山东省及12月普通高中学业水平考试会考数学试题及答案(供参考)

合集下载

12月山东省学业水平考试(会考)数学精编版

12月山东省学业水平考试(会考)数学精编版

山东省2016年12月普通高中学业水平考试数学试题本试卷分第I 卷选择题和第II 卷非选择题两部分,共4页满分100分考试限定用时90分钟答卷前,考生务必将自己的姓名、考籍号、座号填写在试卷和答题卡规定的位置考试结束后,将本试卷和答题卡一并交回第I 卷(共60分)注意事项:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑如需改动,用橡皮擦干净后,再选涂其他答案标号不涂在答题卡上,只答在试卷上无效一、选择题(本大题共20个小题,每小题3分,共60分) 1.已知全集{}c b a U ,,=,集合{}a A =,则=A C UA. {}b a ,B. {}c a ,C. {}c b ,D. {}c b a ,, 2.已知0sin <θ,0cos >θ,那么θ的终边在A.第一象限B. 第二象限C. 第三象限D.第四象限 3.若实数第3,a ,5成等差数列,则a 的值是A. 2B. 3C. 4D. 15 4.图像不经过第二象限的函数是 A. xy 2= B.x y -= C. 2x y = D. x y ln =5.数列1,32,53,74,95,…的一个通项公式是=n a A.12+n n B. 12-n nC. 32+n nD. 32-n n6.已知点)4,3(A ,)1,1(-B ,则线段AB 的长度是A. 5B. 25C. 29D. 29 7.在区间]4,2[-内随机取一个实数,则该实数为负数的概率是A. 32B. 21C. 31D. 418.过点)2,0(A ,且斜率为1-的直线方程式A. 02=++y xB. 02=-+y xC. 02=+-y xD. 02=--y x 9.不等式0)1(<+x x 的解集是A. {}01|<<-x xB. {}0,1|>-<x x x 或C. {}10|<<x xD. {}1,0|><x x x 或 10.已知圆C :036422=-+-+y x y x ,则圆C 的圆心坐标和半径分别为A. )(3,2-,16B. )(3,2-,16C. )(3,2-,4D. )(3,2-,4 11.在不等式22<+y x 表示的平面区域内的点是A. )(0,0B. )(1,1C. )(2,0D. )(0,212.某工厂生产了A 类产品2000件,B 类产品3000件,用分层抽样法从中抽取50件进行产品质量检验,则应抽取B 类产品的件数为A. 20B. 30C. 40D. 50 13.已知3tan -=α,1tan =β,则)tan(βα-的值为A. 2-B. 21-C. 2D. 2114.在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,若1=a ,2=b ,41sin =A ,则B sin 的值是A.41 B. 21C. 43 D. 4215.已知偶函数)(x f 在区间),0[+∞上的解析式为1)(+=x x f ,下列大小关系正确的是A. )2()1(f f >B. )2()1(->f fC. )2()1(->-f fD. )2()1(f f <- 16.从集合{}2,1中随机选取一个元素a ,{}3,2,1中随机选取一个元素b ,则事件“b a <”的概率是A. 61B. 31C.21 D. 3217.要得到)42sin(π+=x y 的图像,只需将x y 2sin =的图像A. 向左平移8π个单位 B. 向右平移 8π个单位 C. 向左平移4π个单位 D. 向右平移 4π个单位 18.在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,若1=a ,2=b ,60=C ,则边c 等于A. 2B. 3C. 2D. 319.从一批产品中随机取出3件,记事件A 为“3件产品全是正品”,事件B 为“3件产品全是次品”,事件C 为“3件产品中至少有1件事次品”,则下列结论正确的是A. A 与C 对立B. A 与C 互斥但不对立C. B 与C 对立D. B 与C 互斥但不对立 20.执行如图所示的程序框图(其中[]x 表示不超过x 的最大整数),则输出的S 的值为 A. 1B. 2C. 3D. 4第II 卷(共40分)注意事项:1.第II 卷共8个小题,共40分2.第II 卷所有题目的答案,考生须用0 5毫米黑色签字笔书写在答题卡上规定的区域内,写在试卷上的答案不得分二、填空题(本大题共5个小题,每小题3分,共15分) 21. 2log 2的值为 .22.在各项均为正数的等比数列{}n a 中,971=⋅a a ,则=4a . 23.已知向量)2,1(=a ,)1,(x b =,若⊥,则实数x 的值是 . 24.样本5,8,11的标准差是 .25.已知一个圆锥的母线长为20,母线与轴的夹角为60,则该圆锥的高是 .三、解答题(本大题共3个小题,共25分) 26.(本小题满分8分)如图,在三棱锥BCD A -中,E ,F 分别是棱AB ,AC 的中点. 求证://EF 平面BCD .27.(本小题满分8分)已知函数x x x f 22sin cos )(-=.求: ⑴)12(πf 的值;⑵)(x f 的单调递增区间.28.(本小题满分9分) 已知函数41)(2++=ax x x f )(R a ∈ ⑴当函数)(x f 存在零点时,求a 的取值范围; ⑵讨论函数)(x f 在区间)1,0(内零点的个数.数学试题参考答案及评分标准一、选择题1-5 CDCDB 6-10 ACBAD 11-15 ABDBD 16-20 CABAC 二、填空题 21.2122. 3 23. 2- 24.6 25. 10 三、解答题26.证明:在ABC ∆中,因为E ,F 分别是棱AB ,AC 的中点,所以EF 是ABC ∆的中位线,……………………………………………1分所以BC EF //………………………………………………………………4分又因为⊂/EF 平面BCD ……………………………………………………5分 ⊂BC 平面BCD ……………………………………………………………6分 所以//EF 平面BCD ………………………………………………………8分 27.解:x x x x f 2cos sin cos )(22=-=……………………………………………2分⑴236cos)122cos()12(==⨯=πππf ……………………………………5分 ⑵由πππk x k 222≤≤-,Z k ∈, 得πππk x k ≤≤-2,Z k ∈.………………………………………………7分所以)(x f 的单调递增区间为],2[πππk k -,Z k ∈.……………………8分28.解⑴因为函数)(x f 有零点,所以方程0412=++ax x 有实数根. 所以012≥-=∆a ,解得1-≤a ,或1≥a因此,所求a 的取值范围是1-≤a ,或1≥a .………………………………2分⑵综上,当1->a 时,)(x f 在区间)1,0(内没有零点;当1-=a ,或45-≤a 时,)(x f 在区间)1,0(内有1个零点; 当145-<<-a 时,)(x f 在区间)1,0(内有2个零点.。

