八年级数学第十四章第三节乘法公式教案
14.2 乘法公式教案 2022-2023学年人教版八年级数学上册
14.2 乘法公式教案 2022-2023学年人教版八年级数学上册一、教学目标1.掌握乘法公式的概念和基本用法;2.理解乘法公式在实际问题中的应用;3.能够灵活运用乘法公式解决具体问题。
二、教学重点1.理解乘法公式的概念;2.熟练应用乘法公式解决问题。
三、教学难点理解乘法公式在实际问题中的应用。
四、教学过程1. 导入通过一个实际问题导入本节课的内容,激发学生的思考和兴趣。
例如:某超市正在举办特价活动,A商品的原价为10元,现在打八折出售,你能快速计算出它的现价吗?2. 学习乘法公式•引导学生理解乘法公式的概念:乘法公式是指将两个或多个数相乘的表达式,一般用字母如a、b等表示。
•介绍乘法公式的基本形式:a × b = c,其中a和b是被乘数、乘数,c是积。
•给出一些示例,帮助学生理解乘法公式的具体运用。
3. 习题训练让学生在黑板上解答一些乘法公式相关的习题,巩固所学内容。
例如: - 计算:3 × 4 = ?,5 × 7 = ?; - 根据给出的乘法公式计算:12 × 6 = ?,8 × 9 = ?; - 利用乘法公式解决实际问题:张三身高1.6米,若每一步行走的距离为0.5米,他需要走多少步才能达到2.5米的目标?4. 拓展应用通过一些拓展应用题,帮助学生将乘法公式应用到实际生活中。
例如: - 根据乘法公式计算某商品的折扣价; - 计算某地每天用水50吨,连续用水5天,总共用水多少吨?5. 小结和提高对本节课所学的内容进行小结,帮助学生复习和巩固知识点。
同时,提出一些提高题,鼓励学生进行拓展思考。
例如:如果一个数与0相乘,结果是多少?如果两个数相乘的积为0,那这两个数之一一定为0吗?五、课堂练习让学生在课堂上完成一些习题,检验他们对乘法公式的掌握情况。
同时,教师可以对学生的答题情况进行及时批改,帮助他们加强对乘法公式的理解。
六、课后作业布置乘法公式相关的课后作业,要求学生独立完成并提交。
2024年人教版八年级数学上册教案及教学反思第14章14.3.2 公式法(第2课时)
第十四章整式的乘法与因式分解14.3 因式分解14.3.2 公式法第2课时一、教学目标【知识与技能】1.在掌握了因式分解意义的基础上,会运用平方差公式和完全平方公式对比较简单的多项式进行因式分解.【过程与方法】1.经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.2.在运用公式法进行因式分解的同时,培养学生的观察、比较和判断能力以及运算能力,用不同的方法分解因式可以提高综合运用知识的能力.【情感、态度与价值观】1.培养学生逆向思维的意识,同时培养学生团队合作、互帮互助的精神.2.进一步体验“整体”的思想,培养“换元”的意识.二、课型新授课三、课时第2课时,共2课时。
四、教学重难点【教学重点】运用完全平方公式法进行因式分解.【教学难点】观察多项式的特点,判断是否符合公式的特征和综合运用分解的方法,并完整地进行分解.五、课前准备教师:课件、直尺、矩形图片等。
学生:三角尺、练习本、铅笔、钢笔。
六、教学过程(一)导入新课我们知道,因式分解与整式乘法是反方向的变形,我们学习了因式分解的两种方法:提取公因式法、运用平方差公式法.现在,大家自然会想,还有哪些乘法公式可以用来分解因式呢?(出示课件2)(二)探索新知1.创设情境,探究运用完全平方公式分解因式教师问1:什么叫因式分解?(出示课件4)学生回答:把一个多项式化成几个整式的积的形式的变形叫做把这个多项式因式分解,也叫把这个多项式分解因式.教师问2:我们已经学过哪些因式分解的方法?学生回答:提公因式法、平方差公式:a2–b2=(a+b)(a–b)教师问3:把下列各式分解因式:(1)ax4-a;(2)16m4-n4.学生回答:(1)ax4-a=a(x2+1)(x+1)(x-1);(2)16m4-n4=(4m2+n)(2m+n)(2m-n).教师问4:结合上题思考因式分解要注意什么问题?学生回答:①一提二看三检查;②分解要彻底.教师问5:我们学过的乘法公式除了平方差公式之外,还有哪些公式?请写出来.学生回答:完全平方公式:(a±b)2=a2±2ab+b2教师讲解:这节课我们就来讨论如何运用完全平方公式把多项式因式分解.教师问6:你能把下面4个图形拼成一个正方形并求出你拼成的图形的面积吗?(出示课件5)学生讨论后拼出下图:教师问7:这个大正方形的面积可以怎么求?学生回答:(a+b)2=a2+2ab+b2教师问8:将上面的等式倒过来看,能得到什么呢?学生回答:a2+2ab+b2=(a+b)2(出示课件6)教师问:观察这两个多项式:a2+2ab+b2;a2–2ab+b2,请回答下列各题:(出示课件7)(1)每个多项式有几项?学生回答:三项(2)每个多项式的第一项和第三项有什么特征?学生回答:这两项都是数或式的平方,并且符号相同.(3)中间项和第一项,第三项有什么关系?学生回答:是第一项和第三项底数的积的±2倍.教师讲解:我们把a²+2ab+b²和a²–2ab+b²这样的式子叫做完全平方式.教师问9:把下列各式分解因式:(1)a2+2ab+b2;(2)a2-2ab+b2.学生回答:(1)a2+2ab+b2=(a+b)2;(2)a2-2ab+b2=(a-b)2.教师问10:将整式乘法的平方差公式反过来写即是分解因式的平方差公式.同样道理,把整式乘法的完全平方公式反过来写即分解因式的完全平方公式.能不能用语言叙述呢?学生回答后,师生共同讨论后解答如下:两个数的平方和,加上(或减去)这两数的积的2倍,等于这两个数的和(或差)的平方.即a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.教师问11:下列各式是不是完全平方式?如果是,请分解因式.(1)a2-4a+4;(2)x2+4x+4y2;(3)4a2+2ab+14b2;(4)a2-ab+b2;(5)x2-6x-9;(6)a2+a+0.25.学生讨论后回答如下:(1)a2-4a+4;是,原式=(a-2)2 (2)x2+4x+4y2;不是(3)4a2+2ab+14b2;是,原式=(2a+12b)2(4)a2-ab+b2;不是(5)x2-6x-9;不是(6)a2+a+0.25.是,原式=(a+0.5)2教师问12:根据学习用平方差公式分解因式的经验和方法,分析和推测什么叫做运用完全平方公式分解因式?能够用完全平方公式分解因式的多项式具有什么特点?学生讨论后回答,师生共同归纳如下:①三项式;②两项为两个数的平方和的形式;③第三项为加(或减)这两个数的积的2倍.总结点拨:(出示课件8)完全平方式: a²±2ab+b²完全平方式的特点:1.必须是三项式(或可以看成三项的);2.有两个同号的数或式的平方;3.中间有两底数之积的±2倍.简记口诀:首平方,尾平方,首尾两倍在中央.(出示课件9)凡具备这些特点的三项式,就是完全平方式,将它写成完全平方形式,便实现了因式分解.两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.例1:分解因式:(出示课件12)(1)16x2+24x+9;(2)–x2+4xy–4y2.师生共同解答如下:(1)分析:(1)中,16x2=(4x)2,9=3²,24x=2·4x·3,所以16x2+24x+9是一个完全平方式,即16x2 + 24x +9= (4x)2+2·4x·3+ 32.解:(1)16x2+ 24x +9= (4x)2 + 2·4x·3 + 32= (4x + 3)2;(2)中首项有负号,一般先利用添括号法则,将其变形为–(x2–4xy+4y2),然后再利用公式分解因式.(2)–x2+ 4xy–4y2=–(x2–4xy+4y2)=–(x–2y)2.例2:如果x2–6x+N是一个完全平方式,那么N是( )(出示课件15)A . 11 B. 9 C. –11 D. –9师生共同解答如下:解析:根据完全平方式的特征,中间项–6x=2x×(–3),故可知N=(–3)2=9.答案:B总结点拨:(出示课件16)本题要熟练掌握完全平方公式的结构特征,根据参数所在位置,结合公式,找出参数与已知项之间的数量关系,从而求出参数的值.计算过程中,要注意积的2倍的符号,避免漏解.例3:把下列各式分解因式:(出示课件18)(1)3ax2+6axy+3ay2 ;(2)(a+b)2–12(a+b)+36.师生共同解答如下:分析:(1)中有公因式3a,应先提出公因式,再进一步分解因式;(2)中将a+b 看成一个整体,设a+b=m,则原式化为m2–12m+36.解: (1)原式=3a(x2+2xy+y2)=3a(x+y)2;(2)原式=(a+b)2–2·(a+b) ·6+62=(a+b–6)2.总结点拨:利用公式把某些具有特殊形式(如平方差式,完全平方式等)的多项式分解因式,这种分解因式的方法叫做公式法.(出示课件19)例4:把下列完全平方式分解因式:(出示课件21)(1)1002–2×100×99+99²;(2)342+34×32+162.师生共同解答如下:解:(1)原式=(100–99)²=1(2)原式=(34+16)2=2500.总结点拨:本题利用完全平方公式分解因式,可以简化计算.例5:已知:a 2+b 2+2a –4b+5=0,求2a 2+4b –3的值.(出示课件23) 师生共同解答如下:分析:从已知条件可以看出,a 2+b 2+2a –4b+5与完全平方式有很大的相似性(颜色相同的项),因此可通过“凑”成完全平方式的方法,将已知条件转化成非负数之和等于0的形式,从而利用非负数的性质来求解.(出示课件24)解:由已知可得(a 2+2a+1)+(b 2–4b+4)=0即(a+1)2+(b –2)2=0∴ 2a 2+4b –3=2×(–1)2+4×2–3=7总结点拨:遇到多项式的值等于0、求另一个多项式的值,常常通过变形为完全平方公式和(非负数的和)的形式,然后利用非负数性质来解答.(三)课堂练习(出示课件27-31)1.下列四个多项式中,能因式分解的是( )A .a 2+1B .a 2–6a +9C .x 2+5yD .x 2–5y2.把多项式4x 2y –4xy 2–x 3分解因式的结果是( )A .4xy(x –y)–x 3B .–x(x –2y)21020a b +=⎧∴⎨-=⎩12a b =-⎧∴⎨=⎩C.x(4xy–4y2–x2) D.–x(–4xy+4y2+x2)3.若m=2n+1,则m2–4mn+4n2的值是________.4.若关于x的多项式x2–8x+m2是完全平方式,则m的值为_________ .5. 把下列多项式因式分解.(1)x2–12x+36; (2)4(2a+b)2–4(2a+b)+1;(3) y2+2y+1–x2;6. 计算:(1) 38.92–2×38.9×48.9+48.92.(2)20142-2014×4026+201327. 分解因式:(1)4x2+4x+1;(2)1x2–2x+3.3小聪和小明的解答过程如下:小聪: 小明:他们做对了吗?若错误,请你帮忙纠正过来.8. (1)已知a–b=3,求a(a–2b)+b2的值;(2)已知ab=2,a+b=5,求a3b+2a2b2+ab3的值.参考答案:1.B2.B3.14. ±45. 解:(1)原式=x2–2·x·6+62=(x–6)2;(2)原式=[2(2a+b)]²–2·2(2a+b)·1+1²=(4a+2b–1)2;(3)原式=(y+1)²–x²=(y+1+x)(y+1–x).6. 解:(1)原式=(38.9–48.9)2=100.(2)原式=20142-2×2014×2013+20132=(2014-2013)2=17. 解: (1)原式=(2x)2+2•2x•1+1=(2x+1)2(2)原式=13(x2–6x+9)=13(x–3)28. 解:(1)原式=a2–2ab+b2=(a–b)2.当a–b=3时,原式=32=9.(2)原式=ab(a2+2ab+b2)=ab(a+b)2. 当ab=2,a+b=5时,原式=2×52=50.(四)课堂小结今天我们学了哪些内容:a2±2ab+b2=(a±b)2一提,二看,三检查。
八年级数学上册 14.2 乘法公式(第3课时)教案 (新版)新人教版
14.2 乘法公式(第3课时)
教学内容
添括号.
教学过程
一、导入新课
在有理数或代数式运算中,我们经常会遇到需要将某几个数(或代数式)结合在一起,此时,就需要添加括号,可使运算起来就更简便.
二、探究新知
1.添括号
教师引导学生回忆除以去括号的法则.
a+(b+c)=a+b+c;
a-(b+c)=a-b-c.
教师指出:如把上式反过来,就得到添括号法则:
a+b+c=a+(b+c);
a-b-c=a-(b+c).
也就是说,添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.
练习:填空(1)5a+2b-3c=5a+( );(2)5a+2b-3c=5a-( ).
参考答案:(1)5a+2b-3c=5a+(2b-3c);(2)5a+2a-3a=5a-(2b+3c).
