(完整版)化学选修三知识点总结,推荐文档
高中化学选修三知识点归纳总结
高中化学选修三知识点归纳总结
一、杂原子
1、杂原子是指不包含金属元素和非金属元素外,有电荷的原子。
它们
卷入了化学反应,形成了大量的物质及离子化合物,其中有些杂原子
表现出特殊特性,如硫氰酸盐类及其他硫酸盐,氧化物、元素络合物、磷根类及其他磷酸盐等。
2、阴离子杂原子包括氮离子(NO3–),氧离子(O2–),氧化物
(SO42–)。
这些杂原子往往被用于构建表示各种化合物的分子式,以及表示各种化合物溶解过程的溶液,其形式一般都是正或负电荷。
二、活性氧
1、活性氧(Active Oxygen)是指在化学反应中具有自由自由基或自由
载体特性,可以构成一类性质不稳定的氧分子,例如:自由基羟基氧(·OH)、一氧化氮(·NO)、氧化氮(·NO2)及活性氧(·O2)等。
2、活性氧在地球上的形态十分多样,一般可以分为还原氧和氧化氧,
其中还原氧(·OH)及超氧(·O2)便是衡量活性氧的重要参数。
活性
氧产生的最主要源头是臭氧层破坏及空气污染,同时也是太阳紫外线(UV)的重要来源。
三、原子容量
1、原子容量也称为原子库仑或原子数,是指组成某种元素的原子的数目。
它是用于表示元素活性的量化参数,主要用于衡量比较不同元素的化学反应特性;它被广泛使用于工业合成化学反应,也可用于判断物质溶解和析出反应中元素的构成及参与情况。
2、原子容量可以提示一定元素氧化反应的过程,在绘制一定元素与其他元素活性差异图时,可以参考元素原子容量大小,从而勾勒出各种活性差异之间的关系。
此外,原子容量还可以参照某些离子溶解度规律,用以预测物质的析出反应。
化学选修3知识点总结
化学选修3知识点总结第一章:溶液和溶解度1.1 溶液的概念及分类溶液是指将溶质溶解在溶剂中形成的均匀的稀释的混合物。
根据溶剂的性质,溶液可以分为气体溶液、固体溶液和液体溶液。
1.2 溶解度的概念及影响因素溶解度是指在一定温度下,单位量溶剂中能溶解最大量溶质的质量。
影响溶解度的因素包括温度、压力、溶质种类和溶剂种类等。
1.3 晶体生长和溶解过程晶体生长是指在溶液中溶质从溶解状态转变为晶体状态的过程。
溶解过程是指固体溶解成溶液的过程。
1.4 溶液的稀释和浓缩溶液的稀释是指在一定量的溶液中加入适量的溶剂,使得溶质浓度减小。
溶液的浓缩是指通过去除部分溶剂或者加入相同种类的溶质,使得溶质浓度增大。
第二章:电解质2.1 电解质的概念及分类电解质是指在溶液或者熔融状态下能够导电的物质。
根据电离度的不同,电解质可以分为强电解质和弱电解质。
2.2 电离度和电离平衡常数电离度是指溶液中电离物质的浓度与总溶液物质浓度的比值。
电离平衡常数是指在电离平衡时,电离物质的浓度的平方和除以未电离物质的浓度的乘积。
2.3 Alberty模型Alberty模型是用来描述电解质在溶液中的电离过程的模型,其公式为lnK = -ΔH/RT +ΔS/R,其中K为电解质的电离平衡常数,ΔH为反应焓变,ΔS为反应熵变。
第三章:溶液的物理性质3.1 溶液的导电性溶液的导电性是指溶液中电荷载体的移动。
强电解质的溶液中,电荷载体的浓度较高,因此导电性较强。
3.2 溶液的冰点和沸点溶液的冰点和沸点分别是指在溶质的影响下,溶剂的冰点和沸点降低的现象。
这主要是由于溶质分子与溶剂分子之间形成了混合物,使得溶液的冰点和沸点相对纯溶剂降低。
3.3 溶液的密度和黏度溶液的密度和黏度是指溶液的密度和流动性。
一般来说,溶剂的密度和黏度随着溶质的浓度增大而增大。
第四章:离子反应的基本原理4.1 离子反应的基本理论离子反应是指在溶液中,离子和分子之间发生的一种化学反应。
化学选修三知识点总结
化学选修三知识点总结化学选修三主要涉及到有机化学的基本原理和有机化合物的合成方法,下面对这些知识点进行总结:1. 有机化学的基本概念:有机化学研究有机物的组成、结构、性质和变化规律。
有机物是由碳和氢构成的化合物,可分为烃、醇、酮、醚、酯、醚、醛、胺、酸等。
2. 共价键与配位键:有机物中的碳原子一般通过共价键与其他原子连接,共用电子对形成共价键。
配位键是由金属离子与配位子之间的电子共享形成的。
3. 有机物的软硬酸碱性:有机物中的碳原子带有正电荷,可被视为软酸;氧、硫等元素带有负电荷,可被视为软碱。
氮、磷等带有正电荷的原子可被视为硬酸,氧、氯等带有负电荷的原子可被视为硬碱。
4. 有机反应机理:有机反应机理是指有机化合物参与反应过程中的化学键的形成、断裂和移动等变化过程。
常见的有机反应机理有加合反应、消除反应、取代反应、重排反应等。
5. 醇和酚的合成和性质:醇是含有羟基(-OH)的有机化合物,通过醇的脱水反应可以合成酚。
醇和酚具有一定的酸碱性,可以发生酸碱反应和取代反应。
酚还具有酚醛试剂试验的特异性。
6. 醛和酮的合成和性质:醛和酮是由羰基(C=O)连接的有机化合物,通过酸催化的氧化反应可以合成醛。
醛和酮具有亲电性,可以发生加合反应、加氢反应、亲电取代反应等。
7. 脂肪酸和脂肪族酯的合成和性质:脂肪酸是通过醇和酸的酯化反应合成的,是长链碳酸的一种。
脂肪族酯是由醇和脂肪酸酯化合成的,常用作食品添加剂和工业原料。
8. 胺的合成和性质:胺是由氨基(-NH2)取代或连接到有机骨架上的化合物。
胺可以通过氨的取代反应或胺的加成反应合成,具有碱性和亲电性。
9. 芳香化合物及其衍生物的合成和性质:芳香化合物是由苯环及其衍生物组成的。
