形状记忆功能高分子材料的研究现状和进展

合集下载

功能高分子材料发展现状及展望

功能高分子材料发展现状及展望

功能高分子材料发展现状及展望一、引言功能高分子材料是指具有特殊性能的高分子材料,如导电、阻燃、自修复等。

随着科技的不断进步和人们对环境保护和生活质量的要求越来越高,功能高分子材料在各个领域得到了广泛应用。

本文将从功能高分子材料的定义、发展历程、应用领域以及未来展望等方面进行探讨。

二、功能高分子材料的定义功能高分子材料是指在普通高分子材料中加入一些特殊成分或经过改性后,使其具有某种特殊性能的新型高分子材料。

这些特殊性能可以是导电、阻燃、自修复、形状记忆等。

这些新型高分子材料不仅具有传统高分子材料的优点,如重量轻、耐腐蚀等,还具有更多的优势。

三、功能高分子材料的发展历程1. 20世纪50年代至60年代初期:以聚氯乙烯为主要原料生产出各种塑胶制品。

2. 60年代中期至70年代初期:出现了聚碳酸酯、聚酰亚胺等新型高分子材料。

3. 70年代中期至80年代初期:出现了聚苯乙烯、聚苯乙烯共聚物等新型高分子材料。

4. 80年代中期至90年代初期:出现了聚丙烯、聚乙烯等新型高分子材料。

5. 21世纪以来:功能高分子材料得到了广泛应用,如导电高分子材料、阻燃高分子材料、自修复高分子材料等。

四、功能高分子材料的应用领域1. 导电高分子材料:主要应用于电池、太阳能电池板等领域。

2. 阻燃高分子材料:主要应用于建筑材料、电器设备等领域。

3. 自修复高分子材料:主要应用于汽车制造、飞机制造等领域。

4. 形状记忆高分子材料:主要应用于医学器械、智能纺织品等领域。

五、功能高分子材料的未来展望1. 研发更多的功能性高分子材料,满足不同领域的需求。

2. 提高功能高分子材料的性能,使其更加适合实际应用。

3. 推广功能高分子材料的应用,促进产业升级和经济发展。

4. 加强对功能高分子材料的研究和开发,为未来的科技进步提供支持。

六、结论随着科技的不断进步和人们对环境保护和生活质量的要求越来越高,功能高分子材料在各个领域得到了广泛应用。

未来,随着技术的不断提升和需求的不断增加,功能高分子材料将会有更广阔的发展前景。

有形状记忆功能的高分子材料

有形状记忆功能的高分子材料

有形状记忆功能的高分子材料摘要:本文综述了具有形状记忆功能的高分子材料的发展概况,分析了形状记忆高分子材料的记忆效应原理,并对交联聚烯烃、、聚酯等具有形状记忆功能的高分子材料的特性及应用进行了评价和探讨,特别对聚氨酯(形状记忆PUs)的记忆原理和特征,及其研究现状和应用前景作了重点阐述同时对形状记忆高分子材料的发展前景进行了展望。

关键词:记忆效应;聚氨酯;聚酯聚氨酯;热致形状记忆高分子;形状记忆性;微相分离;玻璃化转变:一.概况:(一)引言汽车外壳上的凹痕,像压扁的乒乓球一样,浸泡在热水中就可以复原;登山服的透气性可以根据环境的温度自动调节;一部机器中的零部件可以按照预定的程序,根据外界的温度变化而有序地自动拆卸;供药系统可以根据患者的体温或血液的酸度自动地调控药剂释放的剂量和速度;断骨外的套管可以在体温的作用下束紧,并能够在创伤愈合后自动降解消失等等,这些看似神奇的设想,通过的一类新型材料———形状记忆材料,都已经逐一地变成了现实。

有人把这类材料称之为“智能材料”,并非过誉之词。

(二)发展日本捷闻、可乐丽、旭化成和三菱重工等公司就开发出聚降冰片烯、反式,聚异戊二烯和聚氨酯等形状记忆树脂。

但是一种材料所具有的某种新功能的发现,对于它是否能够真正在材料目录中占有一席之地以及能否真正为工程技术人员所采用,往往需要经过一段或长或短的时间。

这不仅和材料的生产成本及性能好坏有关,生产工艺的成熟与否也是需要重视的基本因素,有时它们可以成为起决定性作用的因素。

形状记忆聚合物的工作原理有记忆功能的高聚物,规范的术语应当是高分子形状记忆材料,一般分为热塑性和热固性两类。

它们在产生形状记忆效应时的主要机制大致相同。

这类高聚物在外力作用下,可以产生大的弹性形变,并且可以方便地"如降低温度!使这种形变保持下来,但是在外加某种刺激信号"如加热!时,材料又可以恢复到原来的形状。

这种变化过程,称为形状记忆效应。

形状记忆高分子材料研究进展(综述)

形状记忆高分子材料研究进展(综述)

形状记忆的高分子材料的研究进展Research Progress of Shape Memory Polymer Material1 综述摘要:形状记忆高分子(SMP)是一类新型的功能高分子材料,是高分子材料研究、开发、应用的一个新的分支点,它同时兼具有塑料和橡胶的特性。

形状记忆高分子材料是一种可以响应外界刺激,并调整自身状态参数,从而回复到预先设定状态的一种智能高分子材料。

本文简单介绍了形状记忆高分子材料的性能、种类和应用。

关键词:形状记忆;高分子材料;聚合物;研究进展1形状记忆高分子材料简介.形状记忆的高分子材料是一种能够感知外部环境如光、热、、电、磁等,并且能够根据外部环境的变化而自发的对自身的参数进行调整还原到预先设定状态的一种智能高分子材料。

形状记忆高分子( Shape Memory Polymer,简称 SMP) 材料具有可恢复形变量大、质轻价廉、易成型加工、电绝缘效果好等优点,从20世纪80年代以来赢得广泛关注和研究,并得到了快速发展,因其独特的性能和特点,使其这些年来在材料领域中扮演着重要的角色。

近40年来,科研工作者们相继开发出了多种形状记忆高分子材料,如聚乙烯、聚异戊二烯、聚酯、共聚酯、聚酰胺、共聚酰胺、聚氨酯等,它们被广泛应用于航空航天、生物医用、智能纺织、信息载体、自我修复等多个材料领域。

显示出了形状记忆高分子材料广泛的应用前景的地位。

2.形状记忆高分子材料的分类及应用根据响应方式的不同可以将形状记忆高分子分材料大致分为热致型、光致型、化学感应型、电致型等类型。

其中,热致感应型和光致感应型应用最为广泛。

2.1热致感应型热致SMP是一种通过施加电场或红外光照射等刺激促使其在室温以上变形,并能在室温固定形变且可长期存放,当再次升温至某一固定温度时,材料能够恢复到初始形状。

