2011届高考数学第一轮总复习知识点课件6
高考数学一轮总复习第六章不等式推理与证明6_3基本不等式课件理新人教A版

[解析] (1)由 lg 2x+lg 8y=lg 2 得,lg 2x+3y=lg 2, ∴x+3y=1,1x+31y=1x+31y(x+3y) =2+3xy+3xy≥4当且仅当3xy=3xy时,等号成立.
(2)y=1+3x+
1 x-1
=3(x-1)+
1 x-1
+4.令x-1=t,t≥1,∴y=3t+
跟踪训练 (1)(2018·湖南期末)函数y=ax-1+2(a>0,a≠1)的图象恒过定点A,若
定点A在直线mx +ny=1(m>0,n>0)上,则3m+n的最小值为( )
A.13
B.14
C.16
D.12
解析:由题意知A(1,3),
点A在直线mx +ny=1(m>0,n>0)上,∴m1 +3n=1.
(3)ab≤a+2 b2(a,b∈R,当且仅当a=b时取等号).
(4)1a+2 1b≤ ab≤a+2 b≤
a2+2 b2(a,b>0,当且仅当a=b时取等号).
[三基自测]
1.(必修5·习题3.4A组改编)设x>0,y>0,且x+y=18,则xy的最大值为( )
A.80
B.77
C.81
3.利用基本不等式求最值问题
已知x>0,y>0,则: (1)如果积xy是定值p,那么当且仅当x=y时,x+y有 最小 值是2 p(简记:
积定和最小 ). (2)如果和x+y是定值p,那么当且仅当x=y时,xy有 最大值是p42(简记:
和定积最大 ).
4.几个常用的重要结论: (1)ba+ab≥2(a与b同号,当且仅当a=b时取等号). (2)a+1a≥2(a>0,当且仅当a=1时取等号),a+1a≤-2(a<0,当且仅当a=-1时 取等号).
高考数学一轮总复习 第2章 函数的概念与基本初等函数 第二节 函数的基本性质课件(理)

奇偶性
定义
图象特点
如果对于函数f(x)的定义域内任意一个x, 偶函数 都有 f(-x)=f(x) ,那么函数f(x)是偶 关于
y轴
对
称
函数
奇函数
如果对于函数f(x)的定义域内任意一个x, 都有 f(-x)=-f(x) ,那么函数f(x)是奇 关于
原点
对
称
函数
2.周期性 (1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使 得当x取定义域内的任何值时,都有f(x+T)= f(x) ,那么就 称函数y=f(x)为周期函数,称T为这个函数的周期. (2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最 小的正数,那么这个 最小 正数就叫做f(x)的最小正周期.
数f(x)在区间D上是减函数
(2)单调性、单调区间的定义 若函数f(x)在区间D上是增函数或 减函数 ,则称函数f(x)在这 一区间上具有(严格的)单调性,区间D叫做f(x)的单调区间. 2.函数的最值
前提 设函数y=f(x)的定义域为I,如果存在实数M满足
条件
对于任意x∈I,都有 f(x)≤M ;
2
减函数,故 f(x)的单调递增区间为(-∞,-1).故选 C.
答案 C [点评] 判断函数的单调性,应首先求出函数的定义域,在定
义域内求解.
函数的奇偶性解题方略 奇偶性的判断 (1)定义法
答案 [-2,+∞)
►单调性的两个易错点:单调性;单调区间.
(2)[函数的单调递增(减)区间有多个时,不能用并集表示,:可
以 用 逗 号 或 “ 和 ”] 函 数
f(x)
=xBiblioteka +1 x的
单
调
递
增
高考数学一轮总复习(知识梳理+聚焦考向+能力提升)6.6 直接证明与间接证明课件 理

第十六页,共32页。
C 聚焦考向透析
考 向 二 分析法的应用(yìngyòng)
变式训练
2.已知△ABC三边a,b,c的倒数成等 差数列,证明(zhèngmíng):B为锐角.
证明:要证明 B 为锐角,根据余弦定理,也就是证明 cos B=
a2+c2-b2 2ac >0,即需证 a2+c2-b2>0.
要证明
2
≥f( 2 ),
(3x1-2x1)+(3x2-2x2) x1+x2
x1+x2
即证明
2
≥3 2 -2· 2 ,
3x1+3x2
x1+x2
因此只要证明 2 -(x1+x2)≥3 2 -(x1+x2),
3x1+3x2 x1+x2 即证明 2 ≥3 2 ,
3x1+3x2 因此只要证明 2 ≥ 3x1·3x2,
考 向 三 反证法
例题(lìtí)精编
审题视点 典例精讲 类题通法 变式训练
(2014·浙江杭州模拟)已知函数 f(x)=ax+xx-+21(a>1). (1)证明:函数 f(x)在(-1,+∞)上为增函数; (2)用反证法证明方程 f(x)=0 没有负数根.
(1)用增函数定义证明;(2)假设(jiǎshè)有 负数根,根据指数函数性质证出矛盾.
