第三章直线与方程_单元测试1.doc[1]
数学:第3章《直线与方程》单元测试(1)(新人教A版必修2)
实用文档第三章 直线与方程 单元测试一、选择题1.已知点(1,2),(3,1)A B ,则线段AB 的垂直平分线的方程是( ) A .524=+y x B .524=-y x C .52=+y x D .52=-y x2.若1(2,3),(3,2),(,)2A B C m --三点共线 则m 的值为( ) A.21 B.21- C.2- D.2 3.直线x a yb 221-=在y 轴上的截距是( ) A .b B .2b - C .b 2 D .±b4.直线13kx y k -+=,当k 变动时,所有直线都通过定点( )A .(0,0)B .(0,1)C .(3,1)D .(2,1)5.直线cos sin 0x y a θθ++=与sin cos 0x y b θθ-+=的位置关系是( ) A .平行B .垂直C .斜交D .与,,a b θ的值有关6.两直线330x y +-=与610x my ++=平行,则它们之间的距离为( )A .4B 21313C 51326D 710207.已知点(2,3),(3,2)A B --,若直线l 过点(1,1)P 与线段AB 相交,则直线l 的实用文档斜率k 的取值范围是( ) A .34k ≥B .324k ≤≤C .324k k ≥≤或 D .2k ≤二、填空题1.方程1=+y x 所表示的图形的面积为_________。
2.与直线5247=+y x 平行,并且距离等于3的直线方程是____________。
3.已知点(,)M a b 在直线1543=+y x 上,则22b a +的最小值为 4.将一张坐标纸折叠一次,使点(0,2)与点(4,0)重合,且点(7,3)与点(,)m n 重合,则n m +的值是___________________。
5.设),0(为常数k k k b a ≠=+,则直线1=+by ax 恒过定点 . 三、解答题1.求经过点(2,2)A -并且和两个坐标轴围成的三角形的面积是1的直线方程。
《第3章 直线与方程》、《第4章 圆与方程》单元测试卷(深圳三中)
.
13.(5 分)若点 A(2,1,4)与点 P(x,y,z)的距离为 5,则 x,y,z 满足的关系式
是
.
14.(5 分)若实数 x,y 满足 x2+y2=1,则 的最小值是
.
三、解答题(共 30 分) 15.(6 分)已知曲线 C 是与两个定点 A(﹣4,0),B(2,0)距离比为 2 的点的轨迹,求
线与圆 x2+y2﹣4x﹣4y+7=0 相切,求光线 L 所在直线的方程.
第 2页(共 10页)
《第 3 章 直线与方程》、《第 4 章 圆与方程》单元测试卷(深圳
三中)
参考答案与试题解析
一、选择题(每题 5 分,共 50 分)
1.(5 分)圆心为点(3,4)且过点(0,0)的圆的方程是( )
A.x2+y2=25
坐标公式得,a=4,b=﹣6,∴r= = ,
则此圆的方程是 (x﹣2)2+(y+3)2=13, 故选:A. 7.(5 分)直线 x+y﹣2 =0 截圆 x2+y2=4 得的劣弧所对的圆心角是( )
此曲线 C 的方程. 16.(6 分)若 x,y 满足(x﹣1)2+(y+2)2=4,求 S=2x+y 的最大值和最小值. 17.(8 分)直线 y=kx+1 与圆 x2+y2=m 恒有公共点,求 m 的取值范围. 18.(10 分)自点 A(﹣3,3)发出的光线 L 射到 x 轴上,被 x 轴反射,其反射光线所在直
【解答】解:由题意可得点 P(2,3)在圆 x2+y2=4 外面
当切线的斜率不存在时,此时的直线方程为 x=2 满足条件
当直线的斜率存在时设为 k,则切线方程为 y﹣3=k(x﹣2)
数学第三章《直线与方程》测试
数学第三章《直线与方程》测试1.在直角坐标系中,直线y=2x+1与x轴交点的坐标为(-0.5,-1)。
正确(假设无误)2.直线y=3x+2与直线y=-2x+1相交于一点,这个点的坐标为(0,2)。
错误。
由两条直线的方程:3x+2=-2x+1,得出x=-1/2,代入第一条直线的方程可得y=5/2,故该点坐标为(-1/2,5/2)。
3.已知直线L:y=4/3x-2与坐标轴围成的三角形的面积为8个单位平方。
错误。
直线L与x轴、y轴分别交于点A(0,-2)和点B(3/2,0),可以计算得到三角形的面积为5个单位平方。
4.在直角坐标系中,直线y=-2x+3与x轴的交点的坐标为(-3/2,0)。
错误。
因为这是一个题目中,X是在y轴的左边,故交点的坐标为(1.5,0)。
值应该为(1.5,0)。
5.一直线通过点A(1,3),且垂直于直线L:x-2y+3=0,则该直线的方程为y=-2x+5错误。
因为A(1,3)与直线L的斜率为-1/2,所以该直线的斜率应为2、通过点斜式可得到该直线的方程为y-3=2(x-1)。
6.直线L:6x-8y+5=0与直线L:3x-4y-1=0平行。
正确(假设无误)7.直线y=-2x+2在x轴上的截距是2正确(假设无误)8.直线y-1=x+3的斜率为1错误。
通过移项可得到y=x+4,即斜率为19.已知直线L1与x轴的交点为(1,0),直线L2与y轴的交点为(0,2),且L1与L2相交于一点,则相交点在第三象限。
正确(假设无误)10.两点A(-2,3)和B(1,1)确定的直线与x轴交于一点,这个点的坐标为(-2,0)。
错误。
两点确定的直线的斜率为(1-3)/(1-(-2))=-2/3,联立求解直线方程和x轴方程可得(-18,0)。
人教A版高中数学必修二第三章《直线与方程》测试题(Word最新版)
人教A版中学数学必修二第三章《直线与方程》测试题通过整理的人教A版中学数学必修二第三章《直线与方程》测试题相关文档,渴望对大家有所扶植,感谢观看!必修二第三章《直线与方程》测试题一、单选题1.若直线mx+2y+m=0与直线3mx+(m-1)y+7=0平行,则m的值为()A.7 B.0或7 C.0 D.4 2.已知直线l过点且与直线垂直,则l的方程是()A.B.C.D.3.已知直线在两坐标轴上的截距相等,则实数A.1 B.C.或1 D.2或1 4.已知直线,,则它们的图象可能为()A.B.C.D.5.已知点,若直线与线段有交点,则实数的取值范围是()A.B.C.D.6.当点到直线的距离最大时,m的值为()A.3 B.0 C.D.1 7.已知直线和相互平行,则它们之间的距离是()A.4 B.C.D.8.一条直线经过点,并且它的倾斜角等于直线倾斜角的2倍,则这条直线的方程是( ) A.B.C.D.9.若三条直线,与直线交于一点,则()A.-2 B.2 C.D.10.如图,已知A(4,0)、B(0,4),从点P(2,0)射出的光线经直线AB反射后再射到直线OB上,最终经直线OB反射后又回到P点,则光线所经过的路程是()A.B.C.6 D.11.直线过点,且、到的距离相等,则直线的方程是() A.B.C.或D.或12.已知点在直线上,点在直线上,线段的中点为,且满足,则的取值范围为()A.B.C.D.二、填空题13.若A(-2,3),B(3,-2),C(4,m)三点共线则m的值为________. 14.设直线的倾斜角是直线的倾斜角的,且与轴的交点到轴的距离是3,则直线的方程是____________. 15.在平面直角坐标系xOy 中,设定点A(a,a),P是函数y=(x>0)图象上一动点.若点P,A之间的最短距离为2,则满足条件的实数a的全部值为________.16.过点作直线,若直线经过点,且,则可作直线的条数为__________.三、解答题17.已知直线,. (1)若,求的值;(2)若,求的值.18.过点的直线,(1)当在两个坐标轴上的截距的确定值相等时,求直线的方程;(2)若与坐标轴交于、两点,原点到的距离为时,求直线的方程以及的面积.19.如图,已知三角形的顶点为A(2,4),B(0,-2),C(-2,3),求:(1)直线AB的方程;(2)AB边上的高所在直线的方程;(3)AB的中位线所在的直线方程.20.已知一组动直线方程为. (1) 求证:直线恒过定点,并求出定点的坐标; (2) 若直线与轴正半轴,轴正半分别交于点两点,求面积的最小值.21.在中,边上的高所在直线的方程为,的平分线所在直线方程为,若点的坐标为.(1)求点和点的坐标;(2)求边上的高所在的直线的方程.22.已知直线经过点,斜率为(Ⅰ)若的纵截距是横截距的两倍,求直线的方程;(Ⅱ)若,一条光线从点动身,遇到直线反射,反射光线遇到轴再次反射回点,求光线所经过的路程。
人教A版高中数学必修二第三章《直线与方程》检测题含答案.docx
第三章《直线与方程》检测题一、选择题(每小题只有一个正确答案)1. 不论刃为何值,直线(m —\)x+ (2/7?—l)y=/77—5恒过定点()( \\ A. 1,—— B. (-2,0) C. (2,3) D. (9, -4) I 2丿 '2.x — y — 3 S 02. 已知不等式组x + y-3>0表示的平面区域为M,若以原点为圆心的圆0与M 无公x — 2y + 3 n 0共点,则圆。
