九年级数学总复习题十二
九年级数学总复习题十二
再说这个拐弯的形成。一说是明朝在重建这个缩微版的长安城时,见这里正好有唐长安城内皇城的墙基,当时为了省时、省力,就因势利导地利用了其原先的基础和形状。另一说则认为这形状是为 了城池的稳固。这圆转而无死角的形状,在冷兵器时代是更利于防守的。那么人不禁要问:既是如此,那另外的三个角又为什么却是直角呢?显然,上面所言第一种说法似乎就更贴切、更合理。我也是 认同这一说的。有ag积分就能bc贷
2021年九年级中考数学考点归类复习——专题十二:有理数及其运算
2021中考数学考点归类复习——专题十二:有理数及其运算一.填空题1.计算:20﹣(﹣7)+|﹣2|= . 2.在三个有理数3.5、-3、-8中,绝对值最大的数是 。
3.已知|x|=5,|y|=4,且x >y ,则2x+y 的值为 。
4.绝对值小于3.2的所有整数的和为 。
5.已知5=a ,7=b ,且b a b a +=+,则b a -的值为 。
6.绝对值大于3且小于5的所有整数的和是________.7.下列说法:①-a 是负数:②一个数的绝对值一定是正数:③一个有理数不是正数就是负数:④绝对值等于本身的数非负数,其中正确的是________.8.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃。
则月球表面昼夜的温差为________℃9.已知数轴上有A 、B 两点,点A 表示的数是﹣2,A 、B 两点之间的距离为3,则满足条件的点B 所表示的数是 .10.用四舍五入法得到的近似数14.0精确到 位,它表示原数大于或等于 ,而小于 .11.定义一种对正整数n 的“C 运算”:①当n 为奇数时,结果为3n +1;②当n 为偶数时,结果为(其中k 是使为奇数的正整数)并且运算重复进行,例如,n =66时,其“C 运算”如下:二.选择题1. 已知某快递公司的收费标准为:寄一件物品不超过5千克,收费3元;超过5千克的部分每千克加收元.圆圆在该快递公司寄一件8千克的物品,需要付费( )A.16元B.19元C.22元D.25元 2. 下列各数:, , ,,其中无理数的个数是( ) A.1个 B.2个 C.3个D.4个 3. 下列算式中,运算结果为负数的是( ) A. B. C. D.4.一种面粉的质量标识为“20±0.3㎏”,则下列面粉中合格的是( )A. 19.1㎏B. 19.9㎏C. 20.5㎏D. 20.7㎏5.两个互为相反数的有理数相除,商为( )A. 正数B. 负数C. 不存在D. 负数或不存在6.如果两个有理数的和与积都是负数,那么这两个有理数 ( )A. 都是正数B. 都是负数C. 一正一负,且正数的绝对值较大D. 一正一负,且负数的绝对值较大7.下列说法正确的是( )A.a +是正数B.a -是负数C.a +与a -互为相反数D.a +与a -一定有一个是负数8.20202019-...43-21-++++的值等于( )A. 1B. ﹣1C. 1010D. -10109.有理数m ,n 在数轴上的对应点的位置如图所示,则正确的结论是( )A.1m <-B.3n >C.m n <-D.m n >-10.如图,M ,N ,P ,R 分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a 对应的点在M 与N 之间,数b 对应的点在P 与R 之间,若3=+b a ,则原点是( )A.M 或RB.N 或PC.M 或ND.P 或R11.在数轴上,点A 表示数a ,将点A 向右平移4个单位长度得到点B ,点B 表示数b .若|a |=|b |,则a 的值为( )A .﹣3B .