函数的最大最小值与导数

合集下载

导数与函数的极值、最值(经典导学案及练习答案详解)

导数与函数的极值、最值(经典导学案及练习答案详解)

§3.3导数与函数的极值、最值学习目标1.借助函数图象,了解函数在某点取得极值的必要和充分条件.2.会用导数求函数的极大值、极小值.3.会求闭区间上函数的最大值、最小值.知识梳理1.函数的极值(1)函数的极小值函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.(3)极小值点、极大值点统称为极值点,极小值和极大值统称为极值.2.函数的最大(小)值(1)函数f(x)在区间[a,b]上有最值的条件:如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y=f(x)在区间[a,b]上的最大(小)值的步骤:①求函数y=f(x)在区间(a,b)上的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.常用结论对于可导函数f(x),“f′(x0)=0”是“函数f(x)在x=x0处有极值”的必要不充分条件.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数f(x)在区间(a,b)上不存在最值.(×)(2)函数的极小值一定是函数的最小值.(×)(3)函数的极小值一定不是函数的最大值.(√)(4)函数y=f′(x)的零点是函数y=f(x)的极值点.(×)教材改编题1.如图是f (x )的导函数f ′(x )的图象,则f (x )的极小值点的个数为( )A .1B .2C .3D .4答案 A解析 由题意知只有在x =-1处f ′(-1)=0,且其两侧导数符号为左负右正.2.函数f (x )=x 3-ax 2+2x -1有极值,则实数a 的取值范围是( )A .(-∞,-6]∪[6,+∞)B .(-∞,-6)∪(6,+∞)C .(-6,6)D .[-6,6]答案 B解析 f ′(x )=3x 2-2ax +2,由题意知f ′(x )有变号零点,∴Δ=(-2a )2-4×3×2>0, 解得a >6或a <- 6.3.若函数f (x )=13x 3-4x +m 在[0,3]上的最大值为4,则m =________. 答案 4解析 f ′(x )=x 2-4,x ∈[0,3],当x ∈[0,2)时,f ′(x )<0,当x ∈(2,3]时,f ′(x )>0,所以f (x )在[0,2)上单调递减,在(2,3]上单调递增.又f (0)=m ,f (3)=-3+m .所以在[0,3]上,f (x )max =f (0)=4,所以m =4.题型一 利用导数求函数的极值问题命题点1 根据函数图象判断极值例1 (2022·广州模拟)设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(x -1)f ′(x )的图象如图所示,则下列结论中正确的是( )A .函数f (x )有极大值f (-3)和f (3)B .函数f (x )有极小值f (-3)和f (3)C.函数f(x)有极小值f(3)和极大值f(-3)D.函数f(x)有极小值f(-3)和极大值f(3)答案 D解析由题图知,当x∈(-∞,-3)时,y>0,x-1<0⇒f′(x)<0,f(x)单调递减;当x∈(-3,1)时,y<0,x-1<0⇒f′(x)>0,f(x)单调递增;当x∈(1,3)时,y>0,x-1>0⇒f′(x)>0,f(x)单调递增;当x∈(3,+∞)时,y<0,x-1>0⇒f′(x)<0,f(x)单调递减.所以函数有极小值f(-3)和极大值f(3).命题点2求已知函数的极值例2已知函数f(x)=x-1+ae x(a∈R,e为自然对数的底数).(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;(2)求函数f(x)的极值.解(1)因为f(x)=x-1+ae x,所以f′(x)=1-ae x,又因为曲线y=f(x)在点(1,f(1))处的切线平行于x轴,所以f′(1)=0,即1-ae1=0,所以a=e.(2)由(1)知f′(x)=1-ae x,当a≤0时,f′(x)>0,所以f(x)在(-∞,+∞)上单调递增,因此f(x)无极大值与极小值;当a>0时,令f′(x)>0,则x>ln a,所以f(x)在(ln a,+∞)上单调递增,令f′(x)<0,则x<ln a,所以f(x)在(-∞,ln a)上单调递减,故f(x)在x=ln a处取得极小值,且f(ln a)=ln a,但是无极大值,综上,当a≤0时,f(x)无极大值与极小值;当a>0时,f(x)在x=ln a处取得极小值ln a,但是无极大值.命题点3已知极值(点)求参数例3(1)(2022·大庆模拟)函数f(x)=x3+ax2+bx+a2在x=1处取得极值10,则a+b等于()A .-7B .0C .-7或0D .-15或6答案 A 解析 由题意知,函数f (x )=x 3+ax 2+bx +a 2,可得f ′(x )=3x 2+2ax +b ,因为f (x )在x =1处取得极值10,可得⎩⎪⎨⎪⎧ f ′(1)=3+2a +b =0,f (1)=1+a +b +a 2=10, 解得⎩⎪⎨⎪⎧ a =4,b =-11,或⎩⎪⎨⎪⎧a =-3,b =3, 检验知,当a =-3,b =3时,可得f ′(x )=3x 2-6x +3=3(x -1)2≥0,此时函数f (x )单调递增,函数无极值点,不符合题意;当a =4,b =-11时,可得f ′(x )=3x 2+8x -11=(3x +11)(x -1),当x <-113或x >1时, f ′(x )>0,f (x )单调递增;当-113<x <1时,f ′(x )<0,f (x )单调递减, 当x =1时,函数f (x )取得极小值,符合题意.所以a +b =-7.(2)(2022·南京模拟)已知函数f (x )=x (ln x -ax )在区间(0,+∞)上有两个极值,则实数a 的取值范围为( )A .(0,e)B.⎝⎛⎭⎫0,1eC.⎝⎛⎭⎫0,12 D.⎝⎛⎭⎫0,13 答案 C解析 f ′(x )=ln x -ax +x ⎝⎛⎭⎫1x -a=ln x +1-2ax ,由题意知ln x +1-2ax =0在(0,+∞)上有两个不相等的实根,2a =ln x +1x, 设g (x )=ln x +1x, 则g ′(x )=1-(ln x +1)x 2=-ln x x 2.当0<x <1时,g ′(x )>0,g (x )单调递增;当x >1时,g ′(x )<0,g (x )单调递减,所以g (x )的极大值为g (1)=1,又当x >1时,g (x )>0,当x →+∞时,g (x )→0,当x →0时,g (x )→-∞,所以0<2a <1,即0<a <12. 教师备选 1.(2022·榆林模拟)设函数f (x )=x cos x 的一个极值点为m ,则tan ⎝⎛⎭⎫m +π4等于( ) A.m -1m +1B.m +1m -1C.1-m m +1D.m +11-m 答案 B解析 由f ′(x )=cos x -x sin x =0,得tan x =1x ,所以tan m =1m, 故tan ⎝⎛⎭⎫m +π4=1+tan m 1-tan m =m +1m -1. 2.已知a ,b ∈R ,若x =a 不是函数f (x )=(x -a )2(x -b )·(e x -1-1)的极小值点,则下列选项符合的是( )A .1≤b <aB .b <a ≤1C .a <1≤bD .a <b ≤1 答案 B解析 令f (x )=(x -a )2(x -b )(e x -1-1)=0,得x 1=a ,x 2=b ,x 3=1.下面利用数轴标根法画出f (x )的草图,借助图象对选项A ,B ,C ,D 逐一分析.对选项A ,若1≤b <a ,由图可知x =a 是f (x )的极小值点,不符合题意; 对选项B ,若b <a ≤1,由图可知x =a 不是f (x )的极小值点,符合题意; 对选项C ,若a <1≤b ,由图可知x =a 是f (x )的极小值点,不符合题意; 对选项D ,若a <b ≤1,由图可知x =a 是f (x )的极小值点,不符合题意. 思维升华 根据函数的极值(点)求参数的两个要领(1)列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解;(2)验证:求解后验证根的合理性.跟踪训练1 (1)(2022·长沙模拟)若x =1是函数f (x )=(x 2+ax -1)e x-1的极值点,则f (x )的极大值为( )A .-1B .-2e -3C .5e -3D .1 答案 C解析 因为f (x )=(x 2+ax -1)e x -1,故可得f ′(x )=(2x +a )e x -1+(x 2+ax -1)e x -1=e x -1[x 2+(a +2)x +a -1],因为x =1是函数f (x )=(x 2+ax -1)e x-1的极值点,故可得f ′(1)=0,即2a +2=0,解得a =-1.此时f ′(x )=e x -1(x 2+x -2)=e x -1(x +2)(x -1).令f ′(x )=0,解得x 1=-2,x 2=1,由f ′(x )>0可得x <-2或x >1;由f ′(x )<0可得-2<x <1,所以f (x )在区间(-∞,-2)上单调递增,在(-2,1)上单调递减,在(1,+∞)上单调递增,故f (x )的极大值点为x =-2.则f (x )的极大值为f (-2)=(4+2-1)e -3=5e -3.(2)(2022·芜湖模拟)函数f (x )=ln x +12x 2-ax (x >0)在⎣⎡⎦⎤12,3上有且仅有一个极值点,则实数a 的取值范围是( )A.⎝⎛⎭⎫52,103B.⎣⎡⎭⎫52,103C.⎝⎛⎦⎤52,103D.⎣⎡⎦⎤2,103 答案 B解析 ∵f (x )=ln x +12x 2-ax (x >0), ∴f ′(x )=1x+x -a , ∵函数f (x )=ln x +12x 2-ax (x >0)在⎣⎡⎦⎤12,3上有且仅有一个极值点, ∴y =f ′(x )在⎣⎡⎦⎤12,3上只有一个变号零点.令f ′(x )=1x +x -a =0,得a =1x+x . 设g (x )=1x +x ,则g (x )在⎣⎡⎦⎤12,1上单调递减,在[1,3]上单调递增,∴g (x )min =g (1)=2,又g ⎝⎛⎭⎫12=52,g (3)=103, ∴当52≤a <103时,y =f ′(x )在⎣⎡⎦⎤12,3上只有一个变号零点. ∴实数a 的取值范围为⎣⎡⎭⎫52,103.题型二 利用导数求函数最值例4 已知函数g (x )=a ln x +x 2-(a +2)x (a ∈R ).(1)若a =1,求g (x )在区间[1,e]上的最大值;(2)求g (x )在区间[1,e]上的最小值h (a ).解 (1)∵a =1,∴g (x )=ln x +x 2-3x ,∴g ′(x )=1x +2x -3=(2x -1)(x -1)x, ∵x ∈[1,e],∴g ′(x )≥0,∴g (x )在[1,e]上单调递增,∴g (x )max =g (e)=e 2-3e +1.(2)g (x )的定义域为(0,+∞),g ′(x )=a x +2x -(a +2)=2x 2-(a +2)x +a x=(2x -a )(x -1)x. ①当a 2≤1,即a ≤2时,g (x )在[1,e]上单调递增,h (a )=g (1)=-a -1; ②当1<a 2<e ,即2<a <2e 时,g (x )在⎣⎡⎭⎫1,a 2上单调递减,在⎝⎛⎦⎤a 2,e 上单调递增,h (a )=g ⎝⎛⎭⎫a 2=a ln a 2-14a 2-a ; ③当a 2≥e ,即a ≥2e 时,g (x )在[1,e]上单调递减,h (a )=g (e)=(1-e)a +e 2-2e. 综上,h (a )=⎩⎪⎨⎪⎧ -a -1,a ≤2,a ln a 2-14a 2-a ,2<a <2e ,(1-e )a +e 2-2e ,a ≥2e.教师备选已知函数f (x )=ln x -ax -2(a ≠0).(1)讨论函数f (x )的单调性;(2)若函数f (x )有最大值M ,且M >a -4,求实数a 的取值范围.解 (1)f (x )的定义域为(0,+∞),由f (x )=ln x -ax -2(a ≠0)可得f ′(x )=1x-a , 当a <0时,f ′(x )>0,所以f (x )在(0,+∞)上单调递增;当a >0时,令f ′(x )=0,得x =1a, 所以当x ∈⎝⎛⎭⎫0,1a 时, f ′(x )>0,f (x )单调递增;当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )<0,f (x )单调递减, 综上所述,当a <0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减. (2)由(1)知,当a <0时,f (x )在(0,+∞)上单调递增,无最大值,当a >0时,f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减, 所以当x =1a时,f (x )取得最大值, 即f (x )max =f ⎝⎛⎭⎫1a =ln 1a -a ×1a-2 =ln 1a-3=-ln a -3, 因此有-ln a -3>a -4,得ln a +a -1<0,设g (a )=ln a +a -1,则g ′(a )=1a+1>0, 所以g (a )在(0,+∞)上单调递增,又g (1)=0,所以g (a )<g (1),得0<a <1,故实数a 的取值范围是(0,1).思维升华 (1)求函数f (x )在闭区间[a ,b ]上的最值时,在得到极值的基础上,结合区间端点的函数值f (a ),f (b )与f (x )的各极值进行比较得到函数的最值.(2)若所给的闭区间[a ,b ]含参数,则需对函数f (x )求导,通过对参数分类讨论,判断函数的单调性,从而得到函数f (x )的最值.跟踪训练2 某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度),设该蓄水池的底面半径为r米,高为h 米,体积为V 立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12 000π元(π为圆周率).(1)将V 表示成r 的函数V (r ),并求该函数的定义域;(2)讨论函数V (r )的单调性,并确定r 和h 为何值时该蓄水池的体积最大.解 (1)∵蓄水池的侧面的总成本为100×2πrh =200πrh (元),底面的总成本为160πr 2元,∴蓄水池的总成本为(200πrh +160πr 2)元.由题意得200πrh +160πr 2=12 000π,∴h =15r (300-4r 2).从而V (r )=πr 2h =π5(300r -4r 3).由h >0,且r >0,可得0<r <5 3.