山东高二高中数学水平会考带答案解析

山东高二高中数学水平会考带答案解析

山东高二高中数学水平会考班级:___________ 姓名:___________ 分数:___________一、选择题1.若,则一定成立的不等式是A.B.C.D.2.等差数列中,若,则等于A.3B.4C.5D.63.在中,a=15,b=10,A=60°,则=A.B.C.D.4.等差数列{}的公差不为零,首项=1,是和的等比中项,则数列的前10项之和是A.90B.100C.145D.1905.在中,角A、B、C所对应的边分别为a、b、c,若角A、B、C依次成等差数列,且a=1,等于A. B. C. D.26.不等式的解集为,不等式的解集为,不等式的解集是,那么等于A.-3B.1C.-1D.37.已知两个正数、的等差中项是5,则、的等比中项的最大值为A. 10B. 25 C 50 D. 1008.已知圆的半径为4,为该圆的内接三角形的三边,若,则三角形的面积为A.B.C.D.9.当时,不等式恒成立,则的最大值和最小值分别为A.2,-1B.不存在,2C.2,不存在D.-2,不存在10.已知x、y满足约束条件则目标函数z=(x+1)2+(y-1)2的最大值是A.10B.90C.D.211.已知等比数列满足,且,则当时,A.B.C.D.12.已知方程的四个实根组成以为首项的等差数列,则A.2 C. D.二、填空题1.等差数列的前项和为,若,则2.若关于x的不等式的解集为,则实数a的取值范围是3.设等比数列的公比,前项和为,则4.在中,角的对边分别是,已知,则的形状是三角形.三、解答题1.已知集合,(Ⅰ)当时,求(Ⅱ)若,求实数的取值范围.2.在△ABC中,角A、B、C的对边分别为a、b、c,且(Ⅰ)求角A的大小;(Ⅱ)若,求△ABC的面积.3.如图,海中小岛A周围40海里内有暗礁,一船正在向南航行,在B处测得小岛A在船的南偏东30°,航行30海里后,在C处测得小岛在船的南偏东45°,如果此船不改变航向,继续向南航行,问有无触礁的危险?4.已知点(1,2)是函数的图象上一点,数列的前项和.(Ⅰ)求数列的通项公式(Ⅱ)若,求数列的前项和.5.运货卡车以每小时x千米的速度匀速行驶130千米(50≤x≤100)(单位:千米/小时).假设汽油的价格是每升2元,而汽车每小时耗油(2+)升,司机的工资是每小时14元(Ⅰ)求这次行车总费用y关于x的表达式(Ⅱ)当x为何值时,这次行车的总费用最低,并求出最低费用的值6.已知数列中,,,(Ⅰ)证明数列是等比数列,并求出数列的通项公式(Ⅱ)记,数列的前项和为,求使的的最小值山东高二高中数学水平会考答案及解析一、选择题1.若,则一定成立的不等式是A.B.C.D.【答案】C【解析】本题考查的是不等式的性质。

山东高二高中数学水平会考带答案解析

山东高二高中数学水平会考带答案解析

山东高二高中数学水平会考班级:___________ 姓名:___________ 分数:___________一、选择题1.若命题“”为真,“”为真,则A.p真q真B.p假q假C.p真q假D.p假q真2.下列向量中不垂直的一组是A., B.,C., D.,3.已知不等式的解集为,则的值等于A.B.C.D.4.以正方体的顶点D为坐标原点O,如图建立空间直角坐标系,则与共线的向量的坐标可以是A.B.C.D.5.命题“,”的否定是A.,B.,C.,D.,6..已知等比数列中,是方程的两个根,则等于A.1或B.C.1D.27.已知,则下列结论错误的是A.B.C.D.8.在等差数列中,若,则该数列的前2011项的和为A.2010B.2011C.4020D.40229.过点且与有相同渐近线的双曲线方程是A.B.C.D.10.已知条件:,条件:,则是成立的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件11.矩形两边长分别为、,且,则矩形面积的最大值是A.B.C.D.12.已知变量满足,则的最大值为A.B.C.16D.64二、填空题1.. 抛物线的准线方程为 .2.双曲线的离心率等于3,且与椭圆有相同的焦点,则此双曲线方程 .3.某礼堂第一排有5个座位,第二排有7个座位,第三排有9个座位,依次类推,第16排的座位数是 .4.在一幢10米高的楼顶测得对面一塔吊顶的仰角为,塔基的俯角为,那么这座塔吊的高是 .三、解答题1.(本小题满分10分)已知命题:,,命题:,若命题为真命题,求实数的取值范围.2.(本小题满分10分)在锐角中,内角对边的边长分别是,且,(Ⅰ)求角;(Ⅱ)若边,的面积等于,求边长和.3..(本小题满分12分) 设正数数列{a n }的前n 项和S n 满足.(1) 求a 1的值;(2) 证明:a n =2n -1; (3) 设,记数列{b n }的前n 项为T n ,求T n .4.(本小题满分12分)如图,在长方中,,,当E 为AB 中点时,求二面角的余弦值.5.(本小题满分12分)已知抛物线C 的顶点在原点,焦点在x 轴上,且抛物线上有一点(4,)到焦点的距离为5. (Ⅰ)求抛物线C 的方程; (Ⅱ)若抛物线C 与直线相交于不同的两点A 、B ,求证:.山东高二高中数学水平会考答案及解析一、选择题1.若命题“”为真,“”为真,则A.p真q真B.p假q假C.p真q假D.p假q真【答案】D【解析】略2.下列向量中不垂直的一组是A., B.,C., D.,【答案】B【解析】,所以这两个向量不垂直,故选B3.已知不等式的解集为,则的值等于A.B.C.D.【答案】C【解析】根据条件知:的两个根。

山东省2015及2016年12月普通高中学业水平考试(会考)数学试题及答案(同名7501)

山东省2015及2016年12月普通高中学业水平考试(会考)数学试题及答案(同名7501)

山东省2015年12月普通高中学业水平考试数学试题本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共4页。

