函数式子的特点和联系,可以切化弦,约分或抵消,减少函数种类,对式子进行化简.已知sin ⎝⎛⎭⎫α+π2=-55,α∈(0,π), 求cos 2⎝⎛⎭⎫π4+α2-cos 2⎝⎛⎭⎫π4-α2sin (π-α)+cos (3π+α)的值. 解 ∵sin ⎝⎛⎭⎫α+π2=-55,∴cos α=-55,又α∈(0,π), ∴sin α=255.cos 2⎝⎛⎭⎫π4+α2-cos 2⎝⎛⎭⎫π4-α2sin (π-α)+cos (3π+α)=cos 2⎝⎛⎭⎫π4+α2-sin 2⎝⎛⎭⎫π4+α2sin α-cos α=cos ⎝⎛⎭⎫π2+αsin α-cos α=-sin αsin α-cos α=-23.分类讨论思想在三角函数化简中的应用典例:(12分)化简:sin ⎝⎛⎭⎫4n -14π-α+cos ⎝⎛⎭⎫4n +14π-α (n ∈Z ).审题视角 (1)角中含有变量n ,因而需对n 的奇偶分类讨论.(2)利用诱导公式,需将角写成符合公式的某种形式,这就需要将角中的某一部分作为一个整体来看. 规范解答解 当n 为偶数时,设n =2k (k ∈Z ),则[1分]原式=sin ⎝⎛⎭⎫8k -14π-α+cos ⎝⎛⎭⎫8k +14π-α=sin ⎣⎡⎦⎤2k π+⎝⎛⎭⎫-π4-α+cos ⎣⎡⎦⎤2k π+⎝⎛⎭⎫π4-α =sin ⎝⎛⎭⎫-π4-α+cos ⎝⎛⎭⎫π4-α =-sin ⎝⎛⎭⎫π4+α+cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫π4+α =-sin ⎝⎛⎭⎫π4+α+sin ⎝⎛⎭⎫π4+α=0.[5分] 当n 为奇数时,设n =2k +1 (k ∈Z ),则 原式=sin ⎝⎛⎭⎫8k +34π-α+cos ⎝⎛⎭⎫8k +54π-α=sin ⎣⎡⎦⎤2k π+⎝⎛⎭⎫3π4-α+cos ⎣⎡⎦⎤2k π+⎝⎛⎭⎫5π4-α =sin ⎝⎛⎭⎫3π4-α+cos ⎝⎛⎭⎫5π4-α =sin ⎣⎡⎦⎤π-⎝⎛⎭⎫π4+α+cos ⎣⎡⎦⎤π+⎝⎛⎭⎫π4-α =sin ⎝⎛⎭⎫π4+α-cos ⎝⎛⎭⎫π4-α=sin ⎝⎛⎭⎫π4+α-cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫π4+α =sin ⎝⎛⎭⎫π4+α-sin ⎝⎛⎭⎫π4+α=0 故sin ⎝⎛⎭⎫4n -14π-α+cos ⎝⎛⎭⎫4n +14π-α=0.温馨提醒 (1)本题的化简过程,突出体现了分类讨论的思想,当然除了运用分类讨论的思想将n 分两类情况来讨论外,在解答过程中还处处体现了化归思想和整体思想. (2)在转化过程中,缺乏整体意识,是出错的主要原因.方法与技巧同角三角恒等变形是三角恒等变形的基础,主要是变名、变式. 1. 同角关系及诱导公式要注意象限角对三角函数符号的影响,尤其是利用平方关系在求三角函数值时,进行开方时要根据角的象限或范围,判断符号后,正确取舍.2. 三角求值、化简是三角函数的基础,在求值与化简时,常用方法有:(1)弦切互化法:主要利用公式tan x =sin xcos x化成正弦、余弦函数;(2)和积转换法:如利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化;(3)巧用“1”的变换:1=sin 2θ+cos 2θ=cos 2θ(1+tan 2θ)=sin 2θ⎝⎛⎭⎫1+1tan 2θ=tan π4=…. 失误与防范1. 利用诱导公式进行化简求值时,先利用公式化任意角的三角函数为锐角三角函数,其步骤:去负—脱周—化锐.特别注意函数名称和符号的确定.2. 在利用同角三角函数的平方关系时,若开方,要特别注意判断符号. 3. 注意求值与化简后的结果一般要尽可能有理化、整式化.A 组 专项基础训练一、选择题(每小题5分,共20分)1.已知α和β的终边关于直线y =x 对称,且β=-π3,则sin α等于( )A .-32B.32C .-12D.12答案 D解析 因为α和β的终边关于直线y =x 对称,所以α+β=2k π+π2(k ∈Z ).又β=-π3,所以α=2k π+5π6(k ∈Z ),即得sin α=12.2. cos(-2 013π)的值为( )A.12B .-1C .-32D .0答案 B解析 cos(-2 013π)=cos(-2 014π+π)=cos π=-1.3. 已知f (α)=sin (π-α)·cos (2π-α)cos (-π-α)·tan (π-α),则f ⎝⎛⎭⎫-25π3的值为 ( ) A.12B .-12C.32D .-32答案 A解析 ∵f (α)=sin αcos α-cos α·(-tan α)=cos α,∴f ⎝⎛⎭⎫-25π3=cos ⎝⎛⎭⎫-25π3 =cos ⎝⎛⎭⎫8π+π3=cos π3=12. 4. 当0<x <π4时,函数f (x )=cos 2xcos x sin x -sin 2x 的最小值是( )A.14B.12C .2D .4答案 D解析 当0<x <π4时,0<tan x <1,f (x )=cos 2x cos x sin x -sin 2x =1tan x -tan 2x, 设t =tan x ,则0<t <1,y =1t -t 2=1t (1-t )≥4. 当且仅当t =1-t ,即t =12时等号成立.二、填空题(每小题5分,共15分)5. 如果sin α=15,且α为第二象限角,则sin ⎝⎛⎭⎫3π2+α=________. 答案265解析 ∵sin α=15,且α为第二象限角,∴cos α=-1-sin 2α=-1-125=-265, ∴sin ⎝⎛⎭⎫3π2+α=-cos α=265. 6. 已知sin ⎝⎛⎭⎫α+π12=13,则 cos ⎝⎛⎭⎫α+7π12的值为________.答案 -13解析 cos ⎝⎛⎭⎫α+7π12=cos ⎣⎡⎦⎤⎝⎛⎭⎫α+π12+π2 =-sin ⎝⎛⎭⎫α+π12=-13. 7. sin ⎝⎛⎭⎫α+3π2·tan (α+π)sin (π-α)=________.答案 -1解析 原式=-cos α·tan αsin α=-sin αsin α=-1.三、解答题(共22分) 8. (10分)已知sin θ+cos θ=23(0<θ<π),求tan θ的值. 解 将已知等式两边平方,得sin θcos θ=-718,∴π2<θ<π, ∴sin θ-cos θ=(sin θ-cos θ)2=1-2sin θcos θ=43.解方程组⎩⎨⎧sin θ+cos θ=23,sin θ-cos θ=43,得⎩⎪⎨⎪⎧sin θ=2+46,cos θ=2-46,∴tan θ=sin θcos θ=-9-427.9. (12分)已知sin(3π+θ)=13,求cos (π+θ)cos θ[cos (π-θ)-1]+cos (θ-2π)sin ⎝⎛⎭⎫θ-3π2cos (θ-π)-sin ⎝⎛⎭⎫3π2+θ的值.解 ∵sin(3π+θ)=-sin θ=13,∴sin θ=-13,∴原式=-cos θcos θ(-cos θ-1)+cos (2π-θ)-sin ⎝⎛⎭⎫3π2-θcos (π-θ)+cos θ=11+cos θ+cos θ-cos 2θ+cos θ=11+cos θ+11-cos θ=21-cos 2θ=2sin 2θ=2⎝⎛⎭⎫-132=18.B 组 专项能力提升一、选择题(每小题5分,共15分)1. 若sin ⎝⎛⎭⎫π6-α=13,则cos ⎝⎛⎭⎫2π3+2α等于 ( )A .-79B .-13 C.13D.79答案 A解析 ∵⎝⎛⎭⎫π3+α+⎝⎛⎭⎫π6-α=π2, ∴sin ⎝⎛⎭⎫π6-α=sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫π3+α=cos ⎝⎛⎭⎫π3+α=13. 则cos ⎝⎛⎭⎫2π3+2α=2cos 2⎝⎛⎭⎫π3+α-1=-79. 2. 已知1+sin αcos α=-12,则cos αsin α-1的值是( )A.12 B .-12C .2D .-2答案 A解析 由同角三角函数关系式1-sin 2α=cos 2α及题意可得cos α≠0且1-sin α≠0, ∴1+sin αcos α=cos α1-sin α,∴cos α1-sin α=-12,即cos αsin α-1=12. 3. 若cos α+2sin α=-5,则tan α等于( )A.12B .2C .-12D .-2答案 B解析 由cos α+2sin α=-5可知,cos α≠0,两边同时除以cos α得1+2tan α=-5cos α,平方得(1+2tan α)2=5cos 2α=5(1+tan 2α),∴tan 2α-4tan α+4=0,解得tan α=2. 二、填空题(每小题5分,共15分)4. 若sin(π+α)=-12,α∈⎝⎛⎭⎫π2,π,则cos α=________. 答案 -32解析 ∵sin(π+α)=-sin α,∴sin α=12.又α∈⎝⎛⎭⎫π2,π,∴cos α=-1-sin 2α=-32. 5. 已知tan θ=2,则sin 2θ+sin θcos θ-2cos 2θ=________. 答案 45解析 sin 2θ+sin θcos θ-2cos 2θ =sin 2θ+sin θcos θ-2cos 2θ1=sin 2θ+sin θcos θ-2cos 2θsin 2θ+cos 2θ=tan 2θ+tan θ-2tan 2θ+1=4+2-24+1=45. 6. 已知cos ⎝⎛⎭⎫π6-θ=a (|a |≤1),则cos ⎝⎛⎭⎫5π6+θ+sin ⎝⎛⎭⎫2π3-θ的值是________. 答案 0解析 cos ⎝⎛⎭⎫5π6+θ=cos ⎣⎡⎦⎤π-⎝⎛⎭⎫π6-θ =-cos ⎝⎛⎭⎫π6-θ=-a .sin ⎝⎛⎭⎫2π3-θ=sin ⎣⎡⎦⎤π2+⎝⎛⎭⎫π6-θ=cos ⎝⎛⎭⎫π6-θ=a ,∴cos ⎝⎛⎭⎫5π6+θ+sin ⎝⎛⎭⎫2π3-θ=0. 三、解答题7. (13分)已知A 、B 、C 是三角形的内角,3sin A ,-cos A 是方程x 2-x +2a =0的两根.(1)求角A .(2)若1+2sin B cos B cos 2B -sin 2B=-3,求tan B .解 (1)由已知可得,3sin A -cos A =1① 又sin 2A +cos 2A =1, ∴sin 2A +(3sin A -1)2=1, 即4sin 2A -23sin A =0,得sin A =0(舍去)或sin A =32,∴A =π3或2π3, 将A =π3或2π3代入①知A =23π时不成立,∴A =π3.(2)由1+2sin B cos Bcos 2B -sin 2B=-3,得sin 2B -sin B cos B -2cos 2B =0, ∵cos B ≠0,∴tan 2B -tan B -2=0, ∴tan B =2或tan B =-1.∵tan B =-1使cos 2B -sin 2B =0,舍去, 故tan B =2.。
(完整版)三角函数诱导公式练习题__答案(最新整理)
13.证明:左边=
tan( ) sin( ) cos( ) ( cos )( sin )
( tan )( sin ) cos cos sin
=tanθ=右边,
∴原等式成立.
