九年级数学下册课后练习:二次根式的运算和应用 课后练习一 Word版 含解析 华师大版

合集下载

中考数学总复习《二次根式》练习题附带答案

中考数学总复习《二次根式》练习题附带答案

中考数学总复习《二次根式》练习题附带答案一、单选题1.√123÷√213×√125值为()A.1B.3C.√33D.√7 2.若√(a−b)2=b﹣a,则()A.a>b B.a<b C.a≥b D.a≤b 3.与√a3b不是同类次根式的是()A.1√abB.√baC.√ab2D.√ba34.下列运算正确的是()A.√3+3=3√3B.4√2−√2=4C.√2+√3=√5D.3√3−√3=2√35.若代数式1x−1+√x有意义,则实数x的取值范围是()A.x≠1B.x≥0C.x≠0D.x≥0且x≠1 6.a、b在数轴上的位置如图所示,那么化简√(b−a)2的结果是()A.a-b B.a+b C.b-a D.-a-b7.设实数a,b在数轴上对应的位置如图所示,化简√a2+|a+b|的结果是()A.-2a+b B.2a+b C.-b D.b8.若√3−m为二次根式,则m的取值为()A.m≤3B.m<3C.m≥3D.m>39.下列运算正确的是()A.(x−y)2=x2−y2B.|√3−2|=2−√3C.√8−√3=√5D.﹣(﹣a+1)=a+110.已知2<a<4,则化简√1−2a+a2+√a2−8a+16的结果是() A.2a﹣5B.5﹣2a C.﹣3D.311.下列运算中正确的是()A.√2+√3=√5B.(−√5)2=5C.3√2−2√2=1D.√16=±4 12.下列计算正确的是()A.(m−n)2=m2−n2B.(2ab3)2=2a2b6C.√8a3=2a√a D.2xy+3xy=5xy 二、填空题13.计算:√45﹣√25× √50=.14.若√12x是一个整数,则x可取的最小正整数是3.(判断对错)15.计算:√24−√12√3=.16.如果x2﹣3x+1=0,则√x2+1x2−2的值是.17.化简:√75=.18.已知实数a,b,c在数轴上的位置如图所示,化简代数式√a2−|a+c|+√(b−c)2−|−b|三、综合题19.完成下列问题:(1)若n(n≠0)是关于x的方程x2+mx+2n=0的根,求m+n的值;(2)已知x,y为实数,且y= √2x−5+√5−2x﹣3,求2xy的值.20.阅读材料,解答问题:(1)计算下列各式:①√4×9=,√4×√9=;②√16×25=,√16×√25=.通过计算,我们可以发现√a×b=(a>0,b>0)从上面的结果可以得到:√8=√2×√4=2√2,√12=√3×√4=2√3(2)根据上面的运算,完成下列问题①化简:√24②计算:√27+√48③化简:√a2b(a>0,b>0)21.在数学课外学习活动中,小明和他的同学遇到一道题:已知a=12+√3,求2a2−8a+1的值.他是这样解答的:∵a=2+√3=√3(2+√3)(2−√3)=2−√3,∴a−2=−√3∴(a−2)2=3,a2−4a+4=3∴a2−4a=−1∴2a2−8a+1=2(a2−4a)+1=2×(−1)+1=−1.请你根据小明的解析过程,解决如下问题:(1)1√3+√2=;(2)化简 √2+1+√3+√2√4+√3⋯+√256+√255 ; (3)若 a =√10−3,求 a 4−6a 3+a 2−12a +3 的值. 22.已知 x =√3+12 , y =√3−12与 m =xy 和 n =x 2−y 2 . (1)求m ,n 的值;(2)若 √a −√b =m +72, √ab =n 2 求 √a +√b 的值. 23.计算: (1)√135•2 √3 •(﹣ 12 √10 ); (2)√3a 2b •( √b a ÷2 √1b). 24.计算下列各题 (1)计算:( 12 )﹣2﹣6sin30°﹣( √7−√5)0+ √2 +| √2 ﹣ √3 | (2)化简:( x+2x 2−2x ﹣ x−1x 2−4x+4 )÷ x−4x ,然后请自选一个你喜欢的x 值,再求原式的值.参考答案1.【答案】A2.【答案】D3.【答案】C4.【答案】D5.【答案】D6.【答案】A7.【答案】D8.【答案】A9.【答案】B10.【答案】D11.【答案】B12.【答案】D13.【答案】√514.【答案】对15.【答案】2√2−216.【答案】√517.【答案】5√318.【答案】019.【答案】(1)将x=n 代入方程x 2+mx+2n=0得n 2+mn+2n=0,则n(n+m+2)=0 因为n≠0,所以n+m+2=0即m+n=-2.(2)因为y=√2x −5+√5−2x -3有意义,则{2x −5≥05−2x ⩾0解得{x ⩾52x ≤52则x=52 所以y=0+0-3=-3即2xy=2×52×(-3)=-15. 20.【答案】(1)6;6;20;20;√a ×√b(2)解:①√24=√4×6=√4×√6=2√6;②√27+√48=√3×9+√3×16=√3×√9+√3×√16=3√3+4√3=7√3 ;③√a 2b =√a 2⋅√b =a √b (a >0,b >0).21.【答案】(1)√3−√2(2)解:原式 =√2−1+√3−√2+√4−√3+⋯+√256−√255=−1+√2−√2+√3−√3+√4−⋯−√255+√256=√256−1=16−1=15 ;(3)解: ∵ a =√10−3 =√10+3 ∴a −3=√10∴(a −3)2=10即 a 2−6a +9=10 .∴a 2−6a =1 .∴a 4−6a 3=a 2∴a 4−6a 3+a 2−12a +3=2a 2−12a +3=2(a 2−6a)+3=2+3=5 .22.【答案】(1)解:由题意得, m =xy =√3+12×√3−12=12 n =(x +y)(x −y)=(√3+12+√3−12)(√3+12−√3−12)=√3 (2)解:由(1)得, √a −√b =4 √ab =3 ∴(√a +√b)2=(√a −√b)2+4√ab =42+4×3=28∵√a +√b >0∴√a +√b =2√723.【答案】(1)解: √135 •2 √3 •(﹣ 12 √10 ) =2×(﹣ 12 ) √135×3×10 =﹣ √16×3=﹣4 √3(2)解: √3a 2b •( √b a ÷2 √1b)= √3a2b × √ba× 12× √b= √3424.【答案】(1)解:原式=4﹣6× 12﹣1+ √2+ √3﹣√2 = √3;(2)解:原式=[x+2x(x−2)﹣x−1(x−2)2]•xx−4= (x+2)(x−2)−x(x−1)x(x−2)2•xx−4=x−4x(x−2)2•xx−4=1 (x−2)2当x=10时,原式= 1 64.。

初三数学二次根式试题答案及解析

初三数学二次根式试题答案及解析

初三数学二次根式试题答案及解析1.计算:=.【答案】【解析】=2﹣=.【考点】二次根式的加减法.2.下列实数是无理数的是()A.B.C.D.【答案】A.【解析】理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项:A、是无理数,选项正确;B、C、D、都是整数,是有理数,选项错误. 故选A.【考点】无理数.3.若式子有意义,则实数x的取值范围是【答案】x≥1.【解析】根据二次根式的性质可以得到x-1是非负数,由此即可求解.试题解析:依题意得x-1≥0,∴x≥1.【考点】二次根式有意义的条件.4.方程的解为 .【答案】x=1【解析】方程两边平方,得:2-x=1,解得:x=1.经检验:x=1是方程的解.故答案是:x=1.【考点】无理方程.5.函数y中,自变量x的取值范围是【答案】x≥.【解析】根据二次根式的意义,2x﹣1≥0,解得x≥.故答案是x≥.【考点】函数自变量的取值范围.6.计算:-12003+()-2-|3-|+3tan60°。

【答案】6【解析】首先计算乘方,化简二次根式,去掉绝对值符号,然后进行乘法,加减即可.本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式的化简,正确记忆特殊角的三角函数值.解:原式=﹣1+4﹣3+3+3×,=﹣1+4+3,=6.7.计算:·-=________.【答案】2【解析】原式=-=3-=2.8.使二次根式有意义的x的取值范围是 .【答案】x≤2.【解析】根据二次根式的性质,被开方数大于等于0,即:2﹣x≥0,解得:x≤2.故答案是x≤2.【考点】二次根式的性质.9.与的大小关系是()A.>B.<C.=D.不能比较【答案】A.【解析】∵,∴,∴.故选A.【考点】实数大小比较.10.计算:.【答案】.【解析】先算乘除,再算加减,有括号的先算括号里面的,特别的能利用公式的应用公式简化计算过程.试题解析:==.【考点】二次根式的化简.11.【答案】.【解析】根据分母有理化、二次根式、非零数的零次幂的意义进行计算即可得出答案.试题解析:考点: 实数的混合运算.12.计算: .【答案】.【解析】把括号展开即可求值.试题解析:故答案为:.考点: 二次根式的运算.13.下列计算中,正确的是()A.B.C.D.【答案】D.【解析】A.已经是最简的,故本选项错误;B. ,故本选项错误;C. ,故本选项错误;D. ,故本选项正确.故选D.【考点】二次根式化简.14.实数范围内有意义,则x的取值范围是()A.x>1B.x≥l C.x<1D.x≤1【答案】B.【解析】根据根式有意义的条件,根号下面的数或者式子要大于等于0,即解得:x≥l.【考点】根式有意义的条件.15.计算:【答案】.【解析】根据二次根式的混合运算顺序和运算法则计算即可.试题解析:【考点】二次根式的混合运算.16.是整数,则正整数n的最小值是()A.4B.5C.6D.7【答案】C.【解析】∵,∴当时,,∴原式=,∴n的最小值为6.故选C.考点: 二次根式的化简.17.实数4的平方根是.【答案】±2.【解析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的一个平方根:∵(±2)2=4,∴16的平方根是±2.【考点】平方根.18.要使式子在实数范围内有意义,字母a的取值必须满足()A.a≥2B.a≤2C.a≠2D.a≠0【答案】A【解析】使式子在实数范围内有意义,必须有a-2≥0,解得a≥2,故选A【考点】二次根式成立的条件.19.下列运算正确的是()A.B.C.D.【答案】D.【解析】A.和不是同类二次根式,不能合并,此选项错误;B.3和不是同类二次根式,不能合并,此选项错误;C.,此选项错误;D.,此选项正确.故选D.【考点】二次根式的混合运算.20.若,,求.的值【答案】4【解析】本题考查的是二次根式的混合运算,同时考查了因式分解,把a2b+ab2的因式分解为ab(a-b),再代入计算即求解为4.试题解析:解:∵,∴∴【考点】1、二次根式的混合运算.2、因式分解.21.下列运算正确的是()A.B.C.D.【答案】D【解析】二次根式的性质:当时,,当时,.A、,B、,C、,均错误;D、,本选项正确.【考点】二次根式的混合运算22.要使式子有意义,则x的取值范围是 .【答案】【解析】根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须。

【精华版】二次根式计算专题训练-(附答案)

【精华版】二次根式计算专题训练-(附答案)

