陕西省西安市铁一中2020-2021学年八年级上学期期中考试数学试题(图片版)(无答案)

合集下载

2020-2021西安市八年级数学上期中一模试题含答案

2020-2021西安市八年级数学上期中一模试题含答案

2020-2021西安市八年级数学上期中一模试题含答案一、选择题1.下列四个图形中,既是轴对称图形又是中心对称图形的有( )A .4个B .3个C .2个D .1个2.已知一个正多边形的内角是140°,则这个正多边形的边数是( )A .9B .8C .7D .6 3.如图,长方形ABCD 沿AE 折叠,使D 点落在BC 边上的F 点处,∠BAF=600,那么∠DAE 等于( )A .45°B .30 °C .15°D .60°4.如图,在ABC ∆中,90A ∠=o ,30C ∠=o ,AD BC ⊥于D ,BE 是ABC ∠的平分线,且交AD 于P ,如果2AP =,则AC 的长为( )A .2B .4C .6D .8 5.一个多边形的内角和是其外角和的3倍,则这个多边形的边数是( ) A .7B .8C .6D .5 6.小淇用大小不同的 9 个长方形拼成一个大的长方形 ABCD ,则图中阴影部分的面积是( )A .(a + 1)(b + 3)B .(a + 3)(b + 1)C .(a + 1)(b + 4)D .(a + 4)(b + 1)7.如图,在ABC ∆中,64A ∠=︒,ABC ∠与ACD ∠的平分线交于点1A ,得1A ∠;1A BC ∠与1A CD ∠的平分线相交于点2A ,得2A ∠;……;1n A BC -∠与1n A CD -∠的平分线交于点n A ,要使n A ∠的度数为整数,则n 的最大值为( )A .4B .5C .6D .7 8.如图,△ABC 中,AB=5,AC=6,BC=4,边AB 的垂直平分线交AC 于点D ,则△BDC的周长是( )A .8B .9C .10D .11 9.关于x 的分式方程2x a 1x 1+=+的解为负数,则a 的取值范围是( ) A .a 1> B .a 1< C .a 1<且a 2≠- D .a 1>且a 2≠10.如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A′处,点B 落在点B′处,若∠2=40°,则图中∠1的度数为( )A .115°B .120°C .130°D .140°11.如图所示,在平行四边形ABCD 中,分别以AB 、AD 为边作等边△ABE 和等边△ADF,分别连接CE ,CF 和EF ,则下列结论,一定成立的个数是( )①△CDF≌△EBC;②△CEF 是等边三角形;③∠CDF=∠EAF;④CE∥DFA .1B .2C .3D .412.某农场开挖一条480米的渠道,开工后,实际每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x 米,那么所列方程正确的是( )A .480x +480+20x =4B .480x -480+4x =20C .480x -480+20x =4D .4804x --480x=20 二、填空题 13.从n 边形的一个顶点出发有四条对角线,则这个n 边形的内角和为______度.14.如图,在△ABC 中,∠C=90°,AC=BC ,AD 平分∠BAC 交BC 于点D ,DE ⊥AB 于点E ,若△BDE 的周长为6,则AC=_________________.15.关于x 的方程25211a x x-+=---的解为正数,则a 的取值范围为________. 16.当x =_____时,分式22x x -+的值为零. 17.分解因式:2x 2﹣8=_____________ 18.已知1m n -=,则222m n n --的值为______.19.若实数,满足,则______.20.已知3221-可以被10到20之间某两个整数整除,则这两个数是___________.三、解答题21.先化简,再求值:2421a a a -⎛⎫÷- ⎪⎝⎭,其中5a =. 22.先化简.再求值已知20a a -=,求222141•2211a a a a a a --÷+-+-的值. 23.已知关于x 的方程233x m x x -=--解为正数,求m 的取值范围. 24.说明代数式2()()()(2)x y x y x y y y ⎡⎤--+-÷-+⎣⎦的值,与y 的值无关.25.如图,点O是线段AB和线段CD的中点.(1)求证:△AOD≌△BOC;(2)求证:AD∥BC.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】试题分析:A选项既是轴对称图形,也是中心对称图形;B选项中该图形是轴对称图形不是中心对称图形;C选项中既是中心对称图形又是轴对称图形;D选项中是中心对称图形又是轴对称图形.故选B.考点: 1.轴对称图形;2.中心对称图形.2.A解析:A【解析】分析:根据多边形的内角和公式计算即可.详解:.答:这个正多边形的边数是9.故选A.点睛:本题考查了多边形,熟练掌握多边形的内角和公式是解答本题的关键. 3.C解析:C【解析】【分析】先根据矩形的性质得到∠DAF=30°,再根据折叠的性质即可得到结果.【详解】解:∵ABCD是长方形,∴∠BAD=90°,∵∠BAF=60°,∴∠DAF=30°,∵长方形ABCD沿AE折叠,∴△ADE≌△AFE,∴∠DAE=∠EAF=12∠DAF=15°.故选C.【点睛】图形的折叠实际上相当于把折叠部分沿着折痕所在直线作轴对称,所以折叠前后的两个图形是全等三角形,重合的部分就是对应量.4.C解析:C【解析】【分析】易得△AEP的等边三角形,则AE=AP=2,在直角△AEB中,利用含30度角的直角三角形的性质来求EB的长度,然后在等腰△BEC中得到CE的长度,则易求AC的长度【详解】解:∵△ABC中,∠BAC=90°,∠C=30°,∴∠ABC=60°.又∵BE是∠ABC的平分线,∴∠EBC=30°,∴∠AEB=∠C+∠EBC=60°,∠C=∠EBC,∴∠AEP=60°,BE=EC.又AD⊥BC,∴∠CAD=∠EAP=60°,则∠AEP=∠EAP=60°,∴△AEP的等边三角形,则AE=AP=2,在直角△AEB中,∠ABE=30°,则EB=2AE=4,∴BE=EC=4,∴AC=CE+AE=6.故选:C.【点睛】本题考查了含30°角的直角三角形的性质、角平分线的性质以及等边三角形的判定与性质.利用三角形外角性质得到∠AEB=60°是解题的关键.5.B解析:B【解析】【分析】根据多边形的内角和公式及外角的特征计算.【详解】解:多边形的外角和是360°,根据题意得:180°•(n-2)=3×360°解得n=8.故选:B.【点睛】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.6.B解析:B【解析】【分析】通过平移后,根据长方形的面积计算公式即可求解.【详解】平移后,如图,易得图中阴影部分的面积是(a+3)(b+1).故选B.【点睛】本题主要考查了列代数式.平移后再求解能简化解题.7.C解析:C【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,根据角平分线的定义可得∠A1BC=12∠ABC,∠A1CD=12∠ACD,然后整理得到∠A1=12∠A,由∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,而A1B、A1C分别平分∠ABC和∠ACD,得到∠ACD=2∠A1CD,∠ABC=2∠A1BC,于是有∠A=2∠A1,同理可得∠A1=2∠A2,即∠A=22∠A2,因此找出规律.【详解】由三角形的外角性质得,∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,∵∠ABC的平分线与∠ACD的平分线交于点A1,∴∠A1BC=12∠ABC,∠A1CD=12∠ACD,∴∠A1+∠A1BC=12(∠A+∠ABC)=12∠A+∠A1BC,∴∠A1=12∠A=12×64°=32°;∵A1B、A1C分别平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,∴∠A=2∠A1,∴∠A1=12∠A,同理可得∠A1=2∠A2,∴∠A2=14∠A,∴∠A=2n∠A n,∴∠A n=(12)n∠A=642n,∵∠A n的度数为整数,∵n=6.故选C.【点睛】本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记性质并准确识图然后求出后一个角是前一个角的12是解题的关键.8.C解析:C【解析】【分析】由ED是AB的垂直平分线,可得AD=BD,又由△BDC的周长=DB+BC+CD,即可得△BDC 的周长=AD+BC+CD=AC+BC .【详解】解:∵ED 是AB 的垂直平分线,∴AD=BD ,∵△BDC 的周长=DB+BC+CD ,∴△BDC 的周长=AD+BC+CD=AC+BC=6+4=10.故选C .【点睛】本题考查了线段垂直平分线的性质,三角形周长的计算,掌握转化思想的应用是解题的关键.9.D解析:D【解析】【分析】分式方程去分母转化为整式方程,表示出整式方程的解,根据分式方程解为负数列出关于a 的不等式,求出不等式的解集即可确定出a 的范围.【详解】分式方程去分母得:x 12x a +=+,即x 1a =-,因为分式方程解为负数,所以1a 0-<,且1a 1-≠-,解得:a 1>且a 2≠,故选D .【点睛】本题考查了分式方程的解,熟练掌握解分式方程的一般步骤及注意事项是解题的关键.注意在任何时候都要考虑分母不为0.10.A解析:A【解析】解:∵把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A ′处,点B 落在点B ′处,∴∠BFE =∠EFB ',∠B '=∠B =90°.∵∠2=40°,∴∠CFB '=50°,∴∠1+∠EFB '﹣∠CFB '=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A .11.C解析:C【解析】【分析】利用“边角边”证明△CDF 和△EBC 全等,判定①正确;同理求出△CDF 和△EAF 全等,根据全等三角形对应边相等可得CE CF EF ==,判定△ECF 是等边三角形,判定②正确;利用“8字型”判定③正确;若CE DF P ,则C 、F 、A 三点共线,故④错误;即可得出答案.【详解】在ABCD Y 中,ADC ABC ∠∠=,AD BC =,CD AB =,∵ABE ADF V V 、都是等边三角形,∴AD DF =,AB EB =,60DFAADF ABE ∠∠∠︒===, ∴DF BC =,=CD BE ,∴60CDF ADC ∠∠︒=﹣,60EBC ABC ∠∠︒=﹣,∴CDF EBC ∠∠=,在CDF V 和EBC V 中,DF BC CDF EBC CD EB =⎧⎪∠=∠⎨⎪=⎩,∴CDF EBC SAS V V ≌(),故①正确; 在ABCD Y 中,设AE 交CD 于O ,AE 交DF 于K ,如图:∵AB CD ∥,∴60DOA OAB ∠∠︒==,∴DOA DFO ∠∠=,∵OKD AKF ∠∠=,∴ODF OAF ∠∠=,故③正确;在CDF V 和EAF △中,CD EA CDF EAF DF AF =⎧⎪∠=∠⎨⎪=⎩,∴CDF EAF SAS V V ≌(), ∴EF CF =,∵CDF EBC ≌△△,∴CE CF =,∴EC CF EF ==,∴ECF △是等边三角形,故②正确;则60CFE ∠︒=,若CE DF P 时,则60DFE CEF ∠∠︒==,∵60DFA CFE ∠︒∠==,∴180CFE DFE DFA ∠+∠+∠︒=,则C 、F 、A 三点共线已知中没有给出C 、F 、A 三点共线,故④错误;综上所述,正确的结论有①②③.故选:C .【点睛】本题主要考查三角形全等的判定与性质,解题的关键是能通过题目所给的条件以及选用合适的判定三角形全等的方法证明.12.C解析:C【解析】【分析】根据题意列出方程即可.【详解】由题意得480x -480+20x =4 故答案为:C .【点睛】本题考查了分式方程的实际应用,掌握解分式方程的方法是解题的关键.二、填空题13.【解析】【分析】一个多边形的一个顶点出发一共可作4条对角线则这个多边形的边数7边形的内角和可以表示成代入公式就可以求出内角和【详解】由题意得:所以这个n 边形的内角和为度故填:【点睛】本题主要考查多边 解析:900【解析】【分析】一个多边形的一个顶点出发,一共可作4条对角线,则这个多边形的边数7,n 边形的内角和可以表示成2180n -︒()g ,代入公式就可以求出内角和.【详解】由题意得:()432180900+-⨯︒=︒所以这个n 边形的内角和为900度故填:900.【点睛】本题主要考查多边形内角、多边形的对角线,熟练掌握计算公式是关键.14.【解析】【分析】根据角平分线上的点到角的两边距离相等可得CD=DE 再判断出△BDE 是等腰直角三角形设BE=x 然后根据△BDE 的周长列方程求出x 的值再分别求解即可【详解】解:∵∠C=90°AD 平分∠B解析:【解析】【分析】根据角平分线上的点到角的两边距离相等可得CD=DE ,再判断出△BDE 是等腰直角三角形,设BE=x ,然后根据△BDE 的周长列方程求出x 的值,再分别求解即可.【详解】解:∵∠C=90°,AD 平分∠BAC 交BC 于点D ,DE ⊥AB ,∴CD=DE (角平分线上的点到角两边的距离相等),又∵AC=BC ,∴∠B=45°,∴△BDE 是等腰直角三角形,假设CD BE DE x ===,则BD =,∵△BDE 的周长为6,∴6BD BE DE x x ++=++=,6x =-∴6AC BD x ==+=-+-=故答案为:【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,三角形周长的定义,等腰直角三角形的判定与性质,根据三角形的周长列出方程是解题的关键.15.且【解析】【分析】方程两边乘最简公分母可以把分式方程转化为整式方程求解它的解为含有a 的式子解为正数且最简公分母不为零得到关于a 的一元一次不等式解之即可【详解】方程两边同乘(x −1)得:2−(5-a)解析:5a <且3a ≠【解析】【分析】方程两边乘最简公分母,可以把分式方程转化为整式方程求解,它的解为含有a 的式子,解为正数且最简公分母不为零,得到关于a 的一元一次不等式,解之即可.【详解】方程两边同乘(x−1)得:2−(5-a)=-2(x−1)解得:x=52a - ∵x>0且x−1≠0,∴5025102a a -⎧>⎪⎪⎨-⎪-≠⎪⎩ 解得:a<5且a≠3故答案为:a<5且a≠3【点睛】本题考查了分式方程解的定义,求出使分式方程中令等号左右两边相等且分母不等于零的未知数的值,这个值叫分式方程的解,考查了一元一次不等式组的解法,求解每个不等式,再求两个不等式解集的公共部分即可.16.2【解析】由题意得:解得:x=2故答案为2解析:2【解析】由题意得:20{20x x -=+≠ ,解得:x=2. 故答案为217.2(x+2)(x ﹣2)【解析】【分析】先提公因式再运用平方差公式【详解】2x2﹣8=2(x2﹣4)=2(x+2)(x ﹣2)【点睛】考核知识点:因式分解掌握基本方法是关键解析:2(x+2)(x ﹣2)【解析】【分析】先提公因式,再运用平方差公式.【详解】2x 2﹣8,=2(x 2﹣4),=2(x+2)(x ﹣2).【点睛】考核知识点:因式分解.掌握基本方法是关键.18.1【解析】【分析】利用平方差公式把变形再把m-n=1代入即可得答案【详解】∵m-n=1∴=(m+n)(m-n)-2n=(m+n)-2n=m-n=1故答案为:1【点睛】本题考查整式的运算熟练掌握平方差解析:1【解析】【分析】利用平方差公式把222m n n --变形,再把m-n=1代入即可得答案.【详解】∵m-n=1,∴222m n n --=(m+n)(m-n)-2n=(m+n)-2n=m-n=1,故答案为:1【点睛】本题考查整式的运算,熟练掌握平方差公式并运用整体代入的思想是解题关键.19.5【解析】【分析】根据非负数的性质列式求出mn的值然后代入代数式进行计算即可得解【详解】解:根据题意得:m-2=0n-2018=0∴m=2n=2018∴m-1+n0=12+1=32;故答案为:32【解析:5【解析】【分析】根据非负数的性质列式求出m,n的值,然后代入代数式进行计算即可得解.【详解】解:根据题意得:,∴∴;故答案为:.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0,解题的关键是利用非负性正确求值.20.15和17;【解析】【分析】将利用平方差公式分解因式根据可以被10到20之间的某两个整数整除即可得到两因式分别为15和17【详解】因式分解可得:=(216+1)(216-1)=(216+1)(28+解析:15和17;【解析】【分析】将32-可以被10到20之间的某两个整数整除,2121-利用平方差公式分解因式,根据32即可得到两因式分别为15和17.【详解】因式分解可得:32-=(216+1)(216-1)=(216+1)(28+1)(28-1)=(216+1)21(28+1)(24+1)(24-1),∵24+1=17,24-1=15,∴232-1可以被10和20之间的15,17两个数整除.【点睛】本题考查因式分解的应用,解题的关键是利用平方差公式分解因式.三、解答题21.【解析】【分析】根据分式的混合运算法则把原式化简,代入计算即可.【详解】2421a a a -⎛⎫÷- ⎪⎝⎭ 242a a a a a -⎛⎫=÷- ⎪⎝⎭ (2)(2)2a a a a a +-=⋅- 2a =+,当5a =时,原式527=+=.【点睛】本题考查的是分式的化简求值,掌握分式的混合运算法则是解题的关键.22.-2【解析】【分析】根据分式乘法法则化简在代入a 的值计算.【详解】 原式=()()2222141••a 1a 1?•a 1a 1221211a a a a a a a a a a a +----+-=+-+-++--()()=(a-2)(a+1), ∵20a a -=,∴a(a-1)=0,∵a -1≠0,∴a≠1,由此得a=0,代入算式:(a-2)(a+1)=(0-2)(0+1)=-2.故答案为-2.【点睛】本题主要考察的是分式乘法法则等知识,熟练掌握是本题的解题关键.23.m <6且m ≠3【解析】【分析】先解关于x 的分式方程,求得x 的值,然后再依据“解是正数”建立不等式求m 的取值范围.【详解】去分母,得x ﹣2(x ﹣3)=m ,解得:x =6﹣m ,∵x >0,∴6﹣m >0,∴m <6,且x≠3,∴m≠3.∴m <6且m≠3.【点睛】解答本题时,易漏掉m≠3,这是因为忽略了x ﹣3≠0这个隐含的条件而造成的,这应引起同学们的足够重视.24.说明见解析.【解析】试题分析:根据整式的混合运算的法则和顺序,先算完全平方和平方差,然后合并同类项化简,通过关化简可判断.试题解析:原式=()()222222x xy y x yy y -+-+÷-+ =x-y+y=x∴代数式的值与y 无关.25.详见解析.【解析】试题分析:(1)由点O 是线段AB 和线段CD 的中点可得出AO =BO ,CO =DO ,结合对顶角相等,即可利用全等三角形的判定定理(SAS )证出△AOD ≌△BOC ;(2)结合全等三角形的性质可得出∠A =∠B ,依据“内错角相等,两直线平行”即可证出结论.试题解析:证明:(1)∵点O 是线段AB 和线段CD 的中点,∴AO =BO ,CO =DO . 在△AOD 和△BOC 中,∵AO =BO ,∠AOD =∠BOC ,CO =DO ,∴△AOD ≌△BOC (SAS ).(2)∵△AOD ≌△BOC ,∴∠A =∠B ,∴AD ∥BC .。

