最新人教版初中初三九年级数学上册新人教版22.2二次函数与一元二次方程 (1)

合集下载

新人教版九年级数学上册22.2 二次函数与一元二次方程1

新人教版九年级数学上册22.2  二次函数与一元二次方程1

22.2二次函数与一元二次方程学习目标:1.探索二次函数与一元二次方程、一元二次不等式之间的关系.2.掌握一元二次方程(组)的图象解法.重点、难点1.重点:探索二次函数与一元二次方程、一元二次不等式之间的关系.2.难点:掌握一元二次方程(组)的图象解法.导学过程:阅读教材P16 — 19 , 完成课前预习【课前预习】1:准备知识(1) 一元二次方程根的情况:(2)一次函数与一元一次方程的关系:2:探究1以40米/秒的速度将小球沿与地面成300角的方向击出时,球的飞行路线将是一条抛物线。

如果不考虑空气阻力,球的飞行高度h 米与飞行时间t 秒之间具有关系2520t t h -=。

考虑以下问题: (1) 球的飞行高度能否达到15米?如能,需要多少飞行时间?(2) 球的飞行高度能否达到20米?如能,需要多少飞行时间?(3) 球的飞行高度能否达到20.5米?为什么?(4) 球从飞出到落地需要用多少时间?探究2给出三个二次函数:(1)232+-=x x y ;(2)12+-=x x y ;(3)122+-=x x y .它们的图象分别为观察图象与x 轴的交点个数,分别是 个、 个、 个.你知道图象与x 轴的交点个数与什么有关吗?另外,能否利用二次函数c bx ax y ++=2的图象寻找方程)0(02≠=++a c bx ax ,不等式)0(02≠>++a c bx ax 或)0(02≠<++a c bx ax 的解?3:结论一般的,从二次函数c bx ax y ++=2的图象可知,(1) 如果抛物线c bx ax y ++=2与x 轴有公共点,公共点的横坐标是x 0,那么当x=时,函数的值是0,因此x= 就是方程)0(02≠=++a c bx ax 的一个根。

(2) 二次函数的图象与x 轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点。

这对应着一元二次方程根的三种情况: 实数根,有 的实数根,有 的实数根。

人教版九年级数学上册22.2二次函数与一元二次方程(教案)

人教版九年级数学上册22.2二次函数与一元二次方程(教案)
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次函数与一元二次方程的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这两个知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
5.培养学生的合作意识和团队精神,通过小组讨论、合作完成抛物线与坐标轴围成图形面积等问题的探讨,增强学生之间的沟通与协作。
三、教学难点与重点
1.教学重点
(1)二次函数的定义及其图像性质:理解并掌握二次函数的基本形式,明确a、b、c的取值对二次函数图像的影响,特别是a的正负决定图像开口方向,顶点坐标的求法等。
举例:y=x²+2x+1与y=-2x²+3x+1的图像区别及顶点坐标的求解。
(2)一元二次方程的解法:熟练掌握因式分解法、配方法、求根公式法等解一元二次方程的方法,并能够根据方程特点选择合适解法。
举例:解方程x²-5x+6=0,通过因式分解法求解;解方程x²-4x+3=0,通过配方法求解。
(3)二次函数与一元二次方程的关系:理解二次函数图像与x轴交点坐标即为相应一元二次方程的解,并能应用于实际问题。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《二次函数与一元二次方程》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过抛物线形状的情况?”(如抛掷物体时的轨迹)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索二次函数与一元二次方程的奥秘。

22-2二次函数与一元二次方程(课件)-2023-2024学年九年级数学上册同步精品课堂(人教版)

22-2二次函数与一元二次方程(课件)-2023-2024学年九年级数学上册同步精品课堂(人教版)

B.m=0.25n
C.m=0.5n2
D.m=0.25n2
2.下列抛物线中,与x轴有两个交点的是( D )
A.y=3x2-5x+3
B.y=4x2-12x+9
C.y=x2-2x+3
D.y=2x2+3x-4
拓展训练
人教版数学九年级上册
3.已知关于x的一元二次方程x2-(m-3)x-m=0. (1)试判断该方程根的情况. (2)若抛物线y=x2-(m-3)x-m与x轴交于A(x1,0),B(x 2,0)两点,则A,B两点间的距离是否存在最大或最小值? 若存在,求出这个值;若不存在,请说明理由(友情提示: AB=|x2-x1|).
人教版数学九年级上册
人教版数学九年级上册
第22.2 二次函数与一元二次方程
学习目标
人教版数学九年级上册
1.理解二次函数与一元二次方程(不等式)之间的联系. 2.能运用二次函数及性质确定方程的解或不等式的解集. 3.了解用图象法求一元二次方程的近似根.
复习引入
人教版数学九年级上册
1.二次函数的一般式:y_=_a_x_2_+_b_x_+_c_(__a_≠__0_)_, __x__是自变量,__y__是__x__的函数.
互动新授
人教版数学九年级上册
(3)球的飞行高度能否达到20.5m?如果能,需要多少飞行时间? 解:当h=20.5时,20t-5t2=20.5 整理得,t2-4t+4.1=0 因为(-4)2-4×4.1=-0.4<0,所以方程无实数根. 这就是说,小球的飞行高度达不到20.5m.
互动新授
人教版数学九年级上册
分析:由于小球的飞行高度h与飞行时间t有函数关系 h=20t-5t2,所以可以将问题中h的值代入函数解析式,得到关 于t的一元二次方程. 如果方程有合乎实际的解,则说明小球的 飞行高度可以达到问题中h的值;否则,说明小球的飞行高度不 能达到问题中h的值.