故函数V (r )的定义域为(0,53).(2)由(1)知V (r )=π5(300r -4r 3), 故V ′(r )=π5(300-12r 2),令V ′(r )=0,解得r 1=5,r 2=-5(舍).当r ∈(0,5)时,V ′(r )>0,故V (r )在(0,5)上单调递增;当r ∈(5,53)时,V ′(r )<0,故V (r )在(5,53)上单调递减.由此可知,V (r )在r =5处取得最大值,此时h =8,即当r =5,h =8时,该蓄水池的体积最大.课时精练1.若函数f (x )=x 2+2xe x 的极大值点与极小值点分别为a ,b ,则a +b 等于() A .-4 B. 2C .0D .2答案 C解析 f ′(x )=2-x 2e x ,当-2<x <2时,f ′(x )>0;当x <-2或x >2时,f ′(x )<0.故f (x )=x 2+2x ex 的极大值点与极小值点分别为2,-2, 则a =2,b =-2,所以a +b =0.2.如图是函数y =f (x )的导函数的图象,下列结论中正确的是( )A .f (x )在[-2,-1]上单调递增B .当x =3时,f (x )取得最小值C .当x =-1时,f (x )取得极大值D .f (x )在[-1,2]上单调递增,在[2,4]上单调递减答案 D解析 根据题图知,当x ∈(-2,-1),x ∈(2,4)时,f ′(x )<0,函数y =f (x )单调递减;当x ∈(-1,2),x ∈(4,+∞)时,f ′(x )>0,函数y =f (x )单调递增.所以y =f (x )在[-2,-1]上单调递减,在(-1,2)上单调递增,在(2,4)上单调递减,在(4,+∞)上单调递增,故选项A 不正确,选项D 正确;故当x =-1时,f (x )取得极小值,选项C 不正确;当x =3时,f (x )不是取得最小值,选项B 不正确.3.已知函数f (x )=2ln x +ax 2-3x 在x =2处取得极小值,则f (x )的极大值为( )A .2B .-52C .3+ln 2D .-2+2ln 2 答案 B解析 由题意得,f ′(x )=2x+2ax -3, ∵f (x )在x =2处取得极小值,∴f ′(2)=4a -2=0,解得a =12, ∴f (x )=2ln x +12x 2-3x , f ′(x )=2x +x -3=(x -1)(x -2)x ,∴f (x )在(0,1),(2,+∞)上单调递增,在(1,2)上单调递减,∴f (x )的极大值为f (1)=12-3=-52. 4.(2022·重庆联考)函数f (x )=x +2cos x 在[0,π]上的最大值为( )A .π-2B.π6 C .2D.π6+ 3 答案 D解析 由题意得,f ′(x )=1-2sin x ,∴当0≤sin x ≤12,即x 在⎣⎡⎦⎤0,π6和⎣⎡⎦⎤5π6,π上时,f ′(x )≥0,f (x )单调递增; 当12<sin x ≤1,即x 在⎝⎛⎭⎫π6,5π6上时, f ′(x )<0,f (x )单调递减,∴f (x )有极大值f ⎝⎛⎭⎫π6=π6+3,有极小值f ⎝⎛⎭⎫5π6=5π6-3,而端点值f (0)=2,f (π)=π-2,则f ⎝⎛⎭⎫π6>f (0)>f (π)>f ⎝⎛⎭⎫5π6, ∴f (x )在[0,π]上的最大值为π6+ 3. 5.(多选)已知x =1和x =3是函数f (x )=ax 3+bx 2-3x +k (a ,b ∈R )的两个极值点,且函数f (x )有且仅有两个不同零点,则k 值为( )A .-43B.43 C .-1D .0 答案 BD解析 f ′(x )=3ax 2+2bx -3,依题意1,3是f ′(x )=0的两个根, 所以⎩⎨⎧ 1+3=-2b 3a ,1×3=-33a,解得a =-13,b =2. 故f (x )=-13x 3+2x 2-3x +k . 易求得函数f (x )的极大值为f (3)=k 和极小值为f (1)=-43+k .要使函数f (x )有两个零点,则f (x )极大值k =0或f (x )极小值-43+k =0, 所以k =0或k =43. 6.(多选)已知函数f (x )=x +sin x -x cos x 的定义域为[-2π,2π),则( )A .f (x )为奇函数B .f (x )在[0,π)上单调递增C .f (x )恰有4个极大值点D .f (x )有且仅有4个极值点答案 BD解析 因为f (x )的定义域为[-2π,2π),所以f (x )是非奇非偶函数,故A 错误;因为f (x )=x +sin x -x cos x ,所以f ′(x )=1+cos x -(cos x -x sin x )=1+x sin x ,当x ∈[0,π)时,f ′(x )>0,则f (x )在[0,π)上单调递增,故B 正确;显然f ′(0)≠0,令f ′(x )=0,得sin x =-1x, 分别作出y =sin x ,y =-1x在区间[-2π,2π)上的图象,由图可知,这两个函数的图象在区间[-2π,2π)上共有4个公共点,且两图象在这些公共点上都不相切,故f (x )在区间[-2π,2π)上的极值点的个数为4,且f (x )只有2个极大值点,故C 错误,D 正确.7.(2022· 潍坊模拟)写出一个存在极值的奇函数f (x )=________.答案 sin x (答案不唯一)解析 正弦函数f (x )=sin x 为奇函数,且存在极值.8.(2021·新高考全国Ⅰ)函数f (x )=|2x -1|-2ln x 的最小值为________.答案 1解析 函数f (x )=|2x -1|-2ln x 的定义域为(0,+∞).①当x >12时,f (x )=2x -1-2ln x , 所以f ′(x )=2-2x =2(x -1)x,当12<x <1时,f ′(x )<0, 当x >1时,f ′(x )>0,所以f (x )min =f (1)=2-1-2ln 1=1;②当0<x ≤12时,f (x )=1-2x -2ln x 在⎝⎛⎦⎤0,12上单调递减, 所以f (x )min =f ⎝⎛⎭⎫12=-2ln 12=2ln 2=ln 4>ln e =1.综上,f (x )min =1. 9.已知函数f (x )=ln x -2x -2x +1. (1)求函数f (x )的单调区间;(2)设g (x )=f (x )-4+a x +1+2(a ∈R ),若x 1,x 2是函数g (x )的两个极值点,求实数a 的取值范围. 解 (1)由题知函数f (x )的定义域为(0,+∞),f ′(x )=1x -2(x +1)-2(x -1)(x +1)2=(x -1)2x (x +1)2≥0对任意x ∈(0,+∞)恒成立, 当且仅当x =1时,f ′(x )=0,所以f (x )的单调递增区间为(0,+∞),无单调递减区间.(2)因为g (x )=f (x )-4+a x +1+2=ln x -a x +1, 所以g ′(x )=1x +a (x +1)2=x 2+(2+a )x +1x (x +1)2(x >0). 由题意知x 1,x 2是方程g ′(x )=0在(0,+∞)内的两个不同的实数解.令h (x )=x 2+(2+a )x +1,又h (0)=1>0,所以只需⎩⎪⎨⎪⎧-2-a >0,Δ=(2+a )2-4>0,解得a <-4,即实数a 的取值范围为(-∞,-4). 10.(2022·珠海模拟)已知函数f (x )=ln x -ax ,x ∈(0,e],其中e 为自然对数的底数.(1)若x =1为f (x )的极值点,求f (x )的单调区间和最大值;(2)是否存在实数a ,使得f (x )的最大值是-3?若存在,求出a 的值;若不存在,说明理由. 解 (1)∵f (x )=ln x -ax ,x ∈(0,e],∴f ′(x )=1-ax x, 由f ′(1)=0,得a =1.∴f ′(x )=1-x x, ∴x ∈(0,1),f ′(x )>0,x ∈(1,+∞),f ′(x )<0,∴f (x )的单调递增区间是(0,1),单调递减区间是(1,e];f (x )的极大值为f (1)=-1,也即f (x )的最大值为f (1)=-1.(2)∵f (x )=ln x -ax ,∴f ′(x )=1x -a =1-ax x , ①当a ≤0时,f (x )在(0,e]上单调递增,∴f (x )的最大值是f (e)=1-a e =-3,解得a =4e >0,舍去;②当a >0时,由f ′(x )=1x -a =1-axx =0,得x =1a ,当0<1a <e ,即a >1e 时,∴x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0;x ∈⎝⎛⎭⎫1a ,e 时,f ′(x )<0,∴f (x )的单调递增区间是⎝⎛⎭⎫0,1a ,单调递减区间是⎝⎛⎭⎫1a ,e ,又f (x )在(0,e]上的最大值为-3,∴f (x )max =f ⎝⎛⎭⎫1a =-1-ln a =-3,∴a =e 2;当e ≤1a ,即0<a ≤1e 时,f (x )在(0,e]上单调递增,∴f (x )max =f (e)=1-a e =-3,解得a =4e >1e ,舍去.综上,存在a 符合题意,此时a =e 2.11.若函数f (x )=(x 2-a )e x 的两个极值点之积为-3,则f (x )的极大值为() A.6e 3 B .-2eC .-2e D.4e 2答案 A解析 因为f (x )=(x 2-a )e x ,所以f ′(x )=(x 2+2x -a )e x ,由f′(x)=(x2+2x-a)e x=0,得x2+2x-a=0,由函数f(x)=(x2-a)e x的两个极值点之积为-3,则由根与系数的关系可知,-a=-3,即a=3,所以f(x)=(x2-3)e x,f′(x)=(x2+2x-3)e x,当x<-3或x>1时,f′(x)>0;当-3<x<1时,f′(x)<0,故f(x)在(-∞,-3)上单调递增,在(-3,1)上单调递减,在(1,+∞)上单调递增,所以f(x)的极大值为f(-3)=6 e3.12.函数f(x)=ax3-6ax2+b在区间[-1,2]上的最大值为3,最小值为-29(a>0),则a,b的值为()A.a=2,b=-29 B.a=3,b=2C.a=2,b=3 D.以上都不对答案 C解析函数f(x)的导数f′(x)=3ax2-12ax=3ax(x-4),因为a>0,所以由f′(x)<0,计算得出0<x<4,此时函数单调递减,由f′(x)>0,计算得出x>4或x<0,此时函数单调递增,即函数在[-1,0]上单调递增,在[0,2]上单调递减,即函数在x=0处取得极大值同时也是最大值,则f(0)=b=3,则f(x)=ax3-6ax2+3,f(-1)=-7a+3,f(2)=-16a+3,则f(-1)>f(2),即函数的最小值为f(2)=-16a+3=-29,计算得出a=2,b=3.13.(2021·全国乙卷)设a≠0,若x=a为函数f(x)=a(x-a)2(x-b)的极大值点,则() A.a<b B.a>bC.ab<a2D.ab>a2答案 D解析当a>0时,根据题意画出函数f(x)的大致图象,如图1所示,观察可知b>a.图1当a <0时,根据题意画出函数f (x )的大致图象,如图2所示,观察可知a >b .图2综上,可知必有ab >a 2成立.14.(2022·河南多校联考)已知函数f (x )=2ln x ,g (x )=x +2,若f (x 1)=g (x 2),则x 1-x 2的最小值为______.答案 4-2ln 2解析 设f (x 1)=g (x 2)=t ,即2ln x 1=t ,x 2+2=t ,解得x 1=2e t ,x 2=t -2,所以x 1-x 2=2e t -t +2,令h (t )=2e t -t +2,则h ′(t )=21e 2t -1, 令h ′(t )=0,解得t =2ln 2,当t <2ln 2时,h ′(t )<0,当t >2ln 2时,h ′(t )>0,所以h (t )在(-∞,2ln 2)上单调递减,在(2ln 2,+∞)上单调递增,所以h (t )的最小值为h (2ln 2)=e ln 2-2ln 2+2=4-2ln 2,所以x 1-x 2的最小值为4-2ln 2.15.(多选)已知函数f (x )=x ln x +x 2,x 0是函数f (x )的极值点,以下几个结论中正确的是( )A .0<x 0<1eB .x 0>1eC .f (x 0)+2x 0<0D .f (x 0)+2x 0>0答案 AD解析 函数f (x )=x ln x +x 2(x >0),∴f ′(x )=ln x +1+2x ,∵x 0是函数f (x )的极值点,∴f ′(x 0)=0,即ln x 0+1+2x 0=0,∴f ′⎝⎛⎭⎫1e =2e >0,当x >1e时,f ′(x )>0, ∵当x →0时,f ′(x )→-∞,∴0<x 0<1e,即A 正确,B 不正确; f (x 0)+2x 0=x 0ln x 0+x 20+2x 0=x 0(ln x 0+x 0+2)=x 0(1-x 0)>0,即D 正确,C 不正确.16.已知函数f (x )=x 2-2x +a ln x (a >0).(1)求函数f (x )的单调递增区间;(2)若函数f (x )有两个极值点x 1,x 2,x 1<x 2,不等式f (x 1)≥mx 2恒成立,求实数m 的取值范围.解 (1)f ′(x )=2x -2+a x =2x 2-2x +a x,x >0, 一元二次方程2x 2-2x +a =0的Δ=4(1-2a ),①当a ≥12时,f ′(x )≥0,f (x )在(0,+∞)上单调递增; ②当0<a <12时,令f ′(x )=0, 得x 1=1-1-2a 2>0,x 2=1+1-2a 2>0, 所以当0<x <1-1-2a 2时, f ′(x )>0,f (x )单调递增, 当1-1-2a 2<x <1+1-2a 2时, f ′(x )<0,f (x )单调递减,当x >1+1-2a 2时,f ′(x )>0,f (x )单调递增. 综上所述,当a ≥12时,f (x )的单调递增区间为(0,+∞),当0<a <12时,f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,1-1-2a 2,⎝ ⎛⎭⎪⎫1+1-2a 2,+∞. (2)由(1)知,0<a <12,x 1+x 2=1,x 1x 2=a 2,则0<x 1<12<x 2, 由f (x 1)≥mx 2恒成立,得x 21-2x 1+a ln x 1≥mx 2,即(1-x 2)2-2(1-x 2)+2(1-x 2)x 2ln(1-x 2)≥mx 2,即m ≤x 2-1x 2+2(1-x 2)ln(1-x 2), 记h (x )=x -1x+2(1-x )ln(1-x ), 1>x >12, 则h ′(x )=1x 2-2ln(1-x )-1>0⎝⎛⎭⎫1>x >12, 故h (x )在⎝⎛⎭⎫12,1上单调递增,h ⎝⎛⎭⎫12=-32-ln 2, 故m ≤-32-ln 2.。