2020-2021学年第一学期八年级数学期中考试卷(及答案)共五套

2020-2021学年第一学期八年级数学期中考试卷(及答案)共五套

2020-2021学年第一学期期中考试试卷八年级数学一、选择题(本大题共10小题,每小题2分,共20分)1.下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的A .B .C .D .2.在平面直角坐标系中,点P (1,﹣2)的位置在A .第一象限B .第二象限C .第三象限D .第四象限3.等腰三角形两边长分别为2和4,则这个等腰三角形的周长为A .6B .8C .10D .8或104.今年10月环太湖中长跑中参赛选手达到21780人,这个数精确到千位表示约为( ) A .2.2×104B .22000C .2.1×104D .225.如图,在数轴上表示实数7+1的点可能是A .PB .QC .RD .S6.如图是跷跷板的示意图,支柱OC 与地面垂直,点O 是AB 的中点,AB 绕着点O 上下转动.当A 端落地时,∠OAC =20°,跷跷板上下可转动的最大角度(即∠A ′OA )是 A .80° B .60° C .40° D .20°7.如图,将一个三角形纸片ABC 沿过点B 的直线折叠,使点C 落在AB 边上的点E 处,折痕为BD ,则下列结论一定正确的是 A .AD =BDB .AE =ACC .ED +EB =DBD .AE +CB =AB8.由下列条件不能判定△ABC 为直角三角形的是A .a =,b =,c =B .∠A +∠B =∠C C .∠A :∠B :∠C =1:3:2D .(b +c )(b ﹣c )=a 29.如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC =6,DE =3,则△BCE 的面积等于A .6B .8C .9D .1810.如图,在四边形ABCD 中,AB =AC =BD ,AC 与BD 相交于H ,且AC ⊥BD .①ABPQ RS(第5题)ABCA 'B 'O(第6题)(第7题)∥CD ;②△ABD ≌△BAC ;③AB 2+CD 2=AD 2+CB 2;④∠ACB +∠BDA =135°.其中真命题的个数是A .1B .2C .3D .4二、填空题(本大题共8小题,每空2分,共16分) 11.81的算术平方根是 ▲ .12.在平面直角坐标系中,点P (-1,2)关于x 轴的对称点的坐标为 ▲ . 13.如图,在R t △ABC 中,CD 是斜边AB 上的中线,若AB =20,则CD = ▲ . 14.如图,△ABC 是边长为6的等边三角形,D 是BC 上一点,BD =2,DE ⊥BC 交AB 于点E ,则线段AE = ▲ .15.如图,三个正方形中,其中两个正方形的面积分别是100,36,则字母A 所代表的正方形的边长是 ▲ .16.如图,在△ABC 中,AB =AC ,∠B =66°,D ,E 分别为AB ,BC 上一点,AF ∥DE ,若∠BDE =30°,则∠F AC 的度数为 ▲ .17.如图,数轴上点A 、点B 表示的数分别中1和5,若点A 是线段BC 的中点,则点C 所表示的数是 ▲ .18.已知:如图,ΔABC 中,∠A =45°,AB =6,AC =24,点D 、E 、F 分别是三边AB 、BC 、CA 上的点,则ΔDEF 周长的最小值是 ▲ .AB CD E(第14题)AB CD(第13题)(第15题)ABCDH(第10题)(第9题)A BCF DE(第16题)(第17题)(第18题)FEDCBA三、解答题(本大题共9题,共64分) 19.(8分)(1)计算:()234272-+-; (2)已知:4x 2=20,求x 的值.20.(4分)如图,四边形ABCD 中,AB =BC ,AD =CD ,求证:∠A =∠C .CDBA21.(6分)如图,在△ABC 中,AD ⊥BC ,AB =10,BD =8,∠ACD =45°. (1)求线段AD 的长;(2)求△ABC 的周长.22.(6分)已知点A (1,2a -1),点B (-a ,a -3) . ①若点A 在第一、三象限角平分线上,求a 值.②若点B 到x 轴的距离是到y 轴距离的2倍,求点B 所在的象限.23.(8分)如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB ,在图③中已画出点A .按下列要求画图:(1)在图①中,以格点为顶点,AB 为一边画一个等腰三角形ABC ; (2)在图②中,以格点为顶点,AB 为一边画一个正方形;(3)在图③中,以点A 为一个顶点,另外三个顶点也在格点上,画一个面积最大的正方形,这个正方形的面积= .24.(8分)如图,在△ABC 中,AB =AC ,点D 、E 、F 分别在BC 、AB 、AC 边上,且BE =CF ,BD =CE .(1)求证:△DEF 是等腰三角形;(2)当∠A =40°时,求∠DEF 的度数.25.(8分)如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足P A=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值.26.(8分)如图,在Rt△ABC中,∠ACB=90°,AD、BE、CF分别是三边上的中线.(1)若AC=1,BC=.求证:AD2+CF2=BE2;(2)是否存在这样的Rt△ABC,使得它三边上的中线AD、BE、CF的长恰好是一组勾股数?请说明理由.(提示:满足关系a2+b2=c2的3个正整数a、b、c称为勾股数.)27.(8分)定义:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)如图1,在△ABC中,AB=AC,点D在AC边上,且AD=BD=BC,求∠A的大小;(2)在图1中过点C作一条线段CE,使BD,CE是△ABC的三等分线;在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(3)在△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC 边上,且AD=BD,DE=CE,请直接写出∠C所有可能的值.2020~2021学年度第一学期期中考试八年级数学试题一、选择题(共10小题,每小题3分,共30分) 1.下列图形中不是轴对称图形的是( )2.在平面直角坐标系中,点P (-3,2)在( ) A .第一象限B .第二象限C .第三象限D .第四象限 3.三角形中最大的内角不能小于( ) A .30°B .45°C .60°D .90°4.下列关于两个三角形全等的说法: ① 三个角对应相等的两个三角形全等 ② 三条边对应相等的两个三角形全等③ 有两边和它们的夹角对应相等的两个三角形全等 ④ 有两边和其中一边上的高对应相等的两个三角形全等 正确的说法个数是( ) A .1个 B .2个 C .3个 D .4个 5.在平面直角坐标系中,点P (2,-3)关于x 轴的对称点是( )A .(-2,3)B .(2,3)C .(-2,-3)D .(-3,2) 6.如图所示,∠A =28°,∠BFC =92°,∠B =∠C ,则∠BDC 的度数是( )A .85°B .75°C .64°D .60°7.如图,在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别是D 、E ,AD 、CE 交于点H .已知EH =EB =3,AE =5,则CH 的长是( ) A .1B .2C .53D .358.如图所示的正方形网格中,网格线的交点称为格点,已知A 、B 是两格点,如果C 也是图中的格点,且使得△ABC 为等腰三角形,则点C 的个数是( ) A .6个B .7个C .8个D .9个9.如图,AB =2,BC =AE =6,CE =CF =7,BF =8,四边形ABDE 与△CDF 面积的比值是( ) A .21B .32C .43 D .110.如图,在△ABC 中,BC 的垂直平分线DF 交△ABC 的外角平分线AD 于点D ,DE ⊥AB 于点E ,且AB >AC ,则( ) A .BC =AC +AEB .BE =AC +AEC .BC =AC +AD D .BE =AC +AD二、填空题(本大题共6个小题,每小题3分,共18分)11.若一个多边形的内角和是外角和的2倍,则它的边数是___________12.设△ABC 的三边长分别为a 、b 、c ,其中a 、b 满足|a +b -6|+(a -b +4)2=0,则第三边长c 的取值范围是_____________13.点M (-5,3)关于直线x =1的对称点的坐标是___________14.如图所示,在△FED 中,AD =FC ,∠A =∠F .如果用“SAS ”证明△ABC ≌△FED ,只需添加条件_____________即可15.在△ABC 中,高AD 、BE 所在的直线相交于点G ,若BG =AC ,则∠ABC 的度数是_____16.如图,在Rt △ABC 中,∠C =90°,BC =6,AC =8,一条线段PQ =AB =10,P 、Q 两点分别在AC 和过点A 且垂直于AC 的射线AX 上运动,如果以A 、P 、Q 为顶点的三角形与△ABC 全等,则AP =____________三、解答题(共8小题,共72分)17.(本题8分)解方程组:(1) ⎩⎨⎧=-=-32373y x y x(2) ⎩⎨⎧=-=+5342y x y x18.(本题8分)如图所示,在△ABC 中:(1) 画出BC 边上的高AD 和中线AE(2) 若∠B =30°,∠ACB =130°,求∠BAD 和∠CAD 的度数19.(本题8分)如图,点B 、E 、C 、F 在同一直线上,且AB =DE ,AC =DF ,BE =CF ,请将下面说明△ABC ≌△DEF 的过程和理由补充完整解:∵BE =CF (_____________)∴BE +EC =CF +EC即BC =EF在△ABC 和△DEF 中⎪⎩⎪⎨⎧===__________________BC DF AB )()(∴△ABC ≌△DEF (__________)20.(本题8分)如图所示,D是边AB的中点,△BCD的周长比△ACD的周长大3 cm,BC=8 cm,求边AC的长21.(本题8分)已知,如图所示,CE⊥AB与E,BF⊥AC与F,且BD=CD,求证:(1) △BDE≌△CDF(2) 点D在∠BAC的角平分线上22.(本题10分)如图,设△ABC和△CDE都是等边三角形,并且∠EBD=90°,求证:(1) △ACE≌△BCD(2) 求∠AEB的度数23.(本题10分)如图1,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F(1) 直接写出∠AFC的度数(2) 请你判断并写出FE与FD之间的数量关系(3) 如图2,在△ABC中,如果∠ACB不是直角,而(1)中的其它条件不变,试判断线段AE、CD 与AC之间的数量关系并说明理由24.(本题12分)如图1,直线AB分别与x轴、y轴交于A、B两点,OC平分∠AOB交AB于点C,点D为线段AB上一点,过点D作DE∥OC交y轴于点E.已知AO=m,BO=n,且m、n 满足(n-6)2+|n-2m|=0(1) 求A、B两点的坐标(2) 若点D为AB中点,求OE的长(3) 如图2,若点P(x,-2x+6)为直线AB在x轴下方的一点,点E是y轴的正半轴上一动点,以E为直角顶点作等腰直角△PEF,使点F在第一象限,且F点的横、纵坐标始终相等,求点P 的坐标2020-2021学年八年级(上)期中数学模拟试卷一.选择题(共12小题,满分36分,每小题3分)1.下面的图形中,是轴对称图形的是()A.B.C.D.2.下列因式分解结果正确的是()A.x2+3x+2=x(x+3)+2 B.4x2﹣9=(4x+3)(4x﹣3)C.x2﹣5x+6=(x﹣2)(x﹣3)D.a2﹣2a+1=(a+1)23.利用尺规进行作图,根据下列条件作三角形,画出的三角形不唯一的是()A.已知三条边B.已知两边和夹角C.已知两角和夹边D.已知三个角4.用尺规作图法作已知角∠AOB的平分线的步骤如下:①以点O为圆心,任意长为半径作弧,交OB于点D,交OA于点E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧在∠AOB的内部相交于点C;③作射线OC.则射线OC为∠AOB的平分线.由上述作法可得△OCD≌△OCE的依据是()A.SAS B.ASA C.AAS D.SSS5.已知一个三角形有两边相等,且周长为25,若量得一边为5,则另两边长分别为()A.10,10 B.5,10 C.12.5,12.5 D.5,156.若关于x的二次三项式x2+kx+b因式分解为(x﹣1)(x﹣3),则k+b的值为()A.﹣1 B.1 C.﹣3 D.37.如图,已知AB∥CF,E为DF的中点,若AB=8cm,CF=5cm,则BD为()A.2cm B.3cm C.4cm D.1cm8.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A.30°B.35°C.45°D.60°9.当x=1时,代数式x3+x+m的值是7,则当x=﹣1时,这个代数式的值是()A.7 B.3 C.1 D.﹣710.如图,△BDC′是将矩形纸片ABCD沿BD折叠得到的,BC′与AD交于点E,则图中共有全等三角形()A.2对B.3对C.4对D.5对11.已知AD∥BC,AB⊥AD,点E,点F分别在射线AD,射线BC上.若点E与点B关于AC 对称,点E与点F关于BD对称,AC与BD相交于点G,则()A.1+AB/AD=B.2BC=5CFC.∠AEB+22°=∠DEF D.4AB/BD =12.如图,Rt△ABC中,AD是∠BAC的平分线,DE⊥AB,垂足为E,若AB=10cm,AC=6cm,则BE的长度为()A.10cm B.6cm C.4cm D.2cm二.填空题(共6小题,满分18分,每小题3分)13.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为.14.如图,在△ABC中,AF平分∠BAC,AC的垂直平分线交BC于点E,∠B=70°,∠FAE=19°,则∠C= 度.15.已知:在△ABC中,AH⊥BC,垂足为点H,若AB+BH=CH,∠ABH=70°,则∠BAC= °.16.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=2,则EF= .17.矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,设折痕为EF,则重叠部分△AEF的面积等于.18.我们将1×2×3×…×n记作n!(读作n的阶乘),如2!=1×2,3!=1×2×3,4!=1×2×3×4,若设S=1×1!+2×2!+3×3!+…+2016×2016!,则S除以2017的余数是.三.解答题(共7小题)19.因式分解:(1)9a2﹣4(2)ax2+2a2x+a320.如图,△ABC三个顶点的坐标分别为A(4,5)、B(1,0)、C(4,0).(1)画出△ABC关于y轴的对称图形△A1B1C1,并写出A1点的坐标;(2)在y轴上求作一点P,使△PAB的周长最小,并求出点P的坐标及△PAB的周长最小值.21.如图,已知:A、F、C、D在同一条直线上,BC=EF,AB=DE,AF=CD.求证:BC∥EF.22.若m2﹣2m n+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+()=0,即()2+()2=0.根据非负数的性质,∴m=n=阅读上述解答过程,解答下面的问题,设等腰三角形ABC的三边长a、b、c,且满足a2+b2﹣4a﹣6b+13=0,求△ABC的周长.23.如图,BC⊥CD,∠1=∠2=∠3,∠4=60°,∠5=∠6.(1)CO是△BCD的高吗?为什么?(2)求∠5、∠7的度数.24.如图,△ABC中,AB=AC,∠BAC=90°,点D是直线AB上的一动点(不和A、B重合),BE⊥CD于E,交直线AC于F.(1)点D在边AB上时,证明:AB=FA+BD;(2)点D在AB的延长线或反向延长线上时,(1)中的结论是否成立?若不成立,请画出图形并直接写出正确结论.25.如图,某学校(A点)与公路(直线L)的距离AB为300米,又与公路车站(D点)的距离AD为500米,现要在公路上建一个小商店(C点),使CA=CD,求商店与车站之间的距离CD的长.参考答案一.选择题1. D.2. C.3. D.4. D.5. A.6. A.7. B.8. B.9. B.10. C.11. A.12. C.二.填空题13. 4.14. 24.15. 75°或35°16. 4.17..18. 2016.三.解答题19.解:(1)9a2﹣4=(3a+2)(3a﹣2)(2)ax2+2a2x+a3=a(x+a)220.解:(1)如图所示,由图可知 A1(﹣4,5);(2)如图所示,点P即为所求点.设直线AB1的解析式为y=kx+b(k≠0),∵A(4,5),B1(﹣1,0),∴,解得,∴直线AB1的解析式为y=x+1,∴点P坐标(0,1),∴△PAB的周长最小值=AB1+AB=+=5+.21.证明:如图,∵AF=CD,∴AF+CF=CD+CF,即AC=DF.∴在△ABC与△DEF中,,∴△ABC≌△DEF(SSS),∴∠BCA=∠EFD,∴BC∥EF.22.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0,即(m﹣n)2+(n﹣4)2=0.根据非负数的性质,∴m=n=4,故答案为:n2﹣8n+16;m﹣n;n﹣4;4;已知等式变形得:(a﹣2)2+(b﹣3)2=0,所以a=2,b=3,第一种情况2,2,3,周长=7;第二种情况3,3,2,周长=8.23.解:(1)CO是△BCD的高.理由如下:∵BC⊥CD,∴∠DCB=90°,∴∠1=∠2=∠3=45°,∴△DCB是等腰直角三角形,∴CO是∠DCB的角平分线,∴CO⊥BD(等腰三角形三线合一);(2)∵在△ACD中,∠1=∠3=45°,∠4=60°,∴∠5=30°,又∵∠5=∠6,∴∠6=30°,∴在直角△AOB中,∠7=180°﹣90°﹣30°=60°.24.(本题满分8分)(1)证明:如图1,∵BE⊥CD,即∠BEC=90°,∠BAC=90°,∴∠F+∠FBA=90°,∠F+∠FCE=90°.∴∠FBA=∠FCE.……………………………………………………………(1分)∵∠FAB=180°﹣∠DAC=90°,∴∠FAB=∠DAC.∵AB=AC,∴△FAB≌△DAC.………………………………………………(2分)∴FA=DA.………………………………………………∴AB=AD+BD=FA+BD.………………………………………(4分)(2)如图2,当D在AB延长线上时,AF=AB+BD,…………(6分)理由是:同理得:△FAB≌△DAC,∴AF=AD=AB+BD;如图3,当D在AB反向延长线上时,BD=AB+AF,…………………(8分)理由是:同理得:△FAB≌△DAC,∴AF=AD,∴BD=AB+AD=AB+AF.25.解:∵AB⊥l于B,AB=300m,AD=500m.∴BD==400m.设CD=x米,则CB=(400﹣x)米,x2=(400﹣x)2+3002,x2=160000+x2﹣800x+3002,800x=250000,x=312.5m.答:商店与车站之间的距离为312.5米.2020-2021学年八年级(上)期中数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cmC.5cm,5cm,10cm D.6cm,7cm,14cm2.下列四个图案中,不是轴对称图案的是()A.B.C.D.3.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)4.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CADC.BE=DC D.AD=DE5.下列计算正确的是()A.a2+a2=2a4B.2a2×a3=2a6C.3a﹣2a=1 D.(a2)3=a6[来6.只用一种正六边形地砖密铺地板,则能围绕在正六边形的一个顶点处的正六边形地砖有()A.3块B.4块C.5块D.6块7.如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC ≌△DEF的是()A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE8.到三角形三个顶点的距离相等的点是三角形()的交点.A.三个内角平分线B.三边垂直平分线C.三条中线D.三条高9.如图,四边形ABCD中,F是CD上一点,E是BF上一点,连接AE、AC、DE.若AB=AC,AD=AE,∠BAC=∠DAE=70°,AE平分∠BAC,则下列结论中:①△ABE≌△ACD:②BE=EF;③∠BFD=110°;④AC垂直平分DE,正确的个数有()A.1个B.2个C.3个D.4个10.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6 个B.7 个C.8 个D.9个二.填空题(共6小题,满分18分,每小题3分)11.计算(2m2n2)2•3m2n3的结果是.12.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是.13.等腰三角形的一个外角是80°,则其底角是度.14.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是.15.如图,在Rt△ABC中,斜边AB的垂直平分线交边AB于点E,交边BC于点D,如果∠B=28°,那么∠CAD= 度.16.在等边三角形ABC中,AD是BC边上的高,E为AC的中点P为AD上一动点,若AD=12,则PC+PE的最小值为.三.解答题(共9小题,满分72分)17.(6分)计算:(1)(12a3﹣6a2+3a)÷3a;(2)(x﹣y)(x2+xy+y2).18.(6分)如图,∠A=50°,OB、OC为角平分线,求∠BOC.19.(8分)如图,方格图中每个小正方形的边长为1,点A,B,C都是格点.(1)画出△ABC关于直线BM对称的△A1B1C1;(2)写出AA1的长度.20.(8分)计算:(1)﹣(a2b)3+2a2b•(﹣3a2b)2(2)(a+2b﹣c)(a﹣2b+c)(3)已知6x﹣5y=10,求[(﹣2x+y)(﹣2x﹣y)﹣(2x﹣3y)2]÷4y的值.21.(8分)如图,点D,C在BF上,AB∥EF,∠A=∠E,BD=CF.求证:AB=EF.22.(8分)已知一个等腰三角形的三边长分别为2x﹣1、x+1、3x﹣2,求这个等腰三角形的周长.(1)完成部分解题过程,在以下解答过程的空白处填上适当的内容.解:①当2x﹣1=x+1时,解x= ,此时构成三角形(填“能”或“不能”).②当2x﹣1=3x﹣2时,解x= ,此时构成三角形(填“能”或“不能”).(2)请你根据(1)中两种情况的分类讨论,完成第三种情况的分析,若能构成等腰三角形,求出这个三角形的周长.24.(10分)已知,△ABC是等边三角形,过点C作CD∥AB,且CD=AB,连接BD交AC于点O(1)如图1,求证:AC垂直平分BD;(2)点M在BC的延长线上,点N在AC上,且MD=NM,连接BN.①如图2,点N在线段CO上,求∠NMD的度数;②如图3,点N在线段AO上,求证:NA=MC.25.(10分)已知△ABC是等边三角形,点D,E,F分别是边AB,BC,AC的中点,点M是射线EC上的一个动点,作等边△DMN,使△DMN与△ABC在BC边同侧,连接NF.(1)如图1,当点M与点C重合时,直接写出线段FN与线段EM的数量关系;(2)当点M在线段EC上(点M与点E,C不重合)时,在图2中依题意补全图形,并判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)连接DF,直线DM与直线AC相交于点G,若△DNF的面积是△GMC面积的9倍,AB=8,请直接写出线段CM的长.参考答案与试题解析一.选择题1.【解答】解:A、∵5+4=9,9=9,∴该三边不能组成三角形,故此选项错误;B、8+8=16, 16>15,∴该三边能组成三角形,故此选项正确;C、5+5=10,10=10,∴该三边不能组成三角形,故此选项错误;D、6+7=13,13<14,∴该三边不能组成三角形,故此选项错误;故选:B.2.【解答】解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.3.【解答】解:点M(1,2)关于y轴对称点的坐标为(﹣1,2).故选:A.4.【解答】解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选:D.5.【解答】解:A、应为a2+a2=2a2,故本选项错误;B、应为2a2×a3=2a5,故本选项错误;C、应为3a﹣2a=a,故本选项错误;D、(a2)3=a6,正确.故选:D.6.【解答】解:因为正六边形的内角为120°,所以360°÷120°=3,即每一个顶点周围的正六边形的个数为3.故选:A.7.【解答】解:A、添加DE=AB与原条件满足SSA,不能证明△ABC≌△DEF,故A选项正确.B、添加DF∥AC,可得∠DFE=∠ACB,根据AAS能证明△ABC≌△DEF,故B选项错误.C、添加∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故C选项错误.D、添加AB∥DE,可得∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故D选项错误.故选:A.8.【解答】解:到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点.故选:B.9.【解答】解:∵AB=AC,∠BAC=∠DAE,AE=AD,∴ABE≌△ACD,故①正确.∵ABE≌△ACD,∴∠AEB=∠ADC.∵∠AEB+∠AEF=180°,∴∠AEF+∠ADC=180°,∴∠BFD=180°﹣∠EAD=180°﹣70°=110°,故③正确.∵AE平分∠BAC,∴∠EAC=35°.又∵∠DAE=70°,∴AC平分∠EAD.又∵AE=AD,∴AC⊥EF,AC平分EF.∴AC是EF的垂直平分线,故④正确.由已知条件无法证明BE=EF,故②错误.故选:C.10.【解答】解:如图,分情况讨论:①AB为等腰△ABC的底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选:C.二.填空题(共6小题,满分18分,每小题3分)11.【解答】解:原式=4m4n4•3m2n3=12m6n7,故答案是:12m6n7.12.【解答】解:设多边形的边数为n,根据题意,得(n﹣2)•180=3×360,解得n=8.则这个多边形的边数是八.13.【解答】解:与80°角相邻的内角度数为100°;当100°角是底角时,100°+100°>180°,不符合三角形内角和定理,此种情况不成立;当100°角是顶角时,底角的度数=80°÷2=40°;故此等腰三角形的底角为40°.故填40.14.【解答】解:过O作OE⊥AB于E,OF⊥AC于F,连接OA,∵OB,OC分别平分∠ABC和∠ACB,OD⊥BC,∴OE=OD,OD=OF,即OE=OF=OD=4,∴△ABC的面积是:S△AOB+S△AOC+S△OBC=×AB×OE+×AC×OF+×BC×OD=×4×(AB+AC+BC)=×4×21=42,故答案为:42.15.【解答】解:在Rt△ABC中,∠B=28°,∴∠CAB=90°﹣28°=62°,∵DE垂直平分AB,∴AD=BD,∴∠DAB=∠B=28°,∴∠CAD=∠CAB﹣∠DAB=62°﹣28°=34°.故答案为:34.16.【解答】解:如图,连接BE,与AD交于点P,此时PE+PC最小,∵△ABC是等边三角形,AD⊥BC,∴PC=PB,∴PE+PC=PB+PE=BE,即BE就是PE+PC的最小值,∵AD=12,点E是边AC的中点,∴AD=BE=12,∴PE+PC的最小值是12.故答案为12,三.解答题(共9小题,满分72分)17.【解答】解:(1)(12a3﹣6a2+3a)÷3a;=12a3÷3a﹣6a2÷3a+3a÷3a=4a2﹣2a+1;(2)(x﹣y)(x2+xy+y2).=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3.18.【解答】解:∵OB、OC为角平分线,∴∠ABC=2∠OBC,∠ACB=2∠OCB,∵∠ABC+∠ACB=180°﹣∠A,∠OBC+∠OCB=180°﹣∠BOC,∴2∠OBC+2∠OCB=180°﹣∠A,∴180°﹣∠A=2(180°﹣∠BOC),∴∠BOC=90°+∠A=90°+×50°=115°.19.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)由图可知,点A与点A1之间10个格子,所以AA1的长度为10.20.【解答】解:(1)原式=﹣a6b3+2a2b•9a4b2=﹣a6b3+18a6b3=17a6b3(2)原式=[a+(2b﹣c)][a﹣(2b﹣c)]=a2﹣(2b﹣c)2=a2﹣(4b2﹣4bc+c2)=a2﹣4b2+4bc﹣c2(3)当6x﹣5y=10时,∴3x﹣2.5y=5原式=[4x2﹣y2﹣(4x2﹣12xy+9y2)]÷4y=(12xy﹣10y2)÷4y=3x﹣2.5y=522.【解答】解:(1)①当2x﹣1=x+1时,解x=2,此时3,3,4,能构成三角形.②当2x﹣1=3x﹣2时,解x=1,此时1,2,1不能构成三角形.故答案为2,能,1,不能;(2)③当x+1=3x﹣2,解得x=,此时2,,能构成三角形.23.【解答】解:接OA,OB后,可证∠OAP=∠OBP=90°,其依据是直径所对圆周角为直角;由此可证明直线PA,PB都是⊙O的切线,其依据是经过半径外端且垂直于这条半径的直线是圆的切线,证明过程如下:由作图可知OP为⊙C的直径,∴∠OAP=∠OBP=90°,即OA⊥PA、OB⊥PB,∵OA、OB是⊙O的半径,∴OP是⊙O的切线.故答案为:直径所对圆周角为直角,经过半径外端且垂直于这条半径的直线是圆的切线.2020-2021学年八年级(上)期中数学模拟试卷一.选择题(共6小题,满分18分,每小题3分)1.如果三角形的三个内角的度数比是2:3:4,则它是()A.锐角三角形B.钝角三角形C.直角三角形D.钝角或直角三角形2.下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cmC.5cm,5cm,10cm D.6cm,7cm,14cm3.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙4.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE 5.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2) C.(1,﹣2)D.(2,﹣1)6.如右图是三条两两相交的笔直公路,某物流公司现要修建一个货物中转站,使它到三条公路的距离相等,这个货物中转站可选的位置有()A.3个B.4个C.5个D.6个二.填空题(共8小题,满分24分,每小题3分)7.如图,点E在△ABC边BC的延长线上,CD平分∠ACE,若∠A=70°,∠DCA=65°,则∠B的度数是.8.(3分)如图,在△ABC中,∠B=40°,∠C=28°,点D在BA的延长线上,则∠CAD的大小为.9.若一个多边形的内角和比外角和大360°,则这个多边形的边数为.10.如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为度.11.在△ABC中,∠C=∠A=∠B,则∠A= 度.12.如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是(填上你认为适当的一个条件即可).13.已知点P(3,1)关于y轴的对称点Q的坐标是(a+b,﹣1﹣b),则ab的值为.14.在△ABC中,BC=9,AB的垂直平分线交BC与点M,AC的垂直平分线交BC于点N,则△AMN的周长= .三.解答题(共4小题,满分24分,每小题6分)15.(6分)等腰三角形一腰上的中线,分别将该三角形周长分成30cm 和33cm,试求该等腰三角形的底边长.16.(6分)如图,点F是△ABC的边BC延长线上一点.DF⊥AB,∠A=30°,∠F=40°,求∠ACF的度数.17.(6分)如图,已知AB=AD,AC=AE,∠1=∠2,求证:BC=DE.18.(6分)如图所示,已知在△ABC中,AB=AC,D为线段BC上一点,E为线段AC上一点,且AD=AE.(1)若∠ABC=60°,∠ADE=70°,求∠BAD与∠CDE的度数;(2)设∠BAD=α,∠CDE=β,试写出α、β之间的关系并加以证明.四.解答题(共3小题,满分21分,每小题7分)19.(7分)已知:如图,△ABC中,D是BC延长线上一点,E是CA 延长线上一点,F是AB上一点,连接EF.求证:∠ACD>∠E.20.(7分)一个多边形,它的内角和比外角和的4倍多180°,求这个多边形的边数.21.(7分)如图,在△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠C=40°,求∠BAD的度数;(2)若AC=5,DC=4,求△ABC的周长.五.解答题(共2小题,满分16分,每小题8分)22.(8分)如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有(请写序号,少选、错选均不得分).23.(8分)已知:如图1所示,等腰直角三角形ABC中,∠BAC=90°,AB=AC,直线MN经过点A,BD⊥MN于点D,CE⊥MN于点E.(1)试判断线段DE、BD、CE之间的数量关系,并说明理由;(2)当直线MN运动到如图2所示位置时,其余条件不变,判断线段DE、BD、CE之间的数量关系.六.解答题(共2小题,满分17分)24.(8分)如图1,P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA=CQ,连接PQ交AC于点D.(1)求证:PD=DQ;(2)如图2,过P作PE⊥AC于E,若AB=2,求DE的长.25.(9分)如图,△ABC中,∠ACB=90°,AC=BC,将△ABC绕点C 逆时针旋转角α.(0°<α<90°)得到△A1B1C1,连接BB1.设CB1交AB于D,A1B1分别交AB、AC于E、F.(1)在图中不再添加其它任何线段的情况下,请你找出一对全等的三角形,并加以说明(△ABC与△A1B1C1全等除外);(2)当△BB1D是等腰三角形时,求α.参考答案一.选择题1. A.2. B.3. B.4. D.5. A.6. B.二.填空题7.60°.8.68°.9. 6.10.37.11. 60.12.【解答】解:∵∠1=∠2,∴∠AEB=∠AEC,又 AE公共,∴当∠B=∠C时,△ABE≌△ACE(AAS);或BE=CE时,△ABE≌△ACE(SAS);或∠BAE=∠CAE时,△ABE≌△ACE(ASA).13. 214. 9三.解答题16.解:在△DFB中,∵DF⊥AB,∴∠FDB=90°,∵∠F=40°,∠FDB+∠F+∠B=180°,∴∠B=50°.在△ABC中,∵∠A=30°,∠B=50°,∴∠ACF=∠A+∠B=30°+50°=80°.18.解:(1)∵AB=AC,∴∠B=∠C=60°,∴∠BAC=60°,∵AD=AE,∴∠ADE=∠AED=70°,∴∠DAE=40°,∴∠BAD=∠BAC﹣∠DAE=20°,∵∠AED=∠CDE+∠C,∴∠CDE=70°﹣60°=10°.(2)结论:α=2β,理由是:设∠BAC=x°,∠DAE=y°,则α=x°﹣y°,∵∠ACB=∠ABC,∴∠ACB=,∵∠ADE=∠AED,∴∠AED=,∴β=∠AED﹣∠ACB=﹣==,∴α=2β;19.证明:∵∠ACD是△ABC的一个外角,∴∠ACD>∠BAC,∵∠BAC是△AEF的一个外角,∴∠BAC>∠E,∴∠ACD>∠E.20.解:根据题意,得(n﹣2)•180=1620,解得:n=11.则这个多边形的边数是11,内角和度数是1620度.21.(1)解:∵EF垂直平分AC,∴AE=CE,∴∠C=∠EAC=40°,∵AD⊥BC,BD=DE,∴AB=AE,∴∠B=∠BEA=2∠C=80°,∴∠BAD=90°﹣80°=10°;(2)由(1)知:AE=EC=AB,∵BD=DE,∴AB+BD=DE+AE=DE+CE=DC,∴C△ABC=AB+BC+AC=2DC+AC=2×4+5=13..25.解:(1)全等的三角形有:△CBD≌△CA1F或△AEF≌△B1ED或△ACD≌△B1CF;证明:∵∠ACB1+∠A1CF=∠ACB1+∠BCD=90°∴∠A1CF=∠BCD∵A1C=BC∴∠A1=∠CBD=45°∴△CBD≌△CA1F;∴CF=CD,∵CA=CB1,∴AF=B1D,∵∠A=∠EB1D,∠AEF=∠B1ED,∴△AEF≌△B1ED,∵AC=B1C,∠ACD=∠B1CF,∠A=∠CB1F,∴△ACD≌△≌△B1CF.(2)在△CBB1中。

陕西省西安市 八年级(上)期中数学试卷-(含答案)

陕西省西安市 八年级(上)期中数学试卷-(含答案)