﹣2C .﹣1D .112.下列各数中,不能和2,3,4组成比例的是( )A .1B .C .2D .6 13.已知实数a 、b 、c 满足a +b +c =0,abc <0,x =++,则x 2019的值为( ) A .1 B .﹣1 C .32019 D .﹣3201914.数M 精确到0.01时,近似数是2.90,那么数M 的范围是( )A .2.8≤M <3B .2.80≤M ≤3.00C .2.85≤M <2.95D .2.895≤M <2.905 15.若|x |=5,|y |=2且x <0,y >0则x +y=( ) A .7 B .﹣7 C .3 D .﹣316.若|x ﹣a |表示数轴上x 与a 两数对应的点之间的距离,当x 取任意有理数时,代数式|x ﹣6|+|x ﹣2|的最小值为( )A .5B .4C .3D .2三.解答题1.计算: (1)()21118362⎛⎫+-⨯- ⎪⎝⎭(2)⎪⎭⎫ ⎝⎛+÷21-6132301-(3);(4);(5);(6)-2.3-3.7.(7).2.已知ab 2>0,a +b =0,且|a |=2,求|a ﹣|+(b ﹣1)2的值.3.某出租车下午从A地出发沿着东西方向行驶,到晚上6时,半天行驶记录如下:(向东记为正,向西记为负,单位:km)+10,﹣3,+4,+2,+8,+5,﹣2,﹣8,+12,﹣5,﹣7.(1)到晚上6时,出租车在A地的哪一边?距A地多远?(2)若汽车每千米耗油0.06升,从A地出发到晚上6时出租车共耗油多少升?4.画出一条数轴,在数轴上表示数﹣12 , 2,﹣(﹣3),﹣|﹣2 |,0,并把这些数用“<”连接起来.5.已知a,b,c在数轴上的位置如图所示,所对应的点分别为A、B、C.(1)在数轴上表示﹣1的点与表示3的点之间的距离为;由此可得点A、B之间的距离为;(2)化简:﹣|a+b|+2|c﹣b|﹣|b﹣a|;(3)若c2=4,﹣b的倒数是它本身,a的绝对值的相反数是﹣2,M是数轴上表示x的一点,且|x﹣a|+|x ﹣b|+|x﹣c|=20,求x所表示的数.。
人教版九年级上册数学 期末复习试题
人教版九年级上册数学期末复习试题人教版九年级上册数学期末复试题一、填空题1.关于 $x$ 的一元二次方程 $2x-4x+m-1=0$ 有实数根,则$m$ 的取值范围是 $(-\infty。
5]$。
2.若关于 $x$ 的一元二次方程 $ax^2+bx+5=0$ ($a\neq 0$) 的其中一个解是 $x=1$,则 $2017-a-b$ 的值是 $2011$。
3.已知圆锥的底面直径为 $20$ cm,母线长为 $90$ cm,则圆锥的表面积是 $900\pi$ cm²。
4.如图,将 $\triangle ABC$ 绕点 $A$ 顺时针旋转一定角度得到 $\triangle ADE$,点 $B$ 的对应点 $D$ 恰好落在$BC$ 边上。
若 $AC=3$,$\angle B=60^\circ$,则 $BD$ 的长为 $\sqrt{21}$。
5.将抛物线 $y=3x^2-2$ 向左平移 $2$ 个单位,再向下平移 $3$ 个单位,则所得抛物线的解析式为 $y=3(x+2)^2-5$。
6.如图,在 $\odot O$ 中,$AB$、$AC$ 是互相垂直的两条弦,$OD\perp AB$ 于点 $D$,$OE\perp AC$ 于点 $E$,且$AB=8$ cm,$AC=6$ cm,则 $\odot O$ 的半径 $OA$ 长为$5$ cm。
二、选择题7.下列事件是必然事件的是 (B)。
A。
明天太阳从西方升起B。
任意画一个三角形,它的内角和等于 $180^\circ$C。
打开电视机,正在播放“河池新闻”D。
