极坐标方程与参数方程-普通用卷

合集下载

经典《极坐标及全参数方程》综合测试题含问题详解

经典《极坐标及全参数方程》综合测试题含问题详解

适用标准文案《极坐标与参数方程》综合测试题1.在极坐标系中,已知曲线C:ρ=2cosθ,将曲线C 上的点向左平移一个单位,而后纵坐标不变,横坐标伸长到本来的 2 倍,获得曲线 C1,又已知直线 l 过点P( 1,0 ),倾斜角为,且直线l与曲线C1交于A,B两点.3(1)求曲线 C1的直角坐标方程,并说明它是什么曲线;(2)求+.2.在直角坐标系xOy 中,圆 C 的参数方程(φ为参数),以O为极点, x 轴的非负半轴为极轴成立极坐标系.( 1)求圆 C 的极坐标方程;( 2)直线 l 的极坐标方程是2ρsin (θ +)=3,射线OM:θ =与圆C的交点为 O、P,与直线 l 的交点为 Q,求线段 PQ的长.3.在极坐标系中,圆C 的极坐标方程为:ρ2=4ρ( cosθ+sin θ)﹣ 6.若以极点 O为原点,极轴所在直线为 x 轴成立平面直角坐标系.(Ⅰ)求圆 C 的参数方程;(Ⅱ)在直角坐标系中,点 P(x,y)是圆 C上动点,试求 x+y 的最大值,并求出此时点 P 的直角坐标.4.若以直角坐标系xOy 的 O为极点, Ox为极轴,选择同样的长度单位成立极坐标系,得曲线 C 的极坐标方程是ρ =.( 1)将曲线 C 的极坐标方程化为直角坐标方程,并指出曲线是什么曲线;( 2)若直线 l 的参数方程为( t 为参数),P 3,当直线 l 与曲线 C ,02AB2.订交于 A,B 两点,求PA PB5.在平面直角坐标系 xOy 中,以原点 O 为极点, x 轴的非负半轴为极轴,成立极坐标系,曲线x 3cos 为参数),曲线 C 的极坐标方C 的参数方程为(12sin2y 程为.( 1)求曲线 C 1 的一般方程和曲线 C 2 的直角坐标方程;( 2)设 P 为曲线 C 1 上一点, Q 曲线 C 2 上一点,求 |PQ|的最小值及此时 P 点极坐标.6.在极坐标系中,曲线 C 的方程为ρ 2= ,点 R ( 2 ,).(Ⅰ)以极点为原点,极轴为x 轴的正半轴,成立平面直角坐标系,把曲线 C的极坐标方程化为直角坐标方程, R 点的极坐标化为直角坐标;(Ⅱ)设 P 为曲线 C 上一动点,以 PR 为对角线的矩形 PQRS 的一边垂直于极轴,求矩形 PQRS 周长的最小值.7.已知平面直角坐标系中,曲线C1的参数方程为(φ为参数),以原点为极点, x 轴的正半轴为极轴成立极坐标系,曲线C2的极坐标方程为ρ=2cosθ.(Ⅰ)求曲线 C1的极坐标方程与曲线C2的直角坐标方程;(Ⅱ)若直线θ =(ρ∈ R)与曲线C1交于P,Q两点,求|PQ|的长度.8.在直角坐标系中,以原点为极点,x 轴的正半轴为极轴,以同样的长度单位成立极坐标系,己知直线 l 的极坐标方程为ρ cosθ﹣ρ sin θ =2,曲线 C 的极坐标方程为ρ sin 2θ=2pcosθ( p> 0).( 1)设 t 为参数,若 x=﹣ 2+ t ,求直线 l 的参数方程;(2)已知直线 l 与曲线 C交于 P、Q,设 M(﹣ 2,﹣ 4),且 |PQ| 2 =|MP|? |MQ|,务实数 p 的值.9.在极坐标系中,射线l :θ =与圆C:ρ =2交于点A,椭圆Γ的方程为ρ2=,以极点为原点,极轴为x 轴正半轴成立平面直角坐标系xOy (Ⅰ)求点 A 的直角坐标和椭圆Γ的参数方程;(Ⅱ)若 E 为椭圆Γ的下极点, F 为椭圆Γ上随意一点,求?的取值范围.10.已知在直角坐标系中,曲线的 C 参数方程为(φ为参数),现以原点为极点, x 轴的正半轴为极轴成立极坐标系,直线l的极坐标方程为ρ =.(1)求曲线 C 的一般方程和直线 l 的直角坐标方程;(2)在曲线 C 上能否存在一点 P,使点 P 到直线 l 的距离最小?若存在,求出距离的最小值及点 P 的直角坐标;若不存在,请说明原因.11.已知曲线 C1的参数方程为(t为参数),以原点O为极点,以x轴的正半轴为极轴成立极坐标系,曲线C2的极坐标方程为.(I )求曲线 C2的直角坐标系方程;(II )设 M1是曲线 C1上的点, M2是曲线 C2上的点,求 |M1M2| 的最小值.12.设点 A 为曲线 C:ρ=2cosθ在极轴 Ox上方的一点,且 0≤θ≤,以极点为原点,极轴为 x 轴正半轴成立平面直角坐标系xOy,(1)求曲线 C 的参数方程;(2)以 A 为直角极点, AO为一条直角边作等腰直角三角形 OAB(B 在 A 的右下方),求 B 点轨迹的极坐标方程.13.在平面直角坐标系xOy中,曲线 C1:(φ为参数,实数a> 0),曲线 C2:(φ为参数,实数b> 0).在以 O 为极点, x 轴的正半轴为极轴的极坐标系中,射线l :θ =α(ρ≥ 0, 0≤α≤)与C1交于O、A 两点,与 C2交于 O、B 两点.当α =0 时,|OA|=1;当α =时,|OB|=2.(Ⅰ)求 a,b 的值;(Ⅱ)求 2|OA| 2 +|OA|? |OB| 的最大值.14.在平面直角坐标系中,曲线 C1:(a为参数)经过伸缩变换后,曲线为 C2,以坐标原点为极点, x 轴正半轴为极轴建极坐标系.(Ⅰ)求 C2的极坐标方程;(Ⅱ)设曲线C3的极坐标方程为ρ sin (﹣θ)=1,且曲线C3与曲线C2订交于 P,Q两点,求 |PQ| 的值.15.已知半圆 C 的参数方程为,a为参数,a∈[﹣,] .(Ⅰ)在直角坐标系xOy 中,以坐标原点为极点, x 轴的非负半轴为极轴成立极坐标系,求半圆 C 的极坐标方程;(Ⅱ)在(Ⅰ)的条件下,设T 是半圆 C 上一点,且 OT= ,试写出 T 点的极坐标.16.已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x 轴的正半轴为极轴成立极坐标系,曲线C2的极坐标方程为ρ =2sin θ.(Ⅰ)把 C1的参数方程化为极坐标方程;(Ⅱ)求 C1与 C2交点的极坐标(ρ≥ 0, 0≤θ< 2π)《极坐标与参数方程》综合测试题答案一.解答题(共16 小题)1.在极坐标系中,已知曲线 C:ρ =2cosθ,将曲线 C 上的点向左平移一个单位,而后纵坐标不变,横坐标伸长到本来的 2 倍,获得曲线 C1,又已知直线 l 过点 P ( 1,0 ),倾斜角为,且直线l与曲线C1交于A,B两点.3( 1)求曲线 C1的直角坐标方程,并说明它是什么曲线;(2)求+.【解答】解:(1)曲线 C 的直角坐标方程为: x2+y2﹣2x=0 即( x﹣1)2+y2=1.∴曲线 C1的直角坐标方程为=1,∴曲线 C 表示焦点坐标为(﹣,0),(, 0),长轴长为 4 的椭圆( 2)将直线 l 的参数方程代入曲线 C 的方程=1 中,得13t24t 12 0 .设 A、B 两点对应的参数分别为t 1, t 2,∴+=210 .32.在直角坐标系xOy 中,圆 C 的参数方程(φ为参数),以O为极点, x 轴的非负半轴为极轴成立极坐标系.( 1)求圆 C 的极坐标方程;( 2)直线 l 的极坐标方程是2ρsin (θ +)=3,射线OM:θ =与圆C的交点为 O、 P,与直线 l 的交点为 Q,求线段 PQ的长.【解答】解:(I )利用 cos2φ +sin 2φ =1,把圆 C 的参数方程为参数)化为( x﹣1)2+y2=1,∴ρ2﹣ 2ρ cosθ =0,即ρ =2cosθ.( II )设(ρ1,θ1)为点 P 的极坐标,由,解得.(ρ 2 ,θ 2 )点Q 的极坐,由,解得.∵θ 1=θ2 ,∴|PQ|=|ρ1ρ 2|=2.∴|PQ|=2 .3.在极坐系中, C 的极坐方程:ρ2=4ρ( cosθ+sin θ) 6.若以极点 O原点,极所在直 x 成立平面直角坐系.(Ⅰ)求 C 的参数方程;(Ⅱ)在直角坐系中,点 P(x,y)是 C上点,求 x+y 的最大,并求出此点 P 的直角坐.【解答】(本小分 10 分)修 4 4:坐系与参数方程解:(Ⅰ)因ρ2=4ρ( cosθ +sin θ) 6,因此 x2+y2=4x+4y 6,因此 x2+y24x 4y+6=0,即( x 2)2+(y 2)2=2C的一般方程.⋯( 4 分)因此所求的 C 的参数方程(θ 参数).⋯(6分)(Ⅱ)由(Ⅰ)可得,⋯(7 分)当,即点 P 的直角坐(3,3),⋯(9 分)x+y 取到最大 6.⋯(10 分)4.若以直角坐系xOy 的 O极点, Ox极,同样的度位成立极坐系,得曲 C 的极坐方程是ρ =.( 1)将曲 C 的极坐方程化直角坐方程,并指出曲是什么曲;( 2)若直线 l 的参数方程为( t 为参数),P 3,0,当直线 l 与曲线 C 2AB2.订交于 A, B 两点,求PA PB【解答】解:(1)∵ρ =,∴ρ 2sin2θ =6ρcosθ,∴曲线 C 的直角坐标方程为y2=6x.曲线为以(,0)为焦点,张口向右的抛物线.( 2)直线 l的参数方程可化为,代入 y2=6x 得 t 2﹣4t ﹣12=0.解得 t 1=﹣2,t 2=6.22AB∴ | |=|t 1﹣t 2|=8 .3PA PB5.在平面直角坐标系xOy 中,以原点 O 为极点, x 轴的非负半轴为极轴,成立x3cos为参数),曲线 C 的极坐标方程为极坐标系,曲线 C 的参数方程为(12sin 2y.(1)求曲线 C1的一般方程和曲线 C2的直角坐标方程;(2)设 P 为曲线 C1上一点, Q曲线 C2上一点,求 |PQ|的最小值及此时 P 点极坐标.【解答】解:( 1)由消去参数α,得曲线C1的一般方程为.由得,曲线 C2的直角坐标方程为.(2)设 P(2 cosα, 2sin α),则点P到曲线C2的距离为.当时, d 有最小值,因此|PQ|的最小值为.6.