八年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.4的平方根是()A. B. C. 2 D.2.如图,小手盖住的点的坐标可能是()A.B.C.D.3.若正比例函数的图象经过点(2,-3),则这个图象必经过点()A. B. C. D.4.如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A. 5B. 6C. 8D. 105.下列计算正确的是()A. B.C.6.为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x人,女生有y人.根据题意,所列方程组正确的是()A. B. C. D.7.已知点A(-3,m)与点B(2,n)是直线y=-x+b上的两点,则m与n的大小关系是()A. B. C. D. 无法确定8.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A. B. C. D.9.平面直角坐标系中,△ABC关于y轴的对称图形是△A'B'C',若BC边上有点P(a,b),则它的对应点P'的坐标为()A. B. C. D.10.如图,在平面直角坐标系中,线段AB的端点坐标为A(-2,4),B(4,2),直线y=kx-2与线段AB有交点,则k的值不可能是()A.B.C. 3D. 5二、填空题(本大题共6小题,共18.0分)11.在实数0,-π,,-4中,最小的数是______ .12.若(x+y-2)2+|4x+3y-7|=0,则8x-3y的值为______ .13.如图,是直线y=x-3的图象,点P(2,m)在该直线的上方,则m的取值范围是______ .14.如图,将一根25cm长的细木棒放入长、宽、高分别为8cm、6cm和10cm的长方体无盖盒子中,则细木棒露在盒外面的最短长度是______ cm.15.如图,在平面直角坐标系中,已知点A(0,3),且△OAB≌△O'A'B',点A的对应点A'在直线y=x上,A'O'⊥x轴于O'点,则点B与其对应点B'间的距离为______ .16.如图,四边形ABCD的对角线AC与BD互相垂直,若AB=3,BC=4,CD=5,则AD的长为______ .三、计算题(本大题共1小题,共6.0分)17.如图,Rt△ABC中,∠C=90°,AC=6,BC=8.(1)用直尺和圆规在边BC上找一点D,使D到AB的距离等于CD.(2)计算(1)中线段CD的长.四、解答题(本大题共6小题,共48.0分)18.(1)计算:+(2-)0-(-)-2+|-1|(2)计算:2•(3-4-3)19.解方程组:.20.甲、乙两商场春节期间都进行让利酬宾活动,其中,甲商场对一次购物超过200元部分打7折(不超过200元部分按原价)优惠,如图所示,表示甲商场在让利方式下购物金额y(元)关于商品原价x(元)的函数图象;若乙商场所有商品按8折出售,请在同一坐标系下画出乙商场在让利方式下y关于x的函数图象,并利用图象说明如何选择这两家商场购物更省钱.21.如图,某中学有一块四边形的空地ABCD,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问学校需要投入多少资金买草皮?22.某文具店销售甲、乙两种圆规,当销售5只甲种、1只乙种圆规,可获利润25元;当销售6只甲种、3只乙种圆规,可获利润39元.(1)问该文具店销售甲、乙两种圆规,每只的利润分别是多少元?(2)在(1)中,文具店共进货甲、乙两种圆规50只并全部销售完,已知甲种圆规至少能销售30只,请判断文具店如何进货才有最大利润,并求出利润的最大值.23.操作体验(1)如图①,已知△ABC,请画出△ABC的中线AD,并判断△ABD与△ACD的面积大小关系.(2)如图②,在平面直角坐标系中,△ABC的边BC在x轴上,已知点A(2,4),B(-1,0),C(3,0),试确定过点A的一条直线l,平分△ABC的面积,请写出直线l的表达式.综合运用(3)如图③,在平面直角坐标系中,若A(1,4),B(3,2),那么在直线y=-4x+20上是否存在一点C,使直线OC恰好平分四边形OACB的面积?若存在,请计算点C的坐标;若不存在,请说明理由.答案和解析1.【答案】A【解析】解:4的平方根是:±=±2.故选:A.直接利用平方根的定义分析得出答案.此题主要考查了平方根,正确把握平方根的定义是解题关键.2.【答案】A【解析】解:因为小手盖住的点在第四象限,第四象限内点的坐标横坐标为正,纵坐标为负,且横坐标的绝对值大于纵坐标的绝对值.故只有选项A符合题意,故选:A.先判断手所在的象限,再判断象限横纵坐标的正负即可.解答此题的关键是熟记平面直角坐标系中各个象限内点的坐标符号,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.【答案】D【解析】解:设正比例函数的解析式为y=kx(k≠0),因为正比例函数y=kx的图象经过点(2,-3),所以-3=2k,解得:k=-,所以y=-x,把这四个选项中的点的坐标分别代入y=-x中,等号成立的点就在正比例函数y=-x的图象上,所以这个图象必经过点(-2,3).故选D.求出函数解析式,然后根据正比例函数的定义用代入法计算.本题考查正比例函数的知识.关键是先求出函数的解析式,然后代值验证答案.4.【答案】C【解析】【分析】本题考查了勾股定理,等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.根据等腰三角形的性质得到AD⊥BC,BD=CD,再根据勾股定理即可得到结论.【解答】解:∵AB=AC,AD是∠BAC的平分线,∴AD⊥BC,BD=CD,∵AB=5,AD=3,∴BD==4,∴BC=2BD=8,故选C.5.【答案】B【解析】解:A、不能化简,所以此选项错误;B、3×=6,所以此选项正确;C、(2)2=4×2=8,所以此选项错误;D、==,所以此选项错误;本题选择正确的,故选B.A、和不是同类二次根式,不能合并;B、二次根式相乘,系数相乘作为积的系数,被开方数相乘,作为积中的被开方数;C、二次根式的乘方,把每个因式分别平方,再相乘;D、二次根式的除法,把分母中的根号化去.本题考查了二次根式的混合运算,熟练掌握二次根式的计算法则是关键,要注意:①二次根式的运算结果要化为最简二次根式;②与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的;③灵活运用二次根式的性质,选择恰当的解题途径.6.【答案】D【解析】解:该班男生有x人,女生有y人.根据题意得:,故选:D.根据题意可得等量关系:①男生人数+女生人数=30;②男生种树的总棵树+女生种树的总棵树=78棵,根据等量关系列出方程组即可.此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,然后再列出方程组.7.【答案】A【解析】解:∵直线y=-x+b中,k=-<0,∴此函数是减函数.∵-3<2,∴m>n.故选A.先根据直线的解析式判断出函数的增减性,再根据一次函数的性质即可得出结论.本题考查的是一次函数图象上点的坐标特点,熟知一次函数的增减性是解答此题的关键.8.【答案】C【解析】解:将此长方形折叠,使点B与点D重合,∴BE=ED.∵AD=9cm=AE+DE=AE+BE.∴BE=9-AE,根据勾股定理可知AB2+AE2=BE2.解得AE=4.∴△ABE的面积为3×4÷2=6.故选C.根据折叠的条件可得:BE=DE,在直角△ABE中,利用勾股定理就可以求解.本题考查了利用勾股定理解直角三角形的能力即:直角三角形两直角边的平方和等于斜边的平方.9.【答案】C【解析】解:△ABC关于y轴的对称图形是△A'B'C',若BC边上有点P(a,b),则它的对应点P'的坐标为(-a,b),故选:C.关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.本题考查了关于y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.10.【答案】B【解析】解:把A(-2,4)代入y=kx-2得,4=-2k-2,解得k=-3,∴当直线y=kx-2与线段AB有交点,且过第二、四象限时,k满足的条件为k≤-3;把B(4,2)代入y=kx-2得,4k-2=2,解得k=1,∴当直线y=kx-2与线段AB有交点,且过第一、三象限时,k满足的条件为k≥1.即k≤-3或k≥1.所以直线y=kx-2与线段AB有交点,则k的值不可能是-2.故选:B.当直线y=kx-2与线段AB的交点为A点时,把A(-2,4)代入y=kx-2,求出k=-3,根据一次函数的有关性质得到当k≤-3时直线y=kx-2与线段AB有交点;当直线y=kx-2与线段AB的交点为B点时,把B(4,2)代入y=kx-2,求出k=1,根据一次函数的有关性质得到当k≥1时直线y=kx-2与线段AB有交点,从而能得到正确选项.本题考查了一次函数y=kx+b(k≠0)的性质:当k>0时,图象必过第一、三象限,k越大直线越靠近y轴;当k<0时,图象必过第二、四象限,k越小直线越靠近y轴.11.【答案】-4【解析】解:∵|-4|>|-π|>|-|,∴最小的数为-4,故答案为:-4.根据0大于一切负数,两个负数,绝对值大的反而小.本题考查了实数的大小比较,属于基础题,任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.也可以利用数轴来比较大小.12.【答案】5【解析】解:∵(x+y-2)2+|4x+3y-7|=0,∴,②-①×3得:x=1,把x=1代入①得:y=1,则8x-3y=5,故答案为:5.利用非负数的性质列出方程组,求出方程组的解得到x与y的值,代入原式计算即可得到结果.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.13.【答案】m>-1【解析】解:当x=2时,y=2-3=-1,∵点P(2,m)在该直线的上方,∴m>-1.故答案为:m>-1.把x=2代入直线的解析式求出y的值,再根据点P(2,m)在该直线的上方即可得出m的取值范围.本题考查的是一次函数图象上点的坐标特点,根据题意求出当x=2时y的值是解答此题的关键.14.【答案】5【解析】解:由题意知:盒子底面对角长为=10cm,盒子的对角线长:=20cm,细木棒长25cm,故细木棒露在盒外面的最短长度是:25-20=5cm.长方体内体对角线是最长的,当木条在盒子里对角放置的时候露在外面的长度最小,这样就是求出盒子的对角线长度即可.本题重点考查学生的空间想象能力及勾股定理的应用.15.【答案】4【解析】解:∵△OAB≌△O'A'B',∴OA=O′A′.∵A'O'⊥x轴于O'点,OA⊥x轴,∴△A′B′O′由△ABO平移而成,∴AA′=BB′.∵点A(0,3),点A的对应点A'在直线y=x上,∴A′(4,3),∴AA′=BB′=4.故答案为:4.根据题意可知△A′B′O′由△ABO平移而成,再由点A'在直线y=x上得出A′点的坐标,进而可得出结论.本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.16.【答案】3【解析】解:在Rt△AOB中,AO2=AB2-BO2;Rt△DOC中可得:DO2=DC2-CO2;∴可得AD2=AO2+DO2=AB2-BO2+DC2-CO2=18,即可得AD==3.故答案为:3.在Rt△AOB、Rt△DOC中分别表示出AO2、DO2,从而在Rt△ADO中利用勾股定理即可得出AD的长度.此题考查了勾股定理的知识,解答本题的关键是在Rt△AOB、Rt△DOC中分别表示出AO2、DO2,需要我们熟练掌握勾股定理的表达形式.17.【答案】解:(1)画角平分线正确,保留画图痕迹(2)设CD=x,作DE⊥AB于E,则DE=CD=x,∵∠C=90°,AC=6,BC=8.∴AB=10,∴EB=10-6=4.∵DE2+BE2=DB2,∴x2+42=(8-x)2,x=3,即CD长为3.【解析】(1)根据角平分线上的点到角的两边距离相等知作出∠A的平分线即可;(2)设CD的长为x,然后用x表示出DB、DE、BF利用勾股定理得到有关x 的方程,解之即可.本题考查了勾股定理的应用,通过本题使同学们明白勾股定理不但可以在直角三角形中求线段的长,而且可以根据其列出等量关系.18.【答案】解:(1)原式=4+1-4+1=2;(2)原式=4•(12--9)=4(3-)=36-4.【解析】(1)首先化简二次根式,计算0次幂、负指数次幂、去掉绝对值符号,然后进行加减即可;(2)首先化简二次根式,然后利用单项式与多项式的乘法法则计算即可.本题考查了二次根式的混合运算,是二次根式乘法、除法及加减法运算法则的综合运用.学习二次根式的混合运算应注意:与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.19.【答案】解:原方程组可化为,①-②得,x=,把x=代入①得,9-y=5,解得y=4,故方程组的解为.【解析】先把方程组②中的括号去掉,再用加减消元法或代入消元法求解即可.本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.20.【答案】解:由题意:y乙=0.8x,在同一坐标系下画出乙商场在让利方式下y关于x 的函数图象如图所示:∵y乙=0.8x,y甲=200+0.7(x-200)=0.7x+60,令0.7x+60=0.8x,得x=600,当x>600元时,选择甲,当x=600元时,甲乙一样,当x<600元时,选择乙.【解析】=0.8x,在同一坐标系下画出乙商场在让利方式下y关于x的函数由题意y乙图象即可解决问题.本题考查了一次函数的应用以及一次函数图象,解题的关键是理解题意,学会理由函数图象解决省钱问题.21.【答案】解:连接BD,在Rt△ABD中,BD2=AB2+AD2=32+42=52,在△CBD中,CD2=132,BC2=122,而122+52=132,即BC2+BD2=CD2,∴∠DBC=90°,S四边形ABCD=S△BAD+S△DBC=•AD•AB+DB•BC,=×4×3+×12×5=36.所以需费用36×200=7200(元).【解析】仔细分析题目,需要求得四边形的面积才能求得结果.连接BD,在直角三角形ABD中可求得BD的长,由BD、CD、BC的长度关系可得三角形DBC为一直角三角形,DC为斜边;由此看,四边形ABCD由Rt△ABD和Rt△DBC构成,则容易求解.本题考查了勾股定理的应用,通过勾股定理由边与边的关系也可证明直角三角形,这样解题较为简单.22.【答案】解:(1)设销售甲种圆规的利润为x元/只,销售乙种圆规的利润为y元/只,根据题意得:,解得:.答:该文具店销售甲种圆规每只的利润为4元,销售乙种圆规每只的利润为5元.(2)设文具店购进甲种圆规z只(30≤z≤50),总利润为w元,则购进乙种圆规(50-z)只,根据题意得:w=4z+5(50-z)=-z+250,∵-1<0,z≥30,∴当z=30时,利润取最大值,最大值为220.答:文具店购进甲种圆规30只、乙种圆规20只时,销售利润最大,最大利润为220元.【解析】(1)设销售甲种圆规的利润为x元/只,销售乙种圆规的利润为y元/只,根据“当销售5只甲种、1只乙种圆规,可获利润25元;当销售6只甲种、3只乙种圆规,可获利润39元”即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设文具店购进甲种圆规z只,总利润为w元,则购进乙种圆规(50-z)只,根据总利润=甲种圆规的单件利润×购进数量+乙种圆规的单件利润×购进数量即可得出w关于z的一次函数关系式,根据一次函数的性质结合z的取值范围即可解决最值问题.本题考查了一次函数的应用、一次函数的性质以及二元一次方程组的应用,解题的关键是:(1)根据“当销售5只甲种、1只乙种圆规,可获利润25元;当销售6只甲种、3只乙种圆规,可获利润39元”列出关于x、y的二元一次方程组;(2)根据总利润=甲种圆规的单件利润×购进数量+乙种圆规的单件利润×购进数量找出w关于z的一次函数关系式.23.【答案】解:(1)如图①,过A作AE⊥BC于点E,∵AD为BC边上的中线,∴BD=CD,∴BD•AE=CD•AE,即S△ABD=S△ACD;(2)如图②,设BC的中点为F,∵直线l平分△ABC的面积,∴由(1)可知直线l过点F,∵B(-1,0),C(3,0),∴F(1,0),设直线l的表达式为y=kx+b,把A、F的坐标代入可得,解得,∴直线l的表达式y=4x-4;(3)如图③,连接AB交OC于点G,∵直线OC恰好平分四边形OACB的面积,∴直线OC过AB的中点,即G为AB的中点,∵A(1,4),B(3,2),∴G(2,3),设直线OC解析式为y=ax,则3=2a,解得a=,∴直线OC表达式为y=x,联立两直线解析式可得,解得,∴存在满足条件的点C,其坐标为(,).【解析】(1)过A作AE⊥BC于点E,则可表示出△ABD和△ACD的面积,可比较其大小关系;(2)由(1)可知直线l应过BC的中点F,由B、C的坐标可求得F点的坐标,利用待定系数法可求得直线l的表达式;(3)由条件可知直线OC过AB的中点G,由AB的坐标可求得G的坐标,利用待定系数法可求得直线OC的解析式,联立两直线解析式可求得C点坐标.本题为一次函数的综合应用,涉及待定系数法、三角形的中线、三角形的面积等知识.在(1)中表示出两三角形的面积是解题的关键,在(2)中确定出直线l过BC的中点是解题的关键,在(3)中求得直线OC的解析式是解题的关键.本题考查知识点较多,综合性较强,但难度不大.。

2020-2021西安市八年级数学上期中第一次模拟试题(带答案)

2020-2021西安市八年级数学上期中第一次模拟试题(带答案)

2020-2021西安市八年级数学上期中第一次模拟试题(带答案)一、选择题1.如图,在Rt △ABC 中,∠ACB=90º,∠A=60º,CD 是斜边AB 上的高,若AD=3cm ,则斜边AB 的长为( )A .3cmB .6cmC .9cmD .12cm2.下列条件中能判定△ABC ≌△DEF 的是 ( )A .AB =DE ,BC =EF ,∠A =∠DB .∠A =∠D ,∠B =∠E ,∠C =∠F C .AC =DF ,∠B =∠F ,AB =DED .∠B =∠E ,∠C =∠F ,AC =DF 3.计算()2x y xy x xy --÷的结果为( )A .1yB .2x yC .2x y -D .xy - 4.化简2111x x x+--的结果是( ) A .x+1 B .11x + C .x ﹣1 D .1x x - 5.若x 、y 的值均扩大为原来的2倍,则下列分式的值保持不变的是( ) A .x x y - B .22x y C .2x yD .3232x y 6.已知2410x x --=,则代数式22(3)(1)3x x x ---+的值为( ) A .3 B .2C .1D .1- 7.下列图形中,周长不是32 m 的图形是( )A .B .C .D .8.下列说法中正确的是( )A .三角形的角平分线、中线、高均在三角形内部B .三角形中至少有一个内角不小于60°C .直角三角形仅有一条高D .三角形的外角大于任何一个内角9.已知x+y=5,xy=6,则x 2+y 2的值是( )A .1B .13C .17D .2510.2012201253()(2)135-⨯-=( ) A .1- B .1 C .0 D .199711.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m ,另一边减少了2m ,剩余空地的面积为18m 2,求原正方形空地的边长.设原正方形的空地的边长为xm ,则可列方程为( )A .(x+1)(x+2)=18B .x 2﹣3x+16=0C .(x ﹣1)(x ﹣2)=18D .x 2+3x+16=012.若实数x,y,z 满足()()()240x z x y y z ----=,则下列式子一定成立的是( )A .x+y+z=0B .x+y-2z=0C .y+z-2x=0D .z+x-2y=0二、填空题13.分式212xy 和214x y的最简公分母是_______. 14.如图是两块完全一样的含30°角的直角三角尺,分别记做△ABC 与△A′B′C′,现将两块三角尺重叠在一起,设较长直角边的中点为M ,绕中点M 转动上面的三角尺ABC ,使其直角顶点C 恰好落在三角尺A′B′C′的斜边A′B′上.当∠A =30°,AC =10时,两直角顶点C ,C′间的距离是_____.15.已知11 5x y +=,则232 2x xy y x xy y-+=++_____. 16.若a+b=17,ab=60,则a-b 的值是__________.17.如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有______种.18.已知关于x 的方程2x a x 2-+=1的解是负值,则a 的取值范围是______. 19.点P (-2, 3)关于x 轴对称的点的坐标为_________20.若2x+5y ﹣3=0,则4x •32y 的值为________. 三、解答题21.已知a 、b 、c 是三角形三边长,试化简:|b +c ﹣a |+|b ﹣c ﹣a |+|c ﹣a ﹣b |﹣|a ﹣b +c |.22.先化简,再求值:[(2x +y )(2x -y )-3(2x 2-xy )+y 2]÷(-x ),其中x=2,y =-1. 23.先化简,再求值:(1﹣11a -)÷2244a a a a-+-,其中a=2+2. 24.先化简22169(1)24a a a a -+-÷--,然后a 在﹣2,0, 1,2,3中选择一个合适的数代入并求值.25.已知:线段a ,α∠,求作:ABC △,使AB AC a ==,B α∠=∠.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】先求出∠ACD=∠B=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半求出AC ,再求出AB 即可.【详解】解:∵在Rt △ABC 中,∠ACB=90º,∠A=60º,∴∠B=180°-60°-90°=30°(三角形内角和定理),∴AC=12AB(直角三角形30°所对的直角边等于斜边的一半),又∵CD是斜边AB上的高,∴∠ADC=90º,∴∠ACD=180°-60°-90°=30°(三角形内角和定理),∴AD=12AC(直角三角形30°所对的直角边等于斜边的一半),∴AC=6,又∴AC=12 AB,∴12AB .故选D.【点睛】本题考查了三角形内角和定理和有30°角的直角三角形的性质,掌握直角三角形30°角所对的直角边等于斜边的一半是解题的关键.2.D解析:D【解析】分析:根据全等三角形的判定定理AAS,可知应选D.详解:解:如图:A选项中根据AB=DE,BC=EF,∠A=∠D 不能判定两个三角形全等,故A错;B选项三个角相等,不能判定两个三角形全等,故B错;C选项看似可用“边角边”定理判定两三角形全等,而对照图形可发现它们并不符合此判定条件,故C错;D选项中根据“AAS”可判定两个三角形全等,故选D;点睛:本题考查了全等三角形的条件,本题没有给出图形,增加此题的难度.若能顺利画出图形,对照图形和选项即可得到正确选项.3.C解析:C【解析】【分析】根据分式的减法和除法可以解答本题【详解】()()()22===xy xy x xy xyx y x x y xy x x y x y x y--÷-⋅--⋅---故答案为C【点睛】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.4.A解析:A【解析】【分析】根据分式的加减法法则计算即可.【详解】 解:原式=2211(1)(1)11111x x x x x x x x x -+--===+---- 故选:A.【点睛】本题考查了分式的加减法,掌握计算法则是解题关键.5.A解析:A【解析】【分析】据分式的基本性质,x ,y 的值均扩大为原来的2倍,求出每个式子的结果,看结果等于原式的即是.【详解】解:根据分式的基本性质,可知若x ,y 的值均扩大为原来的2倍,A 、()2x 2=222x x x y x y x y=---, B 、224x 4x y y =, C 、()2222x 4222x x y y y == , D 、()()33322232x 243822x x y yy ⨯==,故选A .【点睛】本题考查的是分式的基本性质,即分子分母同乘以一个不为0的数,分式的值不变.此题比较简单,但计算时一定要细心.6.A解析:A【解析】【分析】先将原代数式进行去括号化简得出242x x -+,然后根据2410x x --=得出241x x -=,最后代入计算即可.【详解】由题意得:22(3)(1)3x x x ---+=242x x -+,∵2410x x --=,∴241x x -=,∴原式=242x x -+=1+2=3.故选:A.【点睛】本题主要考查了整式的化简求值,整体代入是解题关键. 7.B解析:B【解析】【分析】根据所给图形,分别计算出它们的周长,然后判断各选项即可.【详解】A. L=(6+10)×2=32,其周长为32.B. 该平行四边形的一边长为10,另一边长大于6,故其周长大于32.C. L=(6+10)×2=32,其周长为32.D. L=(6+10)×2=32,其周长为32.采用排除法即可选出B故选B.【点睛】此题考查多边形的周长,解题在于掌握计算公式.8.B解析:B【解析】【分析】根据三角形的角平分线、中线、高的定义及性质判断A ;根据三角形的内角和定理判断B ;根据三角形的高的定义及性质判断C ;根据三角形外角的性质判断D .【详解】A 、三角形的角平分线、中线与锐角三角形的三条高均在三角形内部,而直角三角形有两条高与直角边重合,另一条高在三角形内部;钝角三角形有两条高在三角形外部,一条高在三角形内部,故本选项错误;B 、如果三角形中每一个内角都小于60°,那么三个角的和小于180°,与三角形的内角和定理相矛盾,故本选项正确;C 、直角三角形有三条高,故本选项错误;D 、三角形的一个外角大于和它不相邻的任何一个内角,故本选项错误;故选B .【点睛】本题考查了三角形的角平分线、中线、高的定义及性质,三角形的内角和定理,三角形外角的性质,熟记定理与性质是解题的关键.9.B解析:B【解析】【分析】将x+y=5两边平方,利用完全平方公式化简,把xy 的值代入计算,即可求出所求式子的值.【详解】解:将x+y=5两边平方得:(x+y )2=x 2+2xy+y 2=25,将xy=6代入得:x 2+12+y 2=25,则x 2+y 2=13.故选:B .【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.10.B解析:B【解析】【分析】根据积的乘方公式进行简便运算.【详解】 解:20122012532135⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭ =20122012513()()135⨯ =2012513()135⨯ =1.故选B【点睛】此题主要考查了积的乘方,解题时,先对分数变形,然后根据特点,找到规律,再根据积的乘方的逆用,直接计算即可.11.C解析:C【解析】【分析】【详解】试题分析:可设原正方形的边长为xm ,则剩余的空地长为(x ﹣1)m ,宽为(x ﹣2)m .根据长方形的面积公式列方程可得()()-1-2x x =18.故选C .考点:由实际问题抽象出一元二次方程.12.D解析:D【解析】∵(x ﹣z )2﹣4(x ﹣y )(y ﹣z )=0,∴x 2+z 2﹣2xz ﹣4xy+4xz+4y 2﹣4yz=0,∴x 2+z 2+2xz ﹣4xy+4y 2﹣4yz=0,∴(x+z )2﹣4y (x+z )+4y 2=0,∴(x+z ﹣2y )2=0, ∴z+x ﹣2y=0.故选D .二、填空题13.4x2y2【解析】【分析】取分式和中分母系数的最小公倍数作为最简公分母的系数;取分式和中各字母因式最高次幂的字母和次幂作为最简公分母的字母和次幂两者相乘即可得到最简公分母【详解】∵分式和中分母的系数 解析:4x 2y 2【解析】【分析】 取分式212xy 和214x y 中分母系数的最小公倍数,作为最简公分母的系数;取分式212xy 和214x y中各字母因式最高次幂的字母和次幂,作为最简公分母的字母和次幂,两者相乘,即可得到最简公分母.【详解】 ∵分式212xy 和214x y中,分母的系数分别为2和4, 又∵2和4得最小公倍数为4,∴最简公分母的系数为4,∵分式212xy 和214x y中,x 的最高次幂项为2x ,y 的最高次幂项为2y , ∴最简公分母的字母及指数为22x y ,∴212xy 和214x y的最简公分母是224x y , 故答案为:224x y .【点睛】本题考查求解最简公分母.解题方法是取各分式分母中系数的最小公倍数作为最简公分母的系数,取各分式分母中各字母因式最高次幂的字母和次幂作为最简公分母的字母和次幂,两者相乘,即得到最简公分母.14.5【解析】【分析】连接CC1根据M 是ACA1C1的中点AC=A1C1得出CM=A1M=C1M=AC=5再根据∠A1=∠A1CM=30°得出∠CMC1=60°△MCC1为等边三角形从而证出CC1=CM解析:5【解析】【分析】连接CC 1,根据M 是AC 、A 1C 1的中点,AC=A 1C 1,得出CM=A 1M=C 1M=12AC=5,再根据∠A 1=∠A 1CM=30°,得出∠CMC 1=60°,△MCC 1为等边三角形,从而证出CC 1=CM ,即可得出答案.【详解】解:如图,连接CC 1,∵两块三角板重叠在一起,较长直角边的中点为M ,∴M 是AC 、A 1C 1的中点,AC=A 1C 1,∴CM=A 1M=C 1M=12AC=5, ∴∠A 1=∠A 1CM=30°,∴∠CMC 1=60°,∴△CMC 1为等边三角形,∴CC 1=CM=5,∴CC 1长为5.故答案为5.考点:等边三角形的判定与性质.15.1【解析】【分析】先根据可得出x+y 与xy 的关系式然后在式子中将xy 用x+y 来表示化简后可得结果【详解】∵∴则xy=故答案为:1【点睛】本题考查分式的化简求值解题关键是将xy 转化为x+y 的形式解析:1【解析】【分析】 先根据11 5x y +=可得出x+y 与xy 的关系式,然后在式子232 2x xy y x xy y-+++中,将xy 用x+y 来表示,化简后可得结果.【详解】 ∵11 5x y+= ∴ 5x y xy +=,则xy=()15x y + 372()2()23255 1272()()55x x y y x y x xy y x xy y x x y y x y -+++-+===++++++ 故答案为:1【点睛】本题考查分式的化简求值,解题关键是将xy 转化为x+y 的形式.16.±7【解析】∵∴∴故答案为:±7点睛:本题解题的关键是清楚:与的关系是:解析:±7【解析】∵1760a b ab +==,,∴222()()41724049a b a b ab -=+-=-=,∴7a b -=±.故答案为:±7.点睛:本题解题的关键是清楚:2()a b -与2()a b +的关系是:22()()4a b a b ab -=+-. 17.3【解析】在123处分别涂黑都可得一个轴对称图形故涂法有3种故答案为3 解析:3【解析】在1,2,3处分别涂黑都可得一个轴对称图形,故涂法有3种,故答案为3.18.a<-2且a≠-4【解析】【分析】表示出分式方程的解由分式方程的解为负值确定出a的范围即可【详解】解:方程=1去分母得:2x-a=x+2解得:x=a+2由分式方程的解为负值得到a+2<0且a+2≠-解析:a<-2且a≠-4【解析】【分析】表示出分式方程的解,由分式方程的解为负值,确定出a的范围即可.【详解】解:方程22x ax-+=1,去分母得:2x-a=x+2,解得:x=a+2,由分式方程的解为负值,得到a+2<0,且a+2≠-2,解得:a<-2且a≠-4,故答案为:a<-2且a≠-4【点睛】此题考查了解分式方程以及解一元一次不等式,熟练掌握运算法则是解本题的关键.易错点是容易忽略x+2≠0这一条件.19.(-2-3)【解析】【分析】利用平面内两点关于x轴对称时:横坐标不变纵坐标互为相反数进行求解【详解】解:点P(-23)则点P关于x轴对称的点的坐标为(-2-3)故答案为:(-2-3)【点睛】本题考查解析:(-2,-3)【解析】【分析】利用平面内两点关于x轴对称时:横坐标不变,纵坐标互为相反数,进行求解.【详解】解:点P(-2, 3),则点P关于x轴对称的点的坐标为(-2,-3)故答案为:(-2,-3).【点睛】本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律.20.8【解析】∵2x+5y﹣3=0∴2x+5y=3∴4x•32y=(22)x·(25)y=22x·25y=22x+5y=23=8故答案为:8【点睛】本题主要考查了幂的乘方的性质同底数幂的乘法转化为以2为解析:8【解析】∵2x+5y ﹣3=0,∴2x+5y=3,∴4x •32y =(22)x ·(25)y =22x ·25y =22x+5y =23=8, 故答案为:8.【点睛】本题主要考查了幂的乘方的性质,同底数幂的乘法,转化为以2为底数的幂是解题的关键,整体思想的运用使求解更加简便.三、解答题21.2b【解析】【分析】首先根据三角形三边之间的关系得出绝对值里面的数的正负性,然后再进行去绝对值计算,得出答案.【详解】∵b+c-a>0, b-c-a<0. c-a-b<0, a-b+c>0,∴|b+c-a|+|b-c-a|+|c-a-b|-|a-b+c|=(b+c-a)-(b-c-a)-(c-a-b)-(a-b+c)=(b+c-a-b+c+a-c+a+b-a+b-c=2b22.2x-3y ,7【解析】【分析】先计算括号内多项式运算,再合并同类项,算除法,最后代数值计算即可.【详解】解:原式=-[4x 2-y 2-6x 2+3xy +y 2]×1x=(2x 2-3xy )×1x=2x -3y将x=2,y =-1带入得,原式=4+3=7.故答案为:7.【点睛】本题是整式的乘除法运算,考查了平方差公式以及合并同类项.23.原式=2a a +1. 【解析】分析:先根据分式混合运算顺序和运算法则化简原式,再将a 的值代入计算可得.详解:原式=211(2)(11(1)a a a a a a ---÷---) =22(1)•1(2)a a a a a ---- =2a a -当原式1=. 点睛:本题主要考查分式的混合运算,解题的关键是熟练掌握分式混合运算顺序和运算法则.24.化简得:原式=23a a +-;当0a =时,原式=23﹣. 【解析】【分析】原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,把a =0代入计算即可求出值.【详解】原式=()()()23322+2a a a a a --÷-- =()()()22+2323a a a a a --⨯-- =+23a a -. 当a 取﹣2,2,3,分式无意义.当0a =时,+23a a -=23﹣. 【点睛】本题考查了分式的化简求值,熟练掌握运算法则是解答本题的关键.25.答案见解析【解析】试题分析:首先作ABC α∠=,进而以B 为圆心a 的长为半径画弧,再以A 为圆心a 为半径画弧即可得出C 的位置.试题解析:如图所示:△ABC 即为所求.。

陕西省2021-2022学年八年级上学期数学期中试卷(II)卷

陕西省2021-2022学年八年级上学期数学期中试卷(II)卷

陕西省2021-2022学年八年级上学期数学期中试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列图形中,既是轴对称图形又是中心对称图形的有()A . 4个B . 3个C . 2个D . 1个2. (2分) (2018八下·乐清期末) 在▱ABCD中,对角线AC,BD相交于点O,AC=8,BD=10,那么BC的取值范围是()A . 8<BC<10B . 2<BC<18C . 1<BC<8D . 1<BC<93. (2分) (2020八上·下城期末) 设AD是的中线,则()A .B .C .D .4. (2分)如图,△ABC≌△ADE,∠DAC=60°,∠BAE=100°,BC、DE相交于点F,则∠DFB的度数是()A . 80°B . 70°C . 30°D . 110°5. (2分) (2020八上·北京期中) 如图,等于()A .B .C .D .6. (2分)(2012·内江) 如图,在矩形ABCD中,AB=10,BC=5,点E、F分别在AB、CD上,将矩形ABCD沿EF折叠,使点A、D分别落在矩形ABCD外部的点A1、D1处,则阴影部分图形的周长为()A . 15B . 20C . 25D . 307. (2分) (2020八上·沭阳月考) 如图,在下列条件中,不能证明△ABD≌△ACD的是().A . BD=DC,AB=ACB . ∠ADB=∠ADC,BD=DCC . ∠B=∠C,∠BAD=∠CADD . ∠B=∠C,BD=DC8. (2分)搬进新居后,小杰自己动手用彩塑纸做了一个如图所示的正方形的挂式小饰品ABCD,彩线BD.AN.CM 将正方形ABCD分成六部分,其中M是AB的中点,N是BC的中点,AN与CM交于O点.已知正方形ABCD的面积为576cm2 ,则被分隔开的△CON的面积为()A . 96cm2B . 48cm2C . 24cm2D . 以上都不对9. (2分)如图,在△ABC中,AB的垂直平分线分别交AB,AC于D,E两点,且AC=10,BC=4,则△BCE的周长为()A . 6B . 14C . 18D . 2410. (2分) (2020八上·秦淮月考) 如图,锐角△ABC 中,D 、E 分别是 AB 、AC 边上的点,△ADC≌△ADC',△AEB≌△AEB' ,且C'D∥EB'∥BC , BE 、CD 交于点 F ,若∠BAC = α,∠BFC = β,则()A . 2α+β= 180°B . 2β-α= 145°C . α+β= 135°D . β-α= 60°二、填空题 (共4题;共4分)11. (1分) (2020八上·江阴月考) 若,且的周长为12,若________.12. (1分) (2019七上·石家庄期中) 将一副三角板中的两个直角顶点O按如图方式叠放在一起,则________.13. (1分)如图,AD是△ABC的角平分线,DF⊥AB,垂足为点F,DE=DG.若△ADG和△AED的面积分别为50和30,则△EDF的面积为________.14. (1分) (2020七下·浦东期末) 如图,直线AB和CD交于O点,EO⊥CD,∠EOB=50°,则∠AOC=________.三、解答题 (共9题;共62分)15. (5分)如图,AB∥EF∥CD,∠ABC=45°,∠CEF=155°,求∠BCE的度数.16. (5分)(2020·萧山模拟) 如图, ABCD中,E为BC边上的中点,连AE并与DC的延长线交于点F。