掷一枚硬币,正面朝上8.如图,$\odot O$ 是四边形 $ABCD$ 的内切圆,切点为$E$、$F$、$G$、$H$,已知 $AD\parallel BC$,$AB=CD$,$DO=6$ cm,$CO=8$ cm,则四边形 $ABCD$ 的周长为$40$ cm (C)。
9.正六边形的边心距为 $3$,则该正六边形的边长是$\sqrt{3}$ cm (B)。
人教版九年级数学期末考试综合复习测试题(含答案)
人教版九年级数学期末考试综合复习测试题(含答案)一.选择题(共10小题,每小题3分,共30分)1.计算,3(2)a -结果正确的是( )A .32a -B .36a -C .38a -D .38a2.据教育部统计,2022年高校毕业生约1076万人,用科学记数法表示1076万为( )A .4107610⨯B .61.07610⨯C .71.07610⨯D .80.107610⨯3.下列汽车标志中,是中心对称图形的是( ) A . B . C . D .4.如图所示,直线//EF GH ,射线AC 分别交直线EF 、GH 于点B 和点C ,AD EF ⊥于点D ,如果20A ∠=︒,则(ACH ∠= )A .160︒B .110︒C .100︒D .70︒5.如图,已知ABC ADE ∆≅∆,若70E ∠=︒,30D ∠=︒,则BAC ∠的度数是( )A .70︒B .80︒C .40︒D .30︒6.方程2210x x --=实数根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .不能确定7.在平面直角坐标系中,若点(1,)A a b -+与点(,3)B a b -关于原点对称,则点(,)C a b 在( )A .第一象限B .第二象限C .第三象限D .第四象限8.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与ABC ∆相似的是( )A .B .C .D .9.已知正比例函数11(0)y k x k =≠的图象与反比例函数22(0)k y k x =≠的图象交于A ,B 两点,其中点A 在第二象限,横坐标为2-,另一交点B 的纵坐标为1-,则12(k k ⋅= )A .4B .4-C .1-D .110.已知(3,2)A --,(1,2)B -,抛物线2(0)y ax bx c a =++>顶点在线段AB 上运动,形状保持不变,与x 轴交于C ,D 两点(C 在D 的右侧),下列结论:①2c -;②当0x >时,一定有y 随x 的增大而增大;③若点D 横坐标的最小值为5-,则点C 横坐标的最大值为3;④当四边形ABCD 为平行四边形时,12a =. 其中正确的是( )A .①③B .②③C .①④D .①③④二.填空题(共5小题,每小题3分,共15分)11.因式分解:22416x y -= . 12.若2|2|(3)0x y -++=,则2()x y += .13.已知m ,()n m n ≠是一元二次方程220230x x +-=的两个实数根,则代数式22m m n ++的值为 .14.如图,A ,B ,C ,D 是O 上的四点,且点B 是AC 的中点,BD 交OC 于点E ,60OED ∠=︒,35OCD ∠=︒,那么AOC ∠的度数是 .15.如图,E 为正方形ABCD 内一点,5AD =,4AE =,将ADE ∆绕点A 顺时针旋转90︒到ABE ∆',则边DE 所扫过的区域(图中阴影部分)的面积为 .题14图 题15图三.解答题(一)(共3小题,每小题8分,共24分)16.