(2)用分析法证明数学问题时,要注意书写格式的规范性,常常用“要证(欲证)…”“即要 证…”“就要证…”等分析到一个明显成立的结论P,再说明所要证明的数学问题成立.
第七页,共32页。
C 聚焦考向透析
考 向 一 综合法的应用(yìngyòng)
例题(lìtí)精编
已知 f(x)=l1n+xx-ln x,f(x)在 x=x0 处取最大值,
已知 f(x)=l1n+xx-ln x,f(x)在 x=x0 处取最大值,
《2011年高考数学总复习系列》_高中数学必修一

2011高考数学复习必修1第一章、集合一、基础知识(理解去记)定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素x 在集合A 中,称x 属于A ,记为A x ∈,否则称x 不属于A ,记作A x ∉。
例如,通常用N ,Z ,Q ,B ,Q +分别表示自然数集、整数集、有理数集、实数集、正有理数集,不含任何元素的集合称为空集,用∅来表示。
集合分有限集和无限集两种。
集合的表示方法有列举法:将集合中的元素一一列举出来写在大括号内并用逗号隔开表示集合的方法,如{1,2,3};描述法:将集合中的元素的属性写在大括号内表示集合的方法。
例如{有理数},}0{>x x 分别表示有理数集和正实数集。
定义2 子集:对于两个集合A 与B ,如果集合A 中的任何一个元素都是集合B 中的元素,则A 叫做B 的子集,记为B A ⊆,例如Z N ⊆。
规定空集是任何集合的子集,如果A 是B 的子集,B 也是A 的子集,相等。
如果A 是B 的子集,而且B 中存在元素不属于A ,则A 叫B 的真子集。
B A ⊆包含两个意思:①A 与B 相等 、②A 是B 的真子集 }.{B x A x x B A ∈∈=且 }.{B x A x x B A ∈∈=或},{,1A x I x x A C I A ∉∈=⊆且则称为A 在I 中的补集。
},,{b a R x b x a x <∈<<记作开区间),(b a ,集合 },,b a R x <∈记作闭区间],[b a ,R 记作).,(+∞-∞∅是任何集合的子集,是任何非空集合的真子集。
对集合中元素三大性质的理解 (1)确定性集合中的元素,必须是确定的.对于集合A 和元素a ,要么a A ∈,要么a A ∉,二者必居其一.比如:“所有大于100的数”组成一个集合,集合中的元素是确定的.而“较大的整数”就不能构成一个集合,因为它的对象是不确定的.再如,“较大的树”、“较高的人”等都不能构成集合. (2)互异性对于一个给定的集合,集合中的元素一定是不同的.任何两个相同的对象在同一集合中时,只能算作这个集合中的一个元素.如:由a ,2a 组成一个集合,则a 的取值不能是0或1.(3)无序性集合中的元素的次序无先后之分.如:由123,,组成一个集合,也可以写成132,,组成一个集合,它们都表示同一个集合.帮你总结:学习集合表示方法时应注意的问题(1)注意a 与{}a 的区别.a 是集合{}a 的一个元素,而{}a 是含有一个元素a 的集合,二者的关系是{}a a ∈.(2)注意∅与{}0的区别.∅是不含任何元素的集合,而{}0是含有元素0的集合.(3)在用列举法表示集合时,一定不能犯用{实数集}或{}R 来表示实数集R 这一类错误,因为这里“大括号”已包含了“所有”的意思.用特征性质描述法表示集合时,要特别注意这个集合中的元素是什么,它应具备哪些特征性质,从而准确地理解集合的意义.例如:集合{()x y y =,中的元素是()x y ,,这个集合表示二元方程y =的解集,或者理解为曲线y =集合{x y =中的元素是x ,这个集合表示函数y =x 的取值范围;集合{y y =中的元素是y ,这个集合表示函数y =y 的取值范围;集合{y =中的元素只有一个(方程y =(4)常见题型方法:当集合中有n 个元素时,有2n 个子集,有2n -1个真子集,有2n -2个非空真子集。
2011届高考数学总复习直通车课件-基本初等函数(I)

2
2
2
①
②
要使①有7个解,则②必须有两解,即f(x)=| x +2x|与f(x)=t有7个交点 (如图),所以方程②必有两个解,而f(x)=t中的一条直线必过f(x)=|x +2x|折上去的顶点,故②式有一解为t 1 1 ,另一直线与f(x)=|x +2x|
2 2
的图象有4个交点,故②式的另一解 2 必在(0,1)上,所以 t1 t 2 b 0 b 0,t1t 2 c 0 ,所以b<c. 答案:C
2
2
2
与y轴的交点D(0,1),再任取一点
E(-2,1),过这五个点画出图象,如图.
学后反思(1)由本例可以看出,根据配方法及函数的性质画函数 图象,可以直接选取关键点,减少了选点的盲目性,使画图更简 便,使图象更精确. (2)二次函数的图象是一条抛物线,其基本特征是有顶点,有对称 轴,有开口方向,在画其图象时往往取顶点,以及与坐标轴的交 点为特征点进行画图.
