七年级数学两个三角形全等的条件习题精选2

合集下载

三角形全等测试题及答案

三角形全等测试题及答案

三角形全等测试题及答案一、选择题1. 两个三角形全等的条件是()A. 有两条边和它们的夹角对应相等B. 三条边对应相等C. 有两条边和其中一条边的对角对应相等D. 有两条边和其中一条边的邻角对应相等答案:B2. 如果两个三角形的对应角相等,那么这两个三角形()A. 一定全等B. 可能相似C. 一定相似D. 无法确定答案:B二、填空题3. 已知三角形ABC与三角形DEF全等,且∠A=∠D,AB=DE,那么AC=______。

答案:EF4. 如果两个三角形的两边和夹角对应相等,那么这两个三角形是______。

答案:全等三、判断题5. 如果两个三角形的对应边成比例,那么这两个三角形一定全等。

()答案:错误6. 如果两个三角形的两边和夹角对应相等,那么这两个三角形一定相似。

()答案:正确四、解答题7. 如图所示,已知三角形ABC与三角形DEF全等,且AB=5cm,BC=7cm,∠A=∠D=90°,求DE的长度。

答案:DE=7cm8. 已知三角形ABC与三角形DEF相似,且AB=3cm,BC=4cm,DE=6cm,求AC的长度。

答案:AC=8cm五、证明题9. 已知三角形ABC与三角形DEF全等,且∠A=∠D,AB=DE,证明:AC=EF。

证明:由于三角形ABC与三角形DEF全等,根据全等三角形的性质,对应边相等,所以AC=EF。

10. 已知∠A=∠D,AB=DE,AC=DF,求证:三角形ABC≌三角形DEF。

证明:根据SAS(边角边)判定方法,已知∠A=∠D,AB=DE,AC=DF,所以三角形ABC≌三角形DEF。

初中数学鲁教版(五四制)七年级上册第一章 三角形3 探索三角形全等的条件-章节测试习题(2)

初中数学鲁教版(五四制)七年级上册第一章 三角形3 探索三角形全等的条件-章节测试习题(2)

章节测试题1.【答题】如图,线段AC与BD交于点0,且OA=OC,请添加一个条件,使△AOB≌△COD,这个条件是()A. AC=BDB. OD=OCC. ∠A=∠CD. OA=OB【答案】C【分析】根据全等三角形的判定定理解答即可.【解答】解:A、添加AC=BD不能判定△OAB≌△COD,故此选项错误;B、添加OD=OC不能判定△OAB≌△COD,故此选项错误;C、添加∠A=∠C,可利用ASA判定△OAB≌△COD,故此选项正确;D、添加AO=BO,不能判定△OAB≌△COD,故此选项错误;选C.2.【答题】如图,下列条件中,不能证明△ABD≌△ACD的是()A. BD=DC,AB=ACB. ∠ADB=∠ADC,∠BAD=∠CADC. ∠B=∠C,BD=DCD. ∠B=∠C,∠BAD=∠CAD【答案】C【分析】根据全等三角形的判定定理解答即可.【解答】解:A、BD=DC,AB=AC,再加公共边AD=AD可利用SSS定理进行判定,故此选项不合题意;B、∠ADB=∠ADC,BD=DC再加公共边AD=AD可利用SAS定理进行判定,故此选项不合题意;C、∠B=∠C,BD=CD,再加公共边AD=AD不能判定△ABD≌△ACD,故此选项符合题意;D、∠B=∠C,∠BAD=∠CAD再加公共边AD=AD可利用AAS定理进行判定,故此选项不合题意;选C.3.【答题】在△ABC和△A1B1C1中,已知∠A=∠A1,AB=A1B1,下列添加的条件中,不能判定△ABC≌△A1B1C1的是()A. BC=B1C1B. ∠C=∠C1C. AC=A1C1D. ∠B=∠B1【答案】A【分析】根据全等三角形的判定定理解答即可.【解答】解:A、不符合全等三角形的判定定理,即不能推出≌,故本选项正确;B、符合全等三角形的判定定理AAS,即能推出≌,故本选项错误;C、符合全等三角形的判定定理SAS,即能推出≌,故本选项错误;D、符合全等三角形的判定定理ASA,即能推出≌,故本选项错误;选A.4.【答题】如图,已知∠ADB=∠CBD,下列所给条件不能证明△ABD≌△CDB的是()A. ∠A=∠CB. AD=BCC. ∠ABD=∠CDBD. AB=CD【答案】D【分析】根据全等三角形的判定定理解答即可.【解答】A.∵∠A=∠C,∠ADB=∠CBD,BD=BD,∴△ABD≌△CDB(AAS),故正确;B.∵AD=BC,∠ADB=∠CBD,BD=DB,∴△ABD≌△CDB(SAS),故正确;C.∵∠ABD=∠CDB,∠ADB=∠CBD,BD=DB,∴△ABD≌△CDB(ASA),故正确;D.∵AB=CD,BD=DB,∠ADB=∠CBD,不符合全等三角形的判定方法,故不正确;选D.5.【答题】在下列条件中,不能说明△ABC≌△A′B′C′的是()A. ∠C=∠C′,AC=A′C′,BC=B′C′B. ∠B=∠B′,∠C=∠C′,AB=A′B′C. ∠A=∠A′,AB=A′B′,BC=B′C′D. AB=A′B′,BC=B′C′,AC=A′C【答案】C【分析】根据全等三角形的判定定理解答即可.【解答】A、∠C=∠C′,AC=A′C ′,BC=B′C′,根据SAS可以判定△ABC≌△A′B′C′;B、∠B=∠B′,∠C=∠C′,AB=A′B′,根据AAS可以判定△ABC≌△A′B′C′;C、∠A=∠A′,AB=A′B′,BC=B′C′,SSA不能判定两个三角形全等,故C选项符合题意;D、AB=A′B′,BC=B′C′,AC=A′C,根据SSS可以判定△ABC≌△A′B′C′,选C.6.【答题】如图,已知∠1=∠2,要得到△ABD≌△ACD,还需从下列条件中补选一个,则错误的选法是()A. AB=ACB. DB=DCC. ∠ADB=∠ADCD. ∠B=∠C【答案】B【分析】根据全等三角形的判定定理解答即可.【解答】先要确定现有已知在图形上的位置,结合全等三角形的判定方法对选项逐一验证:A、∵AB=AC,∴∴△ABD≌△ACD(SAS);故此选项正确;B、当DB=DC时,AD=AD,∠1=∠2,此时两边对应相等,但不是夹角对应相等,故此选项错误;C、∵∠ADB=∠ADC,∴∴△ABD≌△ACD(ASA);故此选项正确;D、∵∠B=∠C,∴∴△ABD≌△ACD(AAS);故此选项正确.选B.方法总结:本题考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,但SSA无法证明三角形全等.7.【答题】在下列各组条件中,不能说明的是()A.B.C.D.【答案】B【分析】根据全等三角形的判定定理解答即可.【解答】解:A、AB=DE,∠B=∠E,∠C=∠F,可以利用AAS定理证明△ABC≌△DEF,故此选项不合题意;B、AC=DF,BC=EF,∠A=∠D不能证明△ABC≌△DEF,故此选项符合题意;C、AB=DE,∠A=∠D,∠B=∠E,可以利用ASA定理证明△ABC≌△DEF,故此选项不合题意;D、AB=DE,BC=EF,AC=DF可以利用SSS定理证明△ABC≌△DEF,故此选项不合题意;选B.方法总结:判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.【答题】如图,已知点A、D、C、F在同一直线上,AB=DE,AD=CF,添加下列条件后,仍不能判断△ABC≌△DEF的是()A. BC=EFB. ∠A=∠EDFC. AB∥DED. ∠BCA=∠F【答案】D【分析】根据全等三角形的判定定理解答即可.【解答】解:∵AD=CF,∴AD+CD=CF+DC,∴AC=DF,A、添加BC=EF可利用SSS定理判定△ABC≌△DEF,故此选项不合题意;B、添加∠A=∠EDF可利用SAS定理判定△ABC≌△DEF,故此选项不合题意;C、添加AB∥DE可证出∠A=∠EDC,可利用SAS定理判定△ABC≌△DEF,故此选项不合题意;D、添加∠BCA=∠F不能判定△ABC≌△DEF,故此选项符合题意;选D.9.【答题】如图,已知AB∥CD,AD∥CB,则△ABC≌△CDA的依据是()A. SASB. ASAC. AASD. SSS【答案】B【分析】根据全等三角形的判定定理解答即可.【解答】∵AB∥DC,AD∥BC,∴∠BAC=∠DCA,∠DAC=∠BCA,而AC=CA,∴△ABC≌△CDA(ASA).选B.10.【答题】若AD=BC,∠A=∠B,直接能利用“SAS”证明△ADF≌△BCE的条件是()A. AE=BFB. DF=CEC. AF=BED. ∠CEB=∠DFA【答案】C【分析】根据全等三角形的判定定理解答即可.【解答】解:用边角边证明两三角形全等,已知其中一个对应角相等和一条对应边相等,则还需要的条件是相等角的另外一条临边相等,即AF=BE,选C.11.【答题】如图所示,在△ABC中,BC=AC,BE=AE,则由“SSS”可以判定()A. △ACD≌△BCDB. △ADE≌△BDEC. △ACE≌△BCED. 以上都对【答案】C【分析】根据全等三角形的判定定理解答即可.【解答】解:三条边对应相等,BC=AC,BE=AE,CE=CE. 所以△ACE≌△BCE,选C.12.【答题】如图,已知AD=AE,添加下列条件仍无法证明△ABE≌△ACD的是()A. AB=ACB. BE=CDC. ∠B=∠CD. ∠ADC=∠AEB 【答案】B【分析】根据全等三角形的判定定理解答即可.【解答】A、∵在△ABE和△ACD中,AE=AD、∠A=∠A、AB=AC,∴△ABE≌△ACD (SAS),正确,故本选项不符合题意;B、根据AE=AD,BE=CD和∠A=∠A不能推出△ABE和△ACD全等,错误,故本选项符合题意;C、∵在△ABE和△ACD中,∠A=∠A、∠B=∠C、AE=AD,∴△ABE≌△ACD(AAS),正确,故本选项不符合题意;D、∵在△ABE和△ACD中,∠A=∠A、AE=AD、∠AEB=∠ADC,∴△ABE≌△ACD (ASA),正确,故本选项不符合题意,选B.13.【答题】下列四组条件中, 能使△ABC≌△DEF的条件有()①AB = DE, BC = EF, AC = DF; ②AB = DE, ∠B = ∠E, BC = EF;③∠B = ∠E, BC = EF, ∠C = ∠F; ④AB = DE, AC = DF, ∠B = ∠E.A. 1组B. 2组C. 3组D. 4组【答案】C【分析】根据全等三角形的判定定理解答即可.【解答】解:①AB = DE, BC = EF, AC = DF,边边边;②AB = DE, ∠B = ∠E, BC = EF,边角边;③∠B = ∠E, BC = EF, ∠C = ∠F,角边角;选C.14.【答题】下列判断中错误的是()A. 有两角和一边对应相等的两个三角形全等B. 有两边对应相等的两个直角三角形全等C. 有两边和其中一边上的中线对应相等的两个三角形全等D. 有两边和一角对应相等的两个三角形全等【答案】D【分析】根据全等三角形的判定定理解答即可.【解答】A. 有两角和一边对应相等的两个三角形全等,正确,不符合题意;B. 有两边对应相等的两个直角三角形全等,正确,不符合题意;C. 有两边和其中一边上的中线对应相等的两个三角形全等,正确,不符合题意;D. 有两边和一角对应相等的两个三角形全等,当两边夹一角时,正确,当两边和其中一边的对角时,不正确,故D错误,符合题意,选D.15.【答题】两个三角形有两个角对应相等,正确说法是()。

专题02 全等三角形重难点题型(解析版)-初中数学七年级上学期重难点题型分类高分必刷题(人教版)

专题02 全等三角形重难点题型(解析版)-初中数学七年级上学期重难点题型分类高分必刷题(人教版)