14 证明:(1)sin( 3π -α)=sin[π+( π -α)]=-sin( π -α)=-cosα.
2
2
2
(2)cos( 3π +α)=cos[π+( π +α)]=-cos( π +α)=sinα.
22 22 22
8
3
4
6
12. 求下列三角函数值:
(1)sin 4π ·cos 25π ·tan 5π ;
3
6
4
(2)sin[(2n+1)π- 2π ]. 3
13.设
f(θ)=
2 cos3 2
sin2 (2π ) sin(π 2
2cos2 (π ) cos( )
)
3
,求
f( π 3
)的值.
4
参考答案 1
8.sin21°+sin22°+sin23°+…+sin289°=_________. 三、解答题 9.求值:sin(-660°)cos420°-tan330°cot(-690°).
1
10.证明:
2sin(π ) cos 1 2 sin2
1
tan(9π ) 1 tan(π ) 1
.
11.已知 cosα= 1 ,cos(α+β)=1,求证:cos(2α+β)= 1 .
2
π tan( +α)=-cotα
2
3π sin( -α)=-cosα
高一数学 知识点 三角函数 诱导公式 常考题 经典题 50道 含答案和解析
高一数学三角函数诱导公式50道常考题经典题一、单选题1.若角的终边上有一点(-4,a),则a的值是()A. B. C. D.【答案】A【考点】任意角的三角函数的定义,诱导公式一【解析】【解答】由三角函数的定义知:,所以,因为角的终边在第三象限,所以<0,所以的值是。
【分析】三角函数是用终边上一点的坐标来定义的,和点的位置没有关系。
属于基础题型。
================================================================================2.若,则的值是( )A. B. C. D.【答案】C【解析】【解答】即,所以,,=,故选C。
【分析】简单题,此类题解的思路是:先化简已知条件,再将所求用已知表示。
================================================================================3.若,则()A. B. C. D.【答案】C【考点】诱导公式一,同角三角函数间的基本关系【解析】【解答】,故选C.================================================================================4.函数图像的一条对称轴方程是()A. B. C. D.【答案】A【考点】诱导公式一,余弦函数的图象,余弦函数的对称性【解析】【分析】,由y=cosx的对称轴可知,所求函数图像的对称轴满足即,当k=-1时,,故选A.================================================================================5.已知,则()A. B. C. D.【答案】C【考点】诱导公式一,同角三角函数间的基本关系,弦切互化【解析】【解答】因为,所以,可得,故C符合题意.故答案为:C .【分析】利用诱导公式将已知条件化简可求出tan,将中分子分母同时除以cos.================================================================================6.函数()A. 是奇函数B. 是偶函数C. 既是奇函数,又是偶函数D. 是非奇非偶函数【答案】A【考点】奇函数,诱导公式一【解析】【解答】∵,∴,∴是奇函数.故答案为:A【分析】首先利用诱导公式整理化简f(x) 的解析式,再根据奇函数的定义即可得证出结果。
三角函数的定义、诱导公式、同角三角函数的关系练习题
三角函数的定义、诱导公式、同角三角函数的关系练习题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知角α的终边经过点P(4,-3),则的值为()A. B. C. D.2.已知角α的始边与x轴非负半轴重合,终边在射线4x-3y=0(x≤0)上,则cos α-sin α的值为( )A. B.C. D.3.已知角α的终边与单位圆的交点P,则sinα·tanα=( )A.- B.± C.- D.±4.若tanα<0,且sinα>cosα,则α在( )A.第一象限 B.第二象限C.第三象限 D.第四象限5.若,且,则角是()A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角6.若,且为第二象限角,()A. B. C. D.7.已知,则等于A .B .C .D .8.若,且为第二象限角,则( )A .B .C .D .二、填空题9.已知 ,则___________三、解答题 10.已知,且是第四象限的角。
.(1)求; (2). 11.(1)已知,求的值;(2)已知, ,求的值.12.已知tan α2,= (1)求值: sin cos sin cos αααα+- (2)求值: ()()()()π5πsin cos cos π22cos 7πsin 2πsin παααααα⎛⎫⎛⎫+--+ ⎪ ⎪⎝⎭⎝⎭+-+ 13.已知角α终边上的一点()7,3P m m - ()0m ≠.(1)求()cos sin 2119cos sin 22παπαππαα⎛⎫+-- ⎪⎝⎭⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭的值; (2)求22sin cos cos ααα+-的值.14.已知0θπ<<,且1sin cos 5θθ+=,求 (1)sin cos θθ-的值;(2)tan θ的值.15.已知tan 2α=.(1)求3sin 2cos sin cos αααα+-的值; (2)求()()()()3cos cos sin 22sin 3sin cos πππαααπααππα⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭+-+的值; 16.已知,计算:(1); (2).17.已知: 1sin cos ,0<<,5θθθπ+=且 (Ⅰ)求sin cos tan θθθ-和的值;(Ⅱ)求22sin cos 2sin cos θθθθ-的值. 18.已知求的值.19.已知,(1)求的值;(2)求的值;(3)求的值.20.已知.(1)求的值(2)求的值.21.已知,求的值;若是第三象限角,求的值.22.已知,.(1)求的值.(2)求的值.23.(1)已知,求的值;(2)已知,求的值.参考答案1.C【解析】【分析】利用任意角函数的定义求出cosα,利用三角函数的诱导公式化简求出值.【详解】∵角α的终边经过点P(4,﹣3),∴p到原点的距离为5∴sinα,cosα∴故选:C.【点睛】本题考查三角函数的定义,考查诱导公式,属于基础题.2.C【解析】【分析】利用任意角的三角函数的定义,求得cosα和sinα的值,可得cosα﹣sinα的值.【详解】角α的始边与x轴非负半轴重合,终边在射线4x-3y=0(x≤0)上,不妨令x=-3,则y=-4,∴r=5,∴cos α==,sin α==,则cos α-sin α=-+=.故选C.【点睛】本题主要考查任意角的三角函数的定义,属于基础题.3.C【解析】【分析】由条件利用任意角的三角函数的定义求得tanα和sinα的值.【详解】由|OP|2=+y2=1,得y2=,y=。
3-2第二节 同角三角函数的基本关系与诱导公式练习题(2015年高考总复习)
第二节 同角三角函数的基本关系与诱导公式时间:45分钟 分值:75分一、选择题(本大题共6小题,每小题5分,共30分) 1.tan 8π3的值为( ) A.33 B .-33 C. 3D .- 3解析 tan 8π3=tan ⎝ ⎛⎭⎪⎫2π+2π3=tan 2π3=- 3.答案 D2.已知α是第四象限角,且sin α=-35,则tan α=( ) A.34 B .-34 C.43D .-43解析 ∵α是第四象限角,且sin α=-35,∴cos α=45,tan α=-34. 答案 B3.(2014·玉溪一中月考)设α是第二象限角,P (x,4)为其终边上的一点,且cos α=15x ,则tan α=( )A.43B.34 C .-34D .-43解析 ∵α是第二象限角,∴cos α=15x <0,即x <0.又cos α=15x =x x 2+16,解得x =-3,∴tan α=4x =-43. 答案 D4.已知sin α-cos α=2,α∈(0,π),则tan α=( ) A .-1 B .-22 C.22D .1解析 方法1:由sin α-cos α=2, 得2sin ⎝⎛⎭⎪⎫α-π4=2, 即sin ⎝ ⎛⎭⎪⎫α-π4=1,∵0<α<π,∴-π4<α-π4<34π. ∴α=34π,∴tan α=-1.方法2:由sin α-cos α=2,两边平方得sin2α=-1. ∵α∈(0,π),∴2α=32π,α=34π,∴tan α=-1. 答案 A5.已知sin α是方程5x 2-7x -6=0的根,且α是第三象限角,则sin ⎝ ⎛⎭⎪⎫-α-3π2cos ⎝ ⎛⎭⎪⎫3π2-αtan 2(π-α)cos ⎝ ⎛⎭⎪⎫π2-αsin ⎝ ⎛⎭⎪⎫π2+α=( )A.916 B .-916 C .-34D.34解析 ∵方程5x 2-7x -6=0的根为x 1=2,x 2=-35,由题知sin α=-35,∴cos α=-45,tan α=34,∴原式=cos α·(-sin α)tan 2αsin αcos α=-tan 2α=-916. 答案 B6.(2013·浙江卷)已知α∈R ,sin α+2cos α=102,则tan2α=( ) A.43 B.34 C .-34D .-43解析 由sin α+2cos α=102, 再结合sin 2α+cos 2α=1得⎩⎨⎧sin α=-110,cos α=310,或⎩⎨⎧sin α=310,cos α=110,所以tan α=-13或tan α=3, 代入tan2α=2tan α1-tan 2α得tan2α=-34. 答案 C二、填空题(本大题共3小题,每小题5分,共15分) 7.已知α为第二象限角,则cos α1+tan 2α+sin α1+1tan 2α=________.解析 原式=cos αsin 2α+cos 2αcos 2α+sin αsin 2α+cos 2αsin 2α=cos α1|cos α|+sin α1|sin α|,∵α是第二象限角,∴sin α>0,cos α<0,∴cos α1|cos α|+sin α1|sin α|=-1+1=0,即原式等于0.答案 08.(2014·天津一中模拟)已知sin x cos x =38,且x ∈⎝ ⎛⎭⎪⎫π4,π2,则cos x-sin x =________.解析 ∵x ∈⎝ ⎛⎭⎪⎫π4,π2,∴sin x >cos x ,即cos x -sin x <0,∴(cos x -sin x )2=1-2sin x cos x =14,∴cos x -sin x =-12. 答案 -129.(2013·四川卷)设sin2α=-sin α,α∈(π2,π),则tan2α的值是________.解析 由sin2α=-sin α得2sin αcos α=-sin α,由α∈(π2,π),所以sin α≠0,从而cos α=-12,所以α=23π,tan2α=tan 43π= 3.答案3三、解答题(本大题共3小题,每小题10分,共30分) 10.已知sin(3π+θ)=13,求cos (π+θ)cos θ[cos (π-θ)-1]+cos (θ-2π)sin ⎝ ⎛⎭⎪⎫θ-3π2cos (θ-π)-sin ⎝ ⎛⎭⎪⎫3π2+θ的值.