学后反思 函数y=kx+b(k≠0)解析式中参数k与函数单调性有 关,k>0时,函数图象是上升的;k<0时,函数图象是下降的.b反 映了函数图象与y轴交点的位臵,b>0时,交于x轴上方;b=0时, 交于原点;b<0时,交于x轴下方.b又叫做直线y=kx+b在y轴上的 截距.
举一反三
1. 已知函数y=(2m-1)x+1-3m,m为何值时: (1)这个函数为一次函数? (2)函数值y随x的增大而减小? (3)这个函数图象与直线y=x+1的交点在x轴上? 解析: (1)当m≠ 2 时,这个函数为一次函数. 1 (2)根据一次函数的性质,可知当2m-1<0,即m< 2 时,y随 x的增大而减小. (3)直线y=x+1与x轴交于点(-1,0), 将其代入y=(2m-1)x+1-3m中,得1-2m+1-3m=0, 2 ≨m= 5 .
高考数学复习考点知识讲解课件6 函数的定义域与值域

— 返回 —
— 4—
(新教材) 高三总复习•数学
(2)基本初等函数的定义域 ①整式函数的定义域为 R. ②分式函数中分母_不___等__于__0__. ③偶次根式函数被开方式__大__于__或__等__于___0___. ④一次函数、二次函数的定义域均为 R. ⑤函数 f(x)=x0 的定义域为__{_x_|x_≠__0_}__. ⑥指数函数的定义域为____R______. ⑦对数函数的定义域为_(_0_,__+__∞__)_.
0<2-x<1, ⇒x≠32
1<x<2, ⇒x≠32.
所以函数的定义域为1,32∪32,2.
— 14 —
(新教材) 高三总复习•数学
— 返回 —
角度 2:求抽象函数的定义域 【例 2】 已知函数 f(2x+1)的定义域为(0,1),则 f(x)的定义域是___(1_,_3_)__. [思路引导] 由已知得 x∈(0,1)→求 2x+1 的范围→得 f(x)的定义域.
2
— 返回 —
— 13 —
(新教材) 高三总复习•数学
— 返回 —
[解析] (1)要使原函数有意义,
-x2+9x+10≥0, 则x-1>0,
x-1≠1,
解得 1<x≤10 且 x≠2,所以函数 f(x)= -x2+9x+10-
lnx2-1的定义域为(1,2)∪(2,10],故选 D.
(2)要使函数有意义,则log12 2-x>0, 2x-3≠0
— 11 —
— 返回 —
2011届高考数学考点专项复习课件:同角关系及诱导公式

1.已知 cot(-)=2, 求 sin( 3 +)的值. 2
2.已知 cot=m(m0), 求 cos.
解: ∵cot=m(m0), ∴角 的终边不在坐标轴上. 若 是第一或第二象限角, 则 1 1 csc= = . ∴sin= csc = . 2 1+m m 1+m2 . ∴cos=sincot= 1+m2 1+cot2 1+m2 若 是第三或第四象限角, 则 1 csc=- 1+cot2 =- 1+m2 . ∴sin= csc =m 1+m2 ∴cos=sincot=- 1+m2 . 1 . 2 1+m
2 3.已知 sin+cos= 3 (0<<), 求 tan 的值. 解法2 将已知等式两边平方得 sincos=- 7 <0, 18 ∵0<<, ∴sin>0. ∴由 sincos<0 知 cos<0. 2- 2 x- 7 =0 的根, 且 cos 为小根. ∴sin, cos 是方程 x 3 18 -4 +4 ∴cos= 26 , sin= 26 . sin ∴tan= cos = -9-4 2 . 7
二、诱导公式
用自变量 的三角函数表示自变量为 k (kZ)的三角 2 函数的公式叫诱导公式. 2.口诀 奇变偶不变, 符号看象限. 3.本质 1.定义
通过不相等的两个角的同名三角函数或两个互为余函数的 三角函数值相等或互为相反数, 反映了三角函数的周期性及各 种对称性.
典型例题
解: ∵cot(-)=2, 又 cot(-)=-cot, ∴cot=-2. ∴ 是第二或第四象限角, 且 tan=- 1 . 2 1 2= ∴cos = 4. 1+tan2 5 - 2 5 , 是第二象限角, ∴cos= 2 5 5 5 , 是第四象限角. 又 sin( 3 +)=-cos, 2 2 3 +)= 5 5 , 是第二象限角, ∴sin( 2 - 2 5 , 是第四象限角. 5
高考数学一轮总复习教学课件第二章 函 数第3节 函数的奇偶性、周期性与对称性

5.已知定义在R上的奇函数f(x),当x>0时,f(x)=x2+x-1,则函数
f(x)的解析式为
+ -, > 0,
f(x)= , = ,
- + + , < 0
.
解析:设x<0,则-x>0,由题意可知f(-x)=(-x)2-x-1=x2-x-1,
因为f(x)是R上的奇函数,
√
D.1
)
-
f(-x).若 f(- )= ,则 f( )等于(
ቤተ መጻሕፍቲ ባይዱ
A.