专题02高分必刷题-全等三角形重难点题型分类(解析版)题型1:全等三角形的性质1.下列说法正确的是()A.两个等边三角形一定全等B.形状相同的两个三角形全等C.面积相等的两个三角形全等D.全等三角形的面积一定相等【解答】解:A、两个边长不相等的等边三角形不全等,故本选项错误;B、形状相同,边长不对应相等的两个三角形不全等,故本选项错误;C、面积相等的两个三角形不一定全等,故本选项错误;D、全等三角形的面积一定相等,故本选项正确.故选:D.2.如图,△ABC≌△DCB,△A=80°,△DBC=40°,则△DCA的度数为()A.20°B.25°C.30°D.35°【解答】解:△△ABC≌△DCB,∴∠D=△A=80°,△ACB=DBC=40°,∴∠DCB=180°﹣∠D﹣∠DBC=60°,∴∠DCA=△DCB﹣∠ACB=20°,故选:A.3.如图,△ABC≌△DEF,BE=7,AD=3,则AB=.【解答】解:△△ABC≌△DEF,∴AB=DE,∴AB﹣AD=DE﹣AD,即BD=AE,∵BE=7,AD=3,∴BD=AE==2∴AB=AD+DB=3+2=5.故答案为:5.题型2:添加一个条件,是两三角形全等4.如图,已知MB=ND,△MBA=△NDC,下列条件中不能判定△ABM≌△CDN的是()A.△M=△N B.AM∥CN C.AB=CD D.AM=CN【解答】解:A、△M=△N,符合ASA,能判定△ABM≌△CDN,故A选项不符合题意;B、AM∥CN,得出△MAB=△NCD,符合AAS,能判定△ABM≌△CDN,故B选项不符合题意.C、AB=CD,符合SAS,能判定△ABM≌△CDN,故C选项不符合题意;D、根据条件AM=CN,MB=ND,△MBA=△NDC,不能判定△ABM≌△CDN,故D选项符合题意;故选:D.5.如图,已知△ADB=△CBD,下列所给条件不能证明△ABD≌△CDB的是()A.△A=△C B.AD=BC C.△ABD=△CDB D.AB=CD【解答】解:在△ABD和△CDB中,,∴△ABD≌△CDB(AAS)∴选项A能证明;在△ABD和△CDB中,,∴△ABD≌△CDB(SAS),∴选项B能证明;在△ABD和△CDB中,,∴△ABD≌△CDB(ASA),∴选项C能证明;选项D不能证明△ABD≌△CDB;故选:D.6.如图,已知△1=△2,要使△ABC≌△CDA,还需要补充的条件不能是()A.AB=CD B.BC=DA C.△B=△D D.△BAC=△DCA 【解答】解:A、根据AB=CD和已知不能推出两三角形全等,错误,故本选项正确;B、△在△ABC和△CDA中∴△ABC≌△CDA(SAS),正确,故本选项错误;C、△在△ABC和△CDA中∴△ABC≌△CDA(AAS),正确,故本选项错误;D、△在△ABC和△CDA中∴△ABC≌△CDA(AAS),正确,故本选项错误;故选:A.题型三:尺规作图的依据7.如图,是用直尺和圆规作一个角等于已知角的示意图,则说明△A′O′B′=△AOB的依据是()A.SSS B.SAS C.AAS D.ASA【解答】解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD≌△C'O'D',故选:A.8.工人师傅常用角尺平分一个任意角.做法如下:如图,△AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N重合,过角尺顶点C作射线OC.由此作法便可得△MOC≌△NOC,其依据是()A.SSS B.SAS C.ASA D.AAS【解答】解:∵在△ONC和△OMC中,∴△MOC≌△NOC(SSS),∴∠BOC=∠AOC,故选:A.9.如图,红红书上的三角形被墨迹污染了一部分,她根据所学的知识很快就画了一个与书上完全一样的三角形,那么红红画图的依据是()A.SSS B.SAS C.ASA D.AAS【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:C.题型4:角平分线的性质10.如图,在△ABC中,△C=90°,AC=BC,AD平分△CAB交BC于D,DE⊥AB于E,若AB=6cm,则△DBE的周长是()A.6 cm B.7 cm C.8 cm D.9 cm【解答】解:△AD平分△CAB,DE⊥AB,△C=90°,∴DE=CD,又△AC=BC,AC=AE,∴AC=BC=AE,∴△DBE的周长=DE+BD+EB=CD+BD+EB=BC+EB=AE+EB=AB,∵AB =6cm,∴△DBE的周长=6cm.故选:A.11.如图,△ABC中,△C=90°,AD是角平分线,AB=14,S△ABD=28,则CD的长为.【解答】解:如图,过D作DE⊥AB于E,∵∠C=90°,AD是角平分线,∴由角平分线的性质,得DE=CD.∵AB=14,S△ABD=28,∴×AB×DE=28,即×14×DE=28,解得DE=4,∴CD=4,故答案为:4.12.如图,BD是△ABC的平分线,DE⊥AB于E,S△ABC=36cm2,AB=18cm,BC=12cm,则DE=cm.【解答】解:过点D作DF⊥BC于点F,∵BD是△ABC的平分线,DE⊥AB,∴DE=DF,∵AB=18cm,BC=12cm,∴S△ABC=S△ABD+S△BCD=AB•DE+BC•DF=DE•(AB+BC)=36cm2,∴DE=2.4(cm).故答案为:2.4.题型五:全等三角形中档证明题考向1:重叠边技巧①短边相等+重叠边=长边相等②长边相等-重叠边=短边相等13.如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,△A=△D,AF=DC.求证:(1)△ABC≌△DEF;(2)BC∥EF.【解答】证明:(1)△AF=DC,∴AF+CF=DC+CF,∴AC=DF,∵在△ABC和△DEF中,∴△ABC≌△DEF(SAS);(2)△由(1)知△ABC≌△DEF,∴∠BCA=△EFD,∴BC∥EF.14.已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:AB∥DE.【解答】证明:△AF=DC,∴AF﹣FC=DC﹣CF,即AC=DF.在△ACB和△DFE中,∴△ACB≌△DFE(SSS),∴∠A=△D,∴AB∥DE.考向2:重叠角技巧重叠角技巧:①小角相等+重叠角=大角相等②大角相等-重叠角=小角相等15.如图,AB=AD,△C=△E,△1=△2,求证:△ABC≌△ADE.【解答】证明:△△1=△2,∴∠1+∠EAC=△2+∠EAC,即△BAC=△DAE,在△ABC和△ADE中,,∴△ABC≌△ADE(AAS).16.如图,△ABC和△ADE都是等腰三角形,且△BAC=90°,△DAE=90°,B,C,D在同一条直线上.求证:BD=CE.【解答】证明:△△ABC和△ADE都是等腰直角三角形,∴AD=AE,AB=AC,又△△EAC =90°+∠CAD,△DAB=90°+∠CAD,∴∠DAB=△EAC,∵在△ADB和△AEC中,∴△ADB≌△AEC(SAS),∴BD=CE.考向三:等角的余角相等技巧:∠1+∠2=90,∠2+∠3=90, ∠1=∠3技巧:把全等三角形中一个三角形的两个锐角分别随意标上∠1、∠2,再从第二个三角形的两个锐角中挑一个和∠1或∠2互余的角标上∠3。

七年级数学下---全等三角形证明题精选

七年级数学下---全等三角形证明题精选

七年级数学下--—全等三角形证明题精选1、已知:如图,四边形ABCD 中,AC 平分角BAD ,CE 垂直AB 于E,且∠B+∠D=180°,求证:AE=AD+BEABDCE 122、已知:如图,AB 、CD 交于O 点,CE//DF ,CE=DF,AE=BF.求证:∠ACE=∠BDF 。

3. 已知:如图,△ABC 中,AD ⊥BC 于D ,E 是AD 上一点,BE 的延长线交AC 于F ,若BD=AD ,DE=DC 。

求证:BF ⊥AC 。

4. 已知:如图,△ABC 和△A 'B 'C '中,∠BAC=∠B 'A 'C ',∠B=∠B ',AD 、A 'D '分别是∠BAC 、∠B 'A 'C '的平分线,且AD=A 'D '。

求证:△ABC ≌△A ’B ’C'。

ABCDEFOAB CDEFAB C D A' B'C'D' 1 23 45、已知:如图,AB=CD,AD=BC ,O 是AC 中点,OE ⊥AB 于E ,OF ⊥D 于F 。

求证:OE=OF 。

A BCDE F O6.已知:如图,AC ⊥OB ,BD ⊥OA ,AC 与BD 交于E 点,若OA=OB ,求证:AE=BE 。

OB ACDE7.已知:如图,AB//DE ,AE//BD ,AF=DC ,EF=BC 。

求证:△AEF ≌△DBC 。

A BDEF8.如图,B ,E 分别是CD 、AC 的中点,AB ⊥CD,DE ⊥AC 求证:AC=CD (连接AD )9。

已知:如图,PA 、PC 分别是△ABC 外角∠MAC 和∠NCA 的平分线,•它们交于点P ,PD ⊥BM 于D,PF ⊥BN 于F .求证:BP 为∠MBN 的平分线.10、如图,已知AD 是∠BAC 的平分线, DE ⊥AB 于E , DF ⊥AC 于F , 且BE=CF , 求证: (1)AD 是△ABC 的中线;(2)AB=AC .11。

七年级数学下册《探索三角形全等的条件》练习题及答案(北师大版)

七年级数学下册《探索三角形全等的条件》练习题及答案(北师大版)

七年级数学下册《探索三角形全等的条件》练习题及答案(北师大版)一、选择题(共12小题)1. 如图已知.判定和全等的依据是A. B. C. D.2. 如图所示在下列条件中不能证明的是A. B.C. D.3. 如图交于点则的度数是A. B. C. D.4. 有两个三角形下列条件能判定两个三角形全等的是A. 有两条边对应相等B. 有两边及一角对应相等C. 有三角对应相等D. 有两边及其夹角对应相等5. 如图用直接判定的理由是A. B. C. D.6. 全等形是指A. 形状相同的两个图形B. 面积相同的两个图形C. 每个角均对应相等的两个平面图形D. 能够完全重合的两个平面图形7. 如图已知要得到还需要的条件是A. B. C. D.8. 在下列命题中真命题是A. 两个钝角三角形一定相似B. 两个等腰三角形一定相似C. 两个直角三角形一定相似D. 两个等边三角形一定相似9. 下列四组中一定是全等三角形的是A. 两条边对应相等的两个锐角三角形B. 面积相等的两个钝角三角形C. 斜边相等的两个直角三角形D. 周长相等的两个等边三角形10. 如图已知能直接判定的方法是A. B. C. D.11. 如图已知点在一直线上都是等边三角形连接和与相交于点与相交于点下列说法不一定正确的是A. B. C. D.12. 如图已知如果只添加一个条件使则添加的条件不能为A. B. C. D.二、填空题(共6小题)13. 如图已知则依据可以判定从而有再依据可以判定.14. 如图所示已知要推得若以" "为依据还缺条件.15. 全等三角形判定方法:在两个三角形中如果那么简记为.16. 全等三角形的判定方法:在两个三角形中如果有两个角及对应相等那么这两个三角形全等(简记为).17. 两个全等三角形的周长面积.18. 如图因为(已知)所以()因为(已知)所以()在和中所以().三解答题(共5小题)19. 如图是正方形的边上任意一点过点作交的延长线于点.求证:.20. 一天某校数学课外活动小组的同学们带着皮尺去测量某河道因挖沙形成的“圆锥形坑”的深度来评估这些深坑对河道的影响.如图是同学们选择(确保测量过程中无安全隐患)的测量对象测量方案如下:①先测量出沙坑坑沿圆周的周长约为米;②甲同学直立于沙坑坑沿圆周所在平面上经过适当调整自己所处的位置当他位于点时恰好他的视线经过沙坑坑沿圆上的一点看到坑底(甲同学的视线起点与点点三点共线).经测量:米米.根据以上测量数据求“圆锥形坑”的深度(圆锥的高).(取结果精确到米)21. 如图已知在同一条直线上求证:.22. 如图已知试说明和全等的理由.23. 如图矩形中对角线相交于点点是线段上一动点(不与点重合)的延长线交于点.(1)求证:四边形为平行四边形.(2)若从点出发.以的速度向点匀速运动.设点运动时间为秒问四边形能够成为菱形吗?如果能求出相应的值;如果不能说明理由.参考答案1. C2. D3. A4. D5. A6. D7. D8. D9. D10. A11. B【解析】A项可由得得到 C D项可由得得到而B 项不能由已知条件得到.12. A13.14.15. 略略略16. 略略17. 相等相等18. 略略略略略略略略略略19. 略20. 如图所示取圆锥底面圆圆心连接则......“圆锥形坑”的深度约为米.21. 因为(已知)所以(等式性质)即在与中所以所以(全等三角形的对应角相等)所以(同位角相等两直线平行).22. 在与中.23. (1)如图四边形是矩形在与中四边形为平行四边形.(2)点从点出发运动秒时.当四边形是菱形时.四边形是矩形在直角中即解得:点运动时间为秒时四边形能够成为菱形.。

初中数学 三角形全等的判定专题训练题

初中数学 三角形全等的判定专题训练题

三角形全等的判定专题训练题1、如图(1):AD⊥BC,垂足为D,BD=CD。

求证:△ABD≌△ACD。

2、如图(2):AC∥EF,AC=EF,AE=BD。

求证:△ABC≌△EDF。

3、如图(3):DF=CE,AD=BC,∠D=∠C。

求证:△AED≌△BFC。

4、如图(4):AB=AC,AD=AE,AB⊥AC,AD⊥AE。

求证:(1)∠B=∠C,(2)BD=CE(5)在一次数学课上,李老师在黑板上画出图6,并写下了四个等式①AB = DC ②BE =CE③∠B =∠C④∠BAE =∠CDE..要求同学从这四个等式中选出两个作为条件,推出△AED是等腰三角形;请你试着完成李老师提出的要,并说明理由。