2.添括号的应用
例5 运用完全平方公式计算:
(1)(x+2y-3)(x-2y+3);(2)(a+b+c)2.
教师及时点评学生的解答,并出示标准步骤.
提示:有些整式相乘时,需要先作适当变形,然后再利用公式.
练习:(2a-3b-4)(2a+3b+4).
答案:4a2-9b2-24b-16.
三、课堂小结
1.记住添括号的法则.
2.会熟练应用添括号及乘法公式解决问题.四、布置作业
习题14.2第3题.
教学反思:。
八年级上册十四章数学教案
八年级上册十四章数学教案第一节:同底数幂的乘法教学目标1.知识与技能在推理判断中得出同底数幂乘法的运算法则,并掌握“法则”的应用. 2.过程与方法经历探索同底数幂的乘法运算性质的过程,感受幂的意义,发展推理能力和表达能力,提高计算能力. 3.情感、态度与价值观在小组合作交流中,培养协作精神、探究精神,增强学习信心. 重、难点与关键1.重点:同底数幂乘法运算性质的推导和应用.2.难点:同底数幂的乘法的法则的应用.3.关键:幂的运算中的同底数幂的乘法教学,要突破这个难点,•必须引导学生,循序渐进,合作交流,获得各种运算的感性认识,进而上各项到理性上来,提醒学生注意-a2与(-a)2的区别. 教学方法采用“情境导入──探究提升”的方法,让学生从生活实际出发,认识同底数幂的运算法则. 教学过程一、创设情境,故事引入【情境导入】“盘古开天壁地”的故事:公元前一百万年,没有天没有地,整个宇宙是混浊的一团,突然间窜出来一个巨人,他的名字叫盘古,他手握一把巨斧,用力一劈,把混沌的宇宙劈成两半,上面是天,下面是地,从此宇宙有了天地之分,盘古完成了这样一个壮举,累死了,他的左眼变成了太阳,右眼变成了月亮,毛发变成了森林和草原,骨头变成了高山和高原,肌肉变成了平原与谷地,血液变成了河流.【教师提问】盘古的左眼变成了太阳,那么,太阳离我们多远呢?你可以计算一下,太阳到地球的距离是多少?光的速度为3〓105千米/秒,太阳光照射到地球大约需要5〓102秒,•你能计算出地球距离太阳大约有多远呢?【学生活动】开始动笔计算,大部分学生可以列出算式:3〓105〓5〓102=15•〓105〓102=15〓?(引入课题)【教师提问】到底105〓102=?同学们根据幂的意义自己推导一下,现在分四人小组讨论.【学生活动】分四人小组讨论、交流,举手发言,上台演示.计算过程:105〓102=(10〓10〓10〓10〓10)〓(10〓10)=10〓10〓10〓10〓10〓10〓10=107【教师活动】下面引例.1.请同学们计算并探索规律.(1)23〓24=(2〓2〓2)〓(2〓2〓2〓2)=2( );(2)53〓54=_____________=5( );(3)(-3)7〓(-3)6=___________________=(-3)( );(4)(111)3〓()=___________=()( ); 101010(5)a3〃a4=________________a( ).提出问题:①这几道题目有什么共同特点?②请同学们看一看自己的计算结果,想一想,这些结果有什么规律?【学生活动】独立完成,并在黑板上演算.【教师拓展】计算a〃a=?请同学们想一想.二、范例学习,应用所学【例】计算:(1)103〓104; (2)a〃a3; (3)a〃a3〃a5; (4)x〃x2+x2〃x【思路点拨】(1)计算结果可以用幂的形式表示.如(1)103〓104=103+4=107,但是如果计算较简单时也可以计算出得数.(2)注意a是a的一次方,•提醒学生不要漏掉这个指数1,x3+x3得2x3,提醒学生应该用合并同类项.(3)上述例题的探究,•目的是使学生理解法则,运用法则,解题时不要简化计算过程,要让学生反复叙述法则.【教师活动】投影显示例题,指导学生学习.【学生活动】参与教师讲例,应用所学知识解决问题.三、随堂练习,巩固深化课本练习题.【探研时空】据不完全统计,每个人每年最少要用去106立方米的水,1立方米的水中约含有3.34〓1019个水分子,那么,每个人每年要用去多少个水分子?四、课堂总结,发展潜能1.同底数幂的乘法,使用范围是两个幂的底数相同,且是相乘关系,•使用方法:乘积中,幂的底数不变,指数相加.2.应用时可以拓展,例如含有三个或三个以上的同底数幂相乘,仍成立,•底数和指数,它既可以取一个或几个具体数,由可取单项式或多项式.3.运用幂的乘法运算性质注意不能与整式的加减混淆.五、布置作业,专题突破1.课本P96习题14.1第1(1),(2),2(1)题.2.选用课时作业设计.教学反思本节课的教学过程是探索发现性学习过程,注意同底数幂的乘法法则的推导过程,而不单单是要求记住结论,在导出的过程中,从具体到抽象,有层次地进行概括,归纳推理,学生不是被动地接受,而是在已有经验的基础上创新,从而培养学生的动手能力和创新意识.八年级上册十四章数学教案第二节:幂的乘方教学目标1.知识与技能理解幂的乘方的运算性质,进一步体会和巩固幂的意义;通过推理得出幂的乘方的运算性质,并且掌握这个性质. 2.过程与方法经历一系列探索过程,发展学生的合情推理能力和有条理的表达能力,通过情境教学,培养学生应用能力. 3.情感、态度与价值观培养学生合作交流意义和探索精神,让学生体会数学的应用价值. 重、难点与关键1.重点:幂的乘方法则.2.难点:幂的乘方法则的推导过程及灵活应用.3.关键:要突破这个难点,在引导这个推导过程时,步步深入,层层引导,•要求对性质深入地理解. 教学方法采用“探讨、交流、合作”的教学方法,让学生在互动交流中,认识幂的乘方法则. 教学过程一、创设情境,导入新知【情境导入】大家知道太阳,木星和月亮的体积的大致比例吗?我可以告诉你,•木星的半径是地球半径的102倍,太阳的半径是地球半径的103倍,假如地球的半径为r,那么,•请同学们计算一下太阳和木星的体积是多少?(球的体积公式为V=r3)【学生活动】进行计算,并在黑板上演算.解:设地球的半径为1,则木星的半径就是102,因此,木星的体积为4V木星=〃(102)3=?(引入课题). 3 【教师引导】(102)3=?利用幂的意义来推导.【学生活动】有些同学这时无从下手.【教师启发】请同学们思考一下a3代表什么?(102)3呢?【学生回答】a3=a〓a〓a,指3个a相乘.(102)3=102〓102〓102,就变成了同底数幂乘法运算,根据同底数幂乘法运算法则,底数不变,指数相加,102〓102〓102=102+2+2=106,•因此(102)3=106.【教师活动】下面有问题:利用刚才的推导方法推导下面几个题目:(1)(a2)3;(2)(24)3;(3)(bn)3;(4)-(x2)2.【学生活动】推导上面的问题,个别同学上讲台演示.【教师推进】请同学们根据所推导的几个题目,推导一下(a)的结果是多少?【学生活动】归纳总结并进行小组讨论,最后得出结论:(am)n== amn.评析:通过问题的提出,再依据“问题推进”所导出的规律,利用乘方的意义和幂的乘法法则,让学生自己主动建构,获取新知:幂的乘方,底数不变,指数相乘.二、范例学习,应用所学【例】计算:(1)(103)5;(2)(b3)4;(3)(xn)3;(4)-(x7)7.【思路点拨】要充分理解幂的乘方法则,准确地运用幂的乘方法则进行计算.【教师活动】启发学生共同完成例题.【学生活动】在教师启发下,完成例题的问题:并进一步理解幂的乘方法则:解:(1)(103)5=103〓5=1015; (3)(xn)3=xn〓3=x3n;(2)(b3)4=b3〓4=b12; (4)-(x7)7=-x7〓7=-x49.三、随堂练习,巩固练习课本P97练习.【探研时空】计算:-x2〃x2〃(x2)3+x10.【教师活动】巡视、关注中等、中下的学生,媒体显示练习题.【学生活动】书面练习、板演.四、课堂总结,发展潜能1.幂的乘方(am)n=amn(m,n都是正整数)使用范围:幂的乘方.方法:底数不变,指数相乘.2.知识拓展:这里的底数、指数可以是数,可以是字母,•也可以是单项式或多项式.3.幂的乘方法则与同底数幂的乘法法则区别在于,一个是“指数相乘”,•一个是“指数相加”.五、布置作业,专题突破课本P104习题14.1第1、2题.教学反思由于幂的乘方较抽象,引入课题时也可以从国情教育引入,搜集关于希望工程的图片展示给学生,如:有一个棱长为102cm的正方体,我们计算一下,可以装长为20cm,宽为15cm,厚为2cm的书多少本?八年级上册十四章数学教案第三节:积的乘方教学目标1.知识与技能通过探索积的乘方的运算性质,进一步体会和巩固幂的意义,在推理得出积的乘方的运算性质的过程中,领会这个性质. 2.过程与方法经历探索积的乘方的过程,发展学生的推理能力和有条理的表达能力,培养学生的综合能力.3.情感、态度与价值观通过小组合作与交流,培养学生团结协作的精神和探索精神,有助于塑造他们挑战困难,挑战生活的勇气和信心. 重、难点与关键1.重点:积的乘方的运算.2.难点:积的乘方的推导过程的理解和灵活运用.3.关键:要突破这个难点,教师应该在引导这个推导过程时,步步深入,•层层引导,而不该强硬地死记公式,只有在理解的情况下,才可以对积的乘方的运算性质灵活地应用. 教学方法采用“探究──交流──合作”的方法,让学生在互动中掌握知识. 教学过程一、回顾交流,导入新知【教师活动】提问学生在前面学过的同底数幂的运算法则;幂的乘方运算法则的内容以及区别.【学生活动】踊跃举手发言,解说老师的提问. 【课堂演练】计算:(1)(x4)3 (2)a〃a5 (3)x7〃x9(x2)3【学生活动】完成上面的演练题,并从中领会这两个幂的运算法则.【教师活动】巡视,关注学生的练习,并请3位学生上台演示,•然后再提出下面的问题.同学们思考怎样计算(2a3)4,每一步的根据是什么?【学生活动】先独立完成上面的问题,再小组讨论.(2a3)4=(2a3)〃(2a3)〃(2a3)〃(2a3)(乘方的含义)=(2〃2〃2〃2)〃(a3〃a3〃a3〃a3)(乘法交换律、结合律)=24〃a12(乘方的意义与同底数幂的乘法运算)=16a12【教师活动】提出应用以上分析问题的过程,再计算(ab)4,说出每一步的根据是什么?【学生活动】独立思考之后,再与同学交流.(ab)4=(ab)〃(ab)〃(ab)〃(ab)(乘方的含义)=(aaaa)〃(bbbb)(交换律、结合律)=a4〃b4(乘方的含义)【教师提问】(1)请同学们通过计算,观察乘方结果之后,•你能得出什么规律?(2)如果设n为正整数,将上式的指数改成n,即:(ab)n,其结果是什么?【学生活动】回答出(ab)n=anbn.【师生共识】我们得到了积的乘方法则:(ab)n=anbn(n为正整数),这就是说,积的乘方等于积的每个因式分别乘方,再把所得的幂相乘.(ab)n==anbn【教师活动】拓展训练:三个或三个以上的积的乘方,如(abc)n,【学生活动】回答出结果是(abc)n =a n b n c n.二、范例学习,应用所学【例】计算:(1)(2b)3;(2)(2〓a3)2;(3)(-a)3;(4)(-3x)4.【教师活动】组织、讲例、提问.【学生活动】踊跃抢答.三、随堂练习,巩固深化课本P98练习.【探研时空】计算下列各式:(1)(-)2〃(-)3; (2)(a-b)3〃(a-b)4;(3)(-a5)5; (4)(-2xy)4;(5)(3a2)n; (6)(xy3n)2-[(2x)2] 3;(7)(x4)6-(x3)8; (8)-p〃(-p)4;(9)(tm)2〃t; (10)(a2)3〃(a3)2.四、课堂总结,发展潜能本节课注重课堂引入,激发学生兴趣,“良好开端等于成功一半”.1.积的乘方(ab)n=anbn(n是正整数),使用范围:底数是积的乘方.方法:把积的每一个因式分别乘方,再把所得的幂相乘.2.在运用幂的运算法则时,注意知识拓展,底数和指数可以是数,•也可以是整式,对三个以上因式的积也适用.3.要注意运算过程,注意每一步依据,还应防止符号上的错误.4.在建构新的法则时应注意前面学过的法则与新法则的区别和联系.五、布置作业,专题突破1.课本P104习题15.1第1、2题.教学反思计算(-2x)3学生易错误得出-2x3,本题错误在于:括号内应看成-2〃x两个因式,而上述结论显然结积的乘方意义缺乏理解,-2漏乘方,正确的应是(-2)3〃x3=-8x3.。
初中数学乘法公式教案
初中数学乘法公式教案教学目标:1. 理解乘法公式的含义和运用。
2. 掌握乘法公式的计算方法和步骤。
3. 能够灵活运用乘法公式解决实际问题。
教学重点:1. 乘法公式的含义和运用。
2. 乘法公式的计算方法和步骤。
教学准备:1. 教学课件或黑板。
2. 练习题。
教学过程:一、导入(5分钟)1. 引导学生回顾加法、减法、乘法、除法的定义和运算规律。
