知识讲解离散型随机变量的均值与方差

合集下载

离散型随机变量的均值与方差

离散型随机变量的均值与方差

课堂互动讲练
(3)设技术革新后的三等品率为x, 则此时1件产品的平均利润为 Ex=6×0.7+2×(1-0.7-0.01-x)+ x+(-2)×0.01 =4.76-x(0≤x≤0.29),9分 依题意,Ex≥4.73, 即4.76-x≥4.73, 解得x≤0.03. 所以三等品率最多为3%. 12分
课堂互动讲练
(2)EY=E(2X+3)=2EX+3 =2×(-13)+3=73; DY=D(2X+3)=4DX=4×59=290. 【名师点评】 ξ是一个随机变 量,则η=f(ξ)一般仍是一个随机变 量,在求η的期望和方差时,要应用期 望和方差的性质.
课堂互动讲练
考点四 均值与方差的实际应用
利用期望和方差比较随机变量的 取值情况,一般是先比较期望,期望 不同时,即可比较出产品的优劣或技 术水平的高低,期望相同时,再比较 方差,由方差来决定产品或技术水平 的稳定情况.
课堂互动讲练
P(X≥7)=P(X≤3) =12×[1-P(3<X<7)], =12×(1-0.9544)=0.0228, ∵P(4<X<6)=0.6826, ∴P(5<X<6)=12P(4<X<6) =0.3413.
课堂互动讲练
考点二 求离散型随机变量的期记与方差
求离散型随机变量X的均值与方差 的步骤:
课堂互动讲练
(1)求q2的值; (2)求随机变量ξ的数学期望Eξ; (3)试比较该同学选择都在B处投 篮得分超过3分与选择上述方式投篮 得分超过3分的概率的大小.
课堂互动讲练
【思路点拨】 首先由P(ξ=0)= 0.03计算出q2,从而可写出分布 列.本题便可求解.
【解】 (1)由题设知,“ξ=0”对 应的事件为“在三次投篮中没有一次投 中”,由对立事件和相互独立事件性质 可知

离散型随机变量的均值与方差

离散型随机变量的均值与方差
离散型随机变量的均值与方差
(1)均值
称 E(X)=x1p1+x2p2+…+xipi+…+xnpn 为
随机变量 X 的均值或 数学期望 ,它反映了离
散型随机变量取值的 平均水平 .
(2)方差 n

D(X)=

i=1
(xi-E(X))2pi 为随机变量 X 的
方差,它刻画了随机变量 X 与其均值 E(X) 的 平均偏离程度 ,其算术平方根 DX 为
2.方差的意义 D(X)表示随机变量 X 对 E(X)的平均偏离程 度,D(X)越大表明平均偏离程度越大,说 明 X 的取值越分散,反之 D(X)越小,X 的 取值越集中,由方差定义知,方差是建立 在期望这一概念之上的.在 E(X)附近,统 计中常用 DX来描述 X 的分散程度.
基础自测
1.随机变量 ξ 的分布列如下:
=E(ξ2)+4E(ξ)+4=11+12+4=27.
D(2ξ-1)=4D(ξ)=8,
Dξ-1= Dξ= 2.
探究提高 ξ 是随机变量,则 η=f(ξ)一般仍是 随机变量,在求 η 的均值和方差时,熟练应用 均值和方差的性质,可以避免再求 η 的分布列 带来的繁琐运算.
变式训练 2 袋中有 20 个大小相同的球,其中 记上 0 号的有 10 个,记上 n 号的有 n 个(n =1,2,3,4).现从袋中任取一球,ξ 表示所取 球的标号. (1)求 ξ 的分布列、均值和方差; (2)若 η=aξ+b,E(η)=1,D(η)=11,试求 a,b 的值.
题型分类 深度剖析
题型一 离散型随机变量的均值与方差的求法 例 1(2010·福建)设 S 是不等式 x2-x-6≤0 的解集,
整数 m,n∈S. (1)记“使得 m+n=0 成立的有序数组(m,n)” 为事件 A,试列举 A 包含的基本事件; (2)设 ξ=m2,求 ξ 的分布列及其均值 E(ξ).

离散型随机变量的分布列、均值与方差

离散型随机变量的分布列、均值与方差

离散型随机变量的分布列、均值与方差1.离散型随机变量的均值与方差 一般地,若离散型随机变量X 的分布列为(1)分布列的性质①p i ≥0,i =1,2,3,…,n . ②11=∑=ni i p(2)均值称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平. (3)方差称D (X )=i 12))((P X E x ni i ∑=-为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均偏离程度,其算术平方根D (X )为随机变量X 的标准差. 2.均值与方差的性质 (1)E (aX +b )=aE (X )+b .(2)D (aX +b )=a 2D (X ).(a ,b 为常数)3.判断下列结论的正误(正确的打“√”错误的打“×”)(1)随机变量的均值是常数,样本的平均值是随机变量,它不确定.(√)(2)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离变量平均程度越小.(√)(3)离散型随机变量的概率分布列中,各个概率之和可以小于1.(×) (4)离散型随机变量的各个可能值表示的事件是彼此互斥的.(√) (5)期望值就是算术平均数,与概率无关.(×)(6)随机变量的均值是常数,样本的平均值是随机变量.(×)(7)在篮球比赛中,罚球命中1次得1分,不中得0分.如果某运动员罚球命中的概率为0.7,那么他罚球1次的得分X 的均值是0.7.(√)(8)在一组数中,如果每个数都增加a ,则平均数也增加a .(√) (9)在一组数中,如果每个数都增加a ,则方差增加a 2.(×)(10)如果每个数都变为原来的a 倍,则其平均数是原来的a 倍,方差是原来的a 2倍.(√)考点一 离散型随机变量的分布列及性质[例1] (1)设X 是一个离散型随机变量,其分布列为则q 等于( )A .1B .1±22C .1-22D .1+22 解析:由分布列的性质知⎩⎪⎨⎪⎧1-2q ≥0,q 2≥0,12+1-2q +q 2=1,∴q =1-22.答案:C(2)设离散型随机变量X 的分布列为求:①2X +1的分布列; ②|X -1|的分布列. 解:由分布列的性质知:0.2+0.1+0.1+0.3+m =1,∴m =0.3. 首先列表为从而由上表得两个分布列为①2X +1的分布列为②|X -1|的分布列为[方法引航] (1)概率值均为非负数.(2)求随机变量在某个范围内的取值概率时,根据分布列,将所求范围内随机变量对应的取值概率相加即可,其依据是互斥事件的概率加法公式.1.随机变量的分布列为:其中a ,b ,c 成等差数列,若E (ξ)=13,则D (ξ)=________. 解析:由a ,b ,c 成等差数列及分布列性质得, ⎩⎪⎨⎪⎧a +b +c =1,2b =a +c ,-a +c =13,解得b =13,a =16,c =12.∴D (ξ)=16×2)311(--+13×2)310(-+12×2)311(-=59.答案:592.在本例(2)条件下,求X 2的分布列. 解:X 2的分布列为考点二 离散型随机变量的均值与方差[例2] (1)(2017·湖南益阳调研)某工厂有两条相互不影响的生产线分别生产甲、乙两种产品,产品出厂前需要对产品进行性能检测.检测得分低于80的为不合格品,只能报废回收;得分不低于80的为合格品,可以出厂,现随机抽取这两种产品各60件进行检测,检测结果统计如下:②生产一件甲种产品,若是合格品可盈利100元,若是不合格品则亏损20元;生产一件乙种产品,若是合格品可盈利90元,若是不合格品则亏损15元,在①的前提下:a .记X 为生产1件甲种产品和1件乙种产品所获得的总利润,求随机变量X 的分布列和数学期望;b .求生产5件乙种产品所获得的利润不少于300元的概率.解:①甲种产品为合格品的概率约为4560=34,乙种产品为合格品的概率约为4060=23. ②a .随机变量X 的所有取值为190,85,70,-35,且P (X =190)=34×23=12,P (X =85)=34×13=14,P (X =70)=14×23=16,P (X =-35)=14×13=112. 所以随机变量X 的分布列为所以E (X )=1902+854+706-3512=125.b .设生产的5件乙种产品中合格品有n 件,则不合格品有(5-n )件, 依题意得,90n -15(5-n )≥300,解得n ≥257,取n =4或n =5, 设“生产5件乙种产品所获得的利润不少于300元”为事件A ,则P (A )=C 454)32(13+5)32(=112243. (2)(2016·高考全国乙卷)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数. ①求X 的分布列;②若要求P (X ≤n )≥0.5,确定n 的最小值;③以购买易损零件所需费用的期望值为决策依据,在n =19与n =20之中选其一,应选用哪个?解:①由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2.从而P (X =16)=0.2×0.2=0.04; P (X =17)=2×0.2×0.4=0.16; P (X =18)=2×0.2×0.2+0.4×0.4=0.24; P (X =19)=2×0.2×0.2+2×0.4×0.2=0.24; P (X =20)=2×0.2×0.4+0.2×0.2=0.2;P (X =21)=2×0.2×0.2=0.08; P (X =22)=0.2×0.2=0.04. 所以X 的分布列为②由①知P (X ≤③记Y 表示2台机器在购买易损零件上所需的费用(单位:元). 当n =19时,E(Y)=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040.当n=20时,E(Y)=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080. 可知当n=19时所需费用的期望值小于当n=20时所需费用的期望值,故应选n=19.[方法引航](1)已知随机变量的分布列求它的均值、方差和标准差,可直接按定义(公式)求解;(2)已知随机变量ξ的均值、方差,求ξ的线性函数η=aξ+b的均值、方差和标准差,可直接用ξ的均值、方差的性质求解;(3)由已知条件,作出对两种方案的判断.可依据均值、方差的意义,对实际问题作出判断.某商店试销某种商品20天,获得如下数据:试销结束后(3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1)求当天商店不进货的概率;(2)记X为第二天开始营业时该商品的件数,求X的分布列.解:(1)P(当天商店不进货)=P(当天商品销售量为0件)+P(当天商品销售量为1件)=120+520=310.(2)由题意知,X的可能取值为2,3.P(X=2)=P(当天商品销售量为1件)=520=1 4;P(X=3)=P(当天商品销售量为0件)+P(当天商品销售量为2件)+P(当天商品销售量为3件)=120+920+520=34.所以X的分布列为考点三[例3] (1)若X ~B (n ,p ),且E (X )=6,D (X )=3,则P (X =1)的值为( ) A .3·2-2 B .2-4 C .3·2-10 D .2-8解析:∵E (X )=np =6,D (X )=np (1-p )=3,∴p =12,n =12,则P (X =1)=C 112·12·11)21(=3·2-10.答案:C(2)某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和系统B 在任意时刻发生故障的概率分别为110和p .①若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值;②设系统A 在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的分布列及均值E (ξ).解:①设“至少有一个系统不发生故障”为事件C ,那么 1-P (C )=1-110·p =4950,解得p =15. ②由题意,得 P (ξ=0)=3)101(=11 000,P (ξ=1)=C 132)101)(1011(-=271 000, P (ξ=2)=C 23×2)1011(-×110=2431 000,P (ξ=3)=3)1011(-=7291 000. 所以,随机变量ξ的分布列为故随机变量ξ的均值E (ξ)=0×11 000+1×271 000+2×2431 000+3×7291 000=2710. (或∵ξ~B )109,3(,∴E (ξ)=3×910=2710.)[方法引航] 如果ξ~B (n ,p ),可直接按公式E (ξ)=np ,D (ξ)=np (1-p )求解.假设某班级教室共有4扇窗户,在每天上午第三节课上课预备铃声响起时,每扇窗户或被敞开或被并闭,且概率均为0.5.记此时教室里敞开的窗户个数为X.(1)求X的分布列;(2)若此时教室里有两扇或两扇以上的窗户被关闭,班长就会将关闭的窗户全部敞开,否则维持原状不变.记每天上午第三节课上课时刻教室里敞开的窗户个数为Y,求Y的数学期望.解:(1)∵X的所有可能取值为0,1,2,3,4,X~B(4,0.5),∴P(X=0)=C044)21(=116,P(X=1)=C144)21(=14,P(X=2)=C244)21(=38,P(X=3)=C344)21(=14,P(X=4)=C444)21(=116,∴X的分布列为(2)Y的所有可能取值为3,4,则P(Y=3)=P(X=3)=1 4,P(Y=4)=1-P(Y=3)=34,∴Y的数学期望E(Y)=3×14+4×34=154.[规范答题]求离散型随机变量的期望与方差[典例](2017·山东青岛诊断)为了分流地铁高峰的压力,某市发改委通过听众会,决定实施低峰优惠票价制度.不超过22公里的地铁票价如下表:6公里的概率分别为14,13,甲、乙乘车超过6公里且不超过12公里的概率分别为12,13.(1)求甲、乙两人所付乘车费用不相同的概率;(2)设甲、乙两人所付乘车费用之和为随机变量ξ,求ξ的分布列与数学期望.[规范解答] (1)由题意可知,甲、乙乘车超过12公里且不超过22公里的概率分别为14,13.2分则甲、乙两人所付乘车费用相同的概率P 1=14×13+12×13+14×13=13.3分 所以甲、乙两人所付乘车费用不相同的概率P =1-P 1=1-13=23.4分 (2)由题意可知,ξ=6,7,8,9,10.且P (ξ=6)=14×13=112, P (ξ=7)=14×13+12×13=14.P (ξ=8)=14×13+14×13+12×13=13. P (ξ=9)=12×13+14×13=14.P (ξ=10)=14×13=112,10分 所以ξ的分布列为则E (ξ)=6×112+7×14+8×13+9×14+10×112=8.12分[规范建议] 1.分清各事件间的关系:独立事件、互斥事件、对立事件.2.求随机变量的分布列,先把随机变量所有可能值列举出来,逐个求对应的概率. 3.利用期望公式求期望值.[高考真题体验]1.(2016·高考四川卷)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X 的均值是________.解析:同时抛掷两枚质地均匀的硬币,至少有一枚硬币正面向上的概率为1-2)21(=34,且X ~B )43,2(,∴均值是2×34=32.答案:322.(2015·高考广东卷)已知随机变量X 服从二项分布B (n ,p ).若E (X )=30,D (X )=20,则p =________.解析:因为X~B(n,p),所以E(X)=np=30,D(X)=np(1-p)=20,解得n=90,p=1 3.答案:1 33.(2016·高考全国甲卷)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:(1)(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(3)求续保人本年度的平均保费与基本保费的比值.解:(1)设A表示事件:“一续保人本年度的保费高于基本保费”,则事件A发生当且仅当一年内出险次数大于1,故P(A)=0.2+0.2+0.1+0.05=0.55.(2)设B表示事件:“一续保人本年度的保费比基本保费高出60%”,则事件B发生当且仅当一年内出险次数大于3,故P(B)=0.1+0.05=0.15.又P(AB)=P(B),故P(B|A)=P(AB)P(A)=P(B)P(A)=0.150.55=311.因此所求概率为311.(3)记续保人本年度的保费为X元,则X的分布列为E(X)=0.85a×0.30×0.05=1.23a.因此续保人本年度的平均保费与基本保费的比值为1.23.4.(2013·高考课标全国卷Ⅱ)经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如下图所示.经销商为下一个销售季度购进了130 t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57 000元的概率.(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量X ∈[100,110),则取X =105,且X =105的概率等于需求量落入[100,110)的频率),求T 的数学期望. 解:(1)当X ∈[100,130)时,T =500X -300(130-X )=800X -39 000, 当X ∈[130,150]时,T =500×130=65 000. 所以T =⎩⎨⎧800X -39 000,100≤X <130,65 000, 130≤X ≤150.(2)由(1)知利润T 不少于57 000元当且仅当120≤X ≤150.由直方图知需求量X ∈[120,150]的频率为0.7,所以下一个销售季度内的利润T 不少于57 000元的概率的估计值为0.7. (3)依题意可得T 的分布列为所以E (T )=45 000×0.1课时规范训练 A 组 基础演练1.设随机变量ξ的分布列为P (ξ=k )=15(k =2,4,6,8,10),则D (ξ)等于( ) A .5 B .8 C .10 D .16 解析:选B.∵E (ξ)=15(2+4+6+8+10)=6, ∴D (ξ)=15[(-4)2+(-2)2+02+22+42]=8.2.已知某一随机变量X 的分布列如下,且E (X )=6.3,则a 的值为( )A.5 B .6 C .解析:选C.由分布列性质知:0.5+0.1+b =1,∴b =0.4. ∴E (X )=4×0.5+a ×0.1+9×0.4=6.3,∴a =7.3.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A .100B .200C .300D .400 解析:选B.记“不发芽的种子数为ξ”, 则ξ~B (1 000,0.1),所以E (ξ)=1 000×0.1=100, 而X =2ξ,故E (X )=E (2ξ)=2E (ξ)=200.4.如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过混合后,从中随机取一个小正方体,记它的油漆面数为X ,则X 的均值E (X )等于( )A.126125 B.65 C.168125 D.75解析:选B.125个小正方体中8个三面涂漆,36个两面涂漆,54个一面涂漆,27个没有涂漆,∴从中随机取一个正方体,涂漆面数X 的均值E (X )=54125×1+36125×2+8125×3=150125=65. 5.一射手对靶射击,直到第一次命中为止,每次命中的概率都为0.6,现有4颗子弹,则射击停止后剩余子弹的数目X 的期望值为( )A .2.44B .3.376C .2.376D .2.4 解析:选C.X 的所有可能取值为3,2,1,0,其分布列为∴E (X )=3×0.6+2×0.24+6.已知随机变量ξ的分布列为P (ξ=k )=12k -1,k =1,2,3,…,n ,则P (2<ξ≤5)=________. 解析:P (2<ξ≤5)=P (ξ=3)+P (ξ=4)+P (ξ=5)=14+18+116=716.答案:7 167.有一批产品,其中有12件正品和4件次品,有放回地任取3件,若X表示取到次品的件数,则D(X)=__________.解析:由题意知取到次品的概率为14,∴X~B)41,3(,∴D(X)=3×14×)411(-=916.答案:9 168.随机变量ξ的分布列如下:其中a,b,c成等差数列,则P(|ξ|d的取值范围是________.解析:因为a,b,c成等差数列,所以2b=a+c.又a+b+c=1,所以b=13.所以P(|ξ|=1)=a+c=23.又a=13-d,c=13+d,根据分布列的性质,得0≤13-d≤23,0≤13+d≤23,所以-13≤d≤13,此即公差d的取值范围.答案:23]31,31[-9.一次考试共有12道选择题,每道选择题都有4个选项,其中有且只有一个是正确的.评分标准规定:“每题只选一个选项,答对得5分,不答或答错得零分”.某考生已确定有8道题的答案是正确的,其余题中:有两道题都可判断两个选项是错误的,有一道题可以判断一个选项是错误的,还有一道题因不理解题意只好乱猜.请求出该考生:(1)得60分的概率;(2)所得分数ξ的分布列和数学期望.解:(1)设“可判断两个选项是错误的”两道题之一选对为事件A,“有一道题可以判断一个选项是错误的”选对为事件B,“有一道题不理解题意”选对为事件C,∴P(A)=12,P(B)=13,P(C)=14,∴得60分的概率为P=12×12×13×14=148.(2)ξ可能的取值为40,45,50,55,60.P(ξ=40)=12×12×23×34=18;P(ξ=45)=C12×12×12×23×34+12×12×13×34+12×12×23×14=1748;P(ξ=50)=12×12×23×34+C12×12×12×13×34+C12×12×12×23×14+12×12×13×14=1748;P(ξ=55)=C12×12×12×13×14+12×12×23×14+12×12×13×34=748;P(ξ=60)=12×12×13×14=148.ξ的分布列为E(ξ)=40×18+45×1748+50×1748+55×748+60×148=57512.10.随着人们对环境关注度的提高,绿色低碳出行越来越受到市民重视,为此某市建立了公共自行车服务系统,市民凭本人二代身份证到公共自行车服务中心办理诚信借车卡借车,初次办卡时卡内预先赠送20分,当诚信积分为0时,借车卡将自动锁定,限制借车,用户应持卡到公共自行车服务中心以1元购1个积分的形式再次激活该卡,为了鼓励市民租用公共自行车出行,同时督促市民尽快还车,方便更多的市民使用,公共自行车按每车每次的租用时间进行扣分收费,具体扣分标准如下:①租用时间不超过1小时,免费;②租用时间为1小时以上且不超过2小时,扣1分;③租用时间为2小时以上且不超过3小时,扣2分;④租用时间超过3小时,按每小时扣2分收费(不足1小时的部分按1小时计算).甲、乙两人独立出行,各租用公共自行车一次,两人租车时间都不会超过3小时,设甲、乙租用时间不超过一小时的概率分别是0.5和0.6;租用时间为1小时以上且不超过2小时的概率分别是0.4和0.2.(1)求甲、乙两人所扣积分相同的概率;(2)设甲、乙两人所扣积分之和为随机变量ξ,求ξ的分布列和数学期望.解:(1)设甲、乙所扣积分分别为x1,x2,由题意可知,P(x1=0)=0.5,P(x1=1)=0.4,P(x1=2)=1-0.5-0.4=0.1,P(x2=0)=0.6,P(x2=1)=0.2,P(x2=2)=1-0.6-0.2=0.2,所以P(x1=x2)=P(x1=x2=0)+P(x1=x2=1)+P(x1=x2=2)=0.5×0.6+0.4×0.2+0.1×0.2=0.4.(2)由题意得,变量ξ的所有取值为0,1,2,3,4.P (ξ=0)=0.5×0.6=0.3,P (ξ=1)=0.5×0.2+0.6×0.4=0.34,P (ξ=2)=0.5×0.2+0.6×0.1+0.4×0.2=0.24, P (ξ=3)=0.4×0.2+0.2×0.1=0.1, P (ξ=4)=0.1×0.2=0.02, 所以ξ的分布列为E (ξ)=0×0.3+1×0.34+2B 组 能力突破1.已知X 的分布列则在下列式子中①E (X )=-13;②D (X )=2327;③P (X =0)=13,正确的个数是( )A .0B .1C .2D .3解析:选C.由E (X )=(-1)×12+0×13+1×16=-13,故①正确.由D (X )=2)311(+-×12+2)310(+×13+2)311(+×16=59,知②不正确.由分布列知③正确.2.已知ξ的分布列如下表,若η=2ξ+2,则D (η)的值为( )A.-13B.59C.109D.209解析:选D.E (ξ)=-1×12+0×13+1×16=-13,D (ξ)=2)311(+-×12+2)310(+×13+2)311(+×16=59∴D (η)=D (2ξ+2)=4D (ξ)=209,故选D.3.已知随机变量X +η=8,若X ~B (10,0.6),则E (η)和D (η)分别是( )A .6和2.4B .2和2.4C .2和5.6D .6和5.6 解析:选B.由已知随机变量X +η=8,所以η=8-X .因此,E (η)=8-E (X )=8-10×0.6=2,D (η)=(-1)2D (X )=10×0.6×0.4=2.4.4.两封信随机投入A ,B ,C 三个空邮箱,则A 邮箱的信件数ξ的数学期望E (ξ)=________. 解析:两封信投入A ,B ,C 三个空邮箱,投法种数是32=9,A 中没有信的投法种数是2×2=4,概率为49,A 中仅有一封信的投法种数是C 12×2=4,概率为49, A 中有两封信的投法种数是1,概率为19,故A 邮箱的信件数ξ的数学期望是49×0+49×1+19×2=23. 答案:235.李先生家在H 小区,他在C 科技园区工作,从家开车到公司上班有L 1,L 2两条路线(如图),路线L 1上有A 1,A 2,A 3三个路口,各路口遇到红灯的概率均为12;路线L 2上有B 1,B 2两个路口,各路口遇到红灯的概率依次为34,35.(1)若走路线L 1,求最多遇到1次红灯的概率; (2)若走路线L 2,求遇到红灯次数X 的数学期望;(3)按照“平均遇到红灯的次数最少”的要求,请你帮助李先生分析上述两条路线中,选择哪条路线上班更好些,并说明理由.解:(1)设“走路线L 1最多遇到1次红灯”为事件A ,则P (A )=C 03×2)21(+C 13×12×2)21(=12. 所以走路线L 1最多遇到1次红灯的概率为12. (2)依题意,知X 的可能取值为0,1,2. P (X =0)=)531)(431(--=110.P (X =1)=34×)531(-+)431(-×35=920,P (X =2)=34×35=920. 随机变量X 的分布列为所以E (X )=110×0+920×1+920×2=2720.(3)设选择路线L 1遇到红灯的次数为Y ,随机变量Y 服从二项分布,即Y ~B )21,3(,所以E (Y )=3×12=32.因为E (X )<E (Y ),所以选择路线L 2上班更好.。