热致型SMP被广泛用于医疗卫生、体育运动、建筑、包装、汽车及科学实验等领域,如医用器械、泡沫塑料、坐垫、光信息记录介质及报警器等。

功能高分子材料的应用现状及研究进展

功能高分子材料的应用现状及研究进展
◇ 职业教育◇
科技 圈向导
21 年第 1期 02 4
功能高分子材料的应用现状及研究进展
齐 菲 ( 津现代职业技术学 院 中国 天津 天
3 05 ) 0 3 0
【 要】 摘 新型功能 高分子材料 已广泛应用 于许 多领域 , 本文分析 了传统功能 高分子材料在化 学、 、 生物 医用等方面的发展和应 用; 光 电、 介
绍 了几种新型功能 高分子材的研究进展 : 并论述 了发展功能 高分子材料的重要意 义。
【 关键词 】 功能材料 ; 高分子 ; 现状 ; 发展
材料是人类赖 以生存和发展 的物质基础 . 是人类 文明的重要里程 正等方 面获得 了较大成果 碑, 如今有人将能源 、 信息和材料并列为新科技革命的三大支柱 。 进入 新 型高分 子药物 , 具有缓 释 、 长效 、 毒的特点 , 低 分为两类 : 一类 药 本世纪 8 年代 以来 . O 一场与之相适应的“ 新材料革命” 蓬勃兴起。 功能 物即为高分子本 身 . 以直接 用作药物 . 可 也可以通过合 成获得某些疗 材料是新材料发展 的方 向.而功能高分子材料 占有举 足轻重的地位 . 效 另 一类高分子药物高分 子本身 没有药 用价值 . 而是作为药 物的载 由于其原料丰富 、 种类繁多 , 发展十分迅速 , 已成为新技术 革命 必不可 体 .以离子键或共价键 的形式连接具有药理 活性 的低分子化合物 . 制 少的关键材料【 ” 成 高分子药物控制释放制剂 。 方面达 到将最 小的剂 量在作用 于特定 一 部 位产 生治效 的 目的 ; 另一方 面使药物 的释放 速率可控 . 在提高疗效 1 能高分子材料 . 功 功能高分子材料在其原有性能的基础上 .赋予其某种 特定功能。 的同时 降低 了毒 副作用口 22 _新型 功能高分子材料 诸如 : 化学性 、 电性 、 敏性 、 导 光 催化 性 , 特定金 属离子 的选择螯 合 对 2 .高 吸水性高分子材料 .1 2 性. 以及 生物活性等特殊 功能 . 这些 都与在高分子 主链和侧链 上带有 近 年来开 发的高 吸水性树脂是一种新 型功能高分子材料 . 它可 吸 特殊结构的反应性功能基 团密切相关 收自 身重 量数 百倍 至上千倍 的水 . 身含 有强亲水性基 团同时具有 一 自 2功 能高分子材料 的研究现状 . 高吸水性树脂 的保水性能极 好 . 即使 受压也不会 渗 在原来高分子材料的基础上 ,可将功能高分子材料 分为两类 : 一 定 交联 度 。此外 . 而且具有 吸收氨等臭气 的功 能。 高吸水性 树脂 在石油、 工 、 化 轻工 、 类是 以改进其性能为 目的 的高功能高分子材料 : 另一类 是为赋予其某 水 , 建 筑等部 门被用作堵 水剂 、 脱水 剂 、 增粘剂 、 密封材料等 : 在农业上 可 种新功能的新型功能高分子材料口 以做土壤改 良剂 、 水剂 、 物无 土栽培材料 、 保 植 种子覆盖 材料 , 并可用 21 . 高功能高分子材料 以改造 沙漠 , 土壤流失 等 ; 日常生活 中 , 防止 在 高吸水性树脂可用作 吸 21 化学功能高分子材料 .1 . 餐 鞋垫 、 次性尿 布等。 一 化学功能高分子材料通常具有某种化学反应功 能 . 它将具有化学 水性抹 布 、 巾、 2 .C .2 O 功能高分子材料 2 活性 的基 团连接到 以原有主链链为骨架 的高分子上 离子交换树脂是 在不 同催化剂作用下 , C 以 O 为基本原料 与其他化合物缩 聚成 多 种带有可交换 离子 的活性 基团 、 具有 三维 网状结 构 、 不溶 的交 联聚 种共 聚物 。 其中研 究较多 、 已取得实质性进展 、 并具有应用价值 和开发 合物 . 在水 中具 有足够大 的凝 胶孔或大 孔结构 . 由于它具有高效 快速 O 与环 氧化 合物通过 开键 、开环 、 聚制得 的 缩 分析和分离 功能 . 目前 已广 泛用于硬水软 化 、 废水净化 、 高纯水制 备 、 前 景的共 聚物 是由 C 海水淡化 、 溶液浓缩和净化 、 海水提铀 , 特别是在食 品工业 、 制药行业 、 C 聚物脂肪族碳 酸酯 。把长期以来 因石化 能源燃烧 和代谢 而排放 0共 的污染环境 、 产生温 室效应 的 C O 视为一种新 的资源 。利用它 与其他 治理污染和催化剂 中应用的更为广泛 化 合物共聚 . 成新型 C 聚物材料 . 解决 当今世 界 日趋严重 的 合 O共 对 21 .. 2光功能高分子材料 O 含量增 高等问题有 重要 的现实意义 。 在光 的作用 下 , 实现对 光的传输 、 吸收 、 贮存 、 转换的高分 子材料 C 22 .3形状记忆功 能高分子材料 即为光功能高分子材料 近年来 。 在数据传输 、 能量转换和降低 电阻率 形状 记忆 功能材料 的特 点是形状记忆性 . 它是一种能循环 多次 的 等方面的应用增长迅速 感光性树脂 由感光基 团或光敏剂吸收光的能 发生变形并被保 量后 , 迅速改变分子 内或分子间的化学结构 , 引起物理和化学变化 。 光 可逆变 化。即具有特定 形状 的聚合 物受 到外 力作用 . 一旦给予适 当的条件 ( 、 、 、 、 )就 会恢复到原始状 力 热 光 电 磁 , 致变色高分子具有光色基 团. 不同波长的光对其照射 时会 呈现不同 的 持 下来 : 可将其分 为电致型 、 光致 颜色 , 当其受到特定波长照射后又会恢复为原来 的颜 色。利用这种 态。根据不 同的触发材料记忆 功能 的条件 , 而 热致型和酸碱感 应型。形状记忆 高分子材料是高分子功 能材料研 可逆反应 可以实现信息 的存 储 、 号的显示和材料 的隐蔽 . 用前景 型 、 信 应 究新分支 , 电子 、 在 印刷 、 纺织 、 包装 和汽 车工业 中具 有 良好 的发展 前 十分诱人 。

形状记忆高分子材料

形状记忆高分子材料

形状记忆高分子材料引言形状记忆高分子材料(SMP)作为一类智能材料,因其可以在适当的刺激条件(如温度、光、电磁或溶剂等)下,响应环境变化,而相应发生形状转变的能力,为解决科学技术难题带来了一种新的方法。

1950年,第一次报道了具有形状记忆效应的交联聚乙稀聚合物,并在文中描述了具体的表征方法。

这类形状记忆高分子材料与其它形状记忆材料如形状记忆合金和陶瓷相比,具有变形量大、赋形容易、响应温度易于调整,质量轻、价格低、以及易加工成型等优点。

而且易于设计成具有良好的生物相容性、可生物降解性的生物材料,比如手术缝合线、支架、心脏瓣膜、组织工程、药物释放、矫形术及光学治疗等。

1.形状记忆高分子材料的分类SMPs根据刺激响应的不同可分为热致型,电磁致型,光致型,化学型以及水致型,其中热致型是研究最广也是研究最成熟的一种高分子材料。

热致型SMPs 由固定相和可逆相两部分组成,其中固定相通常是由化学交联或物理交联点构成,其可以决定初始形变;可逆相通常由结晶结构构成,可随温度变化而进行可逆的软硬化转变。

1.1 热致型SMP热致型SMP是指材料在初始条件下开始受热,当加热温度达到相转变温度时,同时给材料施加外应力,然后再外力不变的情况下,将温度迅速下降至室温,材料会保持暂时形状,即使在撤去外应力后材料依旧可保持这种状态,直到再次在无应力条件下加热,温度再次达到相转变温度时,材料才会自发地恢复到初始形状。