二次根式计算专题训练一、解答题(共30小题)1.计算:(1)+;(2)(+)+(﹣).2.计算:(1)(π﹣3.14)0+|﹣2|﹣+()-2.(2)﹣4﹣(﹣).(3)(x﹣3)(3﹣x)﹣(x﹣2)2.3.计算化简:(1)++(2)2﹣6+3.4.计算(1)+﹣(2)÷×.5.计算:(1)×+3×2(2)2﹣6+3.6.计算:(1)()2﹣20+|﹣| (2)(﹣)×(3)2﹣3+;(4)(7+4)(2﹣)2+(2+)(2﹣)7.计算(1)•(a≥0)(2)÷(3)+﹣﹣(4)(3+)(﹣)8.计算::(1)+﹣(2)3+(﹣)+÷.9.计算(1)﹣4+÷(2)(1﹣)(1+)+(1+)2.10.计算:(1)﹣4+(2)+2﹣(﹣)(3)(2+)(2﹣);(4)+﹣(﹣1)0.11.计算:(1)(3+﹣4)÷(2)+9﹣2x2•.12.计算:①4+﹣+4;②(7+4)(7﹣4)﹣(3﹣1)2.13.计算题(1)××(2)﹣+2(3)(﹣1﹣)(﹣+1)(4)÷(﹣)(5)÷﹣×+(6).14.已知:a=,b=,求a2+3ab+b2的值.15.已知x,y都是有理数,并且满足,求的值.16.化简:﹣a.17.计算:(1)9+5﹣3;(2)2;(3)()2016(﹣)2015.18.计算:.19.已知y=+﹣4,计算x﹣y2的值.20.已知:a、b、c是△ABC的三边长,化简.21.已知1<x<5,化简:﹣|x﹣5|.22.观察下列等式:①==;②==;③==………回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++…+.23.观察下面的变形规律:=,=,=,=,…解答下面的问题:(1)若n为正整数,请你猜想=;(2)计算:(++…+)×()24.阅读下面的材料,并解答后面的问题:==﹣1==﹣;==﹣(1)观察上面的等式,请直接写出(n为正整数)的结果;(2)计算()()=;(3)请利用上面的规律及解法计算:(+++…+)().25.计算:(1)6﹣2﹣3(2)4+﹣+4.26.计算(1)|﹣2|﹣+2(2)﹣×+.27.计算.28.计算(1)9+7﹣5+2(2)(2﹣1)(2+1)﹣(1﹣2)2.29.计算下列各题.(1)(﹣)×+3(2)﹣×.30.计算(1)9+7﹣5+2(2)(﹣1)(+1)﹣(1﹣2)2《二次根式计算专题训练》参考答案与试题解析一.解答题(共30小题)1.计算:(1)+= 2+5= 7;(2)(+)+(﹣= 4+2+2﹣= 6+.2.计算:(1)(π﹣3.14)0+|﹣2|﹣+()﹣2 =1+2﹣﹣4+9=12﹣5;(2)﹣4﹣(﹣)= 2﹣4×﹣+2= +(3)(x﹣3)(3﹣x)﹣(x﹣2)2 =﹣x2+6x﹣9﹣(x2﹣4x+4)=﹣2x2+10x﹣133.计算化简:(1)++= 2+3+2= 5+2;(2)2﹣6+3= 2×2﹣6×+3×4= 144.计算(1)+﹣= 2+4﹣2= 6﹣2.(2)÷×= 2÷3×3= 2.5.计算:(1)×+3×2= 7+30= 37(2)2﹣6+3= 4﹣2+12= 146.计算:(1)()2﹣20+|﹣| = 3﹣1+=(2)(﹣)×=(3﹣)×= 24(3)2﹣3+= 4﹣12+5=﹣8+5(4)(7+4)(2﹣)2+(2+)(2﹣)=(2+)2(2﹣)2+(2+)(2﹣)= 1+1 = 27.计算(1)•(a≥0)= = 6a(2)÷= =(3)+﹣﹣= 2+3﹣2﹣4= 2﹣3(4)(3+)(﹣)= 3﹣3+2﹣5=﹣2﹣8.计算:(1)+﹣=+3﹣2=2;(2)3+(﹣)+÷=+﹣2+=.9.计算:(1)﹣4+÷=3﹣2+=3﹣2+2=3;(2)(1﹣)(1+)+(1+)2 =1﹣5+1+2+5 =2+2.10.计算:(1)﹣4+=3﹣2+=2;(2)+2﹣(﹣)=2+2﹣3+=3﹣;(3)(2+)(2﹣)=12﹣6 =6;(4)+﹣(﹣1)0 =+1+3﹣1 =4.11.计算:(1)(3+﹣4)÷=(9+﹣2)÷4=8÷4=2;(2)+9﹣2x2•=4+3﹣2x2×=7﹣2=5.12.计算:①4+﹣+4=4+3﹣2+4=7+2;②(7+4)(7﹣4)﹣(3﹣1)2 =49﹣48﹣(45+1﹣6)=﹣45+6.13.计算题(1)××===2×3×5 =30;(2)﹣+2=×4﹣2+2×=2﹣2+=;(3)(﹣1﹣)(﹣+1)=﹣(1+)(1﹣)=﹣(1﹣5)=4;(4)÷(﹣)=2÷(﹣)=2÷=12;(5)÷﹣×+=4÷﹣+2=4+;(6)===.14.已知:a=,b=,求a2+3ab+b2的值.解:a==2+,b=2﹣,则a+b=4,ab=1,a2+3ab+b2=(a+b)2+ab =17.15.已知x,y都是有理数,并且满足,求的值.【分析】观察式子,需求出x,y的值,因此,将已知等式变形:,x,y都是有理数,可得,求解并使原式有意义即可.【解答】解:∵,∴.∵x,y都是有理数,∴x2+2y﹣17与y+4也是有理数,∴解得∵有意义的条件是x≥y,∴取x=5,y=﹣4,∴.【点评】此类问题求解,或是转换式子,求出各个未知数的值,然后代入求解.或是将所求式子转化为已知值的式子,然后整体代入求解.16.化简:﹣a.【分析】分别求出=﹣a,=﹣,代入合并即可.【解答】解:原式=﹣a+=(﹣a+1).【点评】本题考查了二次根式性质的应用当a≥0时,=a,当a≤0时,=﹣a.17.计算:(1)9+5﹣3= 9+10﹣12= 7;(2)2= 2×2×2×= ;(3)()2016(﹣)2015.=[(+)(﹣)]2015•(+)=(5﹣6)2015•(+)=﹣(+)=﹣﹣.18.计算:.解:原式=+()2﹣2+1﹣+=3+3﹣2+1﹣2+=4﹣.19.已知y=+﹣4,计算x﹣y2的值.【分析】根据二次根式有意义的条件可得:,解不等式组可得x的值,进而可求出y的值,然后代入x﹣y2求值即可.【解答】解:由题意得:,解得:x=,把x=代入y=+﹣4,得y=﹣4,当x=,y=﹣4时x﹣y2=﹣16=﹣14.20.已知:a、b、c是△ABC的三边长,化简.【解】解:∵a、b、c是△ABC的三边长,∴a+b>c,b+c>a,b+a>c,∴原式=|a+b+c|﹣|b+c﹣a|+|c﹣b﹣a|=a+b+c﹣(b+c﹣a)+(b+a﹣c)=a+b+c﹣b﹣c+a+b+a﹣c=3a+b﹣c.21.已知1<x<5,化简:﹣|x﹣5|.解:∵1<x<5,∴原式=|x﹣1|﹣|x﹣5| =(x﹣1)﹣(5﹣x)= 2x﹣6.22.观察下列等式:①==;②==;③==…回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++…+.【分析】(1)根据观察,可发现规律;=,根据规律,可得答案;(2)根据二次根式的性质,分子分母都乘以分母两个数的差,可分母有理化.【解答】解:(1)原式==;)(2)原式=+++…+=(﹣1).23.观察下面的变形规律:=,=,=,=,…解答下面的问题:(1)若n为正整数,请你猜想=﹣;(2)计算:(++…+)×()解:原式=[(﹣1)+(﹣)+(﹣)+…+(﹣)](+1)=(﹣1)(+1)=()2﹣12 = 2016﹣1 = 2015.24.阅读下面的材料,并解答后面的问题:==﹣1==﹣;==﹣(1)观察上面的等式,请直接写出(n为正整数)的结果﹣;(2)计算()()=1;(3)请利用上面的规律及解法计算:(+++…+)().=(﹣1+﹣+…+﹣)()=(﹣1)(+1)=2017﹣1 =2016.25.计算:(1)6﹣2﹣3= 6﹣5= 6﹣;(2)4+﹣+4= 4+3﹣2+4= 7+2.26.计算(1)|﹣2|﹣+2= 2﹣﹣2+2= ;(2)﹣×+= ﹣×5+= ﹣1+=﹣.27.计算.=(10﹣6+4)÷=(10﹣6+4)÷=(40﹣18+8)÷=30÷=15.28.计算(1)9+7﹣5+2= 9+14﹣20+= ;(2)(2﹣1)(2+1)﹣(1﹣2)2 = 12﹣1﹣1+4﹣12 = 4﹣2.29.计算下列各题.(1)(﹣)×+3= ﹣+=6﹣6+=6﹣5;(2)﹣×= +1﹣= 2+1﹣2.30.计算(1)9+7﹣5+2= 9+14﹣20+= ;(2)(﹣1)(+1)﹣(1﹣2)2=3﹣1﹣(1+12﹣4)=2﹣13+4=﹣11+4.。

初三数学二次根式试题答案及解析

初三数学二次根式试题答案及解析

初三数学二次根式试题答案及解析1.二次根式中字母x的取值范围是()A.x<1B.x≤1C.x>1D.x≥1【答案】D.【解析】根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须. 因此,二次根式中字母x的取值范围是x≥1. 故选D.【考点】二次根式有意义的条件.2.函数中,自变量x的取值范围是.【答案】.【解析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.【考点】1.函数自变量的取值范围;2.二次根式有意义的条件.3.实数-8的立方根是【答案】-2.【解析】利用立方根的定义即可求解.试题解析:∵(-2)3=-8,∴-8的立方根是-2.【考点】立方根.4.计算:+(﹣1)0=.【答案】3【解析】原式=2+1=3故答案为:3.【考点】1、立方根;2、零指数幂;3、实数的运算5.若二次根式有意义,则x的取值范围是.【答案】.【解析】根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.【考点】二次根式有意义的条件.6.已知实数x,y满足x+y=-2a,xy=a(a≥1),则的值为A.a B.2a C.a D.2【答案】D.【解析】解:∵x+y=-2a,xy=a(a≥1),∴x,y均为负数,∵∴===2.故选:D.【考点】二次根式的化简求值.7.计算:.【答案】.【解析】根据二次根式、负整数指数幂以及零次幂的意义进行计算即可求出答案.原式=.【考点】实数的混合运算.8.方程的根是.【答案】.【解析】∵,∴.∴.【考点】解方程.9.观察分析下列数据,寻找规律:0,,,3,2,…,那么第10个数据应是________.【答案】3【解析】观察可知规律:被开数依次是0,3,6,9,12,…,按规律可知,第10个数据应该是=3,填3.10.。