西安市2020版八年级上学期期中数学试卷(II)卷

西安市2020版八年级上学期期中数学试卷(II)卷

西安市2020版八年级上学期期中数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019七下·乐亭期末) 已知三角形三边长分别为5、a、9,则数a可能是()A . 4B . 6C . 14D . 152. (2分) (2016八上·赫章期中) 下列结果错误的有()A . =2B . 的算术平方根是4C . 12 的算术平方根是D . (﹣π)2的算术平方根是π3. (2分) (2016八上·赫章期中) 下列说法正确的是()A . 无理数包括正无理数、0和负无理数B . 是有理数C . 无理数是带根号的数D . 无理数是无限不循环小数4. (2分) (2016八上·赫章期中) 一个三角形的三边长分别是20,25,15,那么这个三角形最大边上的高为()A . 9B . 12C . 12.5D . 205. (2分) (2016八上·赫章期中) 估算的大小在哪两个数之间()A . 10到11之间B . 14到15之间C . 5到6之间D . 20到21之间6. (2分) (2016八上·赫章期中) 以下列哪组数为边,可以得到直角三角形的是()B . 8,15,17C . 6,8,14D . 10,12,137. (2分)油箱中存油20升,油从油箱中均匀流出,流速为0.2升/分钟,则油箱中剩余油量 Q(升)与流出时间t(分钟)的函数关系是()A . Q=0.2tB . Q=20﹣0.2tC . t=0.2QD . t=20﹣0.2Q8. (2分) (2016八上·赫章期中) 已知 A,B点的坐标分别是(﹣2,3)和(2,3),则下面四个结论:①A、B关于x轴对称;②A、B关于y轴对称;③A点在第二象限,B点在第一象限;④A、B之间的距离为4.中正确的有()A . 1个B . 2个C . 3个D . 4个9. (2分) (2016八上·赫章期中) 实数a、b在数轴上对应点的位置如图,则|a﹣b|﹣的结果是()A . 2a﹣bB . b﹣2aC . bD . ﹣b10. (2分) (2016八上·赫章期中) 已知一次函数y=mx+n﹣2的图象如图所示,则m、n的取值范围是()A . m>0,n<2B . m>0,n>2C . m<0,n<2二、填空题 (共5题;共5分)11. (1分)根据题意可知,下列判断中所依据的命题或定理是________.如图,若∠1=∠4,则AB∥CD;若∠2=∠3,则AD∥BC.12. (1分)如图所示,经过B(2,0)、C(6,0)两点的⊙H与y轴的负半轴相切于点A,双曲线y= 经过圆心H,则反比例函数的解析式为________.13. (1分) (2019九下·温州模拟) 如图 1 是台湾某品牌手工蛋卷的外包装盒,其截面图如图 2 所示,盒子上方是一段圆弧(弧 MN ).D,E 为手提带的固定点, DE 与弧MN 所在的圆相切,DE=2.手提带自然下垂时,最低点为C,且呈抛物线形,抛物线与弧MN 交于点 F,G.若△CDE 是等腰直角三角形,且点 C,F 到盒子底部 AB 的距离分别为 1,,则弧MN 所在的圆的半径为________.14. (1分)如图,在第一象限内作与x轴的夹角为30°的射线OC,在射线OC上取点A,过点A作AH⊥x轴于点H,在抛物线y=x2(x>0)上取一点P,在y轴上取一点Q,使得P,O,Q为顶点的三角形与△AOH全等,则符合条件的点A有________个.15. (1分) (2020八下·沧县月考) 如果直线 y=-2x+k 与两坐标轴所围成的三角形面积是 9,则 k的值为________.三、解答题 (共6题;共62分)16. (15分) (2017七上·利川期中) 观察下列各式:13+23= ×4×9= ×22×3213+23+33=36= ×9×16= ×32×4213+23+33+43=100= ×16×25= ×42×52(1)计算:13+23+33+43+…+103的值;(2)猜想:13+23+33+43+…+n3的值.(3)计算:513+523+533+…+993+1003的值.17. (5分) (2019七上·江门期中) 老师给学生出了一道题:当x=2018,y=-2019时,求2x3-6x3y+4x2y +3x3+6x3y-4x2y-5x3的值.题目出完后,小刚说:“老师给的条件x=2018,y=-2019是多余的.”小明说:“不给这两个条件,就不能求出结果,所以不是多余的.”你认为他们谁说的有道理?为什么?18. (10分) (2016八上·赫章期中) 解答题。

西安市八年级(上)期中数学试卷含答案

西安市八年级(上)期中数学试卷含答案

八年级(上)期中数学试卷题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.-8的立方根是( )A. B. C. 2 D.−2±2−122.如图,在边长为1个单位长度的小正方形组成的网格中,点A,B都是格点,则线段AB的长为( )A. 5B. 6C. 7D. 25x−23.若式子在实数范围内有意义,则x的取值范围是( )A. B. C. D.x<2x>2x≤2x≥24.下列四组线段中,可以构成直角三角形的是( )A. 4,5,6B. ,2,C. 2,3,4D. 1,,31.52.525.在平面直角坐标系中,与点(1,2)关于y轴对称的点的坐标是( )A. B. C. D.(−1,2)(1,−2)(−1,−2)(−2,−1)6.若点(3,1)在一次函数y=kx-2(k≠0)的图象上,则k的值是( )A. 5B. 4C. 3D. 17.一次函数y=-2x+1的图象不经过下列哪个象限( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限7−18.如果m=,那么m的取值范围是( )A. B. C. D.0<m<11<m<22<m<33<m<49.坐标平面上有一点A ,且A 点到x 轴的距离为3,A 点到y 轴的距离恰为到x 轴距离的3倍.若A 点在第二象限,则A 点坐标为何?( )A. B. C. D. (−9,3)(−3,1)(−3,9)(−1,3)10.在Rt △ABC 中,∠C =90°,AC =9,BC =12,则点C 到AB 的距离是( )A. B. C. D. 365122594334二、填空题(本大题共6小题,共18.0分)11.的平方根是______.412.如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米,一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行______米.13.若y =(a +3)x +a 2-9是正比例函数,则a =______.14.已知一次函数y =(1-m )x +m -2,当m ______时,y 随x 的增大而增大.15.若,则x y -3的值为______.|x−y|+y−2=016.如图,OP =1,过P 作PP 1⊥OP ,得OP 1=;再过P 1作2P 1P 2⊥OP 1且P 1P 2=1,得OP 2=;又过P 2作P 2P 3⊥OP 23且P 2P 3=1,得OP 3=2;…依此法继续作下去,得OP 2012=______.三、计算题(本大题共3小题,共18.0分)17.计算:(1)-2812(2)(3-2)22(3)+520+1255(4)(+)×-2.3213316318.在直角坐标系内,一次函数y=kx+b的图象经过三点A(2,0),B(0,2),C(m,3).求这个一次函数解析式并求m的值.19.一架梯子AB长25米,如图斜靠在一面墙上,梯子底端B离墙7米.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子底部在水平方向滑动了4米吗?为什么?四、解答题(本大题共3小题,共24.0分)20.如图,△ABC在平面直角坐标系中:(1)画出△ABC关于y轴对称的△DEF(其中D、E、F是A、B、C的对应点)(2)写出D、E、F的坐标;(3)求出△DEF的面积.1221.在四边形ABCD中,∠D=90°,AD=,CD=2,BC=3,AB=5,求:四边形ABCD的面积.22.在“美丽广西,清洁乡村”活动中,李家村村长提出了两种购买垃圾桶方案;方案1:买分类垃圾桶,需要费用3000元,以后每月的垃圾处理费用250元;方案2:买不分类垃圾桶,需要费用1000元,以后每月的垃圾处理费用500元;设方案1的购买费和每月垃圾处理费共为y1元,交费时间为x个月;方案2的购买费和每月垃圾处理费共为y2元,交费时间为x个月.(1)直接写出y1、y2与x的函数关系式;(2)在同一坐标系内,画出函数y1、y2的图象;(3)在垃圾桶使用寿命相同的情况下,哪种方案省钱?答案和解析1.【答案】A【解析】解:∵-2的立方等于-8,∴-8的立方根等于-2.故选:A.如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.2.【答案】A【解析】解:如图所示:AB==5.故选:A.建立格点三角形,利用勾股定理求解AB的长度即可.本题考查了勾股定理的知识,解答本题的关键是掌握格点三角形中勾股定理的应用.3.【答案】D【解析】解:根据题意得:x-2≥0,解得:x≥2.故选:D.根据二次根式中的被开方数必须是非负数,即可求解.本题考查的知识点为:二次根式的被开方数是非负数.4.【答案】B【解析】解:A、42+52=41≠62,不可以构成直角三角形,故A选项错误;B、1.52+22=6.25=2.52,可以构成直角三角形,故B选项正确;C、22+32=13≠42,不可以构成直角三角形,故C选项错误;D、12+()2=3≠32,不可以构成直角三角形,故D选项错误.故选:B.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.本题考查勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.5.【答案】A【解析】解:点(1,2)关于y轴对称的点的坐标是(-1,2).故选A.根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答即可.解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.6.【答案】D【解析】解:∵点(3,1)在一次函数y=kx-2(k≠0)的图象上,∴3k-2=1,解得k=1.故选:D.把点的坐标代入函数解析式计算即可得解.本题考查了一次函数图象上点的坐标特征,准确计算是解题的关键.7.【答案】C【解析】解:∵解析式y=-2x+1中,k=-2<0,b=1>0,∴图象过第一、二、四象限,∴图象不经过第三象限.故选:C.先根据一次函数的解析式判断出k、b的符号,再根据一次函数的性质进行解答即可.本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0时,函数图象经过第二、四象限,当b>0时,函数图象与y轴相交于正半轴.8.【答案】B【解析】解:∵2<3,m=,∴m的取值范围是1<m<2;故选B.先估算出在2与3之间,再根据m=,即可得出m的取值范围.此题考查了估算无理数的大小,解题关键是确定无理数的整数部分,是一道基础题.9.【答案】A【解析】解:∵A点到x轴的距离为3,A点在第二象限,∴点A的纵坐标为3,∵A点到y轴的距离恰为到x轴距离的3倍,A点在第二象限,∴点A的横坐标为-9,∴点A的坐标为(-9,3).故选A.根据点到x轴的距离等于纵坐标的长度求出点A的纵坐标,再根据点到y轴的距离等于横坐标的长度求出横坐标,即可得解.本题考查了点的坐标,主要利用了点到x轴的距离等于纵坐标的长度,点到y 轴的距离等于横坐标的长度,需熟练掌握并灵活运用.10.【答案】A【解析】解:根据题意画出相应的图形,如图所示:在Rt△ABC中,AC=9,BC=12,根据勾股定理得:AB==15,过C作CD⊥AB,交AB于点D,又S△ABC=AC•BC=AB•CD,∴CD===,则点C到AB的距离是.故选:A.根据题意画出相应的图形,如图所示,在直角三角形ABC中,由AC及BC的长,利用勾股定理求出AB的长,然后过C作CD垂直于AB,由直角三角形的面积可以由两直角边乘积的一半来求,也可以由斜边AB乘以斜边上的高CD除以2来求,两者相等,将AC,AB及BC的长代入求出CD的长,即为C 到AB的距离.此题考查了勾股定理,点到直线的距离,以及三角形面积的求法,熟练掌握勾股定理是解本题的关键.11.【答案】±2【解析】解:∵=2,2的平方根是±,∴的平方根是±.故答案为是±.的平方根就是2的平方根,只需求出2的平方根即可.本题考查的是一个正数的算术平方根及平方根,需要注意的是本题求的是的平方根,而不是4的平方根,不能混淆.12.【答案】10【解析】解:如图,设大树高为AB=12m,小树高为CD=6m,过C点作CE⊥AB于E,则四边形EBDC是矩形,连接AC,∴EB=6m,EC=8m,AE=AB-EB=12-6=6(m),在Rt△AEC中,AC==10(m).故小鸟至少飞行10m.故答案为:10.根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.本题考查了勾股定理的应用,根据实际得出直角三角形,培养学生解决实际问题的能力.13.【答案】3【解析】解:由y=(a+3)x+a2-9是正比例函数,得a2-9=0且a+3≠0.解得a=3,故答案为:3.根据正比例函数的定义,可得方程,根据解方程,可得答案.本题考查了正比例函数的定义,利用正比例函数的定义得出方程是解题关键,注意比例系数不能为零.14.【答案】<1【解析】解:当1-m>0时,y随x的增大而增大,所以m<1.故答案为:<1.根据一次函数的性质得1-m>0,然后解不等式即可.本题考查了一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y 随x 的增大而减小,函数从左到右下降;当b >0时,直线与y 轴交于正半轴;当b <0时,直线与y 轴交于负半轴.15.【答案】12【解析】解:∵, ∴, 解得, ∴x y-3=22-3=.故答案为:.根据非负数的性质列出方程求出x 、y 的值,代入所求代数式计算即可.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.【答案】2013【解析】解:由勾股定理得:OP 4==, ∵OP 1=;得OP 2=;依此类推可得OP n =,∴OP 2012=, 故答案为:.首先根据勾股定理求出OP 4,再由OP 1,OP 2,OP 3的长度找到规律进而求出OP 2012的长.本题考查了勾股定理的运用,解题的关键是由已知数据找到规律.17.【答案】解:(1)原式=2-=;222(2)原式=18-12+4=22-12;22(3)原式=+5=7+5=12;25+555(4)原式=(4+)×-=4+1-.23338336833【解析】(1)先把各二次根式化简为最简二次根式,然后合并即可;(2)利用完全平方公式计算;(3)先把各二次根式化简为最简二次根式,然后进行二次根式的除法运算; (4)先把各二次根式化简为最简二次根式,然后进行二次根式的乘法运算.本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.18.【答案】解:由已知条件,得,{2k +b =0b =2解得.{k =−1b =2∴一次函数解析式为y =-x +2,∵一次函数y =-x +2过C (m ,3)点,∴3=-m +2,∴m =-1.【解析】将两个已知点A (2,0),B (0,2)分别代入y=kx+b ,分别求出k 、b 的解析式,再将未知点C (m ,3)代入一次函数解析式,求出m 的值.本题考查了待定系数法求函数解析式,知道函数图象上的点符合函数解析式是解题的关键.19.【答案】解:(1)由题意,得AB 2=AC 2+BC 2,得AC ===24(米).AB 2−BC 2252−72(2)由A ′B ′2=A ′C 2+CB ′2,得B ′C ====15(米).A′B′2−A′C′2252−(24−4)245×5∴BB ′=B ′C -BC =15-7=8(米).答:梯子底部在水平方向不是滑动了4米,而是8米.【解析】应用勾股定理求出AC 的高度,以及B′C 的距离即可解答.本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.20.【答案】解:(1)如图所示:△DEF即为所求;(2)D (-2,2),E (2,-1),F (-3,-2);(3)△DEF 的面积为:4×5-×1×4-×3×4-1212×1×5=9.5.12【解析】(1)直接利用关于y 轴对称点的性质得出各对应点位置;(2)利用所画图形得出各点坐标;(3)利用△DEF 所在矩形面积减去周围三角形面积进而得出答案.此题主要考查了轴对称变换以及三角形面积求法,正确得出对应点位置是解题关键.21.【答案】解:∵连接AC ,如图所示:∵∠D =90°,AD =,CD =2,12∴AC ==4.AD 2+CD 2∵BC =3,AB =5,22+42=52,∴△ABC 是直角三角形,∠ACB =90°,∴S 四边形ABCD =S △ACD +S △ABC =××2+×4×3=2+6.1212123【解析】先根据勾股定理求出AC 的长,再由勾股定理的逆定理判断出△ABC 的形状,根据三角形的面积公式即可得出结论.本题考查的是勾股定理和勾股定理的逆定理以及三角形面积的计算;熟练掌握勾股定理和逆定理是解决问题的关键.22.【答案】解:(1)由题意,得y 1=250x +3000,y 2=500x +1000;(2)如图所示:(3)由图象可知:①当使用时间大于8个月时,直线y 1落在直线y 2的下方,y 1<y 2,即方案1省钱;②当使用时间小于8个月时,直线y 2落在直线y 1的下方,y 2<y 1,即方案2省钱;③当使用时间等于8个月时,y 1=y 2,即方案1与方案2一样省钱;【解析】(1)根据总费用=购买垃圾桶的费用+每月的垃圾处理费用×月份数,即可求出y 1、y 2与x 的函数关系式;(2)根据一次函数的性质,运用两点法即可画出函数y1、y2的图象;(3)观察图象可知:当使用时间大于8个月时,方案1省钱;当使用时间小于8个月时,方案2省钱;当使用时间等于8个月时,方案1与方案2一样省钱.本题主要考查利用一次函数的模型解决实际问题的能力.解题的关键是根据题意列出函数关系式,再结合图象求解.注意要把所有的情况都考虑进去,分情况讨论问题是解决实际问题的基本能力.。

陕西省西安市八年级(上) 期中数学试卷(含答案)

陕西省西安市八年级(上)  期中数学试卷(含答案)

八年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.4的平方根是()A. 2B.C.D.2.下列各曲线中表示y是x的函数的是()A. B.C. D.3.在下列实数中:0,,-3.1415,,,0.343343334…(每两个4之间3的个数逐渐增加1)无理数有()A. 1个B. 2个C. 3个D. 4个4.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4,3),(-2,1),则表示棋子“炮”的点的坐标为()A. B. C. D.5.下列等式正确的是()A. B. C. D.6.已知函数y=(m+1)是正比例函数,且图象在第二、四象限内,则m的值是()A. 2B.C.D.7.已知直线l1:y=-3x+b与直线l2:y=-kx+1在同一坐标系中的图象交于点(1,-2),那么方程组的解是()A. B. C. D.8.一次函数y=ax-a的图象可能是()A. B.C. D.9.甲同学说:(1)班与(5)班得分比为6:5;乙同学说:(1)班得分比(5)班得分的2倍少40分.若设(1)班得x分,(5)班得y分,根据题意所列的方程组应为()A. B. C. D.10.如图,点A的坐标为(1,0),点B在直线y=-x上运动,当线段AB最短时,点B的坐标为()A.B.C.D.二、填空题(本大题共9小题,共27.0分)11.写出一个直角坐标系中第二象限内点的坐标:______ .(任写一个只要符合条件即可)12.若二次根式有意义,则x的取值范围是______.13.根据下列表述,能确定一点位置的是______ .①东经118°,北纬40°②宝鸡市文化东路③北偏东60°④奥斯卡影院1号厅3排.14.大于且小于的所有整数是______ .15.若二元一次方程组的解为x=a,y=b,则a+b= ______ .16.在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①△(a,b)=(-a,b);②○(a,b)=(-a,-b);③Ω(a,b)=(a,-b),按照以上变换例如:△(○(1,2))=(1,-2),则○(Ω(3,4))等于______.17.如图,△ABC中,点A的坐标为(0,1),点C的坐标为(4,3),如果要使△ABD与△ABC全等,那么点D的坐标是______.18.已知xy<0,化简二次根式x的正确结果为______ .19.已知直线AB的解析式为:y=kx+m,且经过点A(a,a),B(b,8b)(a>0,b>0).当是整数时,满足条件的整数k的值为______ .三、计算题(本大题共1小题,共6.0分)20.计算(1)+-(2)+|-3|+()-1-20160(3)(+)2-(-)2.四、解答题(本大题共6小题,共48.0分)21.解下列方程组(1)(2).22.如图所示,点P的坐标为(4,3),把点P绕坐标原点O逆时针旋转90°后得到点Q.请求出点Q的坐标.23.某物流公司引进A、B两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A种机器人于某日0时开始搬运,过了1小时,B种机器人也开始搬运,如图,线段OG表示A种机器人的搬运量y A(千克)与时间x(时)的函数图象,线段EF表示B种机器人的搬运量y B(千克)与时间x(时)的函数图象.根据图象提供的信息,解答下列问题:(1)求y B关于x的函数解析式;(2)如果A、B两种机器人连续搬运5个小时,那么B种机器人比A种机器人多搬运了多少千克?24.某汽车制造厂开发一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人.他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂招聘n(0<n<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?25.如图,直线l1:y=-x+3与x轴相交于点A,直线l2:y=kx+b经过点(3,-1),与x轴交于点B(6,0),与y轴交于点C,与直线l1相交于点D.(1)求直线l2的函数关系式;(2)点P是l2上的一点,若△ABP的面积等于△ABD的面积的2倍,求点P的坐标;(3)设点Q的坐标为(m,3),是否存在m的值使得QA+QB最小?若存在,请求出点Q的坐标;若不存在,请说明理由.26.如图1,已知A(a,0),B(0,b)分别为两坐标轴上的点,且a、b满足(a-b)2+=0,OC:OA=1:3.(1)求A、B、C三点的坐标;(2)若D(1,0),过点D的直线分别交AB、BC于E、F两点,设E、F两点的横坐标分别为x E、x F.当BD平分△BEF的面积时,求x E+x F的值;(3)如图2,若M(2,4),点P是x轴上A点右侧一动点,AH⊥PM于点H,在HM上取点G,使HG=HA,连接CG,当点P在点A右侧运动时,∠CGM的度数是否改变?若不变,请求其值;若改变,请说明理由.答案和解析1.【答案】D【解析】解:4的平方根是:±=±2.故选:D.直接利用平方根的定义分析得出答案.此题主要考查了平方根的定义,正确掌握相关定义是解题关键.2.【答案】D【解析】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选:D.根据函数的意义求解即可求出答案.主要考查了函数的定义.注意函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.3.【答案】B【解析】解:,0.343343334…(每两个4之间3的个数逐渐增加1)是无理数,故选:B.根据无理数的定义求解即可.此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.4.【答案】D【解析】解:如图所示:棋子“炮”的点的坐标为:(1,3).故选:D.根据棋子“馬”和“車”的点的坐标可得出原点的位置,进而得出答案.此题主要考查了坐标确定位置,正确得出原点的位置是解题关键.5.【答案】D【解析】解:A、,故选项A错误;B、由于负数没有平方根,故选项B错误;C、,故选项C错误;D、,故选项正确.故选:D.A、根据算术平方根的定义即可判定;B、根据负数没有平方根即可判定;C、根据立方根的定义即可判定;D、根据算术平方根的定义算术平方根为非负数,负数没有平方根.本题所考查的是对算术平方根的正确理解和运用,要求学生对于这些基本知识比较熟练.6.【答案】B【解析】解:∵函数y=(m+1)是正比例函数,且图象在第二、四象限内,∴m2-3=1,m+1<0,解得:m=±2,则m的值是-2.故选:B.根据正比例函数的定义得出m2-3=1,m+1<0,进而得出即可.此题主要考查了正比例函数的定义以及其性质,得出m+1的符号是解题关键.7.【答案】A【解析】解:∵直线l1:y=-3x+b与直线l2:y=-kx+1在同一坐标系中的图象交于点(1,-2),∴方程组的解为,故选:A.根据两个一次函数组成的方程组的解就是两函数图象的交点可得答案.此题主要考查了一次函数与二元一次方程组的关系,关键是掌握凡是函数图象经过的点必能满足解析式.8.【答案】A【解析】解:∵y=ax-a为一次函数,∴a≠0,∴a和-a符号相反,∴一次函数y=ax-a的图象过第一、三、四象限或一、二、四象限.观察四个选项可知A选项符合题意.故选A.根据一次函数的定义可得出a≠0,由a和-a符号相反结合一次函数图象与系数的关系即可得出一次函数y=ax-a的图象过第一、三、四象限或一、二、四象限,对照四个选项中图象即可得出结论.本题考查了一次函数定义以及一次函数图象与系数的关系,根据k、b符号相反找出一次函数y=ax-a的图象过第一、三、四象限或一、二、四象限是解题的关键.9.【答案】D【解析】解:设(1)班得x分,(5)班得y分,根据题意得:,故选:D.根据题意可得等量关系:①(1)班得分×5=(5)班得分×6;②1)班得分=(5)班×2-40分,根据等量关系列出方程组即可.此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.10.【答案】B【解析】解:过A点作垂直于直线y=-x的垂线AB,∵点B在直线y=-x上运动,∴∠AOB=45°,∴△AOB为等腰直角三角形,过B作BC垂直x轴垂足为C,则点C为OA的中点,则OC=BC=.作图可知B在x轴下方,y轴的右方.∴横坐标为正,纵坐标为负.所以当线段AB最短时,点B的坐标为(,-).故选:B.线段AB最短,说明AB此时为点A到y=-x的距离.过A点作垂直于直线y=-x 的垂线AB,由题意可知:△AOB为等腰直角三角形,过B作BC垂直x轴垂足为C,则点C为OA的中点,有OC=BC=,故可确定出点B的坐标.动手操作很关键.本题用到的知识点为:垂线段最短.11.【答案】(-1,1)【解析】解:第二象限内点的坐标(-1,1)(任写一个只要符合条件即可).故答案为:(-1,1).根据第二象限内点的横坐标是负数,纵坐标是正数解答.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).12.【答案】x≤2【解析】解:由题意得,2-x≥0,解得x≤2.故答案为:x≤2.根据被开方数大于等于0列式计算即可得解.本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.13.【答案】①【解析】解:根据题意可得,①东经118°,北纬40°可以确定一点的位置,故选项①正确,②宝鸡市文化东路无法确定位置,故选项②错误;③北偏东60°无法确定位置,故选项③错误;④奥斯卡影院1号厅3排无法确定影院位置,故选项④错误;故答案为:①.根据各个选项中的语句可以判断哪个选项是正确的,本题得以解决.本题考查坐标位置的确定,解题的关键是明确题意,可以判断选项中的各个语句哪一个可以确定一点的位置.14.【答案】-2,-1,0,1【解析】解:∵-≈-2.24,≈1.73,∴它们在数轴上的位置大致表示为:故-<x<的整数x是-2,-1,0,1.由于-≈-2.24,≈1.73,然后借助于数轴便可直接解答.此题主要考查了实数的大小的比较,首先正确估计无理数的大小,然后再进一步在范围之间确定整数,借助于数轴便能直观解答.15.【答案】【解析】解:把x=a,y=b代入得:,①+②得:3a+3b=35,a+b=,故答案为:.直接把x=a,y=b代入得:,然后①+②可得答案.此题主要考查了二元一次方程组的解,当遇到有关二元一次方程组的解的问题时,要回到定义中去,通常采用代入法,即将解代入原方程组,这种方法主要用在求方程中的字母系数.16.【答案】(-3,4)【解析】解:○(Ω(3,4))=○(3,-4)=(-3,4).故答案为:(-3,4).根据三种变换规律的特点解答即可.本题考查了点的坐标,读懂题目信息,理解三种变换的变换规律是解题的关键.17.【答案】(4,-1)或(-1,3)或(-1,-1)【解析】解:△ABD与△ABC有一条公共边AB,当点D在AB的下边时,点D有两种情况:①坐标是(4,-1);②坐标为(-1,-1);当点D在AB的上边时,坐标为(-1,3);点D的坐标是(4,-1)或(-1,3)或(-1,-1).因为△ABD与△ABC有一条公共边AB,故本题应从点D在AB的上边、点D在AB的下边两种情况入手进行讨论,计算即可得出答案.本题综合考查了图形的性质和坐标的确定,是综合性较强,难度较大的综合题,分情况进行讨论是解决本题的关键.18.【答案】【解析】解:∵xy<0,x有意义,∴y<0,x>0,∴原式==.故答案为:.直接利用二次根式的性质得出x,y的取值范围,再化简求出答案.此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.19.【答案】9或15【解析】解:把A(a,a),B(b,8b)代入y=kx+m得:,解得:k==+1=+1,∵是整数,k是整数,∴1-=或,解得:b=2a或b=8a,则k=15或k=9,故答案为:9或15.把A、B的坐标代入一次函数的解析式得出方程组,求出k,根据已知是整数,k是整数,得出1-=或,求出b=2a或b=8a,代入即可求出k的值.本题考查了一次函数的应用,解此题的关键是能根据已知和k都是整数得出=或,题目比较好,但有一定的难度.20.【答案】解:(1)原式=3+-2=2;(2)原式=+3-+2-1=4-;(3)原式=3+2+2-(3-2+2)=4.【解析】(1)先把各二次根式化简为最简二次根式,然后合并即可;(2)利用零指数幂、负整数指数幂的意义计算;(3)利用完全平方公式展开,然后合并即可.本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.21.【答案】解:(1)①②,①②方程②可变形为:2x-2y=1③,方程①-③得:y=4,将y=4代入方程①,得:2x-4=5,解得:x=.∴方程组的解为.(2)①②,方程①×3+②×2,得:13x=13,解得:x=1,将x=1代入方程①,得:3+2y=1,解得:y=-1.∴方程组的解为.【解析】(1)根据方程组的解法及步骤,一步步计算即可得出结论;(2)根据方程组的解法及步骤,一步步计算即可得出结论.本题考查了解二元一次方程组,熟练掌握用加减法解二元一次方程组的步骤是解题的关键.22.【答案】解:作PM⊥x轴于M,QN⊥x轴于N,如图所示:则∠PMO=∠ONQ=90°,∴∠P+∠POM=90°,由旋转的性质得:∠POQ=90°,OQ=OP,∴∠QON+∠POM=90°,∴∠QON=∠P,在△ONQ和△PMO中,,∴△ONQ≌△PMO(AAS),∴ON=PM,QN=OM,∵点P的坐标为(4,3),∴ON=PM=3,QN=OM=4,∴点Q的坐标为(-3,4).【解析】作PM⊥x轴于M,QN⊥x轴于N,由旋转的性质得:∠POQ=90°,OQ=OP,由AAS证明△ONQ≌△PMO,得出ON=PM,QN=OM,由点P的坐标为(4,3),得出ON=PM=3,QN=OM=4,即可得出点Q的坐标.本题考查了坐标与图形性质、全等三角形的判定与性质;熟练掌握坐标与图形性质,证明三角形全等是解决问题的关键.23.【答案】解:(1)设y B关于x的函数解析式为y B=kx+b(k≠0).将点(1,0)、(3,180)代入得:,解得:k=90,b=-90.所以y B关于x的函数解析式为y B=90x-90(1≤x≤6).(2)设y A关于x的解析式为y A=k1x.根据题意得:3k1=180.解得:k1=60.所以y A=60x.当x=5时,y A=60×5=300(千克);x=6时,y B=90×6-90=450(千克).450-300=150(千克).答:如果A、B两种机器人各连续搬运5小时,B种机器人比A种机器人多搬运了150千克.【解析】(1)设y B关于x的函数解析式为y B=kx+b(k≠0),将点(1,0)、(3,180)代入一次函数函数的解析式得到关于k,b的方程组,从而可求得函数的解析式;(2)设y A关于x的解析式为y A=k1x.将(3,180)代入可求得y A关于x的解析式,然后将x=6,x=5代入一次函数和正比例函数的解析式求得y A,y B的值,最后求得y A与y B的差即可.本题主要考查的是一次函数的应用,依据待定系数法求得一次函数的解析式是解题的关键.24.【答案】解:(1)设每名熟练工每月可以安装x辆电动车,新工人每月分别安装y 辆电动汽车,根据题意得,解之得.答:每名熟练工每月可以安装4辆电动车,新工人每月分别安装2辆电动汽车;(2)设调熟练工m人,由题意得,12(4m+2n)=240,整理得,n=10-2m,∵0<n<10,∴当m=1,2,3,4时,n=8,6,4,2,即:①调熟练工1人,新工人8人;②调熟练工2人,新工人6人;③调熟练工3人,新工人4人;④调熟练工4人,新工人2人.【解析】(1)设每名熟练工每月可以安装x辆电动车,新工人每月分别安装y辆电动汽车,根据安装8辆电动汽车和安装14辆电动汽车两个等量关系列出方程组,然后求解即可;(2)设调熟练工m人,根据一年的安装任务列出方程整理用m表示出n,然后根据人数m是整数讨论求解即可.本题考查了二元一次方程的应用,解二元一次方程组,(1)理清题目数量关系列出方程组是解题的关键,(2)用一个未知数表示出另一个未知数,是解题的关键,难点在于考虑人数是整数.解得:,故直线l2的函数关系式为:y=x-2;(2)由题及(1)可设点P的坐标为(t,t-2).解方程组,得,∴点D的坐标为(,-).∵S△ABP=2S△ABD,∴AB•|t-2|=2×AB•|-|,即|t-2|=,解得:t=或t=,∴点P的坐标为(,)或(,);(3)作直线y=3(如图),再作点A关于直线y=3的对称点A′,连结A′B.由几何知识可知:A′B与直线y=3的交点即为QA+QB最小时的点Q.∵点A(3,0),∴A′(3,6)∵点B(6,0),∴直线A′B的函数表达式为y=-2x+12.∵点Q(m,3)在直线A′B上,∴3=-2m+12解得:m=,故存在m的值使得QA+QB最小,此时点Q的坐标为(,3).【解析】(1)把点(3,-1),点B(6,0)代入直线l2,求出k、b的值即可;(2)设点P的坐标为(t,t-2),求出D点坐标,再由S△ABP=2S△ABD求出t的值即可;(3)作直线y=3,作点A关于直线y=3的对称点A′,连结A′B,利用待定系数法求出其解析式,根据点Q(m,3)在直线A′B上求出m的值,进而可得出结论.本题考查的是一次函数综合题,涉及到一次函数图象上点的坐标特点,轴对称最短路线问题,三角形的面积公式等知识,在解答(3)时要注意作出辅助线,利用轴对称的性质求解.26.【答案】解:(1)∵(a-b)2+=0,∴a-b=0,b-6=0,∴a=b=6,∴A(6,0),B(0,6),∴OA=OB=6,∵OC:OA=1:3.∴OC=2,∴C(-2,0);(2)作EG⊥x轴于G,FH⊥x轴于H,如图1所示:则∠FHD=∠EGD=90°,∵BD平分△BEF的面积,∴DF=DE,在△FDH和△EDG中,,∴△FDH≌△EDG(AAS),∴DH=DG,即-x E+1=x F,-1,∴x E+x F=2;(3)∠CGM的度数不改变,∠CGM=45°;理由如下:作MQ⊥x轴于Q,连接CM、AG、M,如图2所示:则MQ=4,OQ=2,∴CQ=2+2=4,∴△MCQ是等腰直角三角形,∴∠MCQ=45°,∵同理:△MQA是等腰直角三角形,∴∠MAQ=45°,∵AH⊥PM,HG=HA,∴△AHG是等腰直角三角形,∴∠AGH=45°=∠MCQ,∴A、G、M、C四点共圆,∴∠CGM=∠MAQ=45°.【解析】(1)由偶次方和算术平方根的非负性质求出a和b的值,得出点A、B的坐标,再求出OC,即可得出点C的坐标;(2)作EG⊥x轴于G,FH⊥x轴于H,由三角形的面积关系得出DF=DE,由AAS 证明△FDH≌△EDG,得出DH=DG,即可得出结果;(3)作MQ⊥x轴于Q,连接CM、AG、M,证出△MCQ是等腰直角三角形,得出∠MCQ=45°,同理:△MPQ是等腰直角三角形,∠MAQ=45°,△AHG是等腰直角三角形,得出∠AGH=45°=∠MCQ,证出A、G、M、C四点共圆,由圆周角定理即可得出结论.本题是三角形综合题目,考查了偶次方和算术平方根的非负性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、四点共圆、圆周角定理等知识;熟练掌握全等三角形的判定与性质、证明三角形是等腰直角三角形和四点共圆是解决问题的关键.。