满分100分,考试限定用时90分钟。

答卷前,考生务必将自己的姓名、考籍号、座号填写在试卷和答题卡规定的位置。

考试结束后,将本试卷和答题卡一并交回。

第I 卷(共60分)注意事项:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

不涂在答题卡上,只答在试卷上无效。

一、选择题(本大题共20个小题,每小题3分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的) l. 已知集合{}1,2A =,{}2,3B =,则A B =UA. {}2B. {}1,2C. {}2,3D. {}1,2,3 2. 图象过点(0,1)的函数是 A.2xy = B.2log y x =C.12y x= D. 2y x =3. 下列函数为偶函数的是 A.sin y x =. B. cos y x =C. tan y x =D. sin 2y x =4. 在空间中,下列结论正确的是A.三角形确定一个平面B.四边形确定一个平面C.一个点和一条直线确定一个平面D.两条直线确定一个平面5. 已知向量(1,2),(1,1)a b =-=,则a b =g A. 3 B.2 C. 1 D. 06. 函数()sin cos f x x x =的最大值是 A.14B.12C.3 D. 17. 某学校用系统抽样的方法,从全校500名学生中抽取50名做问卷调查,现将500名学生编号为1,2,3,…,500,在1~10中随机抽地抽取一个号码,若抽到的是3号,则从11~20中应抽取的号码是A. 14B. 13C. 12D. 11 8. 圆心为(3,1),半径为5的圆的标准方程是 A. 22(3)(1)5x y +++= B. 22(3)(1)25x y +++=C.22(3)(1)5x y -+-=D.22(3)(1)25x y -+-= 49. 某校100名学生数学竞赛成绩的频率分布直方图如图所示,成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100],则该次数学成绩在[50,60)内的人数为 A. 20 B. 15 C. 10 D. 610. 在等比数列{}n a 中,232,4a a ==,则该数列的前4项和为 A. 15 B. 12 C. 10 D. 6 11. 设,,a b c R ∈,且a b >,则下列不等式成立的是 A.22a b >B. 22ac bc >C. a c b c +>+D.11a b< 12. 已知向量(1,2),(2,)a b x =-=,若//a b ,则x 的值是1A. 4-B. 1-C. 1D. 4 13. 甲、乙、丙3人站成一排,则甲恰好站在中间的概率为 A. 13B.12C.23D. 1614. 已知函数()2sin()(0)f x x ωϕω=+>的部分图象如图所示,则ω的值为 A. 1 2C. 3D.215 已知实数020.31log 3,(),log 22a b c ===,则,,a b c 的大小关系为 A. b c a << B. b a c << C. c a b << D. c b a <<16. 如图,角α的终边与单位圆交于点M ,M 的纵坐标为45,则cos α=A.35B.35- C.45D.45-17. 甲、乙两队举行足球比赛,甲队获胜的概率为13,则乙队不输的概率为A.56B.34C.23D. 1318. 如图,四面体ABCD 的棱DA ⊥平面ABC ,090ACB ∠=, 则四面体的四个面中直角三角形的个数是 A. 1 B.2 C. 3 D. 419.在ABC ∆中,角,,A B C 的对边分别是,,a b c . 若222c a ab b =++,则C = A. 0150 B. 0120 C.060D. 03020. 如图所示的程序框图,运行相应的程序,则输出a 的值是2值为 A. 12B. 13C.14D. 15第II 卷(共40分)注意事项:1. 第II 卷共8个小题,共40分。

2021年山东省普通高中学业水平考试数学试题及参考答案

2021年山东省普通高中学业水平考试数学试题及参考答案

山东省普通高中学业水平考试数学试题第一卷(选取题 共45分)一、选取题(15’×3=45’)1、已知角终边通过点(-3,4),则tanx 等于A43 B 43- C 34 D 34- 2、已知lg2=a,lg3=b ,则lg 23等于A a-bB b-aC a bD ba3、设集合M={})2,1(,则下列关系成立是A 1∈MB 2∈MC (1,2)∈MD (2,1)∈M 4、直线x-y+3=0倾斜角是A 300B 450C 600D 900 5、底面半径为2,高为4圆柱,它侧面积是 A 8π B 16π C 20π D 24π 6、若b<0<a(a,b ∈R),则下列不等式中对的是A b 2<a 2B a b 11> C -b<-a D a-b>a+b 7、已知x ∈(-2π,o),cosx=54,则tanx 等于A 43B 43-C 34D 34-8、已知数列{}n a 前n 项和s n =21++n n ,则a 3等于A 201B 241C 281D 3219、在ΔABC 中,sinA •sinB-cosA •cosB<0则这个三角形一定是 A 锐角三角形 B 钝角三角形 C 直角三角形 D 等腰三角形 10、若函数)2(21)(≠-=x x x f ,则f(x) A 在(-2,+∞),内单调递增 B 在(-2,+∞)内单调递减C 在(2,+∞)内单调递增D 在(2,+∞)内单调递减11、在空间中,a 、b 、c 是两两不重叠三条直线,α、β、γ是两两不重叠三个平面,下列命题对的是A 若两直线a 、b 分别与平面α平行,则a ∥bB 若直线a 与平面β内一条直线b 平行,则a ∥βC 若直线a 与平面β内两条直线b 、c 都垂直,则a ⊥βD 若平面β内一条直线a 垂直平面γ,则γ⊥β 12、不等式(x+1)(x+2)<0解集是A {}12-<<-x xB {}12->-<x x x 或 C {}21<<x x D {}21><x x x 或13、正四棱柱ABCD-A 1B 1C 1D 1中,A 1 C 1与BD 所在直线所成角大小是A 300B 450C 600D 90014、某数学兴趣小组共有张云等10名实力相称成员, 现用简朴随机抽样办法从中抽取3人参加比赛, 则张云被选中概率是A 10%B 30%C 33.3%D 37.5% 15、如图所示程序框图,如果输入三个实数a ,b ,c , 规定输出这三个数中最大数,那么在空白处判断框中, 应当填入下面四个选项中(注:框图中赋值符号“=”也可以写成“←”或“:=”) A c>x B x>c C c>b D b>c第二卷(非选取题共55分)二、填空题(5’ ×4=20’)16、已知a>0,b>0,a+b=1则ab 最大值是____________17、若直线2ay-1=0与直线(3a-1)x+y-1=0平行,则实数a 等于____________18、已知函数⎩⎨⎧≥-<=)4(),1()4(,2)(x x f x x f x ,那么f(5)值为____________ 19、在[-π,π]内,函数)3sin(π-=x y 为增函数区间是____________20、设┃a ┃=12,┃b ┃=9,a • b=-542, 则a 和 b 夹角θ为____________三、解答题(共5小题,共35分)21、已知a =(2,1)b=(λ,-2),若a ⊥ b ,求λ值22、(6’)已知一种圆圆心坐标为(-1, 2),且过点P (2,-2),求这个圆原则方程23、(7’)已知{}n a 是各项为正数等比数列,且a 1=1,a 2+a 3=6,求该数列前10项和S n24、(8’)已知函数R x x x x f ∈-=,cos 21sin 23)( 求f(x)最大值,并求使f(x)获得最大值时x 集合25、(8’)已知函数f(x)满足xf(x)=b+cf(x),b ≠0,f(2)=-1,且f(1-x)=-f(x+1)对两边均故意义任意 x 都成立(1)求f(x)解析式及定义域(2)写出f(x)单调区间,并用定义证明在各单调区间上是增函数还是减函数?参照答案一、1.D2.B3.C4.B5.B6.D7.B8.A9.B10.D11.D12.A13.D14.B15.A二、16、41 17、31 18、8 19、[6π-,65π] 20、43π三、21、解:∵a ⊥b ,∴a •b=0,又∵a=(2,1),b =(λ,-2),∴a •b=2λ-2=0,∴λ=122、解:依题意可设所求圆方程为(x+1)2+(y-2)2=r 2。