【答案】【解析】根据二次根式的乘法法则计算.试题解析:.考点: 二次根式的乘除法.11.计算:.【答案】.【解析】先化成最简二次根式,再合并同类二次根式即可得出答案.试题解析:.考点: 二次根式的加减法.12.下列属于最简二次根式的是()A.B.C.D.【答案】B.【解析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.A、,被开方数含能开得尽方的因数,不是最简二次根式;B、是最简二次根式;C、,被开方数含能开得尽方的因数,不是最简二次根式;D、,被开方数含能开得尽方的因数,不是最简二次根式.故选B.【考点】最简二次根式.13.计算:【答案】0.【解析】根据二次根式运算法则计算即可.试题解析:.【考点】二次根式计算.14.下列计算正确的是()A.B.C.D.【答案】A.【解析】二次根式的加减,首先要把各项化为最简二次根式,是同类二次根式的才能合并,不是同类二次根式的不合并;二次根式的乘除法公式,,需要说明的是公式从左到右是计算,从右到左是二次根式的化简,并且二次根式的计算要对结果有要求,能开方的要开方,根式中不含分母,分母中不含根式,由题,,A正确,不能合并,,不能合并,B错误,C不能合并,错误,,D错误,故选A.【考点】根式的计算.15.的值是()A.4B.2C.±2D.【答案】B.【解析】首先应弄清所表示的意义:求的算术平方根.根据一个正数的平方等于,那么这个正数就叫做的算术平方根.因为,所以的算术平方根为,故应选B.【考点】算术平方根的定义.16.计算【答案】.【解析】原式=.【考点】 1.实数的运算;2.零指数幂;3.负整数指数幂.17.下列根式中属最简二次根式的是()A.B.C.D.【答案】A【解析】最简二次根式的是满足两个条件:1.被开方数中不含分母.2.被开方数中不能含有开得方的因数或因式.故符合条件的只有A.故选A【考点】最简二次根式18.若x,y为实数,且,则的值为A.1B.C.2D.【答案】B.【解析】∵,∴根据绝对值和二次根式的非负数性质,得.∴.故选B.【考点】1.绝对值和二次根式的非负数性质;2.乘方.19.若,则m-n的值为.【答案】4.【解析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.试题解析:根据题意得:,解得:,则m+n=3-(-1)=4.考点: (1)算术平方根;(2)绝对值.20.已知,则有()A.B.C.D.【答案】A.【解析】,∵,∴,即.故选A.【考点】1.估算无理数的大小;2.实数的运算.21.若使二次根式在实数范围内有意义,则x的取值范围是()A.B.C.D.【答案】B【解析】根据题意,a-1…0,a…1.当被开方数为非负数时,二次根式有意义,根据题意,得到a的不等式.【考点】二次根式有意义的条件(被开方数为非负数).22.计算:.【答案】或者.【解析】此题是二次根式的加减乘除运算和化简,首先要弄明白二次根式加减的法则和乘除的公式,对于二次根式的加减来说,首先要把各项化为最简二次根式,然后是同类二次根式的才能合并,不是同类二次根式的不合并;二次根式的乘除法公式,,需要说明的是公式从左到右是计算,从右到左是二次根式的化简,并且二次根式的计算要对结果有要求,能开方的要开方,根式中不含分母,分母中不含根式.试题解析:解:原式=.【考点】二次根式的加减乘除运算和化简.23.如图,矩形ABCD中,点E、F分别是AB、CD的中点,连接DE和BF,分别取DE、BF的中点M、N,连接AM,CN,MN,若AB=2,BC=2,则图中阴影部分的面积为.【答案】.【解析】如图,经过等积转换:平行四边形BNME与平行四边形NFDM等积;△AHM与△CGN 等积.∴阴影部分的面积其实就是原矩形ABCD面积的一半.∴阴影部分的面积=.【考点】1.矩形的性质;2.面积割补法的应用,3.全等图形的判定;4.二次根式的运算;5.转换思想和整体思想的应用.24.计算与化简(1)(2)【答案】(1);(2).【解析】(1)将前两项化为最简二次根式,第三项根据0指数幂定义计算,再合并同类二次根式即可;(2)应用完全平方公式和平方差公式展开后合并同类二次根式即可.试题解析:(1).(2).【考点】1.二次根式化简;2.0指数幂;3.完全平方公式和平方差公式.25.要使二次根式有意义,字母x必须满足的条件是.【答案】【解析】二次根式有意义的条件:二次根号下的式子为非负数,即,.【考点】二次根式有意义的条件26.若x3=8,则x=.【答案】2【解析】根据立方根的定义,求数a的立方根,也就是求一个数x,使得x3=a,则x就是a的一个立方根:∵23=8,∴8的立方根是2。

初三数学二次根式试题答案及解析

初三数学二次根式试题答案及解析

初三数学二次根式试题答案及解析1.在0.1,﹣3,和这四个实数中,无理数是()A.0.1B.﹣3C.D.【答案】C【解析】在0.1,﹣3,和这四个实数中,无理数有:【考点】无理数2.读取表格中的信息,解决问题.a=b+2c b=c+2a c=a+2b满足的n可以取得的最小整数是.【答案】7.【解析】由,,,….∵,∴.∴.∵36<2014<37,∴n最小整数是7.【考点】1.探索规律题(数字的变化类);2.二次根式化简;3.不等式的应用.3.计算sin245°+cos30°•tan60°,其结果是()A.2B.1C.D.【答案】A【解析】原式=()2+×=+=2.故选:A.【考点】1、特殊角的三角函数值;2、实数的计算4.若式子在实数范围内有意义,则x的取值范围是()A.x<2B.x≤2C.x>2D.x≥2【答案】D【解析】根据题意得:x﹣2≥0,解得:x≥2.故选D.【考点】二次根式有意义的条件5.在下列实数中,无理数是()A.2B.3.14C.D.【答案】D.【解析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项:A、是整数,是有理数,选项错误;B、是小数,是有理数,选项错误;C、是分数,是有理数,选项错误;D、是无理数,选项正确析.故选D.【考点】无理数.6.二次根式在实数范围内有意义,则x的取值范围是()A.x<1B.x≥1C.x≤-1D.x<-1【答案】B.【解析】根据题意得:x-1≥0,解得:x≥1.故选B.考点: 二次根式有意义的条件.7.下列计算正确的是 ()A.-=B.=-=1C.÷(-)=-1D.=3【答案】A【解析】∵-=2-=∴A对.∵==∴B错.∵÷(-)===+1∴C错∵===3-1∴D错.选A.8.计算:·-=________.【答案】2【解析】原式=-=3-=2.9.下列各式中,正确的是 ()A.=-3B.-=-3C.=±3D.=±3【答案】B【解析】因为-=-=-3,所以选B.10. 9的算术平方根是( )A.3B.±3C.81D.±81【答案】A.【解析】9的算术平方根是.故选A.考点: 算术平方根.11.已知则.【答案】【解析】因为所以所以,故.12.下列运算正确的是()A.B.C.D.【答案】B.【解析】A.与不是同类二次根式,不能合并,故本选项错误;B.,故本选项正确;C.3与不是同类二次根式,不能合并,故本选项错误;D. ,,故本选项错误.故选B.考点: 二次根式的运算与化简.13.的值等于()A.4B.-4C.±4D.【答案】A.【解析】根据42=16,可得.故选A.【考点】算术平方根.14.的算术平方根是()A.4B.C.2D.【答案】C.【解析】根据算术平方根的定义解答即可.∵∴4的算术平方根是2.故选C.考点:算术平方根.15.观察分析下列数据,按规律填空:(第n个数).【答案】.【解析】寻找规律:可写为.【考点】探索规律题(数字的变化类).16.下列计算正确的是()A.B.C.D.【答案】D【解析】A、与不是同类二次根式,无法合并,B、,C、,均错误;D、,本选项正确.【考点】二次根式的混合运算17.下列计算,正确的是A.B.C.D.【答案】C.【解析】A、与不是同类二次根式,不能合并,故A错误;B、与不是同类二次根式,不能合并,故B错误;C、,该选项正确;D、,故本选项错误.故选C.考点: 二次根式的混合运算.18.计算【答案】.【解析】先化简二次根式,再合并同类二次根式,最后算除法即可求出答案.试题解析:考点: 二次根式的混合运算.19.计算:=.【答案】7.【解析】直接根据二次根式的性质与化简进行计算即可..故填7.【考点】二次根式的性质与化简.20.已知:a.b.c满足,求:(1)a,b,c的值;(2)试问以a,b,c为边能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由.【答案】(1)a=2,b=5,c=3;(2)能构成三角形,周长=.【解析】(1)几个非负数的和为零,要求每一项为零,由题,a-2=0,b-5=0,c-3=0,a=2 ,b=5,c=3;(2)能构成三角形的条件是两边之和大于第三边,由题,,而,所以能构成三角形,周长=. 试题解析:(1)由题,∴a-2=0,b-5=0,c-3=0,∴a=2,b=5,c=3;(2)∵,,∴能构成三角形,三角形的周长=.【考点】1.非负数的性质;2.三角形三边的关系.21.下列二次根式中,取值范围是的是()A.B.C.D.【答案】C.【解析】根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须;要使在实数范围内有意义,必须;要使在实数范围内有意义,必须;要使在实数范围内有意义,必须,因此,取值范围是的是. 故选C.【考点】二次根式和分式有意义的条件.22.若,,求.的值【答案】4【解析】本题考查的是二次根式的混合运算,同时考查了因式分解,把a2b+ab2的因式分解为ab(a-b),再代入计算即求解为4.试题解析:解:∵,∴∴【考点】1、二次根式的混合运算.2、因式分解.23.如果,那么= .【答案】-2【解析】根据题意,可得=0,∣b-2∣=0,从而得到a+1=0,a=-1,b-2=0,b=2,ab=-2.因为二次根式为非负数,一个数的绝对值为非负数,由几个非负数的和为零,要求每一项都为零,即=0,∣b-2∣=0,而零的二次根式为0,0的绝对值为0,从而得到a+1=0,b-2=0,解得a=-1,b=2,ab=-2.【考点】几个非负数的和为零,要求每一项都为零.24.若平行四边形的一边长为2,面积为,则此边上的高介于A.3与4之间B.4与5之间C.5与6之间D.6与7之间【答案】B【解析】先根据四边形的面积公式列出算式,求出高的值,再估算出无理数,即可得出答案:根据四边形的面积公式可得:此边上的高=。