芳香化合物具有独特的稳定性和反应性,可以通过芳香取代反应和芳香合成反应进行合成。
10. 有机化合物的质谱分析:质谱分析是一种通过对化合物分子进行碎裂和质荷比分析,确定化合物的分子结构和相对分子质量的方法。
高中化学选修3知识点总结
高中化学选修3知识点总结高中化学选修3知识一、化学平衡弱电解质的电离、盐类的水解、难溶电解质的溶解等问题都涉及化学平衡的理念,基于此,研究这类问题,我们要从平衡的角度出发,运用化学平衡的观念分析问题。
化学平衡的研究对象是一定条件下的可逆反应,而弱电解质的电离、盐类的水解、难溶电解质的溶解等都是可逆反应,在水溶液中的行为都表现为一种动态的平衡,这些平衡可看作化学平衡中的一种特例(水溶液中的化学平衡),因此它们有化学平衡的共性,也有其鲜明的个性。
1.弱电解质的电离(以CH3COOH的电离为例)(1)弱电解质的电离:CH3COOHCH3COO—+H+。
(2)电离平衡常数:用K表示,CH3COOH的电离平衡常数可表示为K(CH3COOH)=[c(H+)·c(CH3COO—)]/c(CH3COOH)。
注意:电离平衡常数只随温度的变化而改变,不随参与电离平衡的分子和各离子的浓度变化而变化。
K电离表达式中的各浓度指平衡时的浓度。
通常都用在25℃的电离常数来讨论室温下各种弱电解质溶液的平衡状态。
多元弱酸是分步电离的,它的每一步电离都有相应的.电离常数,通常用K1、K2、K3等表示,其大小关系为K1>K2>K3,一般都要相差104~105倍。
(3)弱电解质电离的特点:①共性特点:动(动态平衡)、定(各微粒的含量保持不变)、等(电离的速率等于离子结合成分子的速率)、变(条件改变,平衡发生移动)。
②个性特点:电离过程吸热;电离程度较小。
(4)外界条件对电离平衡的影响:①浓度:增大弱电解质的浓度,电离平衡向右移动,溶质分子的电离程度减小;增大离子的浓度,电离平衡向左移动,溶质分子的电离程度减小。
②温度:升高温度,电离平衡向右移动,溶质分子的电离程度增大;降低温度,电离平衡向左移动,溶质分子的电离程度减小。
注意:区分电离平衡移动与电离程度变化的关系,电离平衡移动的方向利用化学平衡移动原理来分析,而电离程度是一个相对值,即使电离平衡向右移动,电离程度也不一定增大。
(完整word)化学选修三知识点,推荐文档
第一章原子结构与性质一.原子结构1.能级与能层2.原子轨道3.原子核外电子排布规律⑴构造原理:随着核电荷数递增,大多数元素的电中性基态原子的电子按右图顺序填入核外电子运动轨道(能级),叫做构造原理。
能级交错:由构造原理可知,电子先进入4s轨道,后进入3d轨道,这种现象叫能级交错。
说明:构造原理并不是说4s能级比3d能级能量低(实际上4s能级比3d能级能量高),而是指这样顺序填充电子可以使整个原子的能量最低。
也就是说,整个原子的能量不能机械地看做是各电子所处轨道的能量之和。
(2)能量最低原理现代物质结构理论证实,原子的电子排布遵循构造原理能使整个原子的能量处于最低状态,简称能量最低原理。
构造原理和能量最低原理是从整体角度考虑原子的能量高低,而不局限于某个能级。
(3)泡利(不相容)原理:基态多电子原子中,不可能同时存在4个量子数完全相同的电子。
换言之,一个轨道里最多只能容纳两个电子,且电旋方向相反(用“↑↓”表示),这个原理称为泡利(Pauli )原理。
(4)洪特规则:当电子排布在同一能级的不同轨道(能量相同)时,总是优先单独占据一个轨道,而且自旋方向相同,这个规则叫洪特(Hund )规则。
比如,p3的轨道式为或,而不是。
洪特规则特例:当p 、d 、f 轨道填充的电子数为全空、半充满或全充满时,原子处于较稳定的状态。
即p0、d0、f0、p3、d5、f7、p6、d10、f14时,是较稳定状态。
前36号元素中,全空状态的有4Be 2s22p0、12Mg 3s23p0、20Ca 4s23d0;半充满状态的有:7N 2s22p3、15P 3s23p3、24Cr 3d54s1、25Mn 3d54s2、33As 4s24p3;全充满状态的有10Ne 2s22p6、18Ar 3s23p6、29Cu 3d104s1、30Zn 3d104s2、36Kr 4s24p6。
4. 基态原子核外电子排布的表示方法 (1)电子排布式①用数字在能级符号的右上角表明该能级上排布的电子数,这就是电子排布式,例如K :1s22s22p63s23p64s1。
(完整版)高中化学选修3知识点总结
高中化学选修3知识点总结二、复习要点1、原子结构2、元素周期表和元素周期律3、共价键4、分子的空间构型5、分子的性质6、晶体的结构和性质(一)原子结构1、能层和能级(1)能层和能级的划分①在同一个原子中,离核越近能层能量越低。
②同一个能层的电子,能量也可能不同,还可以把它们分成能级s、p、d、f,能量由低到高依次为s、p、d、f。
③任一能层,能级数等于能层序数。
④s、p、d、f……可容纳的电子数依次是1、3、5、7……的两倍。
⑤能层不同能级相同,所容纳的最多电子数相同。
(2)能层、能级、原子轨道之间的关系每能层所容纳的最多电子数是:2n2(n:能层的序数)。
2、构造原理(1)构造原理是电子排入轨道的顺序,构造原理揭示了原子核外电子的能级分布。
(2)构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式的主要依据之一。