(写出一种即可)已知:求证:△AED是等腰三角形5、如图(5):AB⊥BD,ED⊥BD,AB=CD,BC=DE。

求证:AC⊥CE。

6、如图(6):CG=CF,BC=DC,AB=ED,点A、B、C、D、E在同一直线上。

求证:(1)AF=EG,(2)BF∥DG。

7、如图(7):AC⊥BC,BM平分∠ABC且交AC于点M、N是AB的中点且BN=BC。

求证:(1)MN平分∠AMB,(2)∠A=∠CBM。

8、如图(8):A、B、C、D四点在同一直线上,AC=DB,BE∥CF,AE∥DF。

求证:△ABE≌△DCF。

9、如图(9)AE、BC交于点M,F点在AM上,BE∥CF,BE=CF。

求证:AM是△ABC的中线。

(6)复习“全等三角形”的知识时李老师布置了一道作业题“如图①已知:在△ABC 中,AB=AC,P 是△ABC 内部任意一点,将AP 绕A 顺时针旋转至AQ,使∠QAP=∠BAC,连接BQ、CP;则BQ=CP..”小亮是个爱动脑筋的同学,他通过对图①的分析,证明了△ABQ≌△ACP,从而证得BQ=CP 之后,将点P 移到等腰三角形ABC 之外,原题中的条件不变,发现“BQ=CP”仍然成立..请你就图②给出证明。

数学(七下)3.3探索三角形全等的条件(二)

数学(七下)3.3探索三角形全等的条件(二)

1、角.边.角;
2、角.角.边
每种情况下得到的三角形都全等吗?
做一做
1.角.边.角;
若三角形的两个内角分别是60°和80° 它们所夹的边为4cm,你能画出这个三角形吗?
2cm
60°
80°
做一做
2.角.角.边
若三角形的两个内角分别是60°和45°,且45° 所对的边为3cm,你能画出这个三角形吗?
2
C
∴△ABC≌△DCB( AAS )
巩固练习:
如图,O是AB的中点,∠A=∠B,△AOC 与△BOD全等吗?为什么? 我的思考过程如下: 两角与夹边对应相 等 A
C O B D
∴△AOC≌△BOD
补充练习
1﹑请在下列空格中填上适当的条件, 使△ABC≌△DEF。 在△ABC和△DEF中 A D
课堂小结
通过这堂课的学习你有 什么收获?知道了哪些 新知识?学会了做什么?
布置作业
P83 知识技能2.3; 问题解决。
第三章
三角形
3 探索三角形全等的条件(第2课时)
情境导入
我们已学过识别两个三角形全等的方法 是什么?识别三角形全等是不是还有其 它方法呢?
情境导入
有一块三角形纸片撕去了一个角, 要去剪一块新的,如果你手头没 有测量的仪器,你能保证新 剪的纸片形状、大小和原来的一 样吗?
实践探究
我们知道:如果给出一个三角形三条边的长度, 那么因此得到的三角形都是全等.如果已知一个 三角形的两角及一边,那么有几边对应相等的两个三 角形全等,简写成“角边角”或“ASA”
两角和其中一角的对边对应相等的两个 三角形全等,简写成“角角边”或“AAS”
练一练
1.如图,已知AB=DE, ∠A =∠D, ,∠B=∠E, 则△ABC ≌△DEF的理由是:角边角(ASA) 2.如图,已知AB=DE ,∠A=∠D,,∠C=∠F,则 △ABC ≌△DEF的理由是: 角角边(AAS)

七年级数学探索三角形全等的条件2

七年级数学探索三角形全等的条件2

剪下所画⊿ABC,与同学所画的三角形
能重合吗?
Q P
C
45°
60°
A
B
2.6cm
例:如图,OP是∠MON的平分线,C
是OP上的一点,CA⊥OM,OB ⊥ON,垂足别是A、B。 ⊿AOC和⊿BOC全
等吗?为什么?
M
A P
C
O
N
B
在上图中,如果改变点C在OP上的位置,那么⊿AOC和 ⊿BOC仍然全等吗?
墨灰色的大地开始抖动摇晃起来,一种怪怪的华灯云歌味在梦幻的空气中怪舞。最后抖起墨黑色井架耳朵一闪,酷酷地从里面窜出一道银辉,他抓住银辉灿烂地一耍
,一件光溜溜、森幽幽的咒符『银云傻鬼密码』便显露出来,只见这个这件玩意儿,一边闪烁,一边发出“呱呜”的奇音!……飘然间汗赤波阿警察加速地搞了个曲
身疯耍刺刷子的怪异把戏,,只见他歪斜的暗黑色菊花一样的手掌中,突然弹出四十团断崖土肠羊状的蜘蛛,随着汗赤波阿警察的颤动,断崖土肠羊状的蜘蛛像天线 一样在头顶离奇地耍出阵阵光墙……紧接着汗赤波阿警察又使自己长长的腿飘忽 出亮黄色的药丸 味,只见他稀奇的戒指中,萧洒地涌出二十组榛子状的仙翅枕头尺, 随着汗赤波阿警察的晃动,榛子状的仙翅枕头尺像耳坠一样念动咒语:“冰头嘤嘱啭,井架嘤嘱啭,冰头井架嘤嘱啭……『银云傻鬼密码』!高人!高人!高人!” 只见汗赤波阿警察的身影射出一片紫红色神光,这时从天而降变态地出现了三飘厉声尖叫的雪白色光贝,似妖影一样直奔亮紫色亮光而来……,朝着壮扭公主浑厚的 肩膀怪砸过来!紧跟着汗赤波阿警察也蹦耍着咒符像天平般的怪影一样向壮扭公主怪砸过来壮扭公主忽然古古怪怪的海光项链眨眼间涌出腐粉色的龟动菇蕾味……能 上下翻转的金海冰石超视距眼镜射出地砖浓舞声和哧哧声……弹射如飞、快似闪电般的舌头忽隐忽现喷出火球凸鸣使了一套,变体虎晕凌霄翻三百六十度外加疯转十三周的苍茫招式……紧接着把圆润光滑的下巴颤了颤,只见七道荡漾的 犹如烟卷般的红云,突然从活像蝌蚪般的粗眉毛中飞出,随着一声低沉古怪的轰响,金红色的大地开始抖动摇晃起来,一种怪怪的腐酣垃圾味在悠闲的空气中跳动! 最后耍起如同天边小丘一样的鼻子一抖,轻飘地从里面流出一道妖影,她抓住妖影深邃地一甩,一件蓝冰冰、金灿灿的咒符¤雨光牧童谣→便显露出来,只见这个这 件神器儿,一边颤动,一边发出“哧哧”的仙声。……飘然间壮扭公主加速地耍了一套仰卧颤动搜鹅怪的怪异把戏,,只见她极像小翅膀似的耳朵中,酷酷地飞出四 十组转舞着¤巨力碎天指→的果林玉背熊状的粉

北师大版七年级数学下册探索三角形全等的条件第2课时利用“角边角”“角角边”判定三角形全等

北师大版七年级数学下册探索三角形全等的条件第2课时利用“角边角”“角角边”判定三角形全等

AB=AB(已证),
所以△ABD≌△A'B'D'.所以AD=A'D'.
课堂小结
内容
角边角 角角边
应用
有两角及夹边对应相等的两个三角 形全等(简写成“ASA”); 两角分别相等且其中一组等角的对 边相等的两个三角形全等(简写成 “AAS”)
为证明线段和角相等提供了新的证法
注意
注意“角角边”“角边角” 中两角与边的区分
第四章 三角形
3 探索三角形全等的条件
第2课时 利用“角边角”“角角边”判定三角形全等
学习目标
情境引入
1.探索并正确理解三角形全等的判定方法 “ASA”和“AAS”;
2.会用三角形全等的判定方法“ASA”和“AAS” 证明两个三角形全等.(重点)
情境导入
如图所示,某同学把一块三角形的玻璃不谨慎打碎成了三块, 现在要到玻璃店去配一块完全一样的玻璃,那么最省事的 办法是带哪块去? 学生活动:学生先自主探究出答案,然后再与同学进行交流. 教师点拨:显然仅仅带①或②是无法配成完全一样的玻璃的, 而仅仅带③则可以,为什么呢? 本节课我们继续研究三角形全等的判定方法.
所以AB=A'B'(全等三角形对应边相等),
D′ C′
∠ABD=∠A'B'D'(全等三角形对应角相等).
因为AD⊥BC,A'D'⊥B'C',所以∠ADB=∠A'D'B'=90°.
在△ABD和△A'B'D'中,
∠ADB=∠A'D'B'(已证), ∠ABD=∠A'B'D'(已证),

七年级数学全等三角形证明精选题

七年级数学全等三角形证明精选题

七年级数学全等三角形证明精选题先做几道基础题:1、如图(1):AD ⊥BC ,垂足为D ,BD=CD 。

求证:△ABD ≌△ACD 。

2. 如图(8):A 、B 、C 、D 四点在同一直线上,AC=DB ,BE ∥CF ,AE ∥DF 。

求证:△ABE ≌△DCF 。

3、如图(10)∠BAC=∠DAE ,∠ABD=∠ACE ,BD=CE 。

求证:AB=AC 。

(图1)D CB A F E (图8)DC B A E (图10)D CB A2.如图,在Rt△ABC中,∠ACB=90°,AC=BC,D 是斜边AB上的一点,AE⊥CD于E,BF⊥CD交CD 的延长线于F.求证:△ACE≌△CBF.3.如图,点E在△ABC外部,点D在BC边上,DE 交AC于点F,若∠1=∠2=∠3,AC=AE.试说明下列结论正确的理由:(1)∠C=∠E;(2)△ABC≌△ADE.4.如图:DF=CE,AD=BC,∠D=∠C.求证:△AED≌△BFC.5.如图,在△ABC中,AB=AC,D是BC的中点,连接AD,在AD的延长线上取一点E,连接BE,CE.△ABE 与△ACE全等吗?为什么?6.(2010•顺义区)已知:如图,AB=AC,点D是BC 的中点,AB平分∠DAE,AE⊥BE,垂足为E.求证:AD=AE.7.(2010•十堰)如图,△ABC中,AB=AC,BD⊥AC,CE⊥AB.求证:BD=CE.8.(2008•南宁)如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E、F,BE=CF.(1)图中有几对全等的三角形请一一列出;(2)选择一对你认为全等的三角形进行证明.9.(2005•新疆)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,求证:DE=AD+BE.10.如图,AD∥BC,∠A=90°,E是AB上的一点,且AD=BE,∠1=∠2.求证:△ADE≌△BEC.11.如图,在△ABC中,AC=BC,直线l经过顶点C,过A,B两点分别作l的垂线AE,BF,E,F为垂足.AE=CF,求证:∠ACB=90°.12.(2002•湛江)如图,有一池塘.要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA.连接BC并延长到E,使CE=CB.连接DE,那么量出DE的长,就是A、B的距离.请说明DE的长就是A、B的距离的理由.13.(2010•广安)已知:如图,在矩形ABCD中,BE=CF,求证:AF=DE.14.(2005•三明)已知:如图,∠1=∠2,BD=BC.求证:∠3=∠4.15.如图,△ABC和△ADE都是等腰直角三角形,CE 与BD相交于点M,BD交AC于点N.证明:(1)BD=CE;(2)BD⊥CE.16.如图所示,△ABD,△ACE都是等边三角形,求证:CD=BE.答案与评分标准一.解答题(共16小题)1.如图,已知AB∥DE,AB=DE,AF=DC.(1)求证:△ABF≌△DEC;(2)请你找出图中还有的其他几对全等三角形.(只要直接写出结果,不要证明)考点:全等三角形的判定。

七年级数学上册《第十二章 三角形全等的判定》练习题-带答案(人教版)

七年级数学上册《第十二章 三角形全等的判定》练习题-带答案(人教版)

七年级数学上册《第十二章 三角形全等的判定》练习题-带答案(人教版)姓名 班级 学号一、选择题:(本题共8小题,每小题5分,共40分.)1.下列判断正确的是( ).A .有一直角边相等的两个直角三角形全等B .斜边相等的两个等腰直角三角形全等C .腰相等的两个等腰三角形全等D .两个锐角对应相等的两个直角三角形全等2.如图,下列条件中,不能证明△ABD ≌△ACD 的是( )A .BD =DC ,AB =AC B .∠ADB =∠ADC ,∠BAD =∠CADC .∠B =∠C ,∠BAD =∠CAD D .∠B =∠C ,BD =DC3.要测量圆形工件的外径,工人师傅设计了如图所示的卡钳,点O 为卡钳两柄交点,且有OA=OB=OC=OD ,如果圆形工件恰好通过卡钳AB ,则此工件的外径必是CD 之长了,其中的依据是全等三角形的判定条件( )A .SSSB .SASC .ASAD .AAS4. 如图,在由4个相同的小正方形拼成的网格中,21∠∠-=( )A .60︒B .75︒C .90︒D .105︒5.小华同学周末在家做家务,不慎把家里的一块三角形玻璃打碎成如图所示的四块,现在要去玻璃店配一块完全一样的玻璃,可以选择的方法是( )A .带①②去B .带②③去C .带③④去D .带②④去6.如图AC CD =,B E 90∠=∠=︒和AC CD ⊥则不正确的结论是( )A .A ∠与D ∠互为余角B .12∠=∠C .ABC ≌CED D .A 2∠=∠7.如图,△ABD 与△ACE 都是等边三角形,在这个图形中,有两个三角形一定是全等的,利用符号“≌”可以表示为( )A .△ABD ≌△ACEB .△BDC ≌△CBEC .△BDE ≌△CED D .△ADC ≌△ABE8.如图,AD 是ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF =,连接BF ,CE 下列说法:①ABD 和ACD 面积相等;②BAD CAD ∠=∠;③BDF CDE ≅;④BF CE ;⑤CE AE =.其中正确的是( )A .①②B .③⑤C .①③④D .①④⑤二、填空题:(本题共5小题,每小题3分,共15分.)9.如图,AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,CE ,BD 相交于点O ,则图中全等的直角三角形有 对.10.如图所示,AB=DB ,∠ABD=∠CBE ,请你添加一个适当的条件 ,使ΔABC ≌ΔDBE.(只需添加一个即可)11.如图90ACB ∠=︒,AC BC =且AE CE ⊥于点E ,BD CE ⊥于点D ,5cm AE =和2cm BD =则DE 的长是 cm .12.如图,在△ABC 中,AB =10,AC =6,则BC 边上的中线AD 的取值范围是 .13.如图,在Rt ABC 中90BAC ∠=,AB AC =点D 为BC 上一点,连接AD .过点B 作BE AD ⊥于点E ,过点C 作CF AD ⊥交AD 的延长线于点F .若4BE =,1CF =则EF 的长度为 .三、解答题:(本题共5题,共45分)14.如图,在△ABC 中,∠ACB=90∘,D 是BC 延长线上一点,E 是BD 的垂直平分线与AB 的交点,DE 交AC 于点F ,求证:EA=EF.15.已知,如图,△ABC 中,AB=AC ,动点D 、E 、F 在AB 、BC 、AC 上移动,移动过程中始终保持BD=CE ,∠DEF=∠B ,请你分析是否存在始终与△BDE 全等的三角形,并说明理由。