九年级数学人教版(上册)22.2 二次函数与一元二次方程

九年级数学人教版(上册)22.2 二次函数与一元二次方程

知识点 2 抛物线与 x 轴的公共点个数与对应的一元二次方程 的根的判别式之间的关系
3.抛物线 y=-3x2-x+4 与 x 轴的公共点个数是 2 .
4.抛物线 y=x2+4x+5-m 与 x 轴有两个不同的公共点,则 m
的取值范围是( D )
A.m<-1
B.0<m≤1
C.m<1
D.m>1
【变式 1】变式点:两个不同的公共点→只有一个公共点 (2021·成都)在平面直角坐标系 xOy 中,若抛物线 y=x2+2x+k 与 x 轴只有一个公共点,则 k= 1 .
易错点 2 漏掉函数是一次函数的情况
9.若函数 y=(m-1)x2-6x+32m 的图象与 x 轴有且只有一个公
共点,则 m 的值为(C )
A.-2 或 3
B.-2 或-3
C.1 或-2 或 3
D.1 或-2 或-3
10.二次函数 y=ax2+bx 的图象如图所示,若一元二次方程 ax2
+bx+m=0 有实数根,则 m 的最大值为( A )
【变式 2】变式点:两个不同的公共点→没有公共点 若二次函数 y=x2+x+c 的图象与 x 轴没有公共点,则 c 的取值 范围是 c>14 .
【变式 3】变式点:两个不同的公共点→有公共点 已知二次函数 y=x2-x+14m-1 的图象与 x 轴有公共点,则 m 的取值范围是 m≤5 .
【变式 4】变式点:二次项系数为数字→二次项系数为字母 若抛物线 y=ax2+3x-1 与 x 轴有两个不同的交点,则 a 的取值 范围是 a>-且a≠0 .
A.3
B.-3
3 C.2
D.-32
11.(2021·阿坝州)二次函数 y=ax2+bx+c 的图象如图所示,下 列说法错误的是( D )

人教版数学九年级上册教学设计22.2《二次函数与一元二次方程》

人教版数学九年级上册教学设计22.2《二次函数与一元二次方程》

人教版数学九年级上册教学设计22.2《二次函数与一元二次方程》一. 教材分析人教版数学九年级上册第22.2节《二次函数与一元二次方程》是本册教材的重要内容,主要介绍了二次函数与一元二次方程之间的关系。

通过本节课的学习,学生能够理解二次函数的图像与一元二次方程的解法,从而更好地解决实际问题。

二. 学情分析九年级的学生已经学习了函数和方程的基础知识,对于函数的概念、图像和性质有一定的了解。

但是,对于二次函数与一元二次方程之间的联系,以及如何运用二次函数的性质解决实际问题,学生可能还存在一定的困难。

因此,在教学过程中,需要注重引导学生理解二次函数与一元二次方程之间的关系,并通过实例演示如何运用二次函数解决实际问题。

三. 教学目标1.理解二次函数的图像与一元二次方程的解法之间的关系。

2.学会运用二次函数的性质解决实际问题。

3.提高学生的数学思维能力和解决问题的能力。

四. 教学重难点1.二次函数的图像与一元二次方程的解法之间的关系。

2.如何运用二次函数的性质解决实际问题。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过探索、发现、总结二次函数与一元二次方程之间的关系。

2.运用多媒体课件辅助教学,直观展示二次函数的图像和一元二次方程的解法,帮助学生更好地理解知识点。

3.结合实际例子,让学生亲自动手操作,运用二次函数解决实际问题。

4.采用小组讨论、合作交流的方式,培养学生的团队协作能力和沟通能力。

六. 教学准备1.准备相关的多媒体课件和教学素材。

2.准备一些实际问题,用于让学生运用二次函数解决。

3.准备黑板、粉笔等教学工具。

七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何运用数学知识解决实际问题。

例如,假设一个物体从静止开始做匀加速直线运动,已知初速度为0,加速度为2m/s²,求物体运动5秒后的位移。

2.呈现(10分钟)呈现二次函数y=ax²+bx+c的图像,同时呈现相应的一元二次方程ax²+bx+c=0的解法。

人教版初中数学九年级上册精品教学课件 第22章 二次函数 22.2 二次函数与一元二次方程

人教版初中数学九年级上册精品教学课件 第22章 二次函数 22.2 二次函数与一元二次方程

2
3
4
5
6
7
7.利用二次函数的图象求方程1
1 2
x +x+2=0的近似解(精确到0.1).
2
解: 函数 y=-2x2+x+2 的图象如图.
1 2
设-2x +x+2=0
的两根分别为 x1,x2,且 x1<x2,观察图象可知
-2<x1<-1,3<x2<4.
1
因为当 x=-1 时,y=-2×(-1)2-1+2=0.5>0,
的交点个数是3.故选A.
A
解析
关闭
答案
快乐预习感知
1
2
3
4
5
6
7
3.已知二次函数y=x2-2ax+a2-2a-4(a为常数)的图象与x轴有交点,且
当x>3时,y随x的增大而增大,则a的取值范围是(
)
A.a≥-2
B.a<3
C.-2≤a<3
D.-2≤a≤3
关闭
D
答案
快乐预习感知
1
2
3
4
5
6
7
4.(2023·浙江宁波中考)已知二次函数y=ax2-(3a+1)x+3(a≠0),下列说
1
时,y=-2×(-1.5)2-1.5+2=-0.625<0,
当 x=-1.5
所以-1.5<x1<-1.
因为当 x=3
1 2
时,y=-2×3 +3+2=0.5>0,当
1
时,y=- ×3.52+3.5+2=-0.625<0,

数学人教版九年级上册22.2二次函数与一元二次方程

数学人教版九年级上册22.2二次函数与一元二次方程

22.2 用函数观点看一元二次方程教学目标1. 知识与技能目标:( 1 )理解二次函数y=ax² + bx + c 与x 轴有交点,则一元二次方程ax² + bx + c = 0 有实数根,若与x 轴无交点,则方程无实数根;( 2 )知道抛物线与x 轴三种位置关系,对应着一元二次方程的根的三种情况;( 3 )理解函数图象交点问题与对应方程间的相互转化;( 4 )会利用二次函数的图象求一元二次方程的近似解。