以聚氨酯为例其可以通过改变嵌段共聚物的成分和比例,来改变聚氨酯材料物理化学性质、生物相容性、组织相容性,以及可生物降解性质。

形状记忆聚氨酯由软段和硬段组成,其中硬段主要由二异氰酸酯和扩链剂组成,因此刚度比较大,抑制了材料变形过程中大分子链的塑性滑移;软段主要由聚酯多元醇或聚醚多元醇等线性分子组成,因此能够进行较大的形变.一般情况下,在温度增加到软段的转变温度之上时形状记忆聚氨酯材料处于高弹态,而且软段微观布朗运动的加剧,致使材料容易变形,此时因为硬段还处于玻璃态,所以阻止了分子链滑移的同时产生了一个内部的回弹力;当温度从冷却的温度增加到软段的转变温度以上时,硬段储存的应力释放,进而导致了材料能够回复到初始形变。

形状记忆聚合物研究现状与发展_姜敏

形状记忆聚合物研究现状与发展_姜敏

收稿日期:2004210214;修改稿收到日期:2004211228。

作者简介:姜敏,女,1972年生,湖北公安人,湖北工业大学高分子材料专业硕士研究生,主要研究领域为高分子材料、复合材料研究与开发。

综 述形状记忆聚合物研究现状与发展姜敏 彭少贤 郦华兴(湖北工业大学,武汉,430068) 摘要:讨论了形状记忆聚合物的类型和特点,综述了聚氨酯、交联聚乙烯、反式1,42聚异戊二烯等形状记忆聚合物的研究进展,分析了形状记忆聚合物的形状记忆机理及其应用,并提出了存在的问题。

关键词: 形状记忆 聚合物 机理 述评 自1960年美国海军试验室Bucher 等人首次发现镍钛合金中的形状记忆效应以来,形状记忆材料在世界范围内引起了广泛的关注,且其研究取得了巨大的进展。

所谓“形状记忆”是指具有初始形状的制品经形变固定之后,通过热能、光能、电能等物理因素以及酸碱度、相转变反应和螯合反应等化学因素为刺激手段的处理又可使其恢复初始形状的现象。

形状记忆材料包括形状记忆合金(SMA ),形状记忆陶瓷(SMC )和形状记忆聚合物(SM P )[1]。

其中形状记忆合金,目前在基础研究和应用开发研究方面取得了巨大进展,并已在航空、航天、医学、工程及人们日常生活领域中得到了广泛的应用。

然而形状记忆聚合物在1984年才取得第一个专利,但由于其具有变形量大,赋形容易,形状响应温度便于调整,且还有保温、绝缘性能好、不锈蚀、易着色、可印刷、质轻价廉等特点,都是SMA 所无法比拟的,因而,SM P 以后来者居上的身份成为目前热门的功能材料之一。

1 SMP 的研究进展世界上第1种SM P 是法国的Cdf Chime 公司(即现在的Orkem 公司)于1984年开发的聚降冰片烯。

日本的杰昂( )公司购买这项制造专利后,在进一步的研究中发现了它的形状记忆功能[2]。

目前已工业化生产和实际应用,商品名为NORSO EX 。

近年来,SMP 在国外发展很快,尤其是日本,目前已有多家公司拥有工业化应用的固体粉末(或颗粒)SMP 生产技术。

第五十二讲 形状记忆聚氨酯高分子材料的研究进展

第五十二讲  形状记忆聚氨酯高分子材料的研究进展

玻璃 纤维 与形状记忆 聚氨 酯复合 改性可 以增 强材 料 的综合性 能,T k r h i 等用不 同质量 的玻璃 纤 aeuO k[ 1 卅 维( 1 S U进行 复合 改性 ,制各 了一 系列不 同玻 GF与 MP
璃 纤维含 量 的S U。对 该材 料 的机 械性 能与形状 记 MP 忆 效果进行 了研 究 ,结果 显示 ,由于加 入纤维 的增 强 作用 ,复合材料 的拉伸 强度 ,耐疲劳性都得 到提 高。
化转 变温度来 改变 。该材 料在生物 降解时具有两个 阶 实 验证 明加 入质 量 分数 为1 % ~ 0 0 2 %的GF 可使 段 即滞后期和 快速 降解 期,在滞后期 阶段仍 可使材料 S U有极小 的残余应 变 ,对 于形状 回复效果 而言 , MP 的机械 性能保 持稳定 ,这种 降解 的特 点符合 医保材 料 与 回复时 问相 比较温 度是一个 更显著 的因素,用不 同 的要 求 。 含量G  ̄ 备 的复合材料能保持优 良的形状记忆效果 。 FI J 在合 成形状记忆 聚氨酯 的过程 中可 以通 过化学 交 纳米粒 子有 比较 高的反应活 性 ,很容 易与聚合物 联 的方法引入 交联点 ,但是 交联点不 宜过大 ,过大 会 达到分 子水平上 的结合 ,能够提 高复合材料 的韧性 、 导致 强度大反而使材 料 失去 形状 记忆功 能。喻春红 _ 力学性 能等 ,因而 可 以作 为S U的复合 改性材 料 。 1 ] MP 用聚 己二酸 乙丙二醇酯 、聚 己二酸丁 二醇酯 、聚 己内 陈 少军 [ 等 先对 纳 米 SO, 子 用钛 酸 酯偶 联 剂进 行 1 i 粒 酯和4 ’二苯基 甲烷 二异氰酸酯 为原料 , 以丙三醇 为 表面处 理 ,然 后在合 成S U的过程 中加 入改性 后的 ,. 4 MP 化学交联剂合成 了一系列具有低度交联 的P U,分析 了 SO, i 粒子 ,制 备 了了纳米 SO / 状记忆聚氨酯 复合材 i, 形 组成 、配 比对其性 能的影响 ,比较 了这些低 度交联 的 料 。用F I T R、DS C、S M对其进行结构分析和 表征, E P U与 线型P U在 性能上 的差异 。结 果显示 软段 结 晶度 研究表 明偶联剂 的用量为 纳米粒 子质 量 的8 %时才 能 0 高的聚氨 酯具有优 良的体温形状 记忆性能 ,软段 的组 有效包敷好纳米粒子 ,只有包 敷好的纳米粒子, 能提 才 成、配 比对 聚氨酯形状 记忆功 能的影 响是 比较大 的, 高S U的形状 回复温度及 其力 学性能 ,否则性 能会 MP 选择 原料 时,尽量选择 室温下 结晶度高 的纯 软段做原 有所 下降 , 同时偶联剂 的引入对 形状 固定及形 状稳定 】 H5 0 料 。与线 型聚氨酯相 比较 ,力 学性能得到大 幅度 的提 都有一定 的负面作用 。朱荟【 等将 经过K 5 表 面处

形状记忆聚合物的研究及其应用

形状记忆聚合物的研究及其应用

形状记忆聚合物的研究及其应用第一章绪论形状记忆聚合物是一种具有记忆性能的高分子材料,其可以产生可逆变形行为,具有广泛的应用前景。

本文将介绍形状记忆聚合物的研究进展以及其在各领域中的应用。

第二章形状记忆聚合物的研究形状记忆聚合物是一种由特殊的聚合物基质构成的高分子材料。

它的形状可随着溶剂、温度、电场、光等外部条件的变化产生可逆性的变形。

因此,它拥有一定的智能性,被广泛应用于各个领域。

形状记忆聚合物的主要结构包括线性结构、交联结构、网络结构等,其中交联结构和网络结构更加适合形状记忆应用,因为它们具有更好的弹性和形变能力。

形状记忆聚合物的形状记忆效应是由聚合物链的编织结构和交联结构、结晶性、形态等在加热或冷却过程中的相变引起的。

在这个过程中,形状记忆聚合物中的链和交联点会进行可逆的位移和旋转,从而产生可逆的形变。

此外,形状记忆聚合物还具有形状记忆材料的其他特征,如自修复性能,自润滑性能等。

形状记忆聚合物的研究主要包括材料的合成、结构与性质的表征以及应用研究等。

近年来,科学家们通过改变聚合物材料的交联结构、晶态结构以及形态结构等方面的调控,成功地提高了形状记忆聚合物的响应速度、形变能力、热稳定性等性能,发展了一系列新的高性能形状记忆聚合物。