在极坐标系中,曲线 C 的方程为ρ2=,点 R(2 ,).(Ⅰ)以极点为原点,极轴为x 轴的正半轴,成立平面直角坐标系,把曲线C的极坐标方程化为直角坐标方程,R点的极坐标化为直角坐标;(Ⅱ)设 P 为曲线 C 上一动点,以 PR为对角线的矩形 PQRS的一边垂直于极轴,求矩形 PQRS周长的最小值.【解答】解:(Ⅰ)因为 x=ρcosθ, y=ρsin θ,则:曲线 C 的方程为ρ2=,转变成.点 R 的极坐标转变成直角坐标为: R(2,2).(Ⅱ)设 P()依据题意,获得 Q( 2, sin θ),则: |PQ|=,|QR|=2﹣sin θ,因此: |PQ|+|QR|=.当时,( |PQ|+|QR| )min=2,矩形的最小周长为 4.7.已知平面直角坐标系中,曲线 C1的参数方程为(φ为参数),以原点为极点, x 轴的正半轴为极轴成立极坐标系,曲线 C 的极坐标方程为ρ2=2cosθ.(Ⅰ)求曲线 C1的极坐标方程与曲线 C2的直角坐标方程;(Ⅱ)若直线θ =(ρ∈ R)与曲线 C1交于 P,Q两点,求 |PQ| 的长度.【解答】解:(I )曲线 C1的参数方程为(φ为参数),利用平方关系消去φ可得:+(y+1)2 =9,睁开为: x2+y2﹣ 2 x+2y﹣ 5=0,可得极坐标方程:ρcosθ+2ρ sin θ﹣ 5=0.2曲线C2的极坐标方程为ρ=2cosθ,即ρ=2ρ cos θ,可得直角坐标方程:( II )把直线θ =(ρ∈ R)代入ρcosθ+2ρsinθ﹣5=0,整理可得:ρ2﹣ 2ρ﹣ 5=0,∴ρ 1+ρ2 =2,ρ 1?ρ2=﹣5,∴ |PQ|=| ρ1﹣ρ2|===2.8.在直角坐标系中,以原点为极点, x 轴的正半轴为极轴,以同样的长度单位成立极坐标系,己知直线 l 的极坐标方程为ρ cosθ﹣ρ sin θ=2,曲线 C的极坐标方程为ρ sin 2θ=2pcosθ( p>0).( 1)设 t 为参数,若 x=﹣ 2+ t ,求直线 l 的参数方程;(2)已知直线 l 与曲线 C 交于 P、Q,设 M(﹣ 2,﹣ 4),且 |PQ| 2=|MP|? |MQ|,务实数 p 的值.【解答】解:( 1)直线 l 的极坐标方程为ρ cosθ﹣ρ sin θ=2,化为直角坐标方程: x﹣y﹣2=0.∵ x=﹣2+ t ,∴ y=x﹣2=﹣ 4+ t ,∴直线l的参数方程为:(t为参数).(2)曲线 C 的极坐标方程为ρ sin 2θ =2pcosθ( p>0),即为ρ2 sin 2θ=2pρ cos θ( p>0),可得直角坐标方程: y2=2px.把直线 l 的参数方程代入可得: t 2﹣( 8+2p)t+8p+32=0.∴ t 1+t 2=(8+2p),t1t2=8p+32.不如设 |MP|=t 1, |MQ|=t 2.|PQ|=|t 1﹣ t 2 |===.∵|PQ| 2=|MP|? |MQ|,∴ 8p2+32p=8p+32,化为: p2+3p﹣4=0,解得 p=1.9.在极坐标系中,射线 l :θ =与圆C:ρ =2 交于点 A,椭圆Γ的方程为ρ2=,以极点为原点,极轴为x 轴正半轴成立平面直角坐标系 xOy (Ⅰ)求点 A 的直角坐标和椭圆Γ的参数方程;(Ⅱ)若 E 为椭圆Γ的下极点, F 为椭圆Γ上随意一点,求?的取值范围.【解答】解:(Ⅰ)射线 l :θ =与圆 C:ρ =2 交于点 A( 2,),点 A 的直角坐标(,1);椭圆Γ 的方程为ρ2=,直角坐标方程为+y2=1,参数方程为(θ为参数);(Ⅱ)设 F( cosθ, sin θ),∵ E( 0,﹣ 1),∴=(﹣,﹣ 2), =(cosθ﹣, sin θ﹣ 1),∴?=﹣3cosθ +3﹣2(sin θ﹣ 1)=sin (θ +α) +5,∴?的取值范围是 [5 ﹣,5+] .10.已知在直角坐标系中,曲线的 C 参数方程为(φ为参数),现以原点为极点, x 轴的正半轴为极轴成立极坐标系,直线l的极坐标方程为ρ=.(1)求曲线 C 的一般方程和直线 l 的直角坐标方程;(2)在曲线 C 上能否存在一点 P,使点 P 到直线 l 的距离最小?若存在,求出距离的最小值及点 P 的直角坐标;若不存在,请说明原因.【解答】解:(1)曲线的 C 参数方程为(φ为参数),一般方程为(x﹣ 1)2+(y﹣ 1)2=4,直线 l 的极坐标方程为ρ =,直角坐标方程为x﹣ y﹣ 4=0;( 2)点 P 到直线 l 的距离 d==,∴φ﹣=2kπ﹣,即φ =2kπ﹣(k∈ Z),距离的最小值为2﹣2,点P 的直角坐标( 1+,1﹣).11.已知曲线 C1的参数方程为(t为参数),以原点O为极点,以x轴的正半轴为极轴成立极坐标系,曲线C2的极坐标方程为.(I )求曲线 C2的直角坐标系方程;(II )设 M1是曲线 C1上的点, M2是曲线 C2上的点,求 |M1M2| 的最小值.【解答】解:(I )由可得ρ =x﹣2,∴ρ 2=(x﹣2)2,即y2=4(x﹣1);(Ⅱ)曲线 C1的参数方程为(t为参数),消去t得:2x+y+4=0.∴曲线 C1的直角坐标方程为2x+y+4=0.∵ M1是曲线 C1上的点, M2是曲线 C2上的点,∴|M1M2| 的最小值等于 M2到直线 2x+y+4=0 的距离的最小值.设 M2(r 2﹣ 1,2r ), M2到直线 2x+y+4=0 的距离为 d,则 d==≥.∴ |M1M2| 的最小值为.12.设点 A 为曲线 C:ρ=2cosθ在极轴 Ox上方的一点,且 0≤θ≤,以极点为原点,极轴为 x 轴正半轴成立平面直角坐标系xOy,(1)求曲线 C 的参数方程;(2)以 A 为直角极点, AO为一条直角边作等腰直角三角形 OAB(B 在 A 的右下方),求点 B 轨迹的极坐标方程.【解答】(1)x1 cos(0,θ为参数)y sin2( 2):设 A(ρ0,θ0),且知足ρ0=2cosθ0,B(ρ,θ),依题意,即代入ρ 0=2cosθ0 并整理得,,,因此点 B 的轨迹方程为,.13.在平面直角坐标系xOy中,曲线 C1:(φ为参数,实数a> 0),曲线 C2:(φ为参数,实数b>0).在以 O 为极点, x 轴的正半轴为极轴的极坐标系中,射线l :θ =α(ρ≥ 0, 0≤α≤)与C1交于O、A两点,与 C2交于 O、 B 两点.当α =0 时, |OA|=1 ;当α =时,|OB|=2.(Ⅰ)求 a,b 的值;(Ⅱ)求 2|OA| 2 +|OA|? |OB| 的最大值.【解答】解:(Ⅰ)由曲线 C1:(φ为参数,实数a>0),化为一般方程为( x﹣ a)2+y2 =a2,睁开为: x2+y2﹣ 2ax=0,其极坐标方程为ρ2=2aρ cos θ,即ρ =2acosθ,由题意可适当θ=0 时, |OA|=ρ =1,∴ a= .曲线 C2:(φ为参数,实数b>0),化为一般方程为x2 +( y﹣ b)2=b2,睁开可得极坐标方程为ρ=2bsin θ,由题意可适当时, |OB|= ρ=2,∴ b=1.(Ⅱ)由( I )可得 C1,C2的方程分别为ρ =cosθ,ρ =2sin θ.∴2|OA| 2+|OA| ? |OB|=2cos 2θ+2sinθcosθ=sin2θ+cos2 θ+1=+1,∵ 2θ + ∈,∴+1 的最大值为+1,当 2θ+ =时,θ =时取到最大值.14.在平面直角坐标系中,曲线 C1:(a 为参数)经过伸缩变换后的曲线为 C ,以坐标原点为极点, x 轴正半轴为极轴成立极坐标系.2(Ⅰ)求 C2的极坐标方程;(Ⅱ)设曲线 C3的极坐标方程为ρ sin (﹣θ) =1,且曲线 C3与曲线 C2订交于 P,Q两点,求 |PQ| 的值.【解答】解:(Ⅰ)C2的参数方程为(α为参数),一般方程为( x′﹣ 1)2+y′2=1,∴ C2的极坐标方程为ρ =2cosθ;(Ⅱ)C2是以(1,0)为圆心, 2 为半径的圆,曲线 C3的极坐标方程为ρ sin (﹣θ) =1,直角坐标方程为x﹣y﹣2=0,∴圆心到直线的距离d== ,∴ |PQ|=2=.15.已知半圆 C 的参数方程为,a为参数,a∈[﹣,] .(Ⅰ)在直角坐标系xOy 中,以坐标原点为极点, x 轴的非负半轴为极轴成立极坐标系,求半圆 C 的极坐标方程;(Ⅱ)在(Ⅰ)的条件下,设T 是半圆 C 上一点,且 OT=,试写出T点的极坐标.【解答】解:(Ⅰ)由半圆 C的参数方程为,a为参数,a∈[﹣,] ,则圆的一般方程为x2+(y﹣1)2=1(0≤x≤1),由 x=ρ cosθ, y=ρ sin θ, x2+y2=ρ2,可得半圆 C 的极坐标方程为ρ =2sin θ,θ∈ [0 ,] ;(Ⅱ)由题意可得半圆 C 的直径为 2,设半圆的直径为OA,则 sin ∠TAO=,因为∠ TAO∈ [0 ,] ,则∠ TAO=,因为∠ TAO=∠TOX,因此∠ TOX=,T 点的极坐标为(,).16.已知曲线 C1的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴成立极坐标系,曲线C2的极坐标方程为ρ =2sin θ.(Ⅰ)把 C1的参数方程化为极坐标方程;(Ⅱ)求 C1与 C2交点的极坐标(ρ≥ 0, 0≤θ< 2π)【解答】解:(Ⅰ)曲线 C1的参数方程式(t为参数),得( x﹣4)2+(y﹣5)2=25 即为圆 C1的一般方程,即 x2+y2﹣8x﹣10y+16=0.将 x=ρ cosθ, y=ρ sin θ代入上式,得.ρ2﹣8ρcosθ﹣ 10ρsin θ +16=0,此即为 C1的极坐标方程;(Ⅱ)曲线 C2的极坐标方程为ρ =2sin θ化为直角坐标方程为:x2+y2﹣2y=0,由,解得或.∴ C1与 C2交点的极坐标分别为(,),(2,).。

