二年级奥数找规律填数 (2) PPT
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
隔数观察法
(3) 11、4、8、4、5、4、( )、2( ) 4
单数项:相邻的两个单数项,后一个比前一个少3 双数项:双数项都是4
(4)20、9、15、8、10、7、( )、5( )
6 单数项:相邻的两个单数项,后一个比前一个少5 双数项:相邻的两个双数项,后一个比前一个少1
找到规律并填数。 (1)1、11、21、( 31)、(41)、(51) (2)100、90、80、(70)、(60)、(50) (3)27、6、23、6、19、6、15、6、(11)、( 6)
-3 -2 -3 -2 -3
(2) 13、 9、 6、 4、____; 3
-4 -3 -2 -1
小热身:数数
1、2、3、( )4、( )5、( )6、 ( ) 7 2、4、6、 ( )8、( )1、0 ( )、12( ) 14 5、15、25( )3、5 ( )4、5( )、5(5 ) 65 2、4、5、; 7、8、10、11、( )、1(3 ) 14 1、3、4、6、7、9、10、( )1、2( ) 13
(4)18、4、15、8、12、12、9、16、(6 ) 、(20)
(5)1、2、3、5、8、( )1、3 ( )。21
1+2=3
2+3=5
3+5=8
5+8=
(6)1、1、1、1、4、7、13、( )、25( ) 45
1+1+1+1=4
1+1+1+4=7
1+1+4+7=13
1+4+7+13=
分组观察法。
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
大家应该也有点累了,稍作休息
大家有疑问的,可以询问和交流
6 0 1 2 3 4 5
7 8 9 10 11 12 13 14
6 8 0 1 2 3 4 5
7
9 10 11 12 13 14
6 8 10 0 1 2 3 4 5
+3
1、2、3、5、5、8、7、11、(9)、(14 )
+2
单数项:相邻的两个单数项,后一个比 前一个多2. 双数项:相邻的两个双数项,后一个 比前一个多3
你知道我 怎么数的
吗?
-2
15、14、11、12、7、10、( )、3( ) 8
-4
单数项:相邻的两个单数项,后一个比 前一个少4. 双数项:相邻的两个双数项,后一个 比前一个少2。
在日常生活中,我们经常会碰到 许多按一定的顺序排列的数。比如: 自然数、年份等。只要我们从不同角 度去分析研究,善于观察、分析、总 结,就能发现规律,找到解决问题的 方法。
按一定的规律排列的一列数叫做数 列。
1,2,3,4,5,6, 7,8,9,10,11……就是自 然数排成的数列,每个数比前一个大1, 第n个数就是n。
9
7
5
3
11
1
11
9
7
5
3
1
例:找出下面每列数的排列规律,在括号里 填上适当的数
(1)1 、3、5、7、( )9
相邻两个数,后一个比前一个多2
(2)35、( 2)8 、21、14、7、0
相邻两个数,后一个比前一个少7
连续观察法
观察规律,在横线上填上合适的数。 (1) 15、12、10、 7、 5、____;2
17 48 13
18 11 12 17
25 12 15 20
9 16 8 4 7 8 10 10
3451 23451
整体观察法。
例2:找出规律,在“?”处填上适当的数
1 8 5 12 9 6 3 10 ?7 1?4
1 8 5 12 9 6 3 10 ?7 1?4
1+6=7 8+3=11 5+10=15
数列中的每一个数叫做这个数列的 项。其中第1个数称为这个数列的第1项, 第2个数称为第2项,第n个数称为第n项。
找规律填数关键是根据已知的数, 找出数与数之间的规律。
常用的观察方法:看相邻两数的 差(相减)、和(相加)、积(相乘)、商(相除)。
一个数列,从第2项起,后一项 减去前面一项所得的差都相等, 那么这个数列就叫做等差数列。
主要的观察方法: 1. 连续观察法。2. 隔数观察法 3. 分组观察法。4.整体观察法。
一、要细心观察题目中数字的特 征。
二、要灵活运用整数的有关知识 和加、减、乘、除的计算法则。
三、要对数字之间的关系进行合理 的推想,分析已知数据与未知数据的 联系,从中发现规律,解决问题。
四、规律要适合所有的数,不能只 看前
先找到规律,填出空缺的数字
2 4 6 8 10 19 17 15 13 11
2 8 14 20 26 3 6 9 12 15
找出规律在()内填写合适的数。 (1)1,2,4,( ),( ),( )…… (2)1,2,4,( ),( ),( )…… (3)1,2,4,( ),( ),( )……
7
9
11 12 13 14
6 8 10 12 0 1 2 3 4 5
7
9
11
13 14
6 8 10 12 14 0 1 2 3 4 5
7
9
11
13
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
5 0 1 2 3 4
6 7 8 9 10 11 12 13 14
2 5 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14