山东高二高中数学水平会考带答案解析

山东高二高中数学水平会考带答案解析

山东高二高中数学水平会考班级:___________ 姓名:___________ 分数:___________一、选择题1.△ABC中,,则△ABC一定是A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形2.在等比数列{}中,已知,,则A.1B. 3C.±1D.±33.若则下列不等式成立的是A.B.C.D.4.三角形三边长为,且满足等式,则边所对角为A. 150°B. 30°C. 60°D. 120° [5.不等式表示的平面区域是A B C D6.已知数列则是这个数列的A.第6项B.第7项C.第8项D.第9项7.在中,若,则此三角形是A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形8..函数()的最大值是A.0B.C. 4D. 169.已知数列满足若,则的值为,A.B.C.D.10.如果,那么的最小值是()A.4B.C.9D.1811.、数列的通项为=,,其前项和为,则使>48成立的的最小值为()A.7B.8C.9D.1012.若不等式和不等式的解集相同,则、的值为()A.=﹣8 =﹣10B.=﹣4 =﹣9C.=﹣1 =9D.=﹣1 =2二、填空题1.在中,已知,则= .2.数列的前项和为,,且,则3.已知则的最小值是 .4.函数的定义域是三、解答题1.已知等差数列成等比数列,求数列的公差.2.已知数列的前项和为,且是与2的等差中项,数列满足,点在直线上,(1)求数列,的通项公式;(2)设,求数列的前项和.3.如图,要测量河对岸两点间的距离,今沿河岸选取相距40米的两点,测得 60°,=45°, 60°, 30°,求两点间的距离.4.①已知不等式的解集是,求的值;②若函数的定义域为,求实数的取值范围.5.建造一个容积为8,深为2的长方体无盖水池,若池底和池壁的造价每平方米分别为120元和80元,则如何设计此池底才能使水池的总造价最低,并求出最低的总造价.山东高二高中数学水平会考答案及解析一、选择题1.△ABC中,,则△ABC一定是A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形【答案】A【解析】略2.在等比数列{}中,已知,,则A.1B. 3C.±1D.±3【答案】A【解析】设等比数列的公比为,则,解得。

最新山东省高中会考数学题学业水平考试(有答案)

最新山东省高中会考数学题学业水平考试(有答案)
小饰品店往往会给人零乱的感觉,采用开架陈列就会免掉这个麻烦。“漂亮女生”像是个小超市,同一款商品色彩丰富地挂了几十个任你挑,拿上东西再到收银台付款。这也符合女孩子精挑细选的天性,更保持了店堂长盛不衰的人气。
根本不知道□
(5)资金问题
调研要解决的问题:
调研提纲:ห้องสมุดไป่ตู้
木质、石质、骨质、琉璃、藏银……一颗颗、一粒粒、一片片,都浓缩了自然之美,展现着千种风情、万种诱惑,与中国结艺的朴实形成了鲜明的对比,代表着欧洲贵族风格的饰品成了他们最大的主题。
可见“体验化消费”广受大学生的欢迎、喜欢,这是我们创业项目是否成功的关键,必须引起足够的注意。
2、价格“适中化”
而手工艺制品是一种价格适中,不仅能锻炼同学们的动手能力,同时在制作过程中也能体会一下我国传统工艺的文化。无论是送给朋友还是亲人都能让人体会到一份浓厚的情谊。它的价值是不用金钱去估价而是用你一颗真诚而又温暖的心去体会的。更能让学生家长所接受。
“碧芝”的成功归于他的唯一,这独一无二的物品就吸引了各种女性的眼光。

2023年12月山东省普通高中学业水平合格考数学试题汇编

2023年12月山东省普通高中学业水平合格考数学试题汇编

2023年12月山东省普通高中学业水平合
格考数学试题汇编
本文档是关于2023年12月山东省普通高中学业水平合格考数
学试题的汇编,旨在提供一份便捷且全面的试题集合。

以下是试题
的详细内容:
1. 选择题
- 包括单选题和多选题,覆盖数学各个知识点,如代数、几何、概率等。

- 试题形式多样,考察学生对数学概念的掌握和运用能力。

2. 计算题
- 要求学生运用数学知识和解题方法,进行数值计算或推算。

- 题目会设置不同难度级别,以考察学生的计算能力和解题能力。

3. 解答题
- 要求学生通过文字叙述和计算步骤,解决数学问题。

- 题目涵盖各个知识点,需要学生理解问题、分析问题和解决问题的能力。

4. 应用题
- 考察学生将数学知识应用于实际问题的能力。

- 题目通常会与日常生活、工作或其他学科相关,要求学生综合运用多个知识点进行分析和解决。

请注意,本文档中的试题内容仅供参考,具体考试中可能会有调整和出题方式的变化。

建议考生在备考过程中,多做练题,提升自己的数学水平和应试能力。

祝各位考生顺利通过2023年12月山东省普通高中学业水平合格考数学科目!。

最新山东省高中会考数学题学业水平考试(有答案)

最新山东省高中会考数学题学业水平考试(有答案)
就算你买手工艺品来送给朋友也是一份意义非凡的绝佳礼品哦。而这一份礼物于在工艺品店买的现成的礼品相比,就有价值意义,虽然它的成本比较低但它毕竟它是你花心血花时间去完成的。就像现在最流行的针织围巾,为何会如此深得人心,更有人称它为温暖牌绝大部分多是因为这个原因哦。而且还可以锻炼你的动手能力,不仅实用还有很大的装饰功用哦。
图1-2大学生购买手工艺品可接受价位分布
7、你喜欢哪一类型的DIY手工艺制品?
根本不知道□
10、如果学校开设一家DIY手工艺制品店,你希望_____
培养动手能力□学一门手艺□打ห้องสมุดไป่ตู้时间□兴趣爱好□
根据调查资料分析:大学生的消费购买能力还是有限的,为此DIY手工艺品的消费不能高,这才有广阔的市场。
500元以上1224%
木质、石质、骨质、琉璃、藏银……一颗颗、一粒粒、一片片,都浓缩了自然之美,展现着千种风情、万种诱惑,与中国结艺的朴实形成了鲜明的对比,代表着欧洲贵族风格的饰品成了他们最大的主题。
据统计,上海国民经济持续快速增长。03全年就实现国内生产总值(GDP)6250.81亿元,按可比价格计算,比上年增长11.8%。第三产业的增速受非典影响而有所减缓,全年实现增加值3027.11亿元,增长8%,增幅比上年下降2个百分点。