(3)不同能层的能级有交错现象,如E(3d)>E(4s)、E(4d)>E(5s)、E(5d)>E(6s)、E(6d)>E(7s)、E(4f)>E(5p)、E(4f)>E(6s)等。
原子轨道的能量关系是:ns<(n-2)f <(n-1)d <np(4)能级组序数对应着元素周期表的周期序数,能级组原子轨道所容纳电子数目对应着每个周期的元素数目。
根据构造原理,在多电子原子的电子排布中:各能层最多容纳的电子数为2n2 ;最外层不超过8个电子;次外层不超过18个电子;倒数第三层不超过32个电子。
(5)基态和激发态①基态:最低能量状态。
处于最低能量状态的原子称为基态原子。
②激发态:较高能量状态(相对基态而言)。
基态原子的电子吸收能量后,电子跃迁至较高能级时的状态。
处于激发态的原子称为激发态原子。
③原子光谱:不同元素的原子发生电子跃迁时会吸收(基态→激发态)和放出(激发态→较低激发态或基态)不同的能量(主要是光能),产生不同的光谱——原子光谱(吸收光谱和发射光谱)。
利用光谱分析可以发现新元素或利用特征谱线鉴定元素。
高中化学选修3-物质结构和性质-全册知识点总结
高中化学选修3物质结构与性质知识点总结主要知识要点:1、原子结构2、元素周期表和元素周期律3、共价键4、分子的空间构型5、分子的性质6、晶体的结构和性质(一)原子结构1、能层和能级(1)能层和能级的划分①在同一个原子中,离核越近能层能量越低。
②同一个能层的电子,能量也可能不同,还可以把它们分成能级s、p、d、f,能量由低到高依次为s、p、d、f。
③任一能层,能级数等于能层序数。
④s、p、d、f……可容纳的电子数依次是1、3、5、7……的两倍。
⑤能层不同能级相同,所容纳的最多电子数相同。
(2)能层、能级、原子轨道之间的关系每能层所容纳的最多电子数是:2n2(n:能层的序数)。
2、构造原理(1)构造原理是电子排入轨道的顺序,构造原理揭示了原子核外电子的能级分布。
(2)构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式的主要依据之一。
(3)不同能层的能级有交错现象,如E(3d)>E(4s)、E(4d)>E(5s)、E (5d)>E(6s)、E(6d)>E(7s)、E(4f)>E(5p)、E(4f)>E(6s)等。
原子轨道的能量关系是:ns<(n-2)f <(n-1)d <np(4)能级组序数对应着元素周期表的周期序数,能级组原子轨道所容纳电子数目对应着每个周期的元素数目。
根据构造原理,在多电子原子的电子排布中:各能层最多容纳的电子数为2n2 ;最外层不超过8个电子;次外层不超过18个电子;倒数第三层不超过32个电子。
(5)基态和激发态①基态:最低能量状态。
处于最低能量状态的原子称为基态原子。
②激发态:较高能量状态(相对基态而言)。
基态原子的电子吸收能量后,电子跃迁至较高能级时的状态。
处于激发态的原子称为激发态原子。
③原子光谱:不同元素的原子发生电子跃迁时会吸收(基态→激发态)和放出(激发态→较低激发态或基态)不同的能量(主要是光能),产生不同的光谱——原子光谱(吸收光谱和发射光谱)。
利用光谱分析可以发现新元素或利用特征谱线鉴定元素。
化学选修3知识点整理
化学选修3知识点整理
化学选修3知识点整理:
1. 化学平衡:平衡定律、JNC效应、酸碱电解质的酸碱性、溶液的中和反应、溶液的电离程度、酸碱平衡等
2. 化学热力学:反应焓、热力学第一、第二定律、温度和熵的变化、热力学量的计算等
3. 化学动力学:速率定律、反应机理、反应速率与温度的关系、催化剂的作用等
4. 化学分析:氧化还原滴定、络合滴定、酸碱滴定、光度法、荧光法、红外光谱法等
5. 化学工业:氨的制备、烯烃的制备、丙烯酸的生产、聚合反应、有机合成、材料的制备等
6. 有机化学:烃、芳香族化合物、醇、醛、酮、羧酸、酯、胺等有机化学基础知识
7. 高分子化学:高分子合成、高分子的物理性质、高分子的应用等
8. 生物化学:生物大分子、生物催化作用、生物化学反应、生物能量转化等
9. 分子生物学:DNA的复制、转录、翻译、基因表达控制、生物技术应用及社会伦理等
10. 化学与环境:大气污染、水污染、土壤污染及其防治、绿色化学等。
以上是化学选修3中的重点知识点。
(完整版)高中化学选修3知识点总结
高中化学选修3知识点总结二、复习要点1、原子结构2、元素周期表和元素周期律3、共价键4、分子的空间构型5、分子的性质6、晶体的结构和性质(一)原子结构1、能层和能级(1)能层和能级的划分①在同一个原子中,离核越近能层能量越低。
②同一个能层的电子,能量也可能不同,还可以把它们分成能级s、p、d、f,能量由低到高依次为s、p、d、f。
③任一能层,能级数等于能层序数。
④s、p、d、f……可容纳的电子数依次是1、3、5、7……的两倍。
⑤能层不同能级相同,所容纳的最多电子数相同。
(2)能层、能级、原子轨道之间的关系每能层所容纳的最多电子数是:2n2(n:能层的序数)。
2、构造原理(1)构造原理是电子排入轨道的顺序,构造原理揭示了原子核外电子的能级分布。
(2)构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式的主要依据之一。
(3)不同能层的能级有交错现象,如E(3d)>E(4s)、E(4d)>E(5s)、E(5d)>E(6s)、E(6d)>E(7s)、E(4f)>E(5p)、E(4f)>E(6s)等。