2. 过程与方法:( 1 )通过对一元二次方程根的不同情况下,学生历经从函数解析式及函数图象角度探索与一元二次方程之间的关系,渗透了数形结合及转化的思想方法。

通过这节课的学习,展现知识的形成过程,体验探究,类比等数学学习基本方法。

( 2 )能根据图象求一元二次方程的根。

也能通过一元二次方程根的情况对其对应的二次函数的图象与x 轴的交点情况作出判断。

3. 情感态度与价值观目标由实际问题引入,激发学生应用数学的意识,通过师生交流、生生交流,学生养成了乐于探究、勇于探索的良好学习习惯,同时学生从中也感受了合作成功带来的喜悦。

教学重点和难点教学重点:如何让学生理解一元二次方程与二次函数之间的关系。

教学难点:让学生理解函数图象交点问题与对应方程间的相互转化及理解用图形法能求方程解的合理性。

教学过程一. 思考观察,启动思维问题1 :(1) 如何求一次函数y=x-3 的图像与x轴的交点坐标老师适时提问:一元一次方程的根的几何含义是什么呢?引导学生回顾用函数观点看一元一次方程内容。

( 2 )如何求二次函数y=x2-2x-3 的图像与x 轴的交点坐标呢?( 3 )我们知道,一元一次方程的根就是对应一次函数的图象与x 轴交点的横坐标,反之也成立。

通过这个例题的解答我们能得到什么信息?二. 小组合作,类比探究问题2 :下列二次函数的图象与x 轴有交点吗? 若有, 请求出交点坐标。

当x 取公共点的横坐标时,函数值是多少?由此,你能得出相应的一元二次方程的根吗?三. 归纳总结,得出结论问题3 :你能得到一元二次方程的根和二次函数的图象x轴交点的横坐标与的关系吗?请完成下表。

人教版九年级上册 22.2 二次函数和一元二次方程知识点及经典例题

人教版九年级上册 22.2 二次函数和一元二次方程知识点及经典例题

二次函数y=ax 2+bx +c 与ax 2+bx +c =0(a ≠0)的关系1、 一元二次方程ax 2+bx +c =0(a ≠0)的根是二次函数y=ax 2+bx +c (a ≠0)与x 轴交点的横坐标,反之y=ax 2+bx +c (a ≠0)与x 轴交点的横坐标是一元二次方程ax 2+bx +c =0(a ≠0)的根;2、 一元二次方程ax 2+bx +c =0(a ≠0)根情况的判别即二次函数y=ax 2+bx +c (a ≠0)与x 轴交点个数情况:①判别式∆②直接看方程③平移 例1:抛物线y=ax 2+bx +c 图像如下, 则 ① ax 2+bx +c =0的根有 ( )个 ②ax 2+bx +c+3=0的根有( )个 ③ax 2+bx +c -4=0的根有( )个x 3-≥a例2:若关于x 的不等式组 无解,则二次函数y=(a-2)x 2-x +41与X x a 515-≤ 轴交点有( )个; 例3:一元二次方程22717)83(2-=-x y 与X 轴的交点个数为( )个;例4:二次函数y=ax 2+bx +c (a ≠0)的图像如图所示,根据图像解答下列问题:(1) 写出方程ax 2+bx +c =0的两个根; (2) 写出不等式ax 2+bx +c >0的解集;(3) 写出y 随x 的增大而减小的自变量x 的取值范值;(4) 若方程ax 2+bx +c =k 有两个不相等的实数根,求k 的取什范围。

3、 韦达定理在二次函数y=ax2+bx +c (a ≠0)中的应用(a ca b x x x x =-=+2121,)① 已知其中一个交点,求另一个交点: 例5:若抛物线m x y x+-=22与X 轴的一个交点是(-2,0)则另一个交点是( ); ② 求两交点A,B 线段的长度x x x x AB 212421)(-=+例6:若抛物线32-+=ax y x与X 轴的交点为A ,B ,且AB 的长度为10,求a③ 利用韦达定理求面积: 例7:抛物线m x y x++=-22与X 轴的一个交点是A(3,0),另一个交点是B ,且与y 轴交于点C , (1)求m 的值;(2)求点B 的坐标;(3)该二次函数图象上有一点D (x ,y )(其中x>0,y>0),使s sABC ABD∆∆=,求点D 的坐标。

22.2二次函数与一元二次方程(1和2)(最新人教版数学九年级上册)

22.2二次函数与一元二次方程(1和2)(最新人教版数学九年级上册)
(1)球的飞行高度能否达到 15 m? 若能,需要多少时间?
解:(1)当 h = 15 时, 20 t – 5 t 2 = 15 t 2 - 4 t +3 = 0
t 1 = 1,t 2 = 3
当球飞行 1s 和 3s 时,它的高度为 15m .
15 m
1s
3s
以 40 m /s的速度将小球沿与地面成 30°角的方向击出时, 球的飞行路线是一条抛物线,如果不考虑空气阻力,球的 飞行高度 h (单位:m)与飞行时间 t (单位:s)之间具有关系:h= 20 t – 5 t 2
复习 一元二次方程根的情况与b²-4ac的关系
我们知道:代数式b2-4ac对于方程的根起着关键的作用.
当b2 4ac 0时,方程ax2 bx c 0a 0有两个不相等的实数根
x1,2 b
b2 4ac .
2a
当b2 4ac 0时,方程ax2 bx c 0a 0有两个相等的实数根:
考虑下列问题:(4)球从飞出到落地要用多少时间?
0m
0s
4s
(4)当 h = 0 时, 20 t – 5 t 2 = 0 t2-4t =0 t 1 = 0,t 2 = 4
当球飞行 0s 和 4s 时,它的高度为 0m ,即 0s时,球从地面飞出,4s 时球落回地面。
为一个常数 (定值)
从上面发现,二次函数y=ax2+bx+c何时为 一元二次方程?
考虑下列问题:(3)球的飞行高度能否达到 20.5 m?为什么?
(3)当 h = 20.5 时,20 t – 5 t 2 = 20.5 t 2 - 4 t +4.1 = 0 因为(-4)2-4×4.1 < 0 ,所以方程无实根。 球的飞行高度达不到 20.5 m.