的半径的取值范围为()A. (0,—)B. (3匹,+8)C. (0,VK)U(3^,+8)D. (0,—)U(3V2,+oo) 3. 若直线厶:x+ay+6=0与厶:U-2)%+3y+2a=0平行,则厶与厶之间的距离为 ()A. V2B.吨C. V3D.出3 84. 若点A (l,l)关于直线y = kx + b 的对称点是3(-3,3),则直线y = kx + b 在y 轴上 的截距是( )A. 1B. 2C. 3D. 45. 已知直线/I :x-y-l=0,动直线?2:(k + l)x +炒+ k = 0(kw/?),则下列结论够 误的是( )A.存在k, I 、使得厶的倾斜角为90。
B.对任意的k, I 、与厶都有公共点C.对任意的4人与厶都不重合D.对任意的人与厶都不垂皐 3(-3,-2),直线1过点且与线段AB 相交,则1的斜 率k 的取值范围( A. k> — ^ik<-4 43 C. — 一 <^<4 D.4 7.图中的直线/,,/2,/3的斜率分别是,则有( )B. k y <k }< k 2C. k 3<k 2< k 、D. k 2<k y < k 、6.设点 A (2,—3),)B. -4<k<-4 以上都不对A. ky<k 2< k 3TV TV 27V 5 7TA. 3 B . 6 c. 3 D . 69. 直线3x + y-4 = 0的斜率和在y 轴上的截距分别是()A. 一3,4B. 3,-4C. -3,-4D. 3,410. 过点(一2, 1),且平行于向量v=(2, 1)的直线方程为()A. % — 2y + 4 = 0B. % 4- 2y — 4 = 0C. % — 2y — 4 = 0D. % + 2y + 4 =11・过点水3, 3)且垂直于直线4x + 2y - 7 = 0的直线方程为A. y = -x + 2B. y = —2x + 7 C ・ y = -x + - D. y = -x - 丿 2 J 丿 22 丿 2212. 在平面直角坐标系中,己知A (l,-2), B (3,0),那么线段A3中点的坐标为(). A.(2,-1) B.(2,1) C.(4,-2) D. (-1,2)二、填空题13. 已知G,b,c 为直角三角形的三边长,C 为斜边长,若点在直线Z :Q + by + 2c = 0上,则加2 +/?2的最小值为 __________ ・14. me R ,动直线 l }\x + my -1 =()过定点 动直线 /2: nix - y- 2m + A /3 = 0 定点3,若直线1与人相交于点P (异于点A,B),则\PAB 周长的最大值为15. ______________________________________________________________ 过点(2, —3)且在两坐标轴上的截距互为相反数的直线方程为 ________________________ 16. 定义点POoJo)到直线上似+ By + C = 0(护+ B 2^ 0)的有向距离为d =已知点Pi ,P2到直线2的有向距离分别是心,〃2,给出以下命题: ① 若di — d.2 - ② 若心+ d = =0,则直线P1P2与直线2平行;=0,则直线EE 与直线/平行;③若心+ 〃2 = 0,则直线RE 与直线2垂直;④若didzVO,则直线ED 与直线2相交; 其中正确命题的序号是 ___________________ •三、解答题17. 求符合下列条件的直线方程:(1) 过点P(3,—2),且与直线4% 4- y - 2 = 0平行;(2) 过点P(3,—2),且与直线4% 4- y - 2 = 0垂直;(3) 过点P(3,-2),且在两坐标轴上的截距相等.18.己知ZMBC的三个顶点坐标分别为>1(-4,-2), B(4,2), C(1 , 3).(1)求边上的高所在直线的一般式方程;(2)求边4B上的中线所在直线的一般式方程.19.已知直线/ :3x + 2y-2 + 22x + 4y + 22 = 0(1)求证:直线1过定点。
《必修2》第三章“直线与方程”测试题(含答案)
《必修2》第三章“直线与方程”测试题(含答案)《必修2》第三章“直线与方程”测试题一.选择题:1. 在同一直角坐标系中,表示直线y ax =与y x a =+正确的是( )x y O x y O x y O xyOA B C D2.若直线20x ay ++=和2310x y ++=互相垂直,则a =( )A .32-B .32C .23- D .23 3.过11(,)x y 和22(,)x y 两点的直线的方程是( )111121212112211211211211...()()()()0.()()()()0y y x x y y x x A B y y x x y y x x C y y x x x x y y D x x x x y y y y ----==---------=-----=4.直线2350x y +-=关于直线y x =对称的直线方程为( ) A 、3x+2y-5=0 B 、2x-3y-5=0C 、3x+2y+5=0D 、3x-2y-5=05 如果直线l 沿x 轴负方向平移3个单位再沿y 轴正方向平移1个单位后,又回到原来的位置,那么直线l 的斜率是( )23-二.填空题:11. 过点(1,2)且在两坐标轴上的截距相等的直线的方程方程1=+y x 表示的图形所围成的封闭区域的面积为_________13 点(,)P x y 在直线40x y +-=上,则22xy +的最小值是________14 直线10x y -+=上一点P 的横坐标是3,若该直线绕点P 逆时针旋转090得直线l ,则直线l 的方程是15 已知直线,32:1+=x y l若2l 与1l 关于y 轴对称,则2l 的方程为__________;23y x =-+三、解答题16.求过点(5,4)A --的直线l ,使它与两坐标轴相交且与两轴所围成的三角形面积为517. 一直线被两直线0653:,064:21=--=++y x l y x l 截得线段的中点是P 点,当P 点为(0,0)时,求此直线方程18.直线313y x =-+和x 轴,y 轴分别交于点,A B ,在线段AB为边在第一象限内作等边△ABC ,如果在第一象限内有一点1(,)2P m 使得△ABP 和△ABC 的面积相等, 求m 的值19.已知三角形ABC的顶点坐标为A(-1,5)、B (-2,-1)、C(4,3),M是BC边上的中点。
第三章《直线与方程》单元测试题
必修2第三章《直线与方程》单元测试题一、选择题(本大题共10小题,每小题5分,共50分)1、若直线过点(1,2),(4,2+3),则此直线的倾斜角是( )A、30° B、45° C、60° D、90°2、直线x+6y+2=0在x 轴和y 轴上的截距分别是( )A 、213,B 、--213,C 、--123, D 、-2,-33、 如果直线ax+2y+2=0与直线3x-y-2=0平行,则系数a 是( )A 、 -3B 、-6C 、23-D 、324、点P (-1,2)到直线8x-6y+15=0的距离为( ) A 、 2 B 、21 C 、1 D 、275、以A(1,3),B(-5,1)为端点的线段的垂直平分线方程是( )A 、 3x-y-8=0B 、 3x+y+4=0C 、 3x-y+6=0D 、3x+y+2=06、过点M(2,1)的直线与X 轴,Y 轴分别交于P,Q 两点,且|MP |=|MQ |, 则L 的方程是( )A 、x-2y+3=0B 、 2x-y-3=0C 、 2x+y-5=0D 、x+2y-4=0 7、直线mx-y+2m+1=0经过一定点,则该点的坐标是( )A 、(-2,1)B 、(2,1)C 、(1,-2)D 、(1,2)8、 直线0202=++=++n y x m y x 和的位置关系是 ( ) A 、平行 B 、垂直 C 、相交但不垂直 D 、不能确定 9、 如图1,直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则必有( ) A 、 k 1<k 3<k 2 B 、 k 3<k 1<k 2C 、 k 1<k 2<k 3D 、 k 3<k 2<k 110、已知A (1,2)、B (-1,4)、C (5,2),则ΔABC 边AB 上的中线所在的直线方程为( )A 、x+5y-15=0B 、x=3C 、x-y+1=0D 、y-3=0二、填空题(本大题共4小题,每小题5分,共20分)11、直线5x+12y+3=0与直线10x+24y+5=0的距离是 . 12、mx +ny =1(mn ≠0)与两坐标轴围成的三角形面积为 .13、点(1,1)P - 到直线10x y -+=的距离是________________.14、与直线5247=+y x 平行,并且距离等于3的直线方程是____________。
【人教A版】数学必修二:第三章《直线与方程》单元试卷(1)(Word版,含解析)