极坐标与参数方程测试题(超级全面)

极坐标与参数方程测试题(超级全面)

选修4-4复习1.已知直线的参数方程为:,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为.(Ⅰ)求曲线C 的参数方程;(Ⅱ)当4πα=时,求直线与曲线C 交点的极坐标.2、已知曲线C 1的参数方程为⎩⎨⎧x =4+5cos t ,y =5+5sin t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.(1)把C 1的参数方程化为极坐标方程; (2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).3、在极坐标系下,已知圆O 2:ρ=cos θ+sin θ和直线l :ρsin(θ-π4)=22.(1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 公共点的极坐标.4、在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 1,直线C 2的极坐标方程分别为ρ=4sin θ,ρcos ⎝ ⎛⎭⎪⎫θ-π4=2 2.(1)求C 1与C 2的直角坐标方程(2)求过C 1与C 2交点的直线的极坐标方程 (3)求C 1与C 2交点的极坐标;5. 已知曲线C 的极坐标方程是. 以极点为平面直角坐标系的原点, 极轴为x轴的正半轴, 建立平面直角坐标系, 直线l的参数方程是: (是参数).(Ⅰ) 将曲线C的极坐标方程化为直角坐标方程, 将直线的参数方程化为普通方程; (Ⅱ) 若直线l与曲线C相交于A、B两点, 且, 试求实数m值.6.已知曲线(t为参数) ,(为参数) .(I)化,的方程为普通方程,并说明它们分别表示什么曲线;(Ⅱ) 过曲线的左顶点且倾斜角为的直线交曲绒于A,B 两点,求. 7、已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的x轴的正半轴重合.直线的参数方程是315415x ty t⎧=-+⎪⎪⎨⎪=-+⎪⎩(为参数),曲线C的极坐标方程为)4πρθ+.(Ⅰ)求曲线C的直角坐标方程;(Ⅱ)设直线与曲线C相交于M,N两点,求M,N两点间的距离.8、曲线C1的极坐标方程为ρ=4cosθ,直线C2的参数方程为⎩⎨⎧x=3+4t,y=2+3t(t为参数).(1)将C1化为直角坐标方程.(2)C1与C2是否相交?若相交求出弦长,不相交说明理由.9、在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =2+22t ,y =1+22t(t 为参数),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,曲线C 的方程为ρ2=123cos 2 θ+4sin 2θ.(1)求曲线C 的直角坐标方程;(2)设曲线C 与直线l 交于点A ,B ,若点P 的坐标为(2,1),求|P A |+|PB |.10、在极坐标系中,已知圆心C (3,)6π,半径r =1.(1)求圆的直角坐标方程;(2)若直线12(12x t y t ⎧=-+⎪⎪⎨⎪=⎪⎩为参数)与圆交于B A ,两点,求弦AB 的长.11.在直角坐标系中,曲线C 的参数方程为(为参数)。

全国卷极坐标与参数方程

全国卷极坐标与参数方程

极坐标与参数方程(全国卷高考题)(2007)坐标系与参数方程:口 01和口。

2的极坐标方程分别为p =4cos 0, p =-4sin 0 .(I)把口 01和口 02的极坐标方程化为直角坐标方程; (II)求经过口 01, 口 02交点的直线的直角坐标方程.(2008)坐标系与参数方程:1X :cos 0 (0为参数),曲线C 2: y= sin 0 (1)指出C 1, C 2各是什么曲线,并说明C 1与C 2公共点的个数;(2)若把C 1, C 2上各点的纵坐标都压缩为原来的一半,分别得到曲线q, C 2'。