解 ∵sin(3π+θ)=-sin θ=13,∴sin θ=-13. ∴原式=-cos θcos θ(-cos θ-1)+cos θcos θ·(-cos θ)+cos θ=11+cos θ+cos θ-cos 2θ+cos θ=11+cos θ+11-cos θ=21-cos 2θ=2sin 2θ=2⎝ ⎛⎭⎪⎫-132=18. 11.(2013·广东卷)已知函数f (x )=2cos(x -π12),x ∈R . (1)求f (-π6)的值;(2)若cos θ=35,θ∈(3π2,2π),求f (2θ+π3). 解 (1)f (-π6)=2cos(-π6-π12) =2cos(-π4)=2cos π4=1. (2)f (2θ+π3)=2cos(2θ+π3-π12) =2cos(2θ+π4) =cos2θ-sin2θ.因为cos θ=35,θ∈(3π2,2π),所以sin θ=-45.所以sin2θ=2sin θcos θ=-2425,cos2θ=cos 2θ-sin 2θ=-725. 所以f (2θ+π3)=cos2θ-sin2θ=-725-(-2425)=1725.12.已知sin θ,cos θ是方程4x 2-4mx +2m -1=0的两个根,3π2<θ<2π,求θ.解 ∵⎩⎪⎨⎪⎧sin θ+cos θ=m ,sin θ·cos θ=2m -14,Δ=16(m 2-2m +1)≥0,代入(sin θ+cos θ)2=1+2sin θ·cos θ, 得m =1±32,又3π2<θ<2π,∴sin θ·cos θ=2m -14<0, 即m =1-32.∴sin θ+cos θ=m =1-32, sin θ·cos θ=-34. 又∵3π2<θ<2π,∴sin θ=-32,cos θ=12.∴θ=5π3.。
高考数学专题复习题:同角三角函数基本关系式及诱导公式
高考数学专题复习题:同角三角函数基本关系式及诱导公式一、单项选择题(共8小题)1.已知α是第三象限角,sin α=-35,则tan α=( )A.-34B.34C.-43D.43 2.已知tan 2θ=,则3πsin sin 2θθ⎛⎫+= ⎪⎝⎭( ) A .35 B .12 C .12− D .25− 3.若cos α=35,α是第一象限角,角α,β的终边关于y 轴对称,则tan β=( )A.34B.-34C.43D.-434.“sin cos 1αα+=”是“sin20α=”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.若α为锐角,tan α=1cos 2α+1,则tan α=( )A.12B.1C.2-3D.36.已知角α的终边上一点的坐标为⎝ ⎛⎭⎪⎫sin 4π5,cos 4π5,则α的最小正值为( ) A.π5 B.3π10 C.4π5 D.17π107.如果函数321()(1)23f x x x f =++',且该函数的图象在点3x =处的切线的倾斜角为α,那么π3πsin cos 22αα⎛⎫⎛⎫+− ⎪ ⎪⎝⎭⎝⎭的值为( ) A .310 B .310− C .910 D .34−二、多项选择题(共3小题)9.已知α∈(0,π),且sin α+cos α=15,则( )A. π2<α<πB. sin αcos α=-1225C. cos θ=-45D. cos α-sin α=-75 10.已知sin α+cos αsin α-cos α=3,-π2<α<π2,则( ) A.tan α=2B.sin α-cos α=-55C.sin 4α-cos 4α=35D.1-2sin αcos αsin 2α-cos 2α=1311.若sin θ+cos θ=t ,θ∈⎝ ⎛⎭⎪⎫-π2,π2,t ∈(-1,2],函数f (θ)=sin θ+cos θ-sin θcos θ,则下列选项正确的是( )A .当t =12时,sin θcos θ的值为38B .当t =12时,sin 3θ-cos 3θ的值为-5716C .函数f (θ)的值域为(-1,2]D .函数f (θ)的值域为(-1,1]三、填空题(共3小题)12.若θ∈⎝ ⎛⎭⎪⎫0,π2,tan θ=12,则sin θ-cos θ=________. 13.已知sin(3π+θ)=13,则cos (π+θ)cos θ[cos (π-θ)-1]+cos (θ-2π)sin ⎝ ⎛⎭⎪⎫θ-3π2cos (θ-π)-sin ⎝ ⎛⎭⎪⎫3π2+θ=________.14.已知-π<x <0,sin(π+x )-cos x =-15,则sin 2x +2sin 2x 1-tan x =________.。
高三数学同角三角函数的基本关系式和诱导公式试题答案及解析
高三数学同角三角函数的基本关系式和诱导公式试题答案及解析1.已知,则.【答案】3【解析】===3.【考点】同角三角函数基本关系式2.若tan α=3,则 sin2α-2 sin αcos α+3 cos2α=______.【答案】【解析】sin2α-2 sin αcos α+3 cos2α====.3.已知f(α)=,则f的值为________.【答案】-【解析】∵f(α)==-cos α,∴f=-cos=-cos=-cos=-.4.化简+=________.【解析】原式=+=-sin α+sin α=0.5.已知α∈(,π),tanα=-,则sin(α+π)=()A.B.-C.D.-【答案】B【解析】由题意可知,由此解得sin2α=,又α∈(,π),因此有sinα=,sin(α+π)=-sinα=-,故选B.6.记cos(-80°)=k,那么tan100°=()A.B.-C.D.-【答案】B【解析】解法一:因为cos(-80°)=cos80°=k,sin80°==,所以tan100°=-tan80°=-=-.解法二:因为cos(-80°)=k,所以cos80°=k,所以tan100°=-tan80°==-.7.已知sinαcosα=,且π<α<,则cosα-sinα的值为()A.-B.C.-D.【答案】B【解析】∵π<α<,∴cosα>sinα,∴cosα-sinα>0,又∵(cosα-sinα)2=1-2cosαsinα=,∴cosα-sinα=.8.若3cos(-θ)+cos(π+θ)=0,则cos2θ+sin2θ的值是________.【答案】【解析】∵3cos(-θ)+cos(π+θ)=0,即3sinθ-cosθ=0,即tanθ=.∴cos2θ+sin2θ======.9.(5分)(2011•福建)若α∈(0,),且sin2α+cos2α=,则tanα的值等于()A.B.C.D.【答案】D【解析】把已知的等式中的cos2α,利用同角三角函数间的基本关系化简后,得到关于sinα的方程,根据α的度数,求出方程的解即可得到sinα的值,然后利用特殊角的三角函数值,由α的范围即可得到α的度数,利用α的度数求出tanα即可.解:由cos2α=1﹣2sin2α,得到sin2α+cos2α=1﹣sin2α=,则sin2α=,又α∈(0,),所以sinα=,则α=,所以tanα=tan=.故选D点评:此题考查学生灵活运用二倍角的余弦函数公式及同角三角函数间的基本关系化简求值,是一道基础题.学生做题时应注意角度的范围.10.已知sin α=+cos α,且α∈,则的值为________.【答案】-【解析】将sin α-cos α=两边平方,得2sin α·cos α=,(sin α+cos α)2=,sin α+cos α=,==-(sin α+cos α)=-.11.在△ABC中,若sinA,cosA是关于x的方程3x2-2x+m=0的两个根,则△ABC是 ( )A.钝角三角形B.直角三角形C.锐角三角形D.不能确定【答案】A【解析】∵sinA,cosA是关于x的方程3x2-2x+m=0的两个根∴sinA+cosA=∴(sinA+cosA)2=1+2sinAcosA=即sinAcosA=-∵0o<A<180o,∴sinA>0,所以cosA<0,即90o<A<180o故知△ABC是钝角三角形12.已知,则()A.B.C.D.【答案】A【解析】∵,∴,∴,∴,∴,∴,∴.【考点】三角函数求值.13.在中,角A,B,C的对边a,b,c成等差数列,且,则 .【答案】【解析】∵成等差数列,∴,∴,∵,∴,∴,∴,(1)∵且,∴代入(1)式中,,∴,∴,∴,∴.【考点】1.等差中项;2.倍角公式;3.诱导公式.14.已知,,则.【答案】【解析】由题意,,.【考点】同角间的三角函数关系.15.若则【答案】【解析】,得,∴.【考点】求三角函数值.16.α是第二象限角,tanα=-,则sinα=________.【答案】【解析】由解得sinα=±.∵α为第二象限角,∴sinα>0,∴sinα=.17. cos=________.【答案】-【解析】cos=cos=cos(17π+)=-cos=-.18.已知其中若.(1)求的值;(2)求的值.【答案】(1);(2).【解析】(1)先由已知条件求得的值,再由平方关系可得的值,把拆为,最后利用两角和的余弦公式即可求得的值;(2)考查了三角函数中知一求三的思想,即这几个量“知一求三”.可先利用差角余弦公式将展开,求得的值,两边平方即可求得的值,再由平方关系即可求得的值,最后由商关系即可求得的值.试题解析:(1)由已知得:,(2)由,得,两边平方得:,即,∵,且,从而. 12分【考点】1.平面向量的数量积运算;2.应用三角恒等变换求三角函数的值.19.已知x∈(0,),则函数f(x)=的最大值为()A.0B.C.D.1【答案】C【解析】由已知得,f(x)==tanx-tan2x=-(tanx-)2+,∵x∈(0,),∴tanx∈(0,1),=.故当tanx=时,f(x)max20.已知sinθ,cosθ是关于x的方程x2-ax+a=0(a∈R)的两个根.(1)求cos3(-θ)+sin3(-θ)的值.(2)求tan(π-θ)-的值.【答案】(1) -2 (2) 1+【解析】【思路点拨】先由方程根的判别式Δ≥0,求a的取值范围,而后应用根与系数的关系及诱导公式求解.解:由已知,原方程的判别式Δ≥0,即(-a)2-4a≥0,∴a≥4或a≤0.又(sinθ+cosθ)2=1+2sinθcosθ,则a2-2a-1=0,从而a=1-或a=1+(舍去),因此sinθ+cosθ=sinθcosθ=1-.(1)cos3(-θ)+sin3(-θ)=sin3θ+cos3θ=(sinθ+cosθ)(sin2θ-sinθ·cosθ+cos2θ)=(1-)[1-(1-)]=-2.(2)tan(π-θ)-=-tanθ-=-(+)=-=-=1+.21.若sinθcosθ>0,则θ在()A.第一、二象限B.第一、三象限C.第一、四象限D.第二、四象限【答案】B【解析】∵sinθcosθ>0,∴sinθ,cosθ同号.当sinθ>0,cosθ>0时,θ在第一象限,当sinθ<0,cosθ<0时,θ在第三象限,因此,选B.22.=()A.-B.-C.D.【解析】====sin 30°=.23.设当x=θ时,函数f(x)=sin x-2cos x取得最大值,则cos θ=________.【答案】-【解析】f(x)=sin x-2cos x==sin(x-φ),其中sin φ=,cos φ=,当x-φ=2kπ+ (k∈Z)时,函数f(x)取得最大值,即θ=2kπ++φ时,函数f(x)取到最大值,所以cos θ=-sin φ=-.24. 4cos 50°-tan 40°=________.【答案】【解析】4cos 50°-tan 40°======.25.已知α∈,且cos α=-,则tan α=________.【答案】2【解析】利用同角三角函数的基本关系求解.由条件可得sin α=-,所以tan α===2.26.若α,β∈,cos =,sin =-,则cos (α+β)=________.【答案】【解析】∵α,β∈,∴-<α-<,-<-β<,由cos =和sin =-得α-=±,-β=-,当α-=-,-β=-时,α+β=0,与α,β∈矛盾;当α-=,-β=-时,α=β=,此时cos (α+β)=-.27.若cos =,则cos =().A.-B.-C.D.【答案】D【解析】∵cos =,∴cos =2cos 2-1=-,即sin 2x=,∴cos =sin 2x=.28.已知sin θ+cos θ=,则sin θ-cos θ的值为________.【答案】-【解析】∵sin θ+cos θ=,∴(sin θ+cos θ)2=1+2cos θsin θ=,∴2cos θsin θ=,∴(sin θ-cos θ)2=1-=,又θ∈,∴sin θ<cos θ,∴sin θ-cos θ=-.29.已知,则=____________.【答案】【解析】,根据,可知:,故答案为.【考点】同角三角函数的基本关系式的运算30.已知,且,则.【答案】【解析】因为,所以。