山东省2017年12月普通高中学业水平考试数学试题会考真题

山东省2017年12月普通高中学业水平考试数学试题会考真题

山东省2021年冬季普通高中学业水平考试数学试题本试卷分第I卷与第卷两局部,共4页. 总分值100分. 考试用时90分钟 . 考试完毕后,将本试卷与答题卡一并交回 .考前须知:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、考籍号与座号填写在答题卡与试卷规定的位置上.2.第I卷每题选出答案后,用2B铅笔把答题卡上到底应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号. 答案写在试卷上无效.3.第卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡个题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、修正带. 不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤 .第I卷〔共60分〕一、选择题:本大题共20个小题,每题3分,共60分. 在每题给出的四个选项中,只有一项为哪一项符合题目要求的 .l. 集合{}1,1U=-,那么U C A=1,0,1A=-,全集{}A. 0B. {}0C. {}1,1-1,0,1- D. {}2. 六位同学参加知识竞赛,将每位同学答对题目的个数制成如下图的茎叶图,那么这组数据的众数是A. 19B. 20 1 8 9 9C. 21D. 22 2 0 1 23. 函数ln(1)y x =-的定义域是A. {|1}x x <B. {|1}x x ≠C. {|1}x x >D. {|1}x x ≥4. 过点(1,0)且及直线y x =平行的直线方程为A. 1y x =--B. 1y x =-+C. 1y x =-D. 1y x =+5. 某班有42名同学,其中女生30人,在该班中用分层抽样的方法抽取14名同学,应该取男生的人数为 A. 4 B. 6 C. 8 D. 106. 及向量(3,2)=-a 垂直的向量是A. (3,2)-B. (23)-,C. (2,3)D. (3,2)7. 0000sin 72cos 48cos72sin 48=+A. -B. C. 12- D. 128. 为得到函数3sin()12=-y x π的图象,只需将函数3sin =y x 的图象上所有的点A. 向左平移4π个单位B. 向右平移4π个单位C. 向左平移12π个单位D. 向右平移12π个单位 9. 向量a 及b 满足||3a =,||4b =,a 及b 的夹角为23π,那么a b = A. 6- B. 6C. -D. 10. 函数2cos 1([0,2])=+∈y x x π的单调递减区间为A. [0,2]πB. [0,]πC. [,2]ππD. 3[,]22ππ11. ,(0,)16∈+∞=,x y xy ,假设+x y 的最小值为1 112. ()f x 为R 上的奇函数,当0>x 时,()1=+f x x ,那么(1)-=fA. 2B. 1C. 0D. 2-13. 某人连续投篮两次,事件“至少投中一次〞的互斥事件是A. 恰有一次投中B. 至多投中一次C. 两次都中D. 两次都不中14. tan 2=θ,那么tan 2θ的值是 A.43 B.45C. 23-D. 43- 15. 在长度为4米的笔直竹竿上,随机选取一点挂一盏灯笼,该点及竹竿两端的距离都大于1米的概率A. 12B. 13C. 14D. 1616. 在∆ABC 中,角,,A B C 的对边分别为,,a b c ,面积为52,5,4==c A π,那么b 的值为A.2B.22C. 4D. 4217. 设,x y 满足约束条件1,0,10,≤⎧⎪≥⎨⎪-+≥⎩x y x y 那么2=+z x y 的最大值为A. 4B.2C. 1-D. 2-18. 在ABC ∆中,角,,A B C 的对边分别是7,,,7,1,cos 7===-a b c b c A .那么a 的值为 219. 执行右图所示的程序框图,那么输出S 的值是值为A. 4B. 7C. 9D. 1620. 在等差数列{}n a 中,37=20=4-,a a ,那么前11项与为A. 22B. 44C. 66D. 88第卷〔共40分〕二、填空题:本大题共5个小题,每题3分,共1 5分.21. 函数sin 3=x y 的最小正周期为.22. 底面半径为1,母线长为4的圆柱的体积等于.23. 随机抛掷一枚骰子,那么掷出的点数大于4的概率是.24. 等比数列1,2,4,,-从第3项到第9项的与为.25. 设函数2,0,()3,0,⎧<=⎨+≥⎩x x f x x x 假设(())4=f f a ,那么实数=a . 三、解答题:本大题共3个小题,共25分.26.〔本小题总分值8分〕如图,在三棱锥-A BCD 中,,==AE EB AF FD .求证://BD 平面EFC .27.〔本小题总分值8分〕圆心为(2,1)C 的圆经过原点,且及直线10-+=x y 相交于,A B 两点,求AB 的长.28.〔本小题总分值9分〕定义在R 上的二次函数2()3=++f x x ax ,且()f x 在[1,2]上的最小值是8.(1)求实数a 的值;(2)设函数()=x g x a ,假设方程()()=g x f x 在(,0)-∞上的两个不等实根为12,x x , 证明:12()162+>x x g .。

山东省2015及2016年12月普通高中学业水平考试(会考)数学试题及答案(同名7501)

山东省2015及2016年12月普通高中学业水平考试(会考)数学试题及答案(同名7501)

山东省2015年12月普通高中学业水平考试数学试题本试卷分第I卷(选择题)和第II卷(非选择题)两部分,共 4 页。

满分100分,考试限定用时90分钟。

答卷前,考生务必将自己的姓名、考籍号、座号填写在试卷和答题卡规定的位置。

考试结束后,将本试卷和答题卡一并交回。

第I卷(共60分)注意事项:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

不涂在答题卡上,只答在试卷上无效。

一、选择题(本大题共20个小题,每小题3分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知集合A 1,2,B 2,3,则AUBA. 2B. 1,2C. 2,3D. 1,2,32. 图象过点(0,1)的函数是A. y 2xB. y log2 xC. y x2D. y x23. 下列函数为偶函数的是A. y sinx.B. y cosxC. y tanxD. y sin 2x4. 在空间中,下列结论正确的是A.三角形确定一个平面C. 一个点和一条直线确定一个平面B.四边形确定一个平面D.两条直线确定一个平面5. 已知向量 a ( 1,2), b (1,1),贝U a g)A. 3B. 2C. 1D. 06. 函数f(x) sin xcosx 的最大值是A. 1B.1C. —D. 14 2 27. 某学校用系统抽样的方法,从全校500名学生中抽取50名做问卷1调查,现将500名学生编号为1,2,3,…,500,在1~10中随机抽地抽取一个号码,若抽到的是3号,则从11~20中应抽取的号码是A. 14B. 13C. 12D. 118. 圆心为(3,1),半径为5的圆的标准方程是A. (x 3)2(y 1)2 5B. (x 3)2(y 1)225C. (x 3)2(y 1)2 5D. (x 3)2(y 1)22549. 某校100名学生数学竞赛成绩的频率分布直方图如图所示,成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100],则该次数学成绩在[50,60)内的人数为A. 20B. 15C. 10D. 610.在等比数列{a n}中,a2 2,a3 4,则该数列的前4项和为A. 15B. 12C. 10D. 611.设a,b,c R,且a b,则下列不等式成立的是A. a2 b2B. ac2 be2C. a c b ca12.已知向量a (1, 2),b (2, x),若a//b,则x的值是A. 4B. 1C. 1D. 413.甲、乙、丙3人站成一排,则甲恰好站在中间的概率为A11 A. -B.-32已知函数 f(x) 2si n(14. 示, 则的值为 A.xlog o.3 2,则a,b,c 的大小关系为15已知实数a log 2 3,b(2)°,cA. b c aB. b 16. 如图,角 为4,则cos5A. 3B.5的终边与单位圆交于点 C. iM,C. c17. 甲、乙两队举行足球比赛,甲队获胜的概率为i '则乙队不输的概率为A.5618.如图, B. 3C. 243四面体 ABCD 的棱 DA 平面 ABC , D.则四面体的四个面中直角三角形的个数是 ACBA. 1B. 2C. 3D.19.在ABC 中,角A,B,C 的对边分别是a, b,c .若c 2 a 2 ab b 2,则 CA.1500B. 1200C. 60°D.30°20.如图所示的程序框图,运行相应的程序,贝U 输出a 的值是值为A. B. C. D.第II卷(共40 分)注意事项:1. 第II卷共8个小题,共40分。