写出C 1', q 的参数方程。

J 与C 2公共点的个数和C1与C2公共点的个数是否相同?说明你的理由。

已知曲线C 1: . 乙 (t 为参数)。

,2 -t 2I x = -4 + cos t ,(2009)已知曲线C :〈 c .(t 为参数),C :1[ y = 3 + sin t ,2(I)化C 1, C 2的方程为普通方程,并说明它们分别表示什么曲线;冗I x = 3 + 21,(II)若C 上的点P 对应的参数为t = -, Q 为C 上的动点,求PQ 中点M 到直线J : \( (t 1223 [y = -2 +1为参数)距离的最小值.x =1+1 cos a ,(2010)坐标系与参数方程:已知直线J : {1[y = t sin a ,⑴当a =n 时,求C 1与c 2的交点坐标;(2)过坐标原点O 作C 1的垂线,垂足为A , P 为OA 的中点.当a 变化时,求P 点轨迹的参数方程,并指出它 是什么曲线.x = 8cos 0,y 二 3sin0,( ° 为参x =cos e(t 为参数),圆C 2:{y =sin 仇(e为参数)•(2011)坐标系与参数方程:在直角坐标系xOy中,曲线C1的参数方程为「= 2cos a (a为参数),M是[y = 2 + 2sin aC1上的动点,P点满足OP = 2OM ,P点的轨迹为曲线C2(I )求C2的方程兀(II)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线e= y与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB .'x=2cos0”为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐y=3sin (2012)已知曲线C1的参数方程是<Q 标系,曲线C2的极坐标方程是p=2.正方形ABCD的顶点都在C2上,且A、B、C、D以逆时针次序排列,点n A的极坐标为(2, 5)(I)求点A、B、C、D的直角坐标;(II)设P为C1上任意一点,求IPAI2+ IPBI2 + IPCI 2+ |PD|2的取值范围。

极坐标与参数方程测试题(有详解答案)

极坐标与参数方程测试题(有详解答案)

极坐标与参数方程测试题一、选择题1.直线12+=x y 的参数方程是( )A 、⎩⎨⎧+==1222t y t x (t 为参数) B 、⎩⎨⎧+=-=1412t y t x (t 为参数)C 、 ⎩⎨⎧-=-=121t y t x (t 为参数) D 、⎩⎨⎧+==1sin 2sin θθy x (t 为参数) 2.已知实数x,y 满足02cos 3=-+x x ,022cos 83=+-y y ,则=+y x 2( )A .0B .1C .-2D .83.已知⎪⎭⎫ ⎝⎛-3,5πM ,下列所给出的不能表示点的坐标的是( )A 、⎪⎭⎫⎝⎛-3,5πB 、⎪⎭⎫ ⎝⎛34,5πC 、⎪⎭⎫⎝⎛-32,5π D 、⎪⎭⎫ ⎝⎛--35,5π 4.极坐标系中,下列各点与点P (ρ,θ)(θ≠k π,k ∈Z )关于极轴所在直线对称的是( )A .(-ρ,θ)B .(-ρ,-θ)C .(ρ,2π-θ)D .(ρ,2π+θ)5.点()3,1-P ,则它的极坐标是( )A 、⎪⎭⎫⎝⎛3,2π B 、⎪⎭⎫ ⎝⎛34,2πC 、⎪⎭⎫⎝⎛-3,2πD 、⎪⎭⎫ ⎝⎛-34,2π 6.直角坐标系xoy 中,以原点为极点,x 轴的正半轴为极轴建极坐标系,设点A,B 分别在曲线13cos :sin x C y θθ=+⎧⎨=⎩ (θ为参数)和曲线2:1C ρ=上,则AB 的最小值为( ).A.1B.2C.3D.47.参数方程为1()2x t t t y ⎧=+⎪⎨⎪=⎩为参数表示的曲线是( )A .一条直线B .两条直线C .一条射线D .两条射线8.()124123x tt x ky k y t=-⎧+==⎨=+⎩若直线为参数与直线垂直,则常数( )A.-6B.16-C.6D.169.极坐标方程4cos ρθ=化为直角坐标方程是( )A .22(2)4x y -+= B.224x y += C.22(2)4x y +-= D.22(1)(1)4x y -+-=10.柱坐标(2,32π,1)对应的点的直角坐标是( ). A.(1,3,1-) B.(1,3,1-) C.(1,,1,3-) D.(1,1,3-)11.已知二面角l αβ--的平面角为θ,P 为空间一点,作PA α⊥,PB β⊥,A ,B 为垂足,且4PA =,5PB =,设点A 、B 到二面角l αβ--的棱l 的距离为别为,x y .则当θ变化时,点(,)x y 的轨迹是下列图形中的12.曲线24sin()4x πρ=+与曲线12221222x ty t ⎧=-⎪⎪⎨⎪=+⎪⎩的位置关系是( )。

极坐标参数方程全套试题

极坐标参数方程全套试题

极坐标与参数方程单元练习1一、选择题(每小题5分,共25分)1、已知点M 的极坐标为⎪⎭⎫⎝⎛35π,,下列所给出的四个坐标中能表示点M 的坐标是( )。

A. 53,-⎛⎝ ⎫⎭⎪πB. 543,π⎛⎝ ⎫⎭⎪C. 523,-⎛⎝ ⎫⎭⎪πD. ⎪⎭⎫ ⎝⎛-355π, 2、直线:3x-4y-9=0与圆:⎩⎨⎧==θθsin 2cos 2y x ,(θ为参数)的位置关系是( )A.相切B.相离C.直线过圆心D.相交但直线不过圆心3、在参数方程⎩⎨⎧+=+=θθsin cos t b y t a x (t 为参数)所表示的曲线上有B 、C 两点,它们对应的参数值分别为t 1、t 2,则线段BC 的中点M 对应的参数值是( )4、曲线的参数方程为⎩⎨⎧-=+=12322t y t x (t 是参数),则曲线是( )A 、线段B 、双曲线的一支C 、圆D 、射线 5、实数x 、y 满足3x 2+2y 2=6x ,则x 2+y 2的最大值为( )A 、27 B 、4 C 、29D 、5二、填空题(每小题5分,共30分)1、点()22-,的极坐标为 。

2、若A 33,π⎛⎝ ⎫⎭⎪,B ⎪⎭⎫ ⎝⎛-64π,,则|AB|=___________,S AOB ∆=___________。

(其中O 是极点)3、极点到直线()cos sin 3ρθθ+=的距离是________ _____。

4、极坐标方程2sin 2cos 0ρθθ-⋅=表示的曲线是_______ _____。

5、圆锥曲线()为参数θθθ⎩⎨⎧==sec 3tan 2y x 的准线方程是 。

6、直线l 过点()5,10M ,倾斜角是3π,且与直线032=--y x 交于M ,则0MM 的长为 。

三、解答题(第1题14分,第2题16分,第3题15分;共45分)1、求圆心为C 36,π⎛⎝ ⎫⎭⎪,半径为3的圆的极坐标方程。

2、已知直线l 经过点P(1,1),倾斜角6πα=,(1)写出直线l 的参数方程。

极坐标和参数方程真题卷(含答案)

极坐标和参数方程真题卷(含答案)
(1)求点 的直角坐标;
(2)设 为 上任意一点,求 的取值围.
参考答案
1.(Ⅰ) 的普通方程为 , 的直角坐标方程为 ;(Ⅱ) .
【解析】
试题分析:(Ⅰ)利用同角三角函数基本关系中的平方关系化曲线C1的参数方程普通方程,利用公式 与 代入曲线C2的极坐标方程即可;(Ⅱ)利用参数方程表示出点 的坐标,然后利用点到直线的距离公式建立 的三角函数表达式,然后求出最值与相应的 点坐标.
(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;
(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.
4.在直角坐标系 中,直线 : = 2,圆 : ,以坐标原点为极点, 轴的正半轴为极轴建立极坐标系.
(Ⅰ)求 , 的极坐标方程;
(Ⅱ)若直线 的极坐标方程为 ,设 与 的交点为 , ,求 的面积.
于是
由 得 ,
所以 的斜率为 或 .
【考点】圆的极坐标方程与普通方程互化, 直线的参数方程,弦长公式
【名师点睛】极坐标方程与直角坐标方程互化时注意:在将点的直角坐标化为极坐标时,一定要注意点所在的象限和极角的围,否则点的极坐标将不唯一;在将曲线的方程进行互化时,一定要注意变量的围,注意转化的等价性.
2015级《极坐标和参数方程》真题卷
班级____直角坐标系 中,曲线 的参数方程为 .以坐标原点为极点,以 轴的正半轴为极轴,建立极坐标系,曲线 的极坐标方程为 .
(Ⅰ)写出 的普通方程和 的直角坐标方程;
(Ⅱ)设点P在 上,点Q在 上,求|PQ|的最小值及此时P的直角坐标.
可得 ,从而 ,解得 (舍去), .
时,极点也为 的公共点,在 上.所以 .