三角函数的定义、诱导公式、同角三角函数的关系练习题-
三角函数的定义、诱导公式、同角三角函数的关系练习题学校:___________:___________班级:___________考号:___________一、单选题1.已知角α的终边经过点P(4,-3),则的值为()A.B.C.D.2.已知角α的始边与x轴非负半轴重合,终边在射线4x-3y=0(x≤0)上,则cos α-sin α的值为( )A.B.C.D.3.已知角α的终边与单位圆的交点P,则sinα·tanα=( )A.-B.±C.-D.±4.若tanα<0,且sinα>cosα,则α在( )A.第一象限B.第二象限C.第三象限D.第四象限5.若,且,则角是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角6.若,且为第二象限角,()A.B.C.D.7.已知,则等于A.B.C.D.8.若,且为第二象限角,则()A.B.C.D.二、填空题9.已知,则___________三、解答题10.已知,且是第四象限的角。
.(1)求;(2).11.(1)已知,求的值;(2)已知,,求的值.12.已知tanα2,=(1)求值:sin cossin cosαααα+-(2)求值:()()()()π5πsin cos cosπ22cos7πsin2πsinπαααααα⎛⎫⎛⎫+--+⎪ ⎪⎝⎭⎝⎭+-+13.已知角α终边上的一点()7,3P m m-()0m≠. (1)求()cos sin2119cos sin22παπαππαα⎛⎫+--⎪⎝⎭⎛⎫⎛⎫-+⎪ ⎪⎝⎭⎝⎭的值;(2)求22sin cos cosααα+-的值.14.已知0θπ<<,且1sin cos5θθ+=,求(1)sin cosθθ-的值;(2)tanθ的值.15.已知tan2α=.(1)求3sin2cossin cosαααα+-的值;(2)求()()()()3cos cos sin22sin3sin cosπππαααπααππα⎛⎫⎛⎫-+-⎪ ⎪⎝⎭⎝⎭+-+的值;16.已知,计算:(1);(2).17.已知:1sin cos,0<<,5θθθπ+=且(Ⅰ)求sin cos tanθθθ-和的值;(Ⅱ)求22sincos2sin cosθθθθ-的值.18.已知求的值.19.已知,(1)求的值;(2)求的值;(3)求的值.20.已知.(1)求的值(2)求的值.21.已知,求的值;若是第三象限角,求的值.22.已知,.(1)求的值.(2)求的值.23.(1)已知,求的值;(2)已知,求的值.参考答案1.C【解析】【分析】利用任意角函数的定义求出cosα,利用三角函数的诱导公式化简求出值.【详解】∵角α的终边经过点P(4,﹣3),∴p到原点的距离为5∴sinα,cosα∴故选:C.【点睛】本题考查三角函数的定义,考查诱导公式,属于基础题.2.C【解析】【分析】利用任意角的三角函数的定义,求得cosα和sinα的值,可得cosα﹣sinα的值.【详解】角α的始边与x轴非负半轴重合,终边在射线4x-3y=0(x≤0)上,不妨令x=-3,则y=-4,∴r=5,∴cos α==,sin α==,则cos α-sin α=-+=.故选C.【点睛】本题主要考查任意角的三角函数的定义,属于基础题.3.C【解析】【分析】由条件利用任意角的三角函数的定义求得tanα和sinα的值.【详解】由|OP|2=+y2=1,得y2=,y=。
高三数学同角三角函数的基本关系式和诱导公式试题
高三数学同角三角函数的基本关系式和诱导公式试题1.已知,且,则 .【答案】【解析】由已知得,.【考点】三角函数基本运算.2.已知函数f(x)= ,则f[f(2014)]= ( )A.1B.-1C.0D.【答案】A【解析】∵f(2014)=2014-14=2000∴f[f(2014)]=f(2000)=cos(×2000)=cos500=13.若,则 .【答案】【解析】.【考点】诱导公式.4.若sinα=,α∈,则cos=__________.【答案】-【解析】由α∈,sinα=,得cosα=,由两角和与差的余弦公式得cos=cosαcos-sinαsin=-(cosα-sinα)=-5.已知tanθ=2,则=__________.【答案】-2【解析】==-2.6.已知2tanα·sinα=3,-<α<0,则cos(α-)=____________.【解析】依题意得=3,即2cos2α+3cosα-2=0,解得cosα=或cosα=-2(舍去).又-<α<0,因此α=-,故cos=cos=cos=0.7.已知tan=3,则 .【答案】45【解析】已知条件为正切值,所求分式为弦的齐次式,所以运用弦化切,即将分子分母同除以得.【考点】弦化切8.已知函数f(x)=sin+-2cos2,x∈R(其中ω>0).(1)求函数f(x)的值域;(2)若函数y=f(x)的图象与直线y=-1的两个相邻交点间的距离为,求函数y=f(x)的单调增区间.【答案】(1)[-3,1](2)(k∈Z)【解析】(1)f(x)=sin ωx+cos ωx+sin ωx-cos ωx-(cos ωx+1)=2-1=2-1.由-1≤≤1,得-3≤2s-1≤1,所以函数f(x)的值域为[-3,1].(2)由题设条件及三角函数图象和性质可知,y=f(x)的周期为π,所以=π,即ω=2.所以f(x)=2sin-1,再由2kπ-≤2x-≤2kπ+ (k∈Z),解得kπ-≤x≤kπ+(k∈Z).所以函数y=f(x)的单调增区间为 (k∈Z).9.=()A.-B.-C.D.【答案】C【解析】====sin 30°=.10.已知,则()A.B.C.D.【答案】D【解析】解法(一)切化弦的思想:因为,所以,.又因为.所以解得.所以.故选D. 解法(二)弦化切的思想:因为.故选D.【考点】1.切与弦互化的思想.2.二倍角公式.3.方程的思想.11.已知,则=______________.【答案】【解析】本题三角函数式的求值,一般要先化简,而化简方法有透导公式化为同角,然后用切割化弦法,.【考点】诱导公式与同角关系.12.已知,且,则等于()A.B.C.D.【答案】B【解析】,且,所以,因此,故选B.【考点】1.诱导公式;2.同角三角函数的基本关系13.已知函数,.(1)求的最大值和最小正周期;(2)若,是第二象限的角,求.【答案】(1)函数的最大值为,最小正周期为;(2).【解析】(1)先利用辅助角公式将函数的解析式化简为的形式,进而求出函数的最大值与最小正周期;(2)先利用已知条件求出的值,再结合角的取值范围,求出的值,最后利用二倍角公式求出的值.试题解析:(1),,,即函数的最大值为,最小正周期为;(2),,为第二象限角,,因此,.【考点】1.辅助角公式;2.三角函数的最值;3.三角函数的周期性;4.同角三角函数的基本关系;5.二倍角14.已知,,,则的值=________________.【答案】【解析】因为,所以,,则,,则.【考点】1、同角三角函数值的互化;2,、三角函数的和差化积公式.15.化简的结果是 .【答案】【解析】.【考点】三角函数的诱导公式.16.已知,则 .【答案】【解析】由,.【考点】三角恒等变性及求值.17.函数的最小正周期是()A.B.C.2πD.4π【答案】B【解析】函数,所以周期为.【考点】诱导公式,二倍角公式,三角函数的周期.18.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.①;②;③;④;⑤.(1)从上述五个式子中选择一个,求出常数;(2)根据(1)的计算结果,将该同学的发现推广为一个三角恒等式,并证明你的结论.【答案】(1);(2).【解析】(1)∵②中的15°的2倍是30°,便于计算,可选用②算出a值;(2)观察发现两角之和为30°,可猜想,再运用降次公式,两角和与差公式,同角三角函数的关系式进行证明.试题解析:(1)选择②式计算.(2)猜想的三角恒等式为.证明:.【考点】降次公式,两角和与差公式,同角三角函数的关系式.19.若,且,则.【答案】【解析】∵,,∴是第三象限角,.【考点】同角三角函数的关系.20.已知是第二象限角,则()A.B.C.D.【答案】A【解析】∵是第二象限角,∴.故选A.【考点】三角求值21.已知角终边上一点,则()A.B.C.D.【答案】D【解析】根据题意,由于角终边上一点,则可知,故答案为D.【考点】三角函数的定义点评:解决的关键是根据三角函数的定义来得到其正弦值和余弦值,得到结论,属于基础题。
高一数学同角三角函数的基本关系式和诱导公式试题
高一数学同角三角函数的基本关系式和诱导公式试题1.已知,是第三象限角,则 .【答案】.【解析】根据同角三角函数的基本关系知,,化简整理得①,又因为②,联立方程①②即可解得:,,又因为是第三象限角,所以,故.【考点】同角三角函数的基本关系.2.已知.(1)化简;(2)若是第三象限角,且,求的值.【答案】(1);(2).【解析】解题思路:(1)利用诱导公式进行化简即可;(2)先用诱导公式得出,再利用同角三角函数基本关系式及角所在象限求出,进而求出.规律总结:涉及三角函数的化简与求值问题,往往要利用三角函数基本关系式、诱导公式、两角和差的三角公式以及二倍角公式,进行恒等变形;一定要注意灵活选用公式.试题解析:(I)原式=;(II)由得,即,因为是第三象限角,所以,所以 .【考点】1.诱导公式;2.三角函数基本关系式.3. cos660o的值为( ).A.B.C.D.【答案】C.【解析】【考点】诱导公式,特殊角的三角函数值.4.()A.B.C.D.【答案】C【解析】,诱导公式和特殊值的三角函数值记忆不正确,会导致选择A或B,选择D的错误很少见.【考点】诱导公式和特殊角的三角函数值.5.已知,且∥.求值:(1);(2).【答案】(1);(2) .【解析】解题思路:(1)由得出关于的关系,利用求得;(2)利用,分子、父母同除以,得到的式子,再代入求值.规律总结:平面向量与三角函数结合是命题热点,主要借助平面向量平行、垂直的条件推得关于的关系式,然后利用三角函数的有关公式或性质进行变换.试题解析:(1),,.(2).【考点】平面向量平行的判定、同角三角函数基本关系式.6.已知的值为()A.-2B.2C.D.-【答案】D【解析】由原式可得,解得.【考点】同角三角函数间的基本关系.7.求的值域.【解析】可利用同角三角函数的基本关系式将函数化为利用换元法令原函数变为一元二次函数,可用一元二次函数求值域的方法解,注意的取值范围.解:原函数可化为令可得则【考点】同角三角函数的基本关系式,一元二次函数求值域.8.已知(1)化简;(2)若是第三象限角,且,求的值.【答案】(1);(2).【解析】(1)根据诱导公式,将中的三角函数都转化为的三角函数,即可得到;(2)由,可得,又由条件是第三象限角及(1)中得到的的表达式,即可得到.(1);(2)由得,,因为是第三象限角,所以,∴.【考点】1.诱导公式;2.同角三角函数基本关系.9.已知sinα=,且α为第二象限角,那么tanα的值等于()A.B.C.D.【答案】B【解析】∵sinα=,且α为第二象限角,∴,∴.【考点】同角三角函数的基本关系.10.的值等于()A.B.C.D.【答案】C【解析】,故选C.【考点】诱导公式11.已知,则的值是()A.B.C.D.【答案】A【解析】【考点】诱导公式的化简12. sin的值是()A.B.-C.D.-【答案】B【解析】.【考点】诱导公式,特殊角的三角函数值.13.已知,则等于 ( )A.B.C.D.【答案】D【解析】法一:由可得即,所以,又因为,从而可得到,所以,所以;法二:因为将代入即可得到,故选D.【考点】同角三角函数的基本关系式.14.已知函数,.(1)求的值;(2)若,,求.【答案】(1)1;(2)【解析】(1)直接将代入函数即可求其值。