2022年山东省及普通高中学业水平考试会考数学试题及答案

2022年山东省及普通高中学业水平考试会考数学试题及答案

山东省12月一般高中学业水平考试数学试题本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共4页。

满分100分,考试限定用时90分钟。

答卷前,考生务必将自己旳姓名、考籍号、座号填写在试卷和答题卡规定旳位置。

考试结束后,将本试卷和答题卡一并交回。

第I 卷(共60分)注意事项:每题选出答案后,用2B 铅笔把答题卡上对应题目旳答案标号涂黑。

如需改动,用橡皮擦洁净后,再选涂其他答案标号。

不涂在答题卡上,只答在试卷上无效。

一、选择题(本大题共20个小题,每题3分,共60分. 在每题给出旳四个选项中,只有一项是符合题目规定旳) l. 已知集合{}1,2A =,{}2,3B =,则A B =A. {}2B. {}1,2C. {}2,3D. {}1,2,3 2. 图象过点(0,1)旳函数是A. 2xy = B. 2log y x = C. 12y x = D. 2y x =3. 下列函数为偶函数旳是A. sin y x =.B. cos y x =C. tan y x =D. sin 2y x = 4. 在空间中,下列结论对旳旳是A.三角形确定一种平面B.四边形确定一种平面C.一种点和一条直线确定一种平面D.两条直线确定一种平面5. 已知向量(1,2),(1,1)a b =-=,则a b = A. 3 B.2 C. 1 D. 06. 函数()sin cos f x x x =旳最大值是 A.14B.12C.3D. 1 7. 某学校用系统抽样旳措施,从全校500名学生中抽取50名做问卷调查,现将500名学生编号为1,2,3,…,500,在1~10中随机抽地抽取一种号码,若抽到旳是3号,则从11~20中应抽取旳号码是 A. 14 B. 13 C. 12 D. 11 8. 圆心为(3,1),半径为5旳圆旳原则方程是A. 22(3)(1)5x y +++=B. 22(3)(1)25x y +++=C. 22(3)(1)5x y -+-=D. 22(3)(1)25x y -+-=49. 某校100名学生数学竞赛成绩旳频率分布直方图如图所示,成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100],则该次数学成绩在[50,60)内旳人数为 A. 20 B. 15 C. 10 D. 610. 在等比数列{}n a 中,232,4a a ==,则该数列旳前4项和为 A. 15 B. 12 C. 10 D. 6 11. 设,,a b c R ∈,且a b >,则下列不等式成立旳是A. 22a b >B. 22ac bc >C. a c b c +>+D. 11a b< 12. 已知向量(1,2),(2,)a b x =-=,若//a b ,则x 旳值是 A. 4- B. 1- C. 1 D. 4113. 甲、乙、丙3人站成一排,则甲恰好站在中间旳概率为 A.13 B. 12 C. 23 D. 1614. 已知函数()2sin()(0)f x x ωϕω=+>旳部分图象如图所示,则ω旳值为A. 1 2 C. 3 D.215 已知实数020.31log 3,(),log 22a b c ===,则,,a b c 旳大小关系为 A. b c a << B. b a c << C. c a b << D. c b a << 16. 如图,角α旳终边与单位圆交于点M ,M 旳纵坐标为45,则cos α=A.35B.35- C.45 D. 45- 17. 甲、乙两队举行足球比赛,甲队获胜旳概率为13,则乙队不输旳概率为 A.56B.34 C. 23D. 1318. 如图,四面体ABCD 旳棱DA ⊥平面ABC ,090ACB ∠=, 则四面体旳四个面中直角三角形旳个数是 A. 1 B.2 C. 3 D. 419.在ABC ∆中,角,,A B C 旳对边分别是,,a b c . 若222c a ab b =++,则C = A. 0150 B. 0120 C. 060 D. 030 20. 如图所示旳程序框图,运行对应旳程序,则输出a 旳值是 值为 A.12 B. 13 C. 14 D. 152第II 卷(共40分)注意事项:1. 第II 卷共8个小题,共40分。

山东省2015及2016年12月普通高中学业水平考试(会考)数学试题及答案

山东省2015及2016年12月普通高中学业水平考试(会考)数学试题及答案

山东省2015年12月普通高中学业水平考试数学试题本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共4页。