12.5 离散型随机变量的均值与方差

12.5  离散型随机变量的均值与方差

考点1
考点2
考点3
-12-
参考公式:χ2=(������+������)(������������+(������������������)-(���������������+���)2������)(������+������),其中 n=a+b+c+d. 参考临界值:
P(χ2>k0) k0
0.05 3.841
考点1
考点2
考点3
-22-
思考如何求离散型随机变量X的均值与方差? 解题心得1.求离散型随机变量X的均值与方差的步骤: (1)理解X的意义,写出X的全部可能取值. (2)求X取每个值的概率. (3)写出X的分布列. (4)由均值的定义求EX. (5)由方差的定义求DX. 2.注意性质的应用:若随机变量X的均值为EX,则对应随机变量 aX+b的均值是aEX+b,方差为a2DX.
种子发芽这株豆苗就能有效成活,每株豆成活苗可以收成大豆
2.205
kg.已知每粒豆苗种子成活的概率为
1 2
(假设种子之间及外部
条件一致,发芽相互没有影响).
(1)求恰好有3株成活的概率;
(2)记成活的豆苗株数为ξ,收成为η(kg),求随机变量ξ的分布列及η
的均值Eη.
考点1
考点2
考点3
-17-
解 (1)设每株豆子成活的概率为 P0,

40
50
90
合计
120
80
200
又 χ2=20102×0(8×08×05×01-1300××9400)2≈16.498>6.635, 所以有 99%的把握认为性别与“为 A 类学生”有关.

离散型随机变量的期望及方差

离散型随机变量的期望及方差

3.一个均匀小正方体的六个面中,三个面上标以数0,两个 面上标以数1,一个面上标以数2.将这个小正方体抛掷2次,则向上 的数之积的数学期望________.
解析:随机变量 ξ 的取值为 0,1,2,4,P(ξ=0)=34,P(ξ=1)=19,P(ξ =2)=19,P(ξ=4)=316,因此 Eξ=49.
(1)X的概率分布;
(2)X的数学期望.
解:摸球的情形有以下5种:甲1白,乙2白(0元);甲1红,乙2 白或甲1白,乙1红1白(10元);甲1红,乙1红1白(20元);甲1白,乙 2红(50元);甲1红,乙2红(60元).
(1)X的所有可能的取值为0,10,20,50,60, P(X=0)=(190)3=1702090; P(X=10)=110×(190)2+190×11082=1204030; P(X=20)=110×11082=110800;
[例1] 袋中有20个大小相同的球,其中记上0号的有10个,记 上n号的有n个(n=1,2,3,4).现从袋中任取一个,ξ表示所取球的标 号.
(1)求ξ的分布列、期望和方差;
(2)若η=aξ+b,Eη=1,Dη=11,试求a,b的值. [课堂记录] (1)ξ 的分布列为
ξ0 1 2 3 4
P
1 2
P(X=50)=190×1102=10900; P(X=60)=1103=10100; ∴X 的概率分布为
(2)EX=0×1702090+10×1204030+20×110800+50×10900+60×10100= 3.3(元).
热点之二 期望与方差的性质及应用 利用均值和方差的性质,可以避免复杂的运算.常用性质 有: (1)EC=C(C为常数); (2)E(aX+b)=aEX+b(a,b为常数); (3)E(X1+X2)=EX1+EX2;E(aX1+bX2)=aE(X1)+bE(X2);

【高中数学】离散型随机变量的均值与方差、正态分布

【高中数学】离散型随机变量的均值与方差、正态分布

【高中数学】离散型随机变量的均值与方差、正态分布【知识讲解】1.若离散型随机变量ξ的分布列为X x 1x 2 … x i… x n Pp 1 p 2 … p i…p n(1)则称E ξ= 为随机变量ξ的均值,也称为期望,它反映了离散型随机变量取值的 。

(2)把 叫做随机变量方差,D ξ的算术平方根D ξ叫做随机变量ξ的 ,记作 。

随机变量的方差与标准差都反映了随机变量取值的 偏离于均值的平均程度 。

其中标准差与随机变量本身有 相同单位 。

2.均值与方差的计算公式(1)若η=a ξ+b (a,b 为常数),则E η=E(a ξ+b )=______________;D η=D(a ξ+b )=____________; (2)若ξ服从两点分布,则E ξ= ,D ξ= ;(3)若X 服从二项分布,即~(,)B n p ξ,则E ξ= ,D ξ= 。

3.函数,()______________x μσϕ=的图象称为正态密度曲线,简称正态曲线。

4.对于任何实数a b <,随机变量X 满足()____________,P a X b <≤≈则称X 的分布为正态分布,正态分布完全由参数 确定。

因此正态分布常记作 ,如果X 服从正态分布,则记为 。

5.正态分布的特点:(1)曲线在 ;(2)曲线关于直线 对称; (3)曲线在x μ=时 ;(4)当μ一定时,曲线的形状由σ确定,σ越大,曲线 ,表示总体的分布越 ;σ越小,曲线 ,表示总体的分布越 。