陕西省西安市 八年级(上)期中数学试卷-(含答案)

陕西省西安市   八年级(上)期中数学试卷-(含答案)

八年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.(-2)2的平方根是()A. 2B.C.D.2.如图所示的直角三角形中,m的值为5的有()A. 1个B. 2个C. 3个D. 4个3.点A(2,-1)关于x轴对称的点B的坐标为()A. B. C. D.4.下列图象中,y不是x的函数的是()A. B. C. D.5.等腰三角形腰长10cm,底边16cm,则面积为()A. B. C. D.6.下列计算中,不正确的是()A. B.C. D.7.如图所示的方格纸中,假设每个小正方形的面积为2,则图中的四条线段中长度为无理数的有()A. 1条B. 2条C. 3条D. 4条8.一个正偶数的算术平方根是a,那么与这个正偶数相邻的下一个正偶数的算术平方根是()A. B. C. D.9.实数a,b在数轴上的位置,如图所示,那么化简的结果是()A. B. b C. D.10.在同一坐标系,表示一次函数y=ax+b与正比例函数y=abx(a,b是常数,且ab≠0)的图象正确的是()A. B.C. D.二、填空题(本大题共8小题,共24.0分)11.电影票10排28号记为(10,28),则(3,25)表示______ .12.计算= ______ .13.a是9的算术平方根,而b的算术平方根是9,则a+b= ______ .14.木工师傅想做一个长方形桌面,经测量得知四边形桌面的长边均为60cm,短边均为32cm,对角线长为68cm,这个桌面______ (填“合格”或“不合格”).15.已知点P(-10,3a+8)不在任何象限内,则a的值为______ .16.如图,正方形ABCD关于x轴、y轴均成轴对称,若这个正方形的面积为4,则点C的坐标为______ .17.阅读下列信息:①它的图象是不经过第二象限的一条直线且与y轴的交点P到原点O的距离为3,②当x的值为2时,函数y的值为0,则y随x的增大而______ ,此直线与坐标轴所围成的三角形面积为______ .18.如图所示,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为______ .三、解答题(本大题共6小题,共48.0分)19.计算:(1)--(2)(-)÷.20.在平面直角坐标系中,顺次连接下列各点,并画出图形.(-5,2),(-1,4),(-5,6),(-3,4),(-5,2)(1)不改变这些点的纵坐标,将它们的横坐标都乘以-1.写出新的点的坐标;(2)在同一坐标系中,描出这些新点,并顺次连接起来;(3)新图形与原图形有什么关系?21.已知点P是一次函数y=-2x+8的图象上的一点,如果图象与x轴交于Q点,且△OPQ的面积等于8,求点P的坐标.22.正方形网格中,小格的顶点叫做格点,小华按下列要求作图:①在正方形网格的三条不同实线上各取一个格点,使其中任意两点不在同一实线上;②连结三个格点,使之构成直角三角形,小华在下边的正方形网格中作出了Rt△ABC.请你按照同样的要求,在下面的两个正方形网格中各画出一个直角三角形,并使三个网格中的直角三角形互不全等.23.某电信公司手机的A类收费标准如下:不管通话时间多长,每部手机每月必须交月租费12元,另外,通话费按0.2元/min计算.(1)写出每月应缴费用y(元)与通话时间x(min)之间的关系式;(2)某手机用户这个月通话时间为180min,他应缴费多少元;(3)如果该手机用户本月预缴了100元的话费,那么该用户本月可通话多长时间?24.如图,一幢居民楼与马路平行且相距9米,在距离载重汽车41米处(图中B点位置)就会受到噪音影响,试求在马路上以4米/秒速度行驶的载重汽车,给这幢居民楼带来多长时间的噪音影响?若影响时间超过25秒,则此路禁止该车通行,那么载重汽车可以在这条路上通行吗?答案和解析1.【答案】D【解析】解:∵(-2)2=4,而2或-2的平方等于4,∴(-2)2的平方根是±2.故选D.首先根据平方的定义求出(-2)2的结果,然后利用平方根的定义求解即可.此题主要考查了平方根的定义,注意一个正数的平方根有2个,它们互为相反数.2.【答案】B【解析】解:如图所示的直角三角形中,∵m==5,m==5,m==8,m==9,∴m的值为5的有2个,故选B.根据勾股定理即可得到结论.本题考查了勾股定理,熟练掌握勾股定理是解题的关键.3.【答案】A【解析】解:点A(2,-1)关于x轴对称的点B的坐标为:(2,1).故选:A.关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,进而得到答案.此题主要考查了关于x轴对称点的坐标特点,关键是掌握点的坐标的变化规律.4.【答案】B【解析】解:根据函数定义,如果在某变化过程中,有两个变量x 、y ,并且对于x 在某个范围内的每一个确定的值,按照对应法则,y 都有唯一确定的值和它对应.而B 中的y 的值不具有唯一性,所以不是函数图象.故选B .函数的定义:在某变化过程中,有两个变量x 、y ,并且对于x 在某个范围内的每一个确定的值,按照对应法则,y 都有唯一确定的值和它对应,则x 叫自变量,y 是x 的函数.根据定义再结合图象观察就可以得出结论.本题考查函数的定义,要熟练掌握函数的定义.5.【答案】B【解析】解:作AD ⊥BC 于D ,∵AB=AC ,∴BD=BC=8cm ,∴AD==6cm , ∴=48cm 2,故选B .等腰三角形ABC ,AB=AC ,要求三角形的面积,可以先作出BC 边上的高AD ,则在Rt △ADB 中,利用勾股定理就可以求出高AD ,就可以求出三角形的面积. 本题主要运用了等腰三角形的性质:三线合一的性质,勾股定理.6.【答案】D【解析】解:A 、原式=6,所以A 选项得计算正确;B 、原式=3-2=,所以B 选项的计算正确;C 、原式==1,所以C 选项的计算正确;D 、原式=3-2+2=5-2,所以D 选项的计算错误.故选D .根据二次根式的乘除法则对A、C进行判断;根据二次根式的加减法对B进行判断;根据完全平方公式对D进行判断.本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.7.【答案】B【解析】解:∵每个小正方形的面积为2,∴每个小正方形的边长为,∴AB=2,CD==4,EF==2,GH==,∴四条线段中长度是无理数理数的线段是AB、GH;故选:B.由小正方形的面积得出小正方形的边长,由勾股定理求出AB、CD、EF、GH,即可得出结果本题考查了正方形的性质、勾股定理、实数、有理数;熟练掌握正方形的性质和勾股定理,并能进行推理计算是解决问题的关键.8.【答案】C【解析】解:由题意,得正偶数是a2,下一个偶数是(a2+2),与这个正偶数相邻的下一个正偶数的算术平方根是,故选:C.根据乘方运算,可得被开方数,根据相邻偶数间的关系,可得被开方数,根据开方运算,可得答案.本题考查了算术平方根,利用了乘方运算,开方运算.9.【答案】A【解析】【分析】本题主要考查了二次根式和绝对值的性质与化简.特别因为a.b都是数轴上的实数,注意符号的变换.根据二次根式和绝对值的性质,化简解答.【解答】解:根据二次根式和绝对值的性质,化简得,=a-(-b-a)=2a+b.故选A.10.【答案】A【解析】解:若a>0,b>0,则y=ax+b经过一、二、三象限,y=abx经过一、三象限,若a>0,b<0,则y=ax+b经过一、三、四象限,y=abx经过二、四象限,若a<0,b<0则y=ax+b经过二、三、四象限,y=abx经过一、三象限,若a<0,b>0则y=ax+b经过一、二、四象限,y=abx经过二、四象限,故选(A)将a、b与0进行比较,然后分情况讨论其图象的位置.本题考查一次函数的性质,解题的关键是正确待定系数k与b的作用,本题属于基础题型.11.【答案】3排25号【解析】解:根据题意,10排28号记为(10,28),则(3,25)表示3排25号,故答案为:3排25号.根据题意知第一个数字表示排数、第2个数字表示号数,由此解答可得.本题考查了坐标确定位置:平面直角坐标系中,点与有序实数对一一对应.12.【答案】2【解析】解:==2.故答案为:2.直接利用二次根式的性质将原式变形进而化简即可.此题主要考查了二次根式的乘法运算,正确化简是解题关键.13.【答案】84【解析】解:∵a是9的算术平方根,∴a=3,又∵b的算术平方根是9,∴b=81,∴a+b=3+81=84.故答案为:84.先根据算术平方根的定义求出a、b的值,然后算出a+b即可.本题考查了算术平方根的概念,一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.记为.14.【答案】合格【解析】解:∵=68cm,∴这个桌面合格,故答案为:合格.只要算出桌面的长为60cm,宽为32cm,对角线为68cm是否符合勾股定理即可,根据勾股定理直接解答.本题考查的是勾股定理在实际中的应用,需要同学们结合实际掌握勾股定理.15.【答案】-【解析】解:由题意,得3a+8=0,解得a=-,故答案为:-.根据纵坐标等于零的点在x轴上,可得答案.本题考查了点的坐标,利用坐标轴上的点的纵坐标等于零得出方程是解题关键.16.【答案】(-1,-1)【解析】解:如图,点E、F、G、H是正方形与坐标轴的交点.∵正方形的面积为4,∴正方形的边长为2,∵正方形ABCD关于x轴、y轴均成轴对称,∴CF=BF=BH=AH=AE=DE=CG=DG=1,∴C(-1,-1),故答案为(-1,-1).如图,点E、F、G、H是正方形与坐标轴的交点,只要证明CF=BF=BH=AH=AE=DE=CG=DG=1,即可解决问题.本题考查正方形的性质、轴对称的性质等知识,解题的关键是灵活运用轴对称的性质,证明CF=CG=1,属于中考基础题.17.【答案】增大;【解析】解:设该直线的解析式为y=kx+b(k≠0),∵该直线不经过第二象限,∴k>0,b<0.∵该直线与y轴的交点P到原点O的距离为3,∴点P(0,-3),b=-3.∵当x的值为2时,函数y的值为0,∴0=2k+b,解得:k=,∴yy随x的增大而增大.设该直线与x轴的交点为Q,则点Q的坐标为(,0),∴S△OPQ=OP•OQ=××3=.设该直线的解析式为y=kx+b(k≠0),由直线不过第二象限可得出k>0、b<0,结合OP的长度可得出点P的坐标以及b的值,将点(2,0)代入函数解析式中可求出k值,进而可得出y随x的增大而增大,再根据三角形的面积公式即可求出此直线与坐标轴所围成的三角形面积.本题考查了一次函数的性质、待定系数法求一次函数解析式以及一次函数图象与系数的关系,根据点的坐标,利用待定系数法求出函数解析式是解题的关键.18.【答案】45°【解析】解:如图,连接AC.根据勾股定理可以得到:AC=BC=,AB=,∵()2+()2=()2,即AC2+BC2=AB2,∴△ABC是等腰直角三角形.∴∠ABC=45°.故答案为:45°.分别在格点三角形中,根据勾股定理即可得到AB,BC,AC的长度,继而可得出∠ABC的度数.本题考查了勾股定理,判断△ABC是等腰直角三角形是解决本题的关键,注意在格点三角形中利用勾股定理.19.【答案】解:(1)--,=3--,=2-2;(2)(-)÷,=-,=-,=2-,=.【解析】(1)先约分,把二次根式化简,再合并同类二次根式;(2)先将除法化为乘法,再根据乘法分配律进行计算.本题考查了二次根式的混合运算:先进行二次根式的乘除运算,再把各二次根式化为最简二次根式,然后进行二次根式的加减运算.20.【答案】解:(1)不改变这些点的纵坐标,将它们的横坐标都乘以-1,新的点的坐标为(5,2),(1,4),(5,6),(3,4);(2)在同一坐标系中描出这些点,并连成的图形:(3)所得的图案与原图案关于y轴对称.【解析】(1)横坐标乘以-1,即可得出新的点的坐标的横坐标,进而得出坐标;(2)先在坐标系上描出四点,再依次连接即可.(3)通过观察图象即可发现新图形与原图形的关系.本题综合考查了直角坐标系的知识和轴对称图形的性质.正确得出对应点位置是解题关键.21.【答案】解:当y=0时,-2x+8=0,解得x=4,则Q(4,0),设P(x,-2x+8),所以•4•|-2x+8|=8,解得x=2或x=6,所以P点坐标为(2,4)或(6,-4).【解析】先求出Q点坐标,根据一次函数图象上点的坐标特征设P(x,-2x+8),则根据三角形面积公式得到•4•|-2x+8|=8,然后解方程求出x即可得到P点坐标.本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b 为常数)的图象是一条直线.它与x轴的交点坐标是(-,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.22.【答案】解:如图所示:.【解析】本题中得出直角三角形的方法如图:如果设AE=x,BE=4-x,如果∠FEG=90°,△AFE∽△GBE,AF•BG=AE•BE=x(4-x),当x=1时,AF•BG=3,AF=1,BG=3或AF=3,BG=1,当x=2时,AF•BG=4,AF=1,BG=4或AF=2,BG=2或AF=4,BG=1,当x=3时,AF•BG=3,AF=1,BG=3或AF=3,BG=1(同x=1时),由此可画出另两种图形.本题中借助了勾股定理,相似三角形的判定和性质等知识来得出有可能的直角三角形的情况,要学会对已学知识点的运用.23.【答案】解:(1)y=0.2x+12;(2)当x=180时,y=0.2×180+12=48(元);(3)当y=100时,0.2x+12=100,解得:x=440.【解析】(1)根据每月应缴的费用是月租费+通话费,即可写出解析式;(2)在解析式中,令x=180,求得y的值即可;(3)在解析式中令y=100,求得x即可.本题考查了一次函数的解析式以及求值,正确理解收费标准,列出函数解析式是关键.24.【答案】解:如图,过点A作AC⊥BD于点C,∵由题意得AC=9,AB=AD=41,AC⊥BD,∴Rt△ACB中,BC=,Rt△ACD中,DC=,∴BD=80,∴80÷4=20(s),∴受影响时间为20s;∵20<25,∴可以通行.【解析】先根据勾股定理求出BC及DC的长,进而可得出BD的长,根据载重汽车的速度是4m/s即可得出受噪音影响的时间,与25秒相比较即可得出结论.本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.。

2023-2024学年陕西省西安市八年级上学期期中数学质量检测模拟试题(含解析)

2023-2024学年陕西省西安市八年级上学期期中数学质量检测模拟试题(含解析)

2023-2024学年陕西省西安市八年级上学期期中数学质量检测模拟试题一、选择题(本大题共8小题,每小题3分,满分24分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的.1.下列各数是无理数的是()A .0.B .2-C .2πD2A .BCD 3.关于一次函数2y x =-+,下列说法正确的是()A .图象经过点()2,1B .图象与x 轴交于点()2,0C .图象不经过第二象限D .函数值y 随x 的增大而增大4.在平面直角坐标系中,点()3,21P a a -+在x 轴上,则a 的值为()A .3B .3-C .12D .12-5.如图,在数轴上点A 所表示的数为a ,则a 的值为()A .1-B .1-CD .1+6.若1k >,则一次函数()11y k x k =-+-的图象可能是()A .B .C .D .7.若点()()()122,,1,3,3,A y B C y -在一次函数4(y mx m =+起常数的图象上,则12,y y 的大小关系是()A .12y y >B .12y y <C .12y y =D .无法确定8.如图,一个长方体蛋糕盒的长、宽、商分别为40cm 30cm 20cm 、、,点E 到点D 的距离为10cm .现有一只蚂蚁从点B 出发,沿着长方体的表面爬行到点E 处,则蚂蚁需要爬行的报短距离是()A .B .C .50cmD .45cm二、填空题(本大题共5小题,每小题3分,满分15分)9.点()4,3A -关于x 轴的对称点的坐标是________________.10.一个正数的平方根分别是1x +和42x -,则这个正数是________________.11.若直线y kx b =+与直线23y x =-平行,且过点()1,5-,则该直线的表达式为________________.12.对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD ,对角线,AC BD 交于点O .若1,4AD BC ==,则22AB CD +=________________.13.如图,一次函数334y x =-+的图象与x 轴、y 轴交于,A B 两点,P 是x 轴正半轴上的一个动点,连接BP ,将OBP 沿BP 翻折,点O 恰好落在AB 上,则直线BP 的表达式是________________.三、(本大题共13小题,满分81分)14.(5+15.(5÷-+16.(5分)已知2y +与x 成正比例,当3x =时,7y =,求y 与x 的函数表达式.17.(5分)如图,已知ABC △,作出ABC △关于y 轴对称的A B C '''△,其中点A 的对应点是点A ',点B 的对应点是点B ',点C 的对应点是C '.18.(5分)如图,正方形网格中每个小正方形方格的边长都为1,且点,,A B C 均为格点.求证:ABC △是直角三角形.19.(5分)实数,a b -.20.(5分)如图,一根竖直的旗杆高为8米,被台风从B 处吹折,旗杆的顶端C 刚好触地,且离旗杆底端A 的距离AC 是4米,求这根旗杆折断处B 与旗杆底端A 的距离AB .21.(6分)已知在平面直角坐标系中,点()4,27P m m -+到两坐标轴的距离相等,求m 的值.22.(7分)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先列终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的离y (米)与甲发的时间(分)之间的关系如图所示.(1)求甲步行的速度(2)求乙到达终点时,甲离终点的距离.23.(7分)阅读下面的文字,解答问题:【阅读材料】现规定:分别用[]x 和()x 表示实数x 的整数部分和小数部分.例如:实数3.14的整数部分是[]3.143=,小数部分是()3.140.14=;实数的整数部分是2=,小数部分是无限不循环小数,无法写完整,但是把它的整数部分减去,就等于它的小数部分,即的小数部分,所以2=-.(1)=________________,=________________.(2)如果,a b ==,求a b +-24.(8分)2023年7月五号台风“杜苏芮”登陆,使我国很多地区受到严重影响.据报道,这是今年以来对我国影响最大的台风,风力影响半径250km (即以台风中心为圆心,250km 为半径的圆形区域都会受台风影响).如图,线段BC 是台风中心从C 市向西北方向移动到B 市的大致路线,A 是某个大型农场,且AB AC ⊥.若,A C 之间相距300km,,A B 之间相距400km .(1)判断农场A 是否会受到台风的影响,请说明理由.(2)若台风中心的移动速度为25km /h ,则台风影响该农场持续时间有多长?25.(8分)在平面直角坐标系xOy 中,对于,P Q 两点给出如下定义:若点P 到x 轴、y 轴的距离之差的绝对值等于点Q 到x 轴、y 轴的距离之差的绝对值,则称,P Q 两点互为“等差点”.例如.点()1,2P -与点()4,3Q 到x 轴、y 轴的距离之差的绝对值都等于1.它们互为“等差点”.(1)下列各点中,与()2,5-互为“等差点”的有________________.①()4,7B -;②()3,1-;③()3,6-.(2)若点()3,5M -与点()1,1N n -互为“等差点”,求n 的值.26.(10分)如图,在平面直角坐标系中,直线26y x =-+交坐标轴于,A D 两点,过x 轴负半轴上一点C 作直线BC 交y 轴正半轴于点B ,且AOD BOC △≌△.(1)求出直线BC 的函数表达式.(2)P 是x 轴上一点,请问在线段BC 上是否存在点E ,连接EP ,使得BEP △点以BP 为直角边的等腰直角三角形,若存在,请求出点E 的坐标,若不存在,请说明理由.答案和解析1.C2.D3.B4.D5.B6.A7.A8.C9.()4,3--10.3611.27y x =-12.713.23y x =-+14.解:原式431=--0=.15.解:原式=4=+.16.解:设2y kx +=,把3,7x y ==代入,得372k =+,解得3k =,所以23y x +=,所以y 与x 的函数表达式为32y x =-.17.解:如图,A B C '''△即为所求.18.证明:由题意得,2222222222420,215,3425AC BC AB =+==+==+=,所以222AC BC AB +=,所以ABC 是直角三角形.19.解:由数轴可知0a b <<,且0,0b a a b ->+<,-a b a a b=---+()()a b a a b =---++a =.20.解:由题意知8,90BC AB BAC +=∠=︒,所以设AB 的长为x 米,则BC 的长为()8x -米.在Rt CBA △中,有222AB AC BC +=,即2216(8)x x +=-,解得3x =,所以旗杆折断处B 与旗杆底端A 的距离AB 为3米.21.解:根据题意,得427m m -=+或4270m m -++=,解得11m =-或1m =-.(只求到一个值给3分)22.解:(1)甲步行的速度为240460÷=(米/分).答:甲步行的速度为60米/分.(2)乙步行的速度为16601280⨯÷=(米/分),乙走完全程用的时间为24008030÷=(分),乙到达终点时,甲离终点的距离是()240043060360-+⨯=(米).答:乙到达终点时,甲距离终点360米.23.(1)11-.(2)因为23,67<<<,所以2,6a b ==-==,所以264a b +-=+-,所以a b +-的算术平方根是2.24.解:(1)会受到台风的影响.理由:如图1,过点A 作AD BC ⊥,垂足为D .图1因为在Rt ABC △中,,400km,300km AB AC AB AC ⊥==,所以500km BC ===.因为AD BC ⊥,所以1122BC AD AB AC ⋅=⋅,所以400300240km 500AB AC AD BC ⋅⨯===.因为250km AD <,所以农场A 会受到台风的影响.(2)如图2,假设台风在线段EF 上移动时,会对农场A 造成影响,图2所以250km,240km AE AF AD ===,由勾股定理,可得()22270140km EF DF ==⨯=⨯=,因为台风的速度是25km /h ,所以受台风影响的时间为()14025 5.6h ÷=.答:台风影响该农场持续时间为5.6h .25.解:(1)①③.(2)由题意可以分两种情况:①当11n -<时,1153n --=--,此方程无解.②当11n ->时,1153n --=--解得2n =-或4n =.综上所述,2n =-或4n =.26.(1)把0x =代入26y x =-+,得6y =,所以点()0,6D ,所以6OD =.把0y =代入26y x =-+,得3x =,所以点()3,0A ,所以3OA =.因为AOD BOC △≌△,所以6,3OC OD OB OA ====,所以点()6,0C -,点()0,3B .设直线BC 的函数表达式为3y kx =+,所以630k -+=,解得12k =,所以直线BC 的函数表达式为132y x =+.(2)存在.理由:如图1,当90PBE ∠=︒时,过点B 作GH x ∥轴,过点E 作EG GH ⊥交于点G ,过点P 作PH GH ⊥交于点H .因为90PBE ∠=︒,所以90EBG PBH ∠+∠=︒.因为90GBE BEG ∠+∠=︒,所以PBH BEG ∠=∠.因为BE BP =,所以()AAS BEG PBH △≌△,所以3,GB PH GE BH ===,图1所以点E 的横坐标为3-.把3x =-代入132y x =+中,得32y =,所以点E 的坐标为33,2⎛⎫- ⎪⎝⎭.如图2,当90BPE ∠=︒时,过点E 作EF x ⊥轴交于点F .同理,可得()AAS PEF BPO △≌△.图2设OP t =,所以点,3EF OP t FP OB ====,所以点()3,E t t --,所以()1332t t =--+,解得1t =,所以点E 的坐标为()4,1-.综上所述,点E 的坐标为33,2⎛⎫- ⎪⎝⎭或()4,1-.。

陕西省西安市 八年级(上)期中数学试卷-(含答案)

陕西省西安市  八年级(上)期中数学试卷-(含答案)