满分100分,考试限定用时90分钟。

答卷前,考生务必将自己的姓名、考籍号、座号填写在试卷和答题卡规定的位置。

考试结束后,将本试卷和答题卡一并交回。

第I 卷(共60分)注意事项:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

不涂在答题卡上,只答在试卷上无效。

一、选择题(本大题共20个小题,每小题3分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的) l. 已知集合{}1,2A =,{}2,3B =,则A B =UA. {}2B. {}1,2C. {}2,3D. {}1,2,3 2. 图象过点(0,1)的函数是 A.2xy = B.2log y x =C.12y x= D. 2y x =3. 下列函数为偶函数的是 A.sin y x =. B. cos y x =C. tan y x =D. sin 2y x =4. 在空间中,下列结论正确的是A.三角形确定一个平面B.四边形确定一个平面C.一个点和一条直线确定一个平面D.两条直线确定一个平面5. 已知向量(1,2),(1,1)a b =-=,则a b =g A. 3 B.2 C. 1 D. 06. 函数()sin cos f x x x =的最大值是 A.14B.12C.3 D. 17. 某学校用系统抽样的方法,从全校500名学生中抽取50名做问卷调查,现将500名学生编号为1,2,3,…,500,在1~10中随机抽地抽取一个号码,若抽到的是3号,则从11~20中应抽取的号码是A. 14B. 13C. 12D. 11 8. 圆心为(3,1),半径为5的圆的标准方程是 A. 22(3)(1)5x y +++= B. 22(3)(1)25x y +++=C.22(3)(1)5x y -+-=D.22(3)(1)25x y -+-= 49. 某校100名学生数学竞赛成绩的频率分布直方图如图所示,成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100],则该次数学成绩在[50,60)内的人数为 A. 20 B. 15 C. 10 D. 610. 在等比数列{}n a 中,232,4a a ==,则该数列的前4项和为 A. 15 B. 12 C. 10 D. 6 11. 设,,a b c R ∈,且a b >,则下列不等式成立的是 A.22a b >B. 22ac bc >C. a c b c +>+D.11a b< 12. 已知向量(1,2),(2,)a b x =-=,若//a b ,则x 的值是1A. 4-B. 1-C. 1D. 4 13. 甲、乙、丙3人站成一排,则甲恰好站在中间的概率为 A. 13B.12C.23D. 1614. 已知函数()2sin()(0)f x x ωϕω=+>的部分图象如图所示,则ω的值为 A. 1 2C. 3D.215 已知实数020.31log 3,(),log 22a b c ===,则,,a b c 的大小关系为 A. b c a << B. b a c << C. c a b << D. c b a <<16. 如图,角α的终边与单位圆交于点M ,M 的纵坐标为45,则cos α=A.35B.35- C.45D.45-17. 甲、乙两队举行足球比赛,甲队获胜的概率为13,则乙队不输的概率为A.56B.34C.23D. 1318. 如图,四面体ABCD 的棱DA ⊥平面ABC ,090ACB ∠=, 则四面体的四个面中直角三角形的个数是 A. 1 B.2 C. 3 D. 419.在ABC ∆中,角,,A B C 的对边分别是,,a b c . 若222c a ab b =++,则C = A. 0150 B. 0120 C.060D. 03020. 如图所示的程序框图,运行相应的程序,则输出a 的值是2值为 A. 12B. 13C.14D. 15第II 卷(共40分)注意事项:1. 第II 卷共8个小题,共40分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省2015年12月普通高中学业水平考试数学试题本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共4页。

满分100分,考试限定用时90分钟。

答卷前,考生务必将自己的姓名、考籍号、座号填写在试卷和答题卡规定的位置。

考试结束后,将本试卷和答题卡一并交回。

第I 卷(共60分)注意事项:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

不涂在答题卡上,只答在试卷上无效。

一、选择题(本大题共20个小题,每小题3分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的)l. 已知集合{}1,2A =,{}2,3B =,则A B =A. {}2B. {}1,2C. {}2,3D. {}1,2,32. 图象过点(0,1)的函数是A. 2x y =B. 2log y x =C. 12y x = D. 2y x =3. 下列函数为偶函数的是A. sin y x =.B. cos y x =C. tan y x =D. sin 2y x =4. 在空间中,下列结论正确的是A.三角形确定一个平面B.四边形确定一个平面C.一个点和一条直线确定一个平面D.两条直线确定一个平面5. 已知向量(1,2),(1,1)a b =-=,则a b =A. 3B.2C. 1D. 06. 函数()sin cos f x x x =的最大值是A.14B.12C.3 D. 1 7. 某学校用系统抽样的方法,从全校500名学生中抽取50名做问卷调查,现将500名学生编号为1,2,3,…,500,在1~10中随机抽地抽取一个号码,若抽到的是3号,则从11~20中应抽取的号码是A. 14B. 13C. 12D. 118. 圆心为(3,1),半径为5的圆的标准方程是A.22(3)(1)5x y +++= B. 22(3)(1)25x y +++= C. 22(3)(1)5x y -+-= D. 22(3)(1)25x y -+-= 49. 某校100名学生数学竞赛成绩的频率分布直方图如图所示,成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100],则该次数学成绩在[50,60)内的人数为A. 20B. 15C. 10D. 610. 在等比数列{}n a 中,232,4a a ==,则该数列的前4项和为A. 15B. 12C. 10D. 611. 设,,a b c R ∈,且a b >,则下列不等式成立的是A. 22a b >B. 22ac bc >C. a c b c +>+D. 11a b< 12. 已知向量(1,2),(2,)a b x =-=,若//a b ,则x 的值是1A. 4-B. 1-C. 1D. 413. 甲、乙、丙3人站成一排,则甲恰好站在中间的概率为A. 13B. 12C. 23D. 1614. 已知函数()2sin()(0)f x x ωϕω=+>的部分图象如图所示,则ω的值为A. 1 2 C. 3 D.215 已知实数020.31log 3,(),log 22a b c ===,则,,a b c 的大小关系为 A. b c a << B. b a c << C. c a b << D. c b a <<16. 如图,角α的终边与单位圆交于点M ,M 的纵坐标为45,则cos α=A.35 B.35- C. 45 D. 45- 17. 甲、乙两队举行足球比赛,甲队获胜的概率为13,则乙队不输的概率为A.56 B. 34 C. 23 D. 1318. 如图,四面体ABCD 的棱DA ⊥平面ABC ,090ACB ∠=,则四面体的四个面中直角三角形的个数是A. 1B.2C. 3D. 419.在ABC ∆中,角,,A B C 的对边分别是,,a b c . 若222c a ab b =++,则C =A. 0150B. 0120C. 060D. 03020. 如图所示的程序框图,运行相应的程序,则输出a 的值是2值为A. 12B. 13C. 14D. 15第II 卷(共40分)注意事项:1. 第II 卷共8个小题,共40分。

2. 第II 卷所有题目的答案,考生须用0 5毫米黑色签字笔书写在答题卡上规定的区域内,写在试卷上的答案不得分。

二、填空题(本大题共5个小题,每小题3分,共1 5分)21. 已知函数(1),0,()21,0.x x x f x x x +≥⎧=⎨-<⎩ 则(3)f =_______.22. 已知tan 2α=,则tan()4πα+的值为_______.23. 一个四棱锥的三视图如图所示,其中主(正)视图和左(侧)视图都是边长为2的正三角形,那么该四棱锥的底面面积为_______.24. 已知实数,x y 满足约束条件2,2,20,x y x y ≤⎧⎪≤⎨⎪+-≥⎩ 则目标函数2z x y =+的最小值是_______.25. 一个正方形及其外接圆,在圆内随机取一点,则该点在正方形内的概率是_______.三、解答题(本大题共3个小题,共25分。