【巩固练习】离散型随机变量的均值与方差 一、选择题(每小题7分,共35分) 1.已知X 的分布列为X -1 0 1 P121316,且Y =aX +3,E (Y )=73,则a 的值为( )A .1B .2C .3D .4 2.已知随机变量X 的分布列为X -2 -10 1 2 3 P 112 m n 112 16 112其中m ,n ∈[0,1),且E (X )=16,则m ,n 的值分别为( )A.112,12B.16,16C.14,13D.13,14 3.(2010·全国)某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需要再补种2粒,补种的种子数记为X,则X的数学期望为()A.100 B.200 C.300 D.4004.若X~B(n,p),且E(X)=6,D(X)=3,则P(X=1)的值为()A.3·2-2B.2-4C.3·2-10 D.2-85.签盒中有编号为1、2、3、4、5、6的六支签,从中任意取3支,设X为这3支签的号码之中最大的一个,则X的数学期望为()A.5 B.5.25 C.5.8 D.4.6二、填空题(每小题6分,共24分)6.有一批产品,其中有12件正品和4件次品,从中任取3件,若ξ表示取到次品的个数,则E(ξ)=______. 7.(2009·上海)某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量ξ表示选出的志愿者中女生的人数,则数学期望E (ξ)=__________(结果用最简分数表示).8.(袋中有3个黑球,1个红球.从中任取2个,取到一个黑球得0分,取到一个红球得2分,则所得分数ξ的数学期望E(ξ)=________.9.罐中有6个红球,4个白球,从中任取1球,记住颜色后再放回,连续摸取4次,设ξ为取得红球的次数,则ξ的期望E(ξ)=________.三、解答题(共41分)10.(13分)袋中有相同的5个球,其中3个红球,2个黄球,现从中随机且不放回地摸球,每次摸1个,当两种颜色的球都被摸到时,即停止摸球,记随机变量ξ为此时已摸球的次数,求:(1)随机变量ξ的概率分布列;(2)随机变量ξ的数学期望与方差.11.(14分)一袋子中有大小相同的2个红球和3个黑球,从袋子里随机取球,取到每个球的可能性是相同的,设取到一个红球得2分,取到一个黑球得1分.(1)若从袋子里一次取出3个球,求得4分的概率;(2)若从袋子里每次摸出一个球,看清颜色后放回,连续摸2次,求所得分数ξ的分布列及数学期望.12.(14分)某省示范高中为了推进新课程改革,满足不同层次学生的需求,决定从高一年级开始,在每周的周一、周三、周五的课外活动期间同时开设数学、物理、化学、生物和信息技术辅导讲座,每位有兴趣的同学可以在期间的任何一天参加任何一门科目的辅导讲座,也可以放弃任何一门科目的辅导讲座.(规定:各科达到预先设定的人数时称为满座,否则称为不满座)统计数据表明,各学科讲座各天的满座的概率如下表:信息技术生物 化学 物理 数学 周一 14 14 14 14 12 周三 12 12 12 12 23 周五1313131323(1)求数学辅导讲座在周一、周三、周五都不满座的概率;(2)设周三各辅导讲座满座的科目数为ξ,求随机变量ξ的分布列和数学期望.【巩固练习】均值与方差、正态分布基础热身1.下面说法正确的是( )A .离散型随机变量X 的期望E (X )反映了X 取值的概率的平均值B .离散型随机变量X 的方差D (X )反映了X 取值的平均水平C .离散型随机变量X 的期望E (X )反映了X 取值的平均水平D .离散型随机变量X 的方差D (X )反映了X 取值的概率的平均值2.某班有14的学生数学成绩优秀,如果从班中随机地找出5名同学,那么其中数学成绩优秀的学生数X ~B ⎝⎛⎭⎫5,14,则E (2X +1)等于( )A.54B.52C .3D.72 3.一个课外兴趣小组共有5名成员,其中3名女性成员、2名男性成员,现从中随机选取2名成员进行学习汇报,记选出女性成员的人数为X ,则X 的数学期望是( )A.15B.310C.45D.654.某种摸奖活动的规则是:在一个袋子中装有大小、质地完全相同、编号分别为1,2,3,4的小球各一个,先从袋子中摸出一个小球,记下编号后放回袋子中,再从中取出一个小球,记下编号,若两次编号之和大于6,则中奖.某人参加4次这种抽奖活动,记中奖的次数为X ,则X 的数学期望是( ) A.14 B.12 C.316 D.34能力提升5.已知X ~B ⎝⎛⎭⎫n ,12,Y ~B ⎝⎛⎭⎫n ,13,且E (X )=15,则E (Y )等于( ) A .5B .10C .15D .206.[2010·课标全国卷] 某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为()A.100 B.200 C.300 D.4007.已知离散型随机变量X的概率分布列为X 13 5P 0.5m 0.2则其方差D(X)等于()A.1 B.0.6 C.2.44 D.2.48.[2010·广东卷] 已知随机变量X服从正态分布N(3,1),且P(2≤X≤4)=0.6826,则P(X>4)=()A.0.1588 B.0.1587 C.0.1586 D.0.15859.有10张卡片,其中8张标有数字2,2张标有数字5,从中任意抽出3张卡片,设3张卡片上的数字之和为X,则X的数学期望是()A.7.8 B.8 C.16 D.15.610.某同学解答两道试题,他能够解出第一道题的概率为0.8,能够解出第二道题的概率为0.6,两道试题能够解答与否相互独立,记该同学解出题目的个数为随机变量X,则X的数学期望E(X)=________.11.体育课的投篮测试规则是:一位同学投篮一次,若投中则合格,停止投篮,若投不中,则重新投篮一次,若三次投篮均不中,则不合格,停止投篮.某位同学每次投篮的命中的概率为23,则该同学投篮次数X的数学期望E(X)=________.12.袋中有大小、形状相同的红、黑球各一个,每次摸取一个球记下颜色后放回,现连续取球8次,记取出红球的次数为X,则X的方差D(X)=________.13.据统计,一年中一个家庭万元以上的财产被窃的概率为0.005,保险公司开办一年期万元以上家庭财产保险,交保险费100元,若一年内万元以上财产被窃,保险公司赔偿a元(a>1000),为确保保险公司有可能获益,则a的取值范围是________.14.(10分)[2011·泰兴模拟] 一个盒子装有六张卡片,上面分别写着如下六个定义域为R的函数:f1(x)=x,f2(x)=x2,f3(x)=x3,f4(x)=sin x,f5(x)=cos x,f6(x)=2.(1)现从盒子中任取两张卡片,将卡片上的函数相加得一个新函数,求所得函数是奇函数的概率;(2)现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张记有偶函数的卡片则停止抽取,否则继续进行,求抽取次数X的分布列和数学期望.15.(13分)[2011·南漳一中月考] 不透明盒中装有10个形状大小一样的小球,其中有2个小球上标有数字1,有3个小球上标有数字2,还有5个小球上标有数字3.取出一球记下所标数字后放回,再取一球记下所标数字,共取两次.设两次取出的小球上的数字之和为X.(1)求随机变量X的分布列;(2)求随机变量X的期望E(X).难点突破16.(12分)[2011·衡阳联考] 低碳生活成为人们未来生活的主流,某市为此制作了两则公益广告:(1)80部手机,一年就会增加一吨二氧化碳的排放……(2)人们在享受汽车带来的便捷与舒适的同时,却不得不呼吸汽车排放的尾气……活动组织者为了解市民对这两则广告的宣传效果,随机从10~60岁的人群中抽查了n 人,统计结果如图K63-1表示抽查的n 人中,各年龄段的人数的频率分布直方图,下表表示抽查的n 人中回答正确情况的统计表.图K63-1广告一 广告二 回答正确 的人数 占本组人 数的频率 回答正确 的人数 占本组人数 的频率 [10,20) 90 0.5 45 a [20,30) 225 0.75 240 0.5 [30,40) 378 0.9 252 0.6 [40,50) 160 b 120 0.5 [50,60)150.2560.1(1)分别写出n ,a ,b 的值;(2)若上表中的频率近似值看作各年龄组正确回答广告内容的频率,规定正确回答广告一的内容得20元,正确回答广告二的内容得30元,组织者随机请一家庭的两成员(大人45岁,孩子17岁)回答两广告内容,求该家庭获得资金的期望(各人之间,两广告之间相互独立).基础知识参考答案:1.【提示】1122n n x P x P x P +++ ,平均水平,21()nii i D xE P ξξ==-∑,标准差,σξ,偏离于均值的平均程度,相同单位2.【提示】AE ξ+b ,a 2D ξ,P ,P (1-P ),nP ,nP(1-P)3.【提示】22()21,2x e x R μσπσ--∈4.【提示】,()bax d x μσϕ⎰,μ和σ,2(,)N μσ,2~(,)X N μσ5.【提示】位于x 轴上方,与x 轴不相交,x μ=,达到峰值12πσ,1,越“矮胖”,分散巩固练习参考答案:10. 解 (1)随机变量ξ可取的值为2,3,4,P (ξ=2)=C 12C 13C 12C 15C 14=35;P (ξ=3)=A 22C 13+A 23C 12C 15C 14C 13=310; P (ξ=4)=A 33C 12C 15C 14C 13C 12=110;所以随机变量ξ的概率分布列为:ξ 23 4 P35310110(2)随机变量ξ的数学期望E (ξ)=2·35+3·310+4·110=52;随机变量ξ的方差 D (ξ)=(2-52)2·35+(3-52)2·310+(4-52)2·110=920.P (ξ=4)=⎝⎛⎭⎫252=425, 故ξ的分布列为ξ 23 4 P9251225425故ξ的数学期望E (ξ)=2×925+3×1225+4×425=145.P (ξ=1)=C 14×12×⎝⎛⎭⎫1-123×⎝⎛⎭⎫1-23+⎝⎛⎭⎫1-124×23=18; P (ξ=2)=C 24×⎝⎛⎭⎫122×⎝⎛⎭⎫1-122×⎝⎛⎭⎫1-23+C 14×12×⎝⎛⎭⎫1-123×23=724;P (ξ=3)=C 34×⎝⎛⎭⎫123×⎝⎛⎭⎫1-12×⎝⎛⎭⎫1-23+C 24×⎝⎛⎭⎫122×⎝⎛⎭⎫1-122×23=13; P (ξ=4)=⎝⎛⎭⎫124×⎝⎛⎭⎫1-23+C 34×⎝⎛⎭⎫123×⎝⎛⎭⎫1-12×23=316; P (ξ=5)=⎝⎛⎭⎫124×23=124.所以,随机变量ξ的分布列如下:ξ 01 2 3 4 5 P1481872413316124故E (ξ)=0×148+1×18+2×724+3×13+4×316+5×124=83.【基础热身】1.C [解析] 离散型随机变量X 的期望E(X)反映了X 取值的平均水平,它的方差反映X 取值的离散程度.2.D [解析] 因为X ~B ⎝⎛⎭⎫5,14,所以E(X)=54,所以E(2X +1)=2E(X)+1=2×54+1=72. 3.D [解析] X =0,1,2.P(X =0)=C 22C 25=110,P(X =1)=C 13C 12C 25=610,P(X =2)=C 23C 25=310.所以E(X)=65.4.D [解析] 根据乘法原理,基本事件的总数是4×4=16,其中随机事件“两次编号之和大于6”含有的基本事件是(3,4),(4,3),(4,4),故一次摸奖中奖的概率为316.4次摸奖中奖的次数X ~B ⎝⎛⎭⎫316,4,根据二项分布的数学期望公式,则E(X)=4×316=34.【能力提升】5.B [解析] 因为X ~B ⎝⎛⎭⎫n ,12,所以E(X)=n2,又E(X)=15,则n =30. 所以Y ~B ⎝⎛⎭⎫30,13,故E(Y)=30×13=10. 6.B [解析] X 的数学期望概率符合(n ,p)分布;n =1 000,p =0.1,∴E(X)=2×1 000×0.1=200. 7.C [解析] 因为0.5+m +0.2=1,所以m =0.3,所以E(X)=1×0.5+3×0.3+5×0.2=2.4, D(X)=(1-2.4)2×0.5+(3-2.4)2×0.3+(5-2.4)2×0.2=2.44.8.B [解析] 通过正态分布对称性及已知条件得P(X >4)=1-P 2≤X ≤42=1-0.68262=0.1587,故选B .9.A [解析] X 的取值为6,9,12,相应的概率P(X =6)=C 38C 310=715,P(X =9)=C 28C 12C 310=715,P(X =12)=C 18C 22C 310=115,E(X)=6×715+9×715+12×115=7.8.10.1.4 [解析] X =0,1,2.P(X =0)=0.2×0.4=0.08,P(X =1)=0.8×0.4+0.2×0.6=0.44,P(X =2)=0.8×0.6=0.48.所以E(X)=0×0.08+1×0.44+2×0.48=1.4.11.139 [解析] 试验次数X 的可能取值为1,2,3,且P(X =1)=23, P(X =2)=13×23=29,P(X =3)=13×13×⎝⎛⎭⎫23+13=19. 随机变量X 的分布列为X 1 2 3 P232919所以E(X)=1×23+2×29+3×19=139.12.2 [解析] 每次取球时,红球被取出的概率为12,8次取球看做8次独立重复试验,红球出现的次数X ~B ⎝⎛⎭⎫12,8,故D(X)=8×12×12=2.13.(1 000,20 000) [解析] X 表示保险公司在参加保险者身上的收益,其概率分布为X 100 100-a P0.9950.005E(X)=0.995×100+(100-a)×0.005=100-a200.若保险公司获益,则期望大于0,解得a<20 000,所以a ∈(1 000,20 000).14.[解答] (1)记事件A 为“任取两张卡片,将卡片上的函数相加得到的函数是奇函数”,由题意知P(A)=C 23C 26=15.(2)X 可取1,2,3,4.P(X =1)=C 13C 16=12,P(X =2)=C 13C 16·C 13C 15=310,P(X =3)=C 13C 16·C 12C 15·C 13C 14=320,P(X =4)=C 13C 16·C 12C 15·C 11C 14·C 13C 13=120;故X 的分布列为X 1 2 3 4 P12310320120E(X)=1×12+2×310+3×320+4×120=74.答:X 的数学期望为74.15.[解答] (1)由题意知随机变量X 的取值为2,3,4,5,6.P(X =2)=210×210=125,P(X =3)=210×310+310×210=325,P(X =4)=210×510+510×210+310×310=29100,P(X =5)=310×510+510×310=310,P(X =6)=510×510=14.所以随机变量X 的分布列为X 2 3 4 5 6 P1253252910031014(2)随机变量X 的期望为E(X)=2×125+3×325+4×29100+5×310+6×14=235.【难点突破】16.[解答] (1)根据频率分布表,可知年龄在[10,20)岁的人数为900.5=180.根据频率分布直方图可得180n =0.015×10,得n =1200,∴a =45180=14,160b =1200×0.02×10,b =23.∴n =1200,a =14,b =23.(2)依题意:孩子正确回答广告一、广告二的内容的概率分别是P 1=12,P 2=14.大人正确回答广告一、广告二的内容的概率分别为P 3=23,P 4=12.设随机变量X 表示该家庭获得的资金数,则X 的可能取值是:0,20,30,40,50,60,70,80,100. 其分布列为X 020 30 40 50 60 70 80 100 P116316112181414816116124∴E(X)=0×116+20×316+30×112+40×18+50×14+60×148+70×16+80×116+100×124=4556.。

第六节 离散型随机变量的均值与方差(知识梳理)

第六节 离散型随机变量的均值与方差(知识梳理)