【配套K12】华师大版九年级数学下册课后练习:二次根式的概念和性质+课后练习一及详解

【配套K12】华师大版九年级数学下册课后练习:二次根式的概念和性质+课后练习一及详解

学科:数学专题:二次根式的概念和性质重难点易错点辨析12a=-,则()A.a<12B. a≤12C. a>12D. a ≥12金题精讲题一:<0得()B C题二:题面:设实数a,b在数轴上对应的位置如图所示,化简2a+|a+b|的结果是()A.-2a+bB.2a+bC.-bD. b满分冲刺题一:题面:已知实数x,y满足40x-=,则以x,y的值为两边长的等腰三角形的周长是()A. 20或16 B.20 C.16 D.以上答案均不对题二:题面:若a,b,满足,设S,求S的最大值和最小值.题三:题面:如图,矩形ABCD中,点E、F分别是AB、CD的中点,连接DE和BF,分别取DE、BF 的中点M、N,连接AM,CN,MN,若AB=22,BC=23,则图中阴影部分的面积为.思维拓展题面:若0<x<1)B C -2x D 2x课后练习详解重难点易错点辨析答案:B.详解:由已知得2a﹣1≤0,从而得出a的取值范围即可.12a=-,∴2a﹣1≤0,解得a≤12.故选B.金题精讲题一:答案:C.详解:|a题二:答案:D.详解:根据数轴上a,b的值得出a,b的符号,a<0,b>0,a+b>0,∴2a+|a+b|=-a+a+b=b,故选:D.满分冲刺题一:答案: B.详解:根据非负数的意义列出关于x、y的方程并求出x、y的值,再根据x是腰长和底边长两种情况讨论求解:由40x-=得,x-4=0,y-8=0,即x=4,y=8.(1)若4是腰长,则三角形的三边长为:4、4、8,不能组成三角形;(2)若4是底边长,则三角形的三边长为:4、8、8,能组成三角形,周长为4+8+8=20.故选B.题二:答案:S最大值=143,S最小值=−215.,∴S=143-,S=−215+195∴S最大值=143,S最小值=−215.题三:答案:26.详解:△BCN与△ADM全等,面积也相等;△AME与△CNF全等,面积也相等,口DFNM 与口BEMN的面积也相等,所以阴影部分的面积其实就是原矩形面积的一半.12⨯=.思维拓展答案:D.详解:(x2+4=(x2,(x2-4=(x2.又∵0<x<1,∴x0,xx.。

华师大版九年级数学下册课后练习:二次根式的运算和应用 课后练习二及详解(1)

华师大版九年级数学下册课后练习:二次根式的运算和应用 课后练习二及详解(1)
学科:数学
专题:二次根式的运算和应用
金题精讲
题一:
题面:当x=1- 时,求 + + 的值.
题二:
题面:计算:
满分冲刺
题一:
题面:已知a、b为两个连续的整数,且 ,则a+b___________.
题二:
题面:若a•b≠1,且有2a2+5a+1=0,b2+5b+2=0,则2 + 的值为( )
A. B. C. D.
连接AC′则A、D、C′构成直角三角形,由勾股定理得
AC′= = = ,
②如图2,把长方体沿虚线剪开,则成长方形ADC′B′,宽为AD=2,长为DD′+D′C′=4,
连接AC′则A、D、C′构成直角三角形,同理,由勾股定理得AC′=5,
∴最短路径是5.
∴由韦达定理,得x1•x2=2,即 •b=2,∴a= ;
∴2 + =2 + = .
题三:
答案: .
详解:∵a+b=5,ab=4,
∴(a-b)2=(a+b)2-4ab=52-4×4=25-16=9,
∴a-b=±3,
= .
思维拓展
答案:最短路径是5.
详解::①如图1,把长方体沿虚线剪开,则成长方形ACC′A′,宽为AA′=2,长为AD+DC=5,
题三:
题面:若a+b=5,ab=4,则 =_________.
思维拓展
题面:如图,长方体中AB=BB′=2,AD=3,一只蚂蚁从A点出发,在长方体表面爬到C′点,求蚂蚁怎样走最短,最短路径是多少?
课后练习详解
金题精讲
题一:
答案:-1- .
详解:原式= - +

华师大版九年级数学下册课后练习:期中期末串讲--二次根式 课后练习及详解

华师大版九年级数学下册课后练习:期中期末串讲--二次根式 课后练习及详解

期中期末串讲--二次根式课后练习主讲教师:黄老师题一:(1)x 的取值范围是( ) A .x ≥-1 B .x ≥-1且x ≠3 C.x >-1 D .x >-1且x ≠3(2)x 的取值范围是( ) A .x >0 B .x <0 C .x ≥0 D.x ≤0题二:(1)函数12y x =+的自变量x 的取值范围是( ) A .x ≤2 B.x ≥2 C.x <2 D .x >2(2)当-1≤x ≤1时,在实数范围内有意义的式子是( )A题三:(1)若已知a 、b 4b =+,求2a +(2)|x -4|+|x |.(3)已知实数a 满足2006a a -,求22006a -的值.题四:(1)已知x ,y 为实数,且y =(2)24x -(3)已知实数x x x ,求x 的值.题五:计算:((⋅;(3)-;(4)2题六:计算:⨯;(-;;a3题七:已知a+b=-5,ab=3题八:已知a,b ab=,求期中期末串讲--二次根式课后练习参考答案题一: B ;A .详解:(1)由题意,得x +1≥0且x -3≠0,解得x ≥-1且x ≠3.故选B .(2)由题意,得1x≥0且x ≠0,解得x >0.故选A . 题二: A ;C .详解:(1)根据题意,得2-x ≥0且|x |+2≠0,解得x ≤2.故选A .(2) A .x ≥2B .当x ≤12C .当-1≤x ≤1D .- 1≤x ≤1且x ≠-1C . 题三: 11;4;2007.详解:(1)由题意,得501020a a -≥⎧⎨-≥⎩,解得a =5,4b =+,得b +4=0,解得b =-4,当a =5,b =-4时,22511a =⨯=.(2)根据题意,得1020x x -≥⎧⎨-≥⎩,解得12x ≤≤, ∴|x -4|+|x |=-(x -4)+x =-x +4+x =4.(3)根据题意,得a -2007≥0,解得a ≥2007,∴20062006a a a --,2006=,两边平方,得a =20062+2007,∴a -20062=20062+2007-20062=2007.题四: 32;7;4019. 详解:(1)由题意,得22404020x x x ⎧-≥⎪⎪-≥⎨⎪+≠⎪⎩,解得x =2,∴14y ==,当x =2,14y =32=. (2)根据题意,得310120x x +≥⎧⎨-≥⎩,解得1132x -≤≤,∴原式24423127x x x x =-+=-+++-=.(3)∵x -2010≥0,即x ≥2010,∴0x <,∴原方程可化为x x 两边平方,得x -2010=2009,解得x = 4019.题五: 2158x详解:(1)原式3122⨯34⨯;(2)原式((⋅=95(46xy -⋅-=2158x(3)原式===(4)原式=题六: 28x y 7-详解:(1)原式=5(14)2⨯⨯10(2)原式=21((6x y÷=24(6)3x y x y y x ⋅⋅28x y ;(3)原式=(4)原式=87-题七:. 详解:∵a +b =-5<0,ab =3>0,∴a <0,b <0,∴原式+a b ab +=53-.题八:详解:∵ab -2≥0,∴ab ≥2,11ab ab ab -=-=,,解得ab=3,∴。

初三数学二次根式试题答案及解析

初三数学二次根式试题答案及解析

初三数学二次根式试题答案及解析1.函数的自变量x的取值范围是.【答案】.【解析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.【考点】1.函数自变量的取值范围;2.二次根式有意义的条件.2.下列各式与是同类二次根式的是()A.B.C.D.【答案】D.【解析】A、=2,故不与是同类二次根式,故此选项错误;B、=2,故不与是同类二次根式,故此选项错误;C、=5,故不与是同类二次根式,故此选项错误;D、=2,故,与是同类二次根式,故此选项正确;故选:D.【考点】同类二次根式..3.的整数部分是.【答案】2.【解析】看在哪两个整数之间即可得到它的整数部分.∵<<即2<<3∴无理数的整数部分是2.【考点】估算无理数的大小.4.比较大小: 2.【答案】<【解析】根据2=比较即可.∵2=,∴<2,【考点】实数大小比较.5.请写出一个大于3且小于4的无理数:.【答案】(答案不唯一).【解析】根据无理数的定义得出大于2且小于4的无理数即可.∵大于3且小于4的无理数为:,∴x可以为:x=(答案不唯一).考点: 估算无理数的大小.6.+(-1)+()0.【答案】3.【解析】先根据二次根式及零次幂的意义进行化简,再合并同类二次根式即可求值.试题解析:原式=2+-1+1=3.考点: 1.二次根式的化简;2.实数的混合运算.7.下列计算错误的是().A.B.C.D.【答案】A.【解析】A、,此选项错误;B、,此选项正确;C、,此选项正确;D、,此选项正确.故选A.【考点】二次根式的混合运算.8. (2+3)(2-3)等于________________.【答案】-33【解析】利用平方差公式来解,(2+3)(2-3)=(2)2-(3)2=-33.9.定义运算“@”的运算法则为:x@y=,则(2@6)@8=_________.【答案】.【解析】认真观察新运算法则的特点,找出其中的规律,再计算.试题解析:∵x@y=,∴(2@6)@8=@8=2@8=.考点: 二次根式的混合运算.10.计算:(1)(2)【答案】(1);(2).【解析】(1)先把二次根式化成最简二次根式之后,再合并同类二次根式即可求出答案;(2)先把二次根式化成最简二次根式之后,再进行二次根式的乘除法运算.试题解析:(1);(2)考点: 二次根式的化简与计算.11.如果+=0,则+=.【答案】.【解析】根据几个非负数的和等于0的性质得到a-1=0,2-b=0,求出a、b的值,然后代入化简即可得到答案.试题解析:∵≥0,≥0,且+=0∴a-1=0,2-b=0解得:a=1,b=2∴+考点: 1.非负数的性质:算术平方根;2.二次根式的化简.12.在实数范围内有意义,则的取值范围是()A.>3B.<3C.≥3D.≤3【答案】C.【解析】根据被开方数大于等于0列式进行计算即可求解.根据题意得x-3≥0,解得x≥3.故选C.考点: 二次根式有意义的条件.13.若有意义,则的取值范围是()A.B.C.D.【答案】D.【解析】根据二次根式有意义的条件得到a﹣2≥0,然后解不等式得:a ≥2.故选D.【考点】二次根式有意义的条件.14.计算:(a≥0,b≥0).【答案】.【解析】根据二次根式的运算法则计算即可.试题解析:∵a≥0,b≥0,∴.【考点】二次根式的计算.15.化简:=.【答案】.【解析】根据正数的绝对值是它本身,负数的绝对值是它的相反数,零的绝对值是零.可得:故答案是.【考点】绝对值.16.若二次根式有意义,则的取值范围是().A.<4B.>4C.≥4D.≤4【答案】C.【解析】根据二次根式的被开方数是非负数即-4≥0,解得:≥4。