最新人教版九年级数学上册《二次函数与一元二次方程》精品教案

最新人教版九年级数学上册《二次函数与一元二次方程》精品教案

22.2 二次函数与一元二次方程1.通过探索,理解二次函数与一元二次方程之间的联系.2.能运用二次函数及其图象确定方程和不等式的解或解集.3.根据函数图象与x轴的交点情况确定未知字母的值或取值范围.一、情境导入如图,是二次函数y=ax2+bx+c图象的一部分,你能通过观察图象得到一元二次方程ax2+bx+c=0的解集吗?不等式ax2+bx+c<0的解集呢?二、合作探究探究点一:二次函数与一元二次方程【类型一】二次函数图象与x轴交点情况判断下列函数的图象与x只有一个交点的是( )A.y=x2+2x-3 B.y=x2+2x+3C.y=x2-2x+3 D.y=x2-2x+1解析:选项A中b2-4ac=22-4×1×(-3)=16>0,选项B中b2-4ac=22-4×1×3=-8<0,选项C中b2-4ac=(-2)2-4×1×3=-8<0,选项D中b2-4ac=(-2)2-4×1×1=0,所以选项D的函数图象与x轴只有一个交点,故选D.【类型二】利用二次函数图象与x轴交点坐标确定抛物线的对称轴如图,对称轴平行于y轴的抛物线与x轴交于(1,0),(3,0)两点,则它的对称轴为________.解析:∵点(1,0)与(3,0)是一对对称点,其对称中心是(2,0),∴对称轴的方程是x =2.方法总结:解答二次函数问题,若能利用抛物线的对称性,则可以简化计算过程.【类型三】利用函数图象与x轴交点情况确定字母取值范围若函数y=mx2+(m+2)x+12m+1的图象与x轴只有一个交点,那么m的值为( )A.0 B.0或2C.2或-2 D.0,2或-2解析:若m≠0,二次函数与x轴只有一个交点,则可根据一元二次方程的根的判别式为零来求解;若m=0,原函数是一次函数,图象与x轴也有一个交点.由(m+2)2-4m(12m+1)=0,解得m=2或-2,当m=0时原函数是一次函数,图象与x轴有一个交点,所以当m=0,2或-2时,图象与x轴只有一个交点.方法总结:二次函数y=ax2+bx+c,当b2-4ac>0时,图象与x轴有两个交点;当b2-4ac=0时,图象与x轴有一个交点;当b2-4ac<0时,图象与x轴没有交点.【类型四】利用抛物线与x轴交点坐标确定一元二次方程的解小兰画了一个函数y=x2+ax+b的图象如图,则关于x的方程x2+ax+b=0的解是( )A.无解B.x=1C.x=-4D.x=-1或x=4解析:∵二次函数y=x2+ax+b的图象与x轴交于(-1,0)和(4,0),即当x=-1或4时,x2+ax+b=0,∴关于x的方程x2+ax+b=0的解为x1=-1,x2=4,故选D.方法总结:本题容易出错的地方是不知道二次函数的图象与一元二次方程的解的关系导致无法求解.探究点二:二次函数y=ax2+bx+c中的不等关系【类型一】利用抛物线解一元二次不等式抛物线y=ax2+bx+c(a<0)如图所示,则关于x的不等式ax2+bx+c>0的解集是( )A.x<2B.x>-3C.-3<x<1D.x<-3或x>1解析:观察图象,可知当-3<x<1时,抛物线在x轴上方,此时y>0,即ax2+bx+c >0,∴关于x的不等式ax2+bx+c>0的解集是-3<x<1.故选C.方法总结:抛物线y=ax2+bx+c在x轴上方部分的点的纵坐标都为正,所对应的x的所有值就是一元二次不等式ax2+bx+c>0的解集;在x轴下方部分的点的纵坐标均为负,所对应的x的所有值就是一元二次不等式ax2+bx+c<0的解集.【类型二】确定抛物线相应位置的自变量的取值范围二次函数y=ax2+bx+c(a≠0)的图象如图所示,则函数值y>0时,x的取值范围是( )A.x<-1B.x>3C.-1<x<3D.x<-1或x>3解析:根据图象可知抛物线与x轴的一个交点为(-1,0)且其对称轴为x=1,则抛物线与x轴的另一个交点为(3,0).当y>0时,函数的图象在x轴的上方,由左边一段图象可知x<-1,由右边一段图象可知x>3.因此,x<-1或x>3.故选D.方法总结:利用数形结合思想来求解,抛物线与x轴的交点坐标是解题的关键.三、板书设计教学过程中,强调学生自主探索和合作交流,通过观察二次函数与x轴的交点个数,讨论一元二次方程的根的情况.体会知识间的相互转化和相互联系.教师寄语同学们,生活让人快乐,学习让人更快乐。

2020九年级数学上册 第二十二章 二次函数 22.2 二次函数与一元二次方程教案 (新版)新人教版

2020九年级数学上册 第二十二章 二次函数 22.2 二次函数与一元二次方程教案 (新版)新人教版

二次函数与一元二次方程课题:22.2 二次函数与一元二次方程.课时 1 课时教学设计课标要求从具体函数的图象中认识二次函数的基本性质,了解二次函数与二次方程的相互关系.教材及学情分析1、教材分析:本节主要内容是用函数的观念看一元二次方程,探讨二次函数与一元二次方程的关系。

