九年级中考数学复习课件:类型三 二次函数与圆结合
最新初三数学一轮复习课件 二次函数的综合应用

第14课时 二次函数的综合应用(每年第24题必考,10分)1典例“串”考点2陕西5年真题、副题“明”考法典例“串”考点一、二次函数表达式的确定类型一 表达式已知1. 已知抛物线y=x2-bx+c的顶点坐标为(-1,2),求抛物线的表达式.解:∵抛物线的表达式中a=1,∴将抛物线表达式写成y=(x-h)2+k,代入顶点坐标(-1,2),得y=(x+1)2+2=x2+2x+3,∴抛物线的表达式为y=x2+2x+3.2. 已知抛物线y=-ax2+2x+c经过点(-1,3),(0,3),求抛物线的表达式.解:∵抛物线经过点(0,3).∴c=3,将(-1,3)代入y=-ax2+2x+3中得,3=-a-2+3,∴a=-2,∴抛物线的表达式为y=2x2+2x+3.类型二 表达式未知3. 已知抛物线的顶点坐标为(2,3),且经过点(1,2),求抛物线的表达式.解:∵抛物线的顶点坐标为(2,3),∴设抛物线的表达式为y=a(x-2)2+3,将点(1,2)代入,得2=a+3,解得a=-1.∴抛物线的表达式为y=-(x-2)2+3=-x2+4x-1.4. 已知抛物线与x轴的交点为(-2,0)、(2,0),且经过点(1,3),求抛物线的表达式.解:∵抛物线与x轴的交点为(-2,0)、(2,0),∴设抛物线的表达式为y=a(x+2)(x-2),将点(1,3)代入,得3=-3a,解得a=-1.∴抛物线的表达式为y=-(x+2)(x-2)=-x2+4.5. 已知抛物线经过点(0,-6),(2,-4)和(3,0),求抛物线的表达式.解:设抛物线表达式为y=ax2+bx+c,将点(0,-6),(2,-4)和(3,0)代入,∴抛物线的表达式为y=x2-x-6.【提分要点】待定系数法求抛物线表达式方法如下:表达式已给出找出抛物线上的两个点或三个点坐标代入即可表达式未给出当已知抛物线的顶点坐标或对称轴及最大(小)值时,通常设表达式为y=a(x-h)2+k(a≠0),其中顶点坐标为(h,k),对称轴为直线x=h当已知抛物线与x轴的两个交点坐标或对称轴、抛物线与x轴的一个交点时,通常设表达式为y=a(x-x1)(x-x2)(a≠0),其中抛物线与x轴交点为(x1,0),(x2,0)当已知抛物线上任意三点时,通常设抛物线的表达式为y=ax2+bx+c(a≠0)二、二次函数综合题类型一 二次函数与特殊三角形判定1. 如图,线段AB与直线l交于点A,且AB不与直线l垂直,请在l上找一点P,使△ABP 为等腰三角形,请在图中画出所有符合要求的点P,保留作图痕迹,不写作法.第1题图。
中考数学压轴题二次函数与圆

中考数学压轴题二次函数与圆二次函数与圆是中考数学中的一个重要知识点。
在考试中,通常会涉及到用二次函数的性质来解决与圆相关的问题。
下面我们就来详细介绍一下二次函数与圆的关系。
首先,我们先来回顾一下二次函数的基本知识。
二次函数的一般形式可以表示为y=ax²+bx+c,其中a、b、c是常数。
二次函数的图象是一个抛物线,具体的形状和位置取决于a、b、c的值。
在二次函数的图象上,有一些特殊点和特殊线。
特殊点包括顶点和零点,特殊线包括对称轴和切线。
顶点是抛物线的最高点或者最低点,对称轴是通过抛物线顶点的一条直线,切线是与抛物线相切的直线。
圆是一个平面上到一点距离固定的点的距离相等的所有点的轨迹。
圆的特点包括半径、直径、圆心、弧、弦和切线等。
圆心是圆上的任意一点,半径是圆心到圆上任意一点的距离,直径是通过圆心的一条线段,弧是圆上两个点之间的弯曲部分,弦是圆上任意两点之间的线段,切线是与圆只有一个交点的直线。
接下来,我们将通过一些例题来探究二次函数与圆的关系。
例题1:已知二次函数y=2x²-4x+3,求与y轴相切的圆方程。
解析:对于与y轴相切的圆,我们可以首先求出二次函数的切线,然后通过切线的斜率和截距求出圆心和半径。
首先,我们知道切线的斜率等于二次函数在切点处的导数。
求导得到y'=4x-4、接下来,我们利用二次函数和切线的性质,将二次函数和切线联立求解。
因为切线与y轴相切,所以切线在y轴上的截距为0。
代入切线方程,得到0=4x-4,解得x=1然后,我们将x=1带入二次函数的表达式中,得到y=2x²-4x+3=2*1²-4*1+3=1、所以切点坐标为(1,1)。
接着,我们通过圆心、半径、切点来确定圆的方程。
圆心的横坐标等于切点的横坐标,圆心的纵坐标等于切点的纵坐标加上半径。
因为切线与y轴相切,所以切线在y轴上的截距为半径。
所以圆心的坐标为(1,1+1)=(1,2)。
《二次函数的图像和性质》PPT课件 人教版九年级数学