专题探索三角形全等的条件(HL)(专项练习)数学七年级下册(北师大版)

专题探索三角形全等的条件(HL)(专项练习)数学七年级下册(北师大版)

专题4.17 探索三角形全等的条件(HL )(基础篇)(专项练习)一、单选题1.如图,AC BC ⊥,AD BD ⊥,AC AD =,则判定Rt Rt ABC ABD ≌的依据是( )A .SASB .SSSC .HLD .无法确定2.如图,在ABC 中,90C ∠︒=,DE AB ⊥于点D ,BC BD =,若8AC =cm ,则AE DE +的值为( )A .7cmB .8cmC .9cmD .10cm3.下列关于两个直角三角形全等的判定,不正确的是( ) A .斜边和一锐角分别相等的两个直角三角形全等 B .两条直角边分别相等的两个直角三角形全等 C .斜边和一条直角边分别相等的两个直角三角形全等 D .两个面积相等的直角三角形全等4.如图,在△ABC 中,AB =AC ,AD ⊥BC 于点D ,则下列结论不一定成立的是( )A .AD =BDB .BD =CDC .⊥BAD =⊥CADD .⊥B =⊥C5.如图,AC BC ⊥,AD BD ⊥,垂足分别是C ,D ,AC BD =,32CBA ∠=︒,则CAD ∠等于( )A .32︒B .58︒C .24︒D .26︒6.已知:如图,在△ABC 中,点D 在边BC 上,DB =DC ,DE AB ⊥,DF AC ⊥,垂足分别为E ,F ,DE =DF .求证:Rt Rt DEB DFC ≌△△.以下是排乱的证明过程: ⊥⊥⊥BED =⊥CFD =90°, ⊥⊥()Rt Rt DEB DFC HL ≌△△. ⊥⊥DE ⊥AB ,DF ⊥AC , ⊥⊥在Rt DEB △和Rt DFC △中,DB DC DE DF=⎧⎨=⎩, 证明步骤正确的顺序是( ) A .⊥→⊥→⊥→⊥ B .⊥→⊥→⊥→⊥ C .⊥→⊥→⊥→⊥D .⊥→⊥→⊥→⊥7.如图,在ABC 中,BE AC ⊥于点E ,AF 分别交BE ,BC 于点F ,D ,AE BE =,若依据“HL ”说明AEF BEC ≌,则下列所添条件合理的是( )A .EF CE =B .AFEC ∠=∠C .BD AD ⊥D .AF BC =8.如图,AD 是ABC 的高,AD BD 8==,E 是AD 上的一点,BE AC 10==,AE 2=,BE 的延长线交AC 于点F ,则EF 的长为( )A .1.2B .1.5C .2.5D .39.如图,BD=CF ,FD⊥BC 于点D ,DE⊥AB 于点E ,BE=CD ,若⊥AFD=135°,则⊥EDF 的度数为( )A .55°B .45°C .35°D .65°10.如图,在⊥ABC 中, AC =BC ,过点 B 作射线 BF ,在射线 BF 上取一点 E ,使得∠CBF =∠CAE ,过点C 作射线 BF 的垂线,垂足为点 D ,连接 AE ,若 DE =1,AE =4 , 则 BD 的长度为( )A .6B .5C .4D .3二、填空题11.如图,AB BC AD DC ⊥⊥,,请你添加一个条件_______,利用“HL ”,证明Rt Rt ABC ADC ≌.12.如图,在Rt ABC 与Rt DEF △中,90B E ∠=∠=,BF CE =,AB DE =,50A ∠=,则DFE ∠=______.13.如图,点D 、A 、E 在直线m 上AB AC =,90BAC ∠=︒,BD m ⊥于点D ,CE m ⊥于点E ,且BD AE =,若3BD =,5CE =,则DE =___________.14.如图,某小区广场有两个长度相等的滑梯靠在一面墙上,已知左边滑梯水平方向的长度AB 与右边滑梯的高度DE 相等.若右边滑梯与地面的夹角55DFE ∠=︒,则ABC ∠的度数为______°.15.如图,四边形ABCD ,连接BD ,AB ⊥AD ,CE ⊥BD ,AB =CE ,BD =CD .若AD =5,CD =7,则BE =________.16.Rt ⊥ABC 和Rt ⊥DEF 如图放置,其中⊥ACB =⊥DFE =90°,AB =DE 且AB ⊥DE .若AC =6,EF =4,CF =3,则BD 的长为______.17.如图,四边形ABCD 中,⊥B +⊥D =180°,AC 平分⊥DAB ,CM ⊥AB 于点M ,若AM =4cm ,BC =2.5cm ,则四边形ABCD 的周长为_____cm .18.如图,在Rt ⊥ABC 中,90C ∠=︒,12cm AC =,6cm BC ,一条线段PQ AB =,P ,Q 两点分别在AC 和过点A 且垂直于AC 的射线AX 上运动,要使⊥ABC 和⊥QPA 全等,则AP =_____.三、解答题19.如图,已知A 、F 、B 、D 在同一直线上,且AF BD =,90C E ∠=∠=︒,AC DE =,BC 与EF 相交于点O .(1) 求证:ABC DFE △≌△; (2) 若50D ∠=︒,求COF ∠的度数.20.如图,C 、D 分别位于路段A 、B 两点的正北、正南处,现有两车分别从E 、F 两处出发,均以60km/h 的速度沿直线行驶,2小时后分别到达C 、D 两地,休整一段时间后又以原来的速度直线行驶,1小时后同时到达A 、B 两点.(1) 请写出CE 与DF 的数量关系______,AC 与BD 的数量关系______; (2) 由(1)中的结论,试探究CE 与DF 的位置关系,并说明理由.21.如图,已知AD BC 、相交于点O ,AB CD =,AM BC ⊥于点M ,DN BC ⊥于点N ,BN CM =.(1) 求证:ABM DCN △≌△;(2) 试猜想OA 与OD 的大小关系,并说明理由.22.如图,在Rt ABC △和Rt ADE △中,==90?ABF ADE ∠∠,BC 与DE 相交于点F ,且=AB AD ,=AC AE ,连接CD ,EB .(1) 求证:CAD EAB ∠=∠;(2) 试判断CF 与EF 的数量关系,并说明理由23.如图,在ABC 中,AB AC DE =,是过点A 的直线,BD DE ⊥于D ,CE DE ⊥于点E ;(1) 若B C 、在DE 的同侧(如图1所示)且AD CE =.求证:DAB ECA ∠=∠; (2) 若B C 、在DE 的两侧(如图2所示),其他条件不变,AB 与AC 垂直吗?若垂直请给出证明;若不垂直,请说明理由.24.题提出:学习了三角形全等的判定方法“SSS ”“ SAS ”“ ASA ”“ AAS ”和“HL ”后,某小组同学探究了如下问题:当两个三角形满足两边和其中一边的对角分别相等时,这两个三角形是否全等.初步思考:他们先用符号语言表示了这个问题:在ABC 和DEF 中,AB DE =,AC DF =,B E ∠=∠.然后,对B ∠进行分类,可分为“B ∠是直角、钝角、锐角”三种情况进行探究.深入探究:过程如下,请你将这个小组同学的探究过程补充完整. (1) 第一种情况:当B ∠是直角时,ABC DEF ≅△△.如图1,在ABC 和DEF 中,AB DE =,AC DF =,90B E ∠=∠=︒,根据 ,可以知道ABC DEF ≅△△.(2) 第二种情况:当B ∠是钝角时,ABC DEF ≅△△.如图2,在ABC 和DEF 中,AB DE =,AC DF =,B E ∠=∠,且B ∠,E ∠都是钝角,求证:ABC DEF ≅△△.(3) 第三种情况:当B ∠是锐角时,ABC 和DEF 不一定全等.在ABC 和DEF 中,AB DE =,AC DF =,B E ∠=∠,且B ∠,E ∠都是锐角,请你用尺规在图3中作出DEF ,使DEF 和ABC 不全等.(不写作法,保留作图痕迹) (4) 在(3)中,B ∠与C ∠的大小关系还要满足什么条件,就可以使ABC DEF ≅△△?请根据以上作图过程直接写出结论.参考答案1.C【分析】由图可得公共边相等,所以全等的条件是两个直角三角形的斜边直角边相等. 解:AC BC ⊥,AD BD ⊥,∴在Rt ABC △和Rt △ABD 中,AC ADAB AB=⎧⎨=⎩ , ∴Rt Rt ABC ABD ≌(HL ).故选:C .【点拨】本题考查了三角形全等的判定,解决本题的关键是找到全等的条件. 2.B【分析】由条件可证明Rt CBE Rt DBE ≌,则可求得DE EC =,可求得答案. 解:⊥DE AB ⊥, ⊥90BDE ∠=︒ ⊥90C BDE ∠=∠=︒, 在Rt CBE 和Rt DBE 中,BE BEBC BD=⎧⎨=⎩ ⊥()Rt CBE Rt DBE HL ≌, ⊥CE DE =,⊥8AE DE AE CE AC cm +=+== 故选:B .【点拨】本题考查全等三角形的判定和性质,解题的关键是熟练掌握HL 证全等及边的转换.3.D【分析】此题需用排除法对每一个选项进行分析从而确定最终答案. 解:A 、利用AAS 来判定全等,不符合题意; B 、利用SAS 来判定全等,不符合题意; C 、利用HL 来判定全等,不符合题意;D 、面积相等不一定能推出两直角三角形全等,没有相关判定方法对应,符合题意. 故选:D .【点拨】此题主要考查对全等三角形的判定方法,常用的判定方法有SSS 、SAS 、AAS 、HL 等.4.A【分析】根据已知和公共边科证明⊥ADB⊥⊥ACD ,则这两个三角形的对应角、对应边相等,据此即可解答.解:⊥AB =AC ,AD =AD ,AD ⊥BC , ⊥Rt⊥ADB ⊥Rt⊥ACD (HL ),⊥BD =CD ,⊥BAD =⊥CAD ,⊥B =⊥C (全等三角形的对应角、对应边相等) 故B 、C 、D 一定成立,A 不一定成立. 故选A .【点拨】本题考查直角三角形全等的判定和性质,解决问题时注意利用已知隐含的条件AD 是公共边.5.D【分析】根据已知条件可以利用HL ,判定Rt Rt ADB BCA △≌△,全等后可得32DAB CBA ∠=∠=︒,再根据直角三角形两个锐角互余,可求得58CAB ∠=︒,进而可求得CAD ∠.解:证明:AC BC ⊥,AD BD ⊥,90D C ∴∠=∠=︒,在Rt ADB 和Rt BCA 中,BD ACAB BA =⎧⎨=⎩, Rt Rt (HL)ADB BCA ∴≌△△,⊥32DAB CBA ∠=∠=︒,在Rt BCA 中,90CAB CBA ∠+∠=︒, ⊥58CAB ∠=︒,⊥583226CAD CAB DAB ∠=∠-∠=︒-︒=︒, 故选:D .【点拨】本题考查全等三角形的判断定理,HL 定理,根据已知条件求证Rt Rt ADB BCA △≌△是解题关键.6.B【分析】根据垂直定义得出⊥BED =⊥CFD =90°,再根据全等三角形的判定定理推出即可. 解:证明:⊥DE ⊥AB ,DF ⊥AC , ⊥⊥BED =⊥CFD =90°, 在Rt △DEB 和Rt △DFC 中,BD CDDE DF =⎧⎨=⎩, ⊥Rt △DEB ⊥Rt △DFC (HL ),即选项B 正确;选项A 、选项C 、选项D 都错误;故选:B .【点拨】本题考查了垂直定义和全等三角形的判定,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,两直角三角形全等还有HL .7.D【分析】根据“HL ”进行判断即可.解:由题意得,AEF △和BEC 中,有一组直角边对应相等,即AE BE =缺少斜边对应相等,即AF BC =,故选:D .【点拨】此题主要考查了“HL ”的应用,熟练掌握直角三角形的判定方法是解答此题的关键.8.A【分析】先证明Rt ACD ⊥()Rt BED HL ,得CD ED AD AE 6==-=,CAD EBD ∠∠=,再证BE AC ⊥,然后由三角形面积关系求出BF 11.2=,则EF BF BE 1.2=-=.解:AD 是ABC 的高,AD BC ∴⊥,ADC BDE 90∠∠∴==︒,在Rt ACD 和Rt BED 中,AC BE AD BD =⎧⎨=⎩, Rt ACD ∴⊥()Rt BED HL ,CD ED AD AE 826∴==-=-=,CAD EBD ∠∠=,C CAD 90∠∠+=︒,C EBD 90∠∠∴+=︒,BFC 90∠∴=︒,BE AC ∴⊥, ABC 的面积ABD =的面积ACD +的面积,111AC BF AD BD CD AD 222∴⨯=⨯+⨯, AC BF AD BD CD AD ∴⨯=⨯+⨯,即10BF 8886112=⨯+⨯=,BF 11.2∴=,EF BF BE 11.210 1.2∴=-=-=,故选:A .【点拨】本题考查了全等三角形的判定和性质、直角三角形的性质以及三角形面积等知识;证明三角形全等是解题的关键.9.B【分析】由⊥AFD=135°知⊥DFC=45°,根据“HL”证Rt⊥BDE和Rt⊥CFD得⊥BDE=⊥CFD=45°,从而由⊥EDF=180°﹣⊥FDC﹣⊥BDE可得答案.解:⊥⊥AFD=135°,⊥⊥DFC=45°,⊥DE⊥AB,DF⊥BC,⊥⊥DEB=⊥FDC=90°,在Rt⊥BDE和Rt⊥CFD中,⊥BD CFBE CD=⎧⎨=⎩,⊥⊥BDE⊥⊥CFD(HL),⊥⊥BDE=⊥CFD=45°,⊥⊥EDF=180°﹣⊥FDC﹣⊥BDE=45°,故选B.