教材从一次函数与一元一次方程的关系入手,通过类比引出二次函数与一元二次方程之间的关系问题,并结合一个具体的实例讨论了一元二次方程的实根与二次函数图象之间的联系。

这一节是反映函数与方程这两个重要数学概念之间的联系的内容。

2、学情分析知识掌握上,学生对二次函数的图象及其性质和一元二次方程的解的情况都有所了解,特别的,八年级时学生已经了解到了一次函数和一元一次方程的解之间的关系,因而,对于本节所要学习的二次函数与一元二次方程之间的关系,利用类比的方法让学生进行交流合作学习应该不是难题;学生学习本节课的知识障碍就是建立二次函数与一元二次方程之间的联系,渗透数形结合的思想。

课时教学目标1. 从具体函数的图象中认识二次函数的基本性质,了解二次函数与二次方程的相互关系.2. 探索二次函数的变化规律,掌握函数的最大值(或最小值)及函数的增减性的概念.能够利用二次函数的图象求一元二次方程的近似根.3. 通过具体实例,让学生经历概念的形成过程,使学生体会到函数能够反映实际事物的变化规律,体验数学来源于生活,服务于生活的辩证观点.重点二次函数的最大值,最小值及增减性的理解和求法.难点二次函数的性质的应用.教法学法指导启发法归纳法练习法教具准备课件教学过程提要二次方程ax+bx+c=0的关系角的方向击出时,小球的飞行路线将是一条抛物线.如果不考虑空气阻力,小球的飞行高度h(单位:(3)小球的飞行高度能否达到20.5 m?为什函数解析式,得到关于t的一元二次方程.如果方程数形结合,的横坐标时,函数值是多少?由此,你能得出相应的3、判断抛物线与(1)抛物线y=x+x-2与x轴有两个公共点,小结从二次函数y=ax2+bx+c的图象可以得出如下结论:(1)如果抛物线y=ax2+bx+c与x轴有公共点,公共点的横坐标是x0,那么当x =x0时,函数值是0,因此x=x0是方程ax2+bx+c=0的一个根.(2)二次函数y=ax2+bx+c的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点.这对应着一元二次方程ax2+bx+c=0的根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根.板书设计22.2 二次函数与一元二次方程.一、丛数的角度看:求一元二次方程ax2+bx+c=0的根,已知二次函数y=ax2+bx+c的值为0时,求自变量x的值。

人教版九年级数学上册22.2二次函数与一元二次方程课件(共40张用WPS打开)

人教版九年级数学上册22.2二次函数与一元二次方程课件(共40张用WPS打开)
平距离是多少?
(3)铅球离地面的高度能否达
到3m?为什么?
(1)当铅球离地面的高度为2.1m时,它离初始
位置的水平距离是多少?
解: 由抛物线的表达式得

解得
x2 6
8
2.1 - x
10 10
5
x2 6 x 5 0
x1 =1,x2 =5.
即当铅球离地面的高度为2.1m时,它离初始位置的
h
15
O
1
3
t
解:15=20t-5t2,
t2-4t+3=0,
t1=1,t2=3.
∴当球飞行1s或3s时,它的高度为15m.
(2)球的飞行高度能否到达20m?如果能,需
要多少飞行时间?
解: 20=20t-5t2,
t2-4t+4=0,
t1=t2=2.
当球飞行2秒时,它
的高度为20米.
h=20t-5t2
有两个重合的交点
有两个相等的
实数根
b2-4ac = 0
没有实数根
b2-4ac < 0
没有交点
考点探究2 利用二次函数与一元二次方程的根的关系确定字母的值(范围)
例2 已知关于x的二次函数y=mx2-(m+2)x+2(m≠0).
(1)求证:此抛物线与x轴总有交点;
(2)若此抛物线与x轴总有两个交点,且它们的横坐标都是整
y
△<0
△ = b2 – 4ac
△=0
a>0
△>0
o
那么a<0时呢?
x
y = x2-6x+9
y = x2-x+1
视察图象,完成下表:
y = x2+x-2
1
抛物线与x轴公