极坐标与参数方程题型及答案

极坐标与参数方程题型及答案

极坐标与参数方程题型及答案数学选择题:1. 下列哪个极坐标表示点(3, 5)?A. (5, 53.13°)B. (3, 53.13°)C. (5, 37.12°)D. (3, 37.12°)答案:A2. 唯一表示点(-4, 60°)的极坐标是A. (4, 60°)B. (4, 120°)C. (-4, 60°)D. (-4, 240°)答案:C3. 参数方程x = 2cosθ、y = 3sinθ (0 ≤ θ ≤ π/2) 表示的图形是A. 长方形B. 正方形C. 长椭圆D. 圆答案:C4. 必要条件方程x = 1 + cosθ、y = 2 + sinθ (0 ≤ θ ≤ 2π)表示的图形是A. 点B. 圆C. 椭圆D. 双曲线答案:B填空题:1. 将极坐标(4, 240°)转化为直角坐标形式,其对应的坐标为(______, ______)。

答案:(-2, -3.46)2. 给出参数方程x = 2cosθ、y = 5sinθ (0 ≤ θ ≤ π/2) 所表示直线的斜率,其斜率为 _______。

答案:2.5判断题:1. 下列哪些图形可以由参数方程表示?I. 点 II. 圆 III. 双曲线 IV. 三角形A. I、II、IIIB. I、II、IVC. II、III、IVD. I、II、III、IV答案:B2. 唯一表示点(4, 30°)的极坐标是(4, π/6) 。

答案:正确简答题:1. 极坐标系表示的是平面直角坐标系的哪些信息不同?答案:极坐标系表示的是点与极点之间的距离和点与极轴的夹角,而直角坐标系则表示的是点在x、y轴之间的坐标。

2. 怎样将一个极坐标转换为另一个等价的极坐标?答案:若(r, θ)为一个点在极坐标系中的坐标,则其等效于(r, θ + 2kπ) (k 为整数)。

3. 参数方程x = cosθ、y = sinθ 表示的图形是什么?有何特点?答案:参数方程x = cosθ、y = sinθ 表示的是单位圆,其特点是对于任意θ值,点到原点的距离都是1。

极坐标与参数方程题型大全及答案

极坐标与参数方程题型大全及答案

参 数 方 程 集 中 训 练 题 型 大 全一、回归教材数学选修4-4 坐标系及参数方程[根底训练A 组]一、选择题1.假设直线的参数方程为12()23x tt y t =+⎧⎨=-⎩为参数,那么直线的斜率为〔 〕A .23 B .23- C .32 D .32-2.以下在曲线sin 2()cos sin x y θθθθ=⎧⎨=+⎩为参数上的点是〔 〕A .1(,2B .31(,)42- C . D .3.将参数方程222sin ()sin x y θθθ⎧=+⎪⎨=⎪⎩为参数化为普通方程为〔 〕 A .2y x =- B .2y x =+ C .2(23)y x x =-≤≤ D .2(01)y x y =+≤≤ 4.化极坐标方程2cos 0ρθρ-=为直角坐标方程为〔 〕A .201y y +==2x 或 B .1x = C .201y +==2x 或x D .1y =5.点M 的直角坐标是(-,那么点M 的极坐标为〔 〕A .(2,)3πB .(2,)3π-C .2(2,)3πD .(2,2),()3k k Z ππ+∈ 6.极坐标方程cos 2sin 2ρθθ=表示的曲线为〔 〕A .一条射线和一个圆B .两条直线C .一条直线和一个圆D .一个圆二、填空题1.直线34()45x tt y t=+⎧⎨=-⎩为参数的斜率为______________________。

2.参数方程()2()t tt tx e et y e e --⎧=+⎪⎨=-⎪⎩为参数的普通方程为__________________。

3.直线113:()24x tl t y t=+⎧⎨=-⎩为参数及直线2:245l x y -=相交于点B ,又点(1,2)A ,那么AB =_______________。

4.直线122()112x t t y t ⎧=-⎪⎪⎨⎪=-+⎪⎩为参数被圆224x y +=截得的弦长为______________。

极坐标与参数方程含答案

极坐标与参数方程含答案

极坐标系与参数方程一.高考真题1.设b a b a b a +=+∈则,62,,22R 的最小值( C )A .22-B .335-C .-3D .27-2.在极坐标系中,圆心在()2,π且过极点的圆的方程为( B )A.ρθ=22cosB.ρθ=-22c o sC.ρθ=22sinD.ρθ=-22s i n3.极坐标方程ρ=cos θ与ρcos θ= 12的图形是( B )A.C.D.4.极坐标方程ρ2cos2θ=1所表示的曲线是( D )A .两条相交直线B .圆C .椭圆D .双曲线5.在极坐标系中,直线l 的方程为ρsin θ=3,则点(2,π/6)到直线l 的距离为 2 .6.点)0,1(P 到曲线⎩⎨⎧==ty t x 22(其中参数R t ∈)上的点的最短距离为( B )(A )0 (B )1 (C )2 (D )27.在平面直角坐标系xOy 中,直线l 的参数方程为)(33R t t y t x ∈⎩⎨⎧-=+=参数,圆C 的参数方程为[])20(2sin 2cos 2πθθθ,参数∈⎩⎨⎧+==y x ,则圆C 的圆心坐标为 (0,2) ,圆心到直线l 的距离为22.二.极坐标与参数方程 知识点回顾及练习(一)极坐标1.平面直角坐标系中的坐标伸缩变换设点(,)P x y 是平面直角坐标系中的任意一点,在变换(0):(0)x x y yλλϕμμ'=>⎧⎨'=>⎩ 的作用下,点(,)P x y 对应到点(,)P x y ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.例1:在平面直角坐标系中,方程1y x 22=+所对应的图形经过伸缩变换⎩⎨⎧='='3y y 2x,x 后的图形所对应的方程是19422='+'y x .例2: 在同一平面直角坐标系中,经过伸缩变换⎩⎨⎧='='yy 3x,x 后,曲线C 变为曲线9y 9x 22='+',则曲线C 的方程是122=+y x例3:在同一平面直角坐标系中,使曲线2sin3x y =变为曲线sinx y =的伸缩变换是⎪⎩⎪⎨⎧='='y y x x 2132.极坐标系的概念如图所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.设M 是平面内一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM ∠叫做点M 的极角,记为θ.有序数对( , )叫做点M 的极坐标.例1:极坐标系中,点M )4,4(π表示的意思是 在正方向45°处的距极点距离为4的点。