3.3.3函数的最大(小)值与导数 课件

3.3.3函数的最大(小)值与导数 课件

函数最值的逆向问题 例 2 已知函数 f(x)=ax3-6ax2+b,问是否存在实数 a、 b,使 f(x)在[-1,2]上取得最大值 3,最小值-29?若存在, 求出 a,b 的值;若不存在,请说明理由.
[分析] 函数最值的逆向问题,通常是已知函数的最值 求函数关系式中字母的值的问题.解决时应利用函数的极 值与最值相比较,综合运用求极值、最值的方法确定系数 的方程(组),解之即可.
所以 f(x)在(0,12),(2,+∞)内是增函数,在(-∞,0),(12,
2)内是减函数.
(2)由条件 a∈[-2,2]可知 Δ=9a2-64<0,从而 4x2+3ax +4>0 恒成立.
当 x<0 时,f′(x)<0;当 x>0 时,f′(x)>0. 因此函数 f(x)在[-1,1]上的最大值是 f(1)与 f(-1)两者中 的较大者.
2.函数 y=|x-1|,下列结论正确的是( ) A.y 有极小值 0,且 0 也是最小值 B.y 有最小值 0,但 0 不是极小值 C.y 有极小值 0,但 0 不是最小值 D.因为 y 在 x=1 处不可导,所以 0 既非最小值也非极 值
解析:最小值与极小值定义的应用.故选 A. 答案:A
3.函数 f(x)=x(1-x2)在[0,1]上的最大值为( )
当 a=-130时,f′(x)=x(4x2-10x+4)=2x(2x-1)(x-2).
令 f′(x)=0,解得 x1=0,x2=12,x3=2.
当 x 变化时,f′(x),f(x)的变化情况如下表:
x (-∞,0)
0
(0,12)
1 2
(12,2)
2
(2,+∞)
f′(x) -
0

2021-2022高二人教版数学选修1-1练习:3.3.3函数的最大(小)值与导数 Word版含答案

2021-2022高二人教版数学选修1-1练习:3.3.3函数的最大(小)值与导数 Word版含答案

►基础梳理1.函数的最大值与最小值.一般地,假如在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.函数的最值必在极值点或区间端点取得.2.求函数y=f(x)在区间[a,b]上的最大值与最小值的一般步骤:(1)求函数y=f(x)在区间(a,b)内的极值;(2)将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.3.极值与最值的区分与联系:(1)极值与最值是不同的,极值只是相对一点四周的局部性质,而最值是相对于整个定义域或所争辩问题的整体性质;(2)函数的最值通常在极值点或区间端点取得,若有唯一的极值,则此极值必是函数的最值;(3)求函数的最值一般需要先确定函数的极值.因此函数极值的推断是关键,假如仅仅是求最值,可将导数值为零的点或区间端点的函数值直接求出并进行比较,也可以依据函数的单调性求最值.,►自测自评1.函数f(x)=x3-3x(|x|<1)(C)A.有最大值,但无最小值B.有最大值,也有最小值C.无最大值,也无最小值D.无最大值,但有最小值解析:f′(x)=3x2-3.当|x|<1,f′(x)<0,∴函数f(x)在(-1,1)上单调递减,故选C.2.函数f(x)=-x2+4x+1在区间[3,5]上的最大值和最小值分别是4,-4.解析:令f′(x)=-2x+4=0,则x=2,f(x)在[3,5]上是单调函数,排解f(2),比较f(3),f(5),即得.3.函数y=x ln x在[1,3]内的最小值为0.解析:y′=ln x+1,∵x∈[1,3],∴y′>0,∴函数y=x ln x在[1,3]内是递增函数,∴当x=1时,y min=0.1. 函数f(x)=x3-3x+1在闭区间[-3,0]上的最大值、最小值分别是(C)A.1,-1B.1,-17C.3,-17 D.9,-19解析:依据求最值的步骤,直接计算即可得答案为C.2.已知f(x)=12x2-cos x,x∈[-1,1],则导函数f′(x)是(D)A.仅有最小值的奇函数B.既有最大值又有最小值的偶函数C.仅有最大值的偶函数D.既有最大值又有最小值的奇函数解析:求导可得f′(x)=x+sin x,明显f′(x)是奇函数,令h(x)=f′(x),则h(x)=x+sin x,求导得h′(x)=1+cos x,当x∈[-1,1]时,h′(x)>0,所以h(x)在[-1,1]上单调递增,有最大值和最小值.所以f′(x)是既有最大值又有最小值的奇函数.故选D.3.函数f(x)=x2+ax+1在点[0,1]上的最大值为f(0),则实数a的取值范围是________.解析:依题意有:f(0)≥f(1),即1≥2+a,所以a≤-1.答案:(-∞,-1]4.求下列函数的最值:(1)f(x)=x3+2x,x∈[-1,1];(2)f(x)=(x-1)(x-2)2,x∈[0,3],解析:(1)当x∈[-1,1]时,f′(x)=3x2+2>0,则f(x)=x3+2x在x∈[-1,1]上单调递增.因而f(x)的最小值时f(-1)=-3,最大值是f(1)=3.(2)由于f(x)=(x-1)(x-2)2=x3-5x2+8x-4,所以f′(x)=(3x-4)(x-2)令f′(x)=(3x-4)(x-2)=0,得x=43或x=2,∵f(0)=-4,f⎝⎛⎭⎫43=427,f(2)=0,f(3)=2,∴f(x)的最大值是2,最小值时-4.5.已知函数f(x)=-x3+ax2-4在x=2处取得极值,若m,n∈[-1,1],求f(m)+f′(n)的最小值.解析:求导得f′(x)=-3x2+2ax,由函数f(x)在x=2处取得极值知f′(2)=0,即-3×4+2a×2=0,∴a=3.由此可得f(x)=-x3+3x2-4,f′(x)=-3x2+6x,易知f(x)在(-1,0)上单调递减,在(0,1)上单调递增,∴当m∈[-1,1]时,f(m)min=f(0)=-4.又f′(x)=-3x2+6x的图象开口向下,且对称轴为x=1.∴当n∈[-1,1]时,f′(n)min=f′(-1)=-9.故f(m)+f′(n)的最小值为-13.1.函数f(x)=x3+3x在(0,+∞)上的最小值是(A)A.4 B.5。

高中数学讲义:利用导数解函数的最值

高中数学讲义:利用导数解函数的最值

函数的最值一、基础知识:1、函数的最大值与最小值:(1)设函数()f x 的定义域为D ,若0x D $Î,使得对x D "Î,均满足()()0f x f x £,那么称0x x =为函数()f x 的一个最大值点,()0f x 称为函数()f x 的最大值(2)设函数()f x 的定义域为D ,若0x D $Î,使得对x D "Î,均满足()()0f x f x ³,那么称0x x =为函数()f x 的一个最小值点,()0f x 称为函数()f x 的最小值(3)最大值与最小值在图像中体现为函数的最高点和最低点(4)最值为函数值域的元素,即必须是某个自变量的函数值。

例如:()[)ln ,1,4f x x x =Î,由单调性可得()f x 有最小值()10f =,但由于x 取不到4,所以尽管函数值无限接近于ln 4,但就是达不到。

()f x 没有最大值。

(5)一个函数其最大值(或最小值)至多有一个,而最大值点(或最小值点)的个数可以不唯一,例如()sin f x x =,其最大值点为()22x k k Z pp =+Î,有无穷多个。