第三章过关检测(时间90分钟,满分100分)知识点分布表知识点 题号 分值 倾斜角与斜率 7,15 9 平行与垂直 4,5,9,11,12,13,18 22 直线的方程 2,3,4,5,6,8,11,12,15,18 36 交点坐标与距离公式1,10,12,14,16,1733一、选择题(本大题共10小题,每小题4分,共40分)1.动点P 到点A(3,3)的距离等于它到点B(1,-3)的距离,则动点P 的轨迹方程是( ) A.x +3y -2=0B.x +3y +2=0 C.3x +y +2=0D.3x +y -2=02.直线Ax +By +C =0与两坐标轴都相交的条件是( ) A.A 2+B 2≠0 B.C ≠0 C.AB ≠0 D.AB ≠0,C ≠03.直线3x -2y =4的截距式方程是( )A.1243=-y x B.42131=-yxC.1243=-+y x D.1234=-+y x4.已知点P (3,2)与点Q (1,4)关于直线l 对称,则直线l 的方程为( ) A.x -y +1=0B.x -y =0 C.x +y +1=0D.x +y =05.过点P (-1,3)且垂直于直线x -2y +3=0的直线方程为( )A.2x +y -1=0B.2x +y -5=0C.x +2y -5=0D.x -2y +7=06.已知直线Ax +By +C =0在横轴上的截距大于在纵轴上的截距,则A 、B 、C 应满足的条件是( ) A.A >B B.A <B C.0>+B C A C D.0<-BCA C 7.已知点P (x ,-4)在点A(0,8)和B(-4,0)的连线上,则x 的值为( ) A.-2B.2C.-8D.-68.直线(m +2)x +(m 2-2m -3)y =2m 在x 轴上的截距为3,则实数m 的值为( ) A.56B.-6C.56- D.6 9.P 1(x 1,y 1)是直线l :f (x ,y )=0上一点,P 2(x 2,y 2)是直线l 外一点,则方程f (x ,y )+f (x 1,y 1)+f (x 2,y 2)=0所表示的直线与l 的位置关系是( ) A.重合B.平行C.垂直D.相交10.若点P (4,a )到直线4x -3y =1的距离不大于3,则a 的取值范围是( ) A.[0,10] B.(0,10) C.]133,131[D.(-∞,0]∪[10,+∞)二、填空题(本大题共4小题,每小题4分,共16分)11.P (-1,3)在直线l 上的射影为Q (1,-1),则直线l 的方程是_________.12.已知直线l :x -3y +2=0,则平行于l 且与l 的距离为10的直线方程是_________. 13.若三条直线2x -y +4=0,x -y +5=0,2mx -3y +12=0围成直角三角形,则m =__________.14.不论M 为何实数,直线l :(m -1)x + (2m -1) y =m -5恒过一个定点,则此定点坐标为_______.三、解答题(本大题共4小题,共44分)15.(10分)求倾斜角为直线y =-x +1的倾斜角的31,且分别满足下列条件的直线方程: (1)经过点(-4,1); (2)在y 轴上的截距为-10.16.(10分)某供电局计划年底解决本地区最后一个村庄的用电问题,经过测量,若按部门内部设计好的坐标图(即以供电局为原点,正东方向为x 轴的正半轴,正北方向为y 轴的正半轴,长度单位千米),得到这个村庄的坐标是(15,20),离它最近的一条线路所在直线的方程为3x -4y -10=0.问要完成任务,至少需要多长的电线?17.(10分)在△ABC 中,A (m ,2),B (-3,-1),C (5,1).若BC 的中点M 到AB 的距离大于M 到AC 的距离,试求实数M 的取值范围.18.(14分)一条光线经过P (2,3)点,射在直线l :x +y +1=0上,反射后穿过点Q (1,1). (1)求入射光线的方程;(2)求这条光线从P 到Q 的长度.参考答案1解析:线段AB 的中点坐标是(2,0),AB 的斜率31333=-+=AB k , 又∵P 点的轨迹为过AB 的中点且与AB 垂直的直线, ∴)2(31--=x y ,即x +3y -2=0. 答案:A2解析:直线与两坐标轴都相交,即直线不平行于坐标轴, 则A≠0,B≠0,即AB ≠0. 答案:C3解析:直线方程的截距式为1=+b y a x .由此可将方程化为1234=-+y x .答案:D4解析:由条件知,l 为PQ 的中垂线. ∵13124-=--=PQ k , ∴k l =1.又PQ 的中点为(2,3),∴由点斜式方程知,l 的方程为y -3=x -2.∴x -y +1=0. 答案:A5解析:设2x +y +c =0,又过点P (-1,3),则-2+3+c =0,c =-1,即2x +y -1=0. 答案:A6解析:由条件,知A·B·C≠0.在方程Ax +By +C =0中,令x =0,得B C y -=;令y =0,得ACx -=. 由B C A C ->-,得0<-BCA C . 答案:D7解析:由条件知A 、B 、P 三点共线,由k AB =k AP 得x8448--=,∴x =-6. 答案:D8解析:由条件知直线在x 轴上截距为3,即直线过点(3,0),代入得3(m +2)=2m . ∴m =-6. 答案:B9解析:f (x 1,y 1)=0,f (x 2,y 2)=常数,f (x ,y )+f (x 1,y 1)+f (x 2,y 2)=0的斜率和f (x ,y )=0的斜率相等,而与y 轴的交点不同,故两直线平行. 答案:B10解析:由点到直线的距离公式得3)3(4|136|22≤-+--a ,即15|153|≤-a ,∴|a -5|≤5.∴-5≤a -5≤5,即0≤a ≤10. 答案:A11解析:由已知l ⊥PQ ,21113-=--+=PQ k ,∴211=k . ∴l 的方程为)1(211-=+x y .∴x -2y -3=0. 答案:x -2y -3=012解析:设所求直线为x -3y +C =0,由两平行线间的距离,得1031|2|22=+-C ,解得C =12或C =-8.故所求直线方程为x -3y +12=0或x -3y -8=0. 答案:x -3y +12=0或x -3y -8=013解析:设l 1:2x -y +4=0,l 2:x -y +5=0,l 3:2mx -3y +12=0,l 1不垂直l 2,要使围成的三角形为直角三角形,则l 3⊥l 1或l 3⊥l 2. 答案:43-或23- 14解法一:只要取两条直线求其交点即可,令M =1,则l 化为y =-4;令21=m 得l 方程为2921-=-x ,即x =9. 由⎩⎨⎧-==,4,9y x 得定点(9,-4).解法二:l 方程可化为M (x +2y -1)-x -y +5=0, 由⎩⎨⎧-==⎩⎨⎧=+--=-+.4,9,05,012y x y x y x 得∴定点为(9,-4). 答案:(9,-4)15解:由于直线y =-x +1的斜率为-1,所以其倾斜角为135°,由题意知所求直线的倾斜角为45°,所求直线的斜率k =1.(1)由于直线过点(-4,1),由直线的点斜式方程得y -1=x +4,即x -y +5=0;(2)由于直线在y 轴上的截距为-10,由直线的斜截式方程得y =x -10,即x -y -10=0. 16解:根据题意可知点(15,20)到直线3x -4y -10=0的距离即为所求. ∴9545169|10204315|==+-⨯-⨯=d (千米). ∴至少需9千米长的电线. 17解:BC 的中点M 的坐标为(1,0), 设M 到AB ,AC 的距离分别为d 1,d 2, 当m ≠-3且m ≠5时,直线AB 的方程:32121++=++m x y ,即3x -(m +3)y +6-m =0. 直线AC 的方程:55121--=--m x y , 即x -(m -5)y +m -10=0.所以由点到直线的距离公式得186|9|21++-=m m m d ,2610|9|22+--=m m m d .由题意得d 1>d 2, 即2610|9|186|9|22+-->++-m m m m m m ,解得21<m . 当m =-3时,d 1=4,65122=d 满足d 1>d 2. 当m =5时,7341=d ,d 2=4,不满足d 1>d 2. 综上所述, 21<m 时满足题意. 18解:如下图.(1)设点Q ′(x ′,y ′)为Q 关于直线l 的对称点且QQ ′交l 于M 点. ∵1-=l k ,∴k QQ ′=1.∴QQ ′所在直线方程为y -1=1·(x -1), 即x -y =0. 由⎩⎨⎧=-=++,0,01y x y x解得l 与QQ ′的交点M 的坐标为)21,21(--. 又∵M 为QQ ′的中点,由此得⎩⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧-=+=+.2',2',212'1,212'1y x ,y x 得解之∴Q ′(-2,-2).设入射光线与l 交点为N ,则P 、N 、Q ′共线. 又P (2,3),Q ′(-2,-2),得入射光线的方程为222232++=++x y , 即5x -4y +2=0.(2)∵l 是QQ ′的垂直平分线,从而|NQ |=|NQ ′|,∴|PN |+|NQ |=|PN |+|NQ ′|=|PQ ′|=41)22()23(22=+++,即这条光线从P 到Q 的长度是41.。
高中数学必修二第三章《直线与方程》单元测试卷及答案