极坐标与参数方程专项训练及详细答案

极坐标与参数方程专项训练及详细答案

一.选择题(共4小题)1.在极坐标系中,圆C :ρ2+k 2cos ρ+ρsin θ﹣k=0关于直线l :θ=(ρ∈R )对称的充要条件是( )2.过点A (4,﹣)引圆ρ=4sin θ的一条切线,则切线长为( ). B C二.填空题(共11小题) 5.极坐标系下,直线与圆的公共点个数是 __ .6.(坐标系与参数方程选做题)已知曲线C 1、C 2的极坐标方程分别为,,则曲线C 1上的点与曲线C 2上的点的最远距离为 _________ .7.在极坐标系中,点M (4,)到直线l :ρ(2cos θ+sin θ)=4的距离d= _________ . 8.极坐标方程所表示曲线的直角坐标方程是 _________ .9.已知直线(t 为参数)与曲线(y ﹣2)2﹣x 2=1相交于A ,B 两点,则点M (﹣1,2)到弦AB 的中点的距离为 _________ . 10.(坐标系与参数方程选做题)已知曲线C 的极坐标方程是ρ=6sin θ,以极点为坐标原点,极轴为x的正半轴,建立平面直角坐标系,直线l 的参数方程是为参数),则直线l 与曲线C 相交所得的弦的弦长为 _________ . 11.(坐标系与参数方程)在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建极坐标系,两种坐标系取相同的单位长度.已知曲线C :psin 2θ=2acos θ(a >0),过点P (﹣2,﹣4)的直线l 的参数方程为,直线l 与曲线C 分别交于M 、N .若|PM|、|MN|、|PN|成等比数列,则实数a 的值为_________ .12.已知曲线(t 为参数)与曲线(θ为参数)的交点为A ,B ,,则|AB|=13.在平面直角坐标下,曲线,曲,若曲线C 1、C 2有公共点,则实数a 的取值范围为 _________ .14.(选修4﹣4:坐标系与参数方程) 在直角坐标系xoy 中,直线l 的参数方程为(t 为参数),在极坐标系(与直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为. (Ⅰ)求圆C 的直角坐标方程;(Ⅱ)设圆C 与直线l 交于点A 、B ,若点P 的坐标为,求|PA|+|PB|.15.已知过定点P (﹣1,0)的直线l :(其中t 为参数)与圆:x 2+y 2﹣2x ﹣4y+4=0交于M ,N 两点,则PM .PN= _________ .三.解答题(共3小题)16.选修4﹣4:坐标系与参数方程在平面直角坐标系xOy中,已知曲线C 的参数方程为.以直角坐标系原点为极点,x轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为.点P为曲线C上的一个动点,求点P到直线l距离的最小值.17.在平面直角坐标系xOy中,圆C 的参数方程为(θ为参数),直线l经过点P(1,1),倾斜角,(1)写出直线l的参数方程;(2)设l与圆圆C相交与两点A,B,求点P到A,B两点的距离之积.18.选修4﹣4:坐标系与参数方程已知在直角坐标系xOy中,曲线C 的参数方程为(θ为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直线l的方程为.(Ⅰ)求曲线C在极坐标系中的方程;(Ⅱ)求直线l被曲线C截得的弦长.参考答案与试题解析一.选择题(共4小题)1.在极坐标系中,圆C:ρ2+k2cosρ+ρsinθ﹣k=0关于直线l:θ=(ρ∈R)对称的充要条件是()在直线所以,即2.过点A(4,﹣)引圆ρ=4sinθ的一条切线,则切线长为(),运算求得结果.)即==43.在平面直角坐标系xOy中,点P的坐标为(﹣1,1),若取原点O为极点,x轴正半轴为极轴,建(|OP|=﹣.∴圆心的极坐标二.填空题(共11小题)5.(坐标系与参数方程选做题)极坐标系下,直线与圆的公共点个数是1.解:直线,即x+y=圆心到直线的距离等于=6.(坐标系与参数方程选做题)已知曲线C 1、C 2的极坐标方程分别为,,则曲线C 1上的点与曲线C 2上的点的最远距离为.d=|CQ||PQ|=d+r=故答案为:7.(2004•上海)在极坐标系中,点M (4,)到直线l :ρ(2cos θ+sin θ)=4的距离d=.,)化成直角坐标方程为()==故填:8.极坐标方程所表示曲线的直角坐标方程是.解:∵极坐标方程=59.已知直线(t 为参数)与曲线(y ﹣2)2﹣x 2=1相交于A ,B 两点,则点M (﹣1,2)到弦AB 的中点的距离为 .=,,根据中点坐标的性质可得中点对应的参数为中点的距离为×…故答案为:.10.(坐标系与参数方程选做题)已知曲线C 的极坐标方程是ρ=6sin θ,以极点为坐标原点,极轴为x的正半轴,建立平面直角坐标系,直线l 的参数方程是为参数),则直线l 与曲线C 相交所得的弦的弦长为 4 .,我们可以求出直线的一般方程,代入点到圆心距为.所以11.(坐标系与参数方程)在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建极坐标系,两种坐标系取相同的单位长度.已知曲线C :psin 2θ=2acos θ(a >0),过点P (﹣2,﹣4)的直线l 的参数方程为,直线l 与曲线C 分别交于M 、N .若|PM|、|MN|、|PN|成等比数列,则实数a 的值为1 .2|x 则由•,|x |x 12.已知曲线(t 为参数)与曲线(θ为参数)的交点为A ,B ,,则|AB|=.解:把曲线化为普通方程得:=,即把曲线联立得:,消去,﹣.213.在平面直角坐标下,曲线,曲线,若曲线C 1、C 2有公共点,则实数a 的取值范围为 . 解:曲线曲线∴,﹣22,故答案为:14.(选修4﹣4:坐标系与参数方程) 在直角坐标系xoy 中,直线l 的参数方程为(t 为参数),在极坐标系(与直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为. (Ⅰ)求圆C 的直角坐标方程;(Ⅱ)设圆C 与直线l 交于点A 、B ,若点P 的坐标为,求|PA|+|PB|. 的方程为∴的直角坐标方程:(Ⅱ),即由于所以15.已知过定点P (﹣1,0)的直线l :(其中t 为参数)与圆:x 2+y 2﹣2x ﹣4y+4=0交于M ,N 两点,则PM .PN= 7 .(其中×t=7=0三.解答题(共3小题)16.选修4﹣4:坐标系与参数方程在平面直角坐标系xOy 中,已知曲线C 的参数方程为.以直角坐标系原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为.点P为曲线C 上的一个动点,求点P 到直线l 距离的最小值.)=2化简为:ρ,即===﹣17.在平面直角坐标系xOy 中,圆C 的参数方程为(θ为参数),直线l 经过点P (1,1),倾斜角,(1)写出直线l 的参数方程;(2)设l 与圆圆C 相交与两点A ,B ,求点P 到A ,B 两点的距离之积. 化为普通方程为,把直线,∴18.选修4﹣4:坐标系与参数方程已知在直角坐标系xOy中,曲线C的参数方程为(θ为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直线l的方程为.(Ⅰ)求曲线C在极坐标系中的方程;(Ⅱ)求直线l被曲线C截得的弦长.的距离为=。

近五年全国卷之极坐标与参数方程

近五年全国卷之极坐标与参数方程

2011年普通高等学校招生全国统一考试文科数学(23)(本小题满分10分)选修4-4:坐标系与参数方程 在直角坐标系xOy 中,曲线C 1的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(α为参数) M 是C 1上的动点,P 点满足2OP OM =,P 点的轨迹为曲线C 2 (Ⅰ)求C 2的方程;(Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求AB .解析(Ⅰ)设(,),则由条件知(,),由于在上,∴,即,∴的参数方程为(为参数);(Ⅱ)曲线的极坐标方程为=,曲线的极坐标方程为=,∴射线与的交点的极径为=, 射线与的交点的极径为=, ∴==.2012年普通高等学校招生全国统一考试文科数学1(22)(本小题满分12分)(注意:在试题卷上作答无效)已知抛物线2:(1)C y x =+与圆2221:(1)()(0)2M x y r r -+-=>有一个公共点A ,且在点A 处两曲线的切线为同一直线l .(Ⅰ)求r ;(Ⅱ)设m 、n 是异于l 且与C 及M 都相切的两条直线,m 、n 的交点为D ,求D 到l 的距离。

2012年普通高等学校招生全国统一考试文科数学2(23)(本小题满分10分)选修4—4;坐标系与参数方程已知曲线C 1的参数方程是⎩⎪⎨⎪⎧x =2cos φy =3sin φ(φ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2.正方形ABCD 的顶点都在C 2上,且A 、B 、C 、D 以逆时针次序排列,点A 的极坐标为(2,π3)(Ⅰ)求点A 、B 、C 、D 的直角坐标;(Ⅱ)设P 为C 1上任意一点,求|PA| 2+ |PB|2 + |PC| 2+ |PD|2的取值范围.2013年普通高等学校招生全国统一考试文科数学1(23)(本小题10分)选修4—4:坐标系与参数方程已知曲线1C 的参数方程为45cos ,55sin x t y t =+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin ρθ=。

极坐标与参数方程测试题(有详解答案)

极坐标与参数方程测试题(有详解答案)

极坐标与参数方程测试题(有详解答案) 极坐标与参数方程测试题1.直线y=2x+1的参数方程是()A、x=2t-1,y=4t+1(t为参数)B、x=t^2,y=2t+1(t为参数)C、x=sinθ,y=2t-1D、x=t-1,y=2sinθ+1(θ为参数)2.已知实数x,y满足x^3+cosx-2=π,8y^3-cos2y+2=π,则x+2y=()A。

π/2B。

πC。

-π/2D。

-π3.已知M(-5,3),下列所给出的不能表示点的坐标的是()A、(5,-3)B、(5,4π/3)C、(5,-2π/3)D、(-5,-5π/4)4.极坐标系中,下列各点与点P(ρ,θ)(θ≠kπ,k∈Z)关于极轴所在直线对称的是()A。

(-ρ,θ)B。

(-ρ,-θ)C。

(ρ,2π-θ)D。

(ρ,2π+θ)5.点P1,-3,则它的极坐标是A、(2,π/3)B、(2,4π/3)C、(2,-π/3)D、(2,-4π/3)6.直角坐标系xoy中,以原点为极点,x轴的正半轴为极轴建极坐标系,设点A,B分别在曲线C1:(x=3+cosθ。

y=sinθ)(θ为参数)和曲线C2:ρ=1上,则AB的最小值为( ) A。

1B。

2C。

3D。

47.参数方程为x=t+1.y=2(t为参数)表示的曲线是()A.一条直线B.两条直线C.一条射线D.两条射线8.若直线{t为参数}与直线4x+ky=1垂直,则常数k=()A。

-6B。

-1/11C。

6D。

119.极坐标方程ρ=4cosθ化为直角坐标方程是()A。

(x-2)+y=4B。

x+y=4C。

x+(y-2)=4D。

(x-1)+(y-1)=410.柱坐标(2,2π/3,1)对应的点的直角坐标是()A。

(-1,3,1)B。

(1,-3,1)C。

(3,-1,1)D。

(-3,1,1)11.已知二面角$\alpha-\ell-\beta$的平面角为$\theta$,点$P$为空间一点,作$PA\perp\alpha$,$PB\perp\beta$,$A$,$B$为垂足,且$PA=4$,$PB=5$,设点$A$、$B$到二面角$\alpha-\ell-\beta$的棱$\ell$的距离分别为$x$、$y$。