2. 提问:我们已经学习了加法、减法、乘法、除法,那么有没有一种方法可以快速计算两个数的乘积呢?二、新课讲解(15分钟)1. 介绍乘法公式的含义:乘法公式是一种用来计算两个数乘积的方法,它将乘法运算转化为加法运算。
2. 讲解乘法公式的计算方法和步骤:a. 将两个数写成加数的形式。
b. 将加数按照一定的顺序相加。
c. 得出结果。
3. 举例讲解乘法公式的运用:以2x3为例,将其写成加数的形式为2+2+2+2,然后按照顺序相加得到结果6。
三、课堂练习(15分钟)1. 让学生独立完成练习题,巩固乘法公式的计算方法和步骤。
2. 引导学生相互讨论,解决练习题中的问题。
四、总结与拓展(5分钟)1. 总结乘法公式的含义和运用,强调乘法公式的计算方法和步骤。
2. 提问:乘法公式可以用来计算两个数的乘积,那么能不能用来计算三个数或者更多数的乘积呢?五、课后作业(布置作业)1. 根据课堂练习的情况,布置适量的作业,让学生巩固乘法公式的计算方法和步骤。
教学反思:本节课通过讲解乘法公式的含义和运用,让学生掌握了乘法公式的计算方法和步骤,并能够灵活运用乘法公式解决实际问题。
在教学过程中,注意引导学生相互讨论,解决练习题中的问题,提高了学生的合作意识和解决问题的能力。
同时,通过提问和拓展,激发了学生的思考和探究欲望,为后续的学习打下了基础。
八年级上册第十四章乘法公式教案
第十四章整式乘法与因式分解14.2.1 平方差公式一、教学内容和教材分析【教学内容】平方差公式【教材分析】某些具有特殊形式的多项式相乘,可以写成公式的形式.当遇到特殊形式的多项式相乘时,可以直接运用公式写出结果.平方差公式是多项式的乘法公式的一种,即两个数的和与这两个数的差的积,等于这两个数的平方差.平方差公式也是因式分解中公式法的重要基础,在代数中具有广泛的应用.平方差公式的符号表示和语言表述揭示了公式的结构特征.公式(a+b)(a-b)=a2-b2 中的字母a、b可以是具体的数、单项式、多项式、分式乃至任何代数式.平方差公式的得出,以多项式的乘法与合并同类项的知识为基础,从一般形式的整式乘法运算到对特殊形式的乘法运算概括出乘法公式,体现了一般到特殊的思想方法.探索平方差公式的过程,从具体的具有特殊形式的几组乖法的运算结果中,通过观察、比较,抽象概括出一般的形式,并通过符号推理获得公式的符号表示及语言表述,体现了从具体到抽象地研究问题方法.基于上述分析,确定本节的教学重点是:理解并掌握平方差公式及其结构特征;会运用此公式进行计算.二、教学目标和目标解析【教学目标】1、了解平方差公式产生的背景,理解平方差公式的意义,掌握平方差公式的结构特征,并能灵活运用平方差公式解决问题.2、在探索平方差公式的过程中,感悟从具体到抽象地研究问题的方法,在验证平方差公式的过程中,感知数形结合思想.【目标解析】达成目标(1)的标志是:学生知道由多项式乘法到平方差公式是一般到特殊的过程,能根据多项式的乘法法则推导出平方差公式,理解平方差公式的基本结构与特征,会用符号表示公式,能用文字语言表述公式内容,在字母表示具体的数、单项式、多项式时能正确地运用公式进行计算达成目标(2)的标志是:学生在探索平方差公式的过程中,能够体验到由具体到抽象的过程可以更好地发现公式、体会和理解公式;在利用几何图形的面积验证公式的过程中,了解验证平方差公式的具体方法,感知数形结合的思想.三、教学问题诊断分析学生的认知基础有:第一、七年级学生已有用字母表示数的基础.第二、学生已学习了多项式的乘法,但本节课所给特殊形式的多项式相乘,主要体现在结构特征的特殊性上,而这种特殊形式又灵活多样,学生常常在字母表示的广泛含义上不易掌握(如字母表示负数,多项式等),在平方差公式的灵活运用时常发生多种错误,如:①符号错误(-5a- 3)(+5a-3)=25a2-9②系数不平方(2a-1)(2a+1)=2a2-1③不能运用公式的而运用公式(a+0.5b)(b-0.5 a)=a2-0.25b2,其原因就是只了解公式(a+b)(a-b)=a2-b2的表面形式,而未真正掌握平方差公式的本质特征.鉴于此,本节的教学难点是:理解乘法公式的结构特征及几何意义,并能灵活运用平方差公式.四、教学支持条件分析利用多媒体展示教学的部分环节,如创设情景、公式的几何意义等,从而支持课堂教学,突出重点,突破难点.五、教学过程设计(一)趣味导入一张边长为a的正方形纸片,剪去一个边长为5的小正方形,学生动手沿一条直线剪成两部分后,再拼成一个长方形.根据拼成的长方形和原图形面积相等得到等式(a+5)(a-5)=a2-52[设计意图]从益智趣题引入,既能激发学生求知兴趣;又能通过动手操作加深理解;也为说明平方差公式的几何意义做好了铺垫.(二)探究公式(1)探究:计算下面多项式的积,观察规律,小组讨论老师提出的问题.①(x+1)( x-1)=②(m+ 2)( m-2)=③(2m+ 1)( 2m-1)=问题:1.相乘的两个多项式有什么共同特点?2.等号右边的积有什么共同特点?3. 请用含a、b的式子表示你发现的规律.小组讨论后学生展示,共同发现:1.①二项式②两数和③两数差.2.是这两个数的平方差.3.(a+b)(a-b)=a2-b2[设计意图]在教学中以一组相关联但又有区别的题目为载体,学生通过计算,观察每个算式的特点、结果的特点,挖掘题目间的共性,发现规律,举三反一,猜想公式,让学生经历从一般到特殊,从具体到抽象的过程,体会归纳这一数学思想方法.(2)追问:你能验证(a+b)(a-b)=a2-b2 的正确性吗1.用多项式的乘法验证(a+b)(a-b)=a2-ab+ ab-b2 =a2-b22.用几何法验证归纳平方差公式:(a+b)(a-b)= a2-b2,即:两个数的和与这两个数的差的积等于这两个数的平方差.[设计意图]通过多项式的乘法法则践行猜想,并从几何意义上理解代数公式,让合情推理与演绎推理完美并进,进而准确的用数学语言表述公式.使学生直观地经历变化的过程,从数形结合的角度加深对公式的理解.(3)追问:你能揭示公式的结构特征吗?相乘的两个二次项的项有什么关系?学生先自主辨析,再交流互补,不断完善.揭示公式的结构特征:一同一反,平方相减[设计意图]揭示公式的结构特征,是学生理解公式、进而灵活运用公式解决问题的前提条件.让学生自主辨析、合作交流、共同总结得以明晰,既体现了学生学习的主动性,又为学生学习公式进行了学法指导,可谓“一箭双雕”.(三)应用公式1.下列式子中,哪些可以用平方差公式计算.(1) (a+3)(a-2)(2) (a+3)(a-3)(3) (-m+n)(m-n)(4) (-2a-3)(-2a+3)通过练习我们要学会正确判断能否使用平方差公式.[设计意图] 这道开放题的设计,以剖析a、b的广泛含义为目的,对于认清公式的结构特征起到事半功倍的作用,在后面公式的运用中相信学生会更加得心应手.2.填一填注:a 、b 可以是单个数、单项式、多项式等.通过练习要准确地找出a,b ,并正确写出平方差的形式.[设计意图] 设计此题旨在将算式中的各项与公式里的a 、b 进行对照,进一步体会字母a 、b 的含义,举一反三,加深对字母含义广泛性的理解.3.例1 计算:(1) (3x +2 )( 3x -2 ) ; (2)(-x +2y )(-x -2y ).解:(1)原式=(3x ) 2-22 (2) 原式= (-x ) 2 - (2y ) 2=9x 2-4; =x 2 - 4y 2.两个学生板书,其余学生独立完成.方法总结:一判二找三平方,括号添加要得当.[设计意图] 对学生常出现的错误,进行预设,防微杜渐.4.例2 计算(1)(y+2)(y-2)-(y-1)(y+5) (2)10298(2)10298=(100+2) (100-2)=10000-4=9996))(())(()(51221+---+y y y y )(54422-+--=y y y 54422+---=y y y 14+-=y[设计意图] 通过转化,利用公式计算,体会平方差公式的便捷.(四)巩固运用3.计算(x-y )(x+y ) (x2+y2 ) (x4+y4 )[设计意图]设计不同形式的问题,考察学生对平方差公式的理解与应用.对学生的学习效果进行检测,给学生自我评价的机会,对“教”与“学”及时反馈.师生一起查漏补缺,扬长避短,自我完善.(五)小结梳理1.通过本节课的学习你有什么收获?学习了哪些知识?掌握了哪些技能?领悟了哪些思想方法?[设计意图]多方位的去理解新知、运用新知,加深学生对平方差公式的理解.(六)布置作业1、必做题:习题14.2 复习巩固 12、选做题:习题14.2 拓广探索 9[设计意图]通过课下练习继续巩固平方差公式的理解和应用,同时检验学生的学习效果,针对作业中暴露的问题后续针对性训练.。
人教版数学八年级上册第14章整式的乘法与因式分解教学设计
1.设计不同难度的练习题,包括基础题、提高题和拓展题,让学生在课堂上独立完成。
2.练习题涵盖整式乘法、平方差公式、完全平方公式和因式分解等知识点,让学生在练习中巩固所学。
3.及时反馈学生的答题情况,针对共性问题进行讲解,帮助学生纠正错误,提高解题能力。
(五)总结归纳,500字
作业布置原则:注重作业的质量,而非数量;关注学生的个体差异,分层布置作业;鼓励学生积极参与,培养他们的学习兴趣。通过作业的布置与完成,让学生真正掌握整式乘法与因式分解的知识,提高数学素养。
2.平方差公式和完全平方公式:引导学生观察特定的整式乘法算式,如(a+b)(a-b)、(a+b)²,让他们发现平方差公式和完全平方公式的规律,并加以证明。通过实际例题,让学生学会运用这两个公式简化计算过程。
3.因式分解:介绍因式分解的概念,让学生理解其含义。通过具体的例子,讲解提公因式法、平方差公式和完全平方公式在因式分解中的应用,让学生掌握因式分解的方法。
五、作业布置
为了巩固本节课所学的整式乘法与因式分解知识,培养学生的数学思维能力,特布置以下作业:
1.基础巩固题:完成课本第14章的相关练习题,包括整式的乘法运算、平方差公式、完全平方公式的应用以及因式分解的基本方法。
要求:学生在完成作业时,要注重运算的准确性,熟练掌握乘法法则和因式分解的方法,提高解题速度。
1.让学生回顾本节课所学的内容,总结整式乘法法则、平方差公式、完全平方公式和因式分解的方法。
2.教师进行课堂小结,强调重点和难点,对学生的学习情况进行评价。
3.鼓励学生课后继续练习,提高整式乘法与因式分解的运算技巧,培养数学思维能力。
4.激发学生学习数学的兴趣,增强他们的自信心,为下一节课的学习打下良好基础。
乘法公式人教版数学八年级上册教案
乘法公式人教版数学八年级上册教案乘法公式,是将一些特殊的多项式相乘的结果加以总结,直接应用。
公式中的每一个字母,一般可以表示数字,单项式,多项式,有的还可以推广到分式,根式。
以下是整理的乘法公式人教版数学八年级上册教案,欢迎大家借鉴与参考!14.2乘法公式教学设计【教学目标】知识与技能会推导平方差公式,并且懂得运用平方差公式进行简单计算.过程与方法经历探索特殊形式的多项式乘法的过程,发展学生的符号感和推理能力,使学生逐渐掌握平方差公式.情感、态度与价值观通过合作学习,体会在解决具体问题过程中与他人合作的重要性,体验数学活动充满着探索性和创造性.【教学重难点】重点:平方差公式的推导和运用,以及对平方差公式的几何背景的了解.难点:平方差公式的应用.关键:对于平方差公式的推导,我们可以通过教师引导,学生观察、总结、猜想,然后得出结论来突破;抓住平方差公式的本质特征,是正确应用公式来计算的关键.【教学过程】一、创设情境,故事引入【情境设置】教师请一位学生讲一讲《狗熊掰棒子》的故事【学生活动】1位学生有声有色地讲述着《狗熊掰棒子》的故事,其他学生认真听着,不时补充.【教师归纳】听了这则故事之后,同学们应该懂得这么一个道理,学习千万不能像狗熊掰棒子一样,前面学,后面忘,那么,上节课我们学习了什么呢?还记得吗?【学生回答】多项式乘以多项式.【教师激发】大家是不是已经掌握呢?还是早扔掉了呢?和小狗熊犯了同样的错误呢?下面我们就来做这几道题,看看你是否掌握了以前的知识.【问题牵引】计算:(1)(x+2)(x-2);(2)(1+3a)(1-3a);(3)(x+5y)(x-5y);(4)(y+3z)(y-3z).做完之后,观察以上算式及运算结果,你能发现什么规律?再举两个例子验证你的发现.【学生活动】分四人小组,合作学习,获得以下结果:(1)(x+2)(x-2)=x2-4;(2)(1+3a)(1-3a)=1-9a2;(3)(x+5y)(x-5y)=x2-25y2;(4)(y+3z)(y-3z)=y2-9z2.【教师活动】请一位学生上台演示,然后引导学生仔细观察以上算式及其运算结果,寻找规律.【学生活动】讨论【教师引导】刚才同学们从上述算式中找到了这一组整式乘法的结果的规律,这些是一类特殊的多项式相乘,那么如何用字母来表示刚才同学们所归纳出来的特殊多项式相乘的规律呢?【学生回答】可以用(a+b)(a-b)表示左边,那么右边就可以表示成a2-b2了,即(a+b)(a-b)=a2-b2.用语言描述就是:两个数的和与这两个数的差的积,等于这两个数的平方差.【教师活动】表扬学生的探索精神,引出课题──平方差,并说明这是一个平方差公式和公式中的字母含义.二、范例学习,应用所学【教师讲述】平方差公式的运用,关键是正确寻找公式中的a和b,只有正确找到a和b,一切就变得容易了.现在大家来看看下面几个例子,从中得到启发.例1:运用平方差公式计算:(1)(2x+3)(2x-3);(2)(b+3a)(3a-b);(3)(-m+n)(-m-n).《乘法公式》同步练习二、填空题5.幂的乘方,底数______,指数______,用字母表示这个性质是______.6.若32×83=2n,则n=______.《乘法公式》同步测试题25. 利用正方形的面积公式和梯形的面积公式即可求解;根据所得的两个式子相等即可得到.此题考查了平方差公式的几何背景,根据正方形的面积公式和梯形的面积公式得出它们之间的关系是解题的关键,是一道基础题.26. 由等式左边两数的底数可知,两底数是相邻的两个自然数,右边为两底数的和,由此得出规律;等式左边减数的底数与序号相同,由此得出第n个式子;乘法公式人教版数学八年级上册教案。