(完整word版)二次根式的加减基础题30道解答题含答案解析

(完整word版)二次根式的加减基础题30道解答题含答案解析

12.3 二次根式的加减基础题汇编(3)一.解答题(共30小题)1.(2015•嘉定区一模)计算:|1﹣sin30°|+cot30°•tan60°+. 2.(2014秋•大英县校级期末)计算:0.3.(2014秋•萝岗区期末)化简:(1)(﹣)(2)(a+2)2﹣a(a﹣4)4.(2014秋•宝兴县校级期末)(1)(﹣4)﹣(3﹣2);(2)(5+﹣6)÷.5.(2014秋•大英县校级期末)计算:(1)(2)6cos60°﹣(sin21°﹣1)0×5tan45°.6.(2014秋•青神县期末)﹣3﹣×.7.(2014秋•福田区期末)计算:(1)(2015﹣π)0+()﹣1﹣(+1)(﹣1)(2)+×.8.(2014秋•宝兴县校级期末)计算:()÷.9.(2014秋•宝兴县校级期末)+﹣4+2(﹣1)0.10.(2014•相城区一模)计算化简(1)计算:(2)化简:,然后选择一个合适的x的值代入上式求值.11.(2014•石家庄模拟)化简(1)﹣+sin45°;(2).12.(2014•高邮市模拟)计算:(1)(1﹣)0﹣tan60°+(﹣)﹣1;(2)3(1﹣)+.13.(2014•孟津县一模)计算下列各题(1)(﹣)+;(2)(﹣2)3+(2014﹣)0﹣tan60°.14.(2014•建宁县校级质检)(1)计算:(2)先化简,再求值:,其中x=﹣4.15.(2014春•淮北期中)计算(1)﹣+|1﹣|+()﹣1(2)(﹣3)2+(+3)(﹣3)16.(2013•闵行区三模)计算:.17.(2013秋•汉川市期中)计算:(1)•(+)﹣(﹣5);(2)(3+)(﹣4).18.(2012•潘集区模拟)计算:(1);(2).19.(2012•建宁县校级质检)(1)计算:(2)解不等式组:,并把解集在数轴上表示出来.20.(2011•海门市一模)计算:(1);(2). 21.(2010•巫山县模拟)计算:(1)(2).22.(2002•西藏)当a=时,求代数式﹣﹣的值.23.(1997•山东)先化简,再求值:+.其中x=,y=.24.计算:2a﹣+(a>0)25.计算:(1)+2﹣4﹣(2)(﹣2)﹣(+)(3)+6﹣2x.26.计算:(1).(2)++.(3)(﹣4)﹣(3﹣4).(4)3﹣5+7.27.计算:(1)﹣9+3(2)(a+4)﹣(﹣b).28.计算:(1)+6;(2)(a)﹣(﹣b).29.计算:.30.化简:(+2++).12.3 二次根式的加减基础题汇编(3)参考答案与试题解析一.解答题(共30小题)1.(2015•嘉定区一模)计算:|1﹣sin30°|+cot30°•tan60°+.考点:二次根式的混合运算;特殊角的三角函数值.分析:利用特殊角的三角函数值及二次根式的混合运算的顺序求解即可.解答:解:|1﹣sin30°|+cot30°•tan60°+.=|1﹣|+××+,=++,=﹣2.点评:本题主要考查了二次根式的混合运算及特殊角的三角函数值,解题的关键是熟记特殊角的三角函数值及二次根式的混合运算的顺序.2.(2014秋•大英县校级期末)计算:0.考点:二次根式的混合运算;零指数幂.分析:先根据零指数幂的意义计算,再把各二次根式化为最简二次根式,然后合并即可.解答:解:原式=3+﹣+1=3+1.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂.3.(2014秋•萝岗区期末)化简:(1)(﹣)(2)(a+2)2﹣a(a﹣4)考点:二次根式的混合运算;整式的混合运算.专题:计算题.分析:(1)根据二次根式的乘法法则运算;(2)利用乘法公式展开,然后合并同类项即可.解答:解:(1)原式=﹣=4﹣2=2;(2)原式=a2+4a+4﹣a2+4a=8a+4.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了整式的混合运算.4.(2014秋•宝兴县校级期末)(1)(﹣4)﹣(3﹣2);(2)(5+﹣6)÷.考点:二次根式的混合运算.专题:计算题.分析:(1)先把各二次根式化为最简二次根式,然后去括号后合并即可;(2)先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算.解答:解:(1)原式=4﹣﹣+=3;(2)原式=(20+2﹣6)÷=(22﹣6)=22﹣2.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.5.(2014秋•大英县校级期末)计算:(1)(2)6cos60°﹣(sin21°﹣1)0×5tan45°.考点:二次根式的混合运算;零指数幂;特殊角的三角函数值.专题:计算题.分析:(1)先把各二次根式化为最简二次根式,然后合并即可;(2)根据零指数幂与特殊角的三角函数值得到原式=6×﹣1×5×1,然后进行有理数的混合运算.解答:解:(1)原式=4+﹣12﹣=﹣;(2)原式=6×﹣1×5×1=3﹣5=﹣2.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂与特殊角的三角函数值.6.(2014秋•青神县期末)﹣3﹣×.考点:二次根式的混合运算.专题:计算题.分析:先把各二次根式化为最简二次根式,再进行二次根式的乘法运算,然后合并即可.解答:解:原式=2﹣2﹣4•=﹣4a.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.7.(2014秋•福田区期末)计算:(1)(2015﹣π)0+()﹣1﹣(+1)(﹣1)(2)+×.考点:二次根式的混合运算;零指数幂;负整数指数幂.专题:计算题.分析:(1)根据零指数幂、负整数指数幂和平方差公式得到原式=1+2﹣(3﹣1),然后进行有理数的加减运算;(2)根据二次根式的乘除法则运算.解答:解:(1)原式=1+2﹣(3﹣1)=3﹣2=1;(2)原式=+=3+6=9.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂和负整数指数幂.8.(2014秋•宝兴县校级期末)计算:()÷.考点:二次根式的混合运算.专题:计算题.分析:根据二次根式的除法法则运算.解答:解:原式=﹣+2+=a2﹣+2+a.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.9.(2014秋•宝兴县校级期末)+﹣4+2(﹣1)0.考点:二次根式的混合运算;零指数幂.专题:计算题.分析:根据零指数幂的意义和分母有理化得到原式=5+2(﹣1)﹣2+2×1,然后去括号后合并即可.解答:解:原式=5+2(﹣1)﹣2+2×1=5+2﹣2﹣2+2=5.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂.10.(2014•相城区一模)计算化简(1)计算:(2)化简:,然后选择一个合适的x的值代入上式求值.考点:二次根式的混合运算;分式的化简求值;负整数指数幂;特殊角的三角函数值.分析:(1)首先化简二次根式,代入角的三角函数值,分母有理化,最后合并同类二次根式即可;(2)首先对括号内的两个分式通分相加,然后把除法转化成乘法运算,即可把分式进行化简,然后代入x的值求解即可.解答:解:(1)原式=2+2﹣=2+2﹣(2﹣)=;(2)原式=[﹣]÷=•=当x=1时,原式=1.点评:本题考查的是二次根式的混合运算,在进行此类运算时,一般先把二次根式化为最简二次根式的形式后再运算.第二个题目的计算中要注意分式有意义的条件,x的值不能取0和±3.11.(2014•石家庄模拟)化简(1)﹣+sin45°;(2).考点:二次根式的混合运算;特殊角的三角函数值.专题:计算题.分析:(1)根据分母有理化和特殊角的三角函数值得到原式=﹣3+,然后合并即可;(2)根据特殊角的三角函数值得到原式=,然后进行乘除运算即可.解答:解:(1)原式=﹣3+=﹣2;(2)原式==1.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了特殊角的三角函数值.12.(2014•高邮市模拟)计算:(1)(1﹣)0﹣tan60°+(﹣)﹣1;(2)3(1﹣)+.考点:二次根式的混合运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:(1)根据零指数幂、负整数指数幂和特殊角的三角函数值得到原式=1﹣﹣2,然后合并即可;(2)先进行二次根式的乘法运算和分母有理化得到﹣6+2(﹣1),然后合并即可.解答:解:(1)原式=1﹣﹣2=﹣1﹣;(2)原式=3﹣6﹣=3﹣6﹣2(+1)=3﹣6﹣2﹣2=﹣8.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂、负整数指数幂和特殊角的三角函数值.13.(2014•孟津县一模)计算下列各题(1)(﹣)+;(2)(﹣2)3+(2014﹣)0﹣tan60°.考点:二次根式的混合运算;零指数幂;特殊角的三角函数值.分析:(1)先进行二次根式的乘法运算,然后再进行加法运算即可求解;(2)分别进行零指数幂、特殊角的三角函数值等运算,然后合并.解答:解:(1)原式=2﹣+=2;(2)原式=﹣8+﹣×=﹣8+﹣=﹣9.点评:本题考查了二次根式的混合运算,掌握运算法则解答本题的关键.14.(2014•建宁县校级质检)(1)计算:(2)先化简,再求值:,其中x=﹣4.考点:二次根式的混合运算;分式的化简求值;零指数幂;负整数指数幂.专题:计算题.分析:(1)根据零指数幂、负整数指数幂得到原式=3﹣+1﹣3,然后合并即可;(2)先把括号内通分,再把除法运算化为乘法运算,然后把分式分母因式分解后约分得到原式=,再把x的值代入计算.解答:解:(1)原式=3﹣+1﹣3=1﹣;(2)原式=•=,当x=﹣4时,原式=.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂、负整数指数幂和分式的化简求值.15.(2014春•淮北期中)计算(1)﹣+|1﹣|+()﹣1(2)(﹣3)2+(+3)(﹣3)考点:二次根式的混合运算;负整数指数幂.专题:计算题.分析:(1)分别进行二次根式的化简,分母有理化及负整数指数幂的运算,然后合并即可;(2)根据完全平方公式及平方差公式,进行计算即可.解答:解:(1)原式=3﹣+﹣1+2=3+1;(2)原式=5﹣6+9+11﹣9=16﹣6.点评:本题考查的是二次根式的混合运算,在进行此类运算时,一般先把二次根式化为最简二次根式的形式后再运算.16.(2013•闵行区三模)计算:.考点:二次根式的混合运算;分数指数幂;零指数幂.专题:计算题.分析:根据零指数幂、分数指数幂和分母有理化得原式=1﹣(2﹣)++2(2﹣),然后去括号后合并即可.解答:解:原式=1﹣(2﹣)++2(2﹣)=1﹣2+++4﹣2=3.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂、分数指数幂.17.(2013秋•汉川市期中)计算:(1)•(+)﹣(﹣5);(2)(3+)(﹣4).考点:二次根式的混合运算.分析:(1)先进行二次根式的乘法运算,二次根式的化简,最后合并同类二次根式即可;(2)先将二次根式化为最简,然后运用平方差公式进行计算即可.解答:解:(1)原式=2+3﹣2+=3+;(2)原式=(3+4)(3﹣4)=18﹣48=﹣30.点评:本题考查了二次根式的混合运算,在运算之前先观察,有简便算法时,尽量用简便算法.18.(2012•潘集区模拟)计算:(1);(2).考点:二次根式的混合运算;零指数幂;负整数指数幂.专题:计算题.分析:(1)根据平方差公式和完全平方公式得到原式=2﹣1+7﹣,然后进行加减运算;(2)根据零指数幂与负整数指数幂的意义得到原式=1++3+﹣+1,然后合并同类二次根式即可.解答:解:(1)原式=2﹣1+7﹣=8﹣;(2)原式=1++3+﹣+1=5.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂与负整数指数幂.19.(2012•建宁县校级质检)(1)计算:(2)解不等式组:,并把解集在数轴上表示出来.考点:二次根式的混合运算;在数轴上表示不等式的解集;解一元一次不等式组.分析:(1)首先分母有理化,利用公式计算二次根式的乘法、乘方,然后合并同类二次根式即可;(2)首先解每个不等式,在数轴上表示出不等式的解集,两个解集的公共部分就是不等式组的解集.解答:解:(1)原式==2+4﹣﹣1=5﹣(2)由①得:x≤3由②得:x>﹣3∴原不等式组的解集是:﹣3<x≤3.点评:本题考查的是二次根式的混合运算,在进行此类运算时一般先把二次根式化为最简二次根式的形式后再运算.20.(2011•海门市一模)计算:(1);(2).考点:二次根式的混合运算;零指数幂.专题:计算题.分析:(1)根据绝对值、二次根式的化简、零指数幂进行计算即可;(2)先化简二次根式,再合并即可.解答:解:(1)原式==;(2)原式==.点评:本题考查了二次根式的混合运算以及零指数幂,是基础知识要熟练掌握.21.(2010•巫山县模拟)计算:(1)(2).考点:二次根式的混合运算;零指数幂.专题:计算题.分析:(1)先化简二次根式,再合并同类二次根式即可.(2)根据同底数幂乘法的逆运算和零指数幂、绝对值进行计算即可.解答:解:(1)原式=(3分)=(5分)(2)原式=(2分)=(3分)=(4分)=(5分)点评:本题考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.22.(2002•西藏)当a=时,求代数式﹣﹣的值.考点:二次根式的化简求值.分析:原式第一项分子利用完全平方公式化简,第二项分子利用二次根式的化简公式计算,分母提取公因式化简,约分后合并得到最简结果,将a分母有理化后代入计算即可求出值.解答:解:∵a==2﹣,∴a﹣1=2﹣﹣1=1﹣<0,则原式=﹣﹣=a﹣1+﹣=a﹣1=2﹣﹣1=1﹣.点评:此题考查了二次根式的化简求值,熟练掌握运算法则是解本题的关键.23.(1997•山东)先化简,再求值:+.其中x=,y=.考点:二次根式的化简求值.分析:首先对每个根式进行分母有理化,然后进行同分母的分式的加减,最后进行约分即可化简,把x、y的值代入分母有理化即可求解.解答:解:原式=﹣+==∵x=,y=.∴原式==2(﹣)2.点评:本题考查了根式的化简求值,正确进行分母有理化是关键.24.计算:2a﹣+(a>0)考点:二次根式的加减法.分析:先化简二次根式,然后去括号,合并同类二次根式.解答:解:原式=2a﹣+=.点评:本题考查了二次根式的加减法,解答本题的关键是掌握二次根式的化简以及加减运算法则.25.计算:(1)+2﹣4﹣(2)(﹣2)﹣(+)(3)+6﹣2x.考点:二次根式的加减法.分析:(1)先把各根式化为最简二次根式,再合并同类项即可;(2)先去括号,再把各根式化为最简二次根式,合并同类项即可;(3)先把各根式化为最简二次根式,再合并同类项即可.解答:解:(1)原式=+2﹣﹣=2﹣;(2)原式=﹣2﹣+=2﹣1﹣+5+4=(2﹣+5+4)﹣1=﹣1;(3)原式=2+3﹣2=3.点评:本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.26.计算:(1).(2)++.(3)(﹣4)﹣(3﹣4).(4)3﹣5+7.考点:二次根式的加减法.分析:(1)先进行二次根式的化简,然后合并;(2)先进行二次根式的化简,然后合并;(3)先进行二次根式的化简,然后合并;(4)先进行二次根式的化简,然后合并.解答:解:(1)原式=2+2﹣=+2;(2)原式=++=;(3)原式=2﹣﹣+2=+;(4)原式=3﹣10+21=14.点评:本题考查了二次根式的加减法,掌握运算法则是解答本题的关键.27.计算:(1)﹣9+3(2)(a+4)﹣(﹣b).考点:二次根式的加减法.分析:(1)先进行二次根式的化简,然后合并;(2)先进行二次根式的化简,然后进行二次根式的加减运算.解答:解:(1)原式=4﹣3+6=7;(2)原式=+4﹣+=+5.点评:本题考查了二次根式的加减法,解答本题的关键是掌握二次根式的化简以及同类二次根式合并.28.计算:(1)+6;(2)(a)﹣(﹣b).考点:二次根式的加减法.分析:(1)先把各根式化为最简二次根式,再合并同类项即可;(2)先把各根式化为最简二次根式,再去括号,合并同类项即可.解答:解:(1)原式=2+3﹣2=3;(2)原式=(+4)﹣(﹣)=+4﹣+=3+.点评:本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.29.计算:.考点:二次根式的加减法.分析:首先把二次根式化简,再去括号合并同类二次根式即可.解答:解:原式=﹣﹣+2=﹣+2.点评:此题主要考查了二次根式的加减,法则:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.30.化简:(+2++).考点:二次根式的混合运算.专题:计算题.分析:根据二次根式的乘法法则运算.解答:解:原式=•+2++=ab+2b+a+1.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.。