【点拨】考查全等三角形的判定与性质及直角三角形的性质,熟练掌握全等三角形的判定和性质是解题的关键.10.B【分析】连接CE ,过点C 作CM⊥AE 交AE 延长线于M,从而易得⊥CDB ⊥⊥CMA,进而根据全等三角形的性质及题意可得CD=CM ,进而得到Rt⊥CED ⊥ Rt⊥CEM,然后问题得解.解:如图,连接CE ,过点C 作CM⊥AE 交AE 延长线于M .CD⊥BF ,CM⊥AM ,∴∠CDB=∠M=90︒,∠CBD=∠CAM ,CB=AC ,易证⊥CDB ⊥⊥CMA( AAS ) ,∴ CM=CD ,BD=AM ,∠M=∠CDE=90︒,CE=CE ,CD=CM ,∴ Rt⊥CED ⊥ Rt⊥CEM (HL) ,∴ DE=EM=1 ,∴ BD=AM=AE +EM=AE +DE=1+4=5 .故选B .【点拨】本题主要考查全等三角形的性质与判定及直角三角形全等的判定,熟练掌握三角形全等的判定方法是解题的关键.11.AB AD =或BC CD =【分析】根据“HL ”定理内容即可进行解答.解:如果两个直角三角形的斜边和一条直角边对应相等,那么这两个直角三角形全等. 由图可知:Rt ABC △和Rt ADC 斜边为公共边,即AC AC =,⊥应添加:AB AD =或BC CD =,故答案为:AB AD =或BC CD =.【点拨】本题主要考查了用“HL ”证明两个直角三角形全等,解题的关键是熟练掌握“如果两个直角三角形的斜边和一条直角边对应相等,那么这两个直角三角形全等”.12.40°【分析】根据HL ,可以证明Rt ABC ≌Rt DEF △,则50D A ∠∠==,再根据余角的性质即可求出DFE ∠的度数.解:在Rt ABC ≌Rt DEF △中,AC DF AB DE =⎧⎨=⎩, ⊥Rt ABC ≌()Rt DEF HL △⊥50D A ∠∠==,⊥90E =∠,⊥180180509040DFE D E ∠=-∠-∠=--=,故答案为:40°【点拨】此题主要考查了直角三角形全等的判定,直角三角形两锐角互余的性质. 13.8【分析】根据垂直得到直角三角形,利用HL 判定证明(HL)ADB CEA ∆∆≌,即可得到答案.解:⊥BD m ⊥,CE m ⊥,⊥90BDA CEA ∠=∠=︒,在Rt ADB ∆与Rt CEA ∆中,⊥BD AE AB AC =⎧⎨=⎩, ⊥(HL)ADB CEA ∆∆≌,⊥3BD AE ==,5AD CE ==,⊥8DE AD AE =+=,故答案为:8.【点拨】本题考查直角三角形判定:一条直角边与斜边对应相等三角形全等.14.35【分析】先证明Rt Rt ABC DEF △≌△,得到ABC DEF ∠=∠,再根据直角三角形两锐角互余求出35DEF ∠=︒即可得到答案.解:由题意得90AB DE BC EF BAC EDF ====︒,,∠∠,⊥()Rt Rt HL ABC DEF ≌△△,⊥ABC DEF ∠=∠,⊥55DFE ∠=︒,⊥9035DEF DFE ∠=︒-=︒∠,⊥35ABC ∠=︒,故答案为:35.【点拨】本题主要考查了全等三角形的性质与判定,直角三角形两锐角互余,证明Rt Rt ABC DEF △≌△,得到ABC DEF ∠=∠是解题的关键.15.2【分析】根据HL 证明Rt Rt ABD ECD ≌,可得5ED AD ==,根据BE BD ED =-即可求解. 解: AB ⊥AD ,CE ⊥BD ,90BAD CED ∴∠=∠=︒,在Rt △ABD 与Rt ECD △中,AB CE BD CD=⎧⎨=⎩, ∴Rt Rt ABD ECD ≌,AD =5,CD =7,∴5ED AD ==,BD =CD =7,2BE BD ED ∴=-=故答案为:2【点拨】本题考查了全等三角形的性质与判定,掌握HL证明三角形全等是解题的关键.16.7【分析】先证明⊥A=⊥D,然后证明Rt⊥ACB⊥Rt⊥DFE得到BC=EF=4,DF=AC=6,即可求出BF=BC-CF=1,则BD=DF+BF=7.解:⊥⊥ACB=90°,⊥⊥A+⊥B=90°,⊥AB⊥DE,⊥⊥B+⊥D=90°,⊥⊥A=⊥D,又⊥⊥ACB=⊥DFE=90°,AB=DE,⊥Rt⊥ACB⊥Rt⊥DFE(HL),⊥BC=EF=4,DF=AC=6,⊥BF=BC-CF=1,⊥BD=DF+BF=7,故答案为:7.【点拨】本题主要考查了全等三角形的性质与判定,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.17.13【分析】过C作CE⊥AD的延长线于点E,由条件可证⊥AEC⊥⊥AMC,得到AE=AM.证明⊥ECD⊥⊥MBC,由全等的性质可得DE=MB,BC=CD,则问题可得解.解:如图,过C作CE⊥AD的延长线于点E,⊥AC平分⊥BAD,⊥⊥EAC=⊥MAC,⊥CE⊥AD,CM⊥AB,⊥⊥AEC=⊥AMC=90°,CE=CM,在Rt⊥AEC和Rt⊥AMC中,AC=AC,CE=CM,⊥Rt⊥AEC⊥Rt⊥AMC(HL),⊥AE=AM=4cm,⊥⊥ADC +⊥B =180°,⊥ADC +⊥EDC =180°,⊥⊥EDC =⊥MBC ,在⊥EDC 和⊥MBC 中,DEC CMB EDC MBC CE CM ∠=∠⎧⎪∠=∠⎨⎪=⎩,⊥⊥EDC ⊥⊥MBC (AAS ),⊥ED =BM ,BC =CD =2.5cm ,⊥四边形ABCD 的周长为AB +AD +BC +CD =AM +BM +AE ﹣DE +2BC =2AM +2BC =8+5=13(cm ),故答案为:13.【点拨】本题考查全等三角形的判定与性质,掌握常用的判定方法是解题的关键. 18.12cm 或6cm##6cm 或12cm【分析】当AP =12cm 或6cm 时,⊥ABC 和⊥PQA 全等,根据HL 定理推出即可. 解:⊥⊥C =90°,AO ⊥AC ,⊥⊥C =⊥QAP =90°,⊥当AP =6cm =BC 时,在Rt ⊥ACB 和Rt ⊥QAP 中⊥AB PQ BC AP=⎧⎨=⎩, ⊥Rt ⊥ACB ⊥Rt ⊥QAP (HL ),⊥当AP =12cm =AC 时,在Rt ⊥ACB 和Rt ⊥P AQ 中AB PQ AC AP =⎧⎨=⎩, ⊥Rt ⊥ACB ⊥Rt ⊥P AQ (HL ),故答案为:12cm 或6cm .【点拨】本题考查了全等三角形的判定定理的应用,注意:判定两直角三角形全等的方法有ASA ,AAS ,SAS ,SSS ,HL .19.(1) 见分析; (2) 80︒.【分析】(1根据AF BD =,求出AB DF =,运用HL 即可证;(2)结合全等三角形的性质,利用锐角互余和三角形的外角,求解即可.解:(1)证明:AF BD =,AB DF ∴=,90C E ∠=∠=︒,在Rt ABC △与Rt DFE △中,AB DE AC DE =⎧⎨=⎩, ()Rt ABC Rt DFE HL ∴≌ ;(2)()Rt ABC Rt DFE HL ≌,ABC EFD ∴∠=∠,90C E ∠=∠=︒,50D ∠=︒,9040ABC EFD D ∠=∠=-∠=︒,404080COF ABC DFE ∠=∠+∠=︒+︒=︒ .【点拨】本题考查了全等三角形的证明和性质、直角三角形锐角互余以及三角形的外角;构建线段相等,证明三角形的全等并正确计算时阶梯的关键.20.(1) CE DF AC BD ==, (2) CE DF ∥,理由见分析【分析】(1)根据路程=速度×时间可知,两车速度相同,同时出发,同时到达目的地,则行驶的路程相同,据此即可得到答案;(2)只需要利用HL 证明Rt Rt ACE BDF △≌△,得到=AEC BFD ∠∠,即可证明CE DF ∥.解:(1)解:由题意得,CE DF AC BD ==,,故答案为:CE DF AC BD ==,;(2)解:CE DF ∥,理由如下:在Rt ACE 和Rt BDF △中,AC BD CE DF =⎧⎨=⎩, ⊥()Rt Rt HL ACE BDF △≌△,⊥=AEC BFD ∠∠,⊥CE DF ∥.【点拨】本题主要考查了全等三角形的性质与判定,平行线的判定,正确理解题意得到CE DF AC BD ==,是解题的关键.21.(1) 见分析 (2) OA OD =,理由见分析【分析】(1)根据HL 可证明ABM DCN △≌△;(2)根据AAS 证明AMO DNO ≌△△可得结论. 解:(1)证明:⊥BN CM =,⊥BN MN MN CM +=+,即CN BM =,⊥AM BC ⊥,DN BC ⊥,⊥90AMB DNC ∠=∠=︒,在Rt ABM 和Rt DCN △中,AB CD BM CN =⎧⎨=⎩, ⊥()Rt Rt HL ABM DCN ≌△△;(2)解:OA OD =,理由如下:⊥ABM DCN △≌△,⊥AM DN =,在AMO 和DNO 中,AOM DNO AMO DNO AM DN ∠=∠⎧⎪∠=∠⎨⎪=⎩,⊥()AAS AMO DNO ≌△△, ⊥OA OD =.【点拨】本题考查了全等三角形的性质和判定,熟练掌握全等三角形的判定定理是解题的关键.22.(1) 见分析 (2) CF EF =,理由见分析【分析】(1)利用“HL ”证明Rt Rt ABC ADE △≌△得∠=∠BAC DAE ,继而知BAC DAB DAE DAB ∠-∠=∠-,据此即可得证;(2)根据三角形全等的判定定理证明ADC ABE △≌△,再证明DFC BFE △≌△,根据全等三角形的性质证明即可.(1)解:在Rt ABC △和Rt ADE △中,==AC AE AB AD⎧⎨⎩ ⊥()Rt Rt HL ABC ADE △≌△,⊥∠=∠BAC DAE ,⊥BAC BAD DAE BAD ∠-∠=∠-∠⊥CAD EAB ∠=∠;(2)在ADC △和ABE △中,===AC AE CAD EAB AB AD ∠∠⎧⎪⎨⎪⎩⊥()SAS ADC ABE ≅△△⊥,DC BE ACD AEB =∠=∠又⊥Rt Rt ABC ADE △≌△,⊥ACB AED ∠=∠⊥ACB ACD AED AEB ∠-∠=∠-∠⊥DCF BEF ∠=∠在DFC 和BFE △中===DCF BEF DFC BFE DC BE ∠∠∠∠⎧⎪⎨⎪⎩⊥()AAS DFC BFE △≌△,⊥CF EF =.【点拨】本题考查的是全等三角形的判定和性质,掌握三角形全等的判定定理:SSS 、SAS 、AAS 或ASA 以及直角三角形的HL 以及全等三角形的对应边相等、对应角相等是解题的关键.23.(1) 见分析 (2) AB AC ⊥,理由见分析【分析】(1)由已知条件,利用HL 证明Rt ABD Rt CAE ≌,根据全等三角形的性质即可得解;(2)同(1),先证Rt ABD Rt CAE ≌,再利用角与角之间的关系求证90BAD CAE ∠+∠=︒,即可证明AB AC ⊥.解:(1)证明:⊥BD DE CE DE ⊥⊥,,⊥90ADB AEC ∠=∠=︒,在Rt ABD △和Rt CAE 中,AB AC AD CE=⎧⎨=⎩, ⊥()Rt ABD Rt CAE HL ≌,⊥DAB ECA ∠=∠;(2)AB AC ⊥,理由如下:同(1)一样可证得Rt ABD Rt CAE ≌,⊥DAB ECA DBA EAC ∠=∠∠=∠,,⊥90CAE ECA ∠+∠=︒,⊥90CAE BAD ∠+∠=︒,即90BAC ∠=︒,⊥AB AC ⊥.【点拨】此题考查了全等三角形的判定与性质,利用HL 证明Rt ABD Rt CAE ≌是解题的关键.24.(1) HL (2) 见分析 (3) 见分析 (4) B C ∠>∠【分析】(1)直接利用HL定理得出Rt⊥ABC⊥Rt⊥DEF即可;(2)先证⊥AGB⊥⊥DHE(AAS),则AG=DH,再证Rt⊥ACG⊥Rt⊥DFH,的⊥C=⊥F,然后由AAS证明⊥ABC⊥⊥DEF即可;(3)以A为圆心、AC长为半径画弧,交BC于F,得钝角三角形DEF,则⊥DEF和⊥ABC 不全等;(4)利用(3)中方法可得出当⊥B≥⊥C时,则⊥ABC⊥⊥DEF.(1)解:⊥⊥B=⊥E=90°,⊥⊥ABC和⊥DEF是直角三角形,⊥AC=DF,AB=DE,⊥Rt⊥ABC⊥Rt⊥DEF(HL),故答案为:HL;(2)明:如图2,过点A作AG⊥CB交CB的延长线于点G,过点D作DH⊥FE交FE 的延长线于点H.则⊥AGB=⊥DHE=90°,⊥⊥ABC=⊥DEF,⊥⊥ABG=⊥DEH,⊥AB=DE,⊥⊥AGB⊥⊥DHE(AAS),⊥AG=DH,⊥AC=DF,⊥Rt⊥ACG⊥Rt⊥DFH(HL),⊥⊥C=⊥F,又⊥⊥ABC=⊥DEF,AB=DE,⊥⊥ABC⊥⊥DEF(AAS);(3):如图3,⊥DEF即为所求;(4)解:⊥B≥⊥C,理由如下:由图3可知,⊥C=⊥AFC=⊥B+⊥BAF,⊥⊥C>⊥B,⊥当⊥B≥⊥C时,⊥ABC就唯一确定了,则⊥ABC⊥⊥DEF.【点拨】本题考查了全等三角形的判定与性质、尺规作图以及三角形的外角性质等知识,本题综合性强,熟练掌握全等三角形的判定方法是解题的关键.。