人教版九年级上第二十二章 二次函数 22.2 二次函数一元二次方程

人教版九年级上第二十二章 二次函数 22.2 二次函数一元二次方程

22.2 二次函数与一元二次方程一、教学目标(一)学习目标1.了解一元二次方程的根的几何意义,知道抛物线与x 轴的三种位置关系对应着一元二次方程的根的三种情况.2. 会利用二次函数的图象求一元二次方程的近似解. (二)学习重点:1. 二次函数与一元二次方程之间的联系.2. 用图象法求一元二次方程的近似根并且估算.(三)学习难点:1. 理解一元二次方程的根在二次函数中的意义.2.用函数观点看一元二次方程,二次函数与一元二次方程的区别与联系. 3. 体会数形结合解决问题的思想方法.二、教学设计(一)课前设计 1. 预习任务: 二次函数2yax bx c 的图象与x 轴的交点有三种情况:①有两个交点,②有一个交点,③没有交点.这对应着一元二次方程20ax bx c 的根的三种情况:①有两个不相等的实数根,②有两个相等的实数根,③没有实数根(二)课堂设计1. 知识回顾(1)二次函数的定义:形如20yax bx c a b c a(、、为常数,)的函数,叫做二次函数.(2)二次函数的图象和性质:二次函数2y ax bx c 的图象是一条抛物线,当0a 时,当2bx a时,y 随着x 的增大而减小,当2bx a时,y 随着x 的增大而增大; 当0a 时,当2bxa时,y 随着x 的增大而增大,当2bx a时,y 随着x 的增大而减小. (3)一元二次方程的一般形式:02=++c bx ax (a 、b 、c 为常数,a ≠0)(4)一元二次方程20ax bx c 的根的情况怎样判定:用根的判别式:ac b d 42-= ①当d >0时,方程20ax bx c 有两个不相等的实数根; ②当d=0时,方程20ax bx c 有两个相等的实数根; ③当d<0时,方程20ax bx c 没有实数根. 2. 问题探究探究一 二次函数与一元二次方程之间的联系 重点、难点知识★▲ ●活动① 通过实际问题,研究二次函数与一元二次方程之间的联系问题 如图,以40m s 的速度将小球沿与地面成30角的方向击出时,小球的飞行路线将是一条抛物线.如果不考虑空气阻力,小球的飞行高度h (单位: m )与飞行时间t (单位: s )之间具有函数关系 师问:考虑以下问题:(1)小球的飞行高度能否达到15m ?如果能,需要多少飞行时间? (2)小球的飞行高度能否达到20m ?如果能,需要多少飞行时间? (3)小球的飞行高度能否达到20.5m ?为什么? (4)小球从飞出到落地要用多少时间? 一般地,我们可以利用二次函数2y ax bx c 深入讨论一元二次方程20ax bx c . 师问:二次函数223yx x ,221yx x ,222yx x 的图象如下图所示,每个图象与x 轴有几个交点?223yx x 的图象 221yx x 的图象 222y x x 的图象师问:一元二次方程2230x x ,2210x x 有几个实数根?用判别式验证一下. 一元二次方程2220x x 有实数根吗?.师问:二次函数2yax bx c 的图象与x 轴交点的坐标和一元二次方程20ax bx c 的根有什么关系? 总结:一般地,从二次函数2y ax bx c 的图象可得如下结论:(1)抛物线2yax bx c 与x 轴的交点有三种情况:有两个交点,有一个交点,没有交点.这对应着一元二次方程20ax bx c 的根的三种情况:有两个不相等的实数根,有两个相等的实数根,没有实数根.反之亦然.(即:由一元二次方程的根的情况,也可以确定相应的二次函数的图象与x 轴的位置关系) (2)如果抛物线2y ax bx c 与x 轴有交点,交点的横坐标是0x ,那么当0xx 时,函数值是0,因此0xx 是一元二次方程20ax bx c 的一个根.由上面的结论,我们可以利用二次函数的图象求一元二次方程的根.由于作图或观察可能存在误差,由图象求得的根,一般是近似的. 探究二 利用二次函数的图象求一元二次方程的根 ●活动② 通过例子,解决问题例 利用函数图象求方程2220x x 的实数根(结果保留小数点后一位).解:画出函数222yx x 的图象(图22.2-3),它与x 轴的公共点的横坐标大约是7.0-、2.7,所以方程2220x x 的实数根为7.01-≈x ,7.22≈x(图22.2-3)我们还可以通过不断缩小根所在的范围估计一元二次方程的根. 观察函数222yx x 的图象,可以发现,当自变量为2时函数值小于0(点(2,2)在x 轴的下方),当自变量是3时函数值大于0,(点(3,1)在x 轴的上方).所以抛物线222yx x 在23x 这一段经过x 轴.(抛物线没有间断点,因而抛物线从x 轴下方通过x 轴上方时一定经过x 轴.)也就是说,当自变量取2,3之间的某个值时,函数值为0,即方程2220x x 在23,之间有根. 我们可以通过取平均数的方法不断缩小根所在的范围.(每次可以将根所在的范围缩小到原来的一半.)例如,取2,3的平均数2.5,用计算器算得自变量为2.5时的函数值为0.75,与自变量为3时的函数值异号,所以这个根在2.5,3之间.再取2.5,3的平均数2.75,用计算器算得自变量为2.75时的函数值为0,0625,与自变量为2.5时的函数值异号,所以这个根在2.5,2.75之间.