第六节 离散型随机变量的均值与方差复习目标 学法指导1.了解取有限个值的离散型随机变量的均值、方差的概念.2.能计算简单离散型随机变量的均值、方差,并能解决一些简单实际问题.求均值、方差的关键是求分布列.若已知分布列,则可直接按定义(公式)求解;若已知随机变量X 的均值、方差,求X 的线性函数y=aX+b 的均值、方差可直接利用性质求解;若能分析出随机变量服从常用的分布,可直接利用它们的均值、方差公式求解,但在没有准确判断出分布列模型之前,不能乱套公式.一、离散型随机变量的均值与方差若离散型随机变量X 的分布列为P(X=x i )=p i ,i=1,2,3,…,n. (1)均值:称E(X)=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望.(2)方差:称D(X)= ()()21xniii E X p =-∑为随机变量X 的方差,其算术平方根()D X X 的标准差.二、均值与方差的性质1.E(aX+b)=aE(X)+b.2.D(aX+b)=a2D(X)(a,b为常数).三、常用随机变量的均值1.两点分布:若,则E(X)=p.2.二项分布:若X~B(n,p),则E(X)=np.1.概念(公式)理解(1)随机变量的均值反映了随机变量取值的平均水平.(2)均值的单位与随机变量的单位相同.(3)方差刻画了随机变量的取值与其均值的偏离程度.方差越小,则随机变量的取值就越集中在其均值周围;反之,方差越大,则随机变量的取值就越分散.(4)方差的单位是随机变量单位的平方.(5)方差是随机变量与其均值差的平方的均值,即D(X)是(X-E(X))2的期望.2.常用随机变量的方差(1)两点分布:若,则D(X)=p(1-p).(2)二项分布:若X~B(n,p),则D(X)=np(1-p).1.已知离散型随机变量X的分布列如下表.若E(X)=0,D(X)=1,则a,b 的值分别是( D )X -1 0 1 2(A)524,18(B)56,12(C)35,13(D)512,14解析:由分布列的性质可得a+b+c+112=1,①又可得E(ξ)=-a+c+2×112=-a+c+16=0,②D(ξ)=(-1-0)2a+(0-0)2b+(1-0)2c+(2-0)2×112=1,化简可得a+c+13=1,③ 联立②③可解得a=512,c=14,代入①可得b=14. 故选D.2.若随机变量ξ~B(n,p),E(ξ)=53,D(ξ)=109,则p 等于( A ) (A)13 (B)23 (C)25 (D)35解析:由题意可知,()()()5,3101,9E np D np p ξξ⎧==⎪⎪⎨⎪=-=⎪⎩ 解方程组可得5,1.3n p =⎧⎪⎨=⎪⎩故选A.3.(2019·金色联盟联考)已知随机变量X 的分布列如下,若E(X)=0.5,则mn= ,D(X)= .解析:由题意知0.7,0.5m n m n +=⎧⎨-+=⎩⇒0.1,0.6,=⎧⎨=⎩m n 所以mn=0.06;D(X)=E(X 2)-(E(X))2=0.7-0.25=0.45. 答案:0.06 0.45考点一 离散型随机变量的均值与方差[例1] 设袋子中装有a 个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分. (1)当a=3,b=2,c=1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的分布列;(2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若E(η)=53,D(η)=59,求a ∶b ∶c. 解:(1)由题意得ξ=2,3,4,5,6,故P(ξ=2)=3366⨯⨯=14, P(ξ=3)=23266⨯⨯⨯=13, P(ξ=4)=2312266⨯⨯+⨯⨯=518, P(ξ=5)=22166⨯⨯⨯=19, P(ξ=6)=1166⨯⨯=136. 所以ξ的分布列为ξ 23456P141351819136(2)由题意知η的分布列为η 123Pa ab c++b a b c++c a b c++所以E(η)=a a b c +++2b a b c +++3c a b c ++=53, D(η)=(1-53)2·a a b c +++(2-53)2·b a b c +++(3-53)2·c a b c ++=59. 化简得240,4110.a b c a b c --=⎧⎨+-=⎩ 解得a=3c,b=2c, 故a ∶b ∶c=3∶2∶1.(1)求离散型随机变量的均值与方差,可依题设条件求出随机变量的分布列,然后利用均值、方差公式直接求解;(2)由已知均值或方差求参数值,可依据条件利用均值、方差公式列含有参数的方程(组)求解;(3)注意随机变量的均值与方差的性质的应用. 考点二 与两点分布、二项分布有关的均值、方差[例2] 一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的销售量低于50个的概率;(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列、期望E(X)及方差D(X).解:(1)设A1表示事件“日销售量不低于100个”,A2表示事件“日销售量低于50个”,B表示事件“在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的销售量低于50个”,因此P(A1)=(0.006+0.004+0.002)×50=0.6,P(A2)=0.003×50=0.15,P(B)=0.6×0.6×0.15×2=0.108.(2)X可能取的值为0,1,2,3,相应的概率为P(X=0)=0C·(1-0.6)3=0.064,3P(X=1)=1C·0.6(1-0.6)2=0.288,3P(X=2)=2C·0.62(1-0.6)=0.432,3P(X=3)=3C·0.63=0.216.3分布列为X 0 1 2 3P 0.064 0.288 0.432 0.216因为X~B(3,0.6),所以期望E(X)=3×0.6=1.8,方差D(X)=3×0.6×(1-0.6)=0.72.若随机变量X服从二项分布,则求X的均值或方差可利用定义求解,也可直接利用公式E(X)=np,D(X)=np(1-p)求解.某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为23,中奖可以获得2分;方案乙的中奖率为25,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X,求X≤3的概率;(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?解:(1)由已知得,小明中奖的概率为23,小红中奖的概率为25,且两人中奖与否互不影响.记“这2人的累计得分X≤3”的事件为A, 则事件A的对立事件为“X=5”,因为P(X=5)=23×25=415,所以P(A)=1-P(X=5)=1115,即这2人的累计得分X≤3的概率为1115.(2)设小明、小红都选择方案甲抽奖中奖次数为X1,都选择方案乙抽奖中奖次数为X2,则这两人选择方案甲抽奖累计得分的数学期望为E(2X1),选择方案乙抽奖累计得分的数学期望为E(3X2).由已知可得,X1~B(2,23),X2~B(2,25),所以E(X1)=2×23=43,E(X2)=2×25=45,因此E(2X1)=2E(X1)=83,E(3X2)=3E(X2)=125.因为E(2X1)>E(3X2),所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.考点三均值与方差在决策中的应用[例3] 现有两种投资方案,一年后投资盈亏的情况如下:(1)投资股市:(2)购买基金:(1)当p=14时,求q的值;(2)已知甲、乙两人分别选择了“投资股市”和“购买基金”进行投资,如果一年后他们中至少有一人获利的概率大于45,求p的取值范围;(3)丙要将家中闲置的10万元钱进行投资,决定在“投资股市”和“购买基金”这两个方案中选择一种,已知p=12,q=16,那么丙选择哪种投资方案,才能使得一年后投资收益的数学期望较大?给出结果并说明理由.解:(1)因为“购买基金”后,投资结果只有“获利”“不赔不赚”“亏损”三种,且三种投资结果相互独立,所以p+13+q=1.又因为p=14,所以q=512.(2)记事件A为“甲投资股市且盈利”,事件B为“乙购买基金且盈利”,事件C为“一年后甲、乙两人中至少有一人投资获利”,则C=A B∪A B ∪AB,且A,B独立.由题意可知P(A)=12,P(B)=p.所以P(C)=P(A B)+P(A B)+P(AB)=1 2p+12(1-p)+12p=1 2+12p.因为P(C)=12+12p>45,即p>35,且p≤23.所以35<p≤23.(3)假设丙选择“投资股市”方案进行投资,且记X为丙投资股市的获利金额(单位:万元),所以随机变量X的分布列为则E(X)=3×12+0×18+(-2)×38=34.假设丙选择“购买基金”方案进行投资,且记Y为丙购买基金的获利金额(单位:万元),所以随机变量Y的分布列为则E(Y)=2×12+0×13+(-1)×16=56.因为E(X)<E(Y),所以丙选择“购买基金”,才能使得一年后的投资收益的数学期望较大.随机变量的均值反映了随机变量取值的平均水平,方差反映了随机变量稳定于均值的程度,它从整体和全局上刻画了随机变量,是生产实际中用于方案取舍的重要理论依据,一般先比较均值,若均值相同,再用方差来决定.张先生家住H小区,他工作在C科技园区,从家开车到公司上班路上有L1,L2两条路线(如图),L1路线上有A1,A2,A3三个路口,各路口遇到红灯的概率均为12;L2路线上有B1,B2两个路口,各路口遇到红灯的概率依次为34,35.(1)若走L1路线,求最多遇到1次红灯的概率;(2)若走L2路线,求遇到红灯次数X的数学期望;(3)按照“平均遇到红灯次数最少”的要求,请你帮助张先生从上述两条路线中选择一条最好的上班路线,并说明理由.解:(1)设走L1路线最多遇到1次红灯为事件A,则P(A)=03C×(12)3+13C×12×(1-12)2=12.所以走L1路线,最多遇到1次红灯的概率为12.(2)依题意,X的可能取值为0,1,2.P(X=0)=(1-34)×(1-35)=110,P(X=1)=34×(1-35)+(1-34)×35=920,P(X=2)=34×35=920.随机变量X的分布列为X 0 1 2P 110920920E(X)=110×0+920×1+920×2=2720.(3)设选择L1路线遇到红灯次数为Y,随机变量Y服从二项分布,Y~B(3,12),所以E(Y)=3×12=32.因为E(X)<E(Y),所以选择L2路线上班最好.分布列与数学期望[例题] 某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球.在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X,求X的分布列和数学期望.解:(1)记事件A1={从甲箱中摸出的1个球是红球},A2={从乙箱中摸出的1个球是红球},B1={顾客抽奖1次获一等奖},B2={顾客抽奖1次获二等奖},C={顾客抽奖1次能获奖}.由题意,A1与A2相互独立,A12A与1A A2互斥,B1与B2互斥,且B1=A1A2,B2=A12A+1A A2,C=B1+B2.因为P(A1)=410=25,P(A2)=510=12,所以P(B1)=P(A1A2)=P(A1)P(A2)=25×12=15,①P(B2)=P(A12A+1A A2)=P(A12A)+P(1A A2)=P(A1)P(2A)+P(1A)P(A2)=P(A1)[1-P(A2)]+[1-P(A1)]P(A2)=2 5×(1-12)+(1-25)×12=12.②故所求概率为P(C)=P(B1+B2)=P(B1)+P(B2)=1 5+12=710.③(2)顾客抽奖3次可视为3次独立重复试验,由(1)知,顾客抽奖1次获一等奖的概率为15,所以X~B(3,15).④于是P(X=0)=03C(15) 0(45)3=64125,P(X=1)=13C(15)1(45)2=48125,P(X=2)=23C(15)2(45)1=12125,P(X=3)=33C(15)3(45)0=1125.⑤故X的分布列为X 0 1 2 3P 6412548125121251125⑥X的数学期望为E(X)=3×15=35.⑦规范要求:步骤①②③④⑤⑥⑦应齐全,能利用互斥事件的概率加法公式和相互独立事件的概率乘法公式求复杂事件的概率,能分析出离散型随机变量服从二项分布,进而利用公式求得相应概率,写出分布列,求出数学期望.温馨提示:步骤①②求P(B1),P(B2)时,需将B1,B2转化为可求概率事件的和或积;步骤④⑤,若随机变量服从二项分布,则利用独立重复试验概率公式求取各值的概率,否则,利用古典概型及独立事件概率乘法公式求出取各值的概率;步骤⑦求服从二项分布的随机变量的期望、方差,可直接利用定义求解,也可直接代入E(X)=np,D(X)=np(1-p)求解.[规范训练] (2019·天津卷)设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X的分布列和数学期望;(2)设M为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M发生的概率.解:(1)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为23,故X~B(3,23),从而P(X=k)=3C k(23)k(13)3-k,k=0,1,2,3.所以随机变量X的分布列为X 0 1 2 3P 1272949827随机变量X的数学期望E(X)=3×23=2.(2)设乙同学上学期间的三天中7:30之前到校的天数为Y,则Y~B(3,23),且M={X=3,Y=1}∪{X=2,Y=0}.由题意知事件{X=3,Y=1}与{X=2,Y=0}互斥,且事件{X=3}与{Y=1},事件{X=2}与{Y=0}均相互独立,从而由(1)知P(M)=P({X=3,Y=1}∪{X=2,Y=0})=P(X=3,Y=1)+P(X=2,Y=0)=P(X=3)P(Y=1)+P(X=2)P(Y=0)=827×29+49×127=20243.类型一求方差1.从装有除颜色外完全相同的3个白球和m 个黑球的不透明布袋中随机摸取一球,有放回地摸取5次,设摸得白球数为X,已知E(X)=3,则D(X)等于( B ) (A)85(B)65(C)45(D)25解析:由题意,X ~B(5,33+m ), 又E(X)=533⨯+m =3, 所以m=2,则X ~B(5,35), 故D(X)=5×35×(1-35)=65. 2.(2018·全国Ⅲ卷)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数,DX=2.4,P(X=4)<P(X=6),则p 等于( B ) (A)0.7 (B)0.6 (C)0.4 (D)0.3解析:由题意可知,10位成员中使用移动支付的人数X 服从二项分布,即X ~B(10,p),所以DX=10p(1-p)=2.4, 所以p=0.4或0.6. 又因为P(X=4)<P(X=6),所以410C p 4(1-p)6<610C p 6(1-p)4,所以p>0.5,所以p=0.6.故选B.3.(2019·湖州三校4月联考)已知袋子中装有若干个大小形状相同且标有数字1,2,3的小球,每个小球上有一个数字,它们的个数依次成等差数列,从中随机抽取一个小球,若取出小球上的数字X 的数学期望是2,则X 的方差是( B )(A)13 (B)23 (C)83 (D)43解析:可以设小球的个数为a-d,a,a+d,故数字X 的分布列为:所以E(X)=1×3-a d a +2×13+3×3+a d a =623+a da =2,解得d=0,所以取出小球上的数字X 的分布列为:所以E(X 2)=2221233++=143. 所以D(X)=E(X 2)-E 2(X)=143-22=23. 故选B.4.(2019·绍兴柯桥模拟)随机变量ξ的取值为0,1,2,若P(ξ=0)=13,E(ξ)=1,则P(ξ=1)= ,D(ξ)= . 解析:可设p(ξ=1)=a,p(ξ=2)=b,则2,32 1.⎧+=⎪⎨⎪+=⎩a b a b 解得1,31.3⎧=⎪⎪⎨⎪=⎪⎩a b D(ξ)=E(ξ2)-(E(ξ))2=53-1=23. 答案:13 23类型二 求期望5.(2019·暨阳4月联考)已知随机变量ξ,η满足η=-ξ+8,若E(ξ)=6,D(ξ)=2.4,则E(η),D(η)分别为( C ) (A)E(η)=6,D(η)=2.4 (B)E(η)=6,D(η)=5.6(C)E(η)=2,D(η)=2.4 (D)E(η)=2,D(η)=5.6 解析:E(η)=E(-ξ+8)=-E(ξ)+8=2,D(η)=D(-ξ+8)=(-1)2D(ξ)=2.4. 故选C.6.(2019·嘉兴市高三上期末)已知随机变量ξ的分布列如下,则E(ξ)的最大值是( B )(A)-58 (B)-1564 (C)-14(D)-1964 解析:根据题意:1111,42410,2104⎧+++-=⎪⎪⎪+>⎨⎪⎪->⎪⎩a b a b ⇒a=b,a ∈(-12,14), E(ξ)=(-1)×14+0×(12+a)+a ×(14-a)=-(a-18)2-1564, 当a=18时,E(ξ)取到最大值为-1564. 故选B.7.马老师从课本上抄录一个随机变量ξ的分布列如下表:请小牛同学计算ξ的均值.尽管“!”处完全无法看清,且两个“?”处字迹模糊,但能断定这两个“?”处的数值相同.据此,小牛给出了正确答案E(ξ)= .解析:设“?”处的数值为x,则“!”处的数值为1-2x, 则E(ξ)=1×x+2×(1-2x)+3x=x+2-4x+3x=2. 答案:28.一个均匀小正方体的六个面中,三个面上标有数字0,两个面上标有数字1,一个面上标有数字2.将这个小正方体抛掷2次,则向上的数之积的数学期望是 .解析:设向上的数之积为X,X 的可能取值为0,1,2,4,P(X=1)=2266⨯⨯=19, P(X=2)=211266⨯+⨯⨯=19, P(X=4)=1166⨯⨯=136, P(X=0)=1-P(X=1)-P(X=2)-P(X=4)=1-936=34, 所以E(X)=0×34+1×19+2×19+4×136=49. 答案:49。