人教版八年级数学上册教学设计14.2 乘法公式
人教版八年级数学上册教学设计14.2 乘法公式一. 教材分析人教版八年级数学上册的教学内容涉及平面几何、立体几何、代数、概率等多个方面,其中第14章“整式乘法”是基础也是重点。
本节课的内容“乘法公式”是整式乘法中的一个重要部分,主要包括平方差公式和完全平方公式的探究和应用。
平方差公式和完全平方公式在解决实际问题中有着广泛的应用,是学生必须掌握的基础知识。
二. 学情分析学生在七年级时已经学习了有理数的乘法、幂的运算等基础知识,对整式的乘法有了一定的了解。
但平方差公式和完全平方公式的推导和应用还需要通过实例和练习来加深理解。
此外,学生可能对公式的记忆和应用存在困难,需要通过反复练习和实际问题来提高应用能力。
三. 教学目标1.知识与技能:掌握平方差公式和完全平方公式的推导过程和应用方法。
2.过程与方法:通过探究、合作、交流的方式,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和积极进取的精神。
四. 教学重难点1.重点:平方差公式和完全平方公式的推导和应用。
2.难点:对平方差公式和完全平方公式的理解和灵活应用。
五. 教学方法采用探究式教学法、合作学习法和案例教学法。
通过引导学生自主探究、合作交流,以实际问题为载体,让学生在实践中理解和掌握平方差公式和完全平方公式。
六. 教学准备1.准备相关的基础知识和例题。
2.准备多媒体教学设备,如投影仪、电脑等。
3.准备练习题和测试题,以检验学生的学习效果。
七. 教学过程导入(5分钟)通过一个实际问题引入本节课的主题:已知正方形的面积是20,求这个正方形的边长。
让学生思考如何解决这个问题,从而引出平方公式。
呈现(10分钟)1.平方差公式:a² - b² = (a + b)(a - b)2.完全平方公式:a² + 2ab + b² = (a + b)²,a² - 2ab + b² = (a - b)²通过讲解和示例,让学生理解平方差公式和完全平方公式的推导过程和应用方法。
2022年人教版八年级数学上册第十四章整式的乘法与因式分解教案 整式的乘法(第3课时)
第十四章整式的乘法与因式分解14.1.4 整式的乘法第3课时一、教学目标【知识与技能】1.探究同底数幂除法的性质和单项式除以单项式、多项式除以单项式的法则,并会应用法则计算.2.会进行单项式除以单项式、多项式除以单项式的运算,理解整式除法运算的原理.【过程与方法】1.经历探究整式的除法的运算性质的过程,进一步体会幂的意义,发展推理能力和有条件的表达能力.2.体会知识间逻辑关系、类比探究在研究除法问题时的价值,体会转化思想在整式除法中的作用.【情感、态度与价值观】感受数学法则、公式的简洁美、和谐美.二、课型新授课三、课时第3课时四、教学重难点【教学重点】应用整式除法法则进行计算.【教学难点】根据乘、除互逆的运算关系得出同底数幂的除法运算法则.五、课前准备教师:课件、直尺、计算器等。
学生:练习本、钢笔或圆珠笔。
六、教学过程(一)导入新课木星的质量约是1.9×1024吨,地球的质量约是5.98×1021吨,你知道木星的质量约为地球质量的多少倍吗?(出示课件2)木星的质量约为地球质量的(1.90×1024)÷(5.98×1021)倍.想一想:上面的式子该如何计算?(二)探索新知1.师生互动,探究同底数幂的除法法则教师问1:请完成下面的题目:(出示课件4)(1)25×23;(2)x6×x4;(3)2m×2n.学生回答:(1)28;(2)x10;(3)2m+n.教师问2:本题是直接利用什么乘法法则计算的?学生回答:同底数幂的乘法法则:底数不变,指数相加.教师问3:思考下面的题该如何计算?(1)( )( )×23=28 (2)x6·( )( )=x10(3)( )( )×2n=2m+n学生回答:可以把乘法法则反过来利用.教师问4:反过来就我们今天要学的同底数幂的除法,能不能先试着写成除法形式?学生讨论后解答:(1)28÷23=?;(2)x10÷x6=?;(3)2m+n÷2n=?教师问5:你是如何计算的呢?学生回答:本题逆向利用同底数幂的乘法法则计算.教师问6:能不能试着完成下列各题:计算:(1)28÷23;(2)x10÷x6;(3)2 m+n÷2n学生回答:(1) 28÷23=25;(2) x10÷x6=x4;(3) 2 m+n÷2n =2m教师问7:观察下面的等式,你能发现什么规律?(出示课件5)(1)28÷23=25=28-3;(2) x10÷x6=x4=x10-6;(3) 2 m+n÷2n =2m =2m-n学生回答:底数不变,指数相减.教师总结:同底数幂相除,底数不变,指数相减.教师问8:以上法则能用字母表示吗?学生总结:a m÷a n=a m-n.教师问9:对指数有何要求吗?学生回答:m,n都是正整数,且m>n.教师总结:a m ÷a n=a m–n(m,n都是正整数,且m>n)教师问10:如何验证其正确性呢?学生回答:验证:因为a m–n·a n=a m–n+n=a m,所以a m ÷a n=a m–n.教师问11:对于除法运算,有没有什么特殊要求呢?学生回答:对于除法运算应要求除数(或分母)不为零,所以底数不能为零.即a m÷a n=a m-n(a≠0,m,n都是正整数,并且m>n).教师问12:计算:a m÷a m学生计算a m÷a m时,可能会出现1或a0两个答案.教师顺势归纳:从除法的意义可知商为1,另一方面,如果依照同底数幂的除法计算,得a0.所以规定:a0=1(a≠0).教师问13:为什么规定a0=1(a≠0)时要说明a≠0呢?学生回答:因为当a=0时,分母或除数为0,式子无意义.总结点拨:(出示课件6)同底数幂的除法一般地,我们有a m÷a n=a m–n(a ≠0,m,n都是正整数,且m>n)即同底数幂相除,底数不变,指数相减.规定:a0=1(a ≠0)这就是说,除0以外任何数的0次幂都等于1.例1:计算:(出示课件7)(1)x8÷x2;(2) (ab)5÷(ab)2.师生共同解答如下:解:(1)x8 ÷x2=x8–2=x6;(2) (ab)5÷(ab)2=(ab)5–2=(ab)3=a3b3.总结点拨:计算同底数幂的除法时,先判断底数是否相同或变形相同,若底数为多项式,可将其看作一个整体,再根据法则计算.例2:已知a m=12,a n=2,a=3,求a m–n–1的值.(出示课件9)师生共同解答如下:解:∵a m=12,a n=2,a=3,∴a m–n–1=a m÷a n÷a=12÷2÷3=2.总结点拨:解此题的关键是逆用同底数幂的除法,对a m–n–1进行变形,再代入数值进行计算.2.复习旧知,探究单项式除以多项式的法则教师问14:计算:4a2x3·3ab2学生回答:4a2x3·3ab2=12a3b2x3教师问15:计算:12a3b2x3÷ 3ab2学生讨论回答:(出示课件11)解法1: 12a3b2x3÷ 3ab2相当于求( )·3ab2=12a3b2x3.由(1)可知括号里应填4a2x3.解法2:原式=4a2x3· 3ab2÷ 3ab2=4a2x3.理解:上面的商式4a2x3的系数4=12 ÷3;a的指数2=3–1,b的指数0=2–2,而b0=1,x的指数3=3–0.教师问15:类比上述研究过程计算以下两题.(1)-2x3÷(-x);(2)8m2n2÷2m2n.学生回答:(1)2x2;(2)4n教师问16:通过计算,你又发现什么规律?学生回答:单项式相除,把系数和同底数的幂分别相除.师生互动合作交流,得出单项式除以单项式的法则:单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.总结点拨:(出示课件12)单项式除以单项式的法则:单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.例3:计算:(出示课件13)(1)28x4y2÷7x3y;(2)–5a5b3c ÷15a4b.师生共同解答如下:解:(1)原式=(28 ÷7)x4–3y2–1=4xy;(2)原式=(–5÷15)a5–4b3–1c=- 1ab2c.3总结点拨:单项式除以单项式要按照法则逐项进行,不得漏项,并且要注意符号的变化.3.师生互动,学习多项式除以单项式的法则教师问17:一幅长方形油画的长为(a+b),宽为m,求它的面积.(出示课件16)学生回答:面积为(a+b)m=ma+mb.教师问18:若已知油画的面积为(ma+mb),宽为m,如何求它的长?学生回答:长为(ma+mb)÷m.教师问19:如何计算(am+bm) ÷m?(出示课件17)学生讨论后回答:计算(am+bm) ÷m就相当于求( ) ·m=am+bm,教师问20:()填什么呢?学生回答:a+b教师问21:am ÷m+bm ÷m=?学生回答:a+b教师问22:观察上边的问题,你发现了什么?学生回答:(am+bm) ÷m=am ÷m+bm ÷m教师问23:计算下列各式:(1)(ax+bx)÷x;(2)(a2+ab)÷a;(3)(4x2y+2xy2)÷2xy.学生回答:(1) a+b;(2) a+b;(3) 2x+y.教师问24:说你是怎样计算的?学生回答:多项式除以单项式,用多项式的每一项除以单项式.教师问25:它们的项数之间有什么发现吗?师生共同解答如下:在学生独立解决问题之后,及时引导学生反思自己的思维过程,并对自己计算所得的结果进行观察,总结出计算的一般方法和结果的项数特征:商式与被除式的项数相同.教师问26:你能归纳出多项式除以单项式的法则吗?(出示课件18)学生归纳,教师点拨:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.教师问27:你能把这句话写成公式的形式吗?学生回答:(am+bm)÷m=am÷m+bm÷m.关键:应用法则是把多项式除以单项式转化为单项式除以单项式.例4:计算:(12a3–6a2+3a) ÷3a. (出示课件19)师生共同解答如下:解: (12a3–6a2+3a) ÷3a=12a3÷3a+(–6a2) ÷3a+3a÷3a=4a2+(–2a)+1=4a2–2a+1.总结点拨:多项式除以单项式,实质是利用乘法的分配律,将多项式除以单项式问题转化为单项式除以单项式问题来解决.计算过程中,要注意符号问题.例5:先化简,后求值:[2x(x2y–xy2)+xy(xy–x2)]÷x2y,其中x=2015,y=2014.(出示课件21)师生共同解答如下:解:原式=[2x3y–2x2y2+x2y2–x3y]÷x2y,=x–y.把x=2015,y=2014代入上式,得原式=x–y=2015–2014=1.(三)课堂练习(出示课件24-29)1.下列说法正确的是( )A.(π–3.14)0没有意义B.任何数的0次幂都等于1C.(8×106)÷(2×109)=4×103D.若(x+4)0=1,则x≠–42.下列算式中,不正确的是( )A.(–12a5b)÷(–3ab)=4a4B.9x m y n–1÷3x m–2y n–3=3x2y2C. 4a2b3÷2ab=2ab2D.x(x–y)2÷(y–x)=x(x–y)3.已知28a3b m÷28a n b2=b2,那么m,n的取值为( )A.m=4,n=3 B.m=4,n=1C.m=1,n=3 D.m=2,n=34.一个长方形的面积为a2+2a,若一边长为a,则另一边长为_____________.5. 已知一多项式与单项式–7x5y4 的积为21x5y7–28x6y5,则这个多项式是______.6.计算: (1)6a3÷2a2;(2)24a2b3÷3ab;(3)–21a2b3c÷3ab;(4)(14m3–7m2+14m)÷7m.7. 先化简,再求值:(x+y)(x–y)–(4x3y–8xy3)÷2xy,其中x=1,y=–3.8. (1)若32•92x+1÷27x+1=81,求x的值;(2)已知5x=36,5y=2,求5x–2y的值;(3)已知2x–5y–4=0,求4x÷32y的值.参考答案:1.D2.D3.A4.a+25. –3y3+4xy6. 解:(1) 6a3÷2a2=(6÷2)(a3÷a2)=3a.(2) 24a2b3÷3ab=(24÷3)a2–1b3–1=8ab2.(3)–21a2b3c÷3ab=(–21÷3)a2–1b3–1c= –7ab2c;(4)(14m3–7m2+14m)÷7m=14m3÷7m-7m2÷7m+14m÷7m= 2m2–m+2.7. 解:原式=x2–y2–2x2+4y2=–x2+3y2.当x=1,y=–3时,原式=–12+3×(–3)2=–1+27=26.8. 解:(1)32•34x+2÷33x+3=81,即3x+1=34,解得x=3;(2)52y=(5y)2=4,5x–2y=5x÷52y=36÷4=9.(3)∵2x–5y–4=0,移项,得2x–5y=4.4x÷32y=22x÷25y=22x–5y=24=16.(四)课堂小结今天我们学了哪些内容:a m÷a n=a m-n(a≠0,m,n都是正整数,并且m>n)a0=1(a≠0)(am+bm)÷m=am÷m+bm÷m.(五)课前预习预习下节课(14.2)的相关内容。