第三章形状记忆聚合物的应用形状记忆聚合物具有卓越的应用前景,广泛应用于医学、航天航空、建筑等领域。

3.1 医学领域在医学领域中,形状记忆聚合物可以应用于生物修复和医疗器械等方面。

例如,可以将形状记忆聚合物作为缝合线,将其置放在组织器官中,随着体内温度的变化而进行形态修复和固定。

此外,可以将形状记忆聚合物应用于医疗器械的制造,如形状记忆聚合物支架、人工骨等材料,具有优异的生物相容性和形变能力。

3.2 航天航空领域形状记忆聚合物可以应用于航天航空领域的机构调整、形状变化等方面。

例如,可以将形状记忆聚合物用于飞机机身的气动调整装置、发动机变形处理手段等工程中。

3.3 建筑领域形状记忆聚合物可以应用于建筑领域中的防震减灾、隔音降噪等方面。

高分子材料形状记忆性能研究报告

高分子材料形状记忆性能研究报告

高分子材料形状记忆性能研究报告摘要:本研究报告旨在对高分子材料的形状记忆性能进行深入研究。

通过实验和分析,我们探讨了高分子材料形状记忆性能的机制、特性以及应用前景。

研究结果表明,高分子材料的形状记忆性能在多个领域具有广泛的应用潜力。

1. 引言高分子材料作为一种重要的材料类别,具有广泛的应用领域。

其中,形状记忆性能是高分子材料的一项重要特性,其能够在外界刺激下恢复到其原始形状。

形状记忆材料的研究对于开发智能材料和制造可调控结构具有重要意义。

2. 形状记忆性能的机制高分子材料的形状记忆性能主要基于其特殊的结构和性质。

通过控制高分子链的交联程度和取向,可以实现形状记忆效应。

形状记忆材料的形状转变通常发生在两个阶段,即相变和恢复。

相变阶段是通过外界刺激引发高分子材料结构的改变,而恢复阶段则是通过内部能量释放实现形状恢复。

3. 形状记忆材料的特性形状记忆材料具有多种特性,包括形状记忆效应、可逆性、稳定性等。

形状记忆效应是指材料在外界刺激下能够恢复到其原始形状的能力。

可逆性是指形状记忆效应可以多次循环发生,而不会损害材料的性能。

稳定性是指形状记忆效应在长期使用和环境变化下的稳定性能。

4. 形状记忆材料的应用前景形状记忆材料在多个领域具有广泛的应用前景。

在医学领域,形状记忆材料可以应用于支架、缝合线和药物释放系统等。

在航空航天领域,形状记忆材料可以用于制造可调控结构和自修复材料。

在纺织品领域,形状记忆材料可以用于制造具有变形功能的服装和纺织品。

5. 结论通过对高分子材料形状记忆性能的研究,我们得出了以下结论:高分子材料的形状记忆性能在多个领域具有广泛的应用潜力;形状记忆材料的机制主要基于其特殊的结构和性质;形状记忆材料具有形状记忆效应、可逆性和稳定性等特性。

我们相信,进一步的研究和开发将推动形状记忆材料在各个领域的应用和发展。

致谢:感谢所有参与本研究的人员和机构的支持和帮助。

附录:本研究所使用的实验方法和数据详见附录部分。

具有形状记忆功能的高分子材料研究

具有形状记忆功能的高分子材料研究

具有形状记忆功能的高分子材料研究随着科技的不断进步,人们对材料的需求也越来越高。

而其中一种备受关注的材料就是具有形状记忆功能的高分子材料。

形状记忆是指材料能够根据外界刺激或者内部条件,自主改变自身形状,并在刺激消失后回复到最初的形态。

这种材料的研究在医疗、智能材料和工程领域有着广泛的应用前景。

形状记忆功能的高分子材料的研究始于二十世纪五十年代,当时的科研工作者开始对具有嵌段结构的聚合物进行研究。

随后,研究人员发现,在这些聚合物中,具有相干结构的片段能够形成物理交联点,从而赋予材料形状记忆功能。

这种交联点可以通过加热或者其他方式来打破,使材料恢复到初始形状。

这项研究成果引起了广泛关注,并在此后的几十年里得到了持续的探索和发展。

目前,研究人员主要专注于两种形状记忆高分子材料:热致形状记忆材料和光致形状记忆材料。

热致形状记忆材料是最常见的一种,其材料中添加了热塑性嵌段,能够在一定温度范围内发生熔融和再结晶。

这些嵌段之间形成的序列结构使材料具有记忆形状的能力。

当材料被加热到临界温度时,分子链之间的交联点会被打破,材料变得软化,可以任意塑性变形。

当材料冷却后,分子链之间的交联点再次形成,材料恢复到原始状态。

而光致形状记忆材料是一种相对较新的研究领域。

这类材料的形状变化是通过光敏染料的光热效应实现的。

光敏染料可以在特定波长的光照下吸收光能并将其转化为热能。

当材料暴露在特定光照下时,光敏染料吸收的光能会导致局部温度升高,从而改变材料的形状。

而当材料不再受到光照时,温度也会回落,材料恢复到原始形态。

形状记忆高分子材料的应用潜力巨大。

在医疗领域,这种材料可以用于智能药物释放系统。

例如,一种植入体可以被设计成在特定温度下打开,释放药物,并在其他条件下关闭,从而实现精确的药物控释。

这种智能药物释放系统可以减少药物滥用和副作用,提高临床治疗的效果。

在智能材料领域,形状记忆高分子材料可以应用于可穿戴设备和机器人。

这种材料可以通过外界刺激实现形状变化,使得可穿戴设备和机器人能够更加贴合用户的需求和动作。

形状记忆聚合物环氧树脂

形状记忆聚合物环氧树脂

形状记忆聚合物环氧树脂形状记忆聚合物环氧树脂是一种特殊类型的高分子材料,其具有独特的"记忆"功能,可以记住其初始状态并在受到外界刺激时恢复至原状,其促进了材料在诸如微机电系统和智能材料等领域的广泛应用。

本文将详细介绍形状记忆聚合物环氧树脂的结构、性质、应用及研究进展。

形状记忆聚合物环氧树脂是由环氧树脂与形状记忆聚合物复合而成的,其化学结构形式为:[A - B - A]n,其中A是反相相邻的硬性段,B是软性段。

1、形状记忆性能:材料可以记住和恢复其原始形状。

2、高强度:形状记忆聚合物环氧树脂的硬性段赋予了其高强度。

3、高韧性:软性段赋予了其高韧性和弹性。

4、化学稳定性:形状记忆聚合物环氧树脂具有出色的耐化学品性能,适用于许多高性能应用中。

5、调谐性:材料的形状记忆特性可以通过调节化学构造或加工参数进行调节。

1、智能材料领域:用于模型设计,例如微型化机械结构。

2、医疗领域:用于制作自适应植入物或医疗器械,例如智能支架,用于心脏外科手术。

3、航空航天领域:用于制作降落伞或空气动力学设备。

4、服装设计领域:用于制作具有自动调整功能的服装。

例如,可以根据温度变化自动调整衣服的大小。

5、建筑领域:用于制作具有自适应形状的建筑材料,例如可自适应变形的建筑表皮。

随着形状记忆聚合物环氧树脂的应用范围的不断扩大,其相关研究也在不断深入:1、材料结构和复合材料的研究:材料的形状记忆特性可以通过改变硬性段和软性段之间的比例来调节。