原子轨道的能量关系是:ns<(n-2)f <(n-1)d <np(4)能级组序数对应着元素周期表的周期序数,能级组原子轨道所容纳电子数目对应着每个周期的元素数目。
根据构造原理,在多电子原子的电子排布中:各能层最多容纳的电子数为2n2 ;最外层不超过8个电子;次外层不超过18个电子;倒数第三层不超过32个电子。
(5)基态和激发态①基态:最低能量状态。
处于最低能量状态的原子称为基态原子。
②激发态:较高能量状态(相对基态而言)。
基态原子的电子吸收能量后,电子跃迁至较高能级时的状态。
处于激发态的原子称为激发态原子。
③原子光谱:不同元素的原子发生电子跃迁时会吸收(基态→激发态)和放出(激发态→较低激发态或基态)不同的能量(主要是光能),产生不同的光谱——原子光谱(吸收光谱和发射光谱)。
利用光谱分析可以发现新元素或利用特征谱线鉴定元素。
(完整word版)高中化学选修3知识点全部归纳
高中化学选修 3 知识点全部归纳(物质的构造与性质第一章原子构造与性质.一、认识原子核外电子运动状态,认识电子云、电子层(能层)、原子轨道(能级)的含义.1.电子云:用小黑点的疏密来描述电子在原子核外空间出现的机遇大小所得的图形叫电子云图.离核越近,电子出现的机遇大,电子云密度越大;离核越远,电子出现的机遇小,电子云密度越小 .电子层(能层):依照电子的能量差异和主要运动地域的不同样,核外电子分别处于不同样的电子层 .原子由里向外对应的电子层符号分别为K、 L、 M 、 N、 O、 P、 Q.原子轨道(能级即亚层):处于同一电子层的原子核外电子,也可以在不同样种类的原子轨道上运动,分别用 s、 p、 d、f 表示不同样形状的轨道, s 轨道呈球形、 p 轨道呈纺锤形,和f 轨道较复杂 .各轨道的伸展方向个数依次为 1、3、 5、 7.d 轨道2.(构造原理)认识多电子原子中核外电子分层排布依照的原理,外电子的排布.能用电子排布式表示1~ 36 号元素原子核(1). 原子核外电子的运动特色可以用电子层、原子轨道(亚层 )和自旋方向来进行描述.在含有多个核外电子的原子中,不存在运动状态完满同样的两个电子.(2). 原子核外电子排布原理.① .能量最低原理:电子先据有能量低的轨道,再依次进入能量高的轨道.② .泡利不相容原理:每个轨道最多容纳两个自旋状态不同样的电子.③ .洪特规则 :在能量同样的轨道上排布时,电子尽可能分占不同样的轨道,且自旋状态同样.洪特规则的特例:在等价轨道的全充满(p6、 d10、f14 )、半充满( p3、d5、f7 )、全空时 (p0、d0、 f0)的状态,拥有较低的能量和较大的牢固性.如 24Cr [Ar]3d54s1 、29Cu [Ar]3d104s1. (3). 掌握能级交叉图和 1-36 号元素的核外电子排布式 . ①依照构造原理,基态原子核外电子的排布依照图⑴箭头所示的序次。
高中化学选修3重要知识点总结
高中化学选修3重要知识点总结高中化学选修三基础知识(一)原子结构1、能层和能级(1)能层和能级的划分①在同一个原子中,离核越近能层能量越低。
②同一个能层的电子,能量也可能不同,还可以把它们分成能级s、p、d、f,能量由低到高依次为s、p、d、f。
③任一能层,能级数等于能层序数。
④s、p、d、f……可容纳的电子数依次是1、3、5、7……的两倍。
⑤能层不同能级相同,所容纳的最多电子数相同。
(2)能层、能级、原子轨道之间的关系每能层所容纳的最多电子数是:2n2(n:能层的序数)。
2、构造原理(1)构造原理是电子排入轨道的顺序,构造原理揭示了原子核外电子的能级分布。
(2)构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式的'主要依据之一。
(3)不同能层的能级有交错现象,如E(3d)>E(4s)、E(4d)>E(5s)、E(5d)>E(6s)、E(6d)>E(7s)、E(4f)>E(5p)、E(4f)>E(6s)等。
原子轨道的能量关系是:ns<(n-2)f < (n-1)d(4)能级组序数对应着元素周期表的周期序数,能级组原子轨道所容纳电子数目对应着每个周期的元素数目。
根据构造原理,在多电子原子的电子排布中:各能层最多容纳的电子数为2n2 ;最外层不超过8个电子;次外层不超过18个电子;倒数第三层不超过32个电子。
(5)基态和激发态①基态:最低能量状态。
处于最低能量状态的原子称为基态原子。
②激发态:较高能量状态(相对基态而言)。
基态原子的电子吸收能量后,电子跃迁至较高能级时的状态。
处于激发态的原子称为激发态原子。
③原子光谱:不同元素的原子发生电子跃迁时会吸收(基态→激发态)和放出(激发态→较低激发态或基态)不同的能量(主要是光能),产生不同的光谱——原子光谱(吸收光谱和发射光谱)。
利用光谱分析可以发现新元素或利用特征谱线鉴定元素。
3、电子云与原子轨道(1)电子云:电子在核外空间做高速运动,没有确定的轨道。
高中化学选修3知识点总结归纳
第一章原子结构与性质一.原子结构1.能级与能层2.原子轨道3.原子核外电子排布规律⑴构造原理:随着核电荷数递增,大多数元素的电中性基态原子的电子按右图顺序填入核外电子运动轨道(能级),叫做构造原理。
能级交错:由构造原理可知,电子先进入4s轨道,后进入3d轨道,这种现象叫能级交错。
说明:构造原理并不是说4s能级比3d能级能量低(实际上4s能级比3d能级能量高),而是指这样顺序填充电子可以使整个原子的能量最低。