高中数学必修二第三章《直线与方程》单元测试卷及答案((2套)单元测试题一一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,直线l1、l2、l3的斜率分别为k1、k2、k3,则必有()A.k1<k3<k2 B.k3<k1<k2 C.k1<k2<k3 D.k3<k2<k12.直线x+2y-5=0与2x+4y+a=0之间的距离为5,则a等于()A.0 B.-20 C.0或-20 D.0或-103.若直线l1:ax+3y+1=0与l2:2x+(a+1)y+1=0互相平行,则a的值是()A.-3 B.2 C.-3或2 D.3或-24.下列说法正确的是()A.经过定点P0(x0,y0)的直线都可以用方程y-y0=k(x-x0)表示B.经过定点A(0,b)的直线都可以用方程y=kx+b表示C.不经过原点的直线都可以用方程xa+yb=1表示D.经过任意两个不同的点P1(x1,y1)、P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示5.点M(4,m)关于点N(n,-3)的对称点为P(6,-9),则()A.m=-3,n=10 B.m=3,n=10C.m=-3,n=5 D.m=3,n=56.以A(1,3),B(-5,1)为端点的线段的垂直平分线方程是()A.3x-y-8=0 B.3x+y+4=0C.3x-y+6=0 D.3x+y+2=07.过点M(2,1)的直线与x轴,y轴分别交于P,Q两点,且|MP|=|MQ|,则l的方程是()A.x-2y+3=0 B.2x-y-3=0C .2x +y -5=0D .x +2y -4=08.直线mx -y +2m +1=0经过一定点,则该点的坐标是( ) A .(-2,1)B .(2,1)C .(1,-2)D .(1,2)9.如果AC <0且BC <0,那么直线Ax +By +C =0不通过( ) A .第一象限B .第二象限C .第三象限D .第四象限10.直线2x +3y -6=0关于点(1,-1)对称的直线方程是( ) A .3x -2y +2=0 B .2x +3y +7=0 C .3x -2y -12=0D .2x +3y +8=011.已知点P (a ,b )和Q (b -1,a +1)是关于直线l 对称的两点,则直线l 的方程是( ) A .x +y =0 B .x -y =0C .x +y -1=0D .x -y +1=012.设x +2y =1,x ≥0,y ≥0,则x 2+y 2的最小值和最大值分别为( ) A .15,1B .0,1C .0,15D .15,2二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.不论a 为何实数,直线(a +3)x +(2a -1)y +7=0恒过第________象限. 14.原点O 在直线l 上的射影为点H (-2,1),则直线l 的方程为______________. 15.经过点(-5,2)且横、纵截距相等的直线方程是____________________. 16.与直线3x +4y +1=0平行且在两坐标轴上截距之和为73的直线l 的方程为______________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知直线2x +(t -2)y +3-2t =0,分别根据下列条件,求t 的值: (1)过点(1,1);(2)直线在y 轴上的截距为-3.18.(12分)直线l 过点(1,4),且在两坐标轴上的截距的积是18,求此直线的方程.19.(12分)光线从A(-3,4)点出发,到x轴上的点B后,被x轴反射到y轴上的C点,又被y轴反射,这时反射光线恰好过D(-1,6)点,求直线BC的方程.20.(12分)如图所示,某县相邻两镇在一平面直角坐标系下的坐标为A(1,2),B(4,0),一条河所在的直线方程为l:x+2y-10=0,若在河边l上建一座供水站P,使之到A,B两镇的管道最省,那么供水站P应建在什么地方?21.(12分)已知△ABC的顶点A为(3,-1),AB边上的中线所在直线方程为6x+10y-59=0,∠B的平分线所在直线方程为x-4y+10=0,求BC边所在直线的方程.22.(12分)已知直线l过点P(3,1),且被两平行直线l1:x+y+1=0和l2:x+y+6=0截得的线段长度为5,求直线l的方程.答 案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.【答案】A【解析】由于直线1l 向左倾斜,故10k <,直线2l 与直线3l 均向右倾斜,且2l 更接近y 轴,所以:1320k k k <<<,故选A . 2.【答案】C 3.【答案】A 4.【答案】D【解析】斜率有可能不存在,截距也有可能不存在.故选D . 5.【答案】D【解析】由对称关系462n =+,239m -=-,可得m =3,n =5.故选D . 6.【答案】B【解析】所求直线过线段AB 的中点(-2,2),且斜率k =-3, 可得直线方程为3x +y +4=0.故选B . 7.【答案】D【解析】由题意可知M 为线段PQ 的中点,Q (0,2),P (4,0), 可求得直线l 的方程x +2y -4=0.故选D . 8.【答案】A【解析】将原直线化为点斜式方程为y -1=m (x +2), 可知不论m 取何值直线必过定点(-2,1).故选A . 9.【答案】C【解析】将原直线方程化为斜截式为A Cy x B B=--,由AC <0且BC <0,可知AB >0,直线斜率为负,截距为正,故不过第三象限.故选C . 10.【答案】D【解析】所求直线与已知直线平行,且和点(1,-1)等距, 不难求得直线为2x +3y +8=0.故选D . 11.【答案】D 【解析】∵k PQ =11a bb a+---=-1,∴k l =1.显然x -y =0错误,故选D .12.【答案】A【解析】x 2+y 2为线段AB 上的点与原点的距离的平方,由数形结合知, O 到线段AB 的距离的平方为最小值,即d 2=15,|OB |2=1为最大值.故选A .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.【答案】二【解析】直线方程可变形为:(3x -y +7)+a (x +2y )=0.由⎩⎪⎨⎪⎧ 3x -y +7=0x +2y =0得,⎩⎪⎨⎪⎧x =-2y =1. ∴直线过定点(-2,1).因此直线必定过第二象限. 14.【答案】2x -y +5=0【解析】所求直线应过点(-2,1)且斜率为2,故可求直线为2x -y +5=0. 15.【答案】y =-25x 或x +y +3=0【解析】不能忽略直线过原点的情况. 16.【答案】3x +4y -4=0【解析】所求直线可设为3x +4y +m =0,再由-3m -4m =73,可得m =-4.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.【答案】(1)3;(2)95.【解析】(1)代入点(1,1),得2+(t -2)+3-2t =0,则t =3.(2)令x =0,得y =232t t --=-3,解得t =95.18.【答案】2x +y -6=0或8x +y -12=0. 【解析】设直线l 的方程为x a +yb =1,则18141ab a b=⎧⎪⎨+=⎪⎩,解得36a b =⎧⎨=⎩或3212a b ⎧=⎪⎨⎪=⎩ 则直线l 的方程2x +y -6=0或8x +y -12=0. 19.【答案】5x -2y +7=0. 【解析】如图所示,由题设,点B 在原点O 的左侧,根据物理学知识,直线BC 一定过(-1,6)关于y 轴的对称点(1,6),直线AB 一定过(1,6)关于x 轴的对称点(1,-6)且k AB =k CD , ∴k AB =k CD =4631+--=-52.∴AB 方程为y -4=-52(x +3). 令y =0,得x =-75,∴B 7,05⎛⎫- ⎪⎝⎭.CD 方程为y -6=-52(x +1). 令x =0,得y =72,∴C 70,2⎛⎫ ⎪⎝⎭. ∴BC 的方程为75x -+72y=1,即5x -2y +7=0.20.【答案】见解析. 【解析】如图所示,过A 作直线l 的对称点A ′,连接A ′B 交l 于P , 若P ′(异于P )在直线上,则|AP ′|+|BP ′|=|A ′P ′|+|BP ′|>|A ′B |. 因此,供水站只有在P 点处,才能取得最小值,设A ′(a ,b ), 则AA ′的中点在l 上,且AA ′⊥l ,即1221002221112a b a a ++⎧+⨯-=⎪⎪⎨-⎛⎫⎪⋅-=- ⎪⎪-⎝⎭⎩解得36a b =⎧⎨=⎩即A ′(3,6).所以直线A ′B 的方程为6x +y -24=0,解方程组⎩⎪⎨⎪⎧6x +y -24=0,x +2y -10=0,得38113611x y ⎧=⎪⎪⎨⎪=⎪⎩所以P 点的坐标为⎝⎛⎭⎫3811,3611.故供水站应建在点P ⎝⎛⎭⎫3811,3611处. 21.【答案】2x +9y -65=0. 【解析】设B (4y 1-10,y 1),由AB 中点在6x +10y -59=0上,可得:114716+1059=22y y --⋅⋅-0,y 1=5, 所以B (10,5).设A 点关于x -4y +10=0的对称点为A ′(x ′,y ′),则有3141002211134x y y x ''''⎧+--⋅+=⎪⎪⎨+⎪⋅=-⎪-⎩⇒A ′(1,7),∵点A ′(1,7),B (10,5)在直线BC 上,∴51075110y x --=--,故BC :2x +9y -65=0. 22.【答案】x =3或y =1.【解析】若直线l 的斜率不存在,则直线l 的方程为x =3,此时与直线l 1,l 2的交点分别为A (3,-4),B (3,-9).截得的线段AB 的长为|AB |=|-4+9|=5,符合题意. 