2、新型模型设计的研究:新型模型设计可以提高实验能力和模拟形状记忆聚合物环氧树脂的性能,为应用提供更好的理论指导。

3、材料在复合材料中的应用研究:复合材料通常具有高强度和轻量化特性,形状记忆聚合物环氧树脂可以使其拥有更多应用。

在这方面,研究已经初见成效。

综上所述,形状记忆聚合物环氧树脂已成为高分子材料中备受瞩目的研究领域之一。

未来,随着其成熟度的提高和应用领域的扩大,这种材料将会有更广泛的应用。

形状记忆合金材料的研究现状及未来前景

形状记忆合金材料的研究现状及未来前景

形状记忆合金材料的研究现状及未来前景近年来,形状记忆合金(Shape Memory Alloys,SMA)由于其独特的形状记忆效应和超弹性性能被广泛关注,并在智能材料、航空航天、生物医学等领域得到广泛应用。

本文将对形状记忆合金材料的研究现状及未来前景进行探讨。

一、形状记忆合金的定义和性质形状记忆合金是一种可以通过温度、应力等外界作用,实现形状记忆效应和超弹性性能的合金材料。

其最为独特的性质是具有记忆功能,即在特定的外力作用下,可以发生永久形状的改变,然而一旦去掉外力作用,它又能回到原有的形状。

这种记忆效应的发生和消失又称为相变。

此外,形状记忆合金还具有超弹性性能,即在外力作用下能够发生大变形,但当去掉外力后又能恢复到原来的形状,这种性质使它成为一种优良的智能材料。

二、形状记忆合金的研究现状自上世纪50年代以来,随着形状记忆合金的不断发展,人们对其进行了大量的研究。

目前国内外研究的重点主要集中在以下几个方面:1、形状记忆合金的制备与加工形状记忆合金是一种多功能复合材料,由于其自身的记忆和高弹性性能,以及其化学稳定性和防腐能力等,使其成为制造各种机械和电器设备的理想材料。

因此,制备和加工成为了重要的研究方向。

现阶段,形状记忆合金的制备方法主要包括粉末冶金、熔融法、溶液分解-沉淀法等。

其中,粉末冶金是最成熟的制备方法,在制备形状记忆合金时,一般采用惯性摩擦焊、冷轧板等加工成型方式。

2、形状记忆合金的相变机理形状记忆合金的相变机理是产生记忆效应的关键因素。

现阶段,研究相变机理主要有两个方向:一是基于电子和晶体缺陷的相变机理,主要是探讨相变过程中电子和晶体缺陷的变化情况,包括离子扩散、漂移等;另一种是基于热力学的相变机理,主要是以热力学概念来研究SMA的相变。

3、形状记忆合金的应用形状记忆合金的应用有非常广泛的领域,包括生物医学、航空航天、汽车制造、机械制造、建筑工程等领域。

其中,最具代表性的应用就是在生物医学领域,如心脏支架、口腔矫治器,还有智能材料领域,如智能织物、智能机器人等。

功能高分子材料发展现状及展望

功能高分子材料发展现状及展望

功能高分子材料发展现状及展望功能高分子材料是指具有特定功能的高分子材料,它们可以在各种领域中发挥重要作用。

随着科技的不断发展,功能高分子材料的应用范围也在不断扩大,未来的发展前景十分广阔。

功能高分子材料已经广泛应用于医疗、电子、能源、环保等领域。

在医疗领域,功能高分子材料可以用于制造人工器官、药物缓释系统、医用敷料等。

在电子领域,功能高分子材料可以用于制造柔性电子、有机发光二极管等。

在能源领域,功能高分子材料可以用于制造太阳能电池、燃料电池等。

在环保领域,功能高分子材料可以用于制造污水处理材料、环保包装材料等。

随着人们对环境保护意识的不断提高,功能高分子材料在环保领域的应用越来越受到重视。

例如,一些可降解的高分子材料可以用于制造环保包装材料,这些材料可以在自然环境中迅速分解,减少对环境的污染。

此外,一些具有吸附能力的高分子材料可以用于制造污水处理材料,可以有效地去除水中的有害物质,保护水资源。

在未来,功能高分子材料的发展前景十分广阔。

随着科技的不断进步,人们对功能高分子材料的需求也会越来越高。

未来,功能高分子材料的应用领域将会更加广泛,例如在智能材料、生物医学材料、新能源材料等领域中的应用将会越来越多。

智能材料是指具有感知、响应、控制等特性的材料,它们可以根据外部环境的变化自动调节自身的性能。

例如,一些具有形状记忆性的高分子材料可以根据温度、湿度等外部条件的变化自动改变自身的形状。

未来,随着人工智能、物联网等技术的不断发展,智能材料的应用前景将会越来越广阔。

生物医学材料是指用于医学领域的材料,它们可以用于制造人工器官、医用敷料、药物缓释系统等。

未来,随着人口老龄化的加剧,生物医学材料的需求将会越来越高。

例如,一些具有生物相容性的高分子材料可以用于制造人工心脏瓣膜、人工血管等,可以帮助患者恢复健康。

新能源材料是指用于能源领域的材料,它们可以用于制造太阳能电池、燃料电池等。

未来,随着能源危机的加剧,新能源材料的需求将会越来越高。

高分子材料的形状记忆性能研究与应用

高分子材料的形状记忆性能研究与应用

高分子材料的形状记忆性能研究与应用1. 引言高分子材料是一类具有特殊性能和应用前景的材料,其中形状记忆性能是引人注目的特征之一。

形状记忆性是指材料通过外部触发,能够从一种初始形状迅速回复到具有预设形状的能力。

与传统的材料相比,高分子材料的形状记忆性能具有许多优势,如材料的轻量化、可重复使用性等。

因此,研究与应用高分子材料的形状记忆性能具有重要的科学和实际意义。

2. 形状记忆原理高分子材料的形状记忆性能是基于其特殊的分子结构和热力学性质实现的。

一般来说,高分子材料通过控制温度、电场、光照等外部刺激,使其分子结构发生变化,从而实现形状记忆性能。

其中,形状记忆效应的实现主要依赖于高分子材料中的交联度、分子链的切断和重连接以及聚合物链的运动等过程。

3. 形状记忆性能研究在高分子材料的形状记忆性能研究中,主要包括材料的形状记忆效应机制、形状记忆行为的表征与分析方法以及形状记忆性能的调控与优化等方面。

通过对不同类型高分子材料的形状记忆性能进行研究,可以深入了解其作用机制,并为材料的合成和应用提供理论指导和实验基础。

4. 形状记忆性能应用高分子材料的形状记忆性能在许多领域具有广泛的应用前景。

例如,在医学领域,可以利用高分子材料的形状记忆性能制备可移植的组织工程支架;在航空航天领域,可以利用形状记忆材料设计制造高效的飞机构件;在智能材料和机器人领域,可以利用形状记忆材料制造可编程、可自主移动的智能器件;在电子领域,可以利用形状记忆材料制造灵活的电子器件等。