高三数学同角三角函数的基本关系式和诱导公式试题
高三数学同角三角函数的基本关系式和诱导公式试题1.已知,,则_____________.【答案】【解析】因为α是锐角所以sin(π-α)=sinα=【考点】同角三角函数关系,诱导公式.2.若,则A.B.C.D.【答案】C【解析】由,可得:同正或同负,即可排除A和B,又由,故.【考点】同角三角函数的关系,且α∈,则tan(2π-α)的值为________.3.已知sin(π-α)=log8【答案】=-,【解析】sin(π-α)=sin α=log8又α ∈,得cos α==,tan(2π-α)=tan(-α)=-tan α=-=.4.已知2sinαtanα=3,则cosα的值是()A.-7B.-C.D.【答案】D【解析】由已知得2sin2α=3cosα,∴2cos2α+3cosα-2=0,(cosα+2)(2cosα-1)=0∴cosα=,选D.5.已知sin(-x)=,则cos(π-x)=()A.B.C.-D.-【答案】C【解析】cos(π-x)=cos[+(-x)]=-sin(-x)=-,故选C.6.方程两根,且,则;【答案】【解析】由已知可得,,因为,所以,所以或.但由于,所以,。
由,则同号;由,则都小于0。
所以,所以【考点】两角和差公式以及正切函数的性质.7.在中,角A,B,C的对边a,b,c成等差数列,且,则 .【答案】【解析】∵成等差数列,∴,∴,∵,∴,∴,∴,(1)∵且,∴代入(1)式中,,∴,∴,∴,∴.【考点】1.等差中项;2.倍角公式;3.诱导公式.8.若,则 .【答案】【解析】.【考点】诱导公式.9.已知tan =,tan =,则tan(α+β)=________.【答案】1【解析】tan(α+β)=tan[(α-)+(+β)]==110.若sinα=,α∈,则cos=__________.【答案】-【解析】由α∈,sinα=,得cosα=,由两角和与差的余弦公式得cos=cosαcos-sinαsin=-(cosα-sinα)=-11.函数y=cos的单调递增区间是________.【答案】(k∈Z)【解析】-π+2kπ≤2x-≤2kπ,即-+kπ≤x≤+kπ(k∈Z),所求单调递增区间是(k∈Z).12.设f(x)=sinx+cosx,f′(x)是f(x)的导数,若f(x)=2f′(x),则=_________.【答案】【解析】由f'(x)=cosx-sinx,∴sinx+cosx=2(cosx-sinx),∴3sinx=cosx,∴tanx=,所求式子化简得,=tan2x+tanx=+=.13.若sinθcosθ>0,则θ在()A.第一、二象限B.第一、三象限C.第一、四象限D.第二、四象限【答案】B【解析】∵sinθcosθ>0,∴sinθ,cosθ同号.当sinθ>0,cosθ>0时,θ在第一象限,当sinθ<0,cosθ<0时,θ在第三象限,因此,选B.14.已知sin =,则sin=________.【答案】±【解析】由sin =,得cos =±,所以sin=cos=±.15.若tan θ+=4,则sin 2θ的值 ().A.B.C.D.【答案】D【解析】由tan θ+=4,得=4,∴4sin θcos θ=1,则sin 2θ=.16.已知f(x)=sin2,若a=f(lg 5),b=f().A.a+b=0B.a-b=0C.a+b=1D.a-b=1【答案】C【解析】f(x)=,∴a=+,b=+=-,因此a+b=1.17.已知,且,则()A.B.C.D.【答案】【解析】.又因为,所以为三象限的角,.选B.【考点】三角函数的基本计算.18.已知0<α<,β为f(x)=cos的最小正周期,a=,b=(cos α,2),且a·b=m,求的值.2cos2α+sin 2α+βcosα-sin α【答案】4+2m【解析】因为β为f(x)=cos的最小正周期,故β=π.因为a·b=m,又a·b=cos α·-2,故cos α·=2+m.由于0<α<,所以===2cos α·=2cos α·tan=2(2+m)=4+2m.19.在中,BC=,AC=2,的面积为4,则AB的长为 .【答案】或【解析】由已知,∴,故,在中,当,当时,4,当时.【考点】1、三角形的面积;2、同角三角函数基本关系式;3、余弦定理.20.在中,角A,B,C所对的边分别为(Ⅰ)叙述并证明正弦定理;(Ⅱ)设,,求的值.【答案】(Ⅰ)证明见解析;(Ⅱ) .【解析】(Ⅰ)正弦定理:,利用三角形的外接圆证明正弦定理. 设的外接圆的半径为,连接并延长交圆于点,则,直径所对的圆周角,在直角三角形中,,从而得到,同理可证,,则正弦定理得证;(Ⅱ)先由正弦定理将化为①,再依据和差化积公式,同角三角函数间的关系,特殊角的三角函数值将①式化简,得到,则,再由二倍角公式求解.试题解析:(Ⅰ) 正弦定理:.证明:设的外接圆的半径为,连接并延长交圆于点,如图所示:则,,在中,,即,则有,同理可得,,所以.(Ⅱ)∵,由正弦定理得,,,,,,解得,,∴.【考点】1.正弦定理;2.解三角形;3.同角三角函数间的关系;4.和差化积公式;5.二倍角公式21.已知函数,.(1)求的值;(2)设、,,,求的值.【答案】(1);(2).【解析】(1)直接计算的值;(2)先由已知条件计算、的值,然后利用同角三角函数的基本关系求出、的值,最后利用两角和的余弦公式计算出的值.试题解析:(1),所以;(2),,、,所以,,所以.【考点】1.同角三角函数的基本关系;2.两角和的余弦公式22.已知5cos(45°+x)=3,则sin2x=.【答案】【解析】由已知可得(cosx-sinx)=,即cosx-sinx=,两边平方得1-2cosxsinx=,sin2x=.【考点】1.两角和差公式;2.同角的基本关系式;23.已知函数的最大值是1,其图像经过点。
(完整版)三角函数诱导公式练习题附答案.doc
三角函数诱导公式练习题一、选择题(共21 小题)1、已知函数 f( x)=sin , g(x) =tan(π﹣ x),则()A、 f( x)与 g( x)都是奇函数B、 f( x)与 g( x)都是偶函数C、 f ( x)是奇函数, g(x)是偶函数D、 f( x)是偶函数, g( x)是奇函数2、点 P( cos2009 ,° sin2009 )°落在()A、第一象限B、第二象限C、第三象限D、第四象限3、已知,则=()A、B、C、D、4、若 tan160 =a°,则 sin2000 等°于()A、B、C、D、﹣5、已知 cos(+α)=﹣,则 sin(﹣α) =()A、﹣B、C、﹣D、6、函数的最小值等于()A、﹣ 3B、﹣ 2C、D、﹣ 17、本式的值是()A、 1B、﹣ 1C、D、8、已知且α是第三象限的角,则cos( 2π﹣α)的值是()A、B、C、D、9、已知 f(cosx) =cos2x,则 f ( sin30 )°的值等于()A、B、﹣C、 0 D、110、已知 sin( a+ ) = ,则 cos( 2a﹣)的值是()A、B、C、﹣D、﹣11、若,,则的值为()A、B、C、D、12、已知,则的值是()A、B、C、D、13、已知 cos( x﹣) =m,则 cosx+cos( x﹣) =()A 、 2mB 、 ± 2mC 、D 、14、设 a=sin ( sin20080),b=sin ( cos20080),c=cos ( sin20080),d=cos ( cos20080),则 a ,b , c , d 的大小关系是()A 、 a <b <c < dB 、 b < a <d < cC 、 c < d < b < aD 、 d < c < a < b15 、在△ ABC 中,① sin ( A+B )+sinC ;② cos (B+C )+cosA ;③tantan ;④,其中恒为定值的是()A 、②③B 、①②C 、②④D 、③④16 、已知 tan28 =a °,则 sin2008 =°( )A 、B 、C 、D 、17、设 ,则 值是( )A 、﹣ 1B 、 1C 、D 、18、已知 f ( x ) =asin (π x+ α)+bcos ( π x+)β+4(a , b , α,β 为非零实数),f ( 2007) =5,则 f ( 2008 ) =()A 、 3B 、 5C 、 1D 、不能确定19 、给定函数① y=xcos ( +x ),② y=1+sin 2( π+x ),③ y=cos ( cos ( +x ))中,偶函数的个数是()A 、 3B 、 2C 、 1D 、 020 、设角的 值等 于()A 、B 、﹣C 、D 、﹣21 、在程序框图中,输入 f 0( x ) =cosx ,则输出的是 f 4( x )=﹣ csx ()A 、﹣ sinxB 、 sinxC 、 cosxD 、﹣ cosx二、填空题(共 9 小题)22、若(﹣ 4,3)是角终边上一点, 则Z 的值为 .23、△ ABC 的三个内角为 A 、B 、 C ,当 A 为°时, 取得最大值,且这个最大值为 .24、化简:=25 、化:= .26 、已知, f( 1)+f( 2) +f( 3) +⋯ +f( 2009 )= .27 、已知tan θ =3,(π θ)= .28 、sin(π+) sin(2π+) sin( 3π+)⋯ sin( 2010 π+)的等于.29 、f( x)= , f( 1°)+f(2°)+⋯ +f( 58°)+f( 59°) = .30 、若,且, cos(2π α)的是.答案与评分标准一、选择题(共21 小题)1、已知函数f( x)=sin,g(x)=tan(π﹣x),则()A、 f( x)与 g( x)都是奇函数B、 f( x)与 g( x)都是偶函数C、 f ( x)是奇函数, g(x)是偶函数D、 f( x)是偶函数,g( x)是奇函数考点:函数奇偶性的判断;运用诱导公式化简求值。
(完整版)三角函数诱导公式练习题附答案