y=20x2+40x+20③
d=
学生以小组形式讨论,并由每组代表总结.
探究新知
【分析】认真观察以上出现的三个函数解析式,
分别说出哪些是常数、自变量和函数.
函数解析式
y=6x2
自变量
函数
x
y
n
d
x
y
这些函数自变量的最高次项都是二次的!
这些函数有什
么共同点?
探究新知
二次函数的定义
一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的
总结二次
函数概念
二次函数y=ax²+bx+c
(a,b,c为常数,a≠0)
确定二次函数解
析式及自变量的
取值范围
二次函数的判别:
①含未知数的代数式为整式;
②未知数最高次数为2;
③二次项系数不为0.
人教版 数学 九年级 上册
22.1 二次函数的图象和性质
22.1.2
二次函数y=ax2的
图象和性质
导入新知
探究新知
方法点拨
运用定义法判断一个函数是否为二次函数的
步骤:
(1)将函数解析式右边整理为含自变量的代
数式,左边是函数(因变量)的形式;
(2)判断右边含自变量的代数式是否是整式;
(3)判断自变量的最高次数是否是2;
(4)判断二次项系数是否不等于0.
巩固练习
下列函数中,哪些是二次函数?
(1) y=3(x-1)²+1(是)
(1) 你们喜欢打篮球吗?
(2)你们知道投篮时,篮球运动的路线是什么
曲线?怎样计算篮球达到最高点时的高度?
素养目标
初三二次函数ppt课件ppt课件

与x轴交点
当$\Delta > 0$时,二次函数的 图像与x轴有两个交点;当
$\Delta = 0$时,二次函数的图 像与x轴只有一个交点;当
$\Delta < 0$时,二次函数的图 像与x轴没有交点。
理解二次函数的基本 概念和图像表示。
能够运用二次函数解 决实际问题。
掌握二次函数的性质 ,包括开口方向、顶 点坐标和对称轴。
课程计划
通过PPT演示,引导学生了解 二次函数的概念和图像表示。
通过例题讲解,帮助学生掌握 二次函数的性质和应用。
组织课堂练习和讨论,加深学 生对二次函数的理解和应用能 力。
二次函数的表达式
01
02
03
表达式
二次函数的表达式为$y = ax^{2} + bx + c$,其中 $a \neq 0$。
各项的意义
$a$是二次项系数,$b$ 是一次项系数,$c$是常 数项。
如何确定表达式
通过已知条件,利用待定 系数法可以确定二次函数 的表达式。
二次函数的图像
图像特点
二次函数的图像是一个抛物线, 其顶点坐标是$( - \frac{b}{2a}, \frac{4ac - b^{2}}{4a})$,对称
06
参考资料
初三二次函数ppt课件
初三二次函数的概念
介绍二次函数的基本定义、表达式和 图像特征。
初三二次函数的图像和性质
详细描述了如何绘制二次函数的图像 ,并分析了图像的开口方向、顶点坐 标、对称轴和增减性等性质。
初三二次函数的实际应用
通过实例和练习题,展示了二次函数 在解决实际问题中的应用,如最值问 题、行程问题等。
初三二次函数课件ppt