若直线l 的斜率存在,则设直线l 的方程为y =k (x -3)+1.解方程组()311y k x x y ⎧=-+⎪⎨++=0⎪⎩得321411k x k k y k -⎧=⎪⎪+⎨-⎪=-⎪+⎩所以点A 的坐标为3241,11k k k k --⎛⎫- ⎪++⎝⎭.解方程组()316y k x x y ⎧=-+⎪⎨++=0⎪⎩得371911k x k k y k -⎧=⎪⎪+⎨-⎪=-⎪+⎩,所以点B 的坐标为3791,11k k k k --⎛⎫- ⎪++⎝⎭.因为|AB |=5,所以2232374191=251111k k k k k k k k --⎡--⎤⎛⎫⎛⎫⎛⎫-+--- ⎪ ⎪ ⎪⎢⎥++++⎝⎭⎝⎭⎝⎭⎣⎦. 解得k =0,即所求直线为y =1.综上所述,所求直线方程为x =3或y =1.单元测试二一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知直线l 经过两点()()1,2,2,1P Q -,那么直线l 的斜率为( )A .3-B .13-C .13D .32.直线l 过点P (-1,2),倾斜角为45°,则直线l 的方程为( ) A .x -y +1=0 B .x -y -1=0 C .x -y -3=0D .x -y +3=03.如果直线ax +2y +2=0与直线3x -y -2=0平行,则a 的值为( ) A .-3 B .-6C .32D .234.直线2x a -2y b =1在y 轴上的截距为( ) A .|b |B .-b 2C .b 2D .±b5.已知点A (3,2),B (-2,a ),C (8,12)在同一条直线上,则a 的值是( ) A .0B .-4C .-8D .46.如果AB <0,BC <0,那么直线Ax +By +C =0不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限7.已知点A (1,-2),B (m,2),且线段AB 的垂直平分线的方程是x +2y -2=0, 则实数m 的值是( )A .-2B .-7C .3D .18.经过直线l 1:x -3y +4=0和l 2:2x +y =5=0的交点,并且经过原点的直线方程是( ) A .19x -9y =0 B .9x +19y =0 C .3x +19y =0D .19x -3y =09.已知直线(3k -1)x +(k +2)y -k =0,则当k 变化时,所有直线都通过定点( ) A .(0,0)B .(17,27) C .(27,17) D .(17,114) 10.直线x -2y +1=0关于直线x =1对称的直线方程是( ) A .x +2y -1=0 B .2x +y -1=0 C .2x +y -3=0D .x +2y -3=011.已知直线l 的倾斜角为135°,直线l 1经过点A (3,2),B (a ,-1),且l 1与l 垂直,直线l 2:2x +by +1=0与直线l 1平行,则a +b 等于( ) A .-4B .-2C .0D .212.等腰直角三角形ABC 中,∠C =90°,若点A ,C 的坐标分别为(0,4),(3,3), 则点B 的坐标可能是( ) A .(2,0)或(4,6)B .(2,0)或(6,4)C .(4,6)D .(0,2)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.直线l 与直线y =1,x -y -7=0分别交于A ,B 两点,线段AB 的中点为 M (1,-1),则直线l 的斜率为_________.14.点A (3,-4)与点B (5,8)关于直线l 对称,则直线l 的方程为_________.15.若动点A ,B 分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则AB 的中点M 到原点的距离的最小值为_________.16.若直线m 被两平行线l 1:x -y +1=0与l 2:x -y +3=0所截得的线段的长为22,则m 的倾斜角可以是①15°;②30°;③45°;④60°;⑤75°,其中正确答案的序号是_________.(写出所有正确答案的序号)三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知直线l 经过点P (-2,5)且斜率为-34,(1)求直线l 的方程;(2)若直线m 平行于直线l ,且点P 到直线m 的距离为3,求直线m 的方程.18.(12分)求经过两直线3x -2y +1=0和x +3y +4=0的交点,且垂直于直线 x +3y +4=0的直线方程.19.(12分)已知A (4,-3),B (2,-1)和直线l :4x +3y -2=0,求一点P , 使|P A |=|PB |,且点P 到直线l 的距离等于2.20.(12分)△ABC 中,A (0,1),AB 边上的高CD 所在直线的方程为x +2y -4=0,AC 边上的中线BE 所在直线的方程为2x +y -3=0. (1)求直线AB 的方程; (2)求直线BC 的方程; (3)求△BDE 的面积.21.(12分)直线过点P (43,2)且与x 轴、y 轴的正半轴分别交于A ,B 两点,O 为坐标原点,是否存在这样的直线同时满足下列条件: (1)△AOB 的周长为12; (2)△AOB 的面积为6.若存在,求直线的方程;若不存在,请说明理由.22.(12分)在平面直角坐标系中,已知矩形ABCD 的长为2,宽为1,AB ,AD 边分别在x 轴、y 轴的正半轴上,A 点与坐标原点重合,如图,将矩形折叠,使A 点落在线段DC 上.(1)若折痕所在直线的斜率为k,试求折痕所在直线的方程;(2)当-2+3≤k≤0时,求折痕长的最大值.答案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【答案】C【解析】根据斜率公式可得,直线l的斜率121213k-==--,故选C.2.【答案】D【解析】由题意k=tan45°=1,∴直线l的方程为y-2=1·(x+1),即x-y+3=0,故选D.3.【答案】B【解析】由题意得a·(-1)-2×3=0,∴a=-6,故选B.4.【答案】B【解析】令x=0,则y=-b2,故选B.5.【答案】C【解析】根据题意可知k AC=k AB,即12283--=223a---,解得a=-8,故选C.6.【答案】D【解析】Ax+By+C=0可化为y=-ABx-CB,由AB<0,BC<0,得-AB>0,-CB>0,故直线Ax+By+C=0经过第一、二、三象限,不经过第四象限.故选D.7.【答案】C【解析】由已知条件可知线段AB 的中点(12m+,0)在直线x +2y -2=0上, 把中点坐标代入直线方程,解得m =3,故选C . 8.【答案】C【解析】解340250x y x y -+=⎧⎨-+=⎩得19737x y ⎧=-⎪⎪⎨⎪=⎪⎩,即直线l 1,l 2的交点是(-197,37),由两点式可得所求直线的方程是3x +19y =0,故选C . 9.【答案】C【解析】直线方程变形为k (3x +y -1)+(2y -x )=0,则直线通过定点(27,17). 故选C . 10.【答案】D【解析】将“关于直线对称的两条直线”转化为“关于直线对称的两点”:在直线x -2y +1=0上取一点P (3,2),点P 关于直线x =1的对称点P ′(-1,2)必在所求直线上,故选D . 11.【答案】B【解析】因为l 的斜率为tan135°=-1,所以l 1的斜率为1,所以k AB =()213a---=1,解得a=0.又l 1∥l 2,所以-2b=1,解得b =-2,所以a +b =-2,故选B . 12.【答案】A【解析】设B (x ,y ),根据题意可得1AC BC k k BC AC ⋅=-⎧⎪⎨=⎪⎩,即3431303y x --⎧⋅=-⎪--=⎩⎪⎨⎪⎧ x =2y =0或⎩⎪⎨⎪⎧x =4y =6, 所以B (2,0)或B (4,6).故选A .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.【答案】-23【解析】设A (x 1,y 1),B (x 2,y 2),则y 1+y 22=-1,又y 1=1,∴y 2=-3,代入方程x -y -7=0,得x 2=4,即B (4,-3),又x 1+x 22=1,∴x 1=-2,即A (-2,1),∴k AB =()3142----=-23.14.【答案】x +6y -16=0【解析】直线l 就是线段AB 的垂直平分线,AB 的中点为(4,2),k AB =6, 所以k l =-16,所以直线l 的方程为y -2=-16(x -4),即x +6y -16=0.15.【答案】3 2【解析】依题意,知l 1∥l 2,故点M 所在直线平行于l 1和l 2,可设点M 所在直线的方程为l :x +y +m =0,根据平行线间的距离公式,得|m +7|2=|m +5|2⇒|m +7|=|m +5|⇒m =-6,即l :x +y -6=0,根据点到直线的距离公式,得M 到原点的距离的最小值为|-6|2=32.16.【答案】①⑤【解析】两平行线间的距离为d =|3-1|1+1=2,由图知直线m 与l 1的夹角为30°,l 1的倾斜角为45°, 所以直线m 的倾斜角等于30°+45°=75°或45°-30°=15°.