(完整word)讲离散型随机变量的均值与方差

(完整word)讲离散型随机变量的均值与方差

第6讲离散型随机变量的均值与方差【2013年高考会这样考】1.考查有限个值的离散型随机变量均值、方差的概念.2.利用离散型随机变量的均值、方差解决一些实际问题.【复习指导】均值与方差是离散型随机变量的两个重要数字特征,是高考在考查概率时考查的重点,复习时,要掌握期望与方差的计算公式,并能运用其性质解题.基础梳理1.离散型随机变量的均值与方差若离散型随机变量X的分布列为X x1x2…x i…x nP p1p2…p i…p n(1)均值称E(X)=x1p1+x2p2+…+x i p i+…+x n p n为随机变量X的均值或数学期望,它反映了离散型随机变量取值的平均水平.(2)方差称D(X)=为随机变量X的方差,它刻画了随机变量X与其均值E(X)的平均偏离程度,其算术平方根错误!为随机变量X的标准差.2.两点分布与二项分布的均值、方差(1)若X服从两点分布,则E(X)=p,D(X)=p(1-p).(2)若X~B(n,p),则E(X)=np,D(X)=np(1-p).两个防范在记忆D(aX+b)=a2D(X)时要注意:D(aX+b)≠aD(X)+b,D(aX+b)≠aD(X).三种分布(1)若X服从两点分布,则E(X)=p,D(X)=p(1-p);(2)X~B(n,p),则E(X)=np,D(X)=np(1-p);(3)若X服从超几何分布,则E(X)=n错误!.六条性质(1)E(C)=C(C为常数)(2)E(aX+b)=aE(X)+b(a、b为常数)(3)E(X1+X2)=EX1+EX2(4)如果X1,X2相互独立,则E(X1·X2)=E(X1)E(X2)(5)D(X)=E(X2)-(E(X))2(6)D(aX+b)=a2·D(X)双基自测1.(2010·山东)样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均值为1,则样本方差为( ).A。

错误! B.错误! C.错误! D.2解析由题意知a+0+1+2+3=5×1,解得,a=-1.s2=-1-12+0-12+1-12+2-12+3-125=2.答案D2.已知X的分布列为X-101P错误!错误!错误!设Y=2X+3,则E(Y)的值为().A。

离散型随机变量的均值与方差

离散型随机变量的均值与方差

离散型随机变量的均值与方差介绍在概率论中,随机变量是描述随机实验结果的数学对象。

离散型随机变量是一种取有限或可数个值的随机变量。

本文将探讨离散型随机变量的均值与方差,以及它们在概率论和统计学中的重要性。

一、离散型随机变量的概念离散型随机变量是指其可能取值为有限或可数个的随机变量。

如投掷一枚骰子的结果可以表示为一个离散型随机变量,可能取值为1到6。

离散型随机变量的概率分布可以通过概率质量函数(Probability Mass Function,PMF)进行描述。

二、离散型随机变量的均值离散型随机变量的均值,也称为期望值,是对随机变量取值的加权平均。

它可以通过对随机变量的每个可能取值乘以相应的概率,然后求和得到。

2.1 期望值的计算公式设离散型随机变量X的取值为x1,x2,...,x n,对应的概率为p1,p2,...,p n,则随机变量X的期望值(均值)为:E(X) = x_1 * p_1 + x_2 * p_2 + ... + x_n * p_n期望值可以理解为随机变量在大量重复试验中的长期平均。

2.2 期望值的性质期望值具有以下性质: - 期望值是线性的,即对于常数a和随机变量X、Y,有E(aX + Y) = aE(X) + E(Y) - 如果X和Y相互独立,那么E(XY) = E(X)E(Y)三、离散型随机变量的方差离散型随机变量的方差度量了随机变量取值的离散程度,是对随机变量的离散性的一种度量。

3.1 方差的计算公式设随机变量X的期望值为μ,它的方差可以通过以下公式计算:Var(X) = E((X - μ)^2) = (x_1 - μ)^2 * p_1 + (x_2 - μ)^2 * p_2 + ... + (x_n - μ)^2 * p_n方差的计算可以理解为对每个取值与期望值的差的平方再乘以相应的概率,然后进行加权求和。

3.2 方差的性质方差具有以下性质: - 方差是非负的,即Var(X) >= 0 - 方差的平方根称为标准差,标准差是对随机变量取值波动程度的一种度量 - 如果X和Y相互独立,那么Var(X + Y) = Var(X) + Var(Y)四、均值和方差的应用离散型随机变量的均值和方差在概率论和统计学中具有重要的应用。

离散型随机变量的均值与方差_教案

离散型随机变量的均值与方差_教案

离散型随机变量的均值与方差_教案第一章:离散型随机变量的概念1.1 离散型随机变量的定义介绍离散型随机变量的概念通过实例说明离散型随机变量的特点1.2 离散型随机变量的取值讨论离散型随机变量的取值范围解释离散型随机变量的概率分布1.3 离散型随机变量的概率质量函数定义概率质量函数(PMF)示例说明如何计算离散型随机变量的概率第二章:离散型随机变量的均值2.1 离散型随机变量的均值定义引入离散型随机变量的均值概念解释均值的意义和重要性2.2 计算离散型随机变量的均值介绍计算离散型随机变量均值的方法通过实例演示如何计算均值2.3 均值的性质讨论离散型随机变量均值的性质证明均值的线性性质第三章:离散型随机变量的方差3.1 方差的概念引入方差的概念和意义解释方差在描述随机变量离散程度方面的作用3.2 计算离散型随机变量的方差介绍计算离散型随机变量方差的方法通过实例演示如何计算方差3.3 方差的性质讨论离散型随机变量方差的性质证明方差的线性性质第四章:离散型随机变量的标准差4.1 标准差的概念引入标准差的概念和意义解释标准差在描述随机变量离散程度方面的作用4.2 计算离散型随机变量的标准差介绍计算离散型随机变量标准差的方法通过实例演示如何计算标准差4.3 标准差的性质讨论离散型随机变量标准差的性质证明标准差的线性性质第五章:离散型随机变量的期望和方差的关系5.1 期望和方差的关系引入期望和方差的关系概念解释期望和方差在描述随机变量特性方面的作用5.2 计算离散型随机变量的期望和方差介绍计算离散型随机变量期望和方差的方法通过实例演示如何计算期望和方差5.3 期望和方差的性质讨论离散型随机变量期望和方差的性质证明期望和方差的线性性质这五个章节涵盖了离散型随机变量的均值和方差的基本概念、计算方法和性质。

通过这些章节的学习,学生可以掌握离散型随机变量的均值和方差的计算方法,并了解它们在描述随机变量特性和规律方面的应用。

24离散型随机变量的均值与方差

24离散型随机变量的均值与方差

26离散型随机变量的均值与方差【知识要点】1.数学期望:则称=ξE +11p x 22…n n … 为的数学期望,简称期望2.期望的意义:它反映了离散型随机变量取值的平均水平。

3.平均数与均值:一般地,在有限取值离散型随机变量ξ的概率分布中,令=1p =2p …n p =,则有=1p =2p …1n n p ==,=ξE +1(x +2x …1)n n x +⨯,所以ξ的数学期望又称为平均数、均值。

4.期望的一个性质:若b a +=ξη,则b aE b a E +=+ξξ)(5.方差:对于离散型随机变量ξ,如果它所有可能取的值是1x ,2x ,…,n x ,…,且取这些值的概率分 别是1p ,2p ,…,n p ,…,那么,ξD =121)(p E x ⋅-ξ+222)(p E x ⋅-ξ+…+n n p E x ⋅-2)(ξ+… 称为随机变量ξ 的均方差,简称为方差,式中的ξE 是随机变量ξ的期望.6.标准差:ξD 的算术平方根ξD 叫做随机变量ξ的标准差,记作σξ7.方差的意义:它们都反映了随机变量取值的稳定与波动、集中与离散的程度;8.方差的性质:①ξξD a b a D 2)(=+;②22)(ξξξE E D -= .9. 二点分布的期望与方差 EX p =,()1DX p p =- 9.求二项分布的期望与方差的方法:若(),B n p ξ(1)定义法(2),(2)结论E np ξ= ,()1D np p ξ=- 10.求超几何分布的期望与方差的方法:若():,,X H n M N(1)定义法(2), (2)结论()M E X n N =⨯ ,1()111nMM n D X NN N -⎛⎫⎛⎫=-- ⎪⎪-⎝⎭⎝⎭11.几何分布的期望和方差的方法:若(),g k p 1k q p -=,其中0,1,2k =,…,(1)定义法(2)结论 1E p ξ=,21pD pξ-=. 题型一:概念性质1.已知A 、B 射手射击所得环数ξ的分布列分别如下ξ 4 5 6 7 8 9 10 P 0.02 0.04 0.06 0.09 0.28 0.29 0.22ξ 4 5 6 7 8 9 10 P 0.01 0.14 0.04 0.09 0.30 0.19 0.23A 、B 射手中哪个射手射击水平好2.[2014·浙江卷] 已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个蓝球(m ≥3,n ≥3),从乙盒中随机抽取i (i =1,2)个球放入甲盒中.(a)放入i 个球后,甲盒中含有红球的个数记为ξi (i =1,2);(b)放入i 个球后,从甲盒中取1个球是红球的概率记为p i (i =1,2).则( )A .p 1>p 2,E (ξ1)<E (ξ2)B .p 1<p 2,E (ξ1)>E (ξ2)C .p 1>p 2,E (ξ1)>E (ξ2)D .p 1<p 2,E (ξ1)<E (ξ2)3.袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n 个(n =1,2,3,4).现从袋中任取一球,ξ表示所取球的标号.(1)求ξ的分布列、期望和方差;1.5,2.75.(2)若η=a ξ+b ,E (η)=1,D (η)=11,试求a ,b 的值.⎩⎪⎨⎪⎧a =2,b =-2或⎩⎪⎨⎪⎧a =-2,b =4,4.袋中有红球4个、黄球2个,(1)有放回地抽取两个球,取得红球的个数的期望和方差;(2)不放回地抽取两个球,取得红球的个数的期望和方差;(3)每次任取一个,不放回地抽取两个球,取得红球的个数的期望和方差;5.A 、B 两个代表队进行乒乓球对抗赛,每队三名队员,A 队队员是321,,A A A ,B 队队员是321,,B B B ,ξ,η (1)求ξ,η的概率分布;(2)求ξE ,ηE 15233=-=ξηE E题型二:超几何分布1.一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出2个,含红球个数的数学期望和方差分别是题型三:二项分布问题1.某灯泡厂生产大批灯泡,其次品率为1.5%,从中任意地陆续取出100个,则其中正品数X 的均值 为 个,方差为 .2.一次单元测验由20个选择题构成,每个选择题有4个选项,其中有且仅有一个选项是正确答案,每题选择正确答案得3分,不作出选择或选错不得分,学生甲选对任一题的概率为0.9,学生乙则在测验中对每题都从4个选择中随机地选择一个,则学生甲和乙在这次英语单元测验中的成绩的期望2.篮球运动员在比赛中每次罚球命中的1分,罚不中得0分.已知某运动员罚球命中的概率为0.7,则他罚球3次的得分ξ的数学期望和方差.题型四:停止型问题1.某地区试行高考考试改革:在高三学年中举行5次统一测试,学生如果通过其中2次测试即可获得足够学分升上大学继续学习,不用参加其余的测试,而每个学生最多也只能参加5次测试.假设某学生每次通过测试的概率都是31,每次测试时间间隔恰当,每次测试通过与否互相独立. (1)求该学生考上大学的概率.(2)如果考上大学或参加完5次测试就结束,记该生参加测试的次数为X ,求X 的分布列及X 的数学期望.2.甲乙两人轮流投篮直至某人投中为止,已知甲投篮每次投中的概率为0.4,乙每次投篮投中的概率为0.6,各次投篮互不影响,设甲投篮的次数为ξ,若乙先投,且两人投篮次数之和不超过4次,求ξ的分布列及数学期望.3.有一批数量很大的产品,其次品率是15%,对这批产品进行抽查,每次抽取1件,如果抽出次品,则抽查终止,否则继续抽查,直到抽出次品为止,但抽查次数不超过10次求抽查次数ξ的期望(结果保留三个有效数字)题型五:综合问题1.某城市出租汽车的起步价为10元,行驶路程不超出4km 时租车费为10元,若行驶路程超出4km ,则按每超出lkm 加收2元计费(超出不足lkm 的部分按lkm 计).从这个城市的民航机场到某宾馆的路程为15km .某司机经常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm 路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量.设他所收租车费为η (Ⅰ)求租车费η关于行车路程ξ的关系式;(Ⅱ)若随机变量ξ的分布列为求所收租车费η的数学期望.(Ⅲ)已知某旅客实付租车费38元,而出租汽车实际行驶了15km ,问出租车在途中因故停车累计最多几分钟?解:(Ⅰ)依题意得η=2(ξ-4)十10,即η=2ξ+2;(Ⅱ)=ξE 4.161.0183.0175.0161.015=⨯+⨯+⨯+⨯∵ η=2ξ+2∴ =ηE 2E ξ+2=34.8 (元)故所收租车费η的数学期望为34.8元.(Ⅲ)由38=2ξ+2,得ξ=18,5⨯(18-15)=15,所以出租车在途中因故停车累计最多15分钟 2.(2013大纲)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为1,2各局比赛的结果都相互独立,第1局甲当裁判. (I )求第4局甲当裁判的概率;(II )X 表示前4局中乙当裁判的次数,求X 的数学期望.3. (2013课标1)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n。

离散型随机变量的均值与方差_教案

离散型随机变量的均值与方差_教案

离散型随机变量的均值与方差_教案第一章:离散型随机变量的概念1.1 离散型随机变量的定义介绍离散型随机变量的概念举例说明离散型随机变量1.2 离散型随机变量的概率分布概率分布的定义概率分布的性质概率分布的图形表示1.3 离散型随机变量的期望值期望值的定义期望值的计算方法期望值的意义第二章:离散型随机变量的均值2.1 离散型随机变量的均值的概念均值的定义均值的意义2.2 离散型随机变量的均值的计算方法均值的计算公式均值的计算步骤2.3 离散型随机变量的均值的性质均值的性质1:线性性质均值的性质3:单调性第三章:离散型随机变量的方差3.1 离散型随机变量的方差的概念方差的定义方差的意义3.2 离散型随机变量的方差的计算方法方差的计算公式方差的计算步骤3.3 离散型随机变量的方差的性质方差的性质1:非负性方差的性质2:对称性方差的性质3:单调性第四章:离散型随机变量的协方差4.1 离散型随机变量的协方差的概念协方差的定义协方差的意义4.2 离散型随机变量的协方差的计算方法协方差的计算公式协方差的计算步骤4.3 离散型随机变量的协方差的性质协方差的性质1:线性性质协方差的性质3:对称性第五章:离散型随机变量的相关系数5.1 离散型随机变量的相关系数的定义相关系数的定义相关系数的意义5.2 离散型随机变量的相关系数的计算方法相关系数的计算公式相关系数的计算步骤5.3 离散型随机变量的相关系数的性质相关系数的性质1:取值范围相关系数的性质2:单调性相关系数的性质3:对称性第六章:离散型随机变量的标准化6.1 离散型随机变量标准化的概念标准化的定义标准化的意义6.2 离散型随机变量的标准化方法标准化的计算公式标准化的计算步骤6.3 离散型随机变量标准化后的性质标准化后的分布标准化后的期望值和方差第七章:离散型随机变量的均值的估计7.1 离散型随机变量均值估计的概念均值估计的定义均值估计的意义7.2 离散型随机变量均值的点估计点估计的定义点估计的计算方法7.3 离散型随机变量均值的区间估计区间估计的定义区间估计的计算方法第八章:离散型随机变量的方差的估计8.1 离散型随机变量方差估计的概念方差估计的定义方差估计的意义8.2 离散型随机变量方差的点估计点估计的定义点估计的计算方法8.3 离散型随机变量方差的区间估计区间估计的定义区间估计的计算方法第九章:离散型随机变量的协方差的估计9.1 离散型随机变量协方差估计的概念协方差估计的定义协方差估计的意义9.2 离散型随机变量协方差的点估计点估计的定义点估计的计算方法9.3 离散型随机变量协方差的区间估计区间估计的定义区间估计的计算方法第十章:离散型随机变量的相关系数的估计10.1 离散型随机变量相关系数估计的概念相关系数估计的定义相关系数估计的意义10.2 离散型随机变量相关系数的点估计点估计的定义点估计的计算方法10.3 离散型随机变量相关系数的区间估计区间估计的定义区间估计的计算方法重点和难点解析重点环节1:离散型随机变量的期望值和方差的计算方法。