(1)计算:0111(2021)()2cos45221π--++-︒+; (2)先化简,再求值:23210(1)19x x x x --⋅---,其中x 是1、2、3中的一个合适的数.17.如图,DE AB ⊥于E ,DF AC ⊥于F ,若BD CD =,BE CF =.求证:(1)AD 平分BAC ∠;(2)2AC AB BE =+.18.今年,我市某学校举办了为贫困生捐赠书包活动.该学校用2000元在某商店购进一批学生书包,随后发现书包数量不够,于是又购进第二批同样的书包,所购数量是第一批的3倍,每个书包比第一批购买时贵了4元,结果第二批用了6300元.(1)该学校第一批购进的学生书包每个多少元?(2)如果该商店第一批、第二批学生书包每个的进价分别是68元、70元,售给该学校的这些学生书包,该商店盈利多少元?四.解答题(二)(共3小题,每小题9分,共27分)19.某银行柜台在储户人数较多时常开放1、2、3、4号窗口办理日常业务,一般是先到取号机拿号,按顾客“先到达,先服务“的方式服务(1)求某储户在3号窗口办业务的概率是(2)储户乙取号时发现储户甲已办理完业务准备离开(储户甲、乙先后到达银行取号办理业务),请用树状图或列表法求储户甲、乙两人在同一柜台办理业务的概率.20.如图,在平行四边形ABCD 中,BD AB ⊥,延长AB 至点E ,使BE AB =,连接EC .(1)求证:四边形BECD 是矩形.(2)连接AC ,若3AD =,2CD =,求AC 的长.21.Rt ABO ∆的顶点A 是双曲线k y x =与直线(1)y x k =--+在第二象限的交点,AB 垂直x 轴于点B 且32ABO S ∆=. (1)求这两个函数解析式;(2)求AOC ∆的面积;(3)根据图象直接写出不等式(1)k x k x >-+的解集.五.解答题(三)(共2小题,每小题12分,共24分)22.如图,AB 是⊙O 的直径,C 、D 是⊙O 上两点,连接CD ,C 是的中点,过点C 作AD 的垂线,垂足是E .连接AC 交BD 于点F .(1)求证:CE 是⊙O 的切线;(2)求证:△CDF ∽△CAD ;(3)若DF =2,CD =,求AC 值.23.如图,在平面直角坐标系中,抛物线21y ax bx =++交y 轴于点A ,交x 轴正半轴于点(4,0)B ,交直线AD 于点5(3,)2D ,过点D 作DC x ⊥轴于点C . (1)求抛物线的解析式;(2)点P 为x 轴正半轴上一动点,过点P 作PN x ⊥轴交直线AD 于点M ,交抛物线于点N ;若点P 在线段OC 上(不与O 、C 重合),连接CM ,求PCM ∆面积的最大值。
九年级数学总复习题十二
(2)设1<t<2,当t为何值时,EF与半圆 相切;
(2)若F为AB上一动点,设AF=x, SΔEFC=y,求y关于x 的函数关系式, 并写出函数的定义域;
(3)若BC=2,CD=3,求当F运动到什 么位置时,
B是圆的直径,E是弦CD延 长线上一点,BE⊥CE,连结BD,CB, 求证:AB·BE=BC·BD
海蜇海光靴也突然膨胀了九倍!接着烟橙色筷子般的腰带连续膨胀疯耍起来……短小的脖子透出深灰色的阵阵晚雾……矮小的肩膀透出水蓝色的隐约幽音。紧接着耍了 一套,窜鸟火炕翻两千五百二十度外加貂哼标尺旋十五周半的招数,接着又玩了一个,妖体鸟飞凌空翻七百二十度外加呆转十五周的冷峻招式。最后摆起硕长的脚一摆 ,轻飘地从里面射出一道鬼光,她抓住鬼光迷朦地一转,一样亮晶晶、亮光光的法宝『黄云伞怪榴莲针』便显露出来,只见这个这件玩意儿,一边收缩,一边发出“呜 喂”的余音……忽然间女社长P.卜古娃霓姨婆急速地整出一个俯卧蠕动倒车灯的怪异把戏,,只见她高大的胸部中,变态地跳出九道部落砂尾豺状的木瓜,随着女社 长P.