二次根式混合运算题含答案

二次根式混合运算题含答案

二次根式混合运算题含答案本文是一份数学题目,需要进行排版和改写以更好地呈现。

二次根式混合运算125题(含答案)1、原式=2-3=-12、原式=√(4+9)=√133、原式=2-√(12+1)= -104、原式=(√5+√7)²=12+2√355、原式=(√6-√2)²=4+4√36、原式=(√5-1)²+(√5+1)²=10+2√57、原式=(√3+√2)(√3-√2)=18、原式=(√5-√3)²=8-2√159、原式=(3+√2)(3-√2)=710、原式=√(3+2√2)×√(3-2√2)=111、原式=(4+√7)(4-√7)=912、原式=2√3+√12+√27=5√3+√313、原式=(2√6-3√2)(√6+√2)=814、原式=(7+4√3)(7-4√3)=4115、原式=(√2+√3)²=5+2√616、原式=√12+√27-√48=2√3+317、原式=(√3+1)²-(√3-1)²=4√318、原式=(3-√2)²=11-6√219、原式=(3-2√2)(3+2√2)=720、原式=(√2-1)(2√2+1)=121、原式=(√3+√5)²=8+2√1522、原式=(√3-√2)(√3+√2)=123、原式=(√2+1)²-(√2-1)²=4√224、原式=(√3-1)(√3+1)=225、原式=(√5+2)(√5-2)=2126、原式=(√6+√2)²=8+4√327、原式=(√2+√3)(√2-√3)=-128、原式=(√3-√2)²=5-2√629、原式=(√3+2)(√3-2)=730、原式=(√2+√3)²-2√6=5+√631、原式=(√3+√2)²+(√3-√2)²=1632、原式=(√6+√2)(√6-√2)=433、原式=√(5+2√6)×√(5-2√6)=134、原式=(√6+√3)²-(√6-√3)²=12√235、原式=(√2+1)²+(√2-1)²=636、原式=3√2-2√3+√6=√2-2√3+337、原式=(√3+√2)²-(√3-√2)²=4√638、原式=(√3+√2)(√3-√2)=139、原式=(√2+1)²-(√2-1)²=4√240、原式=(√3+√2)²-2√6=5+√641、原式=√(7+4√3)×√(7-4√3)=142、原式=(√5+√6)²-11=2√30-443、原式=√(3+2√2)÷(√2-1)=√2+144、原式=(√2+√3)÷(√3-√2)=-145、原式=(√3+√2)÷(√3-√2)=5+2√646、原式=(√2+√3)÷(√2-√3)=-√6-247、原式=-2-(√2+√3)÷(√2-√3)=-2-5√648、原式=(√3+√2)²+(√3-√2)²=1649、原式=(√5+√3)²-(√5-√3)²=12√1550、原式=√(7+4√3)÷(√3-√2)=√6+√251、原式=(√5+√3)÷(√5-√3)=2+√352、原式=(√3+√2)÷(√3-√2)=5+2√653、原式=3-√5+(-2)(√5+1)=1-3√554、原式=(√2+√3)²-2√6=5+√655、原式=(√5+√3)²-2√15=8+2√1556、原式=(√3+√2)²-2√6=5+√657、原式=(√6+√2)²-2√12=8+2√358、原式=√(5+2√6)÷(√3-√2)=√259、原式=2√5-√80+√45=√5-4√2+360、原式= -2+(-1)²÷(2-1)²= -161、原式=(2-1)²-(-2)²=162、原式=(√5-√3)²-(√5+√3)²=-8√1563、原式=(√3+√2)²-(√3-√2)²=4√664、原式=(√5+√2)÷(√5-√2)=3+2√1065、原式=(√3+√2)÷(√3-√2)=5+2√666、原式=(√6+√2)÷(√6-√2)=2+√367、原式=(√5+√3)÷(√5-√3)=2+√668、原式=(√3+√2)÷(√2-√3)=-√6-269、原式=(√5+√3)÷(√2-√3)=(-√6-√2)÷570、原式=3-(√5+√2)²= -8-2√1071、原式=(√3+√2)²-(√3-√2)²=4√672、原式=(√2+√3)²-2√6=5+√673、原式=(√5+√2)²-2√10=7+2√1074、原式=(√3+√2)²-2√6=5+√675、原式=(√6+√2)²-2√12=8+2√376、原式=(-1)²÷(2-1)²-2= -177、原式=(√2+√3)²-2√6=5+√678、原式=(√5+√3)²-2√15=8+2√1579、原式=(√3+√2)²-2√6=5+√680、原式=(√6+√2)²-2√12=8+2√381、原式=(√5+√3)÷(√3-√2)=4+√682、原式=(√3+√2)÷(√5-√2)=(-√2+√3)÷283、原式=(√5+√3)÷(√6-√2)=(√6+√2)÷484、原式=(√2+√3)÷(√5-√2)=(-√2+√3)÷385、原式=(1+√2)²-2(1-√2)²=5+4√286、原式=(1-√2)²+2(1+√2)²=11+4√287、原式=(√2+1)²+(√2-1)²=688、原式=(√5+√3)²-2√15=8+2√1589、原式=(√3+√2)²-2√6=5+√690、原式=(√6+√2)²-2√12=8+2√391、原式=(√5+√3)÷(√2-√3)=(√6+√2)÷292、原式=(√5+√3)÷(√3-√2)=2+√693、原式=(√3+√2)÷(√5-√2)=(-√2+√3)÷394、原式=(√6+√2)÷(√5-√2)=(√6+√2)÷495、原式=(√2+√3)÷(√3-√2)=-√6-296、原式=(√5+√3)÷(√6-√2)=(√6+√2)÷497、原式=(√3+√2)÷(√2-√3)=-√6-298、原式=(√5+√3)÷(√5-√2)=3+2√599、原式=(√6+√2)÷(√6-√2)=1100、原式=(√5+√3)÷(√3-√2)=(√6+√2)÷3101、原式=(√2008-√2009)÷(√2008+√2009)=√\frac{2008}{2009}102、原式=(√3+√2)²-(√3-√2)²=4√6103、原式=(√5+√3)²-(√5-√3)²=12√15104、原式=(√6+√2)²-(√6-√2)²=8√3105、原式=(3+√5)÷(3-√5)= -2+√5106、原式=(√2-√3)²-(√2+√3)²=-8√6107、原式=(√5+√3)÷(√2-√3)=(-√6-√2)÷5108、原式=(√6+√2)÷(√5-√2)=(√6+√2)÷4109、原式=(√3+√2)÷(√5-√3 - 2 + 3 ÷ 3 - 2 = 27 + (-2) = 14 × 2 = 283) × (-2) = -62 - (3 - 22 + 1) = -181 + (-3) + 6 - 10 = -82 + (-2b) + 1 - (2 - 3) = 5 - 2b2 + 1 - (-2) = 317 - (19 - (-2)) = 02 -3 - 2 = -34 + 12 = 164 - 10 + 2 - (-2) = -2 6 -5 = 112 + 18 - 12 = 182 + 3) × (-2) = -10m = 2m + 3m - m = 0 6 ÷ (-2) = -312 ÷ 2 = 66 × (-2) = -123) × 2 = -62 - 2x = 23 - 2) ÷ (2 - 3) = -14 ÷ 2) - (-3) = 53 + (-7) = -41) × 1 = -12 +3 + 2 = 74 × 2 - 3 = 56 + (-2) - (2 - 3) = 5 5| + |-4| = 94 × 2 - 16 + 12 - 16 - 8 = -242 + 3) × 2 = 10a + 2 = 33 ÷ (-1) = 39 - (-3) = 122 × (-3) = -612 ÷ 3 = 427 ÷ 3 = 9XXX。