人教版八年级数学上册(教案):14.2 乘法公式
乘法公式一、说教材1、教材所处的地位及前后联系本节课是《整式的乘除》的内容,是在学习了多项式和多项式相乘和平方差公式之后引入的又一种比较特殊多项式乘以多项式,即完全平方公式。
它和平方差公式一样,也是数学中最基本的一个公式,理解和运用完全平方公式,对于以后学习因式分解,解一元二次方程都具有举足轻重的作用。
2、教学目标:1)通过合作学习探索得到完全平方公式,培养学生认识由一般法则到特殊法则的能力。
2)通过体念、观察并发现完全平方公式的结构特征,并能从广义上理解公式中字母的含义。
3)初步学会运用完全平方公式进行计算。
3、教材的重点难点:本节课的重点是理解完全平方公式,运用公式进行计算。
难点是从广泛意义上理解公式中的字母,判明要计算的代数式是哪两个数的和(差)的平方。
二、说教法针对初一学生的形象思维大于抽象思维,注意力不能持久等年龄特点,及本节课实际,采用自主探索,启发引导,合作交流展开教学,引导学生主动地进行观察、猜测、验证和交流。
同时考虑到学生的认知方式、思维水平和学习能力的差异进行分层次教学,让不同层次的学生都能主动参与并都能得到充分的发展。
边启发,边探索边归纳,突出以学生为主体的探索性学习活动和因材施教原则,教师努力为学生的探索性学习创造知识环境和氛围,遵循知识产生过程,从特殊→一般→特殊,将所学的知识用于实践中。
另外本节课采用计算机辅助教学,利用多彩的图形世界引导学生完全平方公式的发现和推导,使代数教学不再枯燥。
三、说学法在学法上,教师应引导学生积极思维,鼓励学生进行合作学习,让每个学生都动口、动手、动脑,自己归纳出运算法则,培养学生学习的主动性和积极性。
四、说教学程序(一)合作学习,探求新知用投影片显示:1、如图所示,你能用不同的方法表示下面图形的面积吗?2、把学生回答的结果的不同形式板书在黑板上,提问这些表示的结果都相等吗?3、指出:即完全平方和公式。
4、模仿练习:(用两数和的完全平方公式计算(填空))1)=2)=5、换元拓展提问:等于什么?是否可以写成?你能继续做下去吗?通过讨论,尝试得到(二)探求规律,巩固练习1、探求规律在模仿运用公式的基础上,结合两个公式的特征,可用一句顺口溜来强化记忆:“首平方,尾平方,首尾两倍中间放。
人教版八年级数学上第十四章《整式乘法与因式分解》全章教案
人教版八年级数学上第十四章《整式乘法与因式分解》全章教案第一篇:人教版八年级数学上第十四章《整式乘法与因式分解》全章教案东兴市京族学校八年级数学上教案备课人:第十四章整式的乘法与因式分解14.1.1 同底数幂的乘法教学目标1.理解同底数幂的乘法,会用这一性质进行同底数幂的乘法运算.2.体会数式通性和从具体到抽象的思想方法在研究数学问题中的作用.教学重、难点同底数幂的乘法运算法则及其应用.教学过程设计一、创设问题,激发兴趣问题一种电子计算机每秒可进行1千万亿(1015)次运算,它工作103 s可进行多少次运算?(1)如何列出算式?(2)1015的意义是什么?(3)怎样根据乘方的意义进行计算?根据乘方的意义填空,观察计算结果,你能发现什么规律?(1)2(2)a(3)535)⨯22=2(;)⋅a2=a(;)⨯5n=5(.m你能将上面发现的规律推导出来吗?=(14aa244⋅Λ⋅3a)(⋅14a⋅4a244⋅Λ⋅3a)am⋅an ⋅4m个an个a=a⋅4a ⋅Λ⋅3a 14244(m+n)个a m+ n教师板演: 同底数幂相乘,底数不变,指数相加.即:am×an=am+n(m、n都是正整数).二、知识应用,巩固提高=a am⋅an=am+n(m,n 都是正整数)表述了两个同底数幂相乘的结果,那么,三个、四个…多个同底数幂相乘,结果会怎样?这一性质可以推广到多个同底数幂相乘的情况:am⋅an⋅Λ⋅ap=am+n+Λ+p(m,n,p都是正整数).例1(教科书第96页)三、应用提高、拓展创新课本96页练习/ 15 东兴市京族学校八年级数学上教案备课人:四、归纳小结(1)本节课学习了哪些主要内容?(2)同底数幂的乘法的运算性质是怎么探究并推导出来的?在运用时要注意什么?五、布置作业:习题14.1第1(1)、(2)题教后反思:14.1.2 幂的乘方 14.1.3 积的乘方教学目标1.理解幂的乘方与积的乘方性质的推导根据.2.会运用幂的乘方与积的乘方性质进行计算.3.在类比同底数幂的乘法性质学习幂的乘方与积的乘方性质时,体会三者的联系和区别及类比、归纳的思想方法.教学重、难点幂的乘方与积的乘方的性质.教学过程设计一、创设问题,激发兴趣问题1 有一个边长为a2 的正方体铁盒,这个铁盒的容积是多少?问题2 根据乘方的意义及同底数幂的乘法填空: 23()(1)3)(=32⨯32⨯32=3;3()(2)a2)(=a2⋅a2⋅a2=a;(a(3)m3())=am⋅am⋅am=a(m是正整数).在解决问题后,引导学生归纳同底数幂的乘法法则:幂的乘方,底数不变,指数相乘.即:(am)n=amn(m、n 都是正整数).多重乘方可以重复运用上述法则:pmn⎡⎤ a)=amnp(⎣⎦二、知识应用,巩固提高计算(1)(102)3;(2)(b5)5;(3)(an)3;(4)-(x2)m;(5)(y2)3·y;(6)2(a2)6-(a3)4.问题4 根据乘方的意义和乘法的运算律,计算:你能发现有何运算规律吗?能用文字语言概述你发现的积的乘方运算规律吗?(n是正整数)/ 15 东兴市京族学校八年级数学上教案备课人:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.当n 是正整数时,三个或三个以上因式的积的乘方,也具有这一性质吗?四、归纳小结(1)本节课学习了哪些主要内容?(2)幂的三个运算性质是什么?它们有什么区别和联系?五、布置作业:教材第102页第1、2题.教后反思:14.1.4整式的乘法(1)教学目标1.理解单项式乘法的法则,会用单项式乘法法则进行运算.2.经历单项式乘法法则的形成过程,发展学生的运算能力,体会类比思想.教学重、难点单项式的乘法法则的概括过程和运用.教学过程设计一、创设情境,激发兴趣问题1:光的速度约为3×105千米/秒,太阳光照射到地球上需要的时间大约是5×102秒,你知道地球与太阳的距离约是多少千米吗?二、知识应用,巩固提高问题2 观察这三个算式有何共同的特点?请你用自己的语言概括单项式乘以单项式的法则.单项式乘以单项式的法则:单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式./ 15 东兴市京族学校八年级数学上教案备课人:三、应用提高、拓展创新第99页练习1、2四、归纳小结(1)本节课学习了哪些主要内容?(2)运用单项式的乘法法则时,应该注意哪些问题?(3)结合探索单项式乘法法则的过程,你认为体现了哪些思想方法?五、布置作业:教科书习题14.1第3、9、10题.教后反思:14.1.4整式的乘法(2)教学目标1.理解单项式与多项式相乘的法则,能运用单项式与多项式相乘的法则进行计算.2.理解算理,发展学生的运算能力和“几何直观”观念,体会转化、数形结合和程序化思想.教学重、难点单项式与多项式相乘的法则的运用.教学过程设计一、创设情境,激发兴趣问题我们来回顾引言中提出的问题:为了扩大绿地的面积,要把街心花园的一块长p 米,宽b 米的长方形绿地,向两边分别加宽a 米和c 米,你能用几种方法表示扩大后的绿地的面积?不同的表示方法:(pa+b+c)pa+pb+pc你认为这两个代数式之间有着怎样的关系呢?二、知识应用,巩固提高请你用自己的语言概括单项式乘以多项式的法则.单项式乘以多项式的法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.三、应用提高、拓展创新完成课本100页练习1、练习2/ 15 东兴市京族学校八年级数学上教案备课人:四、归纳小结(1)本节课学习了哪些主要内容?(2)在运用单项式与多项式相乘的法则时,你认为应该注意哪些问题?(3)探索单项式与多项式相乘的法则的过程,体现了哪些思想方法?五、布置作业:教材第103页第4、7题教后反思:14.1.4整式的乘法(3)教学目标1.理解多项式与多项式相乘的法则,并能运用法则进行计算.2.理解算理,发展学生的运算能力和几何直观,体会转化、数形结合和程序化思想.教学重、难点多项式与多项式相乘的法则的概括与运用.教学过程设计一、创设情境,激发兴趣问题1 已知某街心花园有一块长方形绿地,长为a m,宽为p m.则它的面积是多少?若将这块长方形绿地的长增加b m,则扩大后的绿地面积是多少?问题2 若将原长方形绿地的长增加b m、宽增加q m,你能用几种方法求出扩大后的长方形绿地的面积呢?不同的表示方法:二、知识应用,巩固提高根据上节课积累的探究经验,你能得到什么结论呢?(a+b)(p+q)=ap+aq+bp+bq你能类比单项式与多项式相乘的法则,叙述多项式与多项式相乘的法则吗?多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.你认为在运用法则计算时,应该注意什么问题?/ 15 东兴市京族学校八年级数学上教案备课人:根据上述求解过程,观察计算结果的各项系数与原式中的系数有怎样的关系?三、应用提高、拓展创新教科书第102页练习1、2四、归纳小结(1)本节课学习了哪些主要内容?(2)在运用多项式与多项式相乘的法则时,你认为应该注意哪些问题?(3)举例说明在探索多项式与多项式相乘的法则的过程中,体现了哪些思想方法?五、布置作业:教材习题14.1第5、8题教后反思:14.1.4整式的除法(1)教学目标1.理解同底数幂除法的性质和单项式除以单项式的法则,并会应用法则计算.2.体会知识间逻辑关系、类比探究在研究除法问题时的价值;体会转化思想在单项式除法中的作用.教学重、难点探究同底数幂除法的性质和单项式除以单项式的法则,并会用它们进行运算.教学过程设计一、创设情境,激发兴趣问题1 一种数码照片的文件大小是28 K,一个存储量为26 M(1 M=210 K)的移动存储器能存储多少张这样的数码照片?二、知识应用,巩固提高问题2 填空:⨯(1)∵()()⨯(2)∵()⋅(3)∵23=25 ∴25÷23=();103=107 ∴107÷103=();a3=a7 ∴a7÷a3=().问1 你在解决问题2时,用到了什么知识?你能叙述这一知识吗?/ 15 东兴市京族学校八年级数学上教案备课人:问2 25÷23,107÷103,a7÷am 这三个算式属于哪种运算?你能概括一下它3们是怎样计算出来的吗?问3 你能用上述方法计算 a÷an吗?问4 你能用语言概括这一性质吗?同底数幂除法的性质:同底数幂相除,底数不变,指数相减.思考与讨论为什么a≠0?问题3 当被除式的指数等于除式的指数时:(1)如果根据这条性质计算am÷an结果是多少?÷an结果是多少?(2)如果根据除法意义计算 am即任何不等于0的数的0次幂都等于1.