这些应用将大大推动传统材料科学的发展,并在生活和工业生产中发挥重要作用。

5. 发展与挑战虽然形状记忆高分子材料具有许多优点和潜在应用,但是其研究与应用仍然面临一些挑战。

例如,在形状记忆材料的合成和制备过程中,需要考虑材料的可调控性和可持续性等问题;在形状记忆性能的调控和优化过程中,需要考虑材料的力学性能和稳定性等问题。

此外,形状记忆高分子材料的商业化应用还需要克服生产成本、制备工艺和市场需求等方面的限制。

2023年形状记忆合金行业市场发展现状

2023年形状记忆合金行业市场发展现状

2023年形状记忆合金行业市场发展现状
随着科技的不断发展和应用,形状记忆合金行业市场在过去几年中得到了快速发展。

这种新材料拥有许多特殊的性质,如高的韧性、耐腐蚀性、高温稳定性,以及能够记住并保持其原始形状,可以广泛应用于电子、航空、汽车、医疗和其他领域。

目前,形状记忆合金的产量和销售额都在不断增加,该市场的发展前景非常广阔。

以下是形状记忆合金行业市场发展现状的详细信息。

一、生产技术和成本
形状记忆合金的生产技术要求非常高,主要采用以上金属的合金化和形状记忆塑性加工等方法。

其生产成本较高,但是由于该材料所具备的特殊性能,它的应用广泛,可以对其他行业产生巨大的经济效益。

二、市场规模和应用
形状记忆合金市场规模越来越大,随着各种新技术的不断出现,应用价值也在不断增加。

该材料在航空航天、电器、机械、汽车、医疗设备等领域得到了广泛应用。

特别是在医疗领域,形状记忆合金的泌尿系统支架、血管扩张器、复合支撑杆等医疗器械成为新的研究热点。

三、市场走势和前景
随着形状记忆合金的广泛使用,这个行业的市场走势也非常乐观。

形状记忆合金领域的企业在发展中倾向于专业化和单品种、细分化的发展模式。

同时,多项科研成果应用推广不断取得重大突破,如超级弹性形状记忆合金、高等温形状记忆合金、磁场诱导形状记忆等,使得这个行业的发展前景非常广阔。

总结来说,形状记忆合金行业市场的发展取得快速的进展,占据了越来越多的市场份额。

随着技术的进步和产业链的成熟,该行业的应用场景将会更加广泛,同时价格也会逐步降低,未来前景十分看好。

高分子材料的形状记忆性能研究

高分子材料的形状记忆性能研究

高分子材料的形状记忆性能研究近年来,高分子材料的形状记忆性能一直受到广泛关注。

形状记忆性能是指在受到外界刺激后,高分子材料能够自动恢复到其原始形状的能力。

这种记忆能力使得高分子材料在许多领域都有着广泛的应用前景,如人工智能、生物医学工程和可穿戴设备等。

形状记忆性能的研究主要涉及到两个方面:首先是高分子材料的记忆效应。

高分子材料的形状记忆机制是由其特殊的结构决定的。

大多数高分子材料都是由线性或交联聚合物链组成的,当受到外界温度、光线或电场等刺激时,高分子材料的分子链会经历某种结构转变,从而改变材料的形状。

当外界刺激消失时,高分子材料又会自动恢复到原来的形状。

这种形状记忆效应是由于高分子材料的内部结构发生了可逆性改变。

第二个方面是高分子材料的形状记忆机理。

形状记忆机理主要包括两种类型:一种是热致形状记忆,另一种是光致形状记忆。

热致形状记忆是指高分子材料在恢复原状时,利用外界的温度变化来驱动分子链的结构恢复。

光致形状记忆则是通过外界的光线刺激实现形状的恢复。

这两种形状记忆机理有着不同的优缺点和应用范围,研究人员正在不断深入探索它们的机制,并提出更加高效的方法。

形状记忆性能的研究还面临一些挑战。

首先是高分子材料的制备。

高分子材料的形状记忆性能需要通过合成合适的聚合物来实现。

为了达到理想的形状记忆性能,研究人员需要精确控制聚合物的结构和分子链的排列方式。

其次是形状记忆性能的稳定性问题。

由于高分子材料的形状记忆性能是由分子链结构的可逆变化决定的,因此在长时间使用或多次形状转变后,高分子材料的形状记忆性能可能会出现衰退或丢失的情况。

针对这个问题,研究人员正在尝试将形状记忆性能与其他物理性能相结合,以提高材料的稳定性。

高分子材料的形状记忆性能研究不仅局限于实验室的理论探索,还涉及到许多实际应用。

例如,在可穿戴设备中,形状记忆材料能够根据人体的形态变化,自动调整设备的形状,提供更好的舒适度和适配性。

在生物医学工程领域,形状记忆材料可用于制作人工血管、智能药物释放系统等,以实现更加精确和有效的治疗。

形状记忆合金的应用现状与发展趋势

形状记忆合金的应用现状与发展趋势

总的来说,形状记忆合金的独特性质和广泛的应用前景使得它们成为未来科 技发展的重要方向之一。随着新的科研成果和技术进步的出现,我们可以期待在 未来看到更多的创新和应用。
谢谢观看
一、形状记忆合金的基本特性
形状记忆合金的主要成分是钛、锆或镍,它们在微观结构上具有两个不同的 晶体结构,称为母相和马氏体。在较低的温度下,材料处于母相,此时对其进行 塑性变形,然后在较高的温度下进行加热,使其发生马氏体转变,此时材料恢复 到其原始形状。
二、形状记忆合金的应用
1、医疗领域:在医疗领域,形状记忆合金被广泛应用于矫形外科和口腔科。 例如,利用其形状记忆特性,可以制造出用于治疗骨折的固定器和用于牙齿矫正 的弓丝。此外,形状记忆合金还被用于药物载体和生物医学传感器。
二、形状记忆合金的应用优势
1、高温、高压下的稳定性
形状记忆合金具有优异的高温、高压下的稳定性,能够在极端环境下保持稳 定的性能。这一特点使得形状记忆合金在高温、高压环境下具有广泛的应用前景, 如在航空航天、石油化工等领域。
2、机械性能
形状记忆合金具有优异的机械性能,如高强度、高硬度、良好的耐磨性和抗 疲劳性等。这些特点使得形状记忆合金在承受大的力学作用时仍能保持优异的性 能,为各种领域的应用提供了强有力的保障。
随着人工智能和物联网技术的不断发展,智能化应用将逐渐普及。形状记忆 合金作为一种具有智能响应特性的材料,将在智能化应用中发挥重要作用。研究 人员将致力于研究如何将形状记忆合金与传感器、执行器等相结合,实现智能化 控制和应用。
4、多领域交叉合作
随着形状记忆合金在各个领域的广泛应用,多领域交叉合作将成为未来发展 的重要趋势。研究人员将来自不同领域的研究人员和工程师进行合作交流,共同 推动形状记忆合金在不同领域的应用研究和发展。

形状记忆聚合物细分市场调研报告

形状记忆聚合物细分市场调研报告

驱动市场增长的因素
第一季度
第二季度
第三季度
第四季度
技术进步
形状记忆聚合物作为一 种智能材料,其性能和 应用领域随着技术的不 断进步而拓展。新技术 的应用为形状记忆聚合 物带来了更多的应用场 景和商业机会。
应用领域拓展
除了传统的航空航天和 医疗器械领域,形状记 忆聚合物在智能穿戴、 汽车、建筑等领域的应 用逐渐增多,为市场增
关注政策环境和市场需求
03
投资者应关注政策环境和市场需求的变化,及时调整
投资策略,把握市场机遇。
技术研发建议
加强基础研究
企业应加大在形状记忆聚合物基础研究方面的投入,提高自主创 新能力。
拓展应用领域
企业应积极探索形状记忆聚合物在不同领域的应用可能性,开拓 新的市场空间。
加强国际合作与交流
企业应积极参与国际技术交流与合作,引进先进技术和管理经验 ,提升自身技术水平。
市场机遇
应用领域广泛
形状记忆聚合物具有优异的形状记忆性能和力学性能,在 航空航天、医疗器械、智能穿戴等领域具有广泛的应用前 景。
市场需求增长
随着智能制造、智能家居等产业的快速发展,形状记忆聚 合物市场需求呈现快速增长趋势,为企业提供了广阔的市 场空间。
政策支持
随着国家对新材料产业的重视和支持力度的加大,形状记 忆聚合物有望获得更多的政策支持和资金扶持。
全球经济的复苏和新兴市场的崛起也将为形状记忆聚合物市场提供新的增 长点。
新兴应用领域预测
医疗领域
形状记忆聚合物在医疗器械、生物材料、组织工程等领域具有广阔 的应用前景,预计未来将有更多创新产品问世。
智能穿戴设备
随着智能穿戴设备的普及,形状记忆聚合物在服装、鞋帽等产品中 的应用将逐渐增多,提高穿戴舒适度和智能化水平。