072随机变量的均值与方差

072随机变量的均值与方差

§16.1 随机变量的均值与方差1.所示,则称n n 2211为离散型随机变量X 的均值或数学期望,记为E(X)或μ,即E(X)=n n p x p x p x +++ 2211,其中i x 是随机变量X 的可能取值,i p 是概率,i p ≥0;n i ,,2,1 =,121=+++n p p p性质:①E(C)=C ;②E(aX)=aE(X);③E(aX+b)=aE(X)+b ;④超几何分布X ~H(n,M,N)的数学期望为NnM X E =)(,二项分布X ~B(n ,p)的数学期望为np X E =)(。

2.X 的概率分布如表所示,则称n n p x p x p x 22211)()()(μ-++-+- 为离散型随机变量X 的方差,记为V(X)或2σ,即V(X)= n n p x p x p x 2222121)()()(μμμ-++-+- (其中)(X E =μ,i p ≥0;n i ,,2,1 =,121=+++n p p p ),方差也可用公式212)(μ-=∑=i ni i p x X V ,即22)()()(X E X E X V -=,V(X)的算术平方根称为X 的标准差,即)(X V =σ。

性质:①0)(=C V ;②)()(2X V a b aX V =+;③超几何分布X ~H(n,M,N)的方差为)1())(()(2---=N N n N M N nM X V ,二项分布X ~B(n ,p)的方差为)1()(p np X V -=。

注:随机变量的方差和标准差都反映了随机变量的取值偏离于均值的平均程度。

方差或标准差越小,随机变量偏离于均值的平均程度越小。

三、典型例题例1:有10张卡片,其中8张标有数字2,有2张标有数字5,从中随即地抽取3张卡片,设3 张卡片上的数字之和为随机变量ξ,求E(ξ)、V(ξ)例2:假定某射手每次射击命中目标的概率为32,且只有3发子弹。

离散型随机变量的均值和方差

离散型随机变量的均值和方差

a( x1 p1 x2 p2 xn pn ) b( p1 p2 pn )
aE b
即 E(a b) aE b
离散型随机变量的均值的理解
(1) 均 值 是 算 术 平 均 值 概 念 的 推 广 , 是 概 率 意 义 下 的 平 均.
(2)E(X)是一个实数,是由X的概率分布唯一确定的,它 描述X取值的平均状态.
8.两封信随机投入A、B、C三个空邮箱,则A邮箱的信
2
件数ξ的数数学期望Eξ=_____3___.
若ξ~B(n,p),则Eξ= np
ξ01
…k
…n
P Cn0p0qn Cn1p1qn-1 … Cnkpkqn-k … Cnnpnq0
证明:∵P(ξ=k)= Cnkpkqn-k
(∵ k Cnk =n Cn-1k-1)
第二课时:随机变量取值的方差和标准差
前面,我们认识了数学期望. 数学期望: 一般地,若离散型随机变量 ξ 的概率分布 列为
ξ x1 x2 … xk … xn P p1 p2 … pk … pn
则称 E x1 p1 x2 p2 … xk pk … xn pn 为 ξ 的数 学期望,简称期望.数学期望是离散型随机变量的一个特征 数,它反映了离散型随机变量取值的平均水平,表示了随机 变量在随机实验中取值的平均值,所以又常称为随机变量的 平均数、均值.但有时两个随机变量只用这一个特征量是无 法区别他们的。还需要对随机变量取值的稳定与波动、集中 与离散的程度进行刻画.
探究
已知甲、乙两名射手在同一条件下射击,所得环数1、 2的分布列如下:
x1 8 9 10 P 0.2 0.6 0.2
x2 8 9 10 P 0.4 0.2 0.4
试比较两名射手的射击水平.如果其他对手的射击成 绩都在8环左右,应派哪一名选手参赛?如果其他对手的 射击成绩都在9环左右,应派哪一名选手参赛?

离散型随机变量的均值与方差(4类必考点)(北师大版2019选择性必修第一册)(解析版)

离散型随机变量的均值与方差(4类必考点)(北师大版2019选择性必修第一册)(解析版)

专题6.3 离散型随机变量的均值与方差【基础知识梳理】 (1)【考点1:求离散型随机变量的均值】 (1)【考点2:均值的性质】 (7)【考点3:求离散型随机变量的方差】 (11)【考点4:方差的性质】 (16)【基础知识梳理】1.离散型随机变量的均值与方差若离散型随机变量X的分布列为X x1x2…x i…x nP p1p2…p i…p n(1)称E(X)=x1p1+x2p2i i n n量取值的平均水平.(2)称D(X)=(x i-E(X))2p i为随机变量X的方差,它刻画了随机变量X与其均值E(X)的平均偏离程度,其算术平方根D(X)为随机变量X的标准差.2.均值与方差的性质(1)E(aX+b)=aE(X)+b;(2)D(aX+b)=a2D(X)(a,b为常数).[方法技巧]求离散型随机变量的均值与方差的步骤(1)找出随机变量X的所有可能取值x i(i=1,2,3,…,n);(2)求出各取值的概率P(X=x i)=p i;(3)列成表格并用分布列的性质检验所求的分布列或某事件的概率是否正确;(4)利用公式求均值或方差.【考点1:求离散型随机变量的均值】【知识点:求离散型随机变量的均值】1.(2023·河南平顶山·校联考模拟预测)甲、乙两人进行围棋比赛,两人共比赛两局,每局比赛甲赢的概率为0.6,两人平局的概率为0.1,设每局的胜方得3分,负方得−1分,若该局为平局,则两人各得2分.(1)求甲、乙各赢一局的概率;(2)记两局结束后甲的最后得分为X,求X的数学期望.【答案】(1)0.36(2)3.4【分析】(1)由题可知比赛乙赢的概率为0.3,甲、乙各赢一局相当于甲赢第一局乙赢第二局或乙赢第一局甲赢第二局.据此可得答案;(2)依次写出对局情况及相应概率,后可计算期望.【详解】(1)依题意可得每局比赛乙赢的概率为0.3,甲、乙各赢一局相当于甲赢第一局乙赢第二局或乙赢第一局甲赢第二局,故甲、乙各赢一局的概P=2×0.6×0.3=0.36.(2)若甲赢两局,得分6分,P(X=6)=0.62=0.36;若甲一赢一平,得分5分,P(X=5)=2×0.6×0.1=0.12;若甲平两局,得分4分,P(X=4)=0.12=0.01;若甲一赢一输,得分2分,P(X=2)=2×0.6×0.3=0.36;若甲一平一输,得分1分,P(X=1)=2×0.3×0.1=0.06;若甲输两局,得分−2,P(X=−2)=0.32=0.09.故E(X)=6×0.36+5×0.12+4×0.01+2×0.36+1×0.06−2×0.09=3.42.(2023·四川·校联考一模)甲袋中装有大小相同的红球2个,白球2个:乙袋中装有与甲袋中相同大小的红球3个,白球4个.先从甲袋中取出1个球投入乙袋中,然后从乙袋中取出3个小球.(1)求从乙袋中取出的3个小球中仅有1个红球的概率;(2)记从乙袋中取出的3个小球中白球个数为随机变量ξ,求ξ的分布列和数学期望.【答案】(1)2756.(2)分布列见解析,数学期望E(ξ)=189112【分析】(1)分“从甲袋中取出1红球投入乙袋”和“从甲袋中取出1白球投入乙袋” 两个类型,利用组合数和古典概型公式。