2.“最值”与“极值”的区别和联系右图为一个定义在闭区间[]b a ,上的函数)(x f 的图象.图中)(1x f 与3()f x 是极小值,2()f x 是极大值.函数)(x f 在[]b a ,上的最大值是)(b f ,最小值是3()f x (1)“最值”是整体概念,是比较整个定义域内的函数值得出的,具有绝对性;而“极值”是个局部概念,是比较极值点附近函数值得出的,具有相对性.(2)从个数上看,一个函数在其定义域上的最值是唯一的;而极值不唯一;(3)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个(4)极值只能在定义域内部取得,而最值可以在区间的端点处取得,有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值只要不在端点必定是极值.3、结论:一般地,在闭区间[]b a ,上函数()y f x =的图像是一条连续不断的曲线,那么函数()y f x =在[]b a ,上必有最大值与最小值.4、最值点只可能在极值点或者边界点处产生,其余的点位于单调区间中,意味着在这些点的周围既有比它大的,也有比它小的,故不会成为最值点5、利用导数求函数的最值步骤:一般地,求函数)(x f 在[]b a ,上的最大值与最小值的步骤如下:(1)求)(x f 在(,)a b 内的极值;(2)将)(x f 的各极值与端点处的函数值)(a f 、)(b f 比较,其中最大的一个是最大值,最小的一个是最小值,得出函数)(x f 在[]b a ,上的最值6、求函数最值的过程中往往要利用函数的单调性,所以说,函数的单调区间是求最值与极值的基础7、在比较的过程中也可简化步骤:(1)利用函数单调性可判断边界点是否能成为最大值点或最小值点(2)极小值点不会是最大值点,极大值点也不会是最小值点8、最值点的作用(1)关系到函数的值域(2)由最值可构造恒成立的不等式:例如:()ln 1f x x x =-+,可通过导数求出()()min 10f x f ==,由此可得到对于任意的0x >,均有()()min 0f x f x ³=,即不等式ln 1x x £-二、典型例题:例1:求函数()x f x xe -=的最值思路:首先判定定义域为R ,对函数进行求导,根据单调区间求出函数的最值解:()()'1x fx x e -=-,令()'0f x >,解得:1x <()f x \的单调区间为:x (),1-¥()1,+¥'()f x +-()f x Z ]()()max 11f x f e\==,无最小值小炼有话说:函数()xf x xe-=先增再减,其最大值即为它的极大值点,我们可以将这种先增再减,或者先减再增的函数成为“单峰函数”,在单峰函数中,极值点即为函数的某个最值点。

导数与函数的极值、最值。

导数与函数的极值、最值。

栏目索引
判断下面结论是否正确(请在括号中打“√”或“×”) (1)函数的极大值不一定比极小值大. (√) (2)对可导函数f(x), f '(x0)=0是x0点为极值点的充要条件. (×) (3)函数的极大值一定是函数的最大值. (×) (4)开区间上的单调连续函数无最值. (√)
栏目索引
又f (2) 40 a, f (0) a, f (2) 8 a
由已知得 40 a 37解得a 3
(2)由(1)知f (x)在2, 2的最大值为3.
反思:本题属于逆向探究题型: 其基本方法最终落脚到比较极值与端点函数值大
小上,从而解决问题,往往伴随恒成立和分类讨论。
栏目索引
2.函数的最值与导数 一般地,求函数y=f(x)在[a,b]上的最大值与最小值的步骤如下: (1)求函数y=f(x)在(a,b)内的⑨ 极值 ; (2)将函数y=f(x)的各极值与⑩ 端点处 的函数值f(a)、 f(b)比较,其中 最大的一个是最大值,最小的一个是最小值. 注:如果在区间[a,b]上,函数y=f(x)的图象是一条连续不断的曲线,那么它 必有最大值和最小值.
栏目索引
导数与函数的极值、最值
栏目索引
1.函数的极值与导数 (1)函数的极小值 若函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值 ① 都小 , f '(a)=0,而且在点x=a附近的左侧② f '(x)<0 ,右侧 ③ f ' (x)>0 ,则点a叫做函数y=f(x)的极小值点, f(a)叫做函数y=f(x)的 极小值. (2)函数的极大值 若函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值 ④ 都大 , f '(b)=0,而且在点x=b附近的左侧⑤ f '(x)>0 ,右侧 ⑥ f ' (x)<0 ,则点b叫做函数y=f(x)的极大值点, f(b)叫做函数y=f(x)的极大值. 注:⑦ 极大值 和⑧ 极小值 统称为极值.

函数的最大(小)值与导数 课件

函数的最大(小)值与导数    课件

求解函数在固定区间上的最值,需注意以下几点: (1)对函数进行准确求导,并检验 f′(x)=0 的根是否在给 定区间内; (2)研究函数的单调性,正确确定极值和端点函数值; (3)比较极值与端点函数值大小,确定最值.
已知函数的最值求参数
设23<a<1,函数 f(x)=x3-32ax2+b(-1≤x≤1)的 最大值为 1,最小值为- 26,求常数 a,b.
与最值有关的恒成立问题
已知函数 f(x)=x3+ax2+bx+c 在 x=-23与 x=1 处都取得极值.
(1)求 a,b 的值与函数 f(x)的单调区间. (2)若对 x∈[-1,2],不等式 f(x)<c2 恒成立,求 c 的取值
范围. 【思路探究】
(1)由已知的两个极值点可得 f′(-23)=
函数的最大(小)值与导数
函数的最大(小)值与导数 【问题导思】 如图 1-3-8-8
1.观察[a,b]上函数 y=f(x)的图象,试找出它的极大值、 极小值.
【提示】 极大值为:f(x1)、f(x3),极小值为:f(x2),f(x4). 2.结合图象判断,函数 y=f(x)在区间[a,b]上是否存在 最大值,最小值?若存在,分别为多少? 【提示】 存在,f(x)min=f(a),f(x)max=f(x3).
∴当 x=-3 时,f(x)取最小值-60; 当 x=-1 或 x=1 时,f(x)取最大值 4. (2)f′(x)=3x2-6x+6=3(x2-2x+2)=3(x-1)2+3, ∵f′(x)在[-1,1]内恒大于 0, ∴f(x)在[-1,1]上为增函数. 故 x=-1 时,f(x)最小值=-12;x=1 时,f(x)最大值=2. 即 f(x)的最小值为-12,最大值为 2.

《函数的最大值和最小值与导数》教学设计

《函数的最大值和最小值与导数》教学设计

《函数的最大值和最小值与导数》教学设计教学设计:函数的最大值和最小值与导数一、教学目标:1.知识与技能目标:了解函数的最大值和最小值的概念,掌握求解函数最大值和最小值的方法,理解导数与函数最大值和最小值的关系。

2.过程与方法目标:培养学生观察、分析和解决问题的能力,培养学生的逻辑思维和创新思维能力。

3.情感态度价值观目标:培养学生对数学的兴趣,提高学生的数学自信心,培养学生的合作与交流能力。

二、教学重难点:1.教学重点:函数的最大值和最小值的概念、求解函数最大值和最小值的方法、导数与函数最大值和最小值的关系。

2.教学难点:导数与函数最大值和最小值的关系的理解与运用。

三、教学过程:1.导入新概念(15分钟)2.探索函数的最大值和最小值(20分钟)教师出示一个简单的函数图像,并引导学生观察图像中的极值点。

学生可以自由讨论,提出他们观察到的现象和规律。

3.寻找函数的最大值和最小值的方法(20分钟)教师向学生介绍函数的最值存在定理,并讲解寻找函数最大值和最小值的方法:通过函数图像、函数的性质、函数的导数等途径。

然后,教师通过例题的形式,具体讲解每种方法的步骤和注意事项。

4.导数与函数最大值和最小值的关系(25分钟)教师向学生介绍导数的概念,并讲解导数与函数最大值和最小值的关系。

通过导数的定义和极值的判定条件,教师引导学生理解导数与函数最值的关系,并通过例题进行实际应用。

5.综合运用(15分钟)教师出示一些综合运用的问题,要求学生通过函数的最值和导数的知识进行求解。

学生可以自由讨论,提出解决问题的思路,并互相交流讨论。

6.总结与拓展(15分钟)教师对本节课的重点内容进行总结,并引导学生对本节课所学内容进行思考和拓展。

教师可以提出一些拓展问题,要求学生进行独立思考和解决。

四、教学手段:1.多媒体投影仪、计算器等教学工具。

2.学生课前预习和课堂讨论,学生自主学习与合作学习相结合。

3.教师示范讲解、学生自主探究、小组讨论、问题解决等多种教学方法相结合。

3.3.3函数的最大(小)值与导数

3.3.3函数的最大(小)值与导数

函数的最大(小)值与导数 学生姓名_________ 班级_________教 学 目 标知识 能力 目标知识目标:函数最值的概念;求函数在给定区间上的最值.能力目标:理解并掌握函数最大值与最小值的意义及其求法.了解函数极值与最值的区别与联系. 学海拾贝 思考:如何求解函数的最值三、典例探究:例1:求函数32)(24++-=x x x f 在[-3,2]上的最大值与最小值.总结:求y =f (x )在[a ,b ]上的最大值与最小值,可分为两步进行: ⑴ 求y =f (x )在(a ,b )内的极值;⑵ 将y =f (x )的各极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.例2:已知函数a x x x x f +++-=93)(23(1)求f(x)的单调减区间(2)若f(x)在区间[-2,2]上的最大值为20,求该区间上的最小值.情感目标: 激发学生学习数学的兴趣,渗透数形结合思想.学法指导 学习重点:利用导数求函数的最大值与最小值的方法.学习难点:函数的最大值、最小值与函数的极大值和极小值的区别与联系. 教法:导学式目标教学教学过程 创设情景,导入新课→探究新知→典例探究→素能测评→预习一、创设情景,导入新课:1.通过上节课的学习,函数的极值如何判定?如何用“导数法” 求函数的极值?2.观察函数f (x )在区间[a ,b ]上的图象,找出函数在此 区间上的极大值、极小值.3.你能找出函数在此区间上的最大值、最小值吗?二、探究新知:1.观察下列函数图象,找出函数y=f(x)在给定区间上的极大值、极小值、最大值、最小值.o xyaby =f (x )oxab y =f (x )o yx ab y =f (x )ox yab y =f (x )2.归纳结论:(1)函数f (x )的图像若在开区间(a ,b )上是连续不断的曲线,则函数f (x )在(a ,b )上不一定有最大值或最小值;函数在半开半闭区间上的最值亦是如此(2)函数f (x )若在闭区间[a ,b]上有定义,但有间断点,则函数f (x )也不一定有最大值或最小值(3)一般地,如果在区间[a ,b]上函数f (x )的图像是一条连续不断的曲线,那么它必有最大值和最小值。