B.
C.
√
D.
)
解析:因为 f(x)是定义在 R 上的奇函数,所以 f(-x)=-f(x).
又 f(1+x)=f(-x),
所以 f(2+x)=f[1+(1+x)]=f[-(1+x)]=-f(1+x)=-f(-x)=f(x),
所以f(x)=-f(-x)=-x2+x+1,且f(0)=0.
+ -, > 0,
综上所述,f(x)= , = ,
- + + , < 0.
提升·关键能力
类分考点,落实四翼
考点一
函数奇偶性的判断
[例1] (多选题)(2024·山东临沂统考一模)已知f(x)=x3g(x)为
==-f(x),
-
所以函数 f(x)为奇函数.
③显然函数f(x)的定义域为(-∞,0)∪(0,+∞),关于原点对称.
因为当x<0时,-x>0,
(超级精品)2011届高考数学一轮复习精品题集分类汇编之函数(39页)

第2章 函数概念与基本初等函数Ⅰ §2.1.1 函数的概念和图象重难点:在对应的基础上理解函数的概念并能理解符号“y=f (x )”的含义,掌握函数定义域与值域的求法; 函数的三种不同表示的相互间转化,函数的解析式的表示,理解和表示分段函数;函数的作图及如何选点作图,映射的概念的理解.考纲要求:①了解构成函数的要素,会求一些简单函数的定义域和值域;②在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数;③了解简单的分段函数,并能简单应用;经典例题:设函数f (x )的定义域为[0,1],求下列函数的定义域: (1)H (x )=f (x2+1);(2)G (x )=f (x+m )+f (x -m )(m >0).当堂练习:1. 下列四组函数中,表示同一函数的是( ) A.(),()f x x g x ==B.2(),()f x x g x ==C .21(),()11x f x g x x x -==+- D.()()f x g x ==2函数()y f x =的图象与直线x a =交点的个数为( )A .必有一个B .1个或2个C .至多一个D .可能2个以上3.已知函数1()1f x x =+,则函数[()]f f x 的定义域是( )A .{}1x x ≠ B .{}2x x ≠- C .{}1,2xx ≠-- D .{}1,2x x ≠-4.函数1()1(1)f x x x =--的值域是( )A .5[,)4+∞B .5(,4-∞C . 4[,)3+∞D .4(,]3-∞ 5.对某种产品市场产销量情况如图所示,其中:1l 表示产品各年年产量的变化规律;2l 表示产品各年的销售情况.下列叙述: ( ) (1)产品产量、销售量均以直线上升,仍可按原生产计划进行下去;(2)产品已经出现了供大于求的情况,价格将趋跌;(3)产品的库存积压将越来越严重,应压缩产量或扩大销售量;(4)产品的产、销情况均以一定的年增长率递增.你认为较合理的是()A .(1),(2),(3)B .(1),(3),(4)C .(2),(4)D .(2),(3)6.在对应法则,,,x y y x b x R y R→=+∈∈中,若25→,则2-→ , →6.7.函数()f x 对任何x R +∈恒有1212()()()f x x f x f x ⋅=+,已知(8)3f =,则)f = .8.规定记号“∆”表示一种运算,即a b a b a b R+∆=+∈,、. 若13k ∆=,则函数()fx k x =∆的值域是___________.9.已知二次函数f(x)同时满足条件: (1) 对称轴是x=1; (2) f(x)的最大值为15;(3) f(x)的两根立方和等于17.则f(x)的解析式是 .10.函数2522y x x =-+的值域是 .11. 求下列函数的定义域 : (1)()121x f x x =-- (2)(1)()x f x x x+=-12.求函数y x =13.已知f(x)=x2+4x+3,求f(x)在区间[t,t+1]上的最小值g(t)和最大值h(t).14.在边长为2的正方形ABCD 的边上有动点M ,从点B 开始,沿折线BCDA 向A 点运动,设M 点运动的距离为x ,△ABM 的面积为S . (1)求函数S=的解析式、定义域和值域; (2)求f[f(3)]的值.第2章 函数概念与基本初等函数Ⅰ§2.1.2 函数的简单性质重难点:领会函数单调性的实质,明确单调性是一个局部概念,并能利用函数单调性的定义证明具体函数的单调性,领会函数最值的实质,明确它是一个整体概念,学会利用函数的单调性求最值;函数奇偶性概念及函数奇偶性的判定;函数奇偶性与单调性的综合应用和抽象函数的奇偶性、单调性的理解和应用;了解映射概念的理解并能区别函数和映射.考纲要求:①理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解函数奇偶性的含义;并了解映射的概念;②会运用函数图像理解和研究函数的性质.经典例题:定义在区间(-∞,+∞)上的奇函数f (x )为增函数,偶函数g (x )在[0,+∞ )上图象与f (x )的图象重合.