三、应用提高、拓展创新例1 计算:474(xy)÷xy;a÷a;(1)(2)326(-y)÷y.(-x)÷(-x);(3)(4)问题4 计算下列各题:423323228xy÷7xy;(1)(2)12abx÷3ab.例2 计算:(1)-8a22教科书104页练习1、2四、归纳小结(1)本节课学习了哪些主要内容?(2)探究同底数幂除法性质和单项式除法?(3)运用同底数幂除法性质和单项式除法的法则时,你认为应该注意什么?五、布置作业:教材习题14.1第6题(1)(2)(3)(4).教后反思:12b÷6ab2;(2)(-12x8y6)÷(-x2y3).2 7 / 15 东兴市京族学校八年级数学上教案备课人:14.1.4整式的除法(2)教学目标1.理解多项式除以单项式的法则.2.体会知识间的内在联系、互逆关系等逻辑关系在研究问题时的价值;体会类比和转化的数学思想在多项式除以单项式中的作用.教学重、难点探究多项式除以单项式的法则,会运用法则进行计算.教学过程设计一、创设情境,激发兴趣问题1 请同学们观察下列算式,它是我们学过的除法算式吗?如果不是,说说它与我们上节课学习的算式有什么不一样的特点.⑴.(m+bm)÷m;-12x2+4x)÷4x.(8x⑵3你能尝试计算(1)吗?说说你是怎样算出来的?二、知识应用,巩固提高利用除法是乘法的逆运算,求(am +bm)÷m 的值,就是要求一个多项式,使它与m 的积是(am +bm).你知道这个多项式是什么吗?完成引例:8x3-12x2+4x)÷4x(思考上述两个算式的运算,它们的相同之处是什么?通过以上两个例子,我们在计算一个多项式除以单项式时,是将它如何转化的呢?你能用字母的形式来表示吗?多项式除以单项式法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.或例1 计算:(6ab(1)+5a÷a);22(15xy-10xy÷5xy);(2)(8a(3)2-4ab)÷(-4a);3(4)(12a-6a2+3a)÷3a.三、应用提高、拓展创新教科书104页练习3/ 15 东兴市京族学校八年级数学上教案备课人:四、归纳小结(1)本节课学习了哪些主要内容?(2)运用多项式除以单项式法则计算的基本步骤是什么?应注意的地方是什么?(3)探究多项式除以单项式的方法是什么?五、布置作业:教材习题14.1第6(5)(6)题教后反思:14.2.1 乘法公式--平方差公式教学目标1.理解平方差公式,能运用公式进行计算.2.在探索平方差公式的过程中,感悟从具体到抽象地研究问题的方法,在验证平方差公式的过程中,感知数形结合思想.教学重、难点平方差公式教学过程设计一、创设情境,激发兴趣在14.1节中,我们学习了整式的乘法,知道了多项式与多项式相乘的法则.根据所学知识,计算下列多项式的积,你能发现什么规律?(1)=;(2)=;(3)=.二、知识应用,巩固提高上述问题中相乘的两个多项式有什么共同点?相乘的两个多项式的各项与它们的积中的各项有什么关系?你能将发现的规律用式子表示出来吗?你能对发现的规律进行推导吗?(a+b)(a-b)=a前面探究所得的式子2-b2为乘法的平方差公式,你能用文字语言表述平方差公式吗?两个数的和与这两个数的差的积,等于这两个数的平方差.你能根据图中图形的面积说明平方差公式吗?/ 15 东兴市京族学校八年级数学上教案备课人:例1 运用平方差公式计算:(-x+2y)(-x-2y)(3x-2)(1)(3x+2);(2)从例题1和练习1中,你认为运用公式解决问题时应注意什么?(1)在运用平方差公式之前,一定要看是否具备公式的结构特征;(2)一定要找准哪个数或式相当于公式中的a,哪个数或式相当于公式中的b;(3)总结规律:一般地,“第一个数”a 的符号相同,“第二个数”b 的符号相反;(4)公式中的字母a ,b 可以是具体的数、单项式、多项式等;(5)不能忘记写公式中的“平方”.例2 计算:(-y+2)(-y-2)-(y-1)(y+5)(1);(2)102×98.三、应用提高、拓展创新教科书108页练习1、2四、归纳小结(1)本节课学习了哪些主要内容?(2)平方差公式的结构特征是什么?(3)应用平方差公式时要注意什么五、布置作业:教科书习题14.2第1题.教后反思:14.2.2乘法公式--完全平方公式教学目标1.理解完全平方公式,能用公式进行计算.2.经历探索完全平方公式的过程,进而感受特殊到一般、数形结合思想,发展符号意识和几何直观观念.教学重、难点完全平方公式./ 15 东兴市京族学校八年级数学上教案备课人:教学过程设计一、创设情境,激发兴趣问题1 计算下列各式:22(p+1)=______;(m+2)=______;(1)22(p-1)=______;(m-2)=______.(2)你能发现什么规律?二、知识应用,巩固提高问题2 你能用式子表示发现的规律吗?完全平方公式:问题3 你能用文字语言表述完全平方公式吗?两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.公式特点:(1)积为二次三项式;(2)积中两项为两数的平方和;(3)另一项是两数积的2倍,且与乘式中间的符号相同;(4)公式中的字母a,b 可以表示数,单项式和多项式.问题4 能根据图1和图2中的面积说明完全平方公式吗?三、应用提高、拓展创新例1 运用完全平方公式计算:212(4m+n)(1);(2).(y-)2例2 运用完全平方公式计算:(1)102;(2)99.问题5 思考: 22(a+b)与(-a-b)相等吗?(1)22(a-b)与(b-a)相等吗?(2)(a-b)与 a(3)2222-b2相等吗?为什么?/ 15 东兴市京族学校八年级数学上教案备课人:问题6 添括号法则去括号a+(b+c)= a+b+c;a-(b+c)= a-b-c.a+b+c =a+(b+c);a-b-c = a-(b + c).添括号时,如果括号前面是正号,括到括号里的各项都不变号;如果括号前面是负号,括到括号里的各项都改变符号.四、归纳小结(1)本节课学习了哪些主要内容?(2)完全平方公式结构有什么特点?五、布置作业:教材习题14.2第2、4、6、7题.教后反思:14.3.1因式分解--提公因式法教学目标1.了解因式分解的概念.2.了解公因式的概念,能用提公因式法进行因式分解.教学重、难点运用提公因式法分解因式.教学过程设计一、创设情境,激发兴趣上一节我们已经学习了整式的乘法,知道可以将几个整式的乘积化为一个多项式的形式.反过来,在式的变形中,有时需要将一个多项式写成几个整式的乘积的形式.请把下列多项式写成整式的乘积的形式:二、知识应用,巩固提高在多项式的变形中,有时需要将一个多项式化成几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫做把这个多项式分解因式.你认为因式分解与整式乘法有什么关系?因式分解与整式乘法是互逆变形关系.你能试着将多项式pa+pb+pc因式分解吗?(1)这个多项式有什么特点?(2)因式分解的依据是什么?(3)分解后的各因式与原多项式有何关系?一般地,如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式写成公因式与另一个因式的乘积的形式.这种分解因式的方法叫做提公因式法./ 15 东兴市京族学校八年级数学上教案备课人:例1 把8a32b+12ab3c分解因式.通过对例1的解答,你有什么收获?(1)公因式是多项式各项系数的最大公约数和各项都含有的字母及多项式的最低次幂的乘积;(2)提公因式法就是把多项式分解成两个因式乘积的形式,其中一个因式是各项的公因式,另一个因式是由多项式除以公因式得到的;(3)用提公因式分解因式后,应保证含有多项式的因式中再无公因式.ab+c)(-3b+c)例2 把2(分解因式.通过对例2的解答,你有什么收获?公因式可以是单项式,也可以是多项式.三、应用提高、拓展创新教科书115页练习1、2、3四、归纳小结(1)本节课学习了哪些主要内容?(2)因式分解的目的是什么?因式分解与整式乘法有什么区别和联系?(3)提公因式法的一般步骤是什么?应用提公因式法分解因式时要注意什么?五、布置作业:教科书习题14.3第1、4(1)题.教后反思:14.3.2因式分解--公式法(1)教学目标1.探索并运用平方差公式进行因式分解,体会转化思想.2.会综合运用提公因式法和平方差公式对多项式进行因式分解.教学重、难点运用平方差公式来分解因式.教学过程设计一、创设情境,激发兴趣你能将多项式y2-25与多项式x2-4分解因式吗?(1)本题你能用提公因式法分解因式吗?(2)这两个多项式有什么共同的特点?(a-b)(a+b)=a(3)你能利用整式的乘法公式——平方差公式吗?二、知识应用,巩固提高你对因式分解的方法有什么新的发现?请尝试着概括你的发现.2-b2来解决这个问题(a-b)=a把整式的乘法公式——平方差公式(a+b)13 / 152-b2反过来就得到因式分解的平方东兴市京族学校八年级数学上教案备课人:差公式:(1)平方差公式的结构特征是什么?(2)两个平方项的符号有什么特点?适用于平方差公式因式分解的多项式必须是二项式,每一项都为平方项,并且两个平方项的符号相反.例1 分解因式:222(x+p)-(x+q)4x-9(1);(2).三、应用提高、拓展创新例2 分解因式:44x-y;a)ba-3abx-b-.ab.(1)y ;(2通过对例2的学习,你有什么收获?(1)分解因式必须进行到每一个多项式都不能再分解为止;(2)对具体问题选准方法加以解决四、归纳小结(1)本节课学习了哪些主要内容?(2)因式分解的平方差公式的结构特征是什么?(3)综合运用提公因式法和平方差公式进行因式分解时要注意什么?五、布置作业:教材习题14.3第2、4(2)题教后反思:14.3.2因式分解--公式法(2)教学目标1.了解完全平方式及公式法的概念,会用完全平方公式进行因式分解.2.综合运用提公因式法和完全平方公式对多项式进行因式分解.教学重、难点运用完全平方公式分解因式.教学过程设计一、创设情境,激发兴趣你能将多项式a2+2ab+b2与多项式a2-2ab+b2分解因式吗?追问1 你能用提公因式法或平方差公式来分解因式吗?追问2 这两个多项式有什么共同的特点?(a追问3 你能利用整式的乘法公式——完全平方公式来解决这个问题吗?2±b)=a2±2ab+b14 / 15 东兴市京族学校八年级数学上教案备课人:二、知识应用,巩固提高你对因式分解的方法有什么新的发现?请尝试概括你的发现.把整式的乘法公式——完全平方公式(a的完全平方公式:我们把a22±b)=a2±2ab+b2反过来就得到因式分解+2ab+b2和a2-2ab+b2这样的式子叫做完全平方式.利用完全平方公式可以把形如完全平方式的多项式因式分解.完全平方式必须是三项式,其中两项为平方项,并且两个平方项的符号同为正,中间项是首尾两项乘积的二倍,符号不限.例1 分解因式:22216x+2416xx+9+ 24x+9-x+4 xy-x-4+y4xy-4y(1);(2).三、应用提高、拓展创新例2 分解因式:223ax+6axy+3ay +(a2+b)-12(a++36b)+3631ax(ab)-12(a+b)()+6axy+3ay ;(2).把乘法公式的等号两边互换位置,就可以得到用于分解因式的公式,用来把某些具有特殊形式的多项式分解因式,这种分解因式的方法叫做公式法.四、归纳小结(1)本节课学习了哪些主要内容?(2)因式分解的完全平方公式在应用时应注意什么?五、布置作业:教材习题14.3第3、5(1)(3)题教后反思:/ 15第二篇:整式的乘法与因式分解复习教案《整式的乘法与因式分解》复习(一)教案教学目标:知识与技能:记住整式乘除的计算法则;平方差公式和完全平方公式;掌握因式分解的方法和则过程与方法:会运用法则进行整式的乘除运算,会对一个多项式分解因式情感态度与价值观:培养学生的独立思考能力和合作交流意识教学重点:记住公式及法则教学难点:会运用法则进行整式乘除运算,会对一个多项式进行因式分解教学方法与手段:讲练结合教学过程:一.本章知识梳理:幂的运算:(1)同底数幂的乘法(2)同底数幂的除法(3)幂的乘方(4)积的乘方整式的乘除:(1)单项式乘单项式(2)单项式乘多项式(3)多项式乘多项式(4)单项式除以单项式(5)多项式除以单项式乘法公式:(1)平方差公式(2)完全平方公式因式分解:(1)提公因式法(2)公式法二.合作探究:(1)化简:a3·a2b=.(2)计算:4x2+4x2=(3)计算:4x2·(-2xy)=.(4)分解因式:a2-25=三、当堂检测1.am=2,an=3则a2m+n =___________,am-2n =____________ 2.若A÷5ab2=-7ab2c3,则A=_________, 若4x2yz3÷B=-8x,则B=_________.2(ax+b)(x+2)=x-4,则ab=_________________.3.若4.若a-2+b2-2b+1=0,则a=a+,b=5.已知11a2+2=3aa的值是.,则6.已知被除式是x3+2x2-1,商式是x,余式是-1,则除式是()A、x2+3x-1B、x2+2xC、x2-1D、x2-3x+1 7.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.–3B.3C.0D.1 8.一个正方形的边长增加了2cm,面积相应增加了32cm,则这个正方形的边长为()A、6cmB、5cmC、8cmD、7cm 9.下列各式是完全平方式的是()2A、x2-x+14 B、1+x2 C、x+xy+12D、x+2x-110.下列多项式中,含有因式(y+1)的多项式是(y 2 - 2 y + 1)A.22222(y+1)-(y-1)(y+1)-(y-1)(y+1)+2(y+1)+1B.C.D.三.课堂小结:今天这节课,你学到了哪些知识?有哪些收获与感受?说出来大家分享。