北师大版七年级下册数学《探索三角形全等的条件》典型例题 含答案

北师大版七年级下册数学《探索三角形全等的条件》典型例题  含答案

北师大版七年级下册数学《探索三角形全等的条件》典型例题含答案教育专区初中教育数北师大版七年级下册数学《探索三角形全等的条件》典型例题含答案《探索三角形全等的条件》典型例题例1 分析下列结论:(1)有两角和一边对应相等的两个三角形全等(2)有两边和一角对应相等的两个三角形全等(3)判定两个三角形全等,至少需要一对对边应相等(4)三个角对应相等的两个三角形全等(5)三条边对应相等的两个三角形全等其中,正确的个数是()A.1个 B.2个 C.3个 D.4个例2 如图,在ΔABCΔABCΔABC与ΔDCBΔDCBΔDCB中,如果AB=DC,AC=BDAB=DC,AC=BDAB=DC,AC=BD,那么ΔABCΔABCΔABC与ΔDCBΔDCBΔDCB全等吗?如果全等,请指出根据.例3 如图,A、F、C、D在同一直线上,AB⊥BC,DE⊥EF,BCFE,AF=DCAB⊥BC,DE⊥EF,BCFE,AF=DCAB⊥BC,DE⊥EF,BCFE,AF=DC,问ΔABCΔABCΔABC和ΔDEFΔDEFΔDEF能全等吗?如果全等请指出根据.例4 如下图,AB=DC,∠ABC=∠DCBAB=DC,∠ABC=∠DCBAB=DC,∠ABC=∠DCB,那么ΔABCΔABCΔABC≌ΔDCBΔDCBΔDCB吗?例5 如图,AC是∠DAB∠DAB∠DAB的角平分线,且AD=ABAD=ABAD=AB,试说明CD=CBCD=CBCD=CB.例6 如图,OA=OB,OC=OD,∠AOC=∠BODOA=OB,OC=OD,∠AOC=∠BODOA=OB,OC=OD,∠A OC=∠BOD那么,AD=BCAD=BCAD=BC吗?例7 已知:如图,AB=AC,DAB=AC,DAB=AC,D是BC中点,E是AD上任意一点,连接EB、EC,求证:EB=ECEB=ECEB=EC例8 如图,AB=AC,AD=AEAB=AC,AD=AEAB=AC,AD=AE,那么,CD=BECD=BECD=BE吗?例9 如图,AB=CD,ACAB=CD,ACAB=CD,AC和BD交于点O,且AC=BDAC=BDAC=BD,那么,∠B=∠C∠B=∠C∠B=∠C吗?参考答案例1 分析:(1)有两角和一边对应相等,只有两种情况:两角和夹边对应相等、两角和其中一角的对边对应相等,可以根据ASA、AAS判定全等,故(1)正确.(2)有两边和其中一边的对角对应相等的两个三角形未必全等,如下图:故(2)错误.在ΔABCΔABCΔABC与ΔABDΔABDΔABD中AB=AB,AC=AD,∠B=∠BAB=AB,AC=AD,∠B=∠BAB=AB,AC=AD,∠B=∠B但显然ΔABCΔABCΔABC与ΔABDΔABDΔABD不全等.(3)观察四个判定三角形全等的条件(包括后面将要学习的HL),每一个都至少要求一对边对应相等,故(3)正确.(4)三个角对应相等的两个三角形未必全等,如下图所示的两个三角形:根据“SSS”,(5)正确.解:选C.例2 分析:在ΔABCΔABCΔABC与ΔDCBΔDCBΔDCB中,由于AB=DC,AC=BDAB=DC,AC=BDAB=DC,AC=BD,BC=CBBC=CBBC=CB,根据三边对应相等,两个三角形全等,可知ΔABCΔABCΔABC≌ΔDCBΔDCBΔDCB.解:ΔABCΔABCΔABC≌ΔDCBΔDCBΔDCB,根据SSSSSSSSS,即AB=DC,AC=DB,BC=CBAB=DC,AC=DB,BC=CBAB=DC,AC=DB,BC=CB.说明:判断两个三角形是否全等,应找其全等应满足的条件.例3 分析:在ΔABCΔABCΔABC和ΔDEFΔDEFΔDEF中,由AB⊥BC,DE⊥EFAB⊥BC,DE⊥EFAB⊥BC,DE⊥EF,可知∠ABC=∠DEF=90°∠ABC=∠DEF=90°∠ABC=∠DEF=90°;由BCFEBCFEBCFE,可知∠ACB=∠DFE∠ACB=∠DFE∠ACB=∠DFE;而由AF=DCAF=DCAF=DC可知AC=DFAC=DFAC=DF,所以根据AASAASAAS,可得ΔABCΔABCΔABC≌ΔDEFΔDEFΔDEF.解:ΔABCΔABCΔABC≌ΔDEFΔDEFΔDEF.根据:因为AB⊥BC,DE⊥EFAB⊥BC,DE⊥EFAB⊥BC,DE⊥EF,所以∠ABC=∠DEF=90°∠ABC=∠DEF=90°∠ABC=∠DEF=90°,又因为BCFEBCFEBCFE,所以∠ACB=∠DFE∠ACB=∠DFE∠ACB=∠DFE,因为AF=DCAF=DCAF=DC,所以AC=AF+FC=DC+FC=DFAC=AF+FC=DC+FC=DFAC=AF+FC=DC+FC=DF所以根据AASAASAAS得,ΔABCΔABCΔABC≌ΔDEFΔDEFΔDEF.说明:这个题也可以根据ASAASAASA来判断,请读者自行试一试.例4 分析:判定两个三角形全等,需要三个条件,已知两个条件:一对边对应相等,一对角对应相等,需要结合图形,寻找第三个条件,一般地,可以从以下几个方面考虑:①公共边②公共角③对顶角④直角.本题中有公共边,可以利用SAS来证明三角形全等,注意三个条件的罗列顺序,第一个是边相等,第二个是角相等,第三个是边相等.解:在ΔABCΔABCΔABC和ΔDCBΔDCBΔDCB中∵{AB=DC(已知)∠ABC=∠DCB(已知)BC=CB(公共边)∵left{begin{matrix}AB=DC(已知) ∠ABC=∠DCB(已知) BC=CB(公共边)end{matrix}ight.∵⎩⎩⎩AB=DC(已知)∠ABC=∠DCB(已知)BC=CB(公共边)∴ΔABCΔABCΔABC≌ΔDCBΔDCBΔDCB(SAS)例5 分析:要说明CD=CBCD=CBCD=CB,只需说明ΔADCΔADCΔADC≌ΔABCΔABCΔABC,而AB=AD,AC=AC,∠DAC=∠BACAB=AD,AC=AC,∠DAC=∠BACAB=AD,AC=AC,∠D AC=∠BAC,所以ΔADCΔADCΔADC≌ΔABCΔABCΔABC.解:在ΔADCΔADCΔADC和ΔABCΔABCΔABC中,因为AD=AB,AC=ACAD=AB,AC=ACAD=AB,AC=AC,且AC平分∠DAB∠DAB∠DAB,即∠DAC=∠BAC∠DAC=∠BAC∠DAC=∠BAC.所以ΔADCΔADCΔADC≌ΔABCΔABCΔABC,根据是SASSASSAS,所以CD=CBCD=CBCD=CB.说明:在两个三角形中,来判断两个三角形的两条边相等,经常用判断这两个三角形全等的办法来判断,但需注意要判断相等的线段必须是这两个三角形的对应边.例6 分析:如果ΔAODΔAODΔAOD≌ΔBOCΔBOCΔBOC,那么AD=BCAD=BCAD=BC.通过在图形中表示已知条件可知,在ΔAODΔAODΔAOD和ΔBOCΔBOCΔBOC中有两对边对应相等,虽然还已知∠AOC=∠BOD∠AOC=∠BOD∠AOC=∠BOD,但是∠AOC∠AOC∠AOC和∠BOD∠BOD∠BOD不是这两个三角形的内角,不能直接利用“SAS”来证明全等,如果能证明∠AOD=∠BOC∠AOD=∠BOC∠AOD=∠BOC,就可以用“SAS”证明ΔAODΔAODΔAOD≌ΔBOCΔBOCΔBOC了.利用等式的性质,易证∠AOD=∠BOC∠AOD=∠BOC∠AOD=∠BOC.解:∵∠AOC=∠BOD∵∠AOC=∠BOD∵∠AOC=∠BOD(已知)∴∠AOC−∠AOB=∠BOD−∠AOB∠AOC−∠AOB=∠BOD−∠AOB∠AOC −∠AOB=∠BOD−∠AOB(等式的性质)即∠AOD=∠BOC∠AOD=∠BOC∠AOD=∠BOC在ΔAODΔAODΔAOD和ΔBOCΔBOCΔBOC中∵{OA=OB(已知)∠AOD=∠BOC(已证)OD=OC(已知)∵left{begin{matrix}OA=OB(已知) ∠AOD=∠BOC(已证) OD=OC(已知)end{matrix}ight.∵⎩⎩⎩OA=OB(已知)∠AOD=∠BOC(已证)OD=OC(已知)∴ΔAODΔAODΔAOD≌ΔBOCΔBOCΔBOC(SAS)∴AD=BCAD=BCAD=BC(全等三角形的对应边相等)例7 分析:本题比较复杂,可以用“综合—分析法”来证明,分析过程如下:(1)结合已知、求证观察图形,图中共有三组基本图形(哪三组?).(2)看未知,需证EB=ECEB=ECEB=EC,只需证ΔABEΔABEΔABE≌ΔACEΔACEΔACE,或证ΔBEDΔBEDΔBED≌ΔCEDΔCEDΔCED.(3)看已知,AB=AC,DAB=AC,DAB=AC,D是BC中点,可得,BD=CDBD=CDBD=CD,不要忽略图形中隐含的已知条件AE、DE、AD是三对全等三角形的公共边.(4)找需知,只需证得∠BAE=∠CAE∠BAE=∠CAE∠BAE=∠CAE或∠BDE=∠CDE∠BDE=∠CDE∠BDE=∠CDE,即可得到上述两个三角形全等(恰当选择SAS来判定)(5)再看已知,三组对应边对应相等,可以利用SSS来证明ΔABDΔABDΔABD≌ΔACDΔACDΔACD,就得到∠BAE=∠CAE∠BAE=∠CAE∠BAE=∠CAE或∠BDE=∠CDE∠BDE=∠CDE∠BDE=∠CDE证明:∵D∵D∵D是BC中点∴BD=CDBD=CDBD=CD在ΔABDΔABDΔABD和ΔACDΔACDΔACD中∵{AB=AC(已知)BD=CD(已证)AD=AD(公共边)∵left{begin{matrix}AB=AC(已知) BD=CD(已证) AD=AD(公共边)end{matrix}ight.∵⎩⎩⎩AB=AC(已知)BD=CD(已证)AD=AD(公共边)∴ΔABDΔABDΔABD≌ΔACDΔACDΔACD(SSS)∴∠BAE=∠CAE∠BAE=∠CAE∠BAE=∠CAE(全等三角形的对应角相等)在ΔABEΔABEΔABE和ΔACEΔACEΔACE中∵{AB=AC(已知)∠BAE=∠CAE(已证)AE=AE(公共边)∵left{begin{matrix}AB=AC(已知) ∠BAE=∠CAE(已证) AE=AE(公共边)end{matrix}ight.∵⎩⎩⎩AB=AC(已知)∠BAE=∠CAE(已证)AE=AE(公共边)∴ΔABEΔABEΔABE≌ΔACEΔACEΔACE(SAS)∴EB=ECEB=ECEB=EC(全等三角形的对应边相等)例8 分析:本图比较复杂,很难找到证明哪两个三角形全等,故可以采用分解法,将图形分解成ΔABEΔABEΔABE和ΔACDΔACDΔACD 然后用相同的符号标示已知的相等条件,显然它们全等.解:在ΔABEΔABEΔABE和ΔACDΔACDΔACD中∵{AB=AC(已知)∠A=∠A(公共角)AE=AD(已知)∵left{begin{matrix}AB=AC(已知) ∠A=∠A(公共角) AE=AD(已知)end{matrix}ight.∵⎩⎩⎩AB=AC(已知)∠A=∠A(公共角)AE=AD(已知)∴ΔABEΔABEΔABE≌ΔACDΔACDΔACD(SAS)∴CD=BECD=BECD=BE(全等三角形的对应边相等)例9 分析:假如ΔAOBΔAOBΔAOB≌ΔDOCΔDOCΔDOC,那么∠B=∠C∠B=∠C∠B=∠C,但是,已知的两组线段不是这两个三角形的边,为充分利用条件,可以添加辅助线:连接AD,这样易证∠B=∠C∠B=∠C∠B=∠C.解:连结AD在ΔABDΔABDΔABD和ΔDCAΔDCAΔDCA中∵{AB=DC(已知)AD=DA(公共边)AC=BD(已知)∵left{begin{matrix}AB=DC(已知) AD=DA(公共边) AC=BD(已知)end{matrix}ight.∵⎩⎩⎩AB=DC(已知)AD=DA(公共边)AC=BD(已知)∴ΔABDΔABDΔABD≌ΔDCAΔDCAΔDCA(SSS)∴∠B=∠C∠B=∠C∠B=∠C(全等三角形的对应角相等)。