八年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.的算术平方根为()A. 9B.C. 3D.2.下列各数是有理数的是()A. B. C. D.3.若点A(-2,m)在正比例函数y=-x的图象上,则m的值是()A. B. C. 1 D.4.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为()A. B. C. D.5.一个数的平方根等于它本身的数是()A. B. 0 C. D. 或06.已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A. B. C. D.7.若点A(m,2)在y轴上,则点B(m-1,m+1)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限8.在平面直角坐标系中,过点(-2,3)的直线l经过一、二、三象限,若点(0,a),(-1,b),(c,-1)都在直线l上,则下列判断正确的是()A. B. C. D.9.若式子+(k-1)0有意义,则一次函数y=(k-1)x+1-k的图象可能是()A. B.C. D.10.如图,在平面直角坐标系上有个点A(-1,0),点A第1次向上跳动一个单位至点A1(-1,1),紧接着第2次向右跳动2个单位至点A2(1,1),第3次向上跳动1个单位,第4次向左跳动3个单位,第5次又向上跳动1个单位,第6次向右跳动4个单位,…,依次规律跳动下去,点A第2015次跳动至点A2015的坐标是()A. B. C. D.二、填空题(本大题共6小题,共18.0分)11.已知点A(2,1),线段AB∥x轴,且AB=3,则点B的坐标为______.12.若点A(m+2,3)与点B(-4,n+5)关于x轴对称,则m+n= ______ .13.如果点P(m+3,m+1)在第二象限的角平分线上,则点P的坐标为______.14.若一次函数y=(3-k)x-2k2+18的图象经过原点,则k= ______ .15.已知a是小于的整数,且,那么a的所有可能值是______ .16.如图,Rt△ABC纸片中,∠C=90°,AC=6,BC=8,点D在边BC上,以AD为折痕△ABD折叠得到△AB′D,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是______.三、解答题(本大题共8小题,共64.0分)17.计算(1)-(1-)2(2)(2-)0-3-(-)-1-|-2|18.解方程组:(1)(2).19.已知y=+9,求代数式的值.20.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(-4,5),(-1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A1B1C1;(3)写出点B1的坐标;(4)求△ABC的面积.21.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),点D是OA的中点,点E在线段AB上,当△CDE的周长最小时,求点E的坐标.22.甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶时间x(小时)之间的函数关系如图所示,根据图象提供的信息,解决下列问题:(1)A,B两城相距多少千米?(2)分别求甲、乙两车离开A城的距离y与x的关系式.(3)求乙车出发后几小时追上甲车?(4)求甲车出发几小时的时候,甲、乙两车相距50千米?23.量不超过200张.该商场计划将一半的餐桌成套(一张餐桌和4张餐椅配成一套)销售,其余餐桌、餐椅以零售方式销售.请问怎样进货,才能获得最大利润?最大利润是多少?(2)由于原材料价格上涨,每张餐桌和餐椅的进价都上涨了10元,按照(1)中获得最大利润的方案购进餐桌和餐椅,在调整成套销售量而不改变销售价格的情况下,实际全部售出后,所得利润比(1)中的最大利润少了2250元.请问本次成套的销售量为多少?24.如图,已知一次函数y=-x+3的图象与x轴、y轴分别交于点A、B.(1)求点A,B两点的坐标.(2)点M为一次函数y=x+3的图象上一点,若△ABM与△ABO的面积相等,求点M的坐标.(3)点Q为y轴上的一点,若△ABQ为等腰三角形,请直接写出Q点坐标.答案和解析1.【答案】C【解析】解:∵=9,32=9∴的算术平方根为3.故选:C.直接根据算术平方根的定义进行解答即可.本题考查的是算术平方根的定义,即一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.2.【答案】A【解析】解:3=3×3=9,故A符合题意;故选:A.根据有理数的定义,可得答案.本题考查了实数,无理数是无限不循环小数,有理数是有限小数或无限不循环小数.3.【答案】C【解析】解:∵点A(-2,m)在正比例函数y=-x的图象上,∴m=-×(-2)=1,故选:C.利用待定系数法代入正比例函数y=-x可得m的值.此题主要考查了一次函数图象上点的坐标特点,关键是掌握凡是函数图象经过的点必能满足解析式.4.【答案】D【解析】解:由题意可得出方程组,解得:,那么此一次函数的解析式为:y=-x+10.故选:D.设一次函数解析式为y=kx+b,根据两直线平行问题得到k=-1,然后把(8,2)代入y=-x+b求出b,即可得到一次函数解析式.考查了两条直线平行或相交的问题,由一次函数的一般表达式,根据已知条件,列出方程组,求出未知数的值从而求得其解析式;求直线平移后的解析式时要注意平移时k的值不变,只有b发生变化.5.【答案】B【解析】解:∵02=0,∴0的平方根是0.∴平方根等于它本身的数是0.故选B.根据平方根的定义即可求出平方根等于它本身的数.本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.6.【答案】A【解析】解:∵a+b=14∴(a+b)2=196∴2ab=196-(a2+b2)=96∴ab=24.故选:A.要求Rt△ABC的面积,只需求出两条直角边的乘积.根据勾股定理,得a2+b2=c2=100.根据勾股定理就可以求出ab的值,进而得到三角形的面积.这里不要去分别求a,b的值,熟练运用完全平方公式的变形和勾股定理.7.【答案】B【解析】解:∵点A(m,2)在y轴上,∴m=0,∴点B(m-1,m+1)为(-1,1),∴点B在第二象限.故选B.根据y轴上点的横坐标为0判断出m=0,然后求出点B的坐标,再根据各象限内点的坐标特征解答.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8.【答案】D【解析】解:设一次函数的解析式为y=kx+t(k≠0),∵直线l过点(-2,3).点(0,a),(-1,b),(c,-1),∴斜率k===,即k==b-3=,∵直线l经过一、二、三象限,∴k>0,∴a>3,b>3,c<-2.故选D.设一次函数的解析式为y=kx+b(k≠0),根据直线l过点(-2,3).点(0,a),(-1,b),(c,-1)得出斜率k的表达式,再根据经过一、二、三象限判断出k的符号,由此即可得出结论.本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.9.【答案】B【解析】解:∵式子+(k-1)0有意义,∴k-1≥0,且k-1≠0,解得k>1,∴k-1>0,1-k<0,∴一次函数y=(k-1)x+1-k的图象如图所示:故选:B.首先根据二次根式中的被开方数是非负数,以及a0=1(a≠0),判断出k的取值范围,然后判断出k-1、1-k的正负,再根据一次函数的图象与系数的关系,判断出一次函数y=(k-1)x+1-k的图象可能是哪个即可.此题主要考查了一次函数的图象与系数的关系,零指数幂定义以及二次根式有意义的条件;解答此题的关键是要明确:当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.10.【答案】A【解析】解:设第n次跳动至点A n,观察发现:A(-1,0),A1(-1,1),A2(1,1),A3(1,2),A4(-2,2),A5(-2,3),A6(2,3),A7(2,4),A8(-3,4),A9(-3,5),…,∴A4n(-n-1,2n),A4n+1(-n-1,2n+1),A4n+2(n+1,2n+1),A4n+3(n+1,2n+2)(n为自然数).∵2015=503×4+3,∴A2015(503+1,503×2+2),即(504,1008).故选A.设第n次跳动至点A n,根据部分点A n坐标的变化找出变化规律“A4n(-n-1,2n),A4n+1(-n-1,2n+1),A4n+2(n+1,2n+1),A4n+3(n+1,2n+2)(n为自然数)”,依此规律结合2015=503×4+3即可得出点A2015的坐标.本题考查了规律型中点的坐标,根据部分点A n坐标的变化找出变化规律“A4n (-n-1,2n),A4n+1(-n-1,2n+1),A4n+2(n+1,2n+1),A4n+3(n+1,2n+2)(n为自然数)”是解题的关键.11.【答案】(-1,1)或(5,1)【解析】解:∵AB∥x轴,点A的坐标为(2,1),∴A、B两点纵坐标都是1,又∵AB=3,∴当B点在A点左边时,B的坐标为(-1,1),当B点在A点右边时,B的坐标为(5,1).故答案为:(-1,1)或(5,1).AB∥x轴,可得A、B两点纵坐标相等,由AB的长为3,分B点在A点左边和右边,分别求B点坐标即可.本题考查了坐标与图形的性质,解决本题的关键是进行分类讨论.12.【答案】-14【解析】解:由题意,得m+2=-4,n+5=-3,解得m=-6,n=-8.m+n=-14.故答案为:-14.根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得m、n 的值,再计算m+n即可.本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.13.【答案】(1,-1)【解析】【分析】本题考查了点的坐标,利用第二象限角平分线上的点的横坐标与纵坐标互为相反数得出方程是解题关键.根据第二象限角平分线上的点的横坐标与纵坐标互为相反数,可得答案.【解答】解:由题意,得m+3+m+1=0,解得m=-2,点P的坐标为(1,-1),故答案为(1,-1).14.【答案】-3【解析】解:∵一次函数y=(3-k)x-2k2+18的图象经过原点,∴0=-2k2+18,且k-3≠0,解得k=3或k=-3,故答案为-3.把原点坐标代入函数解析式可求得k的值.本题主要考查函数图象上的点的坐标与函数解析式的关系,掌握函数图象上的点的坐标满足函数解析式是解题的关键.15.【答案】5,4,3,2【解析】解:∵4<5<9,∴2<<3,∴5<3+<9,∵a是小于的整数,∴a≤5,∵=a-2,∴2-a≤0,解得a≥2,∴2≤a≤5,∴a的所有可能值是5,4,3,2.故答案为:5,4,3,2.先根据题意估算出3+的取值范围,再根据得出a的取值范围,进而可得出结论.本题考查的是估算无理数的大小,先根据题意估算出3+的取值范围是解答此题的关键.16.【答案】2或5【解析】解:∵Rt△ABC纸片中,∠C=90°,AC=6,BC=8,∴AB=10,∵以AD为折痕△ABD折叠得到△AB′D,∴BD=DB′,AB′=AB=10.如图1所示:当∠B′DE=90°时,过点B′作B′F⊥AF,垂足为F.设BD=DB′=x,则AF=6+x,FB′=8-x.在Rt△AFB′中,由勾股定理得:AB′2=AF2+FB′2,即(6+x)2+(8-x)2=102.解得:x1=2,x2=0(舍去).∴BD=2.如图2所示:当∠B′ED=90°时,C与点E重合.∵AB′=10,AC=6,∴B′E=4.设BD=DB′=x,则CD=8-x.在Rt△′BDE中,DB′2=DE2+B′E2,即x2=(8-x)2+42.解得:x=5.∴BD=5.综上所述,BD的长为2或5.故答案为:2或5.先依据勾股定理求得AB的长,然后由翻折的性质可知:AB′=10,DB=DB′,接下来分为∠B′DE=90°和∠B′ED=90°,两种情况画出图形,设DB=DB′=x,然后依据勾股定理列出关于x的方程求解即可.本题主要考查的是翻折的性质、勾股定理的应用,根据勾股定理列出关于x 的方程是解题的关键.17.【答案】解:(1)原式=-(4-2)=6-4+2=2+2;(2)原式=1+4+4-(2-)=1+4+4-2+=7+.【解析】(1)先算乘方,再算加减即可;(2)先根据0指数幂及负整数指数幂的计算法则、数的开方法则及绝对值的性质分别计算出各数,再根据实数的加减法则进行计算即可.本题考查了二次根式的混合运算,是二次根式乘法、除法及加减法运算法则的综合运用.学习二次根式的混合运算应注意:与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.18.【答案】解:(1),由②得:3x-2y=6③,①-③得:-3y=-3,解得:y=1,把y=1代入①得:x=,则原方程组的解是:.(2)①②③,①+②得:y=8④,③-②得:x-y=-2⑤,④+⑤得:x=6,把x=6,y=8代入①得:z=3,则原方程组的解为:.【解析】(1)先把②去掉分母,再①-③求出y的值,然后代入①求出x的值,从而得出方程组的解;(2)先①+②求出y的值,再③-②得出x-y=-2,求出x的值,然后把x、y的值代入①求出z的值,即可得出方程组的解.本题考查了解二元一次方程组和三元一次方程组,解三元一次方程组先转化为二元一次方程组,求出二元一次方程组的解,再求出第三个未知数的值.19.【答案】解:由题意可得,x-4≥0,4-x≥0,解得,x=4,则y=9,则==2-3=-1.【解析】根据二次根式中的被开方数必须是非负数列出不等式,求出x的值,代入原式求出y的值,代入代数式根据算术平方根的概念计算即可.本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.20.【答案】解:(1)根据题意可作出如图所示的坐标系;(2)如图,△A1B1C1即为所求;(3)由图可知,B1(2,1);(4)S△ABC=3×4-×2×4-×2×1-×2×3=12-4-1-3=4.【解析】(1)根据A点坐标建立平面直角坐标系即可;(2)作出各点关于y轴的对称点,再顺次连接即可;(3)根据点B1在坐标系中的位置写出其坐标即可;(4)利用矩形的面积减去三个顶点上三角形的面积即可.本题考查的是作图-轴对称变换,熟知轴对称的性质是解答此题的关键.21.【答案】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.∵D(,0),A(3,0),∴H(,0),∴直线CH解析式为y=-x+4,∴x=3时,y=,∴点E坐标(3,).【解析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.本题考查矩形的性质、坐标与图形的性质、轴对称-最短问题、一次函数等知识,解题的关键是利用轴对称找到点E位置,学会利用一次函数解决交点问题,属于中考常考题型.22.【答案】解:(1)由图可知,A、B两城相距300千米;(2)设甲对应的函数解析式为:y=kx,300=5k解得,k=60,即甲对应的函数解析式为:y=60x,设乙对应的函数解析式为y=mx+n,,解得,,即乙对应的函数解析式为y=100x-100,(3)解,解得2.5-1=1.5,即乙车出发后1.5小时追上甲车;(4)由题意可得,当乙出发前甲、乙两车相距50千米,则50=60x,得x=,当乙出发后到乙到达终点的过程中,则60x-(100x-100)=±50,解得,x=1.25或x=3.75,当乙到达终点后甲、乙两车相距50千米,则300-50=60x,得x=,即小时、1.25小时、3.75小时、小时时,甲、乙两车相距50千米.【解析】(1)根据函数图象可以解答本题;(2)根据图象中的信息分别求出甲乙两车对应的函数解析式,(3)根据(2)甲乙两车对应的函数解析式,然后令它们相等即可解答本题;(4)根据(2)中的函数解析式,可知它们相遇前和相遇后两种情况相距50千米,从而可以解答本题.本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.23.【答案】解:(1)设购进餐桌x张,则购进餐椅(5x+20)张,销售利润为W元.由题意得:x+5x+20≤200,解得:x≤30.∵a=150,∴餐桌的进价为150元/张,餐椅的进价为40元/张.依题意可知:W=x•(500-150-4×40)+x•(270-150)+(5x+20-x•4)•(70-40)=245x+600,∵k=245>0,∴W关于x的函数单调递增,∴当x=30时,W取最大值,最大值为7950.故购进餐桌30张、餐椅170张时,才能获得最大利润,最大利润是7950元.(2)涨价后每张餐桌的进价为160元,每张餐椅的进价为50元,设本次成套销售量为m套.依题意得:(500-160-4×50)m+(30-m)×(270-160)+(170-4m)×(70-50)=7950-2250,即6700-50m=5700,解得:m=20.答:本次成套的销售量为20套.【解析】(1)设购进餐桌x张,餐椅(5x+20)张,销售利润为W元.根据购进总数量不超过200张,得出关于x的一元一次不等式,解不等式即可得出x的取值范围,再根据“总利润=成套销售的利润+零售餐桌的利润+零售餐椅的利润”即可得出W关于x的一次函数,根据一次函数的性质即可解决最值问题;(2)设本次成套销售量为m套,先算出涨价后每张餐桌及餐椅的进价,再根据利润间的关系找出关于m的一元一次方程,解方程即可得出结论.本题考查了一次函数的应用、解一元一次不等式、一次函数的性质及解一元一次方程,解题的关键是:(1)根据数量关系找出W关于x的函数解析式;(2)根据数量关系找出关于m的一元一次方程.本题属于中档题,难度不大,但较繁琐,解决该题型题目时,根据数量关系找出函数关系式(方程或方程组)是关键.24.【答案】解:(1)对于直线y=-x+3,令x=0得到y=3,令=0得到x=6,∴A(6,0),B(0,3).(2)如图1中,作OM∥AB交直线y=x+3于M,∵OM∥AB,∴S△ABM=S△ABO,∵直线AB的解析式为y=-x+3,∴直线OM的解析式为y=-x,由,解得,∴点M的坐标为(-2,1).当BM=BM′时,△ABM′与△ABM的面积相等,此时M′(2,5),∴满足条件的点M的坐标为(-2,1)或(2,5).(3)如图2中,在Rt△ABO中,AB==3,当BA=BQ时,点Q的坐标为(0,3+3)或(0,3-3),当AB=AQ时,点Q的坐标为(0,-3),当QB=QA时,设QA=QB=a,在Rt△AOQ中,∵OA2+OQ2=AQ2,∴(a-3)2+62=a2,解得a=,∴OQ=BQ-OB=,∴点Q的坐标为(0,-).综上所述,满足条件的点Q的坐标为(0,3+3)或(0,3-3)或(0,-3)或(0,-).【解析】(1)对于直线y=-x+3,令x=0得到y=3,令=0得到x=6,可得A(6,0),B(0,3).(2)如图1中,作OM∥AB交直线y=x+3于M,求出直线OM的解析式,利用方程组可得点M的坐标,再利用中线的性质求出M′的坐标即可.(3)分种情形分别讨论即可解决问题.本题考查一次函数综合题、三角形的面积、平行线的性质、等腰三角形的判定和性质等知识,今天的关键是灵活运用所学知识,学会用分类讨论的思想思考问题,学会构建一次函数,利用方程组确定两个函数的交点坐标,属于中考压轴题.。

2020-2021西安市八年级数学上期中一模试题(附答案)

2020-2021西安市八年级数学上期中一模试题(附答案)

2020-2021西安市八年级数学上期中一模试题(附答案)一、选择题1.下列四个图形中,既是轴对称图形又是中心对称图形的有( )A .4个B .3个C .2个D .1个2.如图,在△ABC 中,BD 平分∠ABC ,BC 的垂直平分线交BD 于点E ,连接CE ,若∠A=60°,∠ACE=24°,则∠ABE 的度数为( )A .24°B .30°C .32°D .48°3.如图,在Rt △ABC 中,∠ACB=90º,∠A=60º,CD 是斜边AB 上的高,若AD=3cm ,则斜边AB 的长为( )A .3cmB .6cmC .9cmD .12cm4.下列分式中,最简分式是( )A .B .C .D .5.下列条件中能判定△ABC ≌△DEF 的是 ( )A .AB =DE ,BC =EF ,∠A =∠DB .∠A =∠D ,∠B =∠E ,∠C =∠F C .AC =DF ,∠B =∠F ,AB =DED .∠B =∠E ,∠C =∠F ,AC =DF 6.如图,ABC V 是等腰直角三角形,BC 是斜边,将ABP V 绕点A 逆时针旋转后,能与ACP 'V 重合,如果3AP =,那么PP '的长等于( )A .32B .23C .42D .33 7.如图,已知△ABC 中,∠ABC=45°,F 是高AD 和BE 的交点,CD=4,则线段DF 的长度为( )A .22B .4C .32D .428.如图,直线123l l l 、、表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A .一处B .二处C .三处D .四处9.如图,把三角形纸片ABC 沿DE 折叠,当点A 落在四边形BCDE 外部时,则∠A 与∠1、∠2之间的数量关系是( )A .212A ∠=∠-∠B .32(12)A ∠=∠-∠C .3212A ∠=∠-∠D .12A ∠=∠-∠10.若23m =,25n =,则322m n -等于 ( )A .2725B .910C .2D .252711.如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A′处,点B 落在点B′处,若∠2=40°,则图中∠1的度数为( )A .115°B .120°C .130°D .140°12.下列说法中正确的是( )A .三角形的角平分线、中线、高均在三角形内部B .三角形中至少有一个内角不小于60°C .直角三角形仅有一条高D .三角形的外角大于任何一个内角二、填空题13.如图,一束平行太阳光线照射到正五边形上,则∠1= ______.14.已知:a+b=32,ab=1,化简(a ﹣2)(b ﹣2)的结果是 . 15.当m=________时,方程233x m x x =---会产生增根. 16.若关于x 的分式方程1101ax x +-=-的解为正数,则a 的取值范围_______. 17.分解因式:2x 2﹣8=_____________18.若分式15x -有意义,则实数x 的取值范围是_______. 19.若4422222+6a b a a b b +=-+,则22a b +=______.20.若2x+5y ﹣3=0,则4x •32y 的值为________.三、解答题21.我们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD 是一个筝形,其中AB=CB,AD=CD ,对角线AC,BD 相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F ,求证OE=OF ;22.先化简,再求值:(1﹣11a -)÷2244a a a a-+-,其中2. 23.如图,已知△ABC ,∠C=90°,AC<BC ,D 为BC 上一点,且到A ,B 两点的距离相等.(1)用直尺和圆规,作出点D 的位置(不写作法,保留作图痕迹);(2)连结AD ,若∠B=37°,求∠CAD 的度数.24.解方程:.25.已知:如图,//AD BC ,DB 平分ADC ∠,CE 平分BCD ∠,交AB 于点E ,BD 于点O ,求证:点O 到EB 与ED 的距离相等.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】试题分析:A 选项既是轴对称图形,也是中心对称图形;B 选项中该图形是轴对称图形不是中心对称图形;C 选项中既是中心对称图形又是轴对称图形;D 选项中是中心对称图形又是轴对称图形.故选B .考点: 1.轴对称图形;2.中心对称图形.2.C解析:C【解析】【分析】先根据BC 的垂直平分线交BD 于点E 证明△BFE ≌△CFE (SAS ),根据全等三角形的性质和角平分线的性质得到ABE EBF ECF ∠=∠=∠,再根据三角形内角和定理即可得到答案.【详解】解:如图:∵BC 的垂直平分线交BD 于点E ,∴BF=CF,∠BFE=∠CFE=90°,在△BFE 和△CFE 中,EF EF EFB EFC BF CF =⎧⎪∠=∠⎨⎪=⎩∴△BFE ≌△CFE (SAS ),∴EBF ECF ∠=∠(全等三角形对应角相等),又∵BD 平分∠ABC ,∴ABE EBF ECF ∠=∠=∠,又∵180ABE EBF ECF ACE A ∠+∠+∠+∠+∠=︒(三角形内角和定理), ∴180602496ABE EBF ECF ∠+∠+∠=︒-︒-︒=︒, ∴196323ABE ∠=⨯︒=︒, 故选C .【点睛】本题主要考查了三角形全等的判定与性质、角平分线的性质、三角形内角和定理,证明ABE EBF ECF ∠=∠=∠是解题的关键.3.D解析:D【解析】【分析】先求出∠ACD=∠B=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半求出AC ,再求出AB 即可.【详解】解:∵在Rt △ABC 中,∠ACB=90º,∠A=60º,∴∠B=180°-60°-90°=30°(三角形内角和定理),∴AC=12AB(直角三角形30°所对的直角边等于斜边的一半),又∵CD是斜边AB上的高,∴∠ADC=90º,∴∠ACD=180°-60°-90°=30°(三角形内角和定理),∴AD=12AC(直角三角形30°所对的直角边等于斜边的一半),∴AC=6,又∴AC=12 AB,∴12AB .故选D.【点睛】本题考查了三角形内角和定理和有30°角的直角三角形的性质,掌握直角三角形30°角所对的直角边等于斜边的一半是解题的关键.4.A解析:A【解析】【分析】根据最简分式的定义:分子和分母中不含公分母的分式,叫做最简分式,对四个选项中的分式一一判断即可得出答案.【详解】解:A.,分式的分子与分母不含公因式,是最简分式;B.,分式的分子与分母含公因式2,不是最简分式;C. ,分式的分子与分母含公因式x-2,不是最简分式;D. ,分式的分子与分母含公因式a,不是最简分式,故选A.【点睛】本题考查了最简分式的概念.对每个分式的分子和分母分别进行因式分解是解题的关键. 5.D解析:D【解析】分析:根据全等三角形的判定定理AAS,可知应选D.详解:解:如图:A 选项中根据AB =DE ,BC =EF ,∠A =∠D 不能判定两个三角形全等,故A 错; B 选项三个角相等,不能判定两个三角形全等,故B 错;C 选项看似可用“边角边”定理判定两三角形全等,而对照图形可发现它们并不符合此判定条件,故C 错;D 选项中根据“AAS ”可判定两个三角形全等,故选D ;点睛:本题考查了全等三角形的条件,本题没有给出图形,增加此题的难度.若能顺利画出图形,对照图形和选项即可得到正确选项.6.A解析:A【解析】【分析】【详解】解:如图:根据旋转的旋转可知:∠PAP′=∠BAC=90°,AP=AP′=3, 根据勾股定理得:223332'+=PP A .7.B解析:B【解析】【分析】求出AD =BD ,根据∠FBD +∠C =90°,∠CAD +∠C =90°,推出∠FBD =∠CAD ,根据ASA 证△FBD ≌△CAD ,推出CD =DF 即可.【详解】解:∵AD ⊥BC ,BE ⊥AC ,∴∠ADB=∠AEB=∠ADC=90°,∴∠EAF+∠AFE=90°,∠FBD+∠BFD=90°,∵∠AFE=∠BFD ,∴∠EAF=∠FBD ,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABC , ∴AD=BD ,在△ADC 和△BDF 中CAD DBF AD BDFDB ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADC ≌△BDF ,∴DF=CD=4,故选:B.【点睛】此题主要考查了全等三角形的判定,关键是找出能使三角形全等的条件.8.D解析:D【解析】【分析】由三角形内角平分线的交点到三角形三边的距离相等,可得三角形内角平分线的交点满足条件;然后利用角平分线的性质,可证得三角形两条外角平分线的交点到其三边的距离也相等,这样的点有3个,可得可供选择的地址有4个.【详解】解:∵△ABC内角平分线的交点到三角形三边的距离相等,∴△ABC内角平分线的交点满足条件;如图:点P是△ABC两条外角平分线的交点,过点P作PE⊥AB,PD⊥BC,PF⊥AC,∴PE=PF,PF=PD,∴PE=PF=PD,∴点P到△ABC的三边的距离相等,∴△ABC两条外角平分线的交点到其三边的距离也相等,满足这条件的点有3个;综上,到三条公路的距离相等的点有4处,∴可供选择的地址有4处.故选:D【点睛】考查了角平分线的性质.注意掌握角平分线上的点到角两边的距离相等,注意数形结合思想的应用,小心别漏解.9.A解析:A【解析】【分析】根据折叠的性质可得∠A′=∠A,根据平角等于180°用∠1表示出∠ADA′,根据三角形的一个外角等于与它不相邻的两个内角的和,用∠2与∠A′表示出∠3,然后利用三角形的内角和等于180°列式整理即可得解.【详解】如图所示:∵△A′DE是△ADE沿DE折叠得到,∴∠A′=∠A,又∵∠ADA′=180°-∠1,∠3=∠A′+∠2,∵∠A+∠ADA′+∠3=180°,即∠A+180°-∠1+∠A′+∠2=180°,整理得,2∠A=∠1-∠2.故选A.【点睛】考查了三角形的内角和定理以及折叠的性质,根据折叠的性质,平角的定义以及三角形的一个外角等于与它不相邻的两个内角的和的性质,把∠1、∠2、∠A转化到同一个三角形中是解题的关键.10.A解析:A【解析】分析:先把23m﹣2n化为(2m)3÷(2n)2,再求解.详解:∵2m=3,2n=5,∴23m﹣2n=(2m)3÷(2n)2=27÷25=27 25.故选A.点睛:本题主要考查了同底数幂的除法及幂的乘方与积的乘方,解题的关键是把23m﹣2n化为(2m)3÷(2n)2.11.A解析:A【解析】解:∵把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,∴∠BFE=∠EFB',∠B'=∠B=90°.∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A.12.B解析:B【解析】【分析】根据三角形的角平分线、中线、高的定义及性质判断A;根据三角形的内角和定理判断B;根据三角形的高的定义及性质判断C;根据三角形外角的性质判断D.【详解】A、三角形的角平分线、中线与锐角三角形的三条高均在三角形内部,而直角三角形有两条高与直角边重合,另一条高在三角形内部;钝角三角形有两条高在三角形外部,一条高在三角形内部,故本选项错误;B、如果三角形中每一个内角都小于60°,那么三个角的和小于180°,与三角形的内角和定理相矛盾,故本选项正确;C、直角三角形有三条高,故本选项错误;D、三角形的一个外角大于和它不相邻的任何一个内角,故本选项错误;故选B.【点睛】本题考查了三角形的角平分线、中线、高的定义及性质,三角形的内角和定理,三角形外角的性质,熟记定理与性质是解题的关键.二、填空题13.30°【解析】【分析】【详解】解:∵AB//CD∴∠BAC+∠ACD=180°即∠1+∠EAC+∠ACD=180°∵五边形是正五边形∴∠EAC=108°∵∠ACD=42°∴∠1=180°-42°-1解析:30°.【解析】【分析】【详解】解:∵AB//CD,∴∠BAC+∠ACD=180°,即∠1+∠EAC+∠ACD=180°,∵五边形是正五边形,∴∠EAC=108°,∵∠ACD=42°,∴∠1=180°-42°-108°=30°故答案为:30°.14.2【解析】【分析】根据多项式相乘的法则展开然后代入数据计算即可【详解】解:(a ﹣2)(b ﹣2)=ab ﹣2(a+b )+4当a+b=ab=1时原式=1﹣2×+4=2故答案为2考点:整式的混合运算—化简求解析:2【解析】【分析】根据多项式相乘的法则展开,然后代入数据计算即可.【详解】解:(a ﹣2)(b ﹣2)=ab ﹣2(a+b )+4,当a+b=32,ab=1时,原式=1﹣2×32+4=2. 故答案为2.考点:整式的混合运算—化简求值. 15.3【解析】【分析】根据分式性质分式方程增根的条件进行求解【详解】∵∴2(x -3)-x=m 求得x=-m∵x -3=0即x=3时原方程有增根∴-m=3m=-3故答案为-3【点睛】主要考察的是分式性质分式方解析:3【解析】【分析】根据分式性质、分式方程增根的条件进行求解.【详解】 ∵233x m x x ,=--- ∴233x m x x ,-=--- 2(x-3)-x=m,求得x=-m ,∵ x-3=0 即 x=3 时,原方程有增根∴-m=3m=-3故答案为-3.【点睛】主要考察的是分式性质、分式方程有增根的条件的知识点.16.a <1且a≠−1【解析】【分析】先解分式方程根据分式方程的解为正数得出关于a 的不等式求出a 的取值范围然后再根据有增根的情况进一步求解即可【详解】解:分式方程去分母得:解得:∵关于x 的方程的解为正数∴解析:a <1且a ≠−1.【解析】【分析】先解分式方程,根据分式方程的解为正数得出关于a 的不等式,求出a 的取值范围,然后再根据有增根的情况进一步求解即可.【详解】解:分式方程去分母得:110ax x +-+=, 解得:21x a=-, ∵关于x 的方程1101ax x +-=-的解为正数, ∴x >0,即201a>-, 解得:a <1,当x−1=0时,x =1是增根, ∴211a≠-,即a≠−1, ∴a <1且a≠−1,故答案为:a <1且a≠−1.【点睛】本题主要考查了解分式方程及解不等式,注意不要忘记有增根的情况.17.2(x+2)(x ﹣2)【解析】【分析】先提公因式再运用平方差公式【详解】2x2﹣8=2(x2﹣4)=2(x+2)(x ﹣2)【点睛】考核知识点:因式分解掌握基本方法是关键解析:2(x+2)(x ﹣2)【解析】【分析】先提公因式,再运用平方差公式.【详解】2x 2﹣8,=2(x 2﹣4),=2(x+2)(x ﹣2).【点睛】考核知识点:因式分解.掌握基本方法是关键.18.【解析】由于分式的分母不能为0x-5在分母上因此x-5≠0解得x 解:∵分式有意义∴x-5≠0即x≠5故答案为x≠5本题主要考查分式有意义的条件:分式有意义分母不能为0 解析:【解析】由于分式的分母不能为0,x-5在分母上,因此x-5≠0,解得x . 解:∵分式15x -有意义, ∴x-5≠0,即x≠5.故答案为x≠5. 本题主要考查分式有意义的条件:分式有意义,分母不能为0.19.3【解析】【分析】先对原式进行变形得(a2+b2)2-(a2+b2)-6=0经过观察后又可变为(a2+b2-3)(a2+b2+2)=0又a2+b2≥0即可得出本题的结果【详解】由变形后(a2+b2)解析:3【解析】【分析】先对原式进行变形得(a 2+b 2) 2-(a 2+b 2)-6=0,经过观察后又可变为(a 2+b 2-3)(a 2+b 2+2)=0,又a 2+b 2≥0,即可得出本题的结果.【详解】由4422222+6a b a a b b +=-+变形后(a 2+b 2) 2-(a 2+b 2)-6=0,(a 2+b 2-3)(a 2+b 2+2)=0,又a 2+b 2≥0,即a 2+b 2=3,故答案为3.【点睛】此题考查因式分解的应用,解题关键在于掌握运算法则.20.8【解析】∵2x+5y ﹣3=0∴2x+5y=3∴4x•32y=(22)x·(25)y=22x·25y=22x+5y=23=8故答案为:8【点睛】本题主要考查了幂的乘方的性质同底数幂的乘法转化为以2为解析:8【解析】∵2x+5y ﹣3=0,∴2x+5y=3,∴4x •32y =(22)x ·(25)y =22x ·25y =22x+5y =23=8, 故答案为:8.【点睛】本题主要考查了幂的乘方的性质,同底数幂的乘法,转化为以2为底数的幂是解题的关键,整体思想的运用使求解更加简便.三、解答题21.证明见解析.【解析】试题分析:欲证明OE=OF ,只需推知BD 平分∠ABC ,所以通过全等三角形△ABD ≌△CBD (SSS )的对应角相等得到∠ABD=∠CBD ,问题就迎刃而解了. 试题解析:证明:∵在△ABD 和△CBD 中,AB=CB ,AD=CD ,BD=BD ,∴△ABD ≌△CBD (SSS ),∴∠ABD=∠CBD ,∴BD 平分∠ABC .又∵OE ⊥AB ,OF ⊥CB ,∴OE=OF .22.原式=2a a -+1. 【解析】分析:先根据分式混合运算顺序和运算法则化简原式,再将a 的值代入计算可得. 详解:原式=211(2)(11(1)a a a a a a ---÷---) =22(1)•1(2)a a a a a ---- =2a a -当原式1=. 点睛:本题主要考查分式的混合运算,解题的关键是熟练掌握分式混合运算顺序和运算法则.23.(1)点D 的位置如图所示(D 为AB 中垂线与BC 的交点).(2)16°.【解析】【分析】(1)根据到线段两个端点的距离相等的点在这条线段的垂直平分线上,作出AB 的中垂线.(2)要求∠CAD 的度数,只需求出∠CAD ,而由(1)可知:∠CAD=2∠B【详解】解:(1)点D 的位置如图所示(D 为AB 中垂线与BC 的交点).(2)∵在Rt △ABC 中,∠B=37°,∴∠CAB=53°.又∵AD=BD ,∴∠BAD=∠B=37°.∴∠CAD=53°—37°=16°.考点:尺规作图,直角三角形两锐角互余、垂直平分线的性质.24.无解.【解析】试题分析:分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.试题解析:去分母得:15x-12=4x+10-3x+6,移项合并得:14x=28,解得:x=2,经检验x=2是增根,分式方程无解.考点:解分式方程.25.见解析.【解析】【分析】根据平行线的性质和角平分线的定义得到∠DOC=90°,进一步得到()CDO CBO ASA ∆≅∆,得出DO=BO,则CE 是BD 的垂直平分线,根据等腰三角形的三线合一的性质得出EC 平分∠BED ,从而得证.【详解】证明:∵AD ∥BC ,∴∠ADC+∠BCD=180°,∵DB 平分∠ADC ,CE 平分∠BCD ,∴∠ODC+∠OCD=11802︒⨯=90°, ∴∠DOC=90°,又CE 平分∠BCD ,CO=CO,易证()CDO CBO ASA ∆≅∆∴DO=BO,∴CE 是BD 的垂直平分线,∴EB=ED ,又∠DOC=90°,∴EC 平分∠BED ,∴点O 到EB 与ED 的距离相等.【点睛】本题考查的是平行线的性质、角平分线的性质,全等三角形的判定,掌握平行线的判定定理和性质定理是解题的关键.。