形状记忆高分子材料的发展及应用概况

形状记忆高分子材料的发展及应用概况

形状记忆高分子材料的发展及应用概况一、本文概述形状记忆高分子材料(Shape Memory Polymers, SMPs)是一类具有独特形状记忆效应的智能材料,能够在受到外界刺激(如温度、光照、电场、磁场等)时,恢复其原始形状。

自上世纪90年代开始,随着材料科学和工程技术的不断进步,形状记忆高分子材料得到了快速发展,并在航空航天、生物医疗、汽车制造、智能传感器等领域展现出广阔的应用前景。

本文旨在全面概述形状记忆高分子材料的发展历程、基本原理、性能特点以及当前的应用概况,以期为相关领域的科研工作者和工程师提供参考和启示。

在发展历程方面,本文将介绍形状记忆高分子材料的起源、发展阶段和当前的研究热点。

在基本原理方面,将重点阐述形状记忆高分子材料的形状记忆效应产生的机制,包括交联网络结构、可逆物理/化学交联、热膨胀系数等。

在性能特点方面,将总结形状记忆高分子材料的优点和局限性,如形状恢复速度快、可重复性好、加工性能好等,以及其在高温、高湿等恶劣环境下的稳定性问题。

在应用概况方面,将详细介绍形状记忆高分子材料在航空航天、生物医疗、汽车制造、智能传感器等领域的具体应用案例,并分析其未来的发展趋势和市场前景。

通过本文的综述,读者可以全面了解形状记忆高分子材料的最新研究进展和应用现状,为相关领域的科研和产业发展提供有益的参考。

二、形状记忆高分子材料的分类形状记忆高分子材料(Shape Memory Polymers, SMPs)是一类具有独特“记忆”形状功能的智能材料。

它们能够在外部刺激(如温度、光照、电场、磁场或pH值变化等)的作用下,从临时形状恢复到其原始形状。

根据恢复机制的不同,形状记忆高分子材料可以分为以下几类:热致型形状记忆高分子材料:这类材料利用热响应来触发形状记忆效应。

它们通常包含两个或多个具有不同玻璃化转变温度(Tg)的组分,通过加热到特定温度,材料能够从一个临时形状恢复到原始形状。

这类材料在航空航天、医疗器械和智能织物等领域具有广泛的应用前景。

形状记忆纤维发展现状及未来趋势分析

形状记忆纤维发展现状及未来趋势分析

形状记忆效应是指材 料在形变后能够记住 原始形状的能力
形状记忆纤维的特性
01
02
03
可逆形变
形状记忆纤维可以在一定 的温度和湿度条件下发生 可逆形变,形变后可以自 动恢复原始形状
耐疲劳性
形状记忆纤维经过多次形 变和恢复后,性能仍然稳 定,具有较长的使用寿命
轻质、柔软
形状记忆纤维具有轻质、 柔软的特点,可以用于制 作各种轻薄、柔软的织物
航空航天领域
形状记忆纤维在航空航天领域的应用也在逐步拓 展,如智能材料、结构修复等。
绿色环保形状记忆纤维的发展
环保意识提升
01
随着环保意识的不断提升,发展绿色环保材料已成为
全球的共识。
回收再利用
02 形状记忆纤维的回收再利用技术及产业化发展受到了
广泛关注,未来将会有更多的研究投入该领域。
可持续发展
形状记忆纤维在多个领域 都有应用潜力,跨领域合 作可以带来更多机会和挑 战。
05
结论
总结形状记忆纤维的发展现状及未来趋势
形状记忆纤维在近年来得到了广泛的应用和发展,其独特的形状记忆效应和恢复特性在服装、航空航 天、医疗等领域展现出巨大的应用潜力。
目前,形状记忆纤维的主要生产方法包括纺丝、共混纺丝、复合纺丝等,不同方法得到的纤维性能也有 所不同。
发展趋势
未来,随着技术的不断进步,高 性能形状记忆纤维的研发将更加 注重材料的性能、质量和成本的 优化,以满足不同领域的需求。
智能形状记忆纤维的应用
智能纺织品
智能形状记忆纤维在智能纺织品领域具有广泛的 应用前景,如智能服饰、智能家居等。
医疗健康领域
形状记忆纤维在医疗健康领域的应用也日益增多 ,如可穿戴式医疗设备、生物医用材料等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Value Engineering0引言随着社会的进步和科学技术的发展,一般的材料难以满足日益复杂的环境,因此需要具有自修复功能的智能材料———形状记忆材料。

20世纪50年代以来,各国相继研究出在外加刺激的条件(如光、电、热、化学、机械等)经过形变可以回复到原始形状的具有形状记忆功能的材料,它可分为三大类,形状记忆合金、形状记忆陶瓷和形状记忆聚合物材料。

高分子产业的迅速发展,推动了功能高分子材料得到了蓬勃发展。

形状记忆聚合物材料的独特性,广泛应用于很多领域并发展潜力巨大,人们开始广泛关注[1]。

1功能高分子材料研究概况功能高分子材料是20世纪60年代的新兴学科,是渗透到电子、生物、能源等领域后开发涌现出的新材料。

由于它的内容丰富、品种繁多、发展迅速,成为新技术革命不可或缺的关键材料,对社会的生活将产生巨大影响。

1.1功能高分子材料的介绍功能高分子材料是指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料,通常也可简称为功能高分子,也可称为精细高分子或特种高分子[2]。

1.2功能高分子材料分类可分为两类:第一类:以原高分子材料为基础上进行改性或其他方法,使其成为具有人们所需要的且各项性能更好的高分子材料;第二类:是具有新型特殊功能的高分子材料[3]。

1.3形状记忆功能高分子材料自19世纪80年代发现热致形状记忆高分子材料[4],人们开始广泛关注作为功能材料的一个分支———形状记忆功能高分子材料。

和其它功能材料相比的特点:首先,原料充足,形变量大,质量轻,易包装和运输,价格便宜,仅是金属形状记忆合金的1%;第二,制作工艺方简便;形状记忆回复温度范围宽,而且容易加工,易制成结构复杂的异型品,能耗低;第三,耐候性,介电性能和保温效果良好。

形状记忆聚合物(SMP )代表一项技术上的重要的类别刺激响应的材料,在于形状变动的反应。

更确切地说,传统意义上的SMP 是聚合物变形,随后能固定在一个临时的形状,这将保持稳定,除非它暴露在一个适当的外部刺激激活了聚合物恢复到它原来的(或永久的形状)。

因此,相关的反应被称为聚合物内的形状记忆效应(SME )。

虽然各种形式的外部刺激可以被用来作为恢复触发,最典型的一种是直接加热,通向温度增加[4]。

2部分形状记忆高分子材料的制备方法2.1接枝聚乙烯共聚物在形状记忆聚乙烯中,交联(辐射或化学)是必须的,但是交联程度过高会导致聚合物的加工性能不好,因此最好是将交联放在产品制造的最后一步:Feng Kui Li 等采用尼龙接枝HDPE 获得了形状记忆聚合物。