第7讲 离散型随机变量的均值与方差、正态分布

第7讲 离散型随机变量的均值与方差、正态分布

第7讲 离散型随机变量的均值与方差、正态分布一、知识梳理1.离散型随机变量的均值与方差 一般地,若离散型随机变量X 的分布列为(1)均值称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望.它反映了离散型随机变量取值的平均水平.(2)方差称D (X )= i =1n(x i -E (X ))p i 为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均偏离程度,并称其算术平方根D (X )为随机变量X 的标准差.2.均值与方差的性质 (1)E (aX +b )=aE (X )+b .(2)D (aX +b )=a 2D (X ).(a ,b 为常数) 3.两点分布与二项分布的均值、方差(1)若随机变量X 服从两点分布,则E (X )=p ,D (X )=p (1-p ). (2)若X ~B (n ,p ),则E (X )=np ,D (X )=np (1-p ). 4.正态曲线的特点(1)曲线位于x 轴上方,与x 轴不相交. (2)曲线是单峰的,它关于直线x =μ对称. (3)曲线在x =μ处达到峰值1σ2π .(4)曲线与x 轴之间的面积为1.(5)当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x 轴平移.(6)当μ一定时,曲线的形状由σ确定.σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散.常用结论均值与方差的七个常用性质若Y =aX +b ,其中a ,b 是常数,X 是随机变量,则 (1)E (k )=k ,D (k )=0,其中k 为常数. (2)E (aX +b )=aE (X )+b ,D (aX +b )=a 2D (X ). (3)E (X 1+X 2)=E (X 1)+E (X 2). (4)D (X )=E (X 2)-(E (X ))2.(5)若X 1,X 2相互独立,则E (X 1·X 2)=E (X 1)·E (X 2). (6)若X 服从两点分布,则E (X )=p ,D (X )=p (1-p ).(7)若X 服从二项分布,即X ~B (n ,p ),则E (X )=np ,D (X )=np (1-p ). 二、教材衍化 1.已知X 的分布列为设Y =2X +3,则E (Y )=解析:E (X )=-12+16=-13,E (Y )=E (2X +3)=2E (X )+3=-23+3=73.答案:732.甲、乙两工人在一天生产中出现的废品数分别是两个随机变量X ,Y ,其分布列分别为________.解析:E (X )=0×0.4+1×0.3+2×0.2+3×0.1=1.E (Y )=0×0.3+1×0.5+2×0.2=0.9, 因为E (Y )<E (X ).所以乙技术好. 答案:乙3.已知随机变量X 服从正态分布X ~N (3,1),且P (X >2c -1)=P (X <c +3),则c =________.解析:因为X ~N (3,1),所以正态曲线关于x =3对称, 且P (X >2c -1)=P (X <c +3), 所以2c -1+c +3=3×2,所以c =43.答案:43一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)随机变量的均值是常数,样本的平均数是随机变量,它不确定.( )(2)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离变量的平均程度越小.( )(3)正态分布中的参数μ和σ完全确定了正态分布,参数μ是正态分布的均值,σ是正态分布的标准差.( )(4)一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.( )(5)均值是算术平均数概念的推广,与概率无关.( ) 答案:(1)√ (2)√ (3)√ (4)√ (5)× 二、易错纠偏常见误区| (1)期望、方差的性质不熟导致错误; (2)二项分布的数学期望公式用法不当; (3)求错分布列,导致E (ξ)出错.1.已知两个随机变量X ,Y 满足X +2Y =4,且X ~N (1,22),则E (Y ),D (Y )依次是________. 解析:由X ~N (1,22)得E (X )=1,D (X )=4.又X +2Y =4,所以Y =2-X2,所以E (Y )=2-12E (X )=32,D (Y )=14D (X )=1. 答案:32,12.在一次招聘中,主考官要求应聘者从6道备选题中一次性随机抽取3道题,并独立完成所抽取的3道题.乙能正确完成每道题的概率为23,且每道题完成与否互不影响.记乙能答对的题数为Y ,则Y 的数学期望为________.解析:由题意知Y 的可能取值为0,1,2,3,且Y ~B ⎝⎛⎭⎫3,23,则E (Y )=3×23=2. 答案:23.一个人将编号为1,2,3,4的四个小球随机放入编号为1,2,3,4的四个盒子,每个盒子放一个小球,球的编号与盒子的编号相同时就放对了,否则就放错了.设放对个数记为ξ,则ξ的期望值为________.解析:将四个不同小球放入四个不同盒子,每个盒子放一个小球,共有A 44种不同放法,放对的个数ξ可取的值有0,1,2,4,其中P (ξ=0)=9A 44=38, P (ξ=1)=C 14×2A 44=13,P (ξ=2)=C 24A 44=14,P (ξ=4)=1A 44=124,E (ξ)=0×38+1×13+2×14+4×124=1. 答案:1考点一 均值与方差的计算(基础型)复习指导| 理解取有限值的离散型随机变量均值、方差的概念. 核心素养:数学运算1.已知某离散型随机变量X 服从的分布列如表,则随机变量X 的方差D (X )等于( )A .19B .29C .13D .23解析:选B .法一:由m +2m =1得m =13,所以E (X )=0×13+1×23=23,D (X )=⎝⎛⎭⎫0-232×13+⎝⎛⎭⎫1-232×23=29. 法二:由m +2m =1得m =13,根据两点分布的期望和方差公式可得E (X )=23,D (X )=23×⎝⎛⎭⎫1-23=29. 2.有10张卡片,其中8张标有数字2,2张标有数字5,从中任意抽出3张卡片,设3张卡片上的数字之和为X ,则X 的数学期望是( )A .7.8B .8C .16D .15.6解析:选A .X 的取值为6,9,12,相应的概率P (X =6)=C 38C 310=715,P (X =9)=C 28C 12C 310=715,P (X =12)=C 18C 22C 310=115.E (X )=6×715+9×715+12×115=7.8.3.某班举行了一次“心有灵犀”的活动,教师把一张写有成语的纸条出示给A 组的某个同学,这个同学再用身体语言把成语的意思传递给本组其他同学.若小组内同学甲猜对成语的概率是0.4,同学乙猜对成语的概率是0.5,且规定猜对得1分,猜不对得0分,这两个同学各猜1次,则他们的得分之和X 的数学期望为( )A .0.9B .0.8C .1.2D .1.1解析:选A .由题意,X =0,1,2,则P (X =0)=0.6×0.5=0.3,P (X =1)=0.4×0.5+0.6×0.5=0.5,P (X =2)=0.4×0.5=0.2,所以E (X )=0×0.3+1×0.5+2×0.2=0.9.求均值与方差的方法技巧复习指导| 能计算二项分布的均值与方差. 核心素养:数学建模雾霾天气对人体健康有伤害,应对雾霾污染、改善空气质量的首要任务是控制PM 2.5,要从压减燃煤、严格控车、调整产业、强化管理、联防联控、依法治理等方面采取重大举措,聚焦重点领域,严格考核指标.某省环保部门为加强环境执法监管,派遣四个不同的专家组对A 、B 、C 三个城市进行治霾落实情况抽查.(1)若每个专家组随机选取一个城市,四个专家组选取的城市可以相同,也可以不同,求恰有一个城市没有专家组选取的概率;(2)每一个城市都要由四个专家组分别对抽查情况进行评价,并对所选取的城市进行评价,每个专家组给检查到的城市评价为优的概率为12,若四个专家组均评价为优则检查通过不用复检,否则需进行复检.设需进行复检的城市的个数为X ,求X 的分布列和期望.【解】 (1)随机选取,共有34=81种不同方法,恰有一个城市没有专家组选取的有C 13(C 14A 22+C 24)=42种不同方法,故恰有一个城市没有专家组选取的概率为4281=1427.(2)设事件A :“一个城市需复检”,则P (A )=1-⎝⎛⎭⎫124=1516,X 的所有可能取值为0,1,2,3,P (X =0)=C 03·⎝⎛⎭⎫1163=14 096,P (X =1)=C 13·⎝⎛⎭⎫1162·⎝⎛⎭⎫15161=454 096,P (X =2)=C 23·⎝⎛⎭⎫1161·⎝⎛⎭⎫15162=6754 096,P (X =3)=C 33·⎝⎛⎭⎫15163=3 3754 096. 所以X 的分布列为X ~B ⎝⎛⎭⎫3,1516,E (X )=3×1516=4516.(1)求离散型随机变量ξ的均值与方差的步骤 ①理解ξ的意义,写出ξ可能的全部取值; ②求ξ取每个值的概率; ③写出ξ的分布列; ④由均值的定义求E (ξ); ⑤由方差的定义求D (ξ). (2)二项分布的期望与方差如果ξ~B (n ,p ),则用公式E (ξ)=np ;D (ξ)=np (1-p )求解,可大大减少计算量. [提醒] 均值E (X )由X 的分布列唯一确定,即X 作为随机变量是可变的,而E (X )是不变的,它描述X 取值的平均水平.电子商务在我国发展迅猛,网上购物成为很多人的选择.某购物网站组织了一次促销活动,在网页的界面上打出广告:高级口香糖,10元钱三瓶,有8种口味供您选择(其中有1种为草莓口味).小王点击进入网页一看,只见有很多包装完全相同的瓶装口香糖排在一起,看不见具体口味,由购买者随机点击进行选择(各种口味的高级口香糖均超过三瓶,且各种口味的瓶数相同,每点击选择一瓶后,网页自动补充相应的口香糖).(1)小王花10元钱买三瓶,请问小王收到货的组合方式共有多少种?(2)小王花10元钱买三瓶,由小王随机点击三瓶,请列出有小王喜欢的草莓味口香糖的瓶数ξ的分布列,并计算其数学期望和方差.解:(1)若三瓶口味均不一样,有C 38=56(种);若其中两瓶口味一样,有C 18C 17=56(种);若三瓶口味一样,有8种.故小王收到货的组合方式共有56+56+8=120(种). (2)ξ所有可能的取值为0,1,2,3.因为各种口味的高级口香糖均超过3瓶,且各种口味的瓶数相同,有8种不同口味,所以小王随机点击一次是草莓味口香糖的概率为18,即随机变量ξ服从二项分布,即ξ~B ⎝⎛⎭⎫3,18. P (ξ=0)=C 03×⎝⎛⎭⎫180×⎝⎛⎭⎫1-183=343512,P (ξ=1)=C 13×⎝⎛⎭⎫181×⎝⎛⎭⎫1-182=147512, P (ξ=2)=C 23×⎝⎛⎭⎫182×⎝⎛⎭⎫1-181=21512, P (ξ=3)=C 33×⎝⎛⎭⎫183×⎝⎛⎭⎫1-180=1512. 所以ξ的分布列为数学期望E (ξ)=np =3×18=38,方差D (ξ)=np (1-p )=3×18×78=2164.考点三 均值与方差的实际应用(应用型)复习指导| 能计算简单离散型随机变量的均值、方差,并能解决一些实际问题. 核心素养:数学建模某种产品的质量以其质量指标值衡量,并按照质量指标值划分等级如下:,得到了如下频率分布直方图.现给出三个条件: ①y =0.02.②质量指标值不超过95的有65件. ③质量指标值的中位数是6056.从①②③中选一个填入下面的横线上,并回答问题.若________.(1)在样品中,按照产品等级用分层抽样的方法抽取8件,再从这8件产品中任取4件,求4件产品中三等品、二等品、一等品都有的概率;(2)若将频率视为概率,已知该企业每销售一件此产品中的一等品的利润为10元,销售一件二等品和三等品的利润都是6元,那么销售600件此种产品,所获利润的期望值是多少元?【解】 若选①y =0.02.则有(0.002 5+0.009+0.01+0.02+0.026+0.002 5+x )×10=1,解得x =0.03.(1)由频率分布直方图可知,样品中三等品、二等品、一等品的频率分别为(0.002 5+0.01)×10=0.125,(0.02+0.03)×10=0.5,(0.026+0.009+0.002 5)×10=0.375,所以样品中三等品、二等品、一等品的件数分别为25,100,75.若按照产品等级用分层抽样的方法抽取8件产品,那么应抽取的三等品、二等品、一等品的件数分别为1,4,3.从这8件产品中任取4件,共有C 48种等可能的取法,其中三等品、二等品、一等品都有的取法有C 11(C 14C 23+C 24C 13)种.故4件产品中三等品、二等品、一等品都有的概率P =C 11(C 14C 23+C 24C 13)C 48=37. (2)由(1)知,从该企业此产品中任取一件,其中是一等品的概率为0.375,是二等品或三等品的概率为0.625.设从此产品中任取一件并销售所得的利润为η,则η的分布列为因此E (η)=10×0.375+6×故销售600件此种产品,所获利润的期望值为600E (η)=600×7.5=4 500(元). 若选②,质量指标值不超过95的有65件.则有(0.002 5+0.01+y )×10×200=65. 解得y =0.02.下与选①相同. 若选③,质量指标值的中位数是6056,则⎝⎛⎭⎫105-6056×x +(0.026+0.009+0.002 5)×10=0.5.解得x =0.03.下与选①相同.均值与方差的实际应用(1)D(X)表示随机变量X对E(X)的平均偏离程度,D(X)越大表明平均偏离程度越大,说明X的取值越分散;反之,D(X)越小,X的取值越集中在E(X)附近,统计中常用D(X)来描述X的分散程度.(2)随机变量的均值反映了随机变量取值的平均水平,方差反映了随机变量取值偏离于均值的程度,它们从整体和全局上刻画了随机变量,是生产实际中用于方案取舍的重要的理论依据,一般先比较均值,若均值相同,再用方差来决定.(2020·湖北武汉模拟)某保险公司对一个拥有20 000人的企业推出一款意外险产品,每年每位职工只要交少量保费,发生意外后可一次性获得若干赔偿金,保险公司把企业的所有岗位共分为A,B,C三类工种,从事这三类工种的人数分别为12 000,6 000,2 000,由历史数据统计出三类工种的赔付频率如表(并以此估计赔付概率):已知A ,B ,C 25元、40元,出险后的赔偿金额分别为100万元、100万元、50万元,保险公司在开展此项业务过程中的固定支出为每年10万元.(1)求保险公司在该业务所获利润的期望值; (2)现有如下两个方案供企业选择:方案1:企业不与保险公司合作,职工不交保险,出意外企业自行拿出与保险公司提供的等额赔偿金赔偿付给意外职工,企业开展这项工作的固定支出为每年12万元;方案2:企业与保险公司合作,企业负责职工保费的70%,职工个人负责保费的30%,出险后赔偿金由保险公司赔付,企业无额外专项开支.请根据企业成本差异给出选择合适方案的建议.解:(1)设工种A ,B ,C 职工的每份保单保险公司的收益为随机变量X ,Y ,Z ,则X ,Y ,Z 的分布列分别为所以E (X )=25×⎝⎛⎭⎫1-1105+(25-100×104)×1105=15, E (Y )=25×⎝⎛⎭⎫1-2105+(25-100×104)×2105=5, E (Z )=40×⎝⎛⎭⎫1-1104+(40-50×104)×1104=-10, 保险公司所获利润的期望值为12 000×15+6 000×5-2 000×10-100 000=90 000, 所以保险公司在该业务所获利润的期望值为9万元.(2)方案1:企业不与保险公司合作,则企业每年安全支出与固定开支共为12 000×100×104×1105+6 000×100×104×2105+2 000×50×104×1104+12×104=46×104; 方案2:企业与保险公司合作,则企业支出保险金额为(12 000×25+6 000×25+2000×40)×0.7=37.1×104.因为46×104>37.1×104, 所以建议企业选择方案2. 考点四 正态分布(基础型)复习指导| 认识正态分布曲线的特点及曲线所表示的意义. 核心素养:数学抽象1.设随机变量X 服从正态分布N (μ,σ2),若P (X >4)=P (X <0),则μ=( ) A .1 B .2 C .3D .4解析:选B .正态曲线关于直线x =μ对称,若P (X >4)=P (X <0),则μ=4+02=2.2.已知随机变量X 服从正态分布N (3,1),且P (X ≥4)=0.158 7,则P (2<X <4)=( ) A .0.682 6 B .0.341 3 C .0.460 3D .0.920 7解析:选A .因为随机变量X 服从正态分布N (3,1),且P (x ≥4)=0.158 7,所以P (X ≤2)=0.158 7,所以P (2<X <4)=1-P (X ≤2)-P (X ≥4)=0.682 6,故选A .3.某校在一次月考中有900人参加考试,数学考试的成绩服从正态分布X ~N (90,a 2)(a >0,试卷满分150分),统计结果显示数学考试成绩在70分到110分之间的人数约为总人数的35,则此次月考中数学考试成绩不低于110分的学生约有________人.解析:因为成绩服从正态分布X ~N (90,a 2), 所以其正态分布曲线关于直线x =90对称,又因为成绩在70分到110分之间的人数约为总人数的35,由对称性知成绩在110分以上的人数约为总人数的12×⎝⎛⎭⎫1-35=15,所以此次数学考试成绩不低于110分的学生约有15×900=180(人).答案:180服从N(μ,σ2)的随机变量X在某个区间内取值的概率的求法(1)利用P(μ-σ<X≤μ+σ),P(μ-2σ<X≤μ+2σ),P(μ-3σ<X≤μ+3σ)的值直接求;(2)充分利用正态曲线的对称性和曲线与x轴之间的面积为1这些特殊性质求解.[基础题组练]1.已知随机变量ξ服从正态分布N(2,σ2),且P(ξ<4)=0.8,则P(0<ξ<4)=() A.0.6 B.0.4C.0.3 D.0.2解析:选A.由P(ξ<4)=0.8,得P(ξ≥4)=0.2.又正态曲线关于x=2对称,则P(ξ≤0)=P(ξ≥4)=0.2,所以P(0<ξ<4)=1-P(ξ≤0)-P(ξ≥4)=0.6.2.口袋中有编号分别为1,2,3的三个大小和形状相同的小球,从中任取2个,则取出的球的最大编号X 的期望为( )A .13B .23C .2D .83解析:选D .因为口袋中有编号分别为1,2,3的三个大小和形状相同的小球,从中任取2个,所以取出的球的最大编号X 的可能取值为2,3,所以P (X =2)=1C 23=13,P (X =3)=C 12C 11C 23=23,所以E (X )=2×13+3×23=83. 3.(多选)甲、乙两类水果的质量(单位:kg)分别服从正态分布N (μ1,σ21),N (μ2,σ22),其正态分布的密度曲线如图所示,则下列说法正确的是( )A .甲类水果的平均质量μ1=0.4 kgB .甲类水果的质量比乙类水果的质量更集中于平均值左右C .甲类水果的平均质量比乙类水果的平均质量小D .乙类水果的质量服从的正态分布的参数σ2=1.99解析:选ABC .由图象可知甲图象关于直线x =0.4对称,乙图象关于直线x =0.8对称,所以μ1=0.4,μ2=0.8,μ1<μ2,故A 正确,C 正确;因为甲图象比乙图象更“高瘦”,所以甲类水果的质量比乙类水果的质量更集中于平均值左右,故B 正确;因为乙图象的最大值为1.99,即12πσ2=1.99,所以σ2≠1.99,故D 错误. 4.已知随机变量X +η=8,若X ~B (10,0.6),则E (η),D (η)分别是( ) A .6,2.4 B .2,2.4 C .2,5.6D .6,5.6解析:选B .由已知随机变量X +η=8,所以η=8-X . 因此,求得E (η)=8-E (X )=8-10×0.6=2, D (η)=(-1)2D (X )=10×0.6×0.4=2.4.5.某篮球队对队员进行考核,规则是①每人进行3个轮次的投篮;②每个轮次每人投篮2次,若至少投中1次,则本轮通过,否则不通过.已知队员甲投篮1次投中的概率为23.如果甲各次投篮投中与否互不影响,那么甲3个轮次通过的次数X 的期望是( )A .3B .83C .2D .53解析:选B .在一轮投篮中,甲通过的概率为P =89,未通过的概率为19.由题意可知,甲3个轮次通过的次数X 的可能取值为0,1,2,3,则P (X =0)=⎝⎛⎭⎫193=1729, P (X =1)=C 13×⎝⎛⎭⎫891×⎝⎛⎭⎫192=24729=8243,P (X =2)=C 23×⎝⎛⎭⎫892×⎝⎛⎭⎫191=192729=64243, P (X =3)=⎝⎛⎭⎫893=512729. 所以随机变量X 的分布列为数学期望E (X )=0×1729+1×8243+2×64243+3×512729=83.6.若随机变量ξ的分布列如下表所示,E (ξ)=1.6,则a -b =________.解析:易知a ,b ∈[0,1],又由E (ξ)=0×0.1+1×a +2×b +3×0.1=1.6,得a +2b =1.3,解得a =0.3,b =0.5,则a -b =-0.2.答案:-0.27.已知某公司生产的一种产品的质量X (单位:克)服从正态分布N (100,4),现从该产品的生产线上随机抽取10 000件产品,其中质量在[98,104]内的产品估计有________件.(附:若X 服从N (μ,σ2),则P (μ-σ<X <μ+σ)=0.682 7,P (μ-2σ<X <μ+2σ=0.954 5) 解析:由题意可得,该正态分布的对称轴为x =100,且σ=2,则质量在[96,104]内的产品的概率为P (μ-2σ<X <μ+2σ)=0.954 5,而质量在[98,102]内的产品的概率为P (μ-σ<X <μ+σ)=0.682 7,结合对称性可知,质量在[98,104]内的产品的概率为0.682 7+0.954 5-0.682 72=0.818 6,据此估计质量在[98,104]内的产品的数量为10 000×0.818 6=8186(件).答案:8 1868.(2020·浙江浙北四校模拟)已知袋子中有大小相同的红球1个,黑球2个,从中任取2个.设ξ表示取到红球的个数,则E (ξ)=________,D (ξ)=________.解析:从袋中3个球中任取2个球,共有C 23种取法,则其中ξ的可能取值为0,1,且ξ服从超几何分布,所以P (ξ=0)=C 22C 23=13,P (ξ=1)=C 11C 12C 23=23,所以E (ξ)=0×13+1×23=23,D (ξ)=⎝⎛⎭⎫0-232×13+⎝⎛⎭⎫1-232×23=29. 答案:23 299.若n 是一个三位正整数,且n 的个位数字大于十位数字,十位数字大于百位数字,则称n 为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.(1)写出所有个位数字是5的“三位递增数”;(2)若甲参加活动,求甲得分X 的分布列和数学期望E (X ).解:(1)个位数字是5的“三位递增数”有125,135,145,235,245,345.(2)由题意知,全部“三位递增数”的个数为C 39=84,随机变量X 可能的取值为0,-1,1,因此P (X =0)=C 38C 39=23,P (X =-1)=C 24C 39=114,P (X =1)=1-114-23=1142,所以X 的分布列为则E (X )=0×23+(-1)×114+1×1142=421.10.已知6只小白鼠中有1只感染了病毒,需要对6只小白鼠进行病毒DNA 化验来确定哪一只受到了感染.下面是两种化验方案:方案甲:逐个化验,直到能确定感染病毒的小白鼠为止.方案乙:将6只小白鼠分为两组,每组三只,将其中一组的三只小白鼠的待化验物质混合在一起化验,若化验结果显示含有病毒DNA ,则表明感染病毒的小白鼠在这三只当中,然后逐个化验,直到确定感染病毒的小白鼠为止;若化验结果显示不含病毒DNA ,则在另外一组中逐个进行化验.(1)求执行方案乙化验次数恰好为2次的概率;(2)若首次化验的化验费为10元,第二次化验的化验费为8元,第三次及以后每次化验的化验费都是6元,求方案甲所需化验费的分布列和期望.解:(1)执行方案乙化验次数恰好为2次的情况分两种:第一种,先化验一组,结果显示不含病毒DNA ,再从另一组中任取一只进行化验,其恰含有病毒DNA ,此种情况的概率为C 35C 36×1C 13=16;第二种,先化验一组,结果显示含病毒DNA ,再从中逐个化验,恰好第一只含有病毒,此种情况的概率为C 25C 36×1C 13=16.所以执行方案乙化验次数恰好为2次的概率为16+16=13.(2)设用方案甲化验需要的化验费为η(单位:元),则η的可能取值为10,18,24,30,36.P (η=10)=16,P (η=18)=56×15=16,P (η=24)=56×45×14=16,P (η=30)=56×45×34×13=16,P (η=36)=56×45×34×23=13,则化验费η的分布列为所以E (η)=10×16+18×16+24×16+30×16+36×13=773(元).[综合题组练]1.(2020·湖北部分重点中学测试)为了研究学生的数学核心素养与抽象能力(指标x )、推理能力(指标y )、建模能力(指标z )的相关性,将它们各自量化为1,2,3三个等级,再用综合指标ω=x +y +z 的值评定学生的数学核心素养,,若ω≥7,则数学核心素养为一级;若5≤ω≤6,则数学核心素养为二级;若3≤ω≤4,则数学核心素养为三级.为了了解某校学生的数学核心素养,调查人员随机访问了某校10名学生,得到如下数据:的概率;(2)从这10名学生中任取3人,其中数学核心素养等级是一级的学生人数记为X ,求随机变量X 的分布列及数学期望.解:(1)9A 4,A 7,A 10;数学核心素养为一级的学生是A 1,A 2,A 3,A 5,A 6,A 8.记“所取的2人的建模能力指标相同”为事件A ,记“所取的2人的综合指标值相同”为事件B ,则P (B |A )=P (AB )P (A )=C 23+C 22C 24+C 25=416=14. (2)由题意可知,数学核心素养为一级的学生为A 1,A 2,A 3,A 5,A 6,A 8. 非一级的学生为余下4人,所以X 的所有可能取值为0,1,2,3.P (X =0)=C 06C 34C 310=130,P (X =1)=C 16C 24C 310=310,21P (X =2)=C 26C 14C 310=12,P (X =3)=C 36C 04C 310=16,所以随机变量X 的分布列为所以E (X )=0×130+1×310+2×12+3×16=95.2.(2020·云南昆明检测)某地区为贯彻“绿水青山就是金山银山”的精神,鼓励农户利用荒坡种植果树.某农户考察三种不同的果树苗A ,B ,C ,经引种试验后发现,引种树苗A 的自然成活率为0.8,引种树苗B ,C 的自然成活率均为p (0.7≤p ≤0.9).(1)任取树苗A ,B ,C 各一棵,估计自然成活的棵数为X ,求X 的分布列及E (X ); (2)将(1)中的E (X )取得最大值时p 的值作为B 种树苗自然成活的概率.该农户决定引种n 棵B 种树苗,引种后没有自然成活的树苗中有75%的树苗可经过人工栽培技术处理,处理后成活的概率为0.8,其余的树苗不能成活.①求一棵B 种树苗最终成活的概率;②若每棵树苗引种最终成活后可获利300元,不成活的每棵亏损50元,该农户为了获利不低于20万元,问至少引种B 种树苗多少棵?解:(1)由题意知,X 的所有可能值为0,1,2,3, 则P (X =0)=0.2(1-p )2,P (X =1)=0.8×(1-p )2+0.2×C 12×p ×(1-p )=0.8(1-p )2+0.4p (1-p )=0.4p 2-1.2p +0.8,P (X =2)=0.2p 2+0.8×C 12×p ×(1-p )=0.2p 2+1.6p (1-p )=-1.4p 2+1.6p ,P (X =3)=0.8p 2. X 的分布列为(2)当p =0.9时,E (X )取得最大值.①一棵B 树苗最终成活的概率为0.9+0.1×0.75×0.8=0.96.②记Y 为n 棵B 种树苗的成活棵数,M (n )为n 棵B 种树苗的利润,则Y ~B (n ,0.96),E (Y )=0.96n ,M (n )=300Y -50(n -Y )=350Y -50n ,E (M (n ))=350E (Y )-50n =286n ,要使E (M (n ))≥200 000,则有n ≥699.3.所以该农户至少种植700棵B 种树苗,就可获利不低于20万元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知识讲解离散型随机变量的均值与方差(总13页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除离散型随机变量的均值与方差【学习目标】1. 理解取有限个值的离散型随机变量的均值或期望的概念,会根据离散型随机变量的分布列求出均值或期望,并能解决一些实际问题;2. 理解取有限个值的离散型随机变量的方差、标准差的概念,会根据离散型随机变量的分布列求出方差或标准差,并能解决一些实际问题;【要点梳理】要点一、离散型随机变量的期望 1.定义:一般地,若离散型随机变量ξ的概率分布为则称=ξE +11p x +22p x …++n n p x … 为ξ的均值或数学期望,简称期望.要点诠释:(1)均值(期望)是随机变量的一个重要特征数,它反映或刻画的是随机变量取值的平均水平.(2)一般地,在有限取值离散型随机变量ξ的概率分布中,令=1p =2p …n p =,则有=1p =2p …n p n 1==,=ξE +1(x +2x …nx n 1)⨯+,所以ξ的数学期望又称为平均数、均值。