三角函数诱导公式练习题一、选择题(共21小题)1、已知函数f(x)=sin,g(x)=tan(π﹣x),则()A、f(x)与g(x)都是奇函数B、f(x)与g(x)都是偶函数C、f(x)是奇函数,g(x)是偶函数D、f(x)是偶函数,g(x)是奇函数2、点P(cos2009°,sin2009°)落在()A、第一象限B、第二象限C、第三象限D、第四象限3、已知,则=()A、B、C、D、4、若tan160°=a,则sin2000°等于()A、B、C、D、﹣5、已知cos(+α)=﹣,则sin(﹣α)=()A、﹣B、C、﹣D、6、函数的最小值等于()A、﹣3B、﹣2C、D、﹣17、本式的值是()A、1B、﹣1C、D、8、已知且α是第三象限的角,则cos(2π﹣α)的值是()A、B、C、D、9、已知f(cosx)=cos2x,则f(sin30°)的值等于()A、B、﹣C、0 D、110、已知sin(a+)=,则cos(2a﹣)的值是()A、B、C、﹣D、﹣11、若,,则的值为()A、B、C、D、12、已知,则的值是()A、B、C、D、13、已知cos(x﹣)=m,则cosx+cos(x﹣)=()A、2mB、±2mC、D、14、设a=sin(sin20080),b=sin(cos20080),c=cos(sin20080),d=cos(cos20080),则a,b,c,d的大小关系是()A、a<b<c<dB、b<a<d<cC、c<d<b<aD、d<c<a<b15、在△ABC中,①sin(A+B)+sinC;②cos(B+C)+cosA;③tan tan;④,其中恒为定值的是()A、②③B、①②C、②④D、③④16、已知tan28°=a,则sin2008°=()A、B、C、D、17、设,则值是()A、﹣1B、1C、D、18、已知f(x)=asin(πx+α)+bcos(πx+β)+4(a,b,α,β为非零实数),f(2007)=5,则f(2008)=()A、3B、5C、1D、不能确定19、给定函数①y=xcos(+x),②y=1+sin2(π+x),③y=cos(cos(+x))中,偶函数的个数是()A、3B、2C、1D、020、设角的值等于()A、B、﹣C、D、﹣21、在程序框图中,输入f0(x)=cosx,则输出的是f4(x)=﹣csx()A、﹣sinxB、sinxC、cosxD、﹣cosx二、填空题(共9小题)22、若(﹣4,3)是角终边上一点,则Z的值为.23、△ABC的三个内角为A、B、C,当A为°时,取得最大值,且这个最大值为.24、化简:=25、化简:=.26、已知,则f(1)+f(2)+f(3)+…+f(2009)=.27、已知tanθ=3,则(π﹣θ)=.28、sin(π+)sin(2π+)sin(3π+)…sin(2010π+)的值等于.29、f(x)=,则f(1°)+f(2°)+…+f(58°)+f(59°)= .30、若,且,则cos(2π﹣α)的值是.答案与评分标准一、选择题(共21小题)1、已知函数f(x)=sin,g(x)=tan(π﹣x),则()A、f(x)与g(x)都是奇函数B、f(x)与g(x)都是偶函数C、f(x)是奇函数,g(x)是偶函数D、f(x)是偶函数,g(x)是奇函数考点:函数奇偶性的判断;运用诱导公式化简求值。
三角函数 诱导公式专项练习(含答案)
三角函数诱导公式专项练习(含答案) 三角函数诱导公式专项练一、单选题1.sin(-600°)的值为()A。
-√3/2B。
-1C。
1D。
√3/22.cos(11π/3)的值为()A。
-√3/2B。
-13/2C。
√2D。
23.已知sin(30°+α)=√3/2,则cos(60°-α)的值为A。
1/2B。
-1/2C。
√3/2D。
-√3/24.已知cos(π/3+α)=-5/2,且α∈(2π/5,π),则XXX(α-π)=()A。
-34/4B。
-3C。
4D。
35.已知sin(π-α)=-2/√3,且α∈(-2,0),则tan(2π-α)的值为A。
2√5/5B。
-2√5/2√5C。
±5D。
√5/26.已知cos(π/4-α)=√2/2,则sin(α+π/4)=()A。
-3B。
1C。
√2D。
√14/47.已知sinα=3/5,2<α<π/2,则sin(2-α)=()A。
3/5B。
-3/5C。
4/5D。
-4/58.已知tanx=-12/5π,x∈(π/2,π),则cos(-x+3π/2)=()A。
5/13B。
-5/12C。
13D。
-12/139.如果cos(π+A)=-1,那么sin(π/2+A)=A。
-1/2B。
2C。
1D。
-110.已知cos(π/2-α)-3cosα/(sinα-cos(π+α))=2,则tanα=()A。
12/5B。
-3C。
1/2D。
-511.化简cos480°的值是()A。
1B。
-1C。
√3/2D。
-√3/212.cos(-585°)的值是()A。
√2/2B。
√3/2C。
-√3/2D。
-√2/213.已知角α的终边经过点P(-5,-12),则sin(3π/2+α)的值等于()A。
-5B。
-12/13C。
13D。
12/1314.已知cos(π+α)=2/3,则tanα=()A。
√55/2B。
2√5/52.已知cosα=2/5,-2/5<α<0,则tan(α+α)cos(-α)tanα的值为()答案:D解析:由cosα=2/5可得sinα=-√(21)/5,代入公式可得tan(α+α)cos(-α)tanα=-1/√3=-√3/3,故选D。
高一三角函数公式及诱导公式习题(附答案)
三角函数公式1. 同角三角函数根本关系式 sin 2α+cos 2α=1 sin αcos α=tan α tan αcot α=12. 诱导公式 (奇变偶不变,符号看象限)(一) sin(π-α)=sin α sin(π+α)=-sin αcos(π-α)=-cos α cos(π+α)=-cos α tan(π-α)=-tan α tan(π+α)=tan α sin(2π-α)=-sin α sin(2π+α)=sin α cos(2π-α)=cos α cos(2π+α)=cos α tan(2π-α)=-tan α tan(2π+α)=tan α 〔二〕 sin(π2 -α)=cos α sin(π2+α)=cos αcos(π2 -α)=sin α cos(π2 +α)=- sin αtan(π2 -α)=cot α tan(π2 +α)=-cot αsin(3π2 -α)=-cos α sin(3π2 +α)=-cos αcos(3π2 -α)=-sin α cos(3π2 +α)=sin αtan(3π2 -α)=cot α tan(3π2+α)=-cot αsin(-α)=-sin α cos(-α)=cos α tan(-α)=-tan α3. 两角和与差的三角函数cos(α+β)=cos αcos β-sin αsin β cos(α-β)=cos αcos β+sin αsin β sin (α+β)=sin αcos β+cos αsin β sin (α-β)=sin αcos β-cos αsin β tan(α+β)=tan α+tan β1-tan αtan βtan(α-β)=tan α-tan β1+tan αtan β4. 二倍角公式 sin2α=2sin αcos αcos2α=cos 2α-sin 2α=2 cos 2α-1=1-2 sin 2α tan2α=2tan α1-tan 2α5.公式的变形(1)升幂公式:1+cos2α=2cos2α1—cos2α=2sin2α(2)降幂公式:cos2α=1+cos2α2sin2α=1-cos2α2(3)正切公式变形:tanα+tanβ=tan(α+β)〔1-tanαtanβ〕tanα-tanβ=tan(α-β)〔1+tanαtanβ) (4)万能公式〔用tanα表示其他三角函数值〕sin2α=2tanα1+tan2αcos2α=1-tan2α1+tan2αtan2α=2tanα1-tan2α6.插入辅助角公式asinx+bcosx=a2+b2sin(x+φ) (tanφ= b a)特殊地:sinx±cosx= 2 sin(x±π4)7.熟悉形式的变形〔如何变形〕1±sinx±cosx 1±sinx 1±cosx tanx+cotx1-tanα1+tanα1+tanα1-tanα假设A、B是锐角,A+B=π4,那么〔1+tanA〕(1+tanB)=28.在三角形中的结论假设:A+B+C=π, A+B+C2=π2那么有tanA+tanB+tanC=tanAtanBtanCtan A2tanB2+tanB2tanC2+tanC2tanA2=1三角函数的诱导公式1一、选择题1.如果|cos x |=cos 〔x +π〕,那么x 的取值集合是〔 〕 A .-2π+2k π≤x ≤2π+2k π B .-2π+2k π≤x ≤2π3+2k πC .2π+2k π≤x ≤2π3+2k π D .〔2k +1〕π≤x ≤2〔k +1〕π〔以上k ∈Z 〕2.sin 〔-6π19〕的值是〔 〕 A .21 B .-21 C .23 D .-23 3.以下三角函数:①sin 〔n π+3π4〕;②cos 〔2n π+6π〕;③sin 〔2n π+3π〕;④cos [〔2n +1〕π-6π];⑤sin [〔2n +1〕π-3π]〔n ∈Z 〕.其中函数值与sin 3π的值相同的是〔 〕 A .①② B .①③④ C .②③⑤ D .①③⑤4.假设cos 〔π+α〕=-510,且α∈〔-2π,0〕,那么tan 〔2π3+α〕的值为〔 〕 A .-36B .36C .-26 D .26 5.设A 、B 、C 是三角形的三个内角,以下关系恒成立的是〔 〕 A .cos 〔A +B 〕=cos C B .sin 〔A +B 〕=sin C C .tan 〔A +B 〕=tan CD .sin2B A +=sin 2C6.函数f 〔x 〕=cos 3πx〔x ∈Z 〕的值域为〔 〕 A .{-1,-21,0,21,1} B .{-1,-21,21,1} C .{-1,-23,0,23,1}D .{-1,-23,23,1} 二、填空题7.假设α是第三象限角,那么)πcos()πsin(21αα---=_________. 8.sin 21°+sin 22°+sin 23°+…+sin 289°=_________. 三、解答题9.求值:sin 〔-660°〕cos420°-tan330°cot 〔-690°〕.10.证明:1)πtan(1)π9tan(sin 211cos )πsin(22++-+=--⋅+θθθθθ.11.cos α=31,cos 〔α+β〕=1,求证:cos 〔2α+β〕=31.12. 化简:︒+︒︒︒+790cos 250sin 430cos 290sin 21.13、求证:)π5sin()πcos()π6cos()π2sin()π2tan(θθθθθ+-----=tan θ.14. 求证:〔1〕sin 〔2π3-α〕=-cos α; 〔2〕cos 〔2π3+α〕=sin α.参考答案1一、选择题1.C 2.A 3.C 4.B 5.B 6.B 二、填空题7.-sin α-cos α 8.289 三、解答题 9.43+1. 10.证明:左边=θθθθ22sin cos cos sin 2-1--=-θθθθθθθθθθcos sin cos sin )sin )(cos sin (cos )cos (sin 2-+=-++,右边=θθθθθθθθcos sin cos sin tan tan tan tan -+=1-1+=1+-1--, 左边=右边,∴原等式成立.11.证明:∵cos 〔α+β〕=1,∴α+β=2k π.∴cos 〔2α+β〕=cos 〔α+α+β〕=cos 〔α+2k π〕=cos α=31.12.解:︒+︒︒︒+790cos 250sin 430cos 290sin 21=)360270cos()70180sin()36070cos()36070sin(21︒⨯+︒+︒+︒︒+︒︒+︒-+=︒-︒︒︒-70sin 70cos 70cos 70sin 21=︒-︒︒-︒70sin 70cos )70cos 70(sin 2=︒-︒︒-︒70sin 70cos 70cos 70sin =-1.13.证明:左边=θθθθθθθθθθsin cos cos )sin )(tan ()sin )(cos ()cos()sin()tan(--=-----=tan θ=右边,∴原等式成立.14证明:〔1〕sin 〔2π3-α〕=sin [π+〔2π-α〕]=-sin 〔2π-α〕=-cos α. 