设a >b >0,给出下列不等式,其中成立的是 f (b )-f (-a )>g (a )-g (-b ) ②f (b )-f (-a )<g (a )-g (-b )③f (a )-f (-b )>g (b )-g (-a ) ④f (a )-f (-b )<g (b )-g (-a ) A .①④ B .②③ C .①③ D .②④ 当堂练习:1.已知函数f(x)=2x2-mx+3,当()2,x ∈-+∞时是增函数,当(),2x ∈-∞-时是减函数,则f(1)等于 ( )A .-3B .13C .7D .含有m 的变量2.函数()f x =是( )A . 非奇非偶函数B .既不是奇函数,又不是偶函数奇函数C . 偶函数D . 奇函数3.已知函数(1)()11f x x x =++-,(2)()f x =2()33f x x x =+(4)0()()1()R x Q f x x C Q ∈=∈⎧⎨⎩,其中是偶函数的有( )个A .1B .2C .3D .44.奇函数y=f (x )(x ≠0),当x ∈(0,+∞)时,f (x )=x -1,则函数f (x -1)的图象为 ()5.已知映射f:A →B,其中集合A={-3,-2,-1,1,2,3,4},集合B 中的元素都是A 中元素在映射f 下的象,且对任意的A a ∈,在B 中和它对应的元素是a,则集合B 中元素的个数是( )A .4B .5C .6D .76.函数2()24f x x tx t =-++在区间[0, 1]上的最大值g(t)是 .7. 已知函数f(x)在区间(0,)+∞上是减函数,则2(1)f x x ++与()34f 的大小关系是 .8.已知f(x)是定义域为R 的偶函数,当x<0时, f(x)是增函数,若x1<0,x2>0,且12x x <,则1()f x 和2()f x 的大小关系是 .9.如果函数y=f(x+1)是偶函数,那么函数y=f(x)的图象关于_________对称.10.点(x,y)在映射f作用下的对应点是22,若点A 在f 作用下的对应点是B(2,0),则点A 坐标是 .13. 已知函数2122()x x f x x++=,其中[1,)x ∈+∞,(1)试判断它的单调性;(2)试求它的最小值.14.已知函数2211()a f x aa x+=-,常数0>a 。
《课堂新坐标》高考数学一轮总复习课件:第二章 第六节 对数与对数函数(共39张PPT)

=(llgg 23+2llgg23)·(2llgg32+3llgg32)
=32llgg 23·56llgg 32=54.
高考体验·明
探究·提知能
课后作
菜单
新课标 ·文科数学(广东专用)
1.对数运算法则是在化为同底的情况下进行的,因 落实·固基础此经常用到换底公式及其推论;在对含字母的对数式化 高考体验·明
在(0,+∞)上为 ___增__函__数____
当0<x<1时,y>0; 当x>1时,___y_<__0__.
课后作
在(0,+∞)上为 ____减_函__数____
菜单
新课标 ·文科数学(广东专用)
4.反函数 指数函数y=ax(a>0且a≠1)与对数函数 __y_=__lo_g_a_x____(a 落实·固基>础 0且a≠1)互为反函数,它们的图象关于直线______y_=对x称.高考体验·明
|lg x| 落实·固基础-21x+6
0<x≤10,
x>10,
若 a、b、c 互不相等,且 f(a)=f(b高) 考体验·明
=f(c),则 abc 的取值范围是( )
A.(1,10)
B.(5,6)
C.(10,12)
D.(20,24)
【思路点拨】 (1)根据函数 y=ax2+bx 与 x
探究·提知能 轴的交点确定|ba|的范围.
【答案】 2
探究·提知能
课后作
菜单
新课标 ·文科数学(广东专用)
落实·固基础
(1)计算(1-log63)lo2g+64log62·log618; (2)计算(log32+log92)·(log43+log83).
高考体验·明
【思路点拨】 (1)根据乘法公式和对数运算性质进行计
高考数学一轮总复习 第六章 不等式、推理与证明 第35讲 不等式的性质与基本不等式课件 文 新人教A

第35讲 不等式的性质与基本不等式
【学习目标】 掌握不等式的性质和基本不等式a+2 b≥ ab (a,b≥0),会应用不等式的性质进行数或式的大 小比较,会利用不等式的性质研究不等关系,会 应用基本不等式求解简单的最值问题.
【基础检测】
1.设 a<b<0,则下列不等式中不能成立的是( B )
ab A.d>c
ab ab B.d<c C.c>d
ab D.c<d
【解析】因为 c<d<0,所以-c>-d>0,所以 -1d>-1c>0.又 a>b>0,所以-ad>-bc,所以da<bc, 故选 B.
【点评】(1)对于不等式的性质,关键是理解 和运用,要弄清每一条性质的条件和结论,注意 条件(特别是符号的限制条件)改变后,结论是否发 生变化;不等式的性质包括“单向性”和“双向 性”两种情况,“单向性”主要用于证明不等式, “双向性”主要用于解不等式,因为解不等式必 须是同解变形,因而要准确把握不等式的性质.