卜古娃霓姨婆的摇动,部落砂尾豺状的木瓜像滑板一样在双脚上傲慢地捣腾出隐隐光网……紧接着女社长P.卜古娃霓姨婆又发出四声浅黑天使色的奇特狂吹, 只见她精悍的土灰色木偶一样的脑袋中,酷酷地飞出九团狗毛状的荒原珍珠牙猩,随着女社长P.卜古娃霓姨婆的扭动,狗毛状的荒原珍珠牙猩像狐妖一样,朝着月光 妹妹空灵玉白的嫩掌斜摇过来!紧跟着女社长P.卜古娃霓姨婆也飞耍着法宝像报亭般的怪影一样朝月光妹妹斜旋过来月光妹妹悠然旋动清丽动人的的秀眉一叫,露出 一副惊人的神色,接着抖动水嫩修长,散发着隐隐兰花香的粉颈,像淡红色的绿舌沙漠猴般的一旋,小巧的水嫩香柔的粉颈突然伸长了二十倍,妙如亮丽音符般跳动的 声音也立刻膨胀了三十倍。接着青春跃动的胸脯奇特紧缩闪烁起来……思维离奇、妙计纷飞的精灵头脑喷出浅黑色的飘飘粼气……丰盈饱满、弹力强劲的屁股跃出湖青 色的点点神香……紧接着来了一出,蹦猪廊柱翻两千五百二十度外加蟹乐锁链旋十五周半的招数,接着又搞了个,团身犀醉后空翻七百二十度外加傻转七周的惊人招式 !最后颤起秀美挺拔、轻盈矫健的玉腿一吼,快速从里面跳出一道亮光,她抓住亮光奇妙地一摆,一样青虚虚、灰叽叽的法宝⊙金丝芙蓉扇@便显露出来,只见这个这 件神器儿,一边飘荡,一边发出“咝咝”的美声!。忽然间月光妹妹急速地使了一套盘坐膨胀冲将军的怪异把戏,,只见她精美透明的冰红色水晶靴中,萧洒地涌出九 缕耍舞着⊙金丝芙蓉扇@的沙漠铜角鸟状的鸭掌,随着月光妹妹的晃动,沙漠铜角鸟状的鸭掌像鼠标一样在双脚上傲慢地捣腾出隐隐光网……紧接着月光妹妹又发出三 声墨浪寒隐色的迷朦猛吹,只见她妙如仙境飞花般的嫩掌中,轻飘地喷出八组扭舞着⊙金丝芙蓉扇@的柱子状的庄园铜筋马,随着月光妹妹的旋动,柱子状的庄园铜筋 马像龙虾一
2022-2023学年九年级数学中考复习《抛物线与x轴交点问题》解答题专题训练(附答案)
2022-2023学年九年级数学中考复习《抛物线与x轴交点问题》解答题专题训练(附答案)1.已知抛物线y=ax2﹣2ax﹣3a与x轴交于A、B两点(点A在点B左侧),顶点为D.(1)请直接写出A、B两点坐标,抛物线的对称轴;(2)若点M(t,y1),N(t+3,y2),P(1,y3)都在抛物线上,且始终满足y1>y2>y3,请结合图象,求出t的取值范围.2.如图,抛物线y=ax2+2x+c.与x轴交于A,B两点,与y轴交于C(0,3),直线y=﹣x﹣1经过点A且与抛物线交于另一点D.(1)求抛物线的解析式;(2)若P是位于直线AD上方的抛物线上的一个动点,连接P A,PD,求△P AD的面积的最大值.3.如图,平面直角坐标系中,矩形ABCD的顶点为A(2,4),B(2,2),C(5,2),D (5,4),抛物线y=ax2+bx交x轴正半轴于点E.(1)若抛物线经过A,C两点,求抛物线的解析式.(2)若a=﹣1;①抛物线交直线CD于点M,当△OME面积为5时,求b的值;②当抛物线与矩形ABCD的边有交点时,直接写出b的取值范围.4.在平面直角坐标系xOy中,已知,抛物线y=mx2+4mx﹣5m.(1)求抛物线与x轴两交点间的距离;(2)当m>0时,过A(0,2)点作直线l平行于x轴,与抛物线交于C、D两点(点C 在点D左侧),C、D横坐标分别为x1、x2,且x2﹣x1=8,求抛物线的解析式.5.对于抛物线y=x2﹣2x﹣3.(1)它与x轴交点的坐标为,与y轴交点的坐标为,顶点坐标为;(2)在坐标系中利用描点法画出此抛物线;x……y……(3)当﹣2<x<2时,直接写出y的取值范围.6.已知二次函数y=x2+mx+m2﹣3(m为常数,m>0)的图象经过点P(2,4).(1)求m的值;(2)判断二次函数y=x2+mx+m2﹣3的图象与x轴交点的个数,并说明理由.7.