初三数学二次根式试题答案及解析

初三数学二次根式试题答案及解析

初三数学二次根式试题答案及解析1. 2的算术平方根是.【答案】【解析】∵2的平方根是±,∴2的算术平方根是.故答案为:.【考点】算术平方根2.请写出一个比小的整数【答案】答案不唯一,小于或等于2的整数均可,如:2,1等【解析】首先找到所求的无理数在哪两个和它接近的整数之间,然后即可判断出所求的整数的范围.试题解析:∵2<<3,∴所有小于或等于2的整数都可以,包括任意负整数答案不唯一,小于或等于2的整数均可,如:2,1等【考点】估算无理数的大小.3.按如图所示的程序计算,若开始输入的n值为,则最后输出的结果是()A.14B.16C.8+5D.14+【答案】C.【解析】当n=时,n(n+1)=(+1)=2+<15;当n=2+时,n(n+1)=(2+)(3+)=6+5+2=8+5>15,则输出结果为8+5.故选C.【考点】实数的运算.4.在,0,3,这四个数中,最大的数是()A.B.C.D.【答案】C.【解析】根据实数的大小比较法则,正数大于0,0大于负数,两个负数相比,绝对值大的反而小. 因此,∵,∴四个数中,最大的数是3.故选C.【考点】实数的大小比较.5.使二次根式有意义的x的取值范围是.【答案】x≥﹣3【解析】由二次根式的定义可知被开方数为非负数,则有x+3≥0所以x≥﹣3.【考点】二次根式有意义的条件6.计算:.【答案】-6【解析】先计算乘方和开方运算,再根据特殊角的三角函数值和平方差公式得到原式=,然后进行乘除运算后合并即可.原式==-6.【考点】二次根式的混合运算;特殊角的三角函数值.7.把下图折成正方体后,如果相对面所对应的值相等,那么x的平方根与y的算术平方根之积为.【答案】±【解析】由于x﹣y的相对面是1,x+y的相对面是3,所以x﹣y=1,x+y=3,由此即可解得x和y的值,然后即可求出x的平方根与y的算术平方根之积.解:依题意得x﹣y的相对面是1,x+y的相对面是3,∴x﹣y=1,x+y=3,∴x=2,y=1,∴x的平方根与y的算术平方根之积为±.故答案为:±.8.若a、b均为正整数,且a>,b<,则a+b的最小值是 ()A.3B.4C.5D.6【答案】B【解析】a、b均为正整数,且a>,b<,∴a的最小值是3,b的最小值是:1,则a+b 的最小值是4.9.使有意义的x的取值范围是()A.x>2B.x<-2C.x≤2D.x≥2【答案】D.【解析】依题意,得x-2≥0,解得,x≥2.故选:D.考点: 二次根式有意义的条件.10.下列二次根式是最简二次根式的是A.B.C.D.【答案】C.【解析】根据最简二次根式的定义对各选项分析判断后利用排除法求解.A、被开方数中含有分母,不是最简二次根式,故本选项错误;B、被开方数中含有小数,不是最简二次根式,故本选项错误;C、是最简二次根式,故本选项正确;D、被开方数中含有能开得尽方的因数,不是最简二次根式,故本选项错误;故选C.考点: 最简二次根式.11.已知为等腰三角形的两条边长,且满足,求此三角形的周长.【答案】10或11【解析】解:由题意可得即所以,.当腰长为3时,三角形的三边长为,周长为10;当腰长为4时,三角形的三边长为,周长为11.12.下列计算中,正确的是()A.B.C.=±2D.【答案】D.【解析】试题分析:A.,故本选项错误;B.,故本选项错误;C.,故本选项错误;D.,故本选项正确.故选D.考点:二次根式的混合运算.13.若式子在实数范围内有意义,则x的取值范围是()A.x>1B.x<1C.x≥1D.x≤1【答案】C.【解析】根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须. 故选C.【考点】二次根式有意义的条件.14.计算:(1)+-2012+();(2)(1-)—【答案】(1);(2).【解析】(1)根据二次根式、绝对值、零次幂及负整数指数幂的意义进行计算即可求出答案;(2)根据完全平方公式及二次根式的除法进行计算即可.试题解析:(1)(2)考点: 实数的混合运算.15.计算:【答案】.【解析】根据二次根式及非零数的零次幂的意义进行计算即可得出答案.试题解析:原式=考点: 1.二次根式的混合运算;2.非零数的零次幂.16.计算:= 。

初三数学二次根式试题答案及解析

初三数学二次根式试题答案及解析

初三数学二次根式试题答案及解析1.下列各数中是无理数的是()A.B.﹣2C.0D.【答案】A【解析】A、正确;B、是整数,是有理数,故B错误;C、是整数,是有理数,故C错误;D、是分数,是有理数,故D错误.故选A.【考点】无理数2. a满足以下说法:①a是无理数;②2<a<3;③a2是整数.那么a可能是()A.B.C.2.5D.【答案】A.【解析】由a是无理数可知C、D是有理数,不合题意;由a2是整数可知A、B符合题意;再由2<a<3,只有A.故选A.【考点】1.估算无理数的大小;2.无理数;3.实数的运算.3. 16的平方根是()A.B.4C.-4D.【答案】A.【解析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的一个平方根:∵(±4)2=16,∴16的平方根是±4.故选A.【考点】平方根.4.计算:= .【答案】2.【解析】.【考点】二次根式计算.5.=.【答案】﹣【解析】分别进行分母有理化、二次根式的化简及零指数幂的运算,然后合并即可得出答案.解:原式=﹣1﹣2+1=﹣.故答案为:﹣.6.计算:-=________.【答案】3【解析】原式=4-=3.7.已知长方形的长是cm,宽是cm,求与此长方形面积相等的圆的半径.【答案】r=.【解析】利用面积公式列出方程·=πr2,解得r=.8.下面计算正确的是()A.4+=4B.÷=3C.·=D.=±2【答案】B.【解析】A.4+=4,本选项错误;B.,本选项正确;C.,故本选项错误;D.,故本选项错误.故选B.考点: 二次根式的混合运算.9.的值为()A.B.4C.D.2【答案】B.【解析】∵故选B.考点: 算术平方根.10.计算:.【答案】.【解析】先化成最简二次根式,再合并同类二次根式即可得出答案.试题解析:.考点: 二次根式的加减法.11.式子成立的条件是()A.≥3B.≤1C.1≤≤3D.1<≤3【答案】D【解析】根据二次根式的定义,式子成立的条件为,-1,即1<.12.若一个式子与之积不含二次根式,则这个式子可以是.(填写出一个即可)【答案】.【解析】本题实际是求的有理化因式,一般二次根式的有理化因式是符合平方差公式的特点的式子.与的积不含二次根式的式子是.故答案是.【考点】分母有理化.13.二次根式的值是()A.﹣3B.3或﹣3C.9D.3【答案】D.【解析】. 故选D.【考点】二次根式化简.14.下列计算正确的是()A.B.C.D.【答案】C.【解析】 A.,故本选项错误;B.和不是同类二次根式,不能合并,故本选项错误;C.,故本选项正确;D.,故本选项错误.故选C.【考点】二次根式的乘除法.15.若,,且ab<0,则a﹣b=.【答案】-7.【解析】先根据算术平方根的定义,求出、的值,然后根据确定、的值,最后代入中求值即可.试题解析:∵,,∴a=±3,b=4;∵,∴,;∴.考点: (1)算术平方根;(2)代数式求值.16.下列二次根式中,取值范围是的是()A.B.C.D.【答案】C.【解析】根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须;要使在实数范围内有意义,必须;要使在实数范围内有意义,必须;要使在实数范围内有意义,必须,因此,取值范围是的是. 故选C.【考点】二次根式和分式有意义的条件.17.下列式子中,是最简二次根式的是()A.B.C.D.【答案】B【解析】最简二次根式满足:1.被开方数中不能含有分母;2. 被开方数中不能有开得尽方的因数或因式.只有B符合条件; 选项A,C,D都不符合条件, 故选B.【考点】最简二次根式.【考点】最简二次根式18.化简:=_______________.【答案】【解析】根据二次根号下的数为非负数,可得,解得所以.【考点】二次根式的性质19.计算与化简(1)(2)【答案】(1);(2).【解析】(1)将前两项化为最简二次根式,第三项根据0指数幂定义计算,再合并同类二次根式即可;(2)应用完全平方公式和平方差公式展开后合并同类二次根式即可.试题解析:(1).(2).【考点】1.二次根式化简;2.0指数幂;3.完全平方公式和平方差公式.20.计算:(1)(2)(3)【答案】(1);(2);(3).【解析】(1)将各根式化为最简单二次根式后合并同类根式即可;(2)括号内化最简单二次根式后合并同类根式,除式变为乘式计算即可;(3)应用完全平方公式和平方差公式展开后合并同类根式即可.试题解析:(1).(2).(3).【考点】二次根式化简.21.计算:。

中考试题二次根式的运算和应用课后练习一及详解.docx

中考试题二次根式的运算和应用课后练习一及详解.docx

学科:数学专题:二次根式的运算和应用主讲教师:黄炜 北京四中数学教师金题精讲题一:题面:已知x =2323-+,y =2323+-,求32234232y x y x y x xy x ++-的值.题二: 题面:计算:3321--=________.满分冲刺题一:题面:已知a b 、为有理数,m n 、分别表示57-的整数部分和小数部分,且21amn bn +=,则2a b += .题二: 题面:已知(3)0a a -<,若b =2-a ,则b 的取值范围是 .题三: 题面:化简1+21n +()211n +(n >0),所得的结果为 .思维拓展题面:如图,一个长方体形的木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A 处沿着木柜表面爬到柜角C 1处.小明认为蚂蚁能够最快到达目的地的路径AC 1,小王认为蚂蚁能够最快到达目的地的路径AC 1′.已知AB =4,BC =4,CC 1=5时,请你帮忙他们求出蚂蚁爬过的最短路径长.课后练习详解金题精讲题一: 答案:652. 详解:∵ x =2323-+=2)23(+=5+26, y =2323+-=2)23(-=5-26. ∴ x +y =10,x -y =46,xy =52-(26)2=1.32234232y x y x y x xy x ++-=22)())((y x y x y x y x x +-+=)(y x xy y x +-=10164⨯=652. 题二:答案:2. 详解:先分母有理化,再合并同类二次根式即可:()()12+33=3=2+33=2232+323-----.满分冲刺题一:答案:2.5.详解:因为2<7<3,所以2<5-7<3,故m =2,n =5- 7-2=3- 7. 把m =2,n =3- 7代入amn +bn 2=1,化简得(6a +16b )-(2a +6b )7=1,所以6a +16b =1且2a +6b =0,解得a =1.5,b =-0.5.所以2a +b =3-0.5=2.5.故答案为:2.5.题二:答案:232b -<< 详解:∵(3)0a a -<,∴0,30a a >-<,解得a >0且a <3, ∴0<a <3,∴30a -<-<, ∴2322a -<-<,即232b -<<.故答案为:232b -<<. 题三:答案:1+1n +11n +. 详解:先判断出被开方数的符号,再开方即可.∵当n >0时,1n ,11n +均大于0, ∴原式=1+1n +11n +.思维拓展答案:最短路径的长是L 2=89.详解:蚂蚁沿着木柜表面经线段A 1B 1到C 1,爬过的路径的长是L 1=()22445?++=97;蚂蚁沿着木柜表面经线段B 1B 1到C 1,爬过的路径的长是L 2()22445++=89.因为:L 1>L 2, 所以最短路径的长是L 2=89.初中数学试卷鼎尚图文**整理制作。