(2)传递性:a>b,b>c⇒__a_>_c__; (3)可加性:a>b⇔__a_+__c_>_b_+__c___;a>b,c>d ⇒___a_+__c_>_b_+___d__;
(4)可乘性:a>b,c>0⇒__a_c_>_b_c__;a>b,c<0⇒ ___a_c<__b_c_;a>b>0,c>d>0⇒__a_c_>_b_d__;
(2)已知下列四个条件:①b>0>a,②0>a>b, ③a>0>b,④a>b>0,能推出1a<b1成立的有( C )
2011届高考数学总复习直通车课件-数列

a n = Sn - Sn -1 = (2n 2 - 3n) - [2(n - 1) 2 - 3(n - 1)] = 4n - 5, …………......4’ 由于a 1也适合此等式,∴ a n = 4n - 5. …………………..6’
(2) a 1 = S1 = 3 + b, 当n≥2时,
a n = Sn -Sn -1 = (3n + b) - (3n -1 + b) = 2 × 3n -1. …………………………8’
数学直通车----数列 数学直通车----数列 ---知识体系
第一节 数列的概念与简单表示法
基础梳理
1. 数列的概念 按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项. 数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第1项 (通常也叫做首项),往后各项依次叫做这个数列的第2项,…,第n项,….数 列的一般形式可以写成a 1 , a 2 , a 3 , …, a n , …,其中 a n 是数列的第n项,我们把 上面的数列简记为 {a n }. 2. 数列的分类 (1)根据数列的项数可以将数列分为两类: 有穷数列——项数有限的数列; 无穷数列——项数无限的数列. (2)按照数列的每一项随序号变化的情况分类: 递增数列——从第2项起,每一项都大于它的前一项的数列; 递减数列——从第2项起,每一项都小于它的前一项的数列; 常数列——各项相等的数列; 摆动数列——从第2项起,有些项大于它的前一项,有些项小于它的前一项 的数列.
a n +1 = g(n)的递推公式求通项公式,只要g(n)可求积,便可 an
利用累乘的方法求通项. (3)已知首项a1 ,递推关系为 a n +1 = qan + b (n∈N+),求数列 {a n }的通项公 式的关键是将 a n +1 = qan + b 转化为 a n +1 + a = q ( an + a )的形式,其中a的值可 由待定系数法确定,即 qan + b = an +1 = qan + ( q − 1) a ⇒ a =
2011届高考数学第一轮复习课件之等差数列

随堂即时巩固
点击进入
课时活页训练
点击进入
9分
于是-171<d≤-113.
课堂互动讲练
又d∈Z,故d=-1.④ 将④代入①②得10<a1≤12.11分 又a1∈Z,故a1=11或a1=12. 所以,所有可能的数列{an}的通 项公式是an=12-n和an=13-n,n= 1,2,3,….12分
规律方法总结
1.等差数列的单调性 当d>0时,{an}是递增数列. 当d=0时,{an}是常数列. 当d<0时,{an}是递减数列.
故当p=0时,数列{an}是等差数列.
课堂互动讲练
(2)证明:∵an+1-an=2pn+p+q, ∴an+2-an+1=2p(n+1)+p+q. 而(an+2-an+1)-(an+1-an)=2p为 一个常数, ∴{an+1-an}是等差数列. 【误区警示】 在(2)中,要证明(an +2-an+1)-(an+1-an)是一个与n无关的 常数,而不是证an+1-an是一个常数.
则由 a5=5a3 知 a1=-32d. ∴SS95=95((aa11+ +42dd))=9.
答案:9
三基能力强化
5.(教材习题改编)已知{an}为等 差数列,a3+a8=22,a6=7,则a5= ________.
答案:15
课堂互动讲练
考点一 等差数列的判定
证明一个数列{an}是等差数列的 基本方法有两种:一是利用等差数列 的定义法,即证明an+1-an= d(n∈N*),二是利用等差中项法,即 证明:an+2+an=2an+1(n∈N*).在
(4)S2n-1=(2n-1)an. (5)若 n 为偶数,则 S 偶-S 奇=n2d. 若n为奇数,则S奇-S偶=a中(中 间项). (6)数列{c·an},{c+an},{pan+ qbn}也是等差数列,其中c、p、q均为 常数,{bn}是等差数列.
2011届高三数学一轮复习精品课件:一元二次不等式及其解法

课堂互动讲练
例1 解下列不等式: 解下列不等式: (1)2x2+4x+3<0; + ; (2)-3x2-2x+8≤0; - + ; (3)8x-1≥16x2. - 【思路点拨】 首先将二次项系 思路点拨】 数转化为正数, 数转化为正数,再看二次三项式能否 因式分解,若能, 因式分解,若能,则可得方程的两 大于号取两边,小于号取中间, 根,大于号取两边,小于号取中间, 若不能,则再看“”,利用求根公式 若不能,则再看 , 求解方程的根,而后写出解集. 求解方程的根,而后写出解集.