导数与函数的极值和最值考点及题型

导数与函数的极值和最值考点及题型

第三节导数与函数的极值、最值❖基础知识1.函数的极值(1)函数的极小值:函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值:函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极小值点、极大值点统称为极值点,极大值和极小值统称为极值.①函数f(x)在x0处有极值的必要不充分条件是f′(x0)=0,极值点是f′(x)=0的根,但f′(x)=0的根不都是极值点(例如f(x)=x3,f′(0)=0,但x=0不是极值点).②极值反映了函数在某一点附近的大小情况,刻画的是函数的局部性质.极值点是函数在区间内部的点,不会是端点.2.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.❖常用结论(1)若函数f(x)的图象连续不断,则f(x)在[a,b]上一定有最值.(2)若函数f(x)在[a,b]上是单调函数,则f(x)一定在区间端点处取得最值.(3)若函数f(x)在区间(a,b)内只有一个极值点,则相应的极值点一定是函数的最值点.考点一利用导数解决函数的极值问题考法(一)利用导数求函数的极值或极值点[典例](2018·天津高考改编)设函数f(x)=(x-t1)·(x-t2)(x-t3),其中t1,t2,t3∈R,且t1,t2,t3是公差为d的等差数列.(1)若t2=0,d=1,求曲线y=f(x)在点(0,f(0))处的切线方程;(2)若d =3,求f (x )的极小值点及极大值.[解] (1)由已知,可得f (x )=x (x -1)(x +1)=x 3-x ,故f ′(x )=3x 2-1.因此f (0)=0,f ′(0)=-1.因此曲线y =f (x )在点(0,f (0))处的切线方程为y -f (0)=f ′(0)(x -0),故所求切线方程为x +y =0. (2)由已知可得f (x )=(x -t 2+3)(x -t 2)(x -t 2-3) =(x -t 2)3-9(x -t 2)=x 3-3t 2x 2+(3t 22-9)x -t 32+9t 2.故f ′(x )=3x 2-6t 2x +3t 22-9.令f ′(x )=0,解得x =t 2-3或x =t 2+ 3. 当x 变化时,f ′(x ),f (x )的变化情况如下表:[解题技法] 求函数的极值或极值点的步骤(1)求导数f ′(x ),不要忘记函数f (x )的定义域; (2)求方程f ′(x )=0的根;(3)检查在方程的根的左右两侧f ′(x )的符号,确定极值点或函数的极值. 考法(二) 已知函数极值点或极值求参数的值或范围[典例] (2018·北京高考节选)设函数f (x )=[ax 2-(3a +1)x +3a +2]e x ,若f (x )在x =1处取得极小值,求a 的取值范围.[解] 由f (x )=[ax 2-(3a +1)x +3a +2]e x ,得f ′(x )=[ax 2-(a +1)x +1]e x =(ax -1)(x -1)e x . 若a >1,则当x ∈⎝⎛⎭⎫1a ,1时,f ′(x )<0; 当x ∈(1,+∞)时,f ′(x )>0. 所以f (x )在x =1处取得极小值.若a ≤1,则当x ∈(0,1)时,ax -1≤x -1<0, 所以f ′(x )>0.所以1不是f (x )的极小值点.综上可知,a 的取值范围是(1,+∞).[解题技法]已知函数极值点或极值求参数的2个要领[题组训练]1.设函数f (x )=2x+ln x ,则( )A .x =12为f (x )的极大值点B .x =12为f (x )的极小值点C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点解析:选D ∵f (x )=2x+ln x (x >0),∴f ′(x )=-2x 2+1x ,令f ′(x )=0,则x =2.当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0. 所以x =2为f (x )的极小值点.2.(2019·广州高中综合测试)已知函数f (x )=x 3+ax 2+bx +a 2在x =1处的极值为10,则数对(a ,b )为( )A .(-3,3)B .(-11,4)C .(4,-11)D .(-3,3)或(4,-11)解析:选Cf ′(x )=3x 2+2ax +b ,依题意可得⎩⎪⎨⎪⎧f ′(1)=0,f (1)=10,即⎩⎪⎨⎪⎧3+2a +b =0,1+a +b +a 2=10,消去b 可得a 2-a -12=0,解得a =-3或a =4,故⎩⎪⎨⎪⎧a =-3,b =3或⎩⎪⎨⎪⎧a =4,b =-11.当⎩⎪⎨⎪⎧a =-3,b =3时,f ′(x )=3x 2-6x +3=3(x-1)2≥0,这时f (x )无极值,不合题意,舍去,故选C.3.设函数f (x )=ax 3-2x 2+x +c (a >0).(1)当a =1,且函数f (x )的图象过点(0,1)时,求函数f (x )的极小值; (2)若f (x )在(-∞,+∞)上无极值点,求a 的取值范围. 解:f ′(x )=3ax 2-4x +1.(1)函数f (x )的图象过点(0,1)时,有f (0)=c =1.当a =1时,f (x )=x 3-2x 2+x +1,f ′(x )=3x 2-4x +1, 由f ′(x )>0,解得x <13或x >1;由f ′(x )<0,解得13<x <1.所以函数f (x )在⎝⎛⎭⎫-∞,13和(1,+∞)上单调递增,在⎝⎛⎭⎫13,1上单调递减, 所以函数f (x )的极小值是f (1)=13-2×12+1+1=1. (2)若f (x )在(-∞,+∞)上无极值点, 则f (x )在(-∞,+∞)上是单调函数,即f ′(x )=3ax 2-4x +1≥0或f ′(x )=3ax 2-4x +1≤0恒成立. 因为a >0,所以f ′(x )=3ax 2-4x +1≥0在(-∞,+∞)上恒成立, 则有Δ=(-4)2-4×3a ×1≤0,即16-12a ≤0,解得a ≥43.故a 的取值范围为⎣⎡⎭⎫43,+∞. 考点二 利用导数解决函数的最值问题[典例] (2017·北京高考)已知函数f (x )=e x cos x -x .(1)求曲线y =f (x )在点(0,f (0))处的切线方程; (2)求函数f (x )在区间⎣⎡⎦⎤0,π2上的最大值和最小值. [解] (1)因为f (x )=e x cos x -x ,所以f ′(x )=e x (cos x -sin x )-1,f ′(0)=0. 又因为f (0)=1,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =1. (2)设h (x )=e x (cos x -sin x )-1,则h ′(x )=e x (cos x -sin x -sin x -cos x )=-2e x sin x . 当x ∈⎝⎛⎭⎫0,π2时,h ′(x )<0, 所以h (x )在区间⎣⎡⎦⎤0,π2上单调递减. 所以对任意x ∈⎝⎛⎦⎤0,π2,有h (x )<h (0)=0, 即f ′(x )<0.所以函数f (x )在区间⎣⎡⎦⎤0,π2上单调递减. 因此f (x )在区间⎣⎡⎦⎤0,π2上的最大值为f (0)=1, 最小值为f ⎝⎛⎭⎫π2=-π2.[解题技法]导数法求给定区间上函数的最值问题的一般步骤(1)求函数f (x )的导数f ′(x );(2)求f (x )在给定区间上的单调性和极值; (3)求f (x )在给定区间上的端点值;(4)将f (x )的各极值与f (x )的端点值进行比较,确定f (x )的最大值与最小值; (5)反思回顾,查看关键点,易错点和解题规范. [题组训练]1.(2018·珠海摸底)如图,将一张16 cm ×10 cm 的长方形纸片剪下四个全等的小正方形,使得剩余部分经过折叠能糊成一个无盖的长方体纸盒,则这个纸盒的最大容积是________ cm 3.解析:设剪下的四个小正方形的边长为x cm ,则经过折叠以后,糊成的长方体纸盒是一个底面是长为(16-2x ) cm ,宽为(10-2x ) cm 的长方形,其面积为(16-2x )(10-2x )cm 2,长方体纸盒的高为x cm ,则体积V =(16-2x )(10-2x )×x =4x 3-52x 2+160x (0<x <5)cm 3,所以V ′=12(x -2)·⎝⎛⎭⎫x -203,由V ′>0,得0<x <2,则函数V =4x 3-52x 2+160x (0<x <5)在(0,2)上单调递增;由V ′<0,得2<x <5,则函数V =4x 3-52x 2+160x (0<x <5)在(2,5)上单调递减,所以当x =2时,V max =144(cm 3). 答案:1442.已知函数f (x )=ln x -a x.(1)若a >0,试判断f (x )在定义域内的单调性; (2)若f (x )在[1,e]上的最小值为32,求实数a 的值.解:(1)由题意得f (x )的定义域是(0,+∞),且f ′(x )=x +ax 2, 因为a >0,所以f ′(x )>0, 故f (x )在(0,+∞)上单调递增. (2)由(1)可得f ′(x )=x +ax 2,因为x ∈[1,e],①若a ≥-1,则x +a ≥0,即f ′(x )≥0在[1,e]上恒成立, 此时f (x )在[1,e]上单调递增, 所以f (x )min =f (1)=-a =32,所以a =-32(舍去).②若a ≤-e ,则x +a ≤0,即f ′(x )≤0在[1,e]上恒成立, 此时f (x )在[1,e]上单调递减, 所以f (x )min =f (e)=1-a e =32,所以a =-e2(舍去).③若-e<a <-1,令f ′(x )=0,得x =-a , 当1<x <-a 时,f ′(x )<0, 所以f (x )在(1,-a )上单调递减; 当-a <x <e 时,f ′(x )>0, 所以f (x )在(-a ,e)上单调递增,所以f (x )min =f (-a )=ln(-a )+1=32,所以a =- e.综上,a =- e.[课时跟踪检测]A 级1.(2019·辽宁鞍山一中模拟)已知函数f (x )=x 3-3x -1,在区间[-3,2]上的最大值为M ,最小值为N ,则M -N =( )A .20B .18C .3D .0解析:选A ∵f ′(x )=3x 2-3=3(x -1)(x +1),∴f (x )在(-∞,-1)和(1,+∞)上单调递增,在(-1,1)上单调递减,又∵f (-3)=-19,f (-1)=1,f (1)=-3,f (2)=1,∴M =1,N =-19,M -N =1-(-19)=20.2.(2018·梅州期末)函数y =f (x )的导函数的图象如图所示,则下列说法错误的是( )A .(-1,3)为函数y =f (x )的单调递增区间B .(3,5)为函数y =f (x )的单调递减区间C .函数y =f (x )在x =0处取得极大值D .函数y =f (x )在x =5处取得极小值解析:选C 由函数y =f (x )的导函数的图象可知,当x <-1或3<x <5时,f ′(x )<0,y =f (x )单调递减;当x >5或-1<x <3时,f ′(x )>0,y =f (x )单调递增.所以函数y =f (x )的单调递减区间为(-∞,-1),(3,5),单调递增区间为(-1,3),(5,+∞).函数y =f (x )在x =-1,5处取得极小值,在x =3处取得极大值,故选项C 错误.3.(2019·湖北襄阳四校联考)函数f (x )=12x 2+x ln x -3x 的极值点一定在区间( )A .(0,1)内B .(1,2)内C .(2,3)内D .(3,4)内解析:选B 函数的极值点即导函数的零点,f ′(x )=x +ln x +1-3=x +ln x -2,则f ′(1)=-1<0,f ′(2)=ln 2>0,由零点存在性定理得f ′(x )的零点在(1,2)内,故选B.4.已知函数f (x )=x 3+3x 2-9x +1,若f (x )在区间[k,2]上的最大值为28,则实数k 的取值范围为( ) A .[-3,+∞) B .(-3,+∞) C .(-∞,-3)D .(-∞,-3]解析:选D 由题意知f ′(x )=3x 2+6x -9,令f ′(x )=0,解得x =1或x =-3,所以f ′(x ),f (x )随x 的变化情况如下表:5.(2019·皖南八校联考)已知函数f (x )=-13x 3+bx 2+cx +bc 在x =1处有极值-43,则b =( )A .-1B .1C .1或-1D .-1或3解析:选A f ′(x )=-x 2+2bx +c ,因为f (x )在x =1处有极值-43,所以⎩⎪⎨⎪⎧f ′(1)=-1+2b +c =0,f (1)=-13+b +c +bc =-43,Δ=4b 2+4c >0,解得⎩⎪⎨⎪⎧b =-1,c =3,故选A.6.设直线x =t 与函数h (x )=x 2,g (x )=ln x 的图象分别交于点M ,N ,则当|MN |最小时t 的值为( )A .1 B.12C.52D.22解析:选D 由已知条件可得|MN |=t 2-ln t ,设f (t )=t 2-ln t (t >0),则f ′(t )=2t -1t ,令f ′(t )=0,得t =22, 当0<t <22时,f ′(t )<0;当t >22时,f ′(t )>0. ∴当t =22时,f (t )取得最小值,即|MN |取得最小值时t =22. 7.(2019·江西阶段性检测)已知函数y =ax -1x2在x =-1处取得极值,则a =________.解析:因为y ′=a +2x 3,所以当x =-1时,a -2=0,所以a =2,经验证,可得函数y =2x -1x 2在x =-1处取得极值,因此a =2. 答案:28.f (x )=2x +1x 2+2的极小值为________.解析:f ′(x )=2(x 2+2)-2x (2x +1)(x 2+2)2=-2(x +2)(x -1)(x 2+2)2.令f ′(x )<0,得x <-2或x >1; 令f ′(x )>0,得-2<x <1.∴f (x )在(-∞,-2),(1,+∞)上是减函数,在(-2,1)上是增函数, ∴f (x )极小值=f (-2)=-12.答案:-129.若商品的年利润y (万元)与年产量x (百万件)的函数关系式为y =-x 3+27x +123(x >0),则获得最大利润时的年产量为________百万件. 解析:y ′=-3x 2+27=-3(x +3)(x -3),当0<x <3时,y ′>0;当x >3时,y ′<0. 故当x =3时,该商品的年利润最大. 答案:310.已知函数f (x )=x 3+3ax 2+3bx +c 在x =2处有极值,其图象在x =1处的切线平行于直线6x +2y +5=0,则f (x )的极大值与极小值之差为________. 解析:因为f ′(x )=3x 2+6ax +3b ,所以⎩⎪⎨⎪⎧ f ′(2)=3×22+6a ×2+3b =0,f ′(1)=3×12+6a +3b =-3⇒⎩⎪⎨⎪⎧a =-1,b =0.所以y ′=3x 2-6x ,令3x 2-6x =0,得x =0或x =2. 当x <0或x >2时,y ′>0;当0<x <2时,y ′<0.故当x =0时,f (x )取得极大值,当x =2时,f (x )取得极小值, 所以f (x )极大值-f (x )极小值=f (0)-f (2)=4. 答案:411.设函数f (x )=a ln xx+b (a ,b ∈R ),已知曲线y =f (x )在点(1,0)处的切线方程为y =x -1.(1)求实数a ,b 的值; (2)求f (x )的最大值.解:(1)因为f (x )的定义域为(0,+∞),f ′(x )=a (1-ln x )x 2.所以f ′(1)=a ,又因为切线斜率为1,所以a =1. 由曲线y =f (x )过点(1,0),得f (1)=b =0. 故a =1,b =0.(2)由(1)知f (x )=ln xx ,f ′(x )=1-ln x x 2.令f ′(x )=0,得x =e.当0<x <e 时,有f ′(x )>0,得f (x )在(0,e)上是增函数; 当x >e 时,有f ′(x )<0,得f (x )在(e ,+∞)上是减函数. 故f (x )在x =e 处取得最大值f (e)=1e .12.已知函数f (x )=ln x -ax (a ∈R ).(1)当a =12时,求f (x )的极值;(2)讨论函数f (x )在定义域内极值点的个数.解:(1)当a =12时,f (x )=ln x -12x ,函数f (x )的定义域为(0,+∞),f ′(x )=1x -12=2-x2x.令f ′(x )=0,得x =2,于是当x 变化时,f ′(x ),f (x )的变化情况如下表:故f (x )(2)由(1)知,函数f (x )的定义域为(0,+∞),f ′(x )=1x -a =1-ax x(x >0).当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,即函数f (x )在(0,+∞)上单调递增,此时函数f (x )在定义域上无极值点; 当a >0时,令f ′(x )=0,得x =1a .当x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0, 当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )<0, 故函数f (x )在x =1a处有极大值.综上所述,当a ≤0时,函数f (x )无极值点; 当a >0时,函数f (x )有一个极大值点.B 级1.已知函数f (x )=x 3-3ax +b 的单调递减区间为(-1,1),其极小值为2,则f (x )的极大值是________. 解析:因为f (x )的单调递减区间为(-1,1),所以a >0.由f ′(x )=3x 2-3a =3(x -a )(x +a ),可得a =1, 由f (x )=x 3-3x +b 在x =1处取得极小值2, 可得1-3+b =2,故b =4.所以f (x )=x 3-3x +4的极大值为f (-1)=(-1)3-3×(-1)+4=6. 答案:62.(2019·“超级全能生”高考全国卷26省联考)已知函数f (x )=t 3x 3-32x 2+2x +t 在区间(0,+∞)上既有极大值又有极小值,则t 的取值范围是________.解析:f ′(x )=tx 2-3x +2,由题意可得f ′(x )=0在(0,+∞)上有两个不等实根,即tx 2-3x +2=0在(0,+∞)有两个不等实根,所以⎩⎪⎨⎪⎧t ≠0,3t >0,2t >0,Δ=9-8t >0,解得0<t <98.答案:⎝⎛⎭⎫0,98 3.已知函数f (x )=a ln x +1x(a >0).(1)求函数f (x )的单调区间和极值;(2)是否存在实数a ,使得函数f (x )在[1,e]上的最小值为0?若存在,求出a 的值;若不存在,请说明理由.贾老师数学解:由题意,知函数的定义域为(0,+∞),f ′(x )=a x -1x 2=ax -1x 2(a >0). (1)由f ′(x )>0,解得x >1a, 所以函数f (x )的单调递增区间是⎝⎛⎭⎫1a ,+∞; 由f ′(x )<0,解得0<x <1a, 所以函数f (x )的单调递减区间是⎝⎛⎭⎫0,1a . 所以当x =1a 时,函数f (x )有极小值f ⎝⎛⎭⎫1a =a ln 1a+a =a -a ln a ,无极大值. (2)不存在实数a 满足条件.由(1)可知,当x ∈⎝⎛⎭⎫0,1a 时,函数f (x )单调递减; 当x ∈⎝⎛⎭⎫1a ,+∞时,函数f (x )单调递增.①若0<1a≤1,即a ≥1时,函数f (x )在[1,e]上为增函数, 故函数f (x )的最小值为f (1)=a ln 1+1=1,显然1≠0,故不满足条件a ≥1.②若1<1a <e ,即1e<a <1时,函数f (x )在⎣⎡⎭⎫1,1a 上为减函数,在⎝⎛⎦⎤1a ,e 上为增函数, 故函数f (x )的最小值为f (x )的极小值f ⎝⎛⎭⎫1a =a ln 1a+a =a -a ln a =a (1-ln a )=0,即ln a =1,解得a =e ,故不满足条件1e<a <1. ③若1a ≥e ,即0<a ≤1e 时,函数f (x )在[1,e]上为减函数,故函数f (x )的最小值为f (e)=a ln e +1e=a +1e=0, 即a =-1e ,故不满足条件0<a ≤1e. 综上所述,不存在这样的实数a ,使得函数f (x )在[1,e]上的最小值为0.。