重复上述步骤,我们逐步得到:这个根在2.5625,2.75之间,在2.6875,2.75之间……可以看到:根所在的范围越来越小,根所在的范围的两端的值越来越接近根的值,因而可以作为根的近似值.例如,当要求根的近似值与根的准确值的差的绝对值小于0.1时,由于2.6875 2.750.06250.1,我们可以将2.6875作为根的近似值.你能用这种方法得出方程2220x x 的另一个根的近似值吗(要求根的近似值与根的准确值的差的绝对值小于0.1)?这种求根的近似值的方法也适用于更高的一元方程.【总结】利用二次函数的图象求一元二次方程的根的一般步骤: (1) 画出函数的图象(可用计算机画);(2)根据图象确定抛物线与x 轴的交点分别在哪两个相邻的整数之间; 可以通过取平均数的方法不断缩小根所在的范围. (可以利用计算器计算). (3)确定方程的近似根.探究三 例题讲解 学以致用 ●活动① 基础性例题例1:抢答:判断下列抛物线与x 轴的交点个数. (1)2242yx x (2)2621yx x (3) 2324y x x【答案】一个交点,没有交点,两个交点. 练习:二次函数2340y x x 的图象与x 轴交于A 、B 两点,则线段AB 长为 .【答案】13例2 (1)已知二次函数277y kx x 的图象和x 轴有交点,则k 的取值范围为( )A .74kB .047≠-≥k k 且 C .74k D .704k k -≠>且 【答案】B (2)若二次函数23yx x m 的图象全部在x 轴的下方,则m 的取值范围为 . 【答案】94m. 练习:抛物线2yx x b 的图象全部在x 轴的上方,则b 的取值范围为 .【知识点】抛物线与x 轴的交点问题 【答案】14b●活动② 提升型例题 例3 下表是一组二次函数235yx x 的自变量x 与函数值y 的对应值:x 1 1.1 1.2 1.3 1.4 y﹣1﹣0.490.040.591.16那么方程2350x x 的一个近似根是( ) A .1 B .1.1 C .1.2 D .1.3【答案】C练习:在平面直角坐标系中,抛物线20yax bx c a ()的部分图象如图所示,直线1x 是它的对称轴.若一元二次方程20ax bx c 的一个根1x 的取值范围是123x ,则它的另一个根2x 的取值范围是 .【答案】210x●活动③ 探究型例题例4 如图,在平面直角坐标系中,抛物线224233yx x 与x 轴交于B 、C 两点(点B 在点C 的左侧),与y 轴交于点A ,抛物线的顶点为D .(1)填空:点A 的坐标为( , ),点B 的坐标为( , ),点C 的坐标为( , ),点D 的坐标为( , ); (2)点P 是线段BC 上的动点(点P 不与点B 、C 重合)①过点P 作x 轴的垂线交抛物线于点E ,若PE =PC ,求点E 的坐标;②在①的条件下,点F 是坐标轴上的点,且点F 到EA 和ED 的距离相等,请直接写出线段EF 的长;【答案】(1) 0、2,﹣3、0,1、0,﹣1、83;(2)① 35(,)22E -,② 3522EF =或;练习:如图,抛物线2y ax bx =+过A (4,0),B (1,3)两点,点C 、B 关于抛物线的对称轴对称,过点B 作直线BH ⊥x 轴,交x 轴于点H . (1)求抛物线的表达式;(2)直接写出点C 的坐标,并求出△ABC 的面积;(3)点P 是抛物线上一动点,且位于第四象限,当△ABP 的面积为6时,求出点P 的坐标. 【答案】24y x x =-+,3 , (5,﹣5) 3. 课堂总结 【知识梳理】(1)填表:二次函数2y ax bx c =++与一元二次方程20ax bx c ++=的关系:判别24b ac - 0∆> 0∆= 0∆<函数2y ax bx c =++(0)a ≠的图象0a >0a <20(0)ax bx c a ++=≠有两个不相等的实数根12,x x有两个相等的实数根122b x x a==-没有实数根抛物线与x 轴 的交点情况有两个交点 有一个交点 无交点(2)一般地:已知二次函数2y ax bx c =++的函数值为m ,求自变量x 的值,可以看作解一元二次方程2ax bx c m ++=.反之,解一元二次方程2ax bx c m ++=又可以看作已知二次函数2y ax bx c =++的值为m 的自变量x 的值.(3)利用二次函数的图象求一元二次方程的根的一般步骤: ①画出函数的图象(可用计算机画);②根据图象确定抛物线与x 轴的交点分别在哪两个相邻的整数之间;③可以通过取平均数的方法不断缩小根所在的范围. (可以利用计算器计算). ④确定方程的近似根. 【重难点归纳】1. 注意抛物线与x 轴的交点与抛物线的对称轴之间的关系:当已知方程20ax bx c ++=的两个根为1x 、2x 时,那么抛物线2y ax bx c =++的对称轴为122x x x +=. 2. 注意四个“二次”之间的区别与联系,即二次函数,一元二次方程,一元二次不等式,二次三项式;利用他们之间的转化解决问题.(1)二次三项式2ax bx c ++恒正⇔抛物线2y ax bx c =++全在x 轴上方0a ⇔>且0∆<; (2)二次三项式2ax bx c ++恒负⇔抛物线2y ax bx c =++全在x 轴下方0a ⇔<且0∆<. 3. 利用二次函数图象求不等式解集的方法:“一元二次不等式”实际上是指二次函数的函数值“0,0y y ><或0,0y y ≥≤”,从图象看是指曲线在x 轴上方或x 轴下方时的x 值(对应的自变量x 的取值范围)。