课堂互动讲练
法一: 【解】 法一: f(x)=(x-a)2+2-a2,此二次函 = - - 数图象的对称轴为x= , 数图象的对称轴为 =a, (1)当a∈(-∞,- 时,结合图 当 ∈ - ,-1)时 ,- 象知, ,+∞)上单调递增 象知,f(x)在[-1,+ 上单调递增, 在 - ,+ 上单调递增, f(x)min=f(-1)=2a+3, - = + , 要使f(x)≥a恒成立,只需 恒成立, 要使 恒成立 f(x)min≥a, , 即2a+3≥a,解得a≥-3. + ,解得 - 又a<-1,∴-3≤a<-1. - , -
第2课时 一元二次不等式及 其解法
基础知识梳理
1.一元二次不等式与相应的二次 . 函数及一元二次方程的关系如下表: 函数及一元二次方程的关系如下表:
基础知识梳理
判别式 =b2-4ac = 二次函数 y=ax2+bx+c = + (a>0)的图象 的图象 >0 =0 = <0
基础知识梳理
判别式 =b2-4ac = >0 =0 = <0 没有实 数根 {x|x∈R} ∈
课堂互动讲练
考点二 含有参数的一元二次不等式的解法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11. 在△ABC中,角A,B,C所对的边为a,b,c,
2 2 a b sin (A - B) 求证: c2 sin C
.
证明: 由余弦定理,得a2-b2=c2-2bccos A, 2 2 2 a b c - 2bcos A c 2bcos A 则 . 2 2 c c c 又由正弦定理,得 c 2bcos A sin C - 2sin Bcos A c sin C sin C -[sin(B A) sin(B - A)] sin C sin C -[sin C sin(B - A)] sin (A - B) , sin C sin C
个是正确的,不可能有第三种情况出现.
举一反三
3. 已知a,b,c是一组勾股数,且 a 2 b2 c2 . 求证:a,b,c不可能都是奇数.
2 2 2 证明: 假设a,b,c都是奇数,且a,b,c是一组勾股数,∴ a b c
又∵a,b,c都是奇数,∴a 2 , b2 , 2 也都是奇数, c ∴ a 2 b 2 是偶数, a 2 b2 c 2 ,
考点演练
10. 完成反证法证题的全过程. 已知:a1,a2,…,a7是1,2,…,7的一个排列. 求证:乘积p=(a1-1)(a2-2)…(a7-7)为偶数. 证明:假设p为奇数,则均为奇数.① 因奇数个奇数之和为奇数,故有 奇数= = =0. 但奇数≠0,这一矛盾说明p为偶数. 答案: ① a1 1, a2 1,...a7 7 ② a1 1 a2 1 ... a7 7 ③ a1 a2 ... a7 1 2 ... 7 ② ③
b d b
a,b,c,d∈R+且bc>ad, ∴
bc ad 0 b d b
d bd
ac a ,∴ bd b
又 c ac ∴
c b d d a c bc ad 0 d b d d b d
c ac d bd
题型三
反证法的应用
π π 2 ,b=y -2z+ , 2 3
【例3】(14分)若a,b,c均为实数,且a=x2-2y+
π . 6 求证:a,b,c中至少有一个大于0.
c=z2-2x+
分析 命题伴有“至少……”“不都……”“都不……”“没有……”“至
多……”等指示性语句,在用直接方法很难证明时,可以采用反 证法. 证明 假设a,b,c都不大于0,即a≤0,b≤0,c≤0,…………..2′
,∴a=-b,∴f(x+ 1 )为偶函
2
数……….12′
学后反思 (1)本题证明的前半部分用的是分析法,要证结
论成立,只需证明a=-b,后半部分用综合法证明了a=-b,这一 例是典型的分析综合法证明.(2)在用分析综合法证明时,
可先分析再综合,也可以先综合再分析.
举一反三
a1 =1,n≥2时,其前 4. (2009· 豫南七校联考)数列an 中, 1 2 n项的和 Sn 满足 Sn . an Sn 2 1 (1)求证:数列 是等差数列;
当n=1时,上式也成立. 1 1 1 ∴数列 构成以 1 为首项,公差为2的等差数列. S1 a1 Sn 1 1 1 1 (2)∵ b Sn
n
Sn
ቤተ መጻሕፍቲ ባይዱ
2n 1
2n 1
2n 1 2n 1
1
2 2n 1 2n 1
举一反三
2. 若sin α+cos α=1,求证:sin6α+cos6α=1.
证明: 由sin α+cos α=1 cos α=1 sin2α+cos2α+2sin α· cos α=0.① sin α· 欲证sin6α+cos6α=1, 只需证(sin2α+cos2α)(sin4α-sin2αcos2α+cos4α)=1, 即证sin4α+cos4α-sin2αcos2α=1, 即证(sin2α+cos2α)2-3sin2αcos2α=1,即证sin2αcos2α=0. 由①式知,上式成立,故原式成立.