八年级数学上册《乘法公式》教案、教学设计
1.教学活动设计:将学生分成若干小组,每组针对以下问题进行讨论:
a.平方差公式和完全平方公式的推导过程;
b.乘法公式在解决实际问题中的应用;
c.运用乘法公式进行整式乘法的优点。
2.教师指导:在学生讨论过程中,教师巡回指导,解答学生的疑问,引导学生深入探讨。
(四)课堂练习
1.教学内容:设计以下几类练习题,巩固学生对乘法公式的掌握:
7.信息技术辅助教学:利用多媒体、网络资源等信息技术手段,形象直观地展示乘法公式的推导过程,提高教学效果。
8.关注个体差异,因材施教:针对不同学生的特点,给予个性化的指导,使每个学生都能在原有基础上得到提高。
9.定期评估,总结提高:通过定期测试和评估,了解学生的学习情况,总结教学经验,不断调整和优化教学方法,提高教学质量。
a.平方差公式:a² - b² = (a + b)(a - b)
通过具体的数值代入,引导学生观察、发现并总结出平方差公式的规律。
b.完全平方公式:a² + 2ab + b² = (a + b)²
同样,通过具体的数值代入,引导学生观察、发现并总结出完全平方公式的规律。
2.教学方法:采用引导式教学,让学生通过观察、思考和总结,自主发现乘法公式的规律。
4.利用信息技术手段,如多媒体、网络资源等,辅助教学,提高课堂教学效果。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和热情,激发学生学习数学的积极性。
2.培养学生勇于探索、积极思考的学习态度,使学生养成良好的学习习惯。
3.培养学生合作交流的意识,学会倾听他人意见,提高人际沟通能力。
4.培养学生认识到数学知识在实际生活中的重要性,增强学生的应用意识和实践能力。
人教版八年级数学上第十四章《整式乘法与因式展开》全章教案
人教版八年级数学上第十四章《整式乘法与因式展开》全章教案
一、教学目标
1. 理解整式的乘法法则;
2. 掌握整式的乘法运算;
3. 熟练运用分配律进行整式的乘法;
4. 掌握因式展开的基本方法;
5. 运用因式展开解决实际问题。
二、教学重点
1. 整式的乘法法则;
2. 分配律的运用;
3. 因式展开的基本方法。
三、教学难点
1. 掌握因式展开的基本方法;
2. 运用因式展开解决实际问题。
四、教学过程
第一节整式的乘法法则
1. 教师通过示例向学生介绍整式的乘法法则;
2. 学生进行课堂练,巩固乘法法则的掌握程度。
第二节整式的乘法运算
1. 教师讲解整式的乘法运算步骤;
2. 学生进行练,加深对整式乘法运算的理解。
第三节分配律的运用
1. 教师解释分配律的概念和运用方法;
2. 学生通过练,在实际问题中灵活运用分配律。
第四节因式展开的基本方法
1. 教师介绍因式展开的基本方法;
2. 学生进行因式展开的练,提升解题能力。
第五节因式展开解决实际问题
1. 教师引导学生通过因式展开解决实际问题的例子;
2. 学生在小组活动中解决相关实际问题。
五、教学评价
教师通过课堂练、小组活动以及个人表现等方式,对学生的乘法和因式展开的掌握情况进行评价。
六、教学延伸
1. 布置相关练作业,巩固学生的知识;
2. 鼓励学生进行更多的因式展开实践,提高解题能力。
七、教学反思
本课通过引导学生掌握整式的乘法法则、分配律的运用以及因式展开的基本方法,提高了学生的数学运算能力和解决实际问题的能力。
八年级数学上册第十四章乘法公式《数学活动》
教学设计2024 秋季八年级数学上册第十四章乘法公式《数学活动》一、教学目标(核心素养)1. 数学运算:通过数学活动中的计算和推导,提高学生的整式运算能力。
2. 逻辑推理:培养学生分析问题、推理归纳的能力,加深对乘法公式的理解。
3. 创新意识:鼓励学生在活动中尝试不同的方法和思路,培养创新思维。
4. 合作交流:通过小组活动,增强学生的合作意识和交流能力。
二、教学重点1. 运用乘法公式解决数学活动中的问题。
2. 引导学生在活动中进行思考和探索。
三、教学难点1. 对数学活动中问题的深入理解和分析。
2. 激发学生的创新思维,找到多种解决问题的方法。
四、教学资源1. 教材:八年级数学上册教材。
2. 多媒体设备:展示数学活动的相关问题和示例。
3. 学具:卡纸、剪刀等(根据活动需要准备)。
五、教学方法1. 探究式教学法:引导学生自主探究数学活动中的问题。
2. 小组合作学习法:组织学生进行小组讨论和合作完成任务。
3. 启发式教学法:通过提问和引导,启发学生的思维。
六、教学过程1. 导入新课展示一些有趣的数学图案或问题,引发学生的兴趣。
提问:大家知道这些图案和问题与我们学过的乘法公式有什么关系吗?从而引出数学活动。
2. 新课教学活动一:探索图形中的乘法公式展示一个由正方形和长方形组成的图形。
提问:如何用不同的方法计算这个图形的面积?引导学生分别用整体和部分的方法计算。
学生通过计算发现,整体计算时是一个大正方形的面积,部分计算时是几个小图形面积之和,从而得出(a + b)²=a²+ 2ab + b²的公式。
同理,展示另一个图形,引导学生得出(a b)²=a²2ab + b²的公式。
结构图:图形展示→面积计算方法→得出公式。
活动二:乘法公式的应用给出一些实际问题,如计算场地面积、物品包装表面积等。
引导学生分析问题,找出其中的数量关系,然后运用乘法公式进行计算。
初中数学乘法公式的教案
初中数学乘法公式的教案教学目标:1. 让学生掌握乘法公式及其应用;2. 培养学生运用乘法公式解决实际问题的能力;3. 培养学生合作学习、积极思考的良好习惯。
教学重点:1. 乘法公式的记忆和理解;2. 乘法公式的应用。
教学难点:1. 乘法公式的灵活运用;2. 解决实际问题。
教学准备:1. 课件或黑板;2. 练习题。
教学过程:一、导入(5分钟)1. 引导学生回顾加法、减法、除法的运算规律;2. 提问:有没有同学知道乘法的运算规律呢?二、新课讲解(20分钟)1. 讲解乘法公式:a×b=c,其中a、b为因数,c为积;2. 讲解乘法公式的推导过程,如分配律、结合律等;3. 举例说明乘法公式的应用,如计算面积、体积等;4. 引导学生发现乘法公式的特点和规律;5. 总结乘法公式的注意事项,如因数的位置变化、符号变化等。
三、课堂练习(15分钟)1. 布置练习题,让学生独立完成;2. 挑选几位同学上台展示解题过程,并讲解思路;3. 针对学生的解题情况进行讲解和指导。
四、拓展与应用(10分钟)1. 让学生运用乘法公式解决实际问题,如计算购物时的总价、计算行程中的速度等;2. 引导学生发现乘法公式在实际生活中的重要性;3. 鼓励学生发挥创意,运用乘法公式解决更多实际问题。
五、总结与反思(5分钟)1. 让学生回顾本节课所学内容,总结乘法公式的知识点;2. 提问:你们觉得乘法公式在数学中有什么作用呢?3. 鼓励学生积极思考,提出问题,为下一节课做准备。
教学反思:本节课通过讲解乘法公式,让学生掌握了乘法的运算规律,并能够运用乘法公式解决实际问题。
在教学过程中,要注意引导学生发现乘法公式的特点和规律,培养学生的观察能力和思维能力。
同时,要关注学生的学习情况,及时进行讲解和指导,确保学生能够熟练掌握乘法公式。
在今后的教学中,可以结合更多实际例子,让学生更好地理解和运用乘法公式,提高学生的数学素养。
2018秋人教版八年级上册数学教案:14.2.3乘法公式——添括号
乘法公式——添括号教学目标:完全平方公式的推导及其应用;完全平方公式的几何解释;视学生对算理的理解,有意识地培养学生的思维条理性和表达能力.教学重点与难点:完全平方公式的推导过程、结构特点、几何解释,灵活应用.教学过程:一、提出问题,学生自学问题:根据乘方的定义,我们知道:a2=a•a,那么(a+b)2应该写成什么样的形式呢?(a+b)2的运算结果有什么规律?计算下列各式,你能发现什么规律?(1)(p+1)2=(p+1)(p+1)=_______;(m+2)2=_______;(2)(p−1)2=(p−1)(p−1)=_______;(m−2)2=_______;学生讨论,教师归纳,得出结果:(1)(p+1)2=(p+1)(p+1)=p2+2p+1(m+2)2=(m+2)(m+2)=m2+4m+4(2)(p−1)2=(p−1)(p−1)=p2−2p+1(m−2)2=(m−2)(m−2)=m2−4m+4分析推广:结果中有两个数的平方和,而2p=2•p•1,4m=2•m•2,恰好是两个数乘积的二倍(1)(2)之间只差一个符号.推广:计算(a+b)2=__________;(a−b)2=__________.得到公式,分析公式结论:(a+b)2=a2+2ab+b2(a−b)2=a2−2ab+b2即:两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍.二、几何分析:你能根据图(1)和图(2)的面积说明完全平方公式吗?图(1)大正方形的边长为(a+b),面积就是(a+b)2,同时,大正方形可以分成图中①②③④四个部分,它们分别的面积为a 2、ab 、ab 、b 2,因此,整个面积为a 2+ab+ab+b 2=a 2+2ab+b 2,即说明(a+b)2=a 2+2ab+b 2.类似地可由图(2)说明(a−b)2=a 2−2ab+b 2.三、例题:例1.应用完全平方公式计算:(1)(4m+n)2(2)(y−21)2(3)(−a−b)2(4)(b−a)2解答:(1)(4m+n)2=16m 2+8mn+n 2(2)(y−21)2=y 2−y+41(3)(−a−b)2=a 2+2ab+b 2(4)(b−a)2=b 2−2ba+a 2例2.运用完全平方公式计算:(1)1022(2)992解答:(1)1022=(100+2)2=10000+400+4=10404(2)992=(100−1)2=10000−200+1=9801四、添括号法则在公式里的运用问题:在运用公式的时候,有些时候我们需要把一个多项式看作一个整体,把另外一个多项式看作另外一个整体,例如:(a+b+c)(a−b+c)和(a+b+c)2,这就需要在式子里添加括号;那么如何加括号呢?它有什么法则呢?它与去括号有何关系呢?学生回顾去括号法则,在去括号时:a+(b+c)=a+b+c ,a−(b+c)=a−b−c反过来,就得到了添括号法则:a+b+c =a+(b+c),a−b−c =a −(b+c)理解法则:如果括号前面是正号,括到括号里的各项都不变符号; 如果括号前面是负号,括到括号里的各项都改变符号.也是:遇“加”不变,遇“减”都变.总结:添括号法则是去括号法则反过来得到的,无论是添括号,还是去括号,运算前后代数式的值都保持不变, 所以我们可以用去括号法则验证所添括号后的代数式是否正确.五、小结:1.完全平方公式的结构特征:公式的左边是一个二项式的完全平方;右边是三项,其中有两项是左边二项式中每一项的平方,而另一项是左边二项式中两项乘积的2倍.2.添括号法则:如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.利用添括号法则可以将整式变形,从而灵活利用乘法公式进行计算,灵活运用公式进行运算.。
乘法公式第三课时教案人教版数学八级上第十四章e
第十四章整式的乘法和因式分解14.2 乘法公式第三课时整式的化简,添括号法那么1 教学目标1.1 知识与技能:[1]熟练掌握添括号法那么,并能灵活运用法那么简化运算。
[2]掌握整式的化简的运算顺序,综合运用之前所学法那么和乘法公式,完成整式的化简。
[3]能用整式的运算解决相关实际问题。
1.2过程与方法:[1]通过逆向思考去括号法那么,思考出填括号法那么,并能根据这一法那么改写多项式。