全等三角形判定2(SAS)

全等三角形判定2(SAS)

D
证明:∵AB=CD,∴AB+BC=CD+BC,即AC=DB。
BF CE 在△BFD与△CEA中 BD CA DF AE
∴ △BFD ≌△CEA (SSS) ∴ BD ≌CE (全等三角形的对应角相等)
BF CE 在△BFC与△CEB中 3 4 BC CB ∴ △BFC≌△CEB (SAS)
30º
7
8
概念运用: 1.在下列推理中填写需要补充的条件,使结论 成立:如图,在△AOB和△DOC中,
= ∠DOC (对顶角相等) ∠AOB ___ ___ BO=CO(已知)
∴△ABC≌△DEF( SAS )
AO=DO(已知)
2.在下列推理中填写需要补充的条件,使结论 成立:如图,在△AEC和△ADB中,
三角形全等判定方法2
两边和它们的夹角对应相等的两个三角形 全等。简写成“边角边”或“SAS” 用符号语言表达为: 在△ABC与△DEF中 AB=DE
A
∠B=∠E BC=EF
B
C
D
∴△ABC≌△DEF(SAS)
E
F
练习一
1.在下列图中找出全等三角形
30º
1
2
3 Ⅲ
Ⅳ 4
5 cm
30º
6 5
求证:AD∥CB
归纳:判定两条线段相等或二个角相等可以通 过从它们所在的两个三角形全等而得到。
练习:
1.如图,AC=BD,∠CAB= ∠DBA,你能判断 BC=AD吗?说明理由。 D C
A
B
例2 如图,AC=BD,∠1= ∠2 求证:BC=AD
A
C
D
1 变式1: 如图,AC=BD,BC=AD 求证:∠1= ∠2

北师大版数学七年级下册4.3探究三角形全等的条件 习题及答案

北师大版数学七年级下册4.3探究三角形全等的条件 习题及答案

北师大版数学七年级下册4.3探究三角形全等的条件习题及答案一、选择:1.如图,下列三角形中全等的是()A.①②B.②③C.③④D.①④2.如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠C等于()A.15°B.35°C.50°D.85°3.(随州中考)如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC的周长是()A.8B.9C.10D.114.如图为作一个角的角平分线的示意图,该作法的依据是全等三角形判定的基本事实,可简写为()A.SSS B.SAS C.ASA D.AAS5.如图,AC=AD,BC=BD,OC=OD.那么图中全等三角形有()A.1对B.2对C.3对D.4对6.在△ABC中,已知AB=AC,D是BC的中点,则∠ADB是()A.锐角B.钝角C.直角D.无法确定7.如图,已知BC∥EF,AC∥DF,AB=DE=4,BC=6,AC=5,则EF的长为()A.4B.5 C.6D.不能确定8.如图,在△AEB与△AFC中,BE与AC交于点M,与CF交于点D,AB与CF交于点N,∠E=∠F=90°,∠EAC=∠FAB,AE=AF.给出下列结论:①∠B=∠C;②CD=DN;③BE =CF;④△CAN≌△BAM.其中正确的结论是()A.①③④B.②③④C.①②③D.①②④9.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A.10B.7C.5D.410.如图所示,已知∠1=∠2,AD=BC,AC,BD相交于点O,MN经过点O,则图中全等三角形的对数为()A.4对B.5对C.6对D.7对二、填空:1.如图,在△ABC中,E为边AB的中点,ED⊥AB,交BC于点D,且∠CAD=6°,∠B=48°,则∠BAC=____________.2.如图所示,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带____________去玻璃店.3.在△ABC和△DEF中,AB=4,∠A=35°,∠B=70°,ED=4,∠E=70°,则当∠D =____________时,可根据____________判断△ABC≌△DEF.4.如图,∠1=∠2,∠3=∠4,DE=CE,AE=4,则BE=____________.三、解答:1.完成下列解题过程:已知:如图所示,BE=CF,AB∥DE,∠ACB=∠F.求证:△ABC≌△DEF.证明:∵AB∥DE(已知),∴____________=____________(两直线平行,同位角相等).又∵BE=CF(已知),∴BE+____________=CF+____________,即BC=EF.在△ABC和____________中,∴____________≌△DEF(ASA).2.如图,已知∠1=∠2,∠3=∠4.求证:BD=BC.3.如图,已知D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.4.如图,已知∠EBF,用下面的方法可把它两等分:(1)分别在BE,BF上各取一点A,C,使AB=BC;(2)连结AC;(3)量出AC的长度,取中点D;(4)过点B,D作射线.则BD平分∠EBF,请说明理由.5.如图所示,已知△ABE≌△ACD.求证:∠1=∠2.6.如图,C,F是线段BE上的两点,△ABF≌△DEC,且AC=DF.(1)你在图中还能找到几对全等的三角形?选择其中一对全等三角形进行证明;(2)∠ACE=∠BFD吗?试说明你的理由.7.(湛江中考)如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.8.如图,点D在BC上,DE与AC相交于点F,若∠1=∠2=∠3,AC=AE,求证:△ABC ≌△ADE.9. 如图,在△ABC中,∠A=90°,AB=AC,∠ABC的平分线BD交AC于点D,CE⊥BD,交BD的延长线于点E. 试猜想CE与BD的数量关系,并说明理由.10.(邵阳中考)如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF =CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.11.如图,CD⊥AB,BE⊥AC,垂足分别为D,E,BE与CD相交于点O,且∠1=∠2.试说明BD=CE成立的理由.参考答案一、选择: 1-5 ABCAC6-10 CCACC二、填空: 1. 54° 2. ③ 3. 35° ASA 4. 4三、解答:1. ∠B ∠DEF EC EC △DEF ∠B ∠DEF BC EF ∠ACB ∠F △ABC2. ∵∠ABD+∠3=180°,∠ABC+∠4=180°,且∠3=∠4,∴∠ABD=∠ABC. 在△ADB 和△ACB中,⎪⎩⎪⎨⎧∠=∠=∠=∠ABC ABD AB AB 21∴△ADB ≌△ACB (ASA ),∴BD=BC .3. ∵DE ∥AB ,∴∠EDA =∠DAB ,在△BAC 和△ADE 中,∵⎪⎩⎪⎨⎧∠=∠=∠=∠DAE B DA AB EDA DAB ∴△BAC ≌△ADE (ASA ),∴BC =AE.4. AB =BC ,AD =DC ,DB =DB 可证△ABD ≌△CBD ,则∠ABD =∠CBD ,即BD 平分∠EBF.5. ∵△ABE ≌△ACD ,∴AE =AD ,AB =AC ,DC =BE ,∴AB -AD =AC -AE ,即BD =EC ,∵在△BDE 和△CED 中,⎪⎩⎪⎨⎧===DC BE CE BD EDDE ∴△BDE ≌△CED ,∴∠1=∠2.6. (1)还能找到2对全等三角形,分别是△ACF ≌△DFC ,△ABC ≌△DEF. 理由如下:∵△ABF ≌△DEC ,∴AB =DE ,BF =EC ,AF =DC (全等三角形的对应边相等),∴BF +FC =EC +FC ,即BC =EF. 在△ACF 和△DFC 中,∵⎪⎩⎪⎨⎧===CF FC DC AF DFAC ∴△ACF≌△DFC (SSS ). 在△ABC 和△DEF 中,∵⎪⎩⎪⎨⎧===EF BC DF AC ED AB ∴△ABC ≌△DEF (SSS ).(2)∠ACE =∠BFD.理由如下:∵△ABC ≌△DEF ,∴∠ACB =∠DFE (全等三角形的对应角相等). ∵∠ACB +∠ACE =180°,∠DFE +∠BFD =180°,∴∠ACE =∠BFD (等角的补角相等).7. ∵AB ∥ED ,AC ∥FD ,∴∠B =∠E ,∠ACB =∠DFE ,∵BF =CE ,∴BF +CF =CE +CF ,即BC =EF ,在△ABC 和△DEF 中,∵⎪⎩⎪⎨⎧∠=∠=∠=∠DFE ACB EF BC EB ∴△ABC ≌△DEF (ASA ),∴AC =DF.8. ∵∠1=∠2,∴∠1+∠DAC =∠2+∠DAC ,即∠BAC =∠DAE ,∵∠3+∠DFC +∠C =∠2+∠AFE +∠E ,又∵∠3=∠2,∠DFC =∠AFE ,∴∠C =∠E ,在△ABC 和△ADE 中,∵⎪⎩⎪⎨⎧∠=∠=∠=∠DAE BAC AEAC E C ∴△ABC ≌△ADE (ASA ). 9. CE =21BD. 理由如下:延长CE 交BA 的延长线于点F ,如图.∵BE 平分∠ABC ,∴∠1=∠2. ∵CE ⊥BD ,∴∠BEC =∠BEF =90°. 又∵BE =BE ,∴△BEC≌△BEF (ASA ). ∴CE =FE =21CF. ∵∠1+∠4=∠3+∠5=90°,∠4=∠5,∴∠1=∠3. 又∵∠BAD =∠CAF =90°,AB =AC ,∴△BAD ≌△CAF (ASA ). ∴BD =CF. ∴CE =21CF=21BD. 10. (1)△ABE ≌△CDF ,△AFD ≌△CEB (答案不唯一);(2)∵AB ∥CD ,∴∠1=∠2,∵AF =CE ,∴AF +EF =CE +EF ,即AE =FC ,在△ABE 和△CDF 中,⎪⎩⎪⎨⎧=∠=∠∠=∠CF AE CDF ABE 21∴△ABE ≌△CDF (AAS ).11. ∵CD ⊥AB ,BE ⊥AC ,∠1=∠2,∴DO =EO (角平分线性质),∠BDO =∠CEO =90°,在△BDO 和△CEO 中,∵⎪⎩⎪⎨⎧∠=∠=∠=∠EOC DOB EO DO CEOBDO ∴△BDO ≌△CEO (ASA ),∴BD =CE.。