《函数的最大(小)值与导数》参考教案

《函数的最大(小)值与导数》参考教案

一、教学目标1. 让学生理解函数的最大值和最小值的概念,掌握函数的最大值和最小值的求解方法。

2. 让学生掌握导数的定义,了解导数在研究函数单调性、极值等方面的应用。

3. 培养学生运用数学知识解决实际问题的能力。

二、教学内容1. 函数的最大值和最小值的概念。

2. 利用导数求函数的最大值和最小值。

3. 函数的单调性及其与导数的关系。

4. 函数的极值及其与导数的关系。

5. 实际问题中的最大值和最小值问题。

三、教学重点与难点1. 教学重点:函数的最大值和最小值的求解方法,导数在研究函数单调性、极值等方面的应用。

2. 教学难点:利用导数求函数的最大值和最小值的具体步骤,理解导数与函数单调性、极值之间的关系。

四、教学方法与手段1. 采用讲解、例题、练习、讨论相结合的教学方法。

2. 使用多媒体课件,直观展示函数图像,帮助学生理解函数的最大值、最小值和导数之间的关系。

五、教学过程1. 引入:通过生活中的实例,如购物、optimization problems等,引导学生思考函数的最大值和最小值问题。

2. 讲解:讲解函数的最大值和最小值的概念,介绍利用导数求函数最大值和最小值的方法。

3. 例题:挑选典型例题,引导学生运用导数求解函数的最大值和最小值。

4. 练习:学生自主练习,巩固求解函数最大值和最小值的方法。

5. 讨论:分组讨论,分享解题心得,互相学习。

6. 总结:对本节课的内容进行总结,强调导数在研究函数单调性、极值等方面的重要性。

7. 作业:布置相关作业,让学生进一步巩固所学知识。

六、教学评估1. 课堂练习:监测学生在课堂上的学习效果,通过练习题目的完成情况了解学生对函数最大值和最小值概念以及导数应用的掌握程度。

2. 课后作业:评估学生对课堂所学知识的吸收情况,作业应包括不同难度的题目,以检测学生的理解力和应用能力。

3. 小组讨论:观察学生在小组讨论中的参与程度和合作能力,以及他们能否运用所学知识解决实际问题。

函数的最大(最小)值与导数今天

函数的最大(最小)值与导数今天

06 总结与展望
函数极值研究意义
揭示函数性质
通过研究函数的极值,可以深入 了解函数的增减性、凹凸性等基 本性质,为函数分析提供有力工 具。
优化问题求解
在实际问题中,很多优化问题都 可以转化为求函数的极值问题, 如经济学中的成本最小化、收益 最大化等。
辅助定理证明
在数学分析中,一些重要定理的 证明往往涉及到函数极值的研究, 如泰勒公式、拉格朗日中值定理 等。
函数的最大(最小)值与导数
目录
• 引言 • 一元函数极值判定 • 多元函数极值判定 • 驻点与拐点分析 • 应用举例与求解方法 • 总结与展望
01 引言
函数的最大(最小)值定义
函数的最大值
在给定区间上,如果存在一个点 $x_0$,使得对于该区间内的任意 $x$,都有$f(x) leq f(x_0)$,则称 $f(x_0)$为函数在该区间上的最大 值。
二阶导数判定法
寻找驻点
同样先求出一阶导数 $f'(x)$,然后解方程 $f'(x) = 0$ 得到 驻点 $x_0$。
计算二阶导数
求出二阶导数 $f''(x)$,并计算 $f''(x_0)$ 的值。
判断极值类型
若在 $x_0$ 处 $f''(x_0) > 0$,则 $x_0$ 为极小值点;若在 $x_0$ 处 $f''(x_0) < 0$,则 $x_0$ 为极大值点;若 $f''(x_0) = 0$,则需要结合其他方法进一步判 断。
驻点性质
驻点是函数可能取得最大或最小值的点,但并非 所有驻点都是极值点。
驻点与函数单调性
在驻点的左侧和右侧,函数的单调性可能发生改 变。

函数的最大(小)值与导数(上课用)

函数的最大(小)值与导数(上课用)
[分析] 由题目可获取以下主要信息: ①函数f(x)=ax3-6ax2+b在x∈[-1,2]上的最大值 为3,最小值为-29; ②根据最大值、最小值确定a,b的值. 解答本题可先对f(x)求导,确定f(x)在[-1,2]上的单 调性及最值,再建立方程从而求得a,b的值.
[解析] 存在. 显然a≠0,f′(x)=3ax2-12ax. 令f′(x)=0,得x=0或x=4(舍去). (1)当a>0时,x变化时,f′(x),f(x)变化情况如 下表:
2.函数y=f(x)在区间[a,b]上的最大值是M,最小值是 m,若M=m,则f (x) ( A )

A.等于0 B.大于0 C.小于0
D.以上都有可能
堂上练习
3.函数y 1 x4 1 x3 1 x2,在-1,1上最小值为 A
432
A.0 B. 2 C. 1
D. 13 12
4.函数y 2x x2 的最大值为( A ) x 1
A. 3
B.1 C. 1
D. 3
3
2
2
堂上练习
5. 函 数 y=2x3 - 3x2 - 12x+5 在 [ 0 , 3 ] 上 的 最 小 值 是
______-_1_5___.
6.函数 f (x)=sin2x-x在[-
2
,
最小值为_____2__.
2 ]上的最大值为___2__;
7.将正数a分成两部分,使其立方和为最小,这两部分应分
aa
成___2___和__2____.
课外练习:
例练习题12::已知函数f (x) 2x3 6x2 a在2,2上有最小值 37 1求实数a的值; 2求f (x)在2,2上的最大值。
解:(1)f (x) 6x2 12x 令f (x) 0解得x 0或x 2

函数的最大值最小值与导数

函数的最大值最小值与导数
R2h,得
2V 令 s( R) 2 +4π R=0 R
解得,R=
3
V V h= = = 2 V 2 R 3 ( )
即 h=2R
3
4V
2

=2
3
V
V 2
,从而

因为S(R)只有一个极值,所以它是最小值 答:当罐的高与底直径相等时,所用材料最省
例5已知某商品生产成本C与产量q的函数关系式为C=100+4q, 价格p与产量q的函数关系式为 q为何值时,利润L最大?
(3)函数在其定义区间上的最大值、最小 值最多各有一个,而函数的极值可能不止 一个,也可能没有一个。 (4)最值可以在端点处取得,而函数的极 值不可能在端点处取得。
三、求最值的步骤: (1)求f (x)在区间(a,b)内极值(极大值 或极小值) (2)将y=f (x)的各极值与f (a)、f (b) 比较,其中最大的一个为最大值,最小 的一个最小值
2
x f’(x)
(-4,-3) +
-3 0
(-3,3) -
3 0
(3,4) +
4
f(x)
44
3
54
-54
-44
f ( x) x 27x在[4,4]上的最大值为 54, 最小值为 54
五、反馈练习
2、求函数f(x)=3x-x3在区间
[2,3] 内的最大
2
值和最小值
f ' ( x ) 3 3 x , 令f ' ( x ) 3 3 x 0
2
解得x1 1(舍) x2 1(舍)所以f ' ( x) 在x [2,3]单调递减。所以 f max f (2) 2, f min f (3) 18