也就是说,整个原子的能量不能机械地看做是各电子所处轨道的能量之和。
(2)能量最低原理现代物质结构理论证实,原子的电子排布遵循构造原理能使整个原子的能量处于最低状态,简称能量最低原理。
构造原理和能量最低原理是从整体角度考虑原子的能量高低,而不局限于某个能级。
(3)泡利(不相容)原理:基态多电子原子中,不可能同时存在4个量子数完全相同的电子。
换言之,一个轨道里最多只能容纳两个电子,且电旋方向相反(用“↑↓”表示),这个原理称为泡利(Pauli )原理。
(4)洪特规则:当电子排布在同一能级的不同轨道(能量相同)时,总是优先单独占据一个轨道,而且自旋方向相同,这个规则叫洪特(Hund )规则。
比如,p3的轨道式为或,而不是。
洪特规则特例:当p 、d 、f 轨道填充的电子数为全空、半充满或全充满时,原子处于较稳定的状态。
即p0、d0、f0、p3、d5、f7、p6、d10、f14时,是较稳定状态。
前36号元素中,全空状态的有4Be 2s22p0、12Mg 3s23p0、20Ca 4s23d0;半充满状态的有:7N 2s22p3、15P 3s23p3、24Cr 3d54s1、25Mn 3d54s2、33As 4s24p3;全充满状态的有10Ne 2s22p6、18Ar 3s23p6、29Cu 3d104s1、30Zn 3d104s2、36Kr 4s24p6。
4. 基态原子核外电子排布的表示方法(1)电子排布式①用数字在能级符号的右上角表明该能级上排布的电子数,这就是电子排布式,例如K :1s22s22p63s23p64s1。
高中化学选修3知识点总结
高中化学选修3知识点总结复习要点1、原子结构2、元素周期表和元素周期律3、共价键4、分子的空间构型5、分子的性质6、晶体的结构和性质(一)原子结构1、能层和能级(1)能层和能级的划分①在同一个原子中,离核越近能层能量越低。
②同一个能层的电子,能量也可能不同,还可以把它们分成能级s、p、d、f,能量由低到高依次为s、p、d、f。
③任一能层,能级数等于能层序数。
④s、p、d、f……可容纳的电子数依次是1、3、5、7……的两倍。
⑤能层不同能级相同,所容纳的最多电子数相同。
(2)能层、能级、原子轨道之间的关系每能层所容纳的最多电子数是:2n2(n:能层的序数)。
2、构造原理(1)构造原理是电子排入轨道的顺序,构造原理揭示了原子核外电子的能级分布。
(2)构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式的主要依据之一。
(3)不同能层的能级有交错现象,如E(3d)>E(4s)、E(4d)>E(5s)、E(5d)>E(6s)、E(6d)>E(7s)、E(4f)>E(5p)、E(4f)>E(6s)等。
原子轨道的能量关系是:ns<(n-2)f <(n-1)d <np(4)能级组序数对应着元素周期表的周期序数,能级组原子轨道所容纳电子数目对应着每个周期的元素数目。
根据构造原理,在多电子原子的电子排布中:各能层最多容纳的电子数为2n2 ;最外层不超过8个电子;次外层不超过18个电子;倒数第三层不超过32个电子。
(5)基态和激发态①基态:最低能量状态。
处于最低能量状态的原子称为基态原子。
②激发态:较高能量状态(相对基态而言)。
基态原子的电子吸收能量后,电子跃迁至较高能级时的状态。
处于激发态的原子称为激发态原子。
③原子光谱:不同元素的原子发生电子跃迁时会吸收(基态→激发态)和放出(激发态→较低激发态或基态)不同的能量(主要是光能),产生不同的光谱——原子光谱(吸收光谱和发射光谱)。
利用光谱分析可以发现新元素或利用特征谱线鉴定元素。
选修三化学知识点总结
选修三化学主要涉及以下几个知识点的总结:化学反应动力学:反应速率:描述反应物浓度随时间的变化率。
反应速率常数:表示反应速率与反应物浓度之间的关系。
反应级数:描述反应速率与反应物浓度的关系。
反应速率与温度:高温下反应速率较快,温度对反应速率的影响可由活化能和碰撞理论解释。
催化剂:增加反应速率但不参与反应本身。
化学平衡与化学反应的平衡常数:平衡态:反应物与生成物浓度之间的比例不再变化。
平衡常数:描述平衡态下反应物浓度之间的比例关系。
平衡常数与温度:温度升高时,平衡常数可能会发生变化。
平衡常数与反应方程式:通过平衡常数可推断反应方程式的平衡位置。
酸碱与溶液:酸碱性:根据氢离子(H⁺)或氢氧根离子(OH⁻)的生成与否判断溶液的酸碱性。
酸碱指示剂:根据颜色的变化来检测溶液的酸碱性。
pH值:用于描述溶液酸碱强度的指标,pH值小于7为酸性,大于7为碱性。
酸碱中和反应:酸与碱反应生成盐和水。
强酸强碱与弱酸弱碱:强酸强碱离子化程度高,弱酸弱碱离子化程度低。
电化学与电解:电解质与非电解质:电解质在水溶液中能够导电,非电解质不能导电。
电解:通过电流在电解质溶液中产生化学变化。
电解质溶液中的电解过程:阴极反应和阳极反应,电子转移和离子迁移。
氧化还原反应与电池:氧化还原反应产生电子流,电池利用氧化还原反应产生电能。
以上是选修三化学的主要知识点总结,涵盖了化学反应动力学、化学平衡与化学反应的平衡常数、酸碱与溶液以及电化学与电解等内容。
在学习过程中,建议结合教材的具体章节和实验案例进行深入学习和实践操作,以更好地理解和掌握这些知识点。
高中化学选修3最全知识点总结!-WPS Office
高中化学选修3最全知识点总结!