极坐标与参数方程(经典39题)(整理版)

极坐标与参数方程(经典39题)(整理版)

( Ⅱ ) 设圆 C 与直线 l 交于点 A , B .若点 P 的坐标为 (3 , 5 ) ,求 PA PB 与
PA PB .
32.已知 A,B 两点是椭圆 x 2 y 2 1 与坐标轴正半轴的两个交点 . 94
(1) 设 y 2sin , 为参数,求椭圆的参数方程;
(2) 在第一象限的椭圆弧上求一点 P,使四边形 OAPB的面积最大,并求此最大值 .
标;
(Ⅱ) 点 M ( x0 ,y0 )在 e O1 上运动, 点 P (x, y) 是线段 AM 的中点, 求点 P 运
动轨迹的直角坐标方程.
x 3cos
15.已知曲线 C :
,直线 l : (cos
y 2sin
2sin ) 12 .
( 1)将直线 l 的极坐标方程化为直角坐标方程; ( 2)设点 P 在曲线 C 上,求 P 点到直线 l 距离的最小值.
2.在极坐标系中,曲线 L : sin 2 2cos ,过点 A( 5 , )( 为锐角且
3
tan
)作平行于
4
( Ⅰ ) 以极点为原点,极轴为
( R) 的直线 l ,且 l 与曲线 L 分别交于 B, C两点 . 4
x 轴的正半轴,取与极坐标相同单位长度,建立平面直
角坐标系,写出曲线 L 和直线 l 的普通方程;
( 2)若把 C1,C2 上各点的纵坐标都拉伸为原来的两倍, 分别得到曲线 C1, C2 .写
出 C1, C2 的参数方程. C1 与 C2 公共点的个数和
同?说明你的理由.
C1 与 C2 公共点的个数是否相
28.已知圆的方程为 y2 6 y sin x2 8x cos 7cos 2 8 0 求圆心轨迹 C 的参数方程 ; 点 P(x, y) 是( 1)中曲线 C上的动点,求 2x y 的取值

极坐标与参数方程高考真题

极坐标与参数方程高考真题

极坐标1、 定义设M 是平面内一点,极点O 与点M 的距离||OM 叫作点M 的极径,记为ρ,以极轴Ox 为始边,射线OM 为终边的角叫作点M 的极角,记为θ,有序实数对(,)ρθ叫作点M 的极坐标,记为(,)M ρθ(1) 当M 在极点时,它的极坐标为(0,)θ(R θ∈)(2) 一般地,如果规定0,02ρθπ>≤<,那么除极点外,平面内的点可用唯一的极坐标(,)ρθ表示,同时极坐标(,)ρθ表示的点也是唯一的 2、 极坐标与平面直角坐标的转化设点M 直角坐标为()x y ,,极坐标为(,)ρθ(0ρ≥),则有cos sin x y ρθρθ=⎧⎨=⎩或者tan y xρθ==⎪⎩(0x ≠)参数方程1、 概念一般地,在平面直角坐标系中,如果曲线上任意一点P 的坐标x y 、都是某个变数t 的函数:()()x f t y g t =⎧⎨=⎩,并且对于t 的每一个允许的取值,由方程组确定的点(,)x y 都在这条曲线上,那么这个方程就叫做曲线的参数方程,变数t 叫作变参数,简称参数。

相对而言,直接给出点的横纵坐标之间的关系的方程叫普通方程 3、 圆与椭圆参数方程圆222x y r +=的参数方程为cos sin x r y r θθ=⎧⎨=⎩;(θ为参数)圆22200()()x x y y r −+−=的参数方程00cos sin x x r y y r θθ=+⎧⎨=+⎩(θ为参数)椭圆22221x y a b +=的参数方程cos sin x a y b θθ=⎧⎨=⎩(θ为参数)4、 直线参数方程过点000(,)P x y 、倾斜角为θ的直线l 的参数方程为00cos [0,)sin x x t y y t θθπθ=+⎧∈⎨=+⎩,其中t 表示点(,)P x y 与0P 之间的有向线段的数量(有正负)。

当0PP 与(cos ,sin )θθ方向一致时,t 为正;方向相反时,t 为负当已知直线的方向向量为(,)a b 时,直线的参数方程也可以写成00x x aty y bt =+⎧⎨=+⎩,此时t 的正负由0PP 与(,)a b向量的方向相同还是相反决定,且有0|||PP t = 已知直线y kx b =+,则此直线的一个方向向量为(1,)k ;已知直线0ax by c ++=,则此直线的一个方向向量为(,)b a −,法向量为(,)a b极坐标与参数方程高考真题1、 (2018全国1)在直角坐标系xOy 中,曲线1C 的方程为||2y k x =+,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为22cos 30ρρθ+−=. (1)求2C 的直角坐标方程;(2)若1C 与2C 有且仅有三个公共点,求1C 的方程.2、 (2018全国2)在直角坐标系xOy 中,曲线C 的方程为2cos 4sin x y θθ=⎧⎨=⎩,(θ为参数),直线l 的参数方程为1cos 2sin x t y t αα=+⎧⎨=+⎩,(t 为参数) (1) 求C 和l 的直角坐标方程(2) 若曲线C 截直线l 所得线段中点坐标为(1,2),求直线l 的斜率3、 (2018全国3)在平面直角坐标系xOy 中,圆O 的参数方程为cos sin x y θθ=⎧⎨=⎩,(θ为参数),过点(0,且倾斜角为α的直线l 与圆O 交于A B 、两点 (1) 求α的取值范围(2) 求AB 的中点P 的轨迹的参数方程4、 (2016全国1)在平面直角坐标系xOy 中,曲线1C 的参数方程为cos 1sin x a ty a t =⎧⎨=+⎩(t 为参数,0a >)。

极坐标和参数方程真题卷(含答案)

极坐标和参数方程真题卷(含答案)

2015级《极坐标和参数方程》真题卷班级___________________________1.在直角坐标系xOy 中,曲线1C 的参数方程为()sin x y ααα⎧⎪⎨=⎪⎩,为参数,.以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为sin()4ρθπ+= .(Ⅰ)写出1C 的普通方程和2C 的直角坐标方程;(Ⅱ)设点P 在1C 上,点Q 在2C 上,求|PQ|的最小值及此时P 的直角坐标.2.在直角坐标系xOy 中,圆C 的方程为(x+6)2+y 2=25.(Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程; (Ⅱ)直线l 的参数方程是cos ,sin ,x t y t αα=⎧⎨=⎩(t 为参数),l 与C 交于A ,B 两点,∣AB ∣求l 的斜率.3.在直角坐标系xOy 中,曲线C 1的参数方程为cos 1sin x a ty a t=⎧⎨=+⎩(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cosθ. (Ⅰ)说明C 1是哪种曲线,并将C 1的方程化为极坐标方程;(Ⅱ)直线C 3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C 1与C 2的公共点都在C 3上,求a.4.在直角坐标系xOy 中,直线1C :x =-2,圆2C :()()22121x y -+-=,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系. (Ⅰ)求1C ,2C 的极坐标方程; (Ⅱ)若直线3C 的极坐标方程为()4R πθρ=∈,设2C 与3C 的交点为M,N ,求2C MN ∆的面积.5.在直角坐标系xoy 中,曲线1cos ,:sin ,x t C y t αα=⎧⎨=⎩(t 为参数,0t ≠),其中0απ≤<,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线2:2sin C ρθ=,曲线3:C ρθ=.(Ⅰ).求2C 与1C 交点的直角坐标;(Ⅱ).若2C 与1C 相交于点A ,3C 与1C 相交于点B ,求AB 的最大值.6.已知曲线221:149x y C +=,直线l :2,22,x t y t =+⎧⎨=-⎩(t 为参数). (I )写出曲线C 的参数方程,直线l 的普通方程;(II )过曲线C 上任意一点P 作与l 夹角为30︒的直线,交l 于点A ,PA 的最大值与最小值.7.在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ,[0,]2πρθθ=∈.(1)求C 得参数方程;(2)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(1)中你得到的参数方程,确定D 的坐标.8.已知曲线C 1的参数方程为45cos 55sin x ty t=+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sinθ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