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.【答案】(1)3x +4y -14=0;(2)3x +4y +1=0或3x +4y -29=0. 【解析】(1)直线l 的方程为:y -5=-34(x +2)整理得3x +4y -14=0.(2)设直线m 的方程为3x +4y +n =0, d|3245|n ⨯-+⨯+=3,解得n =1或-29.∴直线m 的方程为3x +4y +1=0或3x +4y -29=0. 18.【答案】3x -y +2=0.【解析】解法一:设所求直线方程为3x -2y +1+λ(x +3y +4)=0, 即(3+λ)x +(3λ-2)y +(1+4λ)=0,由所求直线垂直于直线x +3y +4=0, 得-13·(-3+λ3λ-2)=-1,解得λ=310,故所求直线方程是3x -y +2=0.解法二:设所求直线方程为3x -y +m =0.由⎩⎪⎨⎪⎧ 3x -2y +1=0,x +3y +4=0,解得⎩⎪⎨⎪⎧x =-1,y =-1,即两已知直线的交点为(-1,-1). 又3x -y +m =0过点(-1,-1),故-3+1+m =0,m =2. 故所求直线方程为3x -y +2=0.19.【答案】P (1,-4)或P (277,-87).【解析】解法1:设点P (x ,y ).因为|P A |=|PB |,① 又点P 到直线l 的距离等于2,所以|4x +3y -2|5=2.②由①②联立方程组,解得P (1,-4)或P (277,-87).解法2:设点P (x ,y ).因为|P A |=|PB |,所以点P 在线段AB 的垂直平分线上.由题意知k AB =-1,线段AB 的中点为(3,-2),所以线段AB 的垂直平分线的方程是y =x -5,所以设点P (x ,x -5). 因为点P 到直线l 的距离等于2,所以()|4352|5x x +--=2,解得x =1或x =277,所以P (1,-4)或P (277,-87).20.【答案】(1)2x -y +1=0;(2)2x -y +1=0;(3)110.【解析】(1)由已知得直线AB 的斜率为2,∴AB 边所在的直线方程为y -1=2(x -0),即2x -y +1=0.(2)由⎩⎪⎨⎪⎧2x -y +1=0,2x +y -3=0得⎩⎪⎨⎪⎧x =12,y =2.即直线AB 与直线BE 的交点为B (12,2).设C (m ,n ),则由已知条件得⎩⎪⎨⎪⎧m +2n -4=0,2·m 2+n +12-3=0,解得⎩⎪⎨⎪⎧m =2,n =1,∴C (2,1).∴BC 边所在直线的方程为y -12-1=x -212-2,即2x +3y -7=0.(3)∵E 是线段AC 的中点,∴E (1,1).∴|BE |=52,由⎩⎪⎨⎪⎧2x -y +1=0,x +2y -4=0得⎩⎨⎧x =25,y =95,∴D (25,95),∴D 到BE 的距离为d =|2×25+95-3|22+12=255,∴S △BDE =12·d ·|BE |=110. 21.【答案】)存在,3x +4y -12=0.【解析】设直线方程为x a +yb =1(a >0,b >0),若满足条件(1),则a +b +a 2+b 2=12 ① 又∵直线过点P (43,2),∵43a +2b=1.②由①②可得5a 2-32a +48=0,解得⎩⎪⎨⎪⎧a =4,b =3,或⎩⎨⎧a =125,b =92,∴所求直线的方程为x 4+y 3=1或5x 12+2y9=1,即3x +4y -12=0或15x +8y -36=0,若满足条件(2),则ab =12,③ 由题意得,43a +2b=1,④由③④整理得a 2-6a +8=0,解得⎩⎪⎨⎪⎧ a =4,b =3或⎩⎪⎨⎪⎧a =2,b =6,∴所求直线的方程为x 4+y 3=1或x 2+y6=1,即3x +4y -12=0或3x +y -6=0.综上所述:存在同时满足(1)(2)两个条件的直线方程,为3x +4y -12=0. 22.【答案】(1)y =kx +k 22+12;(2)2(6-2).【解析】(1)①当k =0时,A 点与D 点重合,折痕所在的直线方程为y =12.②当k ≠0时,将矩形折叠后A 点落在线段DC 上的点记为G (a,1), ∴A 与G 关于折痕所在的直线对称,有k OG ·k =-1⇒1a·k =-1⇒a =-k ,故G 点坐标为(-k,1),从而折痕所在直线与OG 的交点坐标(即线段OG 的中点)为M (-k 2,12).故折痕所在的直线方程为y -12=k (x +k 2),即y =kx +k 22+12.由①②得折痕所在的直线方程为y =kx +k 22+12.(2)当k =0时,折痕的长为2.当-2+3≤k <0时,折痕所在直线交直线BC 于点E (2,2k +k 22+12),交y 轴于点N (0,k 2+12).则|NE |2=22+[k 2+12-(2k +k 22+12)]2=4+4k 2≤4+4(7-43)=32-163.此时,折痕长度的最大值为32-163=2(6-2).而2(6-2)>2,故折痕长度的最大值为2(6-2).。
数学第3章《直线与方程》单元测试
数学第3章《直线与方程》单元测试一、选择题(每小题1分,共20分)1.已知直线l过点A(2,3)和点B(4,5),则过点A且平行于直线l的直线斜率为()。
A.-1B.1C.2D.02.过点(3,-2)和点(-1,4)的直线方程为()。
A.y=6x-20B.y=6x+20C.y=-6x-20D.y=-6x+203.直线l1:2x+y-3=0,直线l2:3x-y+5=0,则直线l1和l2的交点为()。
A.(1,1)B.(-1,-1)C.(-1,1)D.(1,-1)4.直线2x-y-5=0与直线x-2y-1=0的夹角为()。
A.30°B.45°C.60°D.90°5.设直线过点(1,2)且与直线3x-4y+1=0垂直,则该直线方程为()。
A.y-2=4(x-1)B.y-2=-4(x-1)C.y+1=4(x-1)D.y+1=-4(x-1)二、填空题(每小题2分,共20分)1.过点(3,-4)且与直线2x-3y+5=0平行的直线方程为______________。
2.过点(1,2)且与直线4x+y-6=0垂直的直线方程为______________。
3.过点(1,-2)且与直线3x-4y+7=0垂直的直线方程为______________。
4.过点(2,1)且与直线x+2y-3=0垂直的直线方程为______________。
5.设直线过点(1,-3)且平行于直线2x-3y+4=0,直线方程为______________。
三、解答题(共60分)1.有两条直线,直线l1经过点A(1,3)和点B(2,4),直线l2经过点C(2,3)和点D(5,7)。
a)求直线l1和l2的斜率。
b)判断直线l1和l2是否平行,如果不平行,求出直线l1和l2的交点坐标。
2.判断直线y=3x+5与x轴和y轴的交点坐标,并求出与x轴和y轴分别呈45°角的直线方程。
3.直线l1经过点A(1,2)和点B(3,4),直线l2经过点C(0,1)和点D(2,3)。
人教版数学高一第三章直线与方程单元测试精选(含答案)1
人教版高一第三章直线与方程单元测试精选(含答案)学校:___________姓名:___________班级:___________考号:___________评卷人得分一、单选题1.若三条直线2380x y ++=,10x y --=与直线0x ky +=交于一点,则k =()A .-2B .2C .12-D .12【来源】甘肃省武威市第十八中学2018届高一人教版数学必修二第三章直线与方程单元测试题【答案】C2.已知直线1l :(3)(4)10k x k y -+-+=与2l :2(3)230k x y --+=平行,则k 的值是().A .1或3B .1或5C .3或5D .1或2【来源】直线平行问题【答案】C3.如图,已知A(4,0)、B(0,4),从点P(2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是()A .B .C .6D .【来源】浙江省杭州市学军中学2018-2019学年高二上学期期中考试数学试题【答案】D4.已知(2,1),(0,5)A C -,则AC 的垂直平分线所在直线方程为()A .250x y +-=B .250x y +-=C .250x y -+=D .250x y -+=【来源】广州市培正中学2018年高一第二学期数学必修二模块测试卷一【答案】A5.与直线:2l y x =平行,且到l A .2y x =B .25y x =±C .1522y x =-±D .122y x =-±【来源】2012-2013学年福建省晋江市季延中学高一下学期期中考试数学试题(带解析)【答案】B6.经过点()1,1M 且在两坐标轴上截距相等的直线是()A .2x y +=B .1x y +=C .2x y +=或y x =D .1x =或1y =【来源】高二人教版必修2第二章滚动习题(四)[范围1]【答案】C7.若直线310x ++=倾斜角是()A .30°B .120°C .60°D .150°【来源】甘肃省武威市第十八中学2018届高一人教版数学必修二第三章直线与方程单元测试题【答案】B8.