原子核外电子排布原理
1.能层、能级与原子轨道
(1)能层(n):在多电子原子中,核外电子的能量是不同的,按照电子的能量差异将其分成不同能层。
通常用K、L、M、N……表示,能量依次升高。
(2)能级:同一能层里电子的能量也可能不同,又将其分成不同的能级,通常用s、p、d、f 等表示,同一能层里,各能级的能量按s、p、d、f的顺序依次升高,即:E(s)<E(p)<E(d)<E(f)。
(3)原子轨道:电子云轮廓图给出了电子在核外经常出现的区域。
这种电子云轮廓图称为原子轨道
(5)当出现d轨道时,虽然电子按ns,(n-1)d,np顺序填充,但在书写电子排布式时,仍把(n-1)d放在ns前。
(6)在书写简化的电子排布式时,并不是所有的都是[X]+价电子排布式(注:X代表上一周期稀有气体元素符号)。
2.基态原子的核外电子排布
(1)能量最低原理
电子尽可能地先占有能量低的轨道,然后进入能量高的轨道,使整个原子的能量处于最低状态。
如图为构造原理示意图,即基态原子核外电子在原子轨道上的排布顺序图。
高中化学选修三知识点归纳
高中化学选修三知识点归纳一、原子结构。
1. 能层与能级。
- 能层:根据电子的能量差异和主要运动区域的不同,核外电子分别处于不同的能层,能层用符号K、L、M、N、O、P、Q表示,能量依次升高。
- 能级:同一能层里电子的能量也可能不同,又将其分成不同的能级,如s、p、d、f等能级,各能级的能量顺序为ns < np < nd < nf(n为能层序数)。
2. 构造原理与电子排布式。
- 构造原理:随着核电荷数递增,大多数元素的电中性基态原子的电子按顺序填入核外电子运动轨道,这个顺序被称为构造原理。
- 电子排布式:如铁(Fe)的电子排布式为1s^22s^22p^63s^23p^63d^64s^2。
为了简化,还可以写成[Ar]3d^64s^2(其中[Ar]表示氩原子的核外电子排布结构)。
3. 基态与激发态、光谱。
- 基态原子:处于最低能量的原子。
- 激发态原子:当基态原子的电子吸收能量后,会跃迁到较高能级,变成激发态原子。
- 光谱:不同元素的原子发生跃迁时会吸收或释放不同频率的光,可以用光谱仪摄取各种元素的电子的吸收光谱或发射光谱,总称原子光谱。
原子光谱是线状光谱,可用于元素的定性分析。
二、分子结构与性质。
1. 共价键。
- 共价键的类型。
- σ键:原子轨道以“头碰头”方式重叠形成的共价键,如H - H键,s - s 重叠;H - Cl键,s - p重叠等。
- π键:原子轨道以“肩并肩”方式重叠形成的共价键,如N≡ N中,除了一个σ键外,还有两个π键。
- 共价键的参数。
- 键能:气态基态原子形成1mol化学键释放的最低能量。
键能越大,化学键越稳定。
- 键长:形成共价键的两个原子之间的核间距。
键长越短,键能越大,共价键越稳定。
- 键角:在原子数超过2的分子中,两个共价键之间的夹角。
键角是描述分子立体结构的重要参数,如CO_2分子中键角为180^∘,为直线形分子;H_2O分子中键角为104.5^∘,为V形分子。
(完整版)化学选修三第一章知识点
一、原子结构1.原子的组成:原子核、核外电子2.原子的特点:原子不显电性,体积小,质量小,质量主要集中在原子核上,原子核的密度非常大3.核外电子排布规律(1)能量最低原理(2)每一层最多容纳电子数:2n2个(3)最外层电子数不超过8个(K层为最外层时不超过2个)(4)次外层电子数不超过18个,倒数第三层不超过32个二、能层与能级能量最低原理:原子的电子排布遵循能使整个原子的能量处于最低状态基态原子:处于最低能量的原子1.能层:核外电子的能量是不同的,按电子能量差异,可以将核外电子分成不同的能层——电子层同一能层的电子,能量也可能不同,还可以分成不同能级能级数2.能级:s、p、d、f ····以s、p、d、f ····排序的各能级可容纳的最多电子数依次为1、3、5、7、······的二倍。
能级数=能层序数(n)三、构造原理1.电子排布式Na:1s22s22p63s1试书写N、Cl、K、26Fe原子的核外电子排布式注意:Cr:1s22s22p63s23p63d54s124Cu:1s22s22p63s23p263d104s129离子电子排布式书写——先失去最外层电子与能量最低原则无关1)、能量最低原理2)、每个原子轨道上最多能容纳__2__个电子,且自旋方向__相反____(泡利不相容原理)3)、当电子排布在同一能级时,总是__首先单独占一个轨道__,而且自旋方向_相同__。
(洪特规则)4)、补充规则:全充满(p6,d10,f14)和半充满(p3,d5,f7)更稳定2.简化电子排布式15P:[Ne]3s23p3(表示内层电子与Ne相同。
与上层稀有气体的核外电子排布相同)29Cu:[Ar] 3d104s13.外围电子(价电子)价电子层:电子数在化学反应中可发生变化的能级主族元素的性质由最外层电子决定过渡元素的性质由最外层电子和次外层电子决定四、电子云与原子轨道1、电子云:电子在原子核外出现的概率分布图2.原子轨道:s、p、d、f电子轨道形状3.原子的电子排布图练习C N O 的电子排布图五、能量最低原理、基态与激发态、光谱基态原子:处于最低能量的原子(稳定)激发态原子:基态原子的电子吸收能量后电子会跃迁到较高的能级,变为激发态原子原子光谱:不同元素的原子发生跃迁时会吸收或释放不同的能量,表现为光的形式得到各种元素的电子的吸收光谱或发射光谱可利用原子光谱上的特征谱线来鉴定元素,称为光谱分析。
化学选修3知识点总结
化学选修3知识点总结原子结构与性质:能层与能级:能层即电子层,用K、L、M、N、O、P、Q表示。
每个能层分为不同的能级,能级符号用s、p、d、f表示,分别对应1、3、5、7个轨道。
能级数等于能层序数。
原子轨道:描述了电子在原子中的可能运动状态。
原子核外电子排布规律:遵循构造原理,即电子按特定顺序填入核外电子运动轨道(能级)。