中考试题二次根式的运算和应用课后练习二及详解.docx

中考试题二次根式的运算和应用课后练习二及详解.docx

学科:数学专题:二次根式的运算和应用主讲教师:黄炜 北京四中数学教师金题精讲题一:题面:当x =1-2时,求2222a x x a x x +-++222222a x x x a x x +-+-+221a x +的值.题二: 题面:计算:2(23)6-+满分冲刺题一:题面:已知a 、b 为两个连续的整数,且11a <<b ,则a+b ___________ .题二:题面:若a•b≠1,且有2a2+5a+1=0,b2+5b+2=0,则2ba+ab的值为()A.522B.552C.523D.553题三:题面:若a+b=5,ab=4,则a ba b-+=_________.思维拓展题面:如图,长方体中AB=BB′=2,AD=3,一只蚂蚁从A点出发,在长方体表面爬到C′点,求蚂蚁怎样走最短,最短路径是多少?课后练习详解金题精讲题一:答案:-1-2. 详解:原式=)(2222x a x a x x -++-)(22222x a x x a x x -++-+221a x + =)()()2(22222222222x a x a x x x a x x a x x a x x -++-+++-+- =)()(22222222222222x a x a x x x a x x a x a x x x -++-+++++- =)()(222222222x a x a x x a x x a x -+++-+=)()(22222222x a x a x x x a x a x -++-++=x1. 当x =1-2时,原式=211-=-1-2. 题二:答案:2. 详解:原式22236266=⨯-⨯+=-+=2.满分冲刺题一:答案:7. 详解:∵ 9<11<16 ,∴3114<<.又∵11a <<b ,且a 、b 为两个连续的整数,∴a =3,b =4.∴a +b =3+4=7.题二:答案:A.详解:∵2a 2+5a +1=0,∴21a +5×1a+2=0;又∵b 2+5b +2=0, ∴1a、b 可以看成是关于x 的一元二次方程x 2+5x +2=0的两根; ∴由韦达定理,得x 1•x 2=2,即1a •b =2,∴a =2b ; ∴2b a +a b =22+12=522. 题三:答案:13±.详解:∵a +b =5,ab =4,∴(a -b )2=(a +b )2-4ab =52-4×4=25-16=9, ∴a -b =±3, a b a b-+=2524133a b ab a b +--==±-±. 思维拓展答案:最短路径是5.详解::①如图1,把长方体沿虚线剪开,则成长方形ACC ′A ′,宽为AA ′=2,长为AD +DC =5, 连接AC ′则A 、D 、C ′构成直角三角形,由勾股定理得AC ′=()22AD CD DD ++'=2252+=29,②如图2,把长方体沿虚线剪开,则成长方形ADC ′B ′,宽为AD =2,长为DD ′+D ′C ′=4,连接AC ′则A 、D 、C ′构成直角三角形,同理,由勾股定理得AC ′=5,∴最短路径是5.初中数学试卷鼎尚图文**整理制作。

人教版九年级数学下册 第十六章 二次根式 16.1 二次根式 课后练习2

人教版九年级数学下册 第十六章 二次根式 16.1 二次根式 课后练习2

人教版九年级数学下册 第十六章 二次根式 16.1 二次根式 课后练习2一、选择题1.下列各式中,不正确的是( ) A><C>5=2A(a,b)在( ) A .第一象限B .第二象限C .第三象限D .第四象限3.实数a ,b 在数轴上的位置如图所示,则化简﹣+b 的结果是( )A .1B .b+1C .2aD .1﹣2a4.若实数a ,b满足 ,,则k 的取值范围是( ) A .﹣3≤k ≤2B .﹣3≤k ≤3C .﹣1≤k ≤1D .k ≥﹣15.如果a ,那么a 的取值范围是( ) A .a 0=B .a 1=C .a 1≤D .a=0a=1或6.若化简的结果为2x ﹣5,则x 的取值范围是( ) A . x 为任意实数B .1≤x ≤4C .x ≥1D . x ≤47=a 、x 、y 是两两不同的实数,则22223x xy y x xy y +--+的值是( )A .3B .13C .2D .538.若化简1682+-x x -1x -的结果为5-2x ,则x 的取值范围是( )3=+b a k b 3a =-A .为任意实数B .1≤x≤4C .x≥1D .x≤49.已知a 满足2018a -=a ,则a -2 0182=( ) A .0B .1C .2 018D .2 01910.实数a ,b ,c ,满足|a |+a =0,|ab |=ab ,|c |-c =0,a +b |+|a -c ( ) A .2c -b B .2c -2aC .-bD .b二、填空题11.为了简洁、明确的表示一个正数的算术平方根,许多数学家进行了探索,期间经历了400余年,直至1637年法国数学家笛卡儿在他的《几何学》中开始使用表示算数平方根.我国使用根号是由李善兰(1811-1882年)译西方数学书时引用的,她在《代数备旨》中把图1所示题目翻译为: ?=则图2所示题目(字母代表正数)翻译为_____________,计算结果为_______________.12.已知实数a 、b 、c |a ﹣c |﹣b |=_______.13.设4 a,小数部分为 b.则1a b- = __________________________.14.使函数212y x x=+有意义的自变量x 的取值范围为_____________15.已知x =()21142221x x x x -⎛⎫+⋅= ⎪-+-⎝⎭_________ 三、解答题16.已知1a =,求3232018a a a --+的值.17.计算(1)2213113a a a a a a +--+-+-;(2)已知a 、b b -=0.求a 、b 的值(3)已知abc =1,求111a b cab a bc b ac c ++++++++的值18.先阅读下列解答过程,然后再解答:的化简,只要我们找到两个正数,a b ,使a b m +=,ab n =,使得22m +==)a b ==>7,12m n ==,由于437,4312+=⨯=,即:227+=,=2===。

初三数学北师大版二次根式的概念及加、减、乘、除2019运算法则答案及解析

初三数学北师大版二次根式的概念及加、减、乘、除2019运算法则答案及解析

初三数学北师大版二次根式的概念及加、减、乘、除运算法则答案及解析1、不等式组的解集是( )A.B.C.D.答案D 解析2、下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视答案C 解析3、方程组的解满足一次函数的关系式y = —x + b,则b的值为( 答案B 解析本题主要考查的是二元一次方程组。

由条件可知方程组的解为,代入y = —x + b,解得b=1.所以应选B。

4、若2m=3,2n=4,则23m-2n等于()A.1B.C.D.答案D 解析5、将含300角的三角板ABC如图放置,使其三个顶点分别落在三条平行直线上,其中∠ACB=900,当∠1=600时,答案B 解析考点:平行线的性质.专题:推理填空题.分析:在△CDB中,根据∠ACB=90°,∠1=60°求得∠CBD=30°,然后由平行线的性质找30°的角;在△ABC中,∠ACB=90°,∠A=30°,求得∠CBA=60°,∠DBA=∠CBA-∠CBD=30°,然后再由两直线平行,内错角相等,找30°的角.解答:解:在△CDB中,∠ACB=90°,∠1=60°,∴∠CBD=30°;∵MC∥PB,∴∠ECB=∠CBD=30°(两直线平行,内错角相等);在△ABC中,∠ACB=90°,∠A=30°,∴∠CBA=60°,∠DBA=∠CBA-∠CBD=30°;∵PB∥EF,∴∠BAF=∠DBA=30°(两直线平行,内错角相等);∴符合题意的角有5个.故选B.点评:本题考查了平行线的性质.解答本题时,主要利用了直角三角形的两个锐角互余、两直线平行,内错角相等的知识.6、不等式组;的解是(; )A.B.C.答案D 解析7、下列说法正确的是答案D 解析8、下列说法中正确的是( )A.位似答案D 解析9、单项式的系数是答案C 解析10、某公司承担了制作600个广州亚运会道路交通指引标志的任务,原计划天完成,实际平均每天多制作了10个,因此提前5 答案A 解析11、图所列图形中是中心对称图形的为 A; 答案C 解析初三数学部审湘教版用提公因式法公式法进行因式分解的倒数是().A.2; B.答案B 解析12、下列各组图形中,是全等形的是()答案B 解析13。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学科:数学
专题:二次根式的运算和应用
金题精讲
题一:
题面:已知x y
题二: 题面:计算:
3321--=________.
满分冲刺
题一:
题面:已知a b 、为有理数,m n 、分别表示5的整数部分和小数部分,且21amn bn +=,则2a b += .
题二:
b =2-a ,则b 的取值范围是 .
题三:
题面:化简(n>0),所得的结果为 .
思维拓展
题面:如图,一个长方体形的木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A处沿着木柜表面爬到柜角C1处.小明认为蚂蚁能够最快到达目的地的路径AC1,小王认为蚂蚁能够最快到达目的地的路径AC1′.已知AB=4,BC=4,CC1=5时,请你帮忙他们求出蚂蚁爬过的最短路径长.
课后练习详解
金题精讲
题一:
详解:∵x5+
y5-
∴x+y=10,x-y=xy=52-2=1.
题二:
答案:2.
详解:先分母有理化,再合并同类二次根式即可:
.
满分冲刺
题一:
答案:2.5.
详解:因为2<7<3,所以2<5-7<3,故m=2,n=5-7-2=3-7.
把m=2,n=3-7代入amn+bn2=1,化简得(6a+16b)-(2a+6b)7=1,所以
6a+16b=1且2a+6b=0,解得a=1.5,b=-0.5.
所以2a+b=3-0.5=2.5.故答案为:2.5.
题二:
a>0且a
∴0<a
题三:
答案:1+1
n
+
1
1
n+

详解:先判断出被开方数的符号,再开方即可.
∵当n>0时,1
n

1
1
n+
均大于0,
∴原式=1+1
n
+
1
1
n+

思维拓展
答案:最短路径的长是L2
详解:蚂蚁沿着木柜表面经线段A1B1到C1,爬过的路径的长是
L1
蚂蚁沿着木柜表面经线段B1B1到C1,爬过的路径的长是
L
因为:L1>L2,
所以最短路径的长是L2。

相关文档
最新文档