陕西省 西安市 八年级(上)期中数学试卷-(含答案)

陕西省 西安市 八年级(上)期中数学试卷-(含答案)

八年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.下列实数中,是有理数的为()A. B. C. D. 02.如果点A(a,b)在第二象限,则点B(b,a)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.下列一组数是勾股数的是()A. 6,7,8B. 5,12,13C. ,,D. 10,15,184.设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()A. 2B.C. 4D.5.下列说法中,①任意一个数都有两个平方根.②的平方根是±3.③-125的立方根是±5.④是一个分数.⑤是一个无理数.其中正确的有()个.A. 2B. 3C. 4D. 56.下列函数①y=πx,②y=2x-1,③,④y=2-1-3x,⑤y=x2-1中,是一次函数的有()A. 4个B. 3个C. 2个D. 1个7.如图,一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,则该一次函数的表达式为()A.B.C.D.8.以为解的二元一次方程组是()A. B. C. D.9.函数y=kx-k(k<0)的图象是()A. B.C. D.10.已知关于x,y的方程组的解是二元一次方程-3x+4y=51的解,则m的值是()A. 1B. 2C. 3D. 4二、填空题(本大题共8小题,共24.0分)11.已知点P(3,a)关于y轴的对称点为Q(b,2),则ab=______.12.1的相反数是______ ,绝对值是______ .13.请写出二元一次方程2x+y=5的一个正整数解______ .14.已知等边三角形ABC的两个顶点坐标分别是A(-4,0);B(2,0),则顶点C的坐标是______.15.点P1(x1,y1),点P2(x2,y2)是一次函数y=-4x+b的图象上的两个点,且x1<x2,则y1,y2的大小关系是______ .16.如图,正方形网格中每个小正方形的边长都是1,则在△ABC中,长度为无理数的边及边长是______ .17.如图,宽为50cm的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为______cm2.18.已知直角三角形的周长是2+,斜边长2,则这个直角三角形的面积为______ .三、计算题(本大题共2小题,共12.0分)19.解方程(组)①(c-1)2=81②.20.计算①(+2)(-2)②-3+.四、解答题(本大题共5小题,共40.0分)21.如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.22.在一次春游中,小明、小亮等同学随家人一同到江郎山旅游,成人票40元/张,学生按成人票五折优惠.团体票(14人及以上)按成人票六折优惠.下面是购买门票时,小明与他爸爸的对话.爸爸:大人门票每张40元,学生票五折优惠,我们共11人,需要360元.小明:爸爸等一下,让我算一算,更换一个方式买票是否可以更省钱!(1)小明他们一共去了几个成人,几个学生?(2)请你帮助小明算一算,用哪种方式买票更省钱?并说明理由.23.已知在平面直角坐标系中,A(0,4),B(7,3).(1)点P在x轴上,且PA=PB,求P的坐标.(2)点Q在x轴上,且QA+QB最短,求QA+QB的最小值.24.L1反应了某公司产品的销售收入与销售量的关系,L2反应了该公司产品的销售成本与销售量的关系,根据图中信息填空:(1)当销售量为2吨时,销售收入= ______ 元,销售成本= ______ 元,(2)当销售量为6吨时,销售收入= ______ 元,销售成本= ______ 元;(3)当销售量等于______ 时,销售收入等于销售成本;(4)当销售量______ 时,该公司盈利(收入大于成本);当销售量______ 时,该公司亏损(收入小于成本);(5)L1对应的函数表达式是______ ,L2对应的函数表达式是______ .25.如图,一次函数的图象l经过点A(2,5),B(-4,-1)两点.(1)求一次函数表达式.(2)求直线与x轴的交点C和与y轴的交点D的坐标.(3)若点E在x轴上,且E(2,0),求△CDE的面积.(4)你能求出点E到直线l的距离吗?答案和解析1.【答案】D【解析】解:是无理数,A不正确;是无理数,B不正确;π是无理数,C不正确;0是有理数,D正确;故选:D.根据有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数进行判断即可.此题主要考查了无理数和有理数的区别,解答此题的关键是要明确:有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数.2.【答案】D【解析】解:∵点A(a,b)在第二象限,∴a<0,b>0,∴点B(b,a)在第四象限.故选D.根据第二象限内点的横坐标是负数,纵坐标是正数判断出a、b的正负情况,再根据各象限内点的坐标特征解答.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.【答案】B【解析】解:A、∵62+72≠82,∴此选项不符合题意;B、∵52+122=132,∴此选项符合题意;C、∵0.32+0.42=0.52,但不是正整数,∴此选项不符合题意;D、∵102+152≠182,∴此选项不符合题意.故选:B.欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.本题考查了勾股数的定义:满足a2+b2=c2的三个正整数,称为勾股数.一组勾股数必须同时满足两个条件:①三个数都是正整数,②两个较小正整数的平方和等于最大的正整数的平方,这两个条件同时成立,缺一不可.4.【答案】B【解析】解:把x=m,y=4代入y=mx中,可得:m=±2,因为y的值随x值的增大而减小,所以m=-2,故选:B.直接根据正比例函数的性质和待定系数法求解即可.本题考查了正比例函数的性质:正比例函数y=kx(k≠0)的图象为直线,当k>0时,图象经过第一、三象限,y值随x的增大而增大;当k<0时,图象经过第二、四象限,y值随x的增大而减小.5.【答案】A【解析】解:①负数没有个平方根,故①不符合题意;②的平方根是±3,故②符合题意;③-125的立方根是-5,故③不符合题意;④是一个无理数,故④不符合题意;⑤是一个无理数,故⑤符合题意;故选:A.根据平方根、立方根的意义,无理数的意义,可得答案.本题考查了实数,利用平方根、立方根的意义,无理数的意义是解题关键.6.【答案】B【解析】解:①y=πx是一次函数;②y=2x-1是一次函数;③y=,自变量次数不为1,不是一次函数;④y=2-1-3x是一次函数;⑤y=x2-1,自变量次数不为1,不是一次函数.故选:B.根据一次函数的定义条件进行逐一分析即可.本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.7.【答案】B【解析】解:设一次函数的解析式y=kx+b(k≠0),一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,在直线y=-x中,令x=-1,解得:y=1,则B的坐标是(-1,1).把A(0,2),B(-1,1)的坐标代入一次函数的解析式y=kx+b得:,解得,该一次函数的表达式为y=x+2.故选B.首先设出一次函数的解析式y=kx+b(k≠0),根据图象确定A和B的坐标,代入求出k和b的值即可.本题要注意利用一次函数的特点,列出方程,求出未知数.8.【答案】C【解析】解:将代入各个方程组,可知刚好满足条件.所以答案是.故选:C.所谓“方程组”的解,指的是该数值满足方程组中的每一方程.在求解时,可以将代入方程.同时满足的就是答案.本题不难,只要利用反向思维就可以了.9.【答案】A【解析】解:因为k<0,所以-k>0,所以可很一次函数y=kx-k(常数k<0)的图象一定经过第二、一、四象限,故选A一次函数y=kx-k(常数k<0)的图象一定经过第二、一、四象限,不经过第四象限.本题主要考查了函数图象上的点与图象的关系,图象上的点满足解析式,满足解析式的点在函数图象上.并且本题还考查了一次函数的性质,都是需要熟记的内容.10.【答案】C【解析】解:,把②代入①得:x+4m=m,即x=-3m,把x=-3m,y=2m代入方程得:9m+8m=51,解得:m=3,故选C求出方程组的解表示出x与y,代入已知方程计算即可求出m的值.此题考查了二元一次方程组的解,及二元一次方程的解,方程组的解即为能使方程组中两方程都成立的未知数的值.11.【答案】-6【解析】解:∵点P(3,a)关于y轴的对称点为Q(b,2),∴a=2,b=-3,∴ab=-6,故答案为:-6.根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得a=2,b=-3,进而可得答案.此题主要考查了关于y轴对称点的坐标特点,关键是掌握点的坐标的变化规律.12.【答案】-1;-1【解析】解:1-的相反数是-1,绝对值是-1.故答案为:-1,-1.根据只有符号不同的两个数互为相反数解答;根据绝对值的性质解答.本题考查了实数的性质,是基础题,熟练掌握相反数的定义,绝对值的性质是解题的关键.13.【答案】【解析】解:方程2x+y=5,解得:y=-2x+5,当x=1时,y=3,则方程的一个正整数解为,故答案为:把x看做已知数求出y,即可确定出一个正整数解.此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.14.【答案】(-1,3)或(-1,-3)【解析】解:作CH⊥AB于H.∵A(-4,0),B(2,0),∴AB=6.∵△ABC是等边三角形,∴AH=BH=3.根据勾股定理,得CH=3.∴C(-1,3);同理,当点C在第三象限时,C(-1,-3).故C点坐标为:C(-1,3)或(-1,-3),故答案为:(-1,3)或(-1,-3);作CH⊥AB于H.根据点A和B的坐标,得AB=6.根据等腰三角形的三线合一的性质,得AH=BH=3,再根据勾股定理求得CH=3,从而写出点C的坐标;此题综合运用了等边三角形的性质和勾股定理,熟练运用三角形的面积公式.x轴上两点间的距离等于两点的横坐标的差的绝对值.15.【答案】y1>y2【解析】解:根据题意,k=-4<0,则y随x的增大而减小,因为x1<x2,所以y1>y2.故答案为:y1>y2.根据一次函数y=-4x+b,当k<0时,y随x的增大而减小解答即可.本题考查了一次函数图象上点的坐标特征以及一次函数的性质;熟练掌握一次函数的性质是解决问题的关键.16.【答案】AB=,AC=2,BC=【解析】解:由勾股定理得:AB==,AC==2,BC==,长度为无理数的边及边长是AB=,AC=2,BC=;故答案为:AB=,AC=2,BC=.根据图中所示,利用勾股定理求出每个边长,然后根据无理数的定义即可得出答案.此题考查了勾股定理的应用.要注意格点三角形的三边的求解方法:借助于直角三角形,用勾股定理求解.17.【答案】400【解析】解:设一个小长方形的长为xcm,宽为ycm,则可列方程组解得则一个小长方形的面积=40cm×10cm=400cm2.故答案为:400.由题意可知本题存在两个等量关系,即小长方形的长+小长方形的宽=50cm,小长方形的长+小长方形宽的4倍=小长方形长的2倍,根据这两个等量关系可列出方程组,进而求出小长方形的长与宽,最后求得小长方形的面积.解答本题关键是弄清题意,看懂图示,找出合适的等量关系,列出方程组.并弄清小长方形的长与宽的关系.18.【答案】【解析】解:设直角三角形的两直角边为a、b,则a+b+2=2+,a2+b2=22=4,所以a+b=,(a+b)2-2ab=4,解得:ab=1,所以这个直角三角形的面积为ab=,故答案为:.设直角三角形的两直角边为a、b,根据题意和勾股定理得出a+b+2=2+,a2+b2=22=4,求出ab的值,即可求出答案.本题考查了勾股定理和三角形的面积的应用,能根据已知和勾股定理求出ab 的值是解此题的关键.19.【答案】解:①开方得:c-1=9或c-1=-9,解得:c=10或c=-8;②,①+②×2得:7x=14,解得:x=2,把x=2代入②得:y=3,则方程组的解为.【解析】①方程利用平方根定义开方即可求出解;②方程组利用加减消元法求出解即可.此题考查了解二元一次方程组,以及平方根,熟练掌握方程组的解法是解本题的关键.20.【答案】解:①原式=23-2=21;②原式=4-+=.【解析】①利用平方差公式计算;②先把各二次根式化简为最简二次根式,然后合并即可.本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.21.【答案】解:连接AC,如图所示:∵∠B=90°,∴△ABC为直角三角形,又∵AB=3,BC=4,∴根据勾股定理得:AC==5,又∵CD=12,AD=13,∴AD2=132=169,CD2+AC2=122+52=144+25=169,∴CD2+AC2=AD2,∴△ACD为直角三角形,∠ACD=90°,则S四边形ABCD=S△ABC+S△ACD=AB•BC+AC•CD=×3×4+×5×12=36.故四边形ABCD的面积是36.【解析】连接AC,在直角三角形ABC中,由AB及BC的长,利用勾股定理求出AC 的长,再由AD及CD的长,利用勾股定理的逆定理得到三角形ACD为直角三角形,根据四边形ABCD的面积=直角三角形ABC的面积+直角三角形ACD的面积,即可求出四边形的面积.此题考查了勾股定理,以及勾股定理的逆定理,熟练掌握勾股定理及勾股定理的逆定理是解本题的关键.22.【答案】解:(1)设小明他们一共去了x个成人,y个学生.根据题意得:,解得:.答:小明他们一共去了7个成人,4个学生;(2)购买团体票更省钱,理由如下:若按14人购买团体票,则共需:14×40×60%=336(元),∵360>336,∴购买团体票更省钱.【解析】(1)设小明他们一共去了x个成人,y个学生,根据总人数为11人结合总费用=40×成人数+40×0.5×学生数,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)依照购买团体票总费用=14×40×0.6,即可求出购买14张票的价钱,与原费用比较后即可得出结论.本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系列出关于x、y的二元一次方程组;(2)求出按14人购买团体票的总钱数.23.【答案】解:(1)如图1,连接AB,作AB的垂直平分线交x轴于P,则PA=PB,∵A(0,4),B(7,3),∴直线AB的解析式为:y=-x+4,AB的中点坐标为(3.5,3.5),设AB的垂直平分线的解析式为y=7x+b,把(3.5,3.5)代入y=7x+b得,b=21,∴AB的垂直平分线的解析式为y=7x-21,当y=0时,x=3,∴P(3,0);(2)作A关于x轴的对称点A′,连接A′B交x轴于Q,则A′B=QA+QB的最小值,过B作BH⊥AA′于H,∴A′H=7,BH=7,∴A′B=7,∴QA+QB的最小值是7.【解析】(1)如图1,连接AB,作AB的垂直平分线交x轴于P,则PA=PB,根据已知条件得到直线AB的解析式为:y=-x+4,AB的中点坐标为(3.5,3.5),得到AB 的垂直平分线的解析式为y=7x-21,于是得到结论;(2)作A关于x轴的对称点A′,连接A′B交x轴于Q,则A′B=QA+QB的最小值,过B作BH⊥AA′于H,解直角三角形即可得到结论.本题考查了轴对称-最短路线问题,线段垂直平分线的性质,勾股定理,关键是找出P,Q点的位置,题目比较好,难度适中.24.【答案】2000;3000;6000;5000;4;x>4;x<4;y1=1000x;y2=500x+2000 【解析】解:(1)当x=2时对应的与与l1的交点是2000元,l2的交点的纵坐标是3000元;故答案为:2000,3000;(2)通过图象观察可以得出,当x=6时,对应的与l1的交点是(6,6000),与l2的交点是(6,5000),故当销售量为6吨时,销售收入6000元,销售成本为5000元,故答案为:6000,5000;(3)从图象观察可以得出:l1与l2的交点坐标是(4,4000),则当销售量是4吨时,销售成本=销售收入为4000元.故答案为:4;(4)从图象观察可以得出:l1与l2的交点坐标是(4,4000),当销售量x>4时,该公司盈利,当销售量x<4时,该公司亏损;故答案为:x>4,x<4.(5)设l1的解析式为y1=k1x,由图象,得4000=4k1,解得:k1=1000,故l1的解析式为:y1=1000x,设l2的解析式为y2=k2x+b2,由图象,得,解得:,故l2的解析式为:y2=500x+2000,故答案为:y1=1000x,y2=500x+2000.(1)通过图象观察当x=2时对应的与l2的交点的纵坐标是3000元,与l1的交点是2000元,就可以得出销售收入和销售成本;(2)通过图象观察当x=6时对应的与l2的交点的纵坐标是3000元,与l1的交点是2000元,就可以得出销售收入和销售成本;(3)从图象可以看出l1与l2的交点坐标为(4,4000),就有可以求出结论;(4)从图象可以看出l1与l2的交点坐标为(4,4000),利用函数图象,就有可以求出结论;(5)设l1的解析式为y1=k1x+b1,l2的解析式为y2=k2x+b2,利用图象上的坐标就可以求出结论.此题考查了一次函数的应用、运用待定系数法求函数的解析式的运用,识别函数图象和会分析函数图象的能力及一次函数与一元一次方程的结合的运用,搞清楚交点意义和图象的相对位置是关键.25.【答案】解:(1)设一次函数表达式y=kx+b,将A(2,5),B(-4,-1)代入组成方程组,,解得:,∴一次函数表达式为:y=x+3;(2)令y=0,则0=x+3,∴x=-3,∴C点坐标为(-3,0);令x=0,y=3;∴D点坐标为(0,3);(3)连接DE,△ y D=|2-(-3)|×3=;(4)∵△ACE的面积为:5=;|AC|==5,∴点E到直线l的距离为:=.【解析】(1)设一次函数表达式y=kx+b,将A(2,5),B(-4,-1)代入组成方程组,解得k,b可得解析式;(2)利用(1)的解析式,令y=0可得C点坐标;令x=0可得y的坐标;(3)连接DE,由三角形的面积公式可得:y D;(4)利用△ACE的面积公式可得点E到直线l的距离.本题主要考查了待定系数法求一次函数的解析式及一次函数图象上点的坐标特征,利用面积法求得点到直线的距离是解答此题的关键.。

2020~2021学年度第一学期期中考试八年级数学试卷

2020~2021学年度第一学期期中考试八年级数学试卷

2020~2021学年第一学期期中考试八年级数学试卷注意事项:1.本试卷考试时间为100分钟,试卷满分120分.考试形式闭卷.2.答题前,务必将自己的学校、班级、姓名、准考证号填写在试卷相应位置.3.解答本试卷所有试题不得使用计算器.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填写在题后括号内)1.下列倡导节约的图案中,属于轴对称图形的是……………………………………【▲】A B C D2. 8A.2B.2 C.4 D.83.下列长度的三条线段能组成直角三角形的是……………………………………【▲】A.3,4,5 B.2,3,4 C.4,6,7 D.5,11,124.等腰三角形一边长为6,另一边长为2,则此三角形的周长为…………………【▲】A.10或14 B.10 C.14 D.185.如图,△ABC≌△ADE,点E在BC边上,∠AED=80°,则∠CAE的度数为【▲】A.80°B.60°C.40°D.20°6.如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=5,CF=3,则BD的长是…………………………………………………………………………………【▲】A.0.5 B.1 C.2 D.1.57.如图,∠ACD是△ABC的外角,CE平分∠ACB,交AB于E,CF平分∠ACD,且EF∥BC 交AC、CF于M、F,若EM=3,则CE2+CF2的值为……………………………【▲】A.36B.9C. 6D.188.如图,在△ABC中,∠C=90°,点O是∠CAB、∠ACB平分线的交点,且BC=4cm,AB=5cm,则点O到边AB的距离为……………………………………………………………【▲】A.1cm B.2cm C.3cm D.4cm二、填空题(本大题共有10小题,每小题2分,共20分.不需写出解答过程,请将答案直接写在题中横线上)9.等边三角形是一个轴对称图形,它有▲条对称轴.第5题图第6题图第7题图ADM FAED E FA10.如果一个正数的两个平方根分别为3m +4和2-m ,则这个数是 ▲ .11.如图,已知∠ABC =∠DCB ,增加下列条件:①AB =CD ;②AC =DB ;③∠A =∠D ;④∠ABO =∠DCO .能判定△ABC ≌△DCB 的是 ▲ .(填正确答案的序号)12.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB 是一个任意角,在边OA ,OB 上分别取OM =ON ,移动角尺,使角尺两边相同的刻度分别与M ,N 重合.过角尺顶点C 的射线OC 即是∠AOB 的平分线.这种做法的依据是 ▲ .13.等腰三角形一腰上的高与另一腰的夹角为20°,则这个等腰三角形底角是 ▲ °.14.如图,已知△ABC 是等边三角形,点B 、C 、D 、F 在同一直线上,CD =CE ,DF =DG ,则∠F = ▲ °.15.如图,在△ABC 中,ED ∥BC ,∠ABC 和∠ACB 的平分线分别交ED 于点G 、F ,若BE =3,CD =4,ED =6,则FG 的长为 ▲ .16.如图是由9个小等边三角形构成的图形,其中已有两个被涂黑,若再涂黑一个,则整个被涂黑的图案构成轴对称图形的方法有 ▲ 种.17.如图,在△ABC 中,AB 的垂直平分线EF 交BC 于点E ,交AB 于点F ,D 是线段CE的中点,AD ⊥BC 于点D .若∠B =36°,BC =8,则AB 的长为 ▲ .18. 如图,长方形ABCD 中,∠A =∠ABC =∠BCD =∠D =90°,AB =CD =5,AD =BC =13,点E 为射线AD 上的一个动点,若△ABE 与△A ′BE 关于直线BE 对称,当△A ′BC 为直角三角形时,AE 的长为 ▲ .三、解答题(本大题共有9小题,共76分.请在答题区域内作答,解答时应写出必要的文字说明、推理过程或演算步骤)19.(本题满分8分) 求下列各等式中x 的值:(1)(x+3)2-21=0; (2)29+(x-5)3=2.(此处答题无效)第8题图 第11题图 第12题图 O C A A D B CO A B C D E F A B C D E A′′第17题图 第18题图 A B D E F G 第14题图 第15题图 第16题图 G F A B DE20.(本题满分6分)如图,AD ⊥AB ,DE ⊥AE ,BC ⊥AE ,垂足分别为A 、E 、C ,且AD =AB .求证:△AED ≌△BCA .(此处答题无效)21.(本题满分8分)如图,点E 、F 分别为线段AC 上的两个点,且DE ⊥AC 于点E ,BF⊥AC 于点F ,若AB =CD ,AE =CF ,BD 交AC 于点M . 求证:(1)AB ∥CD ;(2)点M 是线段EF 的中点.(此处答题无效)22. (本题满分8分)如图,AB =AC 、点D 、E 分别在AB 、AC 上,且AD =AE ,BE 、CD 交于点O . 求证:AO 垂直平分BC .(此处答题无效)23.(本题满分8分)如图,在△ABC 中,AD 平分∠BAC ,点E 在AC 的垂直平分线上.(1) 若AB =5,BC =7,求△ABE 的周长; (2) 若∠B =57°,∠DAE =15°,求∠C 的度数.(此处答题无效)24.(本题满分8分)如图,在△ABC 中,AB =AC ,AD ⊥BC ,BE ⊥AC ,垂足分别为D 、E ,且AB =2AE ,求∠EDC 的度数.(此处答题无效) A B C D E M A B C E D F A B C OAB CD E E B A25.(本题满分8分)苏科版《数学》八年级上册第35页第2题,介绍了应用构造全等三角形的方法测量了池塘两端A 、B 两点的距离.星期天,爱动脑筋的小刚同学用下面的方法也能够测量出家门前池塘两端A 、B 两点的距离. 他是这样做的:选定一个点P ,连接P A 、PB ,在P A 上取一点C ,恰好有P A =14m ,PB =13m ,PC =5m , BC =12m ,他立即确定池塘两端A 、B 两点的距离为15m . 小刚同学测量的结果正确吗?为什么?(此处答题无效)26.(本题满分10分)如图,Rt △ABC 中,∠A =90°.(1) 利用圆规和直尺,在图中∠A 的内部找一个点P ,使点P 到AB 、AC 的距离相等,且PB =PC .(不写作法,保留作图痕迹)(2)若BC 的垂直平分线交直线AB 于点E ,AC =12、AB =8.求AE 的长.(此处答题无效)27.(本题满分12分)问题探究 如图1,在△ABC 中,点D 是BC 的中点,DE ⊥DF ,DE 交AB 于点E ,DF 交AC 于点F ,连接EF .①BE 、CF 与EF 之间的关系为:BE +CF ▲ EF ;(填“>”、“=”或“<”)②若∠A =90°,探索线段BE 、CF 、EF 之间的等量关系,并加以证明.问题解决 如图2,在四边形ABDC 中,∠B +∠C =180°,DB =DC ,∠BDC =130°,以D为顶点作∠EDF =65°,∠EDF 的两边分别交AB 、AC 于E 、F 两点,连接EF ,探索线段BE 、CF 、EF 之间的数量关系,并加以证明.(此处答题无效)AC图1 备用图 图2A DBC E F A ED F A B CD E F八年级数学期中试卷答案及评分说明一、选择题1~4 BBAC 5~8 DCAA二、填空题9.3 10.25 11.①③④ 12.根据“SSS”证得△COM≌△CON,得到∠AOC=∠BOC 13. 70或35 14.15° 15. 1 16.3 17.8 18. 1或25三、解答题19. (1) ∵(x+3)2-21=0,(x+3)2=21,∴x+3=x=,∴x-3或x-3;……4分(2) ∵29+(x-5)3=2,(x-5)3=-27,∴x-5=-3,∴x=2. ……4分20.∵DE⊥AE,BC⊥AE,∴∠ACB=∠E=90°,即∠B+∠BAC=90°.又∵AD⊥AB,∴∠DAC+∠BAC=90°,∴∠DAC=∠B,……2分∴在△AED与△BCA中,∠ACB=∠E,∠B=∠DAC,AB=AD,……4分∴△AED≌△BCA. ……6分21. (1)∵AE=CF,∴AE+EF=CF+ EF,即AF=CE,……1分在Rt△AFB和Rt△CED中,AB=CD,AF=CE,∴Rt△AFB≌△Rt CED,……3分∴∠A=∠C,……4分∴AB∥CD……5分;(2)由(1)得:Rt△AFB≌△Rt CED,∴BF=DE,……6分在Rt△BFM和Rt△DEM中,∠BFM=∠DEM=90°,∠BMF=∠DME,BF=DE,∴△BFM≌△DEM,…7分∴ME=MF,即点M是线段EF的中点.……8分(其他解法参照给分)22. ∵AB=AC、∴点O在线段BC的垂直平分线上……1分∵在△ABE与△ACD中,AE=AD,∠A=∠A,AC=AB,∴△ABE≌△ACD,∴∠ABE=∠ACD,......4分∵ AB=AC,∴∠ABC=∠ACB,∴∠OBC=∠OCB,∴BO=CO,∴点O在线段BC的垂直平分线上 (7)分∴AO垂直平分BC ……8分(其他解法参照给分)23. (1)∵点E在AC的垂直平分线上,∴EA=EC,∴△ABE的周长为AB+BE+AE=AB+BE+EC=AB+BC=12 (3)分(2) 由(1)得:EA=EC,∴∠EAC=∠C,∴∠DAC=∠C+15°,∵ AD平分∠BAC,∴∠DAB=∠DAC=∠C+15°,∵∠B+∠BAC+∠C=180°,∴ 57°+∠C+15°+∠C+15°+∠C=180°,解得∠C=31°.……8分(其他解法参照给分)24.取AB的中点F,连接EF. ……1分∵BE⊥AC,即∠AEB=90°,∴EF=12AB=AF,又∵AB=2AE,∴AE=AF=EF,即△AEF是等边三角形,∴∠BAC=60°. ……3分∵AB=AC,∴△ABC是等边三角形,∴∠ABC=60°.∵BE⊥AC,∴∠CBE=12∠ABC=30°,BD=CD. (5)分∵BE⊥AC,即∠AEC=90°,∴ED=12BC=BD,∴∠CBE=∠BED=30°,∴∠EDC=∠CBE+∠BED =60° (8)(其他方法参照给分)F ED C B A25.小刚同学测量的结果是正确的. ……1分理由如下:∵PC=5m ,PB=13m ,BC=12m ,∴PC 2+CB 2=PB 2,∴△PBC 是直角三角形,且∠PCB =90°,4分 ∴∠ACB=90°,在Rt △ABC 中,AB 2= AC 2+CB 2,AC=PA-PC=9m ,BC=12m ,∴AB=15m ,……7分 因此,小刚同学测量的结果是正确的. ……8分26.(1)如图,点P 即为所求PE A B C;……3分(2)AE=x ,连接EC .……4分 ∵ EF 垂直平分线段BC ,∴EB=EC=AE+AB=8+x ,……5分 在Rt △ACE 中,AE 2+AC 2=EC 2,……7分 ∴x 2+122=(x+8)2,解得x=5,……9分 ∴ AE=5,即AE 的长为5. ……10分27. 问题探究 ①>……2分②线段BE 、CF 、EF 之间的等量关系为:BE 2+CF 2=EF 2.……3分证明:∵∠A=90°,∴∠B+∠ACB=90°,延长ED 到点G ,使DG=ED ,连结GF ,GC ,∵ED ⊥DF ,∴EF=GF ,∵D 是BC 的中点,∴BD=CD ,在△BDE 和△CDG 中,ED =GD ,∠BDE =∠GDC ,BD =CD ,△DBE ≌△DCG ,……4分EF=GF ,∴BE=CG ,∠B=∠GCD ,∴AB ∥CG ,∴∠GCD+∠ACB=90°,即∠GCF=90°,∴Rt △CFG 中,CF 2+GC 2=GF 2,∴BE 2+CF 2=EF 2;……7分(2)线段BE 、CF 、EF 之间的数量关系为:EF=BE+CF. ……7分理由:延长AC 到G ,使CG=BE ,∵∠B+∠ACD=180°,∠ACD+∠DCG=180°,∴∠B=∠DCG ,在△DBE 和△DCG 中,BE =GC ,∠B =∠DCG ,BD =CD ,∴△DBE ≌△DCG ,∴DE=DG ,∠BDE=∠CDG , (9)∵∠BDC=130°,∠EDF=65°,∴∠BDE+∠CDF=65°,∴∠CDG+∠CDF=65°,∴∠EDF=∠GDF,在△EDF和△GDF中,DE=DG,∠EDF=∠GDF,DF=DF,∴△EDF≌△GDF,∴EF=GF,……11分∵GF=CG+CF,∴GF=BE+CF,∴EF=BE+CF.……12分如图,Rt△ABC中,AB=AC=3,点D是AB上一点,以CD为边作等边△CDE,使A、E位于BC异侧.当D 点从A点运动到B点,E点运动的路径长为 3。