同时,泡利原理指出,基态多电子原子中,每个能级最多容纳的电子数有一定限制,如ns^2np^6。
分子结构与性质:共价键:涉及电子的共享,形成稳定的分子结构。
分子的立体结构:涉及价层电子对互斥理论、杂化轨道理论等,决定了分子的形状和性质。
分子的性质:包括分子的极性、分子间的相互作用力等,对物质的物理和化学性质有重要影响。
元素周期律与周期表:元素周期表的结构:包括周期(短周期和长周期)和族(主族、副族、Ⅷ族、0族)以及分区(s、p、d、ds、f)。
对角线规则:在元素周期表中,某些主族元素与右下方的主族元素的性质相似。
能量与电子排布:基态与激发态:电子在原子中的不同能量状态,涉及能量变化和电子排布的变化。
电子云:描述电子在原子或分子中的空间分布。
化学键与分子间作用力:共价键、离子键的判断:涉及电子的共享和转移。
键参数对物质性质的影响:如键长、键能等。
分子间作用力:包括范德华力、氢键等,影响物质的物理性质。
配合物与配位键:配合物的形成和性质:涉及中心原子的杂化方式、配位键的形成等。
常见配合物的实验:如硫酸四氨合铜、银氨溶液等。
其他知识点:极性键、非极性键的判断:涉及电子的共享程度和空间分布。
极性分子、非极性分子的判断:涉及分子中正负电荷中心的相对位置。
晶体与非晶体的本质区别:涉及原子或分子的排列方式和相互作用力。
氢键及其对物质性质的影响:如冰的熔点高等。
相似相溶原理:涉及溶质和溶剂之间的相互作用力。
这些知识点是化学选修3的主要内容,涵盖了原子结构、分子结构、元素周期律、能量与电子排布、化学键与分子间作用力、配合物与配位键等多个方面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中化学选修 3 知识点全部归纳(物质的结构与性质)▼第一章原子结构与性质.一、认识原子核外电子运动状态,了解电子云、电子层(能层)、原子轨道(能级)的含义.1.电子云:用小黑点的疏密来描述电子在原子核外空间出现的机会大小所得的图形叫电子云图.离核越近,电子出现的机会大,电子云密度越大;离核越远,电子出现的机会小,电子云密度越小.电子层(能层):根据电子的能量差异和主要运动区域的不同,核外电子分别处于不同的电子层.原子由里向外对应的电子层符号分别为 K、L、M、N、O、P、Q.原子轨道(能级即亚层):处于同一电子层的原子核外电子,也可以在不同类型的原子轨道上运动,分别用 s、p、d、f 表示不同形状的轨道,s 轨道呈球形、p 轨道呈纺锤形,d 轨道和 f 轨道较复杂.各轨道的伸展方向个数依次为 1、3、5、7.2.(构造原理)了解多电子原子中核外电子分层排布遵循的原理,能用电子排布式表示 1~36 号元素原子核外电子的排布.(1).原子核外电子的运动特征可以用电子层、原子轨道(亚层)和自旋方向来进行描述.在含有多个核外电子的原子中,不存在运动状态完全相同的两个电子.(2).原子核外电子排布原理.①.能量最低原理:电子先占据能量低的轨道,再依次进入能量高的轨道.②.泡利不相容原理:每个轨道最多容纳两个自旋状态不同的电子.③.洪特规则:在能量相同的轨道上排布时,电子尽可能分占不同的轨道,且自旋状态相同. 洪特规则的特例:在等价轨道的全充满(p6、d10、f14)、半充满(p3、d5、f7)、全空时(p0、d0、f0)的状态,具有较低的能量和较大的稳定性.如 24Cr [Ar]3d54s1、29Cu [Ar] 3d104s1.(3).掌握能级交错图和 1-36 号元素的核外电子排布式.①根据构造原理,基态原子核外电子的排布遵循图⑴箭头所示的顺序。
②根据构造原理,可以将各能级按能量的差异分成能级组如图⑵所示,由下而上表示七个能级组,其能量依次升高;在同一能级组内,从左到右能量依次升高。
基态原子核外电子的排布按能量由低到高的顺序依次排布。
3.元素电离能和元素电负性第一电离能:气态电中性基态原子失去 1 个电子,转化为气态基态正离子所需要的能量叫做第一电离能。
常用符号 I1 表示,单位为 kJ/mol。
(1).原子核外电子排布的周期性.随着原子序数的增加,元素原子的外围电子排布呈现周期性的变化:每隔一定数目的元素,元素原子的外围电子排布重复出现从 ns1 到 ns2np6 的周期性变化.(2).元素第一电离能的周期性变化.随着原子序数的递增,元素的第一电离能呈周期性变化:★同周期从左到右,第一电离能有逐渐增大的趋势,稀有气体的第一电离能最大,碱金属的第一电离能最小;★同主族从上到下,第一电离能有逐渐减小的趋势.说明:①同周期元素,从左往右第一电离能呈增大趋势。
电子亚层结构为全满、半满时较相邻元素要大即第ⅡA族、第ⅤA族元素的第一电离能分别大于同周期相邻元素。
Be、N、Mg、P②.元素第一电离能的运用:a.电离能是原子核外电子分层排布的实验验证.b.用来比较元素的金属性的强弱. I1 越小,金属性越强,表征原子失电子能力强弱.(3).元素电负性的周期性变化.元素的电负性:元素的原子在分子中吸引电子对的能力叫做该元素的电负性。
随着原子序数的递增,元素的电负性呈周期性变化:同周期从左到右,主族元素电负性逐渐增大;同一主族从上到下,元素电负性呈现减小的趋势.电负性的运用:a.确定元素类型(一般>1.8,非金属元素;<1.8,金属元素).b.确定化学键类型(两元素电负性差值>1.7,离子键;<1.7,共价键).c.判断元素价态正负(电负性大的为负价,小的为正价).d.电负性是判断金属性和非金属性强弱的重要参数(表征原子得电子能力强弱).例 8.下列各组元素,按原子半径依次减小,元素第一电离能逐渐升高的顺序排列的是A.K、Na、Li B.N、O、C C.Cl、S、P D.Al、Mg、Na例 9.已知 X、Y 元素同周期,且电负性 X>Y,下列说法错误的是A.X 与 Y 形成化合物时,X 显负价,Y 显正价B.第一电离能可能 Y 小于 XC.最高价含氧酸的酸性:X 对应的酸性弱于 Y 对应的酸性D.气态氢化物的稳定性:HmY 小于 HmX二.化学键与物质的性质.