∴a+b+c>0, ……………………………………………………10′ 这与a+b+c≤0矛盾. …………………………………………..12′
因此a,b,c中至少有一个大于0. ……………………………..14′
学后反思 反证法证题的实质是证明它的逆否命题成立.反证
法的主要依据是逻辑中的排中律,排中律的一般形式是:或者 是A,或者非A,即在同一讨论过程中,A和非A有一个且仅有一
与已知 a 2 b2 c2 相矛盾,
∴a,b,c不可能都是奇数.
题型四 利用分析综合法证明题目 【例4】(12分)设f(x)=a x 2 +bx+c(a≠0),若函数f(x+1)与 f(x)的图象关于y轴对称.求证:fx+12为偶函数. 分析 证明函数是偶函数,关键是证明函数关于y轴对称,即对 称轴是x=0. 证明 要证f(x+
a2 b2 sin (A - B) 2 c sin C
12. 已知a,b,c,d都是正数,且bc>ad,求证:a a c c
b bd d
解析: ∵ a c a a c b a b d bc ad
bd b
b d b
证明 I2=(a+b+c)2=a2+b2+c2+2(ab+bc+ac)=a2+b2+c2+2S, 故要证I2<4S,
只需证a2+b2+c2+2S<4S,
即a2+b2+c2<2S(这对于保证结论成立是充分必要的). 欲证上式,只需证a2+b2+c2-2ab-2bc-2ca<0,
即证(a2-ab-ac)+(b2-bc-ba)+(c2-ca-cb)<0,
显的事实矛盾或自相矛盾;(推导矛盾)
(3) 结论 :因为推理正确,所以产生矛盾的原因在于“反 设”的谬误.既然结论的反面不成立,从而肯定了结论成立.(结
论成立)
典例分析
题型一 综合法的应用 【例1】已知a>b>0,求证: a b a b . 分析 从已知条件和已知不等式入手,推出所要证明的结论. 证明 ∵a>b>0,∴b< ab,即2b<2 ab ,进而-2 ab<-2b,
各种性质,逐层推进,从而由已知逐渐引出结论.
举一反三
1 1 1 1. 设a>0,b>0,a+b=1,求证: 8 . a b ab 1 1 1 ab ab ab b a ab 1 1 证明:∵a+b=1, a b ab a b ab a b ab
则a+b+c≤0, …………………………………………………...4′ π π π 而a+b+c=x2-2y+ +y2-2z+ +z2-2x+ =(x-1)2+(y-1)2+(z-1)2+ 2 3 6 π-3. …………………………………………………………….6′ ∵π-3>0,且(x-1)2+(y-1)2+(z-1)2≥0,…………………..8′
(2)设 bn S n
Sn
2n 1
1 ,数列 bn 的前n项和为Tn ,求证: Tn
2
1 2 解析: (1)将 an Sn Sn1(n≥2)代入 Sn an Sn 2 Sn 得 Sn 2Sn 1 1 1 1 两边取倒数得 2 (n≥2), Sn Sn1 1 1 S ∴ =2n-1(n≥2),即 n (n≥2).
(2)分析法是 “执果索因” ,它是从要证的结论出发,倒着分 析,逐渐地靠近已知. 3. 间接证明 用反证法证明问题的一般步骤: (1) 反设 :假定所要证的结论不成立,而设结论的反面
(否定命题)成立;(否定结论)
(2) 归谬 :将“反设”作为条件,由此出发经过正确的推 理,导出矛盾——与已知条件、已知的公理、定义、定理及明
∴a- 2 ab+b<a+b-2b, 即0<( a b )2<a-b,
∴
a b ab
学后反思 综合法从正确地选择已知真实的命题出发,依次推
出一系列的真命题,最后达到我们所要证明的结论.在用综合法
证明命题时,必须首先找到正确的出发点,也就是能想到从哪 里起步,我们一般地处理方法是广泛地联想已知条件所具备的
第二节 直接证明与间接证明
基础梳理
1. 证明
(1)证明分为 直接证明 与 间接证明 .直接证明包
括 综合法 、分析法 等;间接证明主要是 反证法 . (2)综合法:一般地, 利用 已知条件和某些数学定义、定理、公理等 ,经过一系列的 推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综 合法. (3)分析法:一般地,从要证明的结论 出发,逐步寻求
使 它成立的充分条件 ,直至最后,把要证明的结论归结 为 判定一个明显成立的条件 (已知条件、定义、定理、公理
等),这种证明的方法叫做分析法.
(4)反证法:一般地,假设 原命题不成立 (即在原命题的条
件下,结论不成立),经过 正确的推理 ,最后得出矛盾,因此 说明 假设错误 ,从而 证明了原命题成立 ,这样的证明方法叫
1
∴ Tn 1 ... 2 3 3 5 5 7 2n 1 2n 1 1 1 1 1 2 2n 1 2
1
1 1 1 1 1
易错警示
【例】用反证法证明:若a>b>0,则 a b 错解 假设 a 不大于 b ,即 a b 因为a>0,b>0,所以 a b 即a<b,这与已知矛盾. 所以假设不成立,原命题正确.