2020-2021学年陕西省西安市碑林区铁一中学八年级(上)——第二次月考数学试卷

2020-2021学年陕西省西安市碑林区铁一中学八年级(上)——第二次月考数学试卷

2020-2021学年陕西省西安市碑林区铁一中学八年级(上)第二次月考数学试卷一、精心选一选,慧眼识金(共10小题,每小题3分,共30分,每小题只有一个正确答案)1.下列四个实数中无理数的是()A.0B .C .D.π2.下列计算正确的是()A.4B .C.2=D.33.一次函数y=kx+b中,若kb<0,且y随着x的增大而增大,则其图象可能是()A .B .C.D.4.已知点M到x轴的距离为2,到y轴距离为1,且在第二象限内,则点M的坐标为()A.(1,﹣2)B.(﹣1,2)C.(2,﹣1)D.(﹣2,1)5.某中学随机调查了15名学生,了解他们一周内在校参加体育锻炼的时间,列表如下:锻炼时间(时)5678人数2652则这15名学生一周内在校参加体育锻炼的时间的中位数和众数分别为()A.6小时,7小时B.7小时,7小时C.7小时,6小时D.6小时,6小时6.下列条件中,不能判断一个三角形为直角三角形的是()A.三个角的比是1:2:3B.三条边满足关系a2=c2﹣b2C.三条边的比是2:3:4D.三个角满足关系∠B+∠C=∠A7.甲、乙、丙三种商品,若购买甲3件、乙2件、丙1件,共需315元钱,购甲1件、乙2件、丙3件共需285元钱,那么购甲、乙、丙三种商品各一件共需多少钱()A.128元B.130元C.150元D.160元8.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为()A.B.3C.1D.9.甲、乙两人在笔直的公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①步行的速度为60米/分;②乙走完全程用了30分钟;③乙用12分钟追上甲;④乙到达终点时甲离终点还有380米;其中正确的结论有()A.1个B.2个C.3个D.4个10.如图,已知DC=1,AB=3,∠ABC与∠DAB互余,则BD2+AC2的值为()A.10B.12C.14D.8二、耐心填一填,一锤定音(共6小题,每小题3分,共18分)11.比较大小:53.12.已知点A(a﹣1,5)和点B(2,b+1)关于y轴对称,则a+b=.13.已知数据x1,x2,……,x n的方差为3,则数据﹣2x1+5,﹣2x2+5,……,﹣2x n+5的方差为.14.如图,直线y=ax+b与直线y=mx交于B(3,﹣2),则关于x的一元一次方程ax﹣b =mx的解为.15.如图.长方体的底面是边长2cm的正方形,高为6cm.如果从点A开始经过4个侧面缠绕2圈到达B,那么所用细线最短需要cm.16.如图,在平面直角坐标系中,一次函数y=﹣x+6与坐标轴交于点A,B,点C为线段OA上一动点,过点C作CD⊥AB于点D,过点D作DE∥x轴,交y轴于点E,在直线DE上找一点F,使得∠DCF=90°,连接OF,则OF+CF的最小值为.三、用心做一做,马到成功(本大题共8小题,共52分,解答时需写出必要的过程)17.计算题(1);(2);(3);(4).18.如图,在平面直角坐标系xOy中,点A(0,8),点B(6,8).(1)尺规作图:求作一个点P,使点P同时满足下列两个条件(要求保留作图痕迹,不必写出作法):①点P到A,B两点的距离相等;②点P到∠xOy的两边的距离相等;(2)直接写出点P的坐标.19.某市教育行政部门为了了解初一学生每学期参加综合实践活动的情况,随机抽样调查了某校初一学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图).请你根据图中提供的信息,回答下列问题:(1)求出该校初一学生总数;(2)在这次抽样调查中,众数和中位数分别是多少?(3)如果该市共有初一学生6000人,请你估计“活动时间不少于4天”的大约有多少人?20.若关于x,y的二元一次方程组的解也是二元一次方程2x+3y=6的解,求k 的值.21.已知直线l1:y=x﹣3与x轴、y轴分别交于点A和点B.(1)求点A和点B的坐标;(2)将直线l1向上平移6个单位后得到直线l2,点M是直线l2上一点,且横坐标为﹣2,求△MAB的面积.22.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A 作AE⊥AD,并且始终保持AE=AD,连接CE,AF平分∠DAE交BC于F.(1)探究线段BD、DF、FC之间的数量关系,并证明;(2)若BD=3、CF=4,求AD的长.23.为了防治“新型冠状病毒”,某单位准备用5400元购买医用口罩和洗手液、若医用口买800个,洗手液买120瓶,则还缺200元钱:若医用口罩买1200个,洗手液买80瓶,则钱恰好用完.(1)求医用口罩和洗手液的单价;(2)由于实际需要,除购买医用口罩和洗手液外,还需增加购买单价6元的N95口罩.若需购买医用口罩和N95口罩共1200个,其中N95口罩不超过200个,钱恰好全部用完,则有几种购买方案?(设购买N95口罩a个,请列式计算.)24.如图1,已知函数y=x+3与x轴交于点A,与y轴交于点B,点C与点A关于y轴对称.(1)求直线BC的函数解析式;(2)设点M是x轴上的一个动点,过点M作y轴的平行线,交直线AB于点P,交直线BC于点Q.①若△PQB的面积为,求点M的坐标;②连接BM,如图2,若∠BMP=∠BAC,求点P的坐标.。

陕西省西安市2021版八年级上学期期中数学试卷(I)卷

陕西省西安市2021版八年级上学期期中数学试卷(I)卷

陕西省西安市2021版八年级上学期期中数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列图形中,不是轴对称图形的是()A . 线段B . 角C . 等腰三角形D . 直角三角形2. (2分)等腰三角形两边长分别为3,7,则它的周长为().A . 13B . 17C . 13或17D . 不能确定3. (2分) (2016九上·永嘉月考) 在下列运算中,计算正确的是()A .B .C .D .4. (2分)(2019·乌鲁木齐模拟) 下列计算正确的是()A . 5a4•2a=7a5B . (﹣2a2b)2=4a2b2C . 2x(x﹣3)=2x2﹣6xD . (a﹣2)(a+3)=a2﹣65. (2分)(2017·邵阳模拟) 下列函数中,当x>0时,y的值随x的值增大而减小的函数是()A . y=3xB . y=x﹣1C . y=D . y=2x26. (2分)当x>0时,函数y=﹣2x的图象在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限7. (2分)甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m,先到终点的人原地休息.已知甲先出发2s.在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是()A . ①②③B . 仅有①②C . 仅有①③D . 仅有②③8. (2分)如图所示,各边相等的五边形ABCDE中,若∠ABC=2∠DBE,则∠ABC等于()A . 60°B . 120°C . 90°D . 45°9. (2分)如图,点A,B,C的坐标分别为(0,-1),(0,2),(3,0).从下面四个点M(3,3),N(3,-3),P(-3,0),Q(-3,1)中选择一个点,以A,B,C与该点为顶点的四边形不是中心对称图形,则该点是()A . MB . NC . PD . Q10. (2分)下列各点中,在函数y=2x-6的图象上的是()A . (-2,3)B . (3,-2)C . (1,4)D . (4,2)二、填空题 (共5题;共5分)11. (1分) (2018八上·栾城期末) 如图,在△ABC和△DCB中,已知AC=DB,要使△ABC≌△DCB,则需要补充的条件为________.(填一个正确的即可)12. (1分) (2019八上·鸡东期末) 如图,第1个图形有1个三角形,第2个图形中有5个三角形,第3个图形中有9个三角形,……,则第2019个图形中有________个三角形.13. (1分)如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为4,则BE等于________.14. (1分)在Rt△ACB中,∠ACB=90°,点D在边BC上,连接AD,以点D为顶点,AD为一边作等边△ADE,连接BE,若BC=7,BE=4,∠CBE=60°,则∠EAB的正切值为________.15. (1分)如图,若双曲线(k>0)与边长为3的等边△AOB(O为坐标原点)的边OA、AB分别交于C、D两点,且OC=2BD,则k的值为________ .三、解答题 (共7题;共60分)16. (10分)(2011·湛江) 如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣4,3),C(﹣1,1).(1)作出△ABC向右平移5个单位的△A1B1C1;(2)作出△ABC关于y轴对称的△A2B2C2,并写出点C2的坐标.17. (10分)操作与探究我们知道:过任意一个三角形的三个顶点能作一个圆,探究过四边形四个顶点作圆的条件.(1)分别测量图1、2、3各四边形的内角,如果过某个四边形的四个顶点能一个圆,那么其相对的两个角之间有什么关系?证明你的发现.(2)如果过某个四边形的四个顶点不能一个圆,那么其相对的两个角之间有上面的关系吗?试结合图4、5的两个图说明其中的道理.(提示:考虑∠B+∠D与180°之间的关系)由上面的探究,试归纳出判定过四边形的四个顶点能作一个圆的条件.18. (5分)如图,点E、F在AC上,AB∥CD,AB=CD,AE=CF,求证:△ABF≌△CDE.19. (5分) (2017八上·平邑期末) 如图,在△ABC中,∠A︰∠B︰∠C=5︰4︰3,BD、CE分别是边AC、AB 上的高,BD、CE相交于点H,求∠BHC的度数.20. (15分) (2017八下·萧山开学考) 在直线上顺次取A,B,C三点,分别以AB,BC为边长在直线的同侧作正三角形,作得两个正三角形的另一顶点分别为D,E.(1)如图①,连结CD,AE,求证:CD=AE;(2)如图②,若AB=1,BC=2,求DE的长;(3)如图③,将图②中的正三角形BEC绕B点作适当的旋转,连结AE,若有DE2+BE2=AE2,试求∠DEB的度数.21. (5分)(2019·会宁模拟) 如图,▱AOBC的顶点O(0,0),A(﹣1,2),B(7,0),作∠AOB的平分线交AC于点G,并求线段CG的长,(要求尺规作图保留作图痕迹,不写作法)22. (10分)如图,已知△ABC和△ABD均为等腰直角三角形,∠ACB=∠BAD=90°,点P为边AC上任意一点(点P不与A、C两点重合),作PE⊥PB交AD于点E,交AB于点F.(1)求证:∠AEP=∠ABP.(2)猜想线段PB、PE的数量关系,并证明你的猜想.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共7题;共60分)16-1、16-2、17-1、17-2、18-1、19-1、20-1、20-2、20-3、21-1、22-1、22-2、。

2020-2021学年陕西省西安市铁一中学(滨河)八年级上学期第一次月考数学试卷

2020-2021学年陕西省西安市铁一中学(滨河)八年级上学期第一次月考数学试卷

2020-2021学年陕西省西安市铁一中学(滨河)八年级上学期第一次月考数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.在√25,√2,1.414,113,−π3,3.25,0中无理数有( )A .1个B .2个C .3个D .4个2.下列四组数:①5,12,13;②7,24,25;③3a ,4a ,5a(a >0);④32,42,52其中可以构成直角三角形的有( )A .1组B .2组C .3组D .4组3.下列计算正确的是( )A .√2×√3=√6B .√2+√3=√5C .√15=3√5D .√5−√3=√2 4.如图以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A 处,则点A 表示的数是( )A .32BCD .1.4 5.下列说法不正确的是( )A .125的平方根是15±B .﹣9是81的算术平方根C .(﹣0.1)2的平方根是±0.1D 3=- 6.两只小鼹鼠在地下从同一处开始打洞,一只朝正北方向挖,每分钟挖8cm ,另一只朝正东方向挖,每分钟挖6cm ,10分钟之后两只小鼹鼠相距( )A .100cmB .50cmC .140cmD .80cm7.若√x−1x−1有意义,则x 的取值范围为( )A .x ≥1B .x >1C .x ≤1D .x <18.如图,长方体的透明玻璃鱼缸,假设其长AD =80cm ,高AB =60cm ,水深为AE =40cm ,在水面上紧贴内壁G 处有一鱼饵,G 在水面线EF 上,且EG =60cm ;一小虫想从鱼缸外的A 点沿壁爬进鱼缸内G 处吃鱼饵,则小动物爬行的最短路线长为( )A.40cm B.60cm C.80cm D.100cm9.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°10.如图,在锐角△ABC中,AB=4√2,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是()A.8B.6C.5D.4二、填空题11.|3.14−π|+√(3.14−π)2=_______.12.在“寻找滨河最美,拒绝不文明行为”系列活动中,细心的董明同学发现:学校六号楼前有一块长方形花圃(如图所示),有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,请你计算,他们仅仅少走了______步路(假设2步为1米),却踩伤了花草.13.已知直角三角形的两边长分别为5和12,那么以这个直角三角形的斜边为边长的正方形的面积为_________.14.如图所示,网格中的每个小正方形的边长都是1,△ABC每个顶点都在网格的交点处,则S △ABC =________.15.比较大小:√15−33_______1316.如图所示,正方形ABCD 的边长为2,其面积标记为S 1,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S 2,⋯⋯按照此规律继续下去,则S 2015的值为_______.三、解答题17.计算下列各题(1)√12−√27+√75(2)√15×√63 (3)√8−12√3−23√92+2√34(4)(π−3)0−|√5−3|+(−13)−2−√518.一长方形的长与宽的比为4:3,其对角线长为√75,求这个长方形的长与宽(结果精确到0.1).19.求代数式x 2+xy +y 2的值,其中x =√2−√3,y =√2+√320.矩形纸片ABCD 的边长AB =4,AD =2,将矩形纸片沿EF 折叠,使点A 与点C 重合,折叠后在其一面着色,请计算着色部分(阴影)的面积.21.如图,在ABC 中,已知AB =13cm ,AC =5cm ,BC 边上的中线AD =6cm ,求以BC 为边长的正方形的面积.22.阅读下列解题过程:1√5+√3=1×(√5−√3)(√5+√3)(√5−√3)=√5−√3(√5)2−(√3)2=√5−√3(√5)2−(√3)2=√5−√35−3=√5−√32 请回答下列问题:(1)观察上面的解题过程,化简:①13−3,②√n+√n−2(2)利用上面提供的解法,请计算:(5+28+511+8⋯+3n+2+3n−2)(√3n +2+√2).23.操作发现:将一副直角三角板如图①摆放,能够发现等腰直角三角板ABC 的斜边与含30°角的直角三角板DEF 的长直角边DE 重合.问题解决将图①中的等腰直角三角板ABC 绕点B 顺时针旋转30°,点C 落在BF 上,AC 与BD 交于点O ,连接CD ,如图②.(1)求证:△CDO 是等腰三角形;(2)若DF =8 ,求AD 的长.(直角三角形中,30°的锐角所对的直角边等于斜边的一半)24.(1)已知非零实数a ,b 满足|a −4|+(b +3)2+√a −4+4=a ,求a +b 的值.(2)已知非负实数a ,b 满足a +b +|√c −1−1|=4√a −2+2√b +1−4 ,求a +2b −2c 的值.参考答案1.B【解析】试题分析:本题主要考查的就是无理数的定义,无理数是指无限不循环小数,主要有三种表现形式:①、开方开不尽的数;②、含有π的数;③、具有特定结构的数.本题中√2和−π3是无理数.2.C【解析】试题分析:本题主要考查的就是利用勾股定理判定直角三角形,如果较小两边的平方和等于较大边的平方,则能构成直角三角形.①、52+122=132,则能构成直角三角形;②、72+242=252,则能构成直角三角形;③、(3a)2+(4a)2=(5a)2,则能构成直角三角形;④、不能构成直角三角形.3.A【解析】试题分析:本题主要考查的就是二次根式的计算.B和D中的两个二次根式不是同类二次根式,则无法进行加减法计算;C选项中的二次根式为最简二次根式,无法进行化简. 4.B【解析】,则点A故选B. 5.B【解析】解:A、125的平方根是15±,故选项正确;B、﹣9是81的一个平方根,故选项正确;C、0.2,故选项错误;D3-,故选项正确.故选C.6.A【解析】试题分析:本题主要考查的就是勾股定理的应用,根据题意可得:向北挖了80cm,向东挖了60cm,根据勾股定理可知两只鼹鼠相距√802+602=100cm.7.B【解析】试题分析:二次根式的被开方数为非负数,分式的分母不能为零,根据题意可得:x-1>0,则x>1.8.D【解析】试题分析:本题我们首先需要将立体图形转化为几何图形,然后利用勾股定理进行求解.如图所示:EG=60cm,AE=60+20=80cm,则根据勾股定理可知:AG=100cm,即最短路线长为100cm.点睛:本题主要考查的就是勾股定理在实际问题中的应用.在立体图形中求两点之间的最短距离的时候我们一般首先将几何图形进行展开,转化成直角三角形来进行求解.本题中一个在外面,另一个在里面,我们需要通过翻折将里面的转化成一个平面,然后进行求解.这种问题,在矩形的时候一定要特别注意展开图的不同方法,从而得出不同的直角三角形,然后得出最短距离.9.C【解析】试题分析:根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.试题解析:连接AC,如图:根据勾股定理可以得到:.∵2+2=)2.∴AC2+BC2=AB2.∴△ABC是等腰直角三角形.∴∠ABC=45°.考点:勾股定理.10.D【解析】试题分析:如图,在AC上截取AE=AN,连接BE.根据题意可以得出△AME≌△AMN,则ME=MN.∴BM+MN=BM+ME≥BE.要使BM+MN有最小值,当BE是点B到直线AC的距离时,BE⊥AC,又AB=4√2,∠BAC=45°,此时,△ABE为等腰直角三角形,∴BE=4,即BE取最小值为4,∴BM+MN的最小值是4.点睛:本题主要考查的就是直角三角形的勾股定理和饮马问题,在解决饮马问题的时候,我们一般将一个定点做关于动点所在直线的对称点,然后根据两点之间线段最短进行计算.本题中有两个动点,首先将一个动点看做是定点,然后根据三角形的三边关系得出直线外一点到直线的最短距离为垂线段的长度,然后根据勾股定理求出最小值.11.2π−6.28【解析】试题分析:首先将二次根式转化为绝对值,然后进行去绝对值计算得出答案.原式=|3.14−π|+|3.14−π|=π-3.14+π-3.14=2π-6.28.12.4【解析】试题分析:首先根据勾股定理可知对角线的长度为5m,则比原来的路多2米,即多出了4步的路程.13.169或144【解析】试题分析:本题需要注意进行分类讨论,当5和12为直角边时,则根据勾股定理可得斜边长为13,即正方形的面积为169;当12为斜边时,正方形的面积为144.点睛:本题主要考查的就是直角三角形的勾股定理以及分类讨论的思想.在解决这个问题的时候,我们一定要看清楚所给出的条件是直角三角形的两条直角边还是直角三角形的两边,本题我们一定要明白12到底是直角边还是斜边,然后根据两种情况分别求出正方形的面积. 14.6【解析】试题分析:本题利用大正方形的面积减去三个直角三角形的面积得出答案.S=4×4-2×4÷2-2×2÷2-4×2÷2=16-4-2-4=6.【解析】试题分析:当分母相同时,我们可以比较分子的大小,分子越大分数就越大.根据3<√15<4可得:0<√15−3<1,从而得出两数的大小.16.122012【解析】试题分析:本题我们首先求出前面几个正方形的面积,从而得出一般性的规律,然后得出答案.根据题意可得:S 1=4,S 2=2,S 3=1,S 4=12,S 5=14,则S n =12n−3,根据规律得出答案.点睛:本题主要考查的就是等腰直角三角形的性质以及规律的发现与整理.在解决这个问题的时候我们首先求出第一个正方形的面积,然后根据等腰直角三角形的性质得出第二个正方形的边长,从而得出第二个正方形的面积,利用同样的方法求出第三个、第四个和第五个正方形的面积,然后找出一般性的规律,从而得出答案.17.17.(1)4√3;(2)√10;(3)√2+12√3;(4)7【解析】试题分析:(1)、首先根据二次根式的化简法则将各二次根式进行化简,然后进行加减法计算;(2)、根据二次根式的乘法计算法则进行计算;(3)、首先根据二次根式的化简法则将各二次根式进行化简,然后进行加减法计算;(4)、根据绝对值、0次幂和负指数次幂计算法则求出各式的值,然后进行求和.试题解析:(1)、原式=2√3-3√3+5√3=4√3(2)、原式=√903=3√103=√10 (3)、原式=2√2-12√3-√2+√3=√2+12√3 (4)、原式=1-3+√5+9-√5=718.长为4√3≈6.9,宽为3√3≈5.2【解析】试题分析:首先设长为4x ,则宽为3x ,然后根据勾股定理列出方程,从而求出x 的值,得出长方形的长和宽.试题解析:设长为4x ,则宽为3x根据题意可得:(4x)2+(3x)2=75 解得:x=√3则长为4x=4√3≈6.9 宽为3x=3√3≈5.219.9【解析】试题分析:将代数式转化为(x +y)2-xy ,然后将x 和y 的值代入进行计算.试题解析:原式=(x +y)2-xy=(√2−√3+√2+√3)2-(√2−√3)(√2+√3)=8-(-1)=9. 20.112【解析】试题分析:首先设BE=x ,则EC=4-x ,然后根据Rt△ECB 的勾股定理求出x 的值,然后根据阴影部分的面积等于矩形ABCD 的面积减去△ECF 的面积.试题解析:设BE=x ,则AE=EC=CF=4-x ,在Rt△ECB 中,CE 2=BE 2+BC 2∴(4−x)2=x 2+22 , ∴x=32 ,CF =52. S 着色部分=S 矩形ABCD -S△ECF=4×2-12×52×2=112 21.244【解析】试题分析:延长AD 到E ,使得DE=AD ,从而证明△ABD 和△EDC 全等,然后根据勾股定理的逆定理证明△ACE 为直角三角形,从而求出CD 的长度,最后根据BC=2CD 求出正方形的面积.试题解析:延长AD 到E 使得DE=AD 连EC 因为BD=CD ∠ADB=∠CDE所以△ABD≌△EDC 所以EC=AB=12,在△ACE 中,AE=2AD=12, AE 2=144 EC 2=169 AC 2=25所以AE 2+AC 2=EC 2 所以△ACE 是直角三角形,且∠EAC=90°在直角三角形ACD 中 由勾股定理得:CD 2=AD 2+AC 2=61所以以BC 为边的正方形的面积=BC 2=(2CD)2=4CD 2=24422.(1)①3+√13;②√n−√n−22(2)n 【解析】试题分析:(1)、利用平方差公式将分母进行有理化,从而得出化简的答案;(2)、将括号里面的每一个式子进行分母有理化,从而进行化简计算.试题解析:(1)、原式=√13+3)(√13−3)(√13+3)=4(√13+3)4=√13+3 原式=√n−√n−2(√n−√n−2)(√n+√n−2)=√n−√n−22 (2)、原式=√5−√2+√8−√5+√11−√8+⋯√3n+2−√3n−23·(√3n +2+√2)=√3n+2−√23·(√3n +2+√2)=n23.(1)证明见解析;(2)12−4√3【解析】试题分析:(1)、根据题意可得BC=DE,进而得到∠BDC=∠BCD,再根据三角形内角和定理计算出度数,然后再根据三角形内角与外角的性质可得∠DOC=∠DBC+∠BCA,进而算出度数,根据角度可得△CDO是等腰三角形;(2)、作AG⊥BC,垂足为点G,DH⊥BF,垂足为点H,首先根据∠F=60°,DF=8,可以算出DH=4√3,HF=4,DB=8√3,BF=16,进而得到BC=8√3,再根据等腰三角形的性质可得BG=AG=4√3,证明四边形AGHD为矩形,根据线段的和差关系可得AD长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档