图像法是通过绘制二次函数的图 像,观察其开口方向、对称轴、 顶点坐标等特征,从而求解二次 函数的解析式。
05
实际应用案例
生活中的二次函数应用
自由落体运动
在物理学中,自由落体运动可以用二 次函数来描述。物体下落时,下落的 高度与时间的平方成正比,即h = 1/2gt^2,其中g是重力加速度。
一次函数的应用
一次函数可以用于解决一些实际问 题,如速度、成本、时间等。
一次函数与二次函数的关系
一次函数与二次函数的区别
一次函数是一条直线,而二次函数是一个抛物线。
一次函数与二次函数的联系
二次函数可以看作是由两个一次函数组成的,其中一个一次函数的系数为0。
二次函数的意义与重要性
二次函数的意义
二次函数是函数中的一种,一般形如y=ax^2+bx+c(a,b,c是常数,a≠0),其中x 是自变量,y是因变量。
二次函数的对称轴与开口方向
对称轴:直线$x = \frac{b}{2a}$,是二次函数图像
的对称轴
开口方向:取决于二次项系数a ,a>0时开口向上,a<0时开口
向下
以上是初三二次函数课件的相关 内容。
04
二次函数的求解方法
配方法
详细描述:配方法是通过配方的 方式,将二次函数的一般形式转 化为顶点式或直接用配方法求出 抛物线的顶点坐标及对称轴。
$y = a(x - x_{1})(x - x_{2})$
二次函数的图像性质
开口方向
取决于二次项系数a,a>0时开口向上,a<0时开口向下
对称轴
直线$x = -\frac{b}{2a}$
顶点坐标
$(-\frac{b}{2a}, f(-\frac{b}{2a}))$
九年级数学圆的复习课件

与圆有关的概念
弦 连接圆上任意两点的线段(如图AC)叫
做弦,
经过圆心的弦(如图中的AB)叫做直径.
08.08.2023
B
O·
C
A
第三页,共54页。
弧
圆端上点任的意弧两记点作间A的B⌒部,分读作叫“做圆圆弧弧A,B简”或称“弧弧.A以BA”.、B为
圆的任意一条直径的两个端点把圆分成两条弧,每一
想一想
08.08.2023
一个三角形的外接圆有几个?
一个圆的内接三角形有几个?
第二十三页,共54页。
做一做
分别画一个锐角三角形、直角三角形和钝角三角形, 再画出它们的外接圆,观察并叙述各三角形与它的外心的 位置关系.
A
A
A
●O
●O
B
┐
CB
C
●O
B
C
锐角三角形的外心位于三角形内, 直角三角形的外心位于直角三角形斜边中点, 08.08钝.20角23 三角形的外心位于三角形外.
2、已知、是同圆的两段弧,且弧AB等于2倍弧AC,则弦AB与CD之间 的关系为( );
A.AB=2CD
B.AB<2CD C.AB>2CD D.不能确定
3、 如图2,⊙O中弧AB的度数为60°,AC是⊙O的直径,则∠BOC等 于 ( );
A.150° B.130° C.120° D.60°
4、在△ABC中,∠A=70°,若O为△ABC的外心,∠BOC=
条弧都叫做半圆.
08.08.2023
B
O·
C A
第四页,共54页。
劣弧与优弧
小于半圆的弧叫做劣弧. (如图中的AC⌒) 大于半圆的弧叫做优弧. (用三个字母表示,如图中的ACB⌒)
初三二次函数ppt课件ppt课件ppt课件

03
二次函数的图像变换
平移变换
总结词
平移变换是指二次函数的图像在平面坐标系 中沿x轴或y轴方向进行移动。
详细描述
平移变换包括沿x轴方向的左移和右移,以 及沿y轴方向的上移和下移。对于一般形式 的二次函数y=ax^2+bx+c,当b≠0时,图 像为抛物线。当b>0时,图像向右平移b/2a个单位;当b<0时,图像向左平移 |b|/2a个单位。
总结词
顶点式二次函数解析式是y=a(xh)^2+k,其中(h,k)为函数的顶点。
详细描述
顶点式二次函数解析式表示的是一个 开口向上或向下的抛物线,其顶点为 (h,k)。该形式简化了函数的对称轴和 顶点,便于分析函数的性质。
交点式二次函数解析式
总结词
交点式二次函数解析式是y=a(x-x1)(x-x2),其中x1、x2为函数与x轴的交点。
02
二次函数的解析式
一般二次函数解析式
总结词
一般二次函数解析式是y=ax^2+bx+c,其中a、b、c为常数 ,且a≠0。
详细描述
一般二次函数解析式是二次函数的基本形式,它可以表示任 意二次函数。其中a控制函数的开口方向和开口大小,b控制 函数的对称轴,c为函数与y轴的交点。
顶点式二次函数解析式
值的变化。
04
二次函数的实际应用
最大利润问题
总结词
通过建立二次函数模型,解决最大利润问题。
详细描述
在生产和经营过程中,常常需要寻求最大利润。通过将实际问题转化为数学模型,利用二次函数求导 数的方法,可以找到获得最大利润的条件和对应的最大利润值。
抛物线形拱桥问题
总结词
利用二次函数解析式表示抛物线形拱桥的形 状,进而解决相关问题。
2019年秋九年级数学复习课件:第五讲 第4课时 二次函数与圆的综合