等腰Rt △ABC 的直角顶点为C(3,3),若点A 的坐标为(0,4),则点B 的坐标可能是()A .(2,0)或(6,4)B .(2,0)或(4,6)C .(4,6)D .(0,2)【来源】人教A 版高中数学必修二第三章直线与方程单元测试卷(四)【答案】B9.直线ax +y +m =0与直线x +by +2=0平行,则()A .ab =1,bm ≠2B .a =0,b =0,m ≠2C .a =1,b =-1,m ≠2D .a =1,b =1,m ≠2【来源】人教A 版高中数学必修二第三章直线与方程单元测试卷(二)【答案】A10.直线30()x m m R ++=∈的倾斜角为()A .30°B .60︒C .120︒D .150︒【来源】江西省玉山县一中2018-2019学年高一(重点班)下学期第一次月考数学(文)试卷【答案】C11.直线l 过点M (1,-2),倾斜角为30°.则直线l 的方程为()A .x y --1=0B .x y +1=0C .x --1=0D .x -y +1=0【来源】人教A 版高一年级必修二第3章章末综合测评数学试题【答案】C12.已知直线(3k -1)x +(k +2)y -k =0,则当k 变化时,所有直线都通过定点()A .(0,0)B .(17,27)C .(27,17)D .(17,114)【来源】人教A 版高一年级必修二第3章章末综合测评数学试题【答案】C13.直线l 通过两直线7x +5y -24=0和x -y =0的交点,且点(5,1)到直线l 的距离为,则直线l 的方程是()A .3x +y +4=0B .3x -y +4=0C .3x -y -4=0D .x -3y -4=0【来源】人教A 版高中数学必修二第三章章末检测卷【答案】C14.倾斜角为45°,在y 轴上的截距为-1的直线方程是()A .x -y +1=0B .x -y -1=0C .x +y -1=0D .x +y +1=0【来源】人教A 版高中数学必修二第三章章末检测卷【答案】B15.若直线1l :60x ay ++=与2l :()2320a x y a -++=平行,则1l 与2l 间的距离为()A B .823C D .833【来源】2019届高考数学(理)全程训练:天天练31直线方程与两条直线的位置关系【答案】B16.圆(x +1)2+y 2=2的圆心到直线y =x +3的距离为()A .1B .2CD .【来源】人教A 版高中数学必修二综合学业质量标准检测2【答案】C17.若直线y =x +2k +1与直线y =-12x +2的交点在第一象限,则实数k 的取值范围是()A .(-52,12)B .(-25,12)C .[-52,-12]D .[-52,12]【来源】人教A 版高中数学必修二第三章直线与方程单元测试卷(四)【答案】A18.已知点A(2,3),B(-3,-2),若直线l 过点P(1,1)且与线段AB 相交,则直线l 的斜率k 的取值范围是()A .k ≥2或k ≤34B .34≤k ≤2C .k ≥34D .k ≤2【来源】2015-2016学年北大附中河南分校高一3月月考数学试卷(带解析)【答案】A19.若直线mx +ny +3=0在y 轴上的截距为-3,y -=的倾斜角的2倍,则()A .m =,n =1B .m =,n =-3C .m =,n =-3D .m =,n =1【来源】陕西省黄陵中学2018届高三(重点班)上学期期中考试数学(文)试题【答案】D20.已知直线10ax by ++=与直线4350x y ++=平行,且10ax by ++=在y 轴上的截距为13,则+a b 的值为()A .7-B .1-C .1D .7【来源】湖南省怀化市2018年上期高二期末考试文科数学试题【答案】A21.若两直线330x y +-=与610x my ++=平行,则它们之间的距离为()A .105B .2105C .51026D .【来源】青海省海东市平安区第二中学2019-2020学年高二上学期10月月考数学试题【答案】D22.若直线l 经过点(1,1),且与两坐标轴所围成的三角形的面积为2,则直线l 的条数为()A .1B .2C .3D .4【来源】2012年人教A 版高中数学必修二3.2直线的方程练习题(二)【答案】C23.已知直线l 1:x +y +1=0,l 2:x +y -1=0,则l 1,l 2之间的距离为()A .1BC D .2【来源】人教A 版高中数学必修二第三章章末检测卷【答案】B24.如果直线220ax y ++=与直线320x y --=平行,则a 的值为()A .3-B .6-C .32D .23【来源】2015-2016学年湖南省株洲市二中高一上学期期末数学试卷(带解析)【答案】B25.过点(3,1)作圆22(1)1x y -+=的两条切线,切点分别为,A B ,则直线AB 的方程为()A .230x y --=B .230x y +-=C .430x y --=D .430x y +-=【来源】四川省绵阳南山中学2017-2018学年高二上学期期中考试数学(文)试题【答案】B26.已知直线l 的方程是y =2x +3,则l 关于y =-x 对称的直线方程是()A .x -2y +3=0B .x -2y =0C .x -2y -3=0D .2x -y =0【来源】人教A 版高中数学必修二第三章直线与方程单元测试卷(四)【答案】A评卷人得分二、填空题27.已知,,a b c 为直角三角形的三边长,c 为斜边长,若点(,)M m n 在直线:20l ax by c ++=上,则22m n +的最小值为__________.【来源】山东省烟台市2017-2018学年高一上学期期末考试数学试题【答案】428.已知直线l :mx +y +3m −3=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与y 轴交于C ,D 两点,若|AB|=23,则|CD|=__________.【来源】2016年全国普通高等学校招生统一考试理科数学(全国3卷参考版)【答案】429.过点(2,-3)且在两坐标轴上的截距互为相反数的直线方程为_________________.【来源】浙江省诸暨中学2017-2018学年高一下学期期中考试数学试题【答案】352y x y x =-=-或30.若直线l 与直线1y =和70x y --=分别交于M ,N 两点,且MN 的中点为()1,1P -,则直线l 的斜率等于__________.【来源】高二人教版必修2第二章滚动习题(四)[范围1]【答案】23-31.过点(2,3)P ,且在两坐标轴上的截距互为相反数的直线方程是______.【来源】贵州省遵义市第四中学2018-2019学年高二上学期第一次月考数学(文)试题【答案】320x y -=或10x y -+=32.过点(1,2)M 且在两坐标轴上的截距相等的直线方程为____________.【来源】2011年浙江省苍南县三校高二上学期期中考试数学文卷【答案】x+y=3或y=2x33.已知点A(2,1),B(-2,3),C(0,1),则△ABC 中,BC 边上的中线长为________.【来源】人教A 版高中数学必修二第三章直线与方程单元测试卷(四)34.当0<k<12时,两条直线kx -y =k -1,ky -x =2k 的交点在________象限.【来源】人教A 版高中数学必修二第三章直线与方程单元测试卷(一)【答案】第二35.直线l 经过点P (3,2)且与x 轴、y 轴的正半轴分别交于A 、B 两点,△OAB 的面积为12,则直线l 的方程为__________________.【来源】人教A 版高中数学必修二第三章章末检测卷【答案】2x +3y -12=036.过点P(3,4)在两坐标轴上截距相等的直线方程为______________.【来源】人教A 版高一年级必修二第3章章末综合测评2数学试题【答案】y=43x 或x+y-7=037.若直线l 1:ax +3y +1=0与l 2:2x +(a +1)y +1=0互相平行,则a 的值为________.【来源】2015-2016学年湖北省襄州一中等四校高二上学期期中理科数学试卷(带解析)【答案】-338.在极坐标系中,点π(2,6到直线πsin()16ρθ-=的距离是___________【来源】2018年秋人教B 版数学选修4-4模块综合检测试题【答案】1评卷人得分三、解答题39.如图,在平行四边形ABCD 中,边AB 所在直线的方程为220x y --=,点(2,0)C .(Ⅰ)求直线CD 的方程;(Ⅱ)求AB 边上的高CE 所在直线的方程.【来源】2011-2012学年福建师大附中高一上学期期末考试数学【答案】解:(Ⅰ)∵ABCD 是平行四边形∴//AB CD ∴2CD AB k k ==∴直线CD 的方程是2(2)y x =-,即240x y --=(Ⅱ)∵CE ⊥AB∴112CE AB k k =-=-∴CE 所在直线方程为1(2)2y x =--,220x y 即+-=.40.△ABC 中,A (0,1),AB 边上的高CD 所在直线的方程为x +2y -4=0,AC 边上的中线BE 所在直线的方程为2x +y -3=0.(1)求直线AB 的方程;(2)求直线BC 的方程;(3)求△BDE 的面积.【来源】人教A 版高一年级必修二第3章章末综合测评数学试题【答案】(1)210x y -+=;(2)2370x y +-=;(3)11041.