导数与函数的极值与最值

导数与函数的极值与最值

导数与函数的极值与最值导数与函数的极值与最值是微积分中的重要概念,它们在实际问题中有着广泛的应用。

本文将介绍导数、函数的极值与最值的基本概念、求解方法及其应用。

一、导数的定义及性质导数是函数的一个基本性质,它描述了函数在某一点上的变化率。

在数学中,导数可以用极限的概念来定义。

当函数f(x)在点x处可导时,它的导数f'(x)的定义如下:f'(x) = lim┬(Δx→0)⁡〖(f(x+Δx)-f(x))/Δx〗导数具有一些重要的性质,包括可导函数的和、差、积、商的导数运算法则。

这些性质为求解函数的极值和最值提供了数学工具。

二、函数的极值与最值函数的极值指的是函数在某一区间内取得的最大值或最小值。

特别地,当函数在某一点上取得最大值或最小值时,称为函数的局部极值。

函数的极大值和极小值统称为极值。

函数的最值是指函数在定义域上取得的最大值或最小值。

与极值不同的是,最值可能发生在函数的端点或无穷远处。

函数的最值是极值的一个特例。

三、求解函数的极值与最值为了求解函数的极值和最值,我们需要利用导数的概念和性质。

下面介绍一些常用的求解方法。

1. 导数为零的点如果在某一点x处,函数的导数f'(x)为零或不存在,那么该点可能是函数的极值点。

然而,这种方法只是提供了一个可能性,我们还需要进行进一步的验证。

2. 导数的符号变化对于连续函数f(x),如果在某一点x处,f'(x)由正数变为负数,或由负数变为正数,那么该点可能是函数的极值点。

3. 极值的判别法通过求解函数的导数f'(x)的零点,可以得到函数的驻点,即可能的极值点。

然后,通过极值的判别法判断哪些点是真正的极值点。

四、导数与函数的极值与最值的应用导数与函数的极值与最值在实际问题中有着广泛的应用。

以下列举几个例子:1. 经济学中的最大收益问题在经济学中,我们常常需要求解某一产品的最大利润。

利用导数与函数的极值与最值的概念,我们可以优化生产过程,使得利润达到最大化。

函数的最大(小)值与导数

函数的最大(小)值与导数

二、新课导入
我们发现,这些极小值点附近
找不到比它的函数值更小的值,极 大值点附近找不到比它的函数值更
y
y=f(x)
大的值,由此可以看出,极值反映
的是函数在某一点附近的局部性质, 而不是函数在整个定义域内的性质。
o
a x1 x2 x3
x4 x 5
x6
b
x
但是,在解决实际问题(比如用料最省、产量最高,效益最 大等)或研究函数的性质时,我们往往更关心函数在某个区间上, 哪个值最大,哪个值最小。 那么,这节课我们来学习函数的最大(小)值与导数,试图 通过导数来求函数的最大(小)值。
单调递增↗
0 b
单调递减↘
由表知,f(0)=b是唯一一个极大值,也就是最大值, 故 b=3. 又 f(-1)-f(2)=(-7a+b)-(-16a+b)=9a>0, 所以f(x)的最小值为f(2)=-16a+3=-29, 故 反思:本题属于逆向探究题型: 其基本方法最终落脚到比较极值与端点函数值 a=2.
x y’ y
(-4,-3) +
单调递增↗
-3 0 27
(-3,1) 单调递减↘
1 0 -5
(1,4) +
单调递增↗
数 求 最 值 的 步 骤
从上表可知,函数有极小值f(1)=-5,极大值f(-3)=27 又由于f(-4)=20,f(4)=76 因此,函数在区间[-4,4]上的最大值是76,最小值是-5.
1.3.3函数的最大(小)值与导数
高二 选修2-2 第一章
一、温故
y y=f(x) f (x)>0
1.
函 数 极 值 的 定 义
f '( x2 ) = 0

导数与函数的最大值与最小值

导数与函数的最大值与最小值

说明:由于f(x)在[0,1]上连续可导,必有最大值与最小值, 因此求函数f(x)的值域,可转化为求最值.
解: f ( x ) p p 1 x p ( 1 x ) p 1 p [ x p 1 ( 1 x ) p 1 ].
令f(x)0,则得xp-1=(1-x)p-1,即x=1-x,x=1/2.
解:设圆柱的高为h,底半径为r,则表面积S=2πrh+2πr2.
由V=πr2h,得
h
V
r 2
,则
S(r)2rV r22r22 r V2r2.
令S(r)2rV2 4r0,解得r
4V V 3 23
2
,即h=2r.
3
V 2
,从而h
V
r2
V
(3 V
)2
2
由于S(r)只有一个极值,所以它是最小值. 答:当罐的高与底半径相等时,所用的材料最省.
三、例题选讲
例1:求函数y=x4-2x2+5在区间[-2,2]上的最大值与最小 值.
解: y4x34x.
令 y 0,解得x=-1,0,1. 当x变化时, y, y 的变化情况如下表:
x -2 (-2,-1) -1 (-1,0) 0 (0,1) 1 (1,2) 2
y’
- 0 + 0 - 0+
y 13 ↘ 4 ↗ 5 ↘ 4 ↗ 13
六、作业
第一次p.253~254课后强化训练第1~8题; 第二次p.255~256课后强化训练第1~6题及9,10题.
又设铁路上每吨千米的运费为3t元,则公路上每吨千 米的运费为5t元.这样,每吨原料从供应站B运到工厂 C的总运费为
y5tC D 3tB D 5t 40 x 0 23t(10 x 0 )

函数的极值与导数函数的最大(小)值与导数

函数的极值与导数函数的最大(小)值与导数

1.3.2 函数的极值与导数 1.3.3 函数的最大(小)值与导数一、知识点阅读1. 函数的极值与极值点设函数)(x f 在点0x 及其附近有定义,且对0x 附近的所有点x 都有)()(0x f x f <,则称)(0x f 为函数的一个极大值,称0x 为极大值点.设函数)(x f 在点0x 及其附近有定义,且对0x 附近的所有点x 都有)()(0x f x f >,则称)(0x f 为函数的一个极小值,称0x 为极小值点.注意:①极值分为极大值和极小值,二者都是函数值,是y 的取值;②极值点分为极大值点和极小值点,二者都是自变量值,是x 的取值; ③极值点总是定义域内部的点,区间端点值不可能为函数的极值点,极值点可能不止一个,可能也没有,且函数的极小值不一定比极大值小. 2. 求函数)(x f 的极值的步骤(1)确定函数)(x f 的定义域,求导数)('x f ; (2)求方程0)('=x f 的根;(3)用方程的根顺次将定义域分成若干个小区间,并列表判断)('x f 在各个根左右的正负:如果左正右负,那么)(x f 在这个根处取极大值;如果左负右正,那么)(x f 在这个根处取极小值;如果左右同号,那么)(x f 在这个根处不存在极值.例如:(1)若函数)(x f 的定义域为],[b a ,求导数)('x f ;(2)若解得方程0)('=x f 的根分别为21,x x ,且),(,21b a x x ∈;3. 函数)(x f 的最大值和最小值如果在区间],[b a 上可导函数)(x f y =的图象是一条连续不断的曲线,那么该函数在],[b a 上一定有最大值和最小值,且函数的最值必定在极值点或区间端点处取得.4. 函数)(x f 在区间],[b a 上的最大值和最小值的求法 (1)当函数)(x f 在区间],[b a 上单调若)(x f 在],[b a 上单调递增,则最大值为)()(max b f x f =,最小值)()(min a f x f =; 若)(x f 在],[b a 上单调递减,则最大值为)()(max a f x f =,最小值)()(min b f x f =. (2)当)(x f 在],[b a 上不单调(即在],[b a 上既有递增的部分也有递减的部分) 第一步:先求出在),(b a 内的极值;第二步:比较各极值与端点函数值)(),(b f a f 的大小,其中最大的一个为最大值,最小的一个为最小值.注意:极值未必是最值,最值也未必是极值(理解). 二、题型阅读例1 函数)(x f 的定义域为],[b a ,其导函数)('x f 在],[b a 上的图象如图所示,则函数在],[b a 上的极小值点为 ;极大值点为 .解:如图∵1x 左边0)('>x f ,右边0)('<x f , ∴1x 为函数的极大值点;∵2x 左边0)('<x f ,右边0)('>x f ,同理判断4x 是极大值点,5x 是极小值点. ∵3x 左右两边导函数符号同号, ∴3x 不是极值点.综上,极小值点为2x ,5x ;极大值点为1x ,4x . 例2 求函数193)(23+--=x x x x f 的极值. 解:依题意963)('2--=x x x f .解方程09632=--x x ,得11-=x ,32=x .由上表知,)(x f 的极大值为6;极小值为-26. 例3 求函数1)(23+-+=x x x x f 在]1,2[-的最大值和最小值.解:依题意求导123)('2-+=x x x f .解方程01232=-+x x ,得11-=x ,312=x . ∵端点函数值11)2()2()2()2(23-=+---+-=-f ,21111)1(23=+-+=f ,极值为21)1()1()1()1(23=+---+-=-f ,2722131)31()31()31(23=+-+=f . ∴函数)(x f 在]1,2[-上的最大值为2,和最小值-1.【模仿2】求函数3)(x x x f -=的极值.【模仿3】已知函数193)(23+--=x x x x f ,则)(x f 在区间]4,2[-的的最大值为 ,最小值为 .例4 已知函数23)(bx ax x f -=在点2=x 有极小值4-,试确定b a ,的值并判断)(x f 的单调性.解:依题意bx ax x f 23)('2-=,∵)(x f 在点2=x 有极小值4-, ∴04122223)2('2=-=⋅-⋅=b a b a f ① 44822)2(23-=-=⋅-⋅=b a b a f ②联立①②,得3,1==b a . ∴233)(x x x f -=,符合题意.由063)('2>-=x x x f ,得2,0><x x 或.因此,在区间)0,(-∞,),2(∞+上)(x f 为增函数, 在区间)2,0(上)(x f 为减函数.注意:0)('0=x f /⇒⇐)(x f 在0x x =处取极值;因为0x 有可能不在给定的区间内,所以左边不能推出右边.例5 已知函数c bx ax x x f +++=23)(在32-=x 与1=x 处都取极值.(1)试求b a ,的值;(2)若对]2,1[-∈x ,不等式2)(c x f <恒成立,求c的取值范围.解:(1)依题意b ax x x f ++=23)('2,由已知得⎪⎩⎪⎨⎧=++==+-⋅+-⨯=-,,023)1('0)32(2)32(3)32('2b a f b a f 解得⎪⎩⎪⎨⎧-=-=.2,21b a若对]2,1[-∈x ,不等式2)(c x f <恒成立,只需)(x f 在]2,1[-上的最大值2max )(c x f <即可.【模仿4】已知函数bx ax x x f --=23)(在点1-=x 有极大值5,试确定b a ,的值并判断)(x f 的单调性.比较]2,1[-上极值和端点函数值:2722)32(+=-c f , 23)1(-=c f ,21)1(+=-c f ,2)2(+=c f .∴2)2()(max +==c f x f .∴22c c <+,解得2,1>-<c c 或. ∴c 的取值范围为),2()1,(∞+--∞ .小结:解答恒成立问题的一般思路是“分离参数,然后转化为最值问题”,例如a x f >)(恒成立⇔a x f >min )(;a x f <)(恒成立⇔a x f <max )(.三、综合训练1. 已知函数x x x f 3)(3+=,则)(x f 有( )A. 极大值4B. 极小值-4C. 不存在极值D. 极值点为±1 2. 已知函数93)(23-++=x ax x x f 在3-=x 处取得极值,则=a ( ) A. 5 B. 4 C. 3 D. 2 3. 已知函数x x x f -=3)(,则)(x f 有( )A. 极大值点为﹣2B. 极小值点-1C. 极大值为﹣2D. 极小值为0 4. 如图函数)(x f 的导函数)('x f 的图象如图所示,下列结论正确的是( )A. 1是极小值点B. 2是极大值点C.23是极小值点 D. 2是极小值点5. 函数)(x f 在其定义域内可导,)(x f y =的大致图象如下图左所示,则导函数)('x f y =的大致图象为( )6. 函数13)(23+-=x x x f 的极小值点为 . 7. 函数x x x f ln )(-=在区间]2,0[上的最小值为 .8. 函数x x ax x f 2)(23++=在R 上有一个极值,则a 的取值为 ,若在R 上有两个极值,则a 的取值范围是.)x )))x A9. 当]2,1[∈x 时,不等式03423≥++-x x ax 恒成立,则a 的取值范围是 .10. 设函数x x x f ln 2)(2-=. (1)求函数)(x f 的极值;(2)若2)(a a x f ≥+恒成立,试求a 的取值范围.。