故二次函数的表达式为 y=12(x+1)2-2;
– (2)证明:如答图,连结DM, – ∵△MBC为等边三角形, – ∴∠CMB=60°,∴∠AMC=120°, ∵点– D∵平M分D=A︵CM,C∴=∠MAAM,D=∠CMD=12∠AMC=60°, – ∴△MCD,△MDA是等边三角形, – ∴DC=CM=MA=AD,∴四边形AMCD为菱形; – (3)存在.设点P的坐标为(m,n),
– (2)先求出OA=2,OB=m+2,OC=2(m+2),
①判断出∠OCB=∠OAF,求出 tan∠OCB=12,即可求出 OF
=1,即可得出结论;
②先设出 BD=m,再判断出∠DCE=90°,得出 DE 是⊙P 的
直径–,解进:而(求1)出证明BE:=令2my,=D0E,=∴5xm2+,即m可x-得2出m结-论4.=0, – ∴Δ=m2-4[-2m-4]=m2+8m+16, – ∵m>0,∴Δ>0, – ∴该抛物线与x轴总有两个不同的交点;
第4课时 二次函数与圆的综合
典例一 [2019·中考预测]如图 5-4-1,在平面直角坐标系中, 四边形 ABCD 是以 AB 为直径的⊙M 的内接四边形,点 A, B 在 x 轴上,△MBC 是边长为 2 的等边三角形,点 D 平分 A︵C,过点 M 作直线 l 与 x 轴垂直,交⊙M 于点 E,垂足为 M. (1)求过 A,B,E 三点的抛物线的表达式;
12∠AMC=60°,进而得出 DC=CM= MA=AD,即可得出答案;
典例一答图
(3)首先表示出△ABP的面积进而求出n的值,再代入函数关系
式求出P点坐标.
– 解:(1)由题意可知,△MBC为等边三角形,点A, B,C,E均在⊙M上,则MA=MB=MC=ME=2 ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
(2)求证:点C在以AB为直径的圆上; 【思维教练】由条件可得AB、AC、BC的线段长度,证 明△ABC为直角三角形,可证得结论; 证明:如解图,连接AC,∵AC2=OA2+OC2= 12+( 3 )2=4,BC2=OB2+OC2=32+( 3 )2 =12,AB2=42=16,∴AB2=AC2+BC2, ∴△ABC为直角三角形且AB为斜边, ∴点C在以AB为直径的圆上;
第二部分 攻克专题 得高分
题型五 函数与几何综合题(必考)
类型三 二次函数与圆结合
典例精讲 例 如图,抛物线y=ax2+bx+c(a≠0)经 过A(-1,0)、B(3,0)、C(0, 3)三点. (1)求抛物线的函数表达式;
例题图
【思维教练】由A、B、C三点的坐标,利用待定系数法 求得抛物线的函数表达式;
∴直线l的解析式为y=﹣ 3 x,
联立方程组得
y= yFra bibliotek=-
3 ( x + 1)( x - 3)
3
,
3x
5 + 37
x1 2
,
解得
y1
-5
32
111
5 - 37
x2 = 2
,
y2
=
-5
3+ 2
111
∴D的坐标为
(5 + 37 , -5 2
(3)以BC为直径作⊙P,点D为抛物线上一动点,是否存 在点D使直线OD与⊙P相切?
若存在,请求出点D的坐标;若不存在,请说明理由. 【思维教练】由条件可先求得点P的坐标,连接OP,过 点O作半径OP的垂线l,并求得直线l的解析式,直线l与抛 物线的交点即为满足条件的D点,通过联立方程组即可求 解.
32
111 )
或
(5 - 37 , -5 3 + 111 ) .
2
2
解:存在,理由如下: ∵∠COB=90°, ∴点O在以BC为直径的圆上,即点O在⊙P上, 如解图,连接OP,过点O作OP的垂线l与抛物线的交点即 为满足条件的D点, ∵B(3,0),C(0, 3 ), ∴P( 3 , 3 ) ,
22
设直线OP的解析式为y=kx,则
3 = 3 k,解得k= 3 , ∴2 直线2OP的解析式为3y= 3 x, ∵直线l为OP的垂线, 3