初中九年级数学上册第22章二次函数22.2二次函数与一元二次方程课件新版新人教版0

初中九年级数学上册第22章二次函数22.2二次函数与一元二次方程课件新版新人教版0

★情景问题引入★ 某火车站在地面上欲建造一个圆形喷水池,如图,点 O 表示喷水池的水面 中心,OA 表示喷水柱子,水流从点 A 喷出,按照图中所示的平面直角坐标系, 每一股水流在空中的路线都可以用 y=-12x2+32x+78来描述,那么水池的半径最 少要多少米,才能使喷出的水流不至于落到池外?
知识管理
1.二次函数与一元二次方程的关系 关 系:
说 明:根据二次函数与一元二次方程的关系,可以解决两个方面的问 题:
(1)当 y 为某一确定值时,可通过解相应方程,求出自变量 x 的值; (2)也可以利用函数图象来找出相应方程的解.
2.二次函数的图象与 x 轴的交点情况同一元二次方程的根的情况之间的
关系
∵由图象可知 x=-1 时该二次函数取得最大值,∴a-b+c>am2+bm+ c(m≠-1).
∴m(am+b)<a-b,故④正确, ∴正确的有①②④.
当堂测评
1.二次函数 y=ax2+bx+c(a≠0)的图象如图 22-2-3 所示,则不等式 ax2+
bx+c<0 的解集是( C )
A.x>-3
A.-1≤x≤3 B.x≤-1 C.x≥3 D.x≤-1 或 x≥3
图22-2-6
4.[2017·镇江]若二次函数 y=x2-4x+n 的图象与 x 轴只有一个公共点,则 实数 n= 4 .
5.[2017·咸宁] 如图 22-2-7,直线 y=mx+n 与抛物线 y =ax2+bx+c 交于 A(-1,p),B(4,q)两点,则关于 x 的不等 式 mx+n>ax2+bx+c 的解集是 x<-1或x>4 .
(1)该函数的图象与 x 轴公共点的个数是( D )
A.0
B.1
C.2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4s
0m
t 1 = 0, t 2 = 4
当球飞行 0s 和 4s 时,它的高度为 0m ,即 0s时,球从地面飞出,4s 时球落回地面。
为一个常数 (定值)
从上面发现,二次函数y=ax2+bx+c何时为 一元二次方程? 一般地,当y取定值时,二次函数为一元 二次方程。
如:y=5时,则5=ax2+bx+c就 是一个一元二次方程。
我们学习了的“一元二次方程”
探究思考1
以 40 m /s的速度将小球沿与地面成 30°角的方 向击出时,球的飞行路线是一条抛物线,如果不考 虑空气阻力,球的飞行高度 h (单位:m)与飞行时间 t (单位:s)之间具有关系:h= 20 t – 5 t 2 考虑下列问题: (1)球的飞行高度能否达到 15 m? 若能,需要 多少时间? (2)球的飞行高度能否达到 20 m? 若能,需要 多少时间? (3)球的飞行高度能否达到 20.5 m?为什么? (4)球从飞出到落地要用多少时间?
二次函数
2 y x 6x 9 y x x2
2
y x x 1
2
与x轴交点坐标 (-2,0),(1,0)
相应方程的根 x1=-2,x2=1
(3,0) x1=x2=3
无交点 无实根
抛物线y=ax2+bx+c与x轴交 点的横坐标是方程ax2+bx+c =0 的根。
=0的 根是抛物线y=ax2+bx+c与x轴交 点的横坐标。
解:(1)当 h = 15 时, 20 t – 5 t 2 = 15 t 2 - 4 t +3 = 0 t 1 = 1, t 2 = 3
当球飞行 1s 和 3s 时,它的高度为 15m .
15 m
1s 3s
20 m
2s (2)当 h = 20 时, 20 t – 5 t 2 = 20 t 2 - 4 t +4 = 0 t1=t2=2 当球飞行 2s 时,它的高度为 20m .
o
y =a(x-x1)(x- x 2)
y
(2) y = 4x2 -4x +1
解:当 y = 0 时, 4x2 -4x +1 = 0
o
x
( 2x - 1) 2 = 0 1 x1=x2= 2 所以与 x 轴有一个交点。
y
( 3) y = x2 – x+ 1
解:当 y = 0 时, x2 – x+ 1 = 0 因为(-1)2-4×1×1 = -3 < 0
(3)当 h = 20.5 时, 20 t – 5 t 2 = 20.5 t 2 - 4 t +4.1 = 0 因为(-4)2-4×4.1 < 0 ,所以方程无实根。 球的飞行高度达不到 20.5 m.
20.5 m
0s (4)当 h = 0 时, 20 t – 5 t 2 = 0 t 2- 4 t = 0
22.2二次函数与一元二次方程
九年级数学
复习引入
二次函数的一般式:
y ax bx c (a≠0)
2
x 是自变量,____ y 是____ x 的函数。 ______
当 y = 0 时,
ax² + bx + c = 0
ax² + bx + c = 0
这是什么方程? 一元二次方程与二 次函数有什么关系?
已知二次函数,求自变量的值
解一元二次方程的根
探究思考2
1、二次函数y = x2+x-2 , y = x2 - 6x +9 , y = x2 – x+ 1 2 2 y x x 1 的图象如图所示。 y x 6x 9 y x2 x 2
(1).每个图象与x轴有几个交点? 答:2个,1个,0个 (2).一元二次方程? x2+x-2=0 , x2 - 6x +9=0有几个根 ? 验证一下一元二次方程 x2 – x+ 1 =0有根吗 ? 2.2个根,2个相等的根 , 无实数根 .
2 反之,方程ax +bx+c
探究思考3
下列二次函数的图象与 x 轴有交点吗? 若有,求出交点坐标. y (1) y ห้องสมุดไป่ตู้ 2x2+x-3 (2) y = 4x2 -4x +1
( 3) y = x2 – x+ 1 o x
令 y= 0,解一元二次方程的根
y
(1) y = 2x2+x-3 解:当 y = 0 时, 2x2+x-3 = 0 (2x+3)(x-1) = 0 3 x 1 =- ,x 2 = 1 2 x 所以与 x 轴有交点,有两个交点。 二次函数的两点式
o
x
所以与 x 轴没有交点。
有更快的方法知道二次 函数与x轴交点个数吗?
y=ax2+bx+c 的图象 与x轴交点情况
ax2+bx+c = 0 的根
有两个交点 有一个交点 没有交点
有两个根 b2 – 4ac > 0 有一个根 (两个相同的根) b2 – 4ac = 0 没有根 b2 – 4ac < 0
(3).二次函数y=ax2+bx+c的图象和x轴交点的坐标与 一元二次方程ax2+bx+c=0的根有什么关系?
(3)二次函数y=ax2+bx+c的图象和x轴交点的坐标 与 一元二次方程ax2+bx+c=0的根有什么关系?
y x x2
2
y x2 6 x 9
y x2 x 1
若抛物线 y=ax2+bx+c 与 x 轴有交点,则 b2 – 4ac ≥ 0 ________________ 。
△ = b2 – 4ac
y △<0 △=0
△>0
o
x
归纳小结
二次函数 y=ax2+bx+c 的图象和x轴交点 的三种情况与一元二次方程根的关系:
二次函数 一元二次方程 一元二次方程 2 2+bx+c= 0根的判 y=ax +bx+c的图 ax ax2+bx+c= 0的根 象和x轴交点 别式Δ=b2-4ac 有两个交点 只有一个交点 没有交点 有两个不相 等的实数根 有两个相等的 实数根
b2 – 4ac > 0 b2 – 4ac = 0
没有实数根
b2 – 4ac < 0
1.一元二次方程 3 x2+x-10=0的两个根是 x1= -2 ,x2=5/3, 那么二次函数y= 3 x2+x-10 与x轴的交点坐标是_____ (-2,0) (5/3,0).
2.抛物线y=2x2-3x-5 与x轴有无交点?若无说 出理由,若有求出交点坐标? (2.5,0), (1,0) 归纳:一元二次方程ax2+bx+c=0的两个根为 x1,x2 ,则抛物线 y=ax2+bx+c与x轴的交点坐标 是(x1,0),(x2,0) 有
相关文档
最新文档