解答应写出文字说明、证明过程或演算步骤)26.(本小题满分8分)3已知函数()lg(2)f x x =-,求()f x 的定义域及其零点.27.(本小题满分8分)已知数列{}n a 满足*11()n n a a n N +-=∈,且33a =. 求:(1){}n a 的通项公式;(2){}n a 前100项的和100S .28.(本小题满分9分)过函数22y x =的图象C 上一点(1,2)M 作倾斜角互补的两条直线,分别与C 交与异于M 的,A B 两点.(1)求证:直线AB 的斜率为定值;(2)如果,A B 两点的横坐标均不大于0,求MAB ∆面积的最大值.山东省2016年冬季普通高中学业水平考试数学试题本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共4页。

满分100分,考试限定用时90分钟。

答卷前,考生务必将自己的姓名、考籍号、座号填写在试卷和答题卡规定的位置。

考试结束后,将本试卷和答题卡一并交回。

第I 卷(共60分)注意事项:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

不涂在答题卡上,只答在试卷上无效。

一、选择题(本大题共20个小题,每小题3分,共60分)1.已知全集{}c b a U ,,=,集合{}a A =,则=A C UA. {}b a ,B. {}c a ,C. {}c b ,D. {}c b a ,,2.已知0sin <θ,0cos >θ,那么θ的终边在A.第一象限B. 第二象限C. 第三象限D.第四象限3.若实数第3,a ,5成等差数列,则a 的值是A. 2B. 3C. 4D. 154.图像不经过第二象限的函数是A. xy 2= B.x y -= C. 2x y = D. x y ln = 5.数列1,32,53,74,95,…的一个通项公式是=n a A. 12+n n B. 12-n n C. 32+n n D. 32-n n 6.已知点)4,3(A ,)1,1(-B ,则线段AB 的长度是A. 5B. 25C. 29D. 297.在区间]4,2[-内随机取一个实数,则该实数为负数的概率是 A. 32 B. 21 C. 31 D. 41 8.过点)2,0(A ,且斜率为1-的直线方程式A. 02=++y xB. 02=-+y xC. 02=+-y xD. 02=--y x9.不等式0)1(<+x x 的解集是A. {}01|<<-x xB. {}0,1|>-<x x x 或C. {}10|<<x xD. {}1,0|><x x x 或10.已知圆C :036422=-+-+y x y x ,则圆C 的圆心坐标和半径分别为 A. )(3,2-,16 B. )(3,2-,16 C. )(3,2-,4 D. )(3,2-,411.在不等式22<+y x 表示的平面区域内的点是A. )(0,0B. )(1,1C. )(2,0D. )(0,2 12.某工厂生产了A 类产品2000件,B 类产品3000件,用分层抽样法从中抽取50件进行产品质量检验,则应抽取B 类产品的件数为A. 20B. 30C. 40D. 5013.已知3tan -=α,1tan =β,则)tan(βα-的值为A. 2-B. 21-C. 2D. 21 14.在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,若1=a ,2=b ,41sin =A ,则B sin 的值是 A. 41 B. 21 C. 43 D. 42 15.已知偶函数)(x f 在区间),0[+∞上的解析式为1)(+=x x f ,下列大小关系正确的是A. )2()1(f f >B. )2()1(->f fC. )2()1(->-f fD. )2()1(f f <-16.从集合{}2,1中随机选取一个元素a ,{}3,2,1中随机选取一个元素b ,则事件“b a <”的概率是 A. 61 B. 31 C. 21 D. 32 17.要得到)42sin(π+=x y 的图像,只需将x y 2sin =的图像A. 向左平移 8π个单位B. 向右平移 8π个单位 C. 向左平移 4π个单位 D. 向右平移 4π个单位 18.在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,若1=a ,2=b , 60=C ,则边c 等于 A. 2 B. 3 C. 2 D. 3 19.从一批产品中随机取出3件,记事件A 为“3件产品全是正品”,事件B 为“3件产品全是次品”,事件C 为“3件产品中至少有1件事次品”,则下列结论正确的是A. A 与C 对立B. A 与C 互斥但不对立C. B 与C 对立D. B 与C 互斥但不对立20.执行如图所示的程序框图(其中[]x 表示不超过x 的最大整数),则输出的S 的值为A. 1B. 2C. 3D. 4二、填空题(本大题共5个小题,每小题3分,共15分)21. 2log 2的值为 .22.在各项均为正数的等比数列{}n a 中,971=⋅a a ,则=4a .23.已知向量)2,1(=a ,)1,(x b =,若b a ⊥,则实数x 的值是 .24.样本5,8,11的标准差是 .25.已知一个圆锥的母线长为20,母线与轴的夹角为 60,则该圆锥的高是 .三、解答题(本大题共3个小题,共25分)26.(本小题满分8分)如图,在三棱锥BCD A -中,E ,F 分别是棱AB ,AC 的中点.求证://EF 平面BCD .27.(本小题满分8分)已知函数x x x f 22sin cos )(-=.求:⑵ )12(πf 的值;⑵)(x f 的单调递增区间.28.(本小题满分9分)已知函数41)(2++=ax x x f )(R a ∈ ⑴当函数)(x f 存在零点时,求a 的取值范围;⑵讨论函数)(x f 在区间)1,0(内零点的个数.山东省2015年12月普通高中学业水平考试参考答案1-5DABAC6-10BBDDA11-15CAACD16-20BCDCC21、12 22、-3 23、4 24、2 25:2π26. ()f x 的定义域是()-2∞,,零点是2x =27.100,5050n a n S ==28.证明略,max 6S =2016冬季学业水平数学试题参考答案一、选择题1-5 CDCDB 6-10 ACBAD 11-15 ABDBD 16-20 CABAC二、填空题 21.21 22. 3 23. 2- 24.6 25. 10 三、解答题26.证明:在ABC ∆中,因为E ,F 分别是棱AB ,AC 的中点,所以EF 是ABC ∆的中位线,……………………………………………1分所以BC EF //………………………………………………………………4分又因为⊂/EF 平面BCD ……………………………………………………5分 ⊂BC 平面BCD ……………………………………………………………6分所以//EF 平面BCD ………………………………………………………8分27.解:x x x x f 2cos sin cos )(22=-=……………………………………………2分 ⑴236cos )122cos()12(==⨯=πππf ……………………………………5分 ⑵由πππk x k 222≤≤-,Z k ∈,得πππk x k ≤≤-2,Z k ∈.………………………………………………7分所以)(x f 的单调递增区间为],2[πππk k -,Z k ∈.……………………8分 28.解⑴因为函数)(x f 有零点,所以方程0412=++ax x 有实数根. 所以012≥-=∆a ,解得1-≤a ,或1≥a因此,所求a 的取值范围是1-≤a ,或1≥a .………………………………2分 ⑵综上,当1->a 时,)(x f 在区间)1,0(内没有零点; 当1-=a ,或45-≤a 时,)(x f 在区间)1,0(内有1个零点; 当145-<<-a 时,)(x f 在区间)1,0(内有2个零点.。

相关文档
最新文档