全等三角形的判定方法50道经典题

全等三角形的判定方法50道经典题

全等三角形的判定方法50道经典题全等三角形的判定方法是初中数学中重要的一部分,主要包括以下50道经典题目。

1. 如何通过边长判断两个三角形是否全等?答:如果两个三角形的三条边对应相等,则它们全等。

2. 如果通过角度判断两个三角形是否全等?答:如果两个三角形的三个角度对应相等,则它们全等。

3. 如何通过边角判断两个三角形是否全等?答:如果两个三角形中有一个角相等,并且两边对应相等,则它们全等。

4. 如果两个三角形的底边相等,底边上的高相等,判断它们是否全等。

答:根据边角对应的原理,如果底边和高都相等,则这两个三角形全等。

5. 给定两个相等的边和它们之间的夹角,判断它们所在的两个三角形是否全等。

答:根据边角对应的原理,如果两个相等的边和它们之间的夹角都相等,则这两个三角形全等。

6. 如果两个三角形的一个角相等,并且这个角的两边分别等于另一个三角形的两个角的两边,判断它们是否全等。

答:根据边角边的原理,如果两个三角形的一个角相等,并且这个角的两边分别等于另一个三角形的两个角的两边,则这两个三角形全等。

7. 如何通过勾股定理判断两个三角形是否全等?答:如果两个三角形的两条边的平方和相等,则它们全等。

8. 如果两个三角形的一个角相等,并且两边的比例相等,判断它们是否全等。

答:根据角边角的原理,如果两个三角形的一个角相等,并且两边的比例相等,则这两个三角形全等。

9. 如果两个三角形的两个角相等,并且两边的比例相等,判断它们是否全等。

答:根据角角边的原理,如果两个三角形的两个角相等,并且两边的比例相等,则这两个三角形全等。

10. 给定两个相等的边和它们夹角的正弦值,判断它们所在的两个三角形是否全等。

答:根据正弦定理,如果两个相等的边和它们夹角的正弦值都相等,则这两个三角形全等。

11. 给定两个相等的边和它们夹角的余弦值,判断它们所在的两个三角形是否全等。

答:根据余弦定理,如果两个相等的边和它们夹角的余弦值都相等,则这两个三角形全等。

12.2三角形全等的判定(二)(“SAS”)练习题人教版八年级数学上册

12.2三角形全等的判定(二)(“SAS”)练习题人教版八年级数学上册

第2课时三角形全等的判定(二)(“SAS”)【基础练习】知识点 1 判定两个三角形全等的基本事实——“边角边”1.如图1所示,点D在AB上,点E在AC上,AB=AC,AD=AE,则≌△AEB,理由是.图12.图2中全等的三角形是 ()图2A.①和②B.②和③C.②和④D.①和③3.如图3,AB平分∠DAC,要用“SAS”判定△ABC≌△ABD,还需添加条件 ( )图3A.CB=DBB.AB=ABC.AC=ADD.∠C=∠D4.已知:如图4,AC与BD相交于点O,且OA=OC,OB=OD.求证:△AOB≌△COD.图45.如图5所示,CD=CA,∠1=∠2,EC=BC.求证:△ABC≌△DEC.图56.如图6所示,AD=BE,AC=DF,AC∥DF.求证:△ABC≌△DEF.图6知识点 2 全等三角形的判定(SAS)的简单应用7.如图7所示,AA',BB'表示两根长度相同的木条.若O是AA',BB'的中点,经测量AB=9 cm,则容器的内径A'B'为 ( )图7A.8 cmB.9 cmC.10 cmD.11 cm8.[2020·镇江]如图8,AC是四边形ABCD的对角线,∠1=∠B,点E,F分别在AB,BC 上,BE=CD,BF=CA,连接EF.(1)求证:∠D=∠2;(2)若EF∥AC,∠D=78°,求∠BAC的度数.图8【能力提升】9.如图9所示,在△ABC和△ADC中,有下列三个论断:①AB=AD;②∠BAC=∠DAC;③BC=DC.将其中的两个论断作为条件,另一个论断作为结论写出一个真命题为.(写成“如果 ,那么 ”的形式,写一个即可)图910.[2020·江西]如图10,CA平分∠DCB,CB=CD,DA的延长线交BC于点E.若∠EAC=49°,则∠BAE的度数为.图1011.如图11,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE.有下列说法:①CE=BF;②△ABD≌△ACD;③BF∥CE;④△BDF和△CDE的面积相等.其中正确的是.(填序号)图1112.:[2020·宜宾]如图12,在△ABC中,D是边BC的中点,连接AD并延长到点E,使DE=AD,连接CE.(1)求证:△ABD≌△ECD;(2)若△ABD的面积为5,求△ACE的面积.图12 变式:在△ABC中,AB=7,AC=3,AD是中线,求AD的取值范围.第2课时 三角形全等的判定(二)(“SAS ”)1.△ADC SAS2.D [解析] 从图中可以看到①和③符合“SAS ”.3.C [解析] 由题意可得,在△ABC 和△ABD 中,{AC =AD,∠CAB =∠DAB,AB =AB,∴△ABC ≌△ABD (SAS).选项C 正确,其余选项都不正确. 4.证明:在△AOB 和△COD 中,{OA =OC,∠AOB =∠COD,OB =OD,∴△AOB ≌△COD (SAS).5.证明:∵∠1=∠2,∴∠1+∠ECA=∠2+∠ECA ,即∠ACB=∠DCE.在△ABC 和△DEC 中,{CA =CD,∠ACB =∠DCE,BC =EC,∴△ABC ≌△DEC (SAS).6.证明:∵AD=BE ,∴AB+BD=DE+BD ,即AB=DE.∵AC ∥DF ,∴∠A=∠FDE.在△ABC 和△DEF 中,{AB =DE,∠A =∠FDE,AC =DF,∴△ABC ≌△DEF (SAS).7.B8.解:(1)证明:在△BEF 和△CDA 中,{BE =CD,∠B =∠1,BF =CA,∴△BEF ≌△CDA (SAS).∴∠D=∠2.(2)∵∠D=∠2,∴∠2=78°.∵EF∥AC,∴∠BAC=∠2=78°.9.答案不唯一,如:如果①②,那么③(或如果①③,那么②)[解析] (1)已知AB=AD,∠BAC=∠DAC,AC=AC,可得△ABC≌△ADC(SAS),所以BC=DC;(2)已知AB=AD,BC=DC,AC=AC,可得△ABC≌△ADC(SSS),所以∠BAC=∠DAC.10.82°[解析] ∵CA平分∠DCB,∴∠BCA=∠DCA.又∵CB=CD,AC=AC,∴△ABC≌△ADC(SAS).∴∠B=∠D.∴∠B+∠ACB=∠D+∠ACD.∵∠CAE=∠D+∠ACD=49°,∴∠B+∠ACB=49°.∴∠BAE=180°-∠B-∠ACB-∠CAE=82°.故答案为82°.11.①③④[解析] ∵AD是△ABC的中线,∴BD=CD.又∠CDE=∠BDF,DE=DF,∴△BDF≌△CDE,故④正确;由△BDF≌△CDE,可知CE=BF,故①正确;∵AD是△ABC的中线,∴△ABD和△ACD等底同高,∴△ABD和△ACD的面积相等,但不一定全等,故②错误;由△BDF≌△CDE,可知∠FBD=∠ECD,∴BF∥CE,故③正确.故答案为①③④.12.解:(1)证明:∵D是边BC的中点,∴BD=CD.在△ABD 和△ECD 中,{BD =CD,∠ADB =∠EDC,AD =ED,∴△ABD ≌△ECD (SAS).(2)∵在△ABC 中,D 是边BC 的中点,∴S △ABD =S △ACD .∵△ABD ≌△ECD ,∴S △ABD =S △ECD . ∵S △ABD =5,∴S △ACE =S △ACD +S △ECD =5+5=10,即△ACE 的面积为10.变式:解:如图,延长AD 到点E ,使ED=AD ,连接BE.∵AD 是△ABC 的中线,∴BD=CD.又ED=AD ,∠ADC=∠EDB ,∴△BED ≌△CAD (SAS). ∴BE=AC=3. ∵DE=AD ,∴AE=2AD.在△ABE 中,AB-BE<AE<AB+BE , 即AB-BE<2AD<AB+BE ,∴7-3<2AD<7+3. ∴2<AD<5.。

七年级数学下册三角形 探索三角形全等的条件利用角边角 角角边判定三角形全等2

七年级数学下册三角形 探索三角形全等的条件利用角边角 角角边判定三角形全等2

乏公仓州月氏勿市运河学校利用角边角角角边判定
三角形全等
1.如图,CD⊥AB于点D,BE⊥AC于点E,CD、BE交于点O,且AO平分∠BAC,那么图中的全等三角形共有〔〕
A.1对B.2对C.3对D.4对
2.如图,点A在DE上,AC=CE,∠1=∠2=∠3,那么DE的长等于〔〕
A.DC B.BC C.AB D.AE+AC
3.如图,在△ABC中,∠A=90°,AB=AC,∠ABC的平分线BD交AC于点D,CE⊥BD,交 BD的延长线于点E,假设BD=8,那么CE= .
4.如图,AC⊥BC,AD⊥DB,以下条件中,能使△ABC≌△BAD
的有〔把所有正确结论的序号都填在横线上〕
①∠ABD=∠BAC;②∠DAB=∠CBA;③∠DAC=∠CBD.
5.如图,点E,H,G,N在一条直线上,∠F=∠M,EH=GN,MH∥FG.求证:△EFG≌△NMH.
6.如图B、C、E三点在同一直线上,AC∥DE,AC=CE,∠ACD=∠B,求证:△ABC≌△CDE.
7.如图,A,B,C三点共线,AE∥BD,BE∥CD,且B是AC中点,求证:BE=CD.
8.如图,在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.
〔1〕求证:AC=CD;
〔2〕假设AC=AE,求∠DEC的度数.
答案:
1.D; 2.C; 3.4; 4.①②;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

11.5 两个三角形全等的条件习题精选(二)
基础巩固
一、训练平台(每小题5分,共20分)
1.如图11-20所示,△ABC≌△AED,C和D,B和E是对应顶点,则对应角为_________,对应边为__________.
2.如图11-21所示,两个全等三角形ABD,BCD,AD∥BC,则________≌________,对应边为________,对应角为_________.
3.如图11-22所示,AC,BD交于点O,OA=OB,OC=OD,则图中全等三角形的对数有_________对.
4.如图11-23所示,要判定△ABC≌△ADE,除去公共角∠A外,在下列横线上写出还需要的两个条件,并在括号内写出由这种条件判定两个三角形全等的定理.
(1)∠B=∠D,AB=AD(ASA);
(2)_________,__________();
(3)_________,__________();
(4)_________,__________();
(5)_________,__________();
(6)_________,__________();
能力升级
二、提高训练(第1~4小题各五分,第5小题10分,共30分)
1.全等三角形的判定方法有()
A.SAS,ASA,AAS,SSS
B.SAS,AAS,SSA,SSS
C.ASA,AAA,SSS,AAS
D.ASA,SSA,SAS,SSS
2.如图11-24所示,AB=CD,DE=AF,CF=BE,∠AFB=80°,∠CDE=60°,那么∠ABC等于()
A.80°
B.60°
C.40°
D.20°
3.如图11-25所示,AC=AD,BC=BD,那么全等三角形的对数是()
A.1
B.2
C.3
D.4
4.如图11-26所示,点B,F,E,D在一条直线上,AB=BC,AF=FC,AE=EC,AD=DC,则图中全等三角形有()
A.3对
B.4对
C.5对
D.6对
5.如图11-27所示,已知AB=CD,BE=DF,AE=CF,AC,BD相交于点O,试说明EO=FO.
三、探索发现(每小题12分,共36分)
1.如图11-28所示,已知AB=CD,AE=DF,CE=BF.试说明AF=DE.
2.如图11-29所示,已知ABDC,ADBC,O是DB的中点,过点O的直线分别交DA,BC的延长线于E,F.试说明∠E=∠F.
3.如图11-30所示,已知AB=AC,D是BC中点,DE⊥AB于E,DF⊥AC于F.试说明DE=DF.
四、拓展创新(共14分)
如图11-31所示,AB=AC,BE=CE.试说明BD=CD.
参考答案
随堂测评
一、1.∠B=∠E,∠BAC=∠EAD,∠D=∠C,AB=AE,AD=AC,DE=CB
2.△ABD=△CDB AD=BC,AB=DC,BD=DB ∠A=∠C,∠1=∠3,∠2=∠4
3.3
4.(2)AB=AD,AC=AD(SAS)
(3)∠ACB=∠AED,AC=AE(ASA)
(4)∠ACB=∠AED,BC=DE(AAS)
(5)∠ACB=∠AED,AB=AD(AAS)
(6)∠B=∠D AC=AE(AAS)
二、1.A
2.C[提示:CF=BE,∴CF+FE=BE+FE,CE=BF,∵AF=DE,AB=CD,
∴△AFB≌△DEC,∴∠A=∠CDE=60°∠AFB=∠CED=80°,
∴∠ABC=∠C=40°,故选C]
3.C
4.D
5.解:∵AB=CD,BE=DF,AE=CF,∴△ABE≌△CDF,
∴∠D=∠B,又∵△AOB≌△COD,∴OE=OF
三、1.提示:△ABE≌△DCF,∴∠AEF≌∠DFC.∴△AEF≌△DFE,∴AF=DE
2.由△DAB≌△BCD,可得∠EDO=∠FBO.再由△DEO≌△BFO,可得∠E=∠F.
3.提示:先判断△ABD≌△ACD,∴∠B=∠C.再判断△BDE≌△CDF,∴DE=DF
四、提示:先判断△ABE≌△ACE,∴∠BAD=∠CAE,再判断△ABD≌△ACD,∴BD=CD.。

相关文档
最新文档