他们采用马来酸酐和DC 处理熔融HDPE 在180℃反应5分钟,然后在230℃下和尼龙-6反应5分钟得到产物。

SEM 照片显示尼龙微粒小于0.3μm ,在HDPE 中分散良好,两者界面模糊,显示两者形成化学粘合;而尼龙和HDPE 简单混合的SEM 照片中两者界面明显试验同时表明,随着DCP 含量和尼龙含量的提高,共聚物中形成了更多的共聚物具有和射线交联聚乙烯(XPE )SMP 相似的形状记忆效应,形变大于95%,恢复速度好于射线交联———————————————————————基金项目:渭南师范学院科研计划项目(12YKF018)。

作者简介:李建锋(1979-),男,陕西大荔人,讲师,理学硕士,研究方向为分子生物学。

形状记忆功能高分子材料的研究现状和进展Status and Progress of the Study on Shape Memory Polymer李建锋①②LI Jian-feng ;李锋③LI Feng(①渭南师范学院科学技术处,渭南714099;②陕西省多河流湿地生态环境重点实验室,渭南714099;③燕山大学材料科学与工程学院,秦皇岛066004)(①Science and Technology Department ,Weinan Normal University ,Weinan 714099,China ;②Shaanxi Key Laboratory of Many River Wetland Ecological Environment ,Weinan 714099,China ;③Yanshan University College of Materials Science and Engineering ,Qinhuangdao 066004,China )摘要:通过对形状记忆功能高分子材料制作和表征方法方面,以及国内外发展现状进行研究总结,得出形状记忆聚合物的发展趋势。

Abstract:Function polymer materials are rapidly developing in recently years.But there are not any generalizations to the developmentof shape memory polymers.The defined,mechanism,characterization and the preparation of the most simulative shape memory polymer arebriefly introduced in this paper.Then the developing prospects are also reviewed.关键词:功能高分子材料;展望;形状记忆Key words:functional polymer materials ;outlook ;shape memory polyer 中图分类号:TB324文献标识码:A文章编号:1006-4311(2012)31-0303-02·303·价值工程的聚乙烯SMP,该聚合物在120℃左右形状恢复达到最大。

对其机理研究表明,接枝在PE上的尼龙形成的物理交联对形状记忆效应有重要作用。

值得注意的是该共混物是仅仅通过熔融混合得到的,工艺非常简单,而且采用的是通用聚合物,因此该方法值得推广[5]。

2.2聚氨酯及其共混物聚氨酯是含有部分结晶相的线性聚合物,该聚合物可以是热塑性的,也可是热固性的。

聚氨酯类形状记忆材料,软段的结构组成和相对分子质量是影响其临界记忆温度的主要因素,硬段结构对记忆温度影响不大。

采用聚氨酯和其它聚合物共混,可以改善性能,得到所需要的产物。

有报道采用聚己内酰胺(PCL)、热塑性聚氨酯(TPU)和苯氧基树脂制得的形状记忆材料。

发现该产物随着组成的变化而玻璃化转化温度不同;同时发现PCL 部分在混合物中结晶相消失,说明结晶过程被阻碍。

改混合物具有形状记忆效应的原因在PCL/苯氧树脂作为了可逆相。

该混合物的玻璃化温度可以通过TPU/苯氧基树脂的混合比例和种类决定,增加混合物中固定相和减少TPU 链长度可以减少滞后效应。

报道采用PVC和PU共混也能得到SMP。

该混合物中存在PVC/PCL形成的无定形相,混合物的玻璃化的温度也随着PVC/PCL的组成变化而平稳的发生变化,固定相记忆着最初形状[6-8]。

3国内外形状记忆高分子材料研究现状3.1国内研究现状国内研究的形状记忆高分子材料多以聚氨酯和环氧树脂基为主,加入添加剂或固化剂进行改性,可以得到满足基本要求的SMPs,但是由于其自身缺点的约束,所以限制了其使用范围。

最近几年来,形状记忆合金以利用聚合物为基体添加其他成分,突出各个优点进行对比,得到一些性能良好的形状记忆材料因此我们列举国内最新的SMPs研究。

魏堃等人将新型聚合物固化剂与环氧树脂(EP)进行机械共混,进行适度交联固化后,制出具有较低玻璃化转变温度(Tg)的无定型EP体系,得出结果显示适度交联固化的EP体系具有良好的形状记忆特性。

高淑春等人利用活化溅射方法制备TiO2薄膜,以Ni-Ti形状记忆合金生物材料为基体,附着在形状记忆和金材料的表面,其跟血液相容性比较好,因此具有较高的临床使用价值。

3.2国外研究现状对比国内,国外的SMPs发展比较早,例如:美国、日本、德国等由于具有先进的设备和理论基础,因此在各个方面相对国内都比较成熟,所以本人参考最近国外SMPs相关研究在此论述。

Y.C.Lu等人利用环氧基的形状记忆材料设计模拟服务环境所能反映出的预期性能要求即①暴露在紫外线辐射下循环为125分钟;②在室温下沉浸润滑油内;③浸泡在热水中49℃。

一种新颖的高温压痕法评估适应条件的SMPs的形状和力学性能。

结果表明对于有条件的比较一般环境条件SMPs的玻璃化转变温度降低与较高模和敏感应变速率。

如果温度设定低环境条件影响的SMPs形状恢复能力。

特别是紫外线暴露和浸入水中的SMPs回复率明显低与无条件的材料。

当回复温度高于Tg,材料的回复能力相对保持不变。

R.Biju等人用双酚A(BADC)与缩水甘油醚或者双酚A(DGEBA)与苯酚螯合物(PTOH)通过一系列聚反应合成热固性聚合物表现出具有形状记忆性能。

利用差示扫描量热分析、红外光谱及流变仪来表征其固化特征。

以不同比例DGEBA/PTOH/BADC混合,研究了它们的弯曲、动态力学性能以及热性能;对于一个给定的成分,弯曲强度和热稳定性随着氰酸酯浓度增加而增加,而这些特性随着PTOH浓度的增加而降低,储存模量表现出相似的趋势。

这个转变温度(Tt)随着整体氰酸酯含量的增加而增加。

这些聚合物在形状记忆性能显示出良好的恢复形状,并且形状恢复时间减少。

而显示恢复时间与形状恢复模量增加(Eg/Er)刚好相反。

这个转变温度可调谐反应物组成及变形恢复速度随驱动的温度增加而增加。

这些环氧基氰酸盐系统具有良好的热、力学和形状记忆特征很有希望用在智能电气领域。

4展望由于SMP有着丰富的后备资源,而且形状记忆的方式灵活,具有广阔应用和发展前景。

因此本文认为,有很多重要因素影响将SMPs技术成功转化成生产应用,例如:标准化的不同方法描述为量化形状记忆材料的性能。

应该进一步完善形状记忆原理,在分子结构理论和弹性形变理论基础之上,建立形状记忆的数学理论模型,为开发新材料奠定了理论基础;运用分子结构理论、实验设计原理和改性技术知识,提高形状记忆各项性能、丰富品种、满足不同的应用需要,增强应用和开发研究,拓宽应用领域,尽快转化为生产力。

形状记忆高分子与形状记忆合金相比具有感应温度低,且形状记忆高分子因其独特的优点而具有广泛的应用前景,但是我们也应该看到在开发应用上仍存有一些不足[22]:形变回复力小;只有单程形状记忆功能,没有双程性记忆和全程记忆等性能;优化制作设计与工艺,开发更多优秀的品种,在研究聚合物基的SMP中有许多重要工作需要我们一步步努力去做,在完善SMP过程中,同时要研究复合社会不同需求的产品。

相关文档
最新文档