1.3 情感态度与价值观:[1]在数学运算中培养学生细致严谨的精神素养。
[2]培养学生灵活运用知识、勇于探求科学规律的意识。
2 教学重点/难点/易考点2.1 教学重点[1]添括号法那么。
2.2 教学难点[1]乘法公式的综合运用与简化计算。
3 专家建议在上一课时学生深入学习了完全平方公式的根本内容之后,本节课程的设计完全效劳于乘法公式乃至整式计算的灵活运用,属于半习题课半正课的性质,目的在于提高学生数学素养,加强学生在多项式乘法上的化简训练。
教师在讲授本节知识时,应建立在学生对公式的熟悉之上,重点讲解运算上的技巧,并适当增大例题和习题难度,以起到拔高的作用。
4 教学方法探索新知——例题讲解——补充延伸——练习提高5 教学用具多媒体。
6 教学过程6.1 复习导课【师】同学们好。
上次课我们学习了完全平方公式,大家还记得吗?【生】(a+b)2= a2+2ab+b2 (a−b)2= a2−2ab+b2【师】没错。
下面我们来先做几道小题热热身〔投影上给出四道小题〕。
〔答案:m2+4mn+4n2;16x2−24xy+9y2;10201;2304〕好了,今天我们围绕怎样灵活运用乘法公式,继续来学习新的知识和内容。
【板书】第十四章整式的乘法和因式分解14.2 乘法公式第三课时6.2 新知介绍[1]整式的化简【师】我们到目前为止,就学完了所有有关整式的运算规律,下面我们来做一个小结,回忆一下我们学习过的整式的乘法有哪些规律。
〔播放PPT或口述,找学生提问或者全班齐答〕。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
乘法公式【典型例题】一. 两数和乘以它们的差:1. 首先计算:(a+b)(a-b)=a2-b2这就是说:两数和与它们差的积,等于这两数的平方差。
上面所列的这个公式,就是平方差公式。
2. 公式的结构特征:在平方差公式中,左边是两个二项式的积,在这两个二项式中有一项(a)完全相同,另一项(b)和(-b)互为相反数,右边是符号相同的项的平方减去符号相反项的平方。
3. 弄清公式的变化形式:公式(a+b)(a-b)=a2-b2有八种变化形式:①位置变化(a+b)(a-b)=(b+a)(-b+a)=a2-b2②符号变化(-a-b)(a-b)=b2-a2③系数变化(4a+3b)(4a-3b)=(4a)2-(3b)2=16a2-9b2④指数变化(a2+b2)(a2-b2)=(a2)2-(b2)2=a4-b4⑤增项变化(a-b-c)(a-b+c)=(a-b)2-c2=a2+b2-c2-2ab⑥增因式变化(a+b)(a-b)(-a-b)(-a+b)=(a2-b2)(a2-b2)=(a2-b2)2⑦连用公式变化(a-b)(a+b)(a2+b2)(a4+b4)=(a2-b2)(a2+b2)(a4+b4)=(a4-b4)(a4+b4)=a8-b8⑧逆用公式变化(a-b+c-d)2-(a+b-c+d)2=[(a-b+c-d)+(a+b-c+d)][(a-b+c-d)-(a+b-c+d)]=2a·(-2b+2c-2d)=4ac-4ab-4ad。
4. 注意公式的应用条件:字母a、b,它们可以表示具体的数,也可以表示代数式。
应用时,要紧扣“相同项”和“互为相反项”这两点。
例如(3a+b)(a-b)≠3a2-b2,因为左边两个因式中的第一项3a 和a不是相同项,不符合平方差公式的条件。
而且在运算时要注意要将整个项全部平方。
(3a+2b)(3a-2b)≠3a2-2b2(3a+2b)(3a-2b)=(3a)2-(2b)2=9a2-4b25. 典型例题:例1. 计算:(1)(a+3)(a-3) (2)(2a+3b)(2a-3b)(3)(1+2c)(1-2c) (4)(9x+4y)(9x-4y)解:(1)(a+3)(a-3)=a2-32=a2-9(2)(2a+3b)(2a-3b)=(2a)2-(3b)2=4a2-9b2(3)(1+2c)(1-2c)=12-(2c)2=1-4c2(4)(9x+4y)(9x-4y)=(9x)2-(4y)2=81x2-16y2例2. 计算:(1)(2m-5)(2m+5)-2m(3m-1)(2)(2x-5y)(2x+5y)-(2x+3y)(2x-3y)(3)(4a 2b 3+5mn 2)(25m 2n 4+16a 4b 6)(4a 2b 3-5mn 2) 解:(1)(2m -5)(2m+5)-2m(3m -1)=(2m)2-52-6m 2+2m=4m 2-25-6m 2+2m=-2m 2+2m -25(2)(2x -5y)(2x+5y)-(2x+3y)(2x -3y)=4x 2-25y 2-(4x 2-9y 2)=-16y 2(3)(4a 2b 3+5mn 2)(25m 2n 4+16a 4b 6)(4a 2b 3-5mn 2)=(4a 2b 3+5mn 2)(4a 2b 3-5mn 2)(16a 4b 6+25m 2n 4)=(16a 4b 6-25m 2n 4)(16a 4b 6+25m 2n 4)=256a 8b 12-625m 4n 8例3. 用平方差公式计算:(1)103×97 (2)118×122 (3)20032-2002×2004 解:(1)103×97=(100+3)(100-3)=10000-9=9991(2)118×122=(120-2)(120+2)=1202-4=14400-4=14396(3)20032-2002×2004=20032-(2003-1)(2003+1)=20032-(20032-1) =1例4. 计算:…(2+1)(2+1)(2+1)(+1)2422n分析:直接计算是不行的,注意到2-1=1,用1乘以原来的式子值不变,再利用公式可以计算。
解:原式…=-++++()()()()()2121212121242n=……(连续用平方差公式) 例5. 计算:(2x -3y -1)(-2x -3y+5)分析:初看此题似不符公式的特点,似乎不能应用公式来解,若先将其变形,将“-1”拆成“-3+2”,将“5”拆成“3+2”,便可以应用公式求解。
解:原式=[(2-3y)+(2x -3)][(2-3y)-(2x -3)]=(2-3y)2-(2x -3)2=9y 2-4x 2-12y+12x -5 二. 完全平方公式:1. 计算(a+b)2=a 2+2ab+b 2利用这个结果,可以直接得出两数和的平方。
上面这个算式也就是说:两数和的平方,等于它们的平方和加上它们乘积的2倍。
计算(a -b)2=a 2-2ab+b 2利用此结果,可以直接得出两数差的平方。
也就是说:两数差的平方,等于它们的平方和减去它们乘积的2倍。
2. 完全平方公式的结构特征:在和的平方这个公式中,左边是和的平方(a+b)2,右边是平方的和(a 2+b 2)加上乘积的2倍(2ab)。
在差的平方这个公式中,左边是差的平方(a -b)2,右边是平方的和(a 2+b 2)减去乘积的2倍(2ab)。
3. 公式的灵活应用:(a+b)2=a 2+2ab+b 2 (a -b)2=a 2-2ab+b 2得(1)(a+b)2=(a -b)2+4ab(2)(a+b)2-(a -b)2=4ab(3)(a+b)2+(a -b)2=2(a 2+b 2) 4. 公式应用时的注意事项:(1)公式中a 、b 既可以是数,也可以是整式。
(2)公式有时会逆用:a 2+2ab+b 2=(a+b)2a 2-2ab+b 2=(a -b)2(3)公式中完全平方项的系数全是正数:不能(a -b)2=a 2-2ab -b 2。
5. 典型例题: 例6. 计算:解:(1)(2a+3b)2=(2a)2+2×2a ×3b+(3b)2=4a 2+12ab+9b 2(3)(2x -3y)2=(2x)2-2×2x ×3y+(3y)2=4x 2-12xy+9y 2例7. 计算:(1)(5x -2y)2+20xy (2)(6x -9)2-2x(x -3)(3)(3a+4b)2-(2a -b)2 (4)(a -2b)(a+2b)-(a -2b)2解:(1)(5x -2y)2+20xy=25x 2+4y 2-20xy+20xy=25x 2+4y 2(2)(6x -9)2-2x(x -3)=36x 2+81-108x -2x 2+6x=34x 2-102x+81(3)(3a+4b)2-(2a -b)2=9a 2+16b 2+24ab -4a 2-b 2+4ab=5a 2+15b 2+28ab(4)(a -2b)(a+2b)-(a -2b)2=a 2-4b 2-(a 2+4b 2-4ab)=-8b 2+4ab例8. 已知x 2+y 2=26,4xy=12,求(x+y)2和(x -y)2的值。
解:(x +y )=x +y +2x y =x +y +12(4x y )=26+6=3222222例9. 已知m -n=3,mn=10,求(1)m 2+n 2;(2)(m+n)2。
分析:此题最自然的思路是先求m 、n 但较困难,因而争取想到利用公式变形来求解。
解:(1)m 2+n 2=(m -n)2+2mn=32+2×10=29(2)(m+n)2=(m -n)2+4mn=32+4×10=49例10. 已知,,求的值。
a m bm a a b b =+=+-+121122222分析:此式可直接求解,但较困难,不如可逆用(a -b)2=a 2-2ab+b 2得a 2-2ab+b 2=(a -b)2。
解:a 2a b +b =(a b )=[(12m +1)(12m +2)]=(1)2222----=1课后小结:1. 在平方差公式的应用中,经常要注意两个问题:(1)是否可用平方差公式。
(2)关于平方差公式中的符号。
2. 在完全平方公式的应用中,主要考虑完全平方和与完全平方差公式的互相转换,这是完全平方公式的重点。
3. 在解题时,经常会用到乘法公式逆用的情况,要灵活地运用乘法公式。
1. 计算:(1)(5+6x)(5-6x)(3)(x-2y)(x+2y)(4)(ab+8)(ab-8)(5)(-m+n)(-m-n)(6)(-2x+3y)(-2x-3y)2. 计算:3. 计算:(1)(a+b+3)(a+b-3)(2)(a-b+c)(a+b-c)(3)(a2+ab+b2)(a2-ab+b2)5. 已知(a+b)2=11 (a-b)2=5求①a2+b2;②ab。
6. 计算①(a+b+c)2②(a+b)3③(a-b)31. (1)(5+6x)(5-6x)=52-(6x)2=25-36x 2(3)(x -2y)(x+2y)=x 2-4y 2(4)(ab+8)(ab -8)=(ab)2-82=a 2b 2-64(5)(-m+n)(-m -n)=(-m)2-n 2=m 2-n 2(6)(-2x+3y)(-2x -3y)=(-2x)2-(3y)2=4x 2-9y 22. 解:(1)(2x+3)2=4x 2+12x+9(2)(4x+5y)2=(4x)2+2·4x ·5y+(5y)2=16x 2+40xy+25y 2(4)(-a -b)2=(-a)2-2·(-a)·b+(+b)2=a 2+2ab+b 23. 解:(1)(a+b+3)(a+b -3)=(a+b)2-32=a 2+2ab+b 2-9(2)(a -b+c)(a+b -c)=(a -b+c)[a -(-b+c)]=a 2-(-b+c)2=a 2-b 2-c 2+2bc(3)(a 2+ab+b 2)(a 2-ab+b 2)=[(a 2+b 2)+ab][(a 2+b 2)-ab]=(a 2+b 2)2-(ab)2=a 4+b 4+2a 2b 2-a 2b 2=a 4+b 4+a 2b 24. 解:()a aa a aaa a+=++=++12111222222·· 又a aa a +=++=15122522故 a a22123+=。
5. 解:①(a+b)2=a 2+2ab+b 2(a -b)2=a 2-2ab+b 2故 (a+b)2+(a -b)2=2(a 2+b 2)得a b a b a b 222212121158+=++-=+=[()()]()②(a+b)2-(a -b)2=4ab得 a b ab a b =+--=-=14141153222[()()]()6. 解: (a+b+c)2=[(a+b)+c]2=(a+b)2+c 2+2(a+b)c=a 2+2ab+b 2+c 2+2ac+2bc(a+b)3=(a+b)2(a+b)=(a 2+2ab+b 2)(a+b)=a 3+2a 2b+ab 2+a 2b+2ab 2+b 3=a 3+b 3+3a 2b+3ab 2(a -b)3=(a -b)2(a -b)=(a 2-2ab+b 2)(a -b)=a 3-2a 2b+ab 2-a 2b+2ab 2-b 3=a 3-b 3-3a 2b+3ab 3。