(3)随机变量的均值与随机变量本身具有相同的单位. 2.性质:①()E E E ξηξη+=+;②若b a +=ξη(a 、b 是常数),ξ是随机变量,则η也是随机变量,有b aE b a E +=+ξξ)(;b aE b a E +=+ξξ)(的推导过程如下::η的分布列为于是=ηE ++11)(p b ax ++22)(p b ax …()i i ax b p +++…=+11(p x a +22p x …i i x p ++…)++1(p b +2p …i p ++…)=b aE +ξ ∴b aE b a E +=+ξξ)(。

要点二:离散型随机变量的方差与标准差 1.一组数据的方差的概念:已知一组数据1x ,2x ,…,n x ,它们的平均值为x ,那么各数据与x 的差的平方的平均数[12nS =21)(x x -+22)(x x -+…+])(2x x n -叫做这组数据的方差。

2.离散型随机变量的方差:一般地,若离散型随机变量ξ的概率分布为则称ξD =121)(p E x ⋅-ξ+222)(p E x ⋅-ξ+…+2()n i x E p ξ-⋅+…称为随机变量ξ的方差,式中的ξE 是随机变量ξ的期望.ξD 的算术平方根ξD 叫做随机变量ξ的标准差,记作σξ.要点诠释:⑴随机变量ξ的方差的定义与一组数据的方差的定义式是相同的;⑵随机变量ξ的方差、标准差也是随机变量ξ的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;方差(标准差)越小,随机变量的取值就越稳定(越靠近平均值).⑶标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛。

3.期望和方差的关系:4.方差的性质:若b a +=ξη(a 、b 是常数),ξ是随机变量,则η也是随机变量,2()D D a b a D ηξξ=+=;要点三:常见分布的期望与方差 1、二点分布:若离散型随机变量ξ服从参数为p 的二点分布,则 期望E p ξ= 方差(1).D p p ξ=-证明:∵(0)P q ξ==,(1)P p ξ==,01p <<,1p q += ∴01E q p p ξ=⨯+⨯= 2、二项分布:若离散型随机变量ξ服从参数为,n p 的二项分布,即~(),B n P ξ,则 期望E nP ξ= 方差(1-)D np p ξ= 期望公式证明:∵k n k k n k n k k nq p C p p C k P --=-==)1()(ξ, ∴001112220012......n n n k k n k n n nn n n n E C p q C p q C p q k C p q n C p q ξ---=⨯+⨯+⨯++⨯++⨯, 又∵11)]!1()1[()!1()!1()!(!!--=-----⋅=-⋅=k n knnC k n k n n k n k n k kC ,∴=ξE (np 0011n n C p q--+2111--n n q p C +…+)1()1(111------k n k k n q p C +…+)0111q p C n n n --- np q p np n =+=-1)(.3、几何分布:独立重复试验中,若事件A 在每一次试验中发生的概率都为p ,事件A 第一次发生时所做的试验次数ξ是随机变量,且1()(1)k P k p p -ξ==-,0,1,2,3,,,k n =,称离散型随机变量ξ服从几何分布,记作:~()()P k k P ξξ==g ,。

若离散型随机变量ξ服从几何分布,且~()()P k k P ξξ==g ,,则 期望1.E p ξ=方差21-pD p ξ=要点诠释:随机变量是否服从二项分布或者几何分布,要从取值和相应概率两个角度去验证。

4、超几何分布:若离散型随机变量ξ服从参数为,,N M n 的超几何分布,则 期望()nME Nξ=要点四:离散型随机变量的期望与方差的求法及应用 1、求离散型随机变量ξ的期望、方差、标准差的基本步骤: ①理解ξ的意义,写出ξ可能取的全部值; ②求ξ取各个值的概率,写出分布列;③根据分布列,由期望、方差的定义求出E ξ、D ξ、σξ:σξ=注意:常见分布列的期望和方差,不必写出分布列,直接用公式计算即可. 2.离散型随机变量的期望与方差的实际意义及应用① 离散型随机变量的期望,反映了随机变量取值的平均水平;② 随机变量的方差与标准差都反映了随机变量取值的稳定与波动、集中与离散的程度。

方差越大数据波动越大。

③对于两个随机变量1ξ和2ξ,当需要了解他们的平均水平时,可比较1ξE 和2ξE 的大小。

④1ξE 和2ξE 相等或很接近,当需要进一步了解他们的稳定性或者集中程度时,比较1ξD 和2ξD ,方差值大时,则表明ξ比较离散,反之,则表明ξ比较集中.品种的优劣、仪器的好坏、预报的准确与否、武器的性能等很多指标都与这两个特征数(数学期望、方差)有关. 【典型例题】类型一、离散型随机变量的期望例1.某射手射击所得环数ξ的分布列如下:已知.【思路点拨】分布列中含有字母x 、y,应先根据分布列的性质,求出x 、y 的值,再利用期望的定义求解;【解析】x +0.1+0.3+y =1,即x +y =0.6.① 又7x +0.8+2.7+10y =8.9,化简得7x +10y =5.4.②由①②联立解得x =0.2,y =0.4.【总结升华】求期望的关键是求出分布列,只要随机变量的分布列求出,就可以套用期望的公式求解, 举一反三:【变式1】某一离散型随机变量ξ的概率分布如下,且E (ξ)=1.5,则a -b 为( ).A .-0.1B .0C .0.1D .0.2 【答案】B由分布列的性质知:0.1+a+b+0.1=1,∴a+b=0.8.又E (ξ)=0×0.1+1×a+2×b+3×0.1=1.5,即a+2b=1.2. 解得a=0.4,b=0.4,∴a -b=0.【变式2】随机变量ξ的分布列为)A .13B .11C .2.2D .2.3【答案】A 由已知得:E(ξ)=0×0.4+2×0.3+4×0.3=1.8, ∴E(5ξ+4)=5E(ξ)+4=5×1.8+4=13.【变式3】节日期间,某种鲜花进货价是每束2.5元,销售价每束5元;节后卖不出去的鲜花以每束1.6元价格处理.根据前五年销售情况预测,节日期间这种鲜花的需求量服从如下表所示的分布,若进这种鲜花500束,则期望利润是.690元 C .754元D .720元【答案】A 节日期间预售的量:Eξ=200×0.2+300×0.35+400×0.3+500×0.15=40+105+120+75=340(束),则期望的利润:η=5ξ+1.6(500-ξ)-500×2.5=3.4ξ-450, ∴Eη=3.4Eξ-450=3.4×340-450=706.∴期望利润为706元. 【变式4】设离散型随机变量ξ的可能取值为1,2,3,4,且()P k ak b ξ==+(1,2,3,4k =),3E ξ=,则a b += ;【答案】0.1;由分布列的概率和为1,有()(2)(3)(4)1a b a b a b a b +++++++=, 又3E ξ=,即1()2(2)3(3)4(4)3a b a b a b a b ⋅++⋅++⋅++⋅+=,解得0.1a =,0b =,故0.1a b +=。

例2. 某同学参加科普知识竞赛,需回答三个问题,竞赛规则规定:每题回答正确得100分,回答不正确得-100分.假设这名同学回答正确的概率均为0.8,且各题回答正确与否相互之间没有影响.(1)求这名同学回答这三个问题的总得分X 的概率分布和数学期望; (2)求这名同学总得分不为负分(即X≥0)的概率.【思路点拨】本题显然为独立重复试验的问题,因此求各个情况的概率直接用公式即可。

(1)求X 的可能取值,即求得分,答对0道题得-300分,答对1道题得100-200=-100分,答对2道题得2×100-100=100分,答对3道题得300分;(2)总分不为负分包括100分和300分两种情况. 【解析】(1)X 的可能取值为-300,-100,100,300. P (X=-300)=0.23=0.008。

P (X=-100)=13C ×0.22×0.8=0.096,P (X=100)=23C ×0.2×0.82=0.384, P (X=300)=0.83=0.512. 所以X 的概率分布为∴E (X )=(-300)×0.008+(-100)×0.096+100×0.384+300×0.512=180. (2)这名同学总得分不为负分的概率为P (X≥0)=P (X=100)+P (X=300)=0.384+0.512=0.896. 【总结升华】求离散型随机变量均值的关键在于列出概率分布表. 举一反三:【变式1】 篮球运动员在比赛中每次罚球命中得1分,罚不中得0分,已知他命中的概率为0.7,求他罚球一次得分ξ的期望【答案】因为3.0)0(,7.0)1(====ξξP P , 所以.03.007.01=⨯+⨯=ξE【变式2】一盒中装有零件12个,其中有9个正品,3个次品,从中任取一个,如果每次取出次品就不再放回去,再取一个零件,直到取得正品为止.求在取得正品之前已取出次品数的期望.【答案】设取得正品之前已取出的次品数为ξ,显然ξ所有可能取的值为0,1,2,3 当0ξ=时,即第一次取得正品,试验停止,则当1ξ=时,即第一次取出次品,第二次取得正品,试验停止,则当2ξ=时,即第一、二次取出次品,第三次取得正品,试验停止,则当3ξ=时,即第一、二、三次取出次品,第四次取得正品,试验停止,则∴ξ分布列为∴3012344422022010 Eξ=⨯+⨯+⨯+⨯=【变式3】某城市出租汽车的起步价为10元,行驶路程不超出4km时租车费为10元,若行驶路程超出4km,则按每超出lkm加收2元计费(超出不足lkm的部分按lkm计).从这个城市的民航机场到某宾馆的路程为15km.某司机经常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量.设他所收租车费为η(Ⅰ)求租车费η关于行车路程ξ的关系式;(Ⅱ)若随机变量ξ的分布列为求所收租车费η的数学期望.(Ⅲ)已知某旅客实付租车费38元,而出租汽车实际行驶了15km ,问出租车在途中因故停车累计最多几分钟【答案】(Ⅰ)依题意得 η=2(ξ-4)十10,即 η=2ξ+2; (Ⅱ)=ξE 4.161.0183.0175.0161.015=⨯+⨯+⨯+⨯ ∵ η=2ξ+2∴ =ηE 2E ξ+2=34.8 (元) 故所收租车费η的数学期望为34.8元.(Ⅲ)由38=2ξ+2,得ξ=18,5⨯(18-15)=15 所以出租车在途中因故停车累计最多15分钟 例3.若某批产品共100件,其中有20件二等品,从中有放回地抽取3件,求取出二等品的件数的期望、方差。

相关文档
最新文档