内容:离子键――离子晶体1.理解离子键的含义,能说明离子键的形成.了解 NaCl 型和 CsCl 型离子晶体的结构特征,能用晶格能解释离子化合物的物理性质.(1).化学键:相邻原子之间强烈的相互作用.化学键包括离子键、共价键和金属键.(2).离子键:阴、阳离子通过静电作用形成的化学键.离子键强弱的判断:离子半径越小,离子所带电荷越多,离子键越强,离子晶体的熔沸点越高.离子键的强弱可以用晶格能的大小来衡量,晶格能是指拆开 1mol 离子晶体使之形成气态阴离子和阳离子所吸收的能量.晶格能越大,离子晶体的熔点越高、硬度越大.离子晶体:通过离子键作用形成的晶体.典型的离子晶体结构:NaCl 型和 CsCl 型.氯化钠晶体中,每个钠离子周围有 6 个氯离子,每个氯离子周围有 6 个钠离子,每个氯化钠晶胞中含有 4 个钠离子和 4 个氯离子;氯化铯晶体中,每个铯离子周围有 8 个氯离子,每个氯离子周围有 8 个铯离子,每个氯化铯晶胞中含有 1 个铯离子和 1 个氯离子.2.了解共价键的主要类型σ键和π键,能用键能、键长、键角等数据说明简单分子的某些性质(对σ键和π键之间相对强弱的比较不作要求).(1).共价键的分类和判断:σ键(“头碰头”重叠)和π键(“肩碰肩”重叠)、极性键和非极性键,还有一类特殊的共价键-配位键.(2).共价键三参数.3.了解极性键和非极性键,了解极性分子和非极性分子及其性质的差异.(1)共价键:原子间通过共用电子对形成的化学键.(2)键的极性:极性键:不同种原子之间形成的共价键,成键原子吸引电子的能力不同,共用电子对发生偏移.非极性键:同种原子之间形成的共价键,成键原子吸引电子的能力相同,共用电子对不发生偏移.(3)分子的极性:①极性分子:正电荷中心和负电荷中心不相重合的分子.非极性分子:正电荷中心和负电荷中心相重合的分子.②分子极性的判断:分子的极性由共价键的极性及分子的空间构型两个方面共同决定.非极性分子和极性分子的比较4.分子的空间立体结构(记住)常见分子的类型与形状比较5.了解原子晶体的特征,能描述金刚石、二氧化硅等原子晶体的结构与性质的关系. (1).原子晶体:所有原子间通过共价键结合成的晶体或相邻原子间以共价键相结合而形成空间立体网状结构的晶体.(2).典型的原子晶体有金刚石(C)、晶体硅(Si)、二氧化硅(SiO2).金刚石是正四面体的空间网状结构,最小的碳环中有 6 个碳原子,每个碳原子与周围四个碳原子形成四个共价键;晶体硅的结构与金刚石相似;二氧化硅晶体是空间网状结构,最小的环中有 6 个硅原子和 6 个氧原子,每个硅原子与 4 个氧原子成键,每个氧原子与 2 个硅原子成键.(3).共价键强弱和原子晶体熔沸点大小的判断:原子半径越小,形成共价键的键长越短,共价键的键能越大,其晶体熔沸点越高.如熔点:金刚石>碳化硅>晶体硅.6.理解金属键的含义,能用金属键的自由电子理论解释金属的一些物理性质.知道金属晶体的基本堆积方式,了解常见金属晶体的晶胞结构(晶体内部空隙的识别、与晶胞的边长等晶体结构参数相关的计算不作要求).(1).金属键:金属离子和自由电子之间强烈的相互作用.请运用自由电子理论解释金属晶体的导电性、导热性和延展性.(2)①金属晶体:通过金属键作用形成的晶体.②金属键的强弱和金属晶体熔沸点的变化规律:阳离子所带电荷越多、半径越小,金属键越强,熔沸点越高.如熔点:Na<Mg<Al,Li>Na>K>Rb>Cs.金属键的强弱可以用金属的原子7. 了解简单配合物的成键情况(配合物的空间构型和中心原子的杂化类型不作要求).(1) 配位键:一个原子提供一对电子与另一个接受电子的原子形成的共价键.即成键的两个原子一方提供孤对电子,一方提供空轨道而形成的共价键.(2) ①.配合物:由提供孤电子对的配位体与接受孤电子对的中心原子(或离子)以配位键形成的化合物称配合物,又称络合物.②形成条件:a.中心原子(或离子)必须存在空轨道. b.配位体具有提供孤电子对的原子. ③配合物的组成.④配合物的性质:配合物具有一定的稳定性.配合物中配位键越强,配合物越稳定.当作为中心原子的金属离子相同时,配合物的稳定性与配体的性质有关.三.分子间作用力与物质的性质.1.知道分子间作用力的含义,了解化学键和分子间作用力的区别.分子间作用力:把分子聚集在一起的作用力.分子间作用力是一种静电作用,比化学键弱得多,包括范德华力和氢键.范德华力一般没有饱和性和方向性,而氢键则有饱和性和方向性.2.知道分子晶体的含义,了解分子间作用力的大小对物质某些物理性质的影响.(1).分子晶体:分子间以分子间作用力(范德华力、氢键)相结合的晶体.典型的有冰、干冰.(2).分子间作用力强弱和分子晶体熔沸点大小的判断:组成和结构相似的物质,相对分子质量越大,分子间作用力越大,克服分子间引力使物质熔化和气化就需要更多的能量,熔、沸点越高.但存在氢键时分子晶体的熔沸点往往反常地高.3.了解氢键的存在对物质性质的影响(对氢键相对强弱的比较不作要求).NH3、H2O、HF 中由于存在氢键,使得它们的沸点比同族其它元素氢化物的沸点反常地高.影响物质的性质方面:增大溶沸点,增大溶解性表示方法:X—H……Y(N O F) 一般都是氢化物中存在.4.了解分子晶体与原子晶体、离子晶体、金属晶体的结构微粒、微粒间作用力的区别.四、几种比较1、离子键、共价键和金属键的比较2、非极性键和极性键的比较3.物质溶沸点的比较(重点)(1)不同类晶体:一般情况下,原子晶体>离子晶体>分子晶体(2)同种类型晶体:构成晶体质点间的作用大,则熔沸点高,反之则小。
①离子晶体:离子所带的电荷数越高,离子半径越小,则其熔沸点就越高。
②分子晶体:对于同类分子晶体,式量越大,则熔沸点越高。
③原子晶体:键长越小、键能越大,则熔沸点越高。
(3)常温常压下状态①熔点:固态物质>液态物质②沸点:液态物质>气态物质第11 页共11 页“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。