〔2〕cos 〔2π3+α〕=cos [π+〔2π+α〕]=-cos 〔2π+α〕=sin α.三角函数的诱导公式2一、选择题: 1.sin(4π+α)=23,那么sin(43π-α)值为〔 〕 A.21 B. —21 C. 23 D. —23 2.cos(π+α)= —21,23π<α<π2,sin(π2-α) 值为〔 〕 A.23 B. 21 C. 23± D. —233.化简:)2cos()2sin(21-•-+ππ得〔 〕A.sin2+cos2B.cos2-sin2C.sin2-cos2D.± (cos2-sin2) 4.α和β的终边关于x 轴对称,那么以下各式中正确的选项是〔 〕 A.sinα=sinβ B. sin(α-π2) =sinβ C.cosα=cosβ D. cos(π2-α) =-cosβ 5.设tanθ=-2, 2π-<θ<0,那么sin 2θ+cos(θ-π2)的值等于〔 〕, A. 51〔4+5〕 B. 51〔4-5〕 C. 51〔4±5〕 D. 51〔5-4〕二、填空题: 6.cos(π-x)=23,x ∈〔-π,π〕,那么x 的值为 . 7.tanα=m ,那么=+-+++)cos(-sin()cos(3sin(απα)απ)απ .8.|sinα|=sin 〔-π+α〕,那么α的取值范围是 . 三、解答题: 9.)cos(·3sin()cos()n(s 2sin(απα)παπα)π----+-απi .10.:sin 〔x+6π〕=41,求sin 〔)67x +π+cos 2〔65π-x 〕的值.11. 求以下三角函数值: 〔1〕sin 3π7;〔2〕cos 4π17;〔3〕tan 〔-6π23〕;12. 求以下三角函数值:〔1〕sin3π4·cos 6π25·tan 4π5; 〔2〕sin [〔2n +1〕π-3π2].13.设f 〔θ〕=)cos()π(2cos 23)2πsin()π2(sin cos 2223θθθθθ-+++-++-+,求f 〔3π〕的值.参考答案21.C 2.A 3.C 4.C 5.A 6.±65π7.11-+m m 8.[(2k-1) π,2k π]9.原式=)cos (·sin()cos()n s (sin αα)παπα--+--αi =)cos ?(sin )cos (sin 2αααα--= sinα 10.161111.解:〔1〕sin 3π7=sin 〔2π+3π〕=sin 3π=23.〔2〕cos4π17=cos 〔4π+4π〕=cos 4π=22.〔3〕tan 〔-6π23〕=cos 〔-4π+6π〕=cos 6π=23.〔4〕sin 〔-765°〕=sin [360°×〔-2〕-45°]=sin 〔-45°〕=-sin45°=-22. 注:利用公式〔1〕、公式〔2〕可以将任意角的三角函数转化为终边在第一象限和第二象限的角的三角函数,从而求值.12.解:〔1〕sin 3π4·cos 6π25·tan 4π5=sin 〔π+3π〕·cos 〔4π+6π〕·tan 〔π+4π〕 =〔-sin3π〕·cos 6π·tan 4π=〔-23〕·23·1=-43.〔2〕sin [〔2n +1〕π-3π2]=sin 〔π-3π2〕=sin 3π=23.13.解:f 〔θ〕=θθθθθcos cos 223cos sin cos 2223++-++=θθθθθcos cos 223cos cos 1cos 2223++-+-+=θθθθθcos cos 22)cos (cos 2cos 2223++---=θθθθθcos cos 22)1(cos cos )1(cos 223++---=θθθθθθθcos cos 22)1(cos cos )1cos )(cos 1(cos 222++--++-=θθθθθcos cos 22)2cos cos 2)(1(cos 22++++-=cos θ-1, ∴f 〔3π〕=cos 3π-1=21-1=-21.。
高三数学同角三角函数的基本关系式和诱导公式试题
高三数学同角三角函数的基本关系式和诱导公式试题1. [2014·滨州模拟]sin600°+tan240°的值等于()A.-B.C.-D.+【答案】B【解析】sin600°+tan240°=sin240°+tan60°=-sin60°+tan60°=,选B项.2.若,则 .【答案】【解析】.【考点】诱导公式.3.已知α、β均为锐角,且sinα=,tan(α-β)=-.(1) 求sin(α-β)的值;(2) 求cosβ的值.【答案】(1)-(2)【解析】(1) ∵α、β∈,∴-<α-β<.又tan(α-β)=-<0,∴-<α-β<0.∴sin(α-β)=-.(2) 由(1)可得,cos(α-β)=.∵α为锐角,sinα=,∴cosα=.∴cosβ=cos[α-(α-β)]=cosαcos(α-β)+sinαsin(α-β)=.4.已知角θ的终边经过点P(-x,-6),且cosθ=-,则sinθ=____________,tanθ=____________.【答案】-,【解析】cosθ==-,解得x=sinθ==-,tanθ=5.已知α为锐角,cos α=,则tan=()A.-3B.-C.-D.-7【答案】B【解析】依题意得,sin α=,故tan α=2,tan 2α=,所以tan==-.6.已知sinα=,则cos(π-2α)=()A.-B.-C.D.【答案】B【解析】∵sinα=,∴cos(π-2α)=-cos2α=-(1-2sin2α)=-.故选B.7.设sin=,则sin 2θ=()A.-B.-C.D.【答案】A【解析】因为sin=,即sin θ+cos θ=,所以sin θ+cos θ=,两边平方得1+2sin θcos θ=,所以sin 2θ=-.8.已知sin 2α=,则cos2=()A.B.C.D.【答案】A【解析】法一:cos2==(1-sin 2α)=.法二:cos=cos α-sin α,所以cos2=(cos α-sin α)2=(1-2sin αcos α)= (1-sin 2α)=.9.已知向量a=(cos x,sin x),b=(,),a·b=,则cos=________.【答案】【解析】因为a·b=cos x+sin x=2cos=,所以cos=.10.已知α∈,cos α=-,tan 2α等于().A.B.-C.-2D.2【答案】B【解析】由于α∈,cos α=-,则sin α=-=-,那么tan α==2,则tan 2α==-.11.已知sin α=,则cos (π-2α)=().A.B.-C.D.【答案】B【解析】cos (π-2α)=-cos 2α=2sin2α-1=2×2-1=-.12.设α是第二象限角,tan α=-,且sin<cos,则cos=______.【答案】-【解析】∵α是第二象限角,tan α=-,∴2kπ+<α<2kπ+,∴kπ+<<kπ+,又sin <cos ,∴为第三象限角,∴cos<0.∵tan α=-,∴cos α=-,∴cos =-=-.13.已知则= .【答案】【解析】因为所以=,所以==.【考点】同角三角函数的基本关系.14.在△中,角、、所对的边分别为、、,且.(Ⅰ)若,求角;(Ⅱ)设,,试求的最大值.【答案】(Ⅰ) ;(Ⅱ)【解析】(Ⅰ)由题中所给,不难想到余弦定理,可求得 ,又由,变形成,从而求出,结合和,不难求出B; (Ⅱ)由已知可求出,又由向量的数量积公式可求出的形式,这样得到关于A 的一个三角函数式,运用二倍角公式化简得一个关于为整体的二次函数,即,又由的值推出的范围,进而得出的范围,从而求出的范围,即可求得最大值.试题解析:解:由,得,又, 3分(Ⅰ)由,,, 6分,又, 8分(Ⅱ)= 11分又中,,得,,的最大值为 14分【考点】1.解三角形;2.三角函数的性质;3.向量的数量积15.已知则= .【答案】【解析】已知则,于是.【考点】同角三角函数基本关系式.16.已知函数.(1)求的值;(2)若,求.【答案】(1);(2)【解析】(1)把代入解析式可得;(2)把表示出来并展开,得关于的式子,由,结合同角三角函数基本关系式,求得(注意的范围),代入上式即可. 试题解析:(1)=;(2)∵,且,∴, ==.【考点】1、同角三角函数基本关系式;2、差角的余弦公式.17.已知,则 .【答案】或【解析】由已知:.又.联立解方程组得:或.所以:或.【考点】1、诱导公式;2、同角三角函数关系式;3、解方程组.18.已知函数为偶函数,周期为2.(Ⅰ)求的解析式;(Ⅱ)若的值.【答案】(1).(2).【解析】(1)利用,可得,从而得到.再根据其为偶函数及,可得,得到.这是解答此类问题的一般方法.要特别注意这一限制条件.(2)∵根据角的范围及.进一步应用同角公式,确定.应用二倍角公式求解.试题解析:(1)由题意可得,解得,故函数.又此函数为偶函数,可得,结合,可得,故.(2)∵,∴.根据,∴.∴【考点】1、三角函数的图象和性质;2、同角公式;3、二倍角公式.19.已知,则()A.B.C.D.【答案】A【解析】,选.【考点】诱导公式.20.已知点是圆:内任意一点,点是圆上任意一点,则实数()A.一定是负数B.一定等于0C.一定是正数D.可能为正数也可能为负数【答案】A【解析】令,,又因为小于1,所以必定是负数.【考点】1.三角函数式的化简;2.三角函数最值.21.已知函数,.其图象的最高点与相邻对称中心的距离为,且过点.(Ⅰ)求函数的达式;(Ⅱ)在△中.、、分别是角、、的对边,,,角C为锐角。
高三数学同角三角函数的基本关系式和诱导公式试题
高三数学同角三角函数的基本关系式和诱导公式试题1.△ABC是锐角三角形,若角θ终边上一点P的坐标为(sinA-cosB,cosA-sinC),则++的值是()A.1 B.-1 C.3 D.4【答案】B【解析】因为△ABC是锐角三角形,所以A+B>90°,即A>90°-B,则sinA>sin(90°-B)=cosB,sinA-cosB>0,同理cosA-sinC<0,所以点P在第四象限,++=-1+1-1=-1,故选B.2.已知,,则.【答案】【解析】由题意,,.【考点】同角间的三角函数关系.3.已知,则= .【答案】【解析】.【考点】三角函数同角公式,二倍角的正弦公式.4.若sinα=,α∈,则cos=__________.【答案】-【解析】由α∈,sinα=,得cosα=,由两角和与差的余弦公式得cos=cosαcos-sinαsin=-(cosα-sinα)=-5.已知关于x的方程2x2-(+1)x+m=0的两根为sinθ和cosθ,且θ∈(0,2π).(1)求的值;(2)求m的值;(3)求方程的两根及此时θ的值.【答案】(1)(2)(3)θ=或【解析】(1)由韦达定理可知而==sinθ+cosθ=.(2)由①两边平方得1+2sinθcosθ=,将②代入得m=.(3)当m=时,原方程变为2x2-(1+)x+=0,解得x1=,x2=,∴或∵θ∈(0,2π),∴θ=或6.已知α为锐角,cos α=,则tan=()A.-3B.-C.-D.-7【答案】B【解析】依题意得,sin α=,故tan α=2,tan 2α=,所以tan==-.7.在△ABC中,sin(-A)=3sin(π-A),且cosA=-cos(π-B),则C等于()(A) (B) (C) (D)【答案】C【解析】【思路点拨】将已知条件利用诱导公式化简后可得角A,角B,进而得角C.解:由已知化简得cosA=3sinA.①cosA=cosB.②由①得tanA=,又∵0<A<π,∴A=,由②得cosB=·cos=,又∵0<B<π,∴B=,∴C=π-A-B=.8.已知α是第三象限角,且cos(85°+α)=,则sin(α-95°)=.【答案】【解析】∵α是第三象限角,cos(85°+α)=>0,∴85°+α是第四象限角,∴sin(85°+α)=-,sin(α-95°)=sin[(85°+α)-180°]=-sin(85°+α)=.9.