已知正方形的中心为()1,0G -,一边所在直线的方程为350x y +-=,求其他三边所在的直线方程.【来源】人教A 版高中数学必修二第三章直线与方程单元测试卷(三)【答案】370,390,330x y x y x y ++=-+=--=.42.已知直线l 经过点P (-2,5),且斜率为3-4(1)求直线l 的方程;(2)若直线m 与l 平行,且点P 到直线m 的距离为3,求直线m 的方程.【来源】黑龙江省大庆市大庆中学2019-2020学年高二上学期期中数学(文)试题【答案】(1)3x +4y -14=0;(2)3x +4y +1=0或3x +4y -29=0.43.已知直线:(1)(23)60m a x a y a -++-+=,:230n x y -+=.(1)当0a =时,直线l 过m 与n 的交点,且它在两坐标轴上的截距相反,求直线l 的方程;(2)若坐标原点O 到直线m m 与n 的位置关系.【来源】山西省晋中市榆社中学2017-2018学年高二期中考试数学(理)试卷【答案】(1)370x y -=或120x y -+=;(2)//m n 或m n⊥44.已知两直线l 1:ax -by +4=0,l 2:(a -1)x +y +b =0.求分别满足下列条件的a ,b 的值.(1)直线l 1过点(-3,-1),并且直线l 1与l 2垂直;(2)直线l 1与直线l 2平行,并且坐标原点到l 1,l 2的距离相等.【来源】2014届高考数学总复习考点引领技巧点拨第九章第3课时练习卷(带解析)【答案】(1)a =2,b =2(2)2{2a b ==-或2{32a b ==45.已知三条直线l 1:2x-y+a=0(a>0),直线l 2:4x-2y-1=0和直线l 3:x+y-1=0,且l 1和l 2的距离是7510.(1)求a 的值.(2)能否找到一点P ,使得P 点同时满足下列三个条件:①P 是第一象限的点;②P 点到l 1的距离是P 点到l 2的距离的12;③P 点到l 1的距离与P 点到l 3若能,求出P 点坐标;若不能,请说明理由.【来源】陕西省黄陵中学2017-2018学年高一下学期6月月考数学试题【答案】(1)a=3;(2)P(137,918).46.如图,在平面直角坐标系xoy 中,点(0,3)A ,直线:24l y x =-,设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线1y x =-上,过点A 作圆C 的切线,求切线方程;(2)若圆C 上存在点M ,使2MA MO =,求圆心C 的横坐标a 的取值范围.【来源】2013年全国普通高等学校招生统一考试数学(江苏卷带解析)【答案】(1)3y =或34120x y +-=;(2)12[0,]5.47.在平面直角坐标系中,已知矩形ABCD 的长为2,宽为1,AB .AD 边分别在x 轴.y 轴的正半轴上,A 点与坐标原点重合(如图所示)。
精品解析:人教a版高中数学必修二第三章直线与方程单元测试卷(一)(解析版).docx
第三章单元测试卷(一)一、选择题(每小题5分,共60分)1.直线3x+^y+l= 0的倾斜角是()A.30°B. 60°C. 120°D. 135°【答案】C【解析】由直线方程3x +馆y+l=0,可得直线的斜率为k =-靠,设直线的倾斜角为0?0 G [0°,180°)»则tanO = -^3,所以8= 120°,故选C.2.直线h与12在x轴上的截距都是m,在y轴上的截距都是n,则h与b满足()A.平行B.重合C.平行或重合D.相交或重合【答案】D【解析】由题意,①当m,n均不为零时,由截距式方程知,1]与-的方稈都是- + -=b故h与】2重合;②当m = n = 0时,两直线都过原点,h与S可能重合,也可能相交,综上,直线1】与】2相交或重合,故选D.x V3.直线〒三=1在y轴上的截距是()a" b_A. |b|B. -b2C. b2D. ±b【答案】By【解析】由题意,令x = 0,则-亍1, BPy = -b2,所以直线在y轴上的截距为"2,故选B.4.两直线3x + y-3 = 0与6x+my+l= 0平行,则它们之间的距离为(A.4B.—137^/W20【答案】D【解析】考点: 两条平行直线间的距离.分析:根据两直线平行(与y轴平行除外)时斜率相等,得到m的值,然后从第一条直线上取一点,求出这点到第二条直线的距离即为平行线间的距离.解:根据两直线平行得到斜率相等即-3=--,解得m=2,则直线为6x+2y+l二0,m取3x+y・3=O上一点(1, 0)求出点到直线的距离即为两平行线间的距离,|6+1| 7 伍所以d= | = ----- .762+ 22 20故选D5.直线(祈一Q)・x + y = 3和直线x+(Q—®y = 2的位置关系是()A.相交但不垂直B.垂直C.平行D.重合【答案】B【解析】由题意可得(筋-返)X 1 4- 1 X (血-筋)=0 ,所以两直线互相垂直,故选B.6.AABC +,点A坐标(4, -1), AB的中点为M(3,2),重心为P (4, 2),则边BC的长为( )A. 5B. 4C. 10D.8【答案】A4 + x —1 + y【解析】试题分析:设点B (x, y),根据中点坐标公式可知3二——,2=—-2 2解得:x=2, y=H5H所以B (2, 5);4 + 2 +m —1 +5 + n设点C (m, n),根据重心坐标公式可知4二----------- ,2= -----------3 3解得:m=6, n=2,所以C (6, 2),根据两点的距离公式可知|BC|=5,故选Ao考点:本题主要考查中点坐标公式、重心坐标公式以及两点间的距离公式,同时考查了计算能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修2第三章《直线与方程》单元测试题
(时间:60分钟,满分:100分)
班别 座号 姓名 成绩
一、选择题(本大题共10小题,每小题5分,共50分)
1.若直线过点(1,2),(4,2+3),则此直线的倾斜角是( ) A 30° B 45° C 60° D 90°
2. 如果直线ax+2y+2=0与直线3x-y-2=0平行,则系数a=
A 、 -3
B 、-6
C 、2
3- D 、3
2
3.点P (-1,2)到直线8x-6y+15=0的距离为( )
(A )2 (B )2
1 (C )1 (D )2
7
4. 点M(4,m )关于点N(n, - 3)的对称点为P(6,-9),则( ) A m =-3,n =10 B m =3,n =10 C m =-3,n =5 D m =3,n =5
5.以A(1,3),B(-5,1)为端点的线段的垂直平分线方程是( )
A 3x-y-8=0 B 3x+y+4=0 C 3x-y+6=0 D 3x+y+2=0
6.过点M(2,1)的直线与X轴,Y轴分别交于P,Q两点,且|MP|=|MQ|, 则L的方程是( )
A x-2y+3=0 B 2x-y-3=0 C 2x+y-5=0 D x+2y-4=0 7. 直线mx-y+2m+1=0经过一定点,则该点的坐标是 A (-2,1) B (2,1) C (1,-2) D (1,2)
8. 直线0202=++=++n y x m y x 和的位置关系是 (A )平行 (B )垂直 (C )相交但不垂直 (D )不能确定 9. 如图1,直线l
1、l
2、l 3的斜率分别为k 1、k 2、k 3,
则必有 A. k 1<k 3<k 2 B. k 3<k 1<k 2
C. k 1<k 2<k 3
D. k 3<k 2<k 1
10.已知A (1,2)、B (-1,4)、C (5,2),则ΔABC 的边
AB 上的中线所在的直线方程为( )
(A )x+5y-15=0 (B)x=3 (C) x-y+1=0 (D)y-3=0
选择题答题表 题号 1 2 3 4 5 6 7 8 9 10 答案
二、填空题(本大题共4小题,每小题5分,共20分)
11.已知点)4,5(-A 和),2,3(B 则过点)2,1(-C 且与B A ,的距离相等的直线方程为 . 12.过点P(1,2)且在X轴,Y轴上截距相等的直线方程是 . 13.直线5x+12y+3=0与直线10x+24y+5=0的距离是 . 14.原点O在直线L上的射影为点H(-2,1),则直线L的方程为 .
三、解答题(本大题共3小题,每小题10分,共30分)
15. ①求平行于直线3x+4y-12=0,且与它的 16.直线x+m 2
y+6=0与直线(m-2)x+3my+2m=0
距离是7的直线的方程; 没有公共点,求实数m 的值. ②求垂直于直线x+3y-5=0, 且与点P(-1,0)
的距离是105
3
的直线的方程.
*17.已知直线l 被两平行直线063=-+y x 033=++y x 和所截得的线段长为3,且直线
过点(1,0),求直线l 的方程.
参考答案:
1.A ;
2.B ;
3.B ;
4.D ;
5.B ;
6.D ;
7.A ;
8.C ;
9.A ;10.A. 11.x+4y-7=0或x=-1;12.x+y-3=0或2x-y=0;13.
26
1
;14.2x-y+5=0; 15. (1)3x+4y+23=0或3x+4y-47=0;(2)3x-y+9=0或3x-y-3=0. 16.m=0或m=-1;17.x=1或3x-4y-3=0.。