极坐标方程与参数方程一、解答题(本大题共12小题,共144.0分)1.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin (θ+)=2.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.2.在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)若a=-1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.3.已知直线l的参数方程为(t为参数),曲线C的极坐标方程为ρsin2θ-16cosθ=0,直线l与曲线C交于A,B两点,点P(1,3).(1)求直线l的普通方程与曲线C的直角坐标方程;(2)求的值.4.在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ=4.(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|•|OP|=16,求点P的轨迹C2的直角坐标方程;(2)设点A的极坐标为(2,),点B在曲线C2上,求△OAB面积的最大值.5.已知直线l:(t为参数),曲线C1:(θ为参数).(1)设l与C1相交于A,B两点,求|AB|;(2)若把曲线C1上各点的横坐标伸长为原来的倍,纵坐标伸长为原来的3倍,得到曲线C2,设点P是曲线C2上的一个动点,求它到直线l的距离的最大值.6.已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.7.已知极点与直角坐标系的原点重合,极轴与x轴的正半轴重合,圆C的极坐标是ρ=2a sinθ,直线l的参数方程是(t为参数).(1)若a=2,M为直线l与x轴的交点,N是圆C上一动点,求|MN|的最大值;(2)若直线l被圆C截得的弦长为,求a的值.8.已知直线l的参数方程为 (t为参数),曲线C的极坐标方程为ρ2cos2θ=1.(1)求曲线C的直角坐标方程.(2)求直线l被曲线C截得的弦长.9.(选修4-4:坐标系与参数方程)已知直线l过点P(-1,2),且倾斜角为,圆方程为.(1)求直线l的参数方程;(2)设直线l与圆交与M、N两点,求|PM|•|PN|的值.10.在直角坐标系xOy中,直线l的参数方程为(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴非负半轴为极轴)中,圆C的方程为ρ=6sinθ.(I)求直角坐标下圆C的标准方程;(Ⅱ)若点P(l,2),设圆C与直线l交于点A,B,求|PA|+|PB|的值.11.已知直线l:(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为ρ=2cosθ.(1)将曲线C的极坐标方程化为直坐标方程;(2)设点M的直角坐标为(5,),直线l与曲线C的交点为A,B,求|MA|•|MB|的值.12.已知在平面直角坐标系xOy中,以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C1的极坐标方程为ρ=4cosθ,直线l的参数方程为(t为参数).(1)求曲线C1的直角坐标方程及直线l的普通方程;(2)若曲线C2的参数方程为(α为参数),曲线C1上点P的极角为,Q为曲线C2上的动点,求PQ的中点M到直线l距离的最大值.答案和解析1.【答案】解:(1)曲线C1的参数方程为(α为参数),移项后两边平方可得+y2=cos2α+sin2α=1,即有椭圆C1:+y2=1;曲线C2的极坐标方程为ρsin(θ+)=2,即有ρ(sinθ+cosθ)=2,由x=ρcosθ,y=ρsinθ,可得x+y-4=0,即有C2的直角坐标方程为直线x+y-4=0;(2)由题意可得当直线x+y-4=0的平行线与椭圆相切时,|PQ|取得最值.设与直线x+y-4=0平行的直线方程为x+y+t=0,联立可得4x2+6tx+3t2-3=0,由直线与椭圆相切,可得△=36t2-16(3t2-3)=0,解得t=±2,显然t=-2时,|PQ|取得最小值,即有|PQ|==,此时4x2-12x+9=0,解得x=,即为P(,).另解:设P(cosα,sinα),由P到直线的距离为d==,当sin(α+)=1时,|PQ|的最小值为,此时可取α=,即有P(,).2.【答案】解:(1)曲线C的参数方程为(θ为参数),化为标准方程是:+y2=1;a=-1时,直线l的参数方程化为一般方程是:x+4y-3=0;联立方程,解得或,所以椭圆C和直线l的交点为(3,0)和(-,).(2)l的参数方程(t为参数)化为一般方程是:x+4y-a-4=0,椭圆C上的任一点P可以表示成P(3cosθ,sinθ),θ∈[0,2π),所以点P到直线l的距离d为:d==,φ满足tanφ=,且的d的最大值为.①当-a-4≤0时,即a≥-4时,|5sin(θ+4)-a-4|≤|-5-a-4|=5+a+4=17解得a=8≥-4,符合题意.②当-a-4>0时,即a<-4时|5sin(θ+4)-a-4|≤|5-a-4|=5-a-4=1-a=17解得a=-16<-4,符合题意.综上,a的值为8或-16.3.【答案】解:(1)直线l的参数方程为(t为参数),消去参数,可得直线l的普通方程y=2x+1,曲线C的极坐标方程为ρsin2θ-16cosθ=0,即ρ2sin2θ=16ρcosθ,得y2=16x即直线l的普通方程为y=2x+1,曲线C的直角坐标方程为y2=16x;(2)直线的参数方程改写为(t为参数),代入y2=16x,得,,,.即的值为.4.【答案】解:(1)曲线C1的直角坐标方程为:x=4,设P(x,y),M(4,y0),则,∴y0=,∵|OM||OP|=16,∴=16,即(x2+y2)(1+)=16,∴x4+2x2y2+y4=16x2,即(x2+y2)2=16x2,两边开方得:x2+y2=4x,整理得:(x-2)2+y2=4(x≠0),∴点P的轨迹C2的直角坐标方程:(x-2)2+y2=4(x≠0).(2)点A的直角坐标为A(1,),显然点A在曲线C2上,|OA|=2,∴曲线C2的圆心(2,0)到弦OA的距离d==,∴△AOB的最大面积S=|OA|•(2+)=2+.5.【答案】解:(1)由题意,消去参数t,得直线l的普通方程为,根据sin2θ+cos2θ=1消去参数,曲线C1的普通方程为x2+y2=1,联立得解得A(1,0),,,∴|AB|=1.(2)由题意得曲线C2的参数方程为(θ是参数),设点,,∴点P到直线l的距离=,当时,.∴曲线C2上的一个动点它到直线l的距离的最大值为.6.【答案】解:(Ⅰ)对于曲线C:+=1,可令x=2cosθ、y=3sinθ,故曲线C的参数方程为,(θ为参数).对于直线l:,由①得:t=x-2,代入②并整理得:2x+y-6=0;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).P到直线l的距离为.则,其中α为锐角.当sin(θ+α)=-1时,|PA|取得最大值,最大值为.当sin(θ+α)=1时,|PA|取得最小值,最小值为.7.【答案】解:(1)直线l的参数方程是,a=2时,化为普通方程:(x-2).令y=0,解得x=2,可得M(2,0).圆C的极坐标是ρ=2a sinθ,即ρ2=4ρsinθ,可得直角坐标方程:x2+y2-4y=0,即x2+(y-2)2=4.|MC|=2,∴|MN|的最大值为2+2.(2)圆C的方程为:x2+(y-a)2=a2,直线l的方程为:4x+3y-4a=0,圆心C到直线l的距离d==.∴=2,解得a=.8.【答案】解:(1)由ρ2cos2θ=1,得ρ2(cos2θ−sin2θ)=1,…①,将ρcosθ=x,ρsinθ=y代入上式中,得曲线C的普通方程为x2−y2=1.(2)由直线l的参数方程,消去t,得普通方程为y=(x−2).…②,将②式代入①式中,整理得2x2−12x+13=0,设直线l与曲线C相交于A(x1,y1),B(x2,y2),由韦达定理得,又由②式得直线l的斜率k=,所以直线l被曲线C截得的弦长为.9.【答案】解:(1)直线l过点P(-1,2),且倾斜角为,故直线l的参数方程为,即为参数).(2)圆方程=2(-),即ρ2=2(-)=ρcosθ-,化为直角坐标方程为+=1.把代入+=1化简可得t2+(3+2)t+=0.设此一元二次方程式的两个根分别为t1和t2,则由根与系数的关系可得t1•t2=.由题意可得|PM|•|PN|=|t1|•|t2|=|t1•t2|=.10.【答案】解:(I)圆C的方程为ρ=6sinθ,即ρ2=6ρsinθ,利用互化公式可得直角坐标方程:x2+y2=6y,配方为x2+(y-3)2=9.(II)直线l的参数方程为(t为参数),代入圆的方程可得:t2-7=0,解得t1=,t2=-.∴|PA|+|PB|=|t1-t2|=2.11.【答案】解:(1)∵ρ=2cosθ,∴ρ2=2ρcosθ,∴x2+y2=2x,故它的直角坐标方程为(x-1)2+y2=1;(2)直线l:(t为参数),普通方程为,(5,)在直线l上,过点M作圆的切线,切点为T,则|MT|2=(5-1)2+3-1=18,由切割线定理,可得|MT|2=|MA|•|MB|=18.12.【答案】解:(1)曲线C1的极坐标方程为ρ=4cosθ,即ρ2=4ρcosθ,可得直角坐标方程::.直线l的参数方程为(t为参数),消去参数t可得普通方程:x+2y-3=0.(2),,直角坐标为(2,2),,,,,∴M到l的距离≤,从而最大值为.。

相关文档
最新文档