已知,,则的值等于()A.B.C.D.【答案】D【解析】,, ,【考点】正弦和差角公式诱导公式10.已知α∈R,sin α+2cos α=,则tan 2α等于________.【答案】【解析】∵sin α+2cos α=,∴sin2α+4sin α·cos α+4cos2α=.化简,得4sin 2α=-3cos 2α,∴tan 2α=.11.若sin=,则sin=______.【答案】-【解析】sin=-cos=-cos=2sin2-1=-. 12.已知sin α=,则cos (π-2α)=().A.B.-C.D.【答案】B【解析】cos (π-2α)=-cos 2α=2sin2α-1=2×2-1=-.13.化简:=________.【答案】-tana【解析】.【考点】三角函数同角关系式及诱导公式.14.在中,BC=,AC=2,的面积为4,则AB的长为 .【答案】或【解析】由已知,∴,故,在中,当,当时,4,当时.【考点】1、三角形的面积;2、同角三角函数基本关系式;3、余弦定理.15.若α∈,且,则的值等于()A.B.C.D.【解析】因为,α∈,且,所以,,=,选D.【考点】三角函数倍角公式、同角公式16.设为锐角,若,则的值为___________.【答案】【解析】,所以=,因为,且,所以=,∴=,=,所以=.【考点】1、两角差的正弦公式;2、正弦和余弦的二倍角公式.17.已知函数,函数与函数图像关于轴对称.(1)当时,求的值域及单调递减区间;(2)若,求值.【答案】(1)当时,的值域为,单调递减区间为;(2).【解析】(1)先将函数的解析式进行化简,化简为,利用计算出的取值范围,再结合正弦曲线确定函数的值域,对于函数在区间上的单调区间的求解,先求出函数在上的单调递减区间,然后和定义域取交集即得到函数在区间上的单调递减区间;(2)利用等式计算得出的值,然后利用差角公式将角凑成的形式,结合两角差的正弦公式进行计算,但是在求解的时候计算时,利用同角三角函数的基本关系时需要考虑角的取值范围.试题解析:(1)2分又与图像关于轴对称,得当时,得,得即 4分单调递减区间满足,得取,得,又,单调递减区间为 7分(2)由(1)知得,由于 8分而10分13分【考点】1.诱导公式;2.同角三角函数的基本关系;3.两角差的正弦公式18.已知且(1)求的值;(2)求的值;【答案】(1);(2)【解析】⑴根据已知条件先判断角所在的象限,然后求出角的余弦值,那么正弦值就很容易得到了;⑵先化简所给的式子,然后分子分母同时除以,然后将代入即可.试题解析:⑴∵,∴在第四象限 2分∴, 4分∴; 6分(2). ..12分【考点】同角三角函数间的关系,三角函数的诱导公式及应用.19.设θ为第二象限角,若tan(θ+)=,则sinθ+cosθ=.【答案】-【解析】由θ为第二象限角且tan(θ+)=,则为第三象限角,于是,所以.【考点】三角函数计算20.已知,,则.【答案】【解析】由,得,,.【考点】同角三角函数的关系、两角和的正切公式.21.已知,且,,则______.【答案】【解析】由,,得,所以,又由,知.【考点】同角三角函数的关系、两角和与差的三角函数.22.已知,且,则的值等于()A.B.C.D.7【答案】C【解析】由倍角公式得又由平方关系得最后由两角和正切公式得【考点】考查三角恒等变换,知值求值类问题.23.已知是第二象限角,则()A.B.C.D.【答案】A【解析】∵是第二象限角,∴.故选A.【考点】三角求值24.若,且,则 ( )A.B.C.D.【答案】D【解析】因为,且,所以,故选D。
三角函数的诱导公式练习题
三角函数的诱导公式(一)一、选择题(每题4分,共16分)1.已知sin(π+θ)<0,cos(θ-π)>0,则下列不等关系中必定成立的是()(A)sinθ<0,cosθ>0 (B)sinθ>0,cosθ<0(C)sinθ>0,cosθ>0 (D)sinθ<0,cosθ<0【解析】选B.∵sin(π+θ)=-s inθ<0,∴sinθ>0,cos(θ-π)=cos(π-θ)=-cosθ>0,∴cosθ<02.(2009²全国Ⅰ)sin585°的值为()【解析】选A.si n585°=sin(360°+225°)=sin225°=sin(180°+45°)=-sin45°=.4.在直角坐标系中,若α与β的终边关于y轴对称,则下列等式恒成立的是()(A)sin(α+π)=sinβ (B)sin(α-π)=sinβ(C)sin(2π-α)=-sinβ (D)sin(-α)=sinβ【解析】选C.∵α与β的终边关于y轴对称,∴α+β=π,即α=π-β,又因为sin(α+π)=sin(2π-β)=sin(-β)=-sinβ,故A错;sin(α-π)=sin(-β)=-sinβ,故B错;sin(-α)=sin(β-π)=-sinβ,故D错;sin(2π-α)=sin(π+β)=-sinβ,故C正确二、填空题(每题4分,共8分)5.sin315°-cos135°+2sin570°的值是_______.【解析】原式=sin(360°-45°)-cos(180°-45°)+2sin(360°+210°)=-sin45°+cos45°+2sin210°三角函数的诱导公式一、选择题(每题4分,共16分)1.sin95°+cos175°的值为()(A)sin5°(B)cos5°(C)0 (D)2sin5°【解析】选C.原式=sin(90°+5°)+cos(180°-5°)=cos5°-cos5°=0.2.已知sin10°=k,则cos620°的值等于()(A)k (B)-k (C)±k (D)不能确定【解析】选B.cos620°=cos(720°-100°)=cos100°=cos(90°+10°)=-sin10°=-k.3.已知f(cosx)=cos3x,则f(sin30°)的值等于()(A)-1 (B)1 (C)(D)0【解析】选A.f(sin30°)=f(sin(90°-60°))=f(cos60°)=cos180°=-1.二、填空题(每题4分,共8分)5.若|sinα|=cos(+α),则角α的集合为________.【解析】|sinα|=cos(+α)=-sinα,∴sinα≤0.∴角α的集合为{α|π+2kπ≤α≤2π+2kπ,k∈Z}.答案:{α|π+2kπ≤α≤2π+2kπ,k∈Z}[探究创新]9.(10分)如果△A1B1C1的三个内角的余弦值分别等于△A2B2C2对应三个内角的正弦值,那么(1)试判断△A1B1C1是锐角三角形吗?(2)试借助于诱导公式证明△A2B2C2中必有一个角为钝角.【解析】(1)由条件知△A1B1C1的三个内角的余弦值均大于0,即cosA1>0,cosB1>0,cosC1>0,从而△A1B1C1一定是锐角三角形.(2)由题意可知若A2、B2、C2全为锐角,则又A2、B2、C2不可能为直角,且满足A2+B2+C2=π,故必有一个角为钝角.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《同角三角函数》、《诱导公式》训练题
1.角15︒化为弧度是( ) A .
12
π
B .
15
π
C .
16
π
D .
18
π 2.下列命题中正确的是 ( ) A .第一象限角必是锐角
B .终边相同的角相等
C .相等的角终边必相同
D .不相等的角其终边必不相同 3.若是α第四象限角,则下列角中是第一象限角的是( )D A .+180α︒ B .-180α︒ C .+270α︒ D .-270α︒ 4.若α是第三象限角,则
2
α
是( )象限角D A .第一或第二 B .第一或第三 C .第一或第四 D .第二或第四 5.与30︒终边相同的角的集合为( ) A .
{}302360,k k Z θθ=︒+⋅︒∈
B .
{}30180,k k Z θθ=︒+⋅︒∈
C .360,6k k Z π
θ
θ⎧⎫
=
+⋅︒∈⎨⎬⎩
⎭
D . 2,6k k Z π
θ
θπ⎧⎫
=
-∈⎨⎬⎩
⎭
6.已知7
sin cos ,(0,)13αααπ+=-∈,则αtan 等于( ) A .
12
5
B .125-
C .512
D .5
12
-
7、),0(,54
cos παα∈=
,则tan α的值等于
( )
A .34
B .43
C .3
4±
D . 4
3
±
8、下列各式不正确的是 ( )
A . sin (α+180°)=-sin α
B .cos (-α+β)=-cos (α-β)
C . sin (-α-360°)=-sin α
D .cos (-α-β)=cos (α+β) 9、若θθcos ,sin 是方程0242=++m mx x 的两根,则m 的值为( ) A .51+ B .51-
C .51±
D .51--
10、若(),2,5
3
cos παππα<≤=
+则()πα2sin --的值是 ( )
A .
53 B . 5
3
- C .
5
4
D . 5
4-
11、)2cos()2sin(21++-ππ等于
( )
A .sin2-cos2
B .cos2-sin2
C .±(sin2-cos2)
D .sin2+cos2
12、
600sin 的值为( )
A .
2
1
B . 2
1-
C .
2
3 D . 2
3-
13、若θ为二象限角,且2
cos
2
sin
212
sin
2
cos θ
θ
θ
θ
-=-,那么
2
θ
是( ) A .第一象限角
B .第二象限角
C .第三象限角
D .第四象限角
14、
4
25sin
2)311tan()4
15(cos 42πππ
+--
的值为( )
A .1
B .13-
C .12-
D .(
)
122-
15、已知
()()()()
29cos sin 4cos sin 3=+---++απαααπ,则αtan =
16.如果1sin 3α=
,且α是第二象限角,那么sin()2
π
α-=
;
17.设1cos ()2
()12(1)()
2
x x f x f x x π⎧
<⎪⎪=⎨⎪->⎪⎩ ,则113()()36f f +=
;12+
18.若角α的终边落在一次函数2y x =-的图象上,则s i n c o s t a n ααα+
⋅=
; 19、已知
2cos sin cos sin =-+α
αα
α,则ααcos sin 的值为
20.已知角α
的终边上一点(,P m
,且cos 4
α=,求角α的正弦值与正切值.
21.化简:⑴11sin(2)cos()cos()cos()
229cos()sin(3)sin()sin()
2
ππ
παπαααπ
αππαπαα-++-----+;
22、已知()4
13sin =+θπ, 求)
cos()cos()2cos()
2cos(]1)[cos(cos )cos(θθππθπθθπθθπ-+++-+-++的值.
23、已知(
)
θ+
75cos 3
1=,θ为第三象限角,求()()θθ++--
435sin 255cos 的值.
24.(1)已知扇形的周长是6cm,面积为2cm,求其圆心角(02)ααπ<<
(2)一扇形的周长为8cm,求这个扇形的面积取得最大值时,圆心角(02)ααπ<<的大小。
解:(1)设扇形的弧长为l ,半径为r ,依题意得+2=6
1=22l r lr ⎧⎪⎨⎪⎩解得11=1=4r l ⎧⎨⎩或11=2=2r l ⎧⎨⎩ 当=1,=4r l 时,圆心角=
l αr =4;当=2,=2r l 时,圆心角=l
αr
=1 (2)设扇形半径为r ,弧长为l ,面积为S ,依题意得,+2=8l r ,则=8-2l r
211==(8-2)=-(-2)+4(0<<4)22S rl r r r r ∴∴当=2r 时,扇形面积最大,此时圆心角=l αr
=2。