函数的最大(小)值与导数

函数的最大(小)值与导数
区别: (1)极大(小)值不唯一,而最大(小)值唯一; (2)极小值可能比极大值大,最小值一定不大于最大值;
(3)极大(小)值不可以是区间端点,最大(小)值可以;
(4)极大(小)值反映函数局部性质,最大(小)值反映函 数整个定义域上的性质.
联系:最大(小)值可能是极大(小)值.
思考2.结合函数图像思考下列函数是否有最 大(小)值.
f x1 , f x3 , f x5
y
y=f(x)
y
o
x4 x3
y=f(x)
a o b
x
a
x1 x2
b x
指出上述两个函数取得最大(小)值的点.
最大值点:x=b; 最小值点:x=a
最大值点:x=x3; 最小值点:x=x4
最大(小)值点在端点或极值点取得
思考1.函数的极大(小)值是函数整个定义域内 的最大(小)值吗?根据上例说说极大(小)值 与最大(小)值的区别与联系。 函数的极大(小)值不一定是函数在整个 定义域内的最大(小)值
4 . 3
1 3 因此函数 f ( x ) x 4 x 4 在[0,3]上的最大 3
图像:
连续函数在闭区间[a,b]上求最值的步骤: ①:求y=f(x)在(a,b)内的极值(极大值与极小值); ②:将函数y=f(x)的各极值与f(a)、f(b)作比较, 其 中最大的一个为最大值,最小的一个为最小值. 求导、求根、列表、结论
1.最大值与最小值
一般地,设函数y=f(x)的定义域为I,如果 存在实数M满足: (1)对于任意的x∈I,都有f(x)≤M; (2)存在x0∈I,使得f(x0) = M
那么,称M是函数y=f(x)的 ________. 最大值
一般地,设函数y=f(x)的定义域为I,如果 存在实数M满足: (1)对于任意的x∈I,都有f(x)≥M; (2)存在x0∈I,使得f(x0) = M

函数的最大最小值与导数

函数的最大最小值与导数
列表 左正右负极大值,左负右正极小值
写极值
导数的应用之三、求函数最值.
极值是一个局部概念,极值只是某个点的函数值与它 附近点的函数值比较是最大或最小,并不意味着它在函数 的整个的定义域内最大或最小。
在某些问题中,往往关心的是函数在整
个定义域区间上,哪个值最大或最小的问题,这就是我们通
常所说的最值问题.
探究如何求出函数在[a,b]上的最值?
y
y fx
ao bx
图1.
在图中, 观察 a, b上的函数 y f x的图象,它们在a,b上有最大值、最
小值吗? 最大值与最小值在何处取得?
•y
观察右边一个定义在 区间[a,b]上的函数y=f(x)的 图象:
a x1 o X2
y=f(x)
X3
bx
发现图中 f(x1)f(是x3)极小值, 是f极(x2大) 值,在区间上的
则f(x0) 是函数f(x)的一个极大值, 记作y极大值= f(x0);
•如果对X0附近的所有点,都有f(x)>f(x0), 则f(x0) 是函数f(x)的一个极小值,记作y极小值= f(x0);
◆函数的极大值与极小值统称 为极值.
2、求函数极值(极大值,极小值)的一般步骤:
求定义域
求导 求极值点
A.有最大值
C.是增函数
B.有最小值 D.是减函数
补充练习:
D 1.下列说法正确的是( )
(A)函数的极大值就是函数的最大值
(B)函数的极小值就是函数的最小值
(C)函数的最值一定是极值
(D)若函数的最值在区间内部取得,则一定是极值.
2.函数 y=f(x)在区间[a,b]上的最大值是 M,最小值是
A m,若 M=m,则 f ( x) ( )

导数最大值最小值求法

导数最大值最小值求法

导数最大值最小值求法在数学中,导数是一个非常重要的概念。

它可以用来确定函数的斜率、变化率以及最值。

在本文中,我们将重点讨论导数最大值最小值的求法。

一、导数的定义和性质在初中数学中,我们学习了导数的定义:设函数y=f(x)在点x0附近有定义,则函数在点x0处的导数f′(x0)可以表示为:f′(x0) = lim (f(x) - f(x0)) / (x - x0) (x → x0)其中,f(x)表示函数在点x处的函数值,x0表示点的位置。

导数可以理解为函数在某一点上的变化率。

导数有一些性质,例如:- 导数表示的是函数在某一点上的瞬时变化率;- 函数在某一点的导数值等于切线的斜率;- 导数可以用来判断函数是否单调,即导数的正负决定了函数的单调性。

二、求导法则为了求解导数最大值最小值,我们首先需要掌握求导法则。

求导法则是指一系列公式,可以用来求取各类函数的导数值。

常见的求导法则包括:- 常数求导法则:常数的导数为0;- 幂函数求导法则:y = x^n,其导数为 y' = nx^(n-1);- 指数函数求导法则:y = a^x,其导数为 y' = a^x ln(a);- 对数函数求导法则:y = loga x,其导数为 y' = 1 / (xln(a));- 三角函数求导法则:sinx的导数是cosx,cosx的导数是-sinx,tanx的导数是sec^2 x。

对于复合函数,我们可以使用链式法则来求导。

链式法则可以表示为:若h(x)=g(f(x)), 且g'(f(x))和f′(x)存在,则h′(x)=g′(f(x))f′(x)也就是说,复合函数的导数等于外层函数在内层函数的导数的基础上乘以内层函数的导数。

三、求导实例在上述基础上,我们可以来看看如何求导最值。

以下是一个实例,假设我们要求函数y=x^2在区间[0,2]上导数的最大值和最小值。

首先,我们需要求出函数的导数y'=2x。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在某些问题中,往往关心的是函数在整 个定义域区间上,哪个值最大或最小的问题,这
就是我们通常所说的最值问题.
探究如何求出函数在[a,b]上的最值?
y
yfx
ao 图1.
bx
在图中,观察a,b上的函数 y f x的图象 ,它们在 a,b上有最大值、最
小值吗 ? 最大值与最小值取 在得 何? 处
2020/3/25
•y
观察右边一个定义 在区间[a,b]上的函数 y=f(x)的图象:
a x1 o X2
y=f(x)
X3
bx
发现图中f(x1)f(x3) 是极小值,f(x2)是极大值,在区 间上的函数的最大值是 f(b) ,最小值是 f(x3) 。
1. “最值”与“极值”有怎样的区别和联系呢?
2.怎样得到函数最值?
2020/3/25
2.怎样得到函数最值? y
最大值
y=f(x)
a x1 o X2
X3
bx
最小值
《1、函数f(x)在闭区间[a,b]上的最值点在 导数为零的点和区间的两个端点处取得. 《2、只要把函数f(x)在闭区间[a,b]上的所有极值点连同端点的 函数值进行比较,就可以求出函数的最大值与最小值。
2020/3/25
二、函数的极值定义
y
使函数取得极值的 y 点x0称为极值点
o
x0
x
o
x0
x
设函数f(x)在点x0附近有定义,
•如果对X0附近的所有点,都有f(x)<f(x0),
则f(x0) 是函数f(x)的一个极大值, 记作y极大值= f(x0);
•如果对X0附近的所有点,都有f(x)>f(x0), 则f(x0) 是函数f(x)的一个极小值,记作y极小值= f(x0);
大值和最小值 解:因 f(x)为 1x24x4,所以 3 f'(x)x24,令f'(x)0,解得x: 2或x2 由图表知:
所以函[0,数 3]上在 没有极大值 为f(, 2)极 4小值 3
又 f(0)4,f(3)1 因此, f(x 4.值为
3
练习 1、变式将区间 [0,3] 改为[-3,4] 求函数的最大值和最小值
解 :(1) f(x)6x212x 令 f(x ) 0 解 得 x 0 或 x 2 又 f(2) 40a, f (0) a, f(2)8a 由 已 知 得 4 0 a 3 7 解 得 a 3
( 2 ) 由 ( 1 ) 知 f( x ) 在 2 ,2 的 最 大 值 为 3 .
反思:本题是由函数的最值求参数的值: 基本方法最终落脚到比较极值与端点函数值大小
2020/3/25
• “最值”与“极值”的有怎样的区别和联系呢? • ①、“最值”是整体概念;而“极值”是个局部概念. • ②、从个数上看,一个函数在给定的闭区间【a,b
】上的最值是唯一的;而极值可能有多个,也可能 只有一个,还可能一个都没有; • ③、在极值点x0处的导数f′(x0)=0,而最值点不一 定,最值有可能在极值点取得,也可能在端点处取 得。
2020/3/25
导数的应用之三、求函数最值.
求f(x)在闭区间[a,b]上的最值的步骤
(1)求f(x)在区间(a,b)内极值(极大值或极小值)
(2)将y=f(x)的各极值与f(a)、f(b)(端点处) 比较,其中最大的一个为最大值,最小的 一个为最小值.
例1、求函数f(x)=x3 /3-4x+4在区间[0,3] 内的最
2020/3/25
补充练习:
D 1.下列说法正确的是( )
(A)函数的极大值就是函数的最大值
(B)函数的极小值就是函数的最小值 (C)函数的最值一定是极值
(D)若函数的最值在区间内部取得,则一定是极值.
2.函数 y=f(x)在区间[a,b]上的最大值是 M,最小值是
A m,若 M=m,则 f ( x) ( )
f(x)最大值为f(-2)=f(4)=28/3
f(x)最小值为f(2)=-4/3
2、求函数f(x)=3x-x3 在区间 [-3, 3]
f(x内)最大的值为最f(大1)=值2 和最小值
f(x)最小值为f(-3)=-36
※典型例题
例 题 2 : 已 知 函 数 f( x ) 2 x 3 6 x 2 a 在 2 , 2 上 有 最 小 值 3 7 1 求 实 数 a 的 值 ; 2 求 f( x ) 在 2 , 2 上 的 最 大 值 。
1.3.3函数的最大 (小)值与导数
高二数学 选修2-2
2020/3/25
复习:一、函数单调性与导数关系 设函数y=f(x) 在 某个区间 内可导,
f(x)为增函数
f(x)为减函数
y
y=f(x)
y
y=f(x)
f '(x)<0
f '(x)>0
oa
bx
oa
bx
如果在某个区间内恒有 f(x)0,则 f ( x)为常数.
, 其中最大的一个为最大值,最小的一个为最小 注意 1) 函数的最值是值整. 体性的概念; 2) 函数的最大值(最小值)唯一;
3) 函数的最值可在端点取得.
2020/3/25
高考链接
f ( x ) ( A)
设函数 f(x)=2x+1-1(x<0),则 x
A.有最大值 C.是增函数
B.有最小值 D.是减函数
上,从而解决问题.
2020/3/25
课堂小结
一.函数极值与最值区别与联系 二.利用导数求函数最值的方法
2020/3/25
总结
求f(x)在[a,b]上的最大值与最小值的步骤如下: ①:求y=f(x)在(a,b)内的极值(极大值与极 小值); ②:将函数y=f(x)的各极值与f(a)、f(b)作比较
◆函数的极大值与极小值统称 为极值.
2020/3/25
2、求函数极值(极大值,极小值)的一般步骤: 求定义域 求导 求极值点 列表 左正右负极大值,左负右正极小值 写极值
2020/3/25
导数的应用之三、求函数最值.
极值是一个局部概念,极值只是某个点的函数 值与它附近点的函数值比较是最大或最小,并不意 味着它在函数的整个的定义域内最大或最小。
(A)等于 0 (B)大于 0 (C)小于 0 (D)以上都有可能
A 3.函数 y= 1 x4 1 x3 1 x2 ,在[-1,1]上的最小值为( ) 432
(A)0
(B)-2 (C)-1
(D) 13
C 12
4、函数y=x3-3x2,在[-2,4]上的最大值为( )
相关文档
最新文档