在平面直角坐标系中,抛物线y=ax2﹣2ax﹣3与x轴交于点A(3,0),与y轴交于点B.(1)求抛物线的解析式及顶点坐标;(2)在如图所示的平面直角坐标系中画出抛物线y=ax2﹣2ax﹣3;(3)若抛物线y=ax2﹣2ax﹣3在直线AB下方的部分与抛物线y'=﹣x2+2x+m只有一个交点,请直接写出m的取值范围.8.如图,已知抛物线C1:y=a(x+4)2﹣6与x轴相交于A、B两点(点A在点B的左侧),且点B的坐标为(2,0);(1)由图象可知,抛物线C1的开口向,当x<﹣4时,y随x的增大而;(2)求a的值;(3)如图,抛物线C2与抛物线C1关于x轴对称,将抛物线C2在x轴上平移,平移后的抛物线记为C3,当抛物线C3与抛物线C1只有一个交点时,求抛物线C3的解析式,以及交点坐标.9.如图,抛物线y=﹣x2+bx+c经过点A(3,0)和B(0,3),与x轴负半轴交于点C,点D是抛物线上的动点.(1)求抛物线的解析式;(2)过点D作DE⊥AB于点E,连接BF,当点D在第一象限且S△BEF=2S△AEF时,求点D的坐标.10.已知二次函数y=ax2+bx+3的图象与x轴、y轴分别交于点A、B、C,且OB=OC,点A坐标为(﹣1,0).(1)求出该二次函数表达式,并求出顶点坐标.(2)将该函数图象沿x轴翻折,如图①,(Ⅰ)请直接写出翻折后的图象对应的函数表达式;(Ⅱ)翻折前后的函数图象在一起构成轴对称图形,请写出对称轴.(3)将两图象在x轴上方的部分去掉,如图②,当直线y=﹣x+k与两抛物线所剩部分有4个交点时,请求出k的取值范围.11.当x=﹣1时,抛物线y=ax2+bx+c取得最大值4,并且抛物线与y轴交于点C(0,3),与x轴交于点A、B.(1)直接写出抛物线的解析式;(2)若点M(m,y1),N(m+2,y2)都在该抛物线上,试比较y1与y2的大小;(3)对于二次函数图象上的两点P(x l,y1),Q(x2,y2),当t﹣1≤x1≤t+2,x2≥2时均满足y1≥y2,请结合函数图象,直接写出t的取值范围.12.如图,抛物线y=ax2+bx+c与x轴交于点A,B,与y轴交于点C,一次函数y=﹣x+3的图象经过点B,C,与抛物线对称轴交于点D,且S△ABD=4,点P是抛物线y=ax2+bx+c 上的动点.(1)求抛物线的函数解析式.(2)当点P在直线BC上方时,求点P到直线BC的距离的最大值.13.如图,抛物线的顶点A是直线OD上一个动点,该抛物线与直线OD 的另一个交点为C,与y轴的交点为B,点D的坐标是(2,2).(1)求点B的纵坐标的最小值,并写出此时点A的坐标.(2)在(1)的条件下,若该抛物线与x轴的两个交点分别为E和F,请直接写出线段EF的长度.14.如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,﹣3),动点P在抛物线上.(1)求抛物线的解析式;(2)若动点P在第四象限内的抛物线上,过动点P作x轴的垂线交直线AC于点D,交x轴于点E,垂足为E,求线段PD的长,当线段PD最长时,求出点P的坐标.15.设二次函数y1=2x2+bx+c(b,c是常数)的图象与x轴交于A,B两点.(1)若A,B两点的坐标分别为(1,0),(2,0),求函数y1的表达式及其图象的对称轴.(2)若函数y1的表达式可以写成y1=2(x﹣h)2﹣2(h是常数)的形式,求b+c的最小值.(3)设一次函数y2=x﹣m(m是常数),若函数y1的表达式还可以写成y1=2(x﹣m)(x﹣m﹣2)的形式,当函数y=y1﹣y2的图象经过点(x0,0)时,求x0﹣m的值.16.如图,抛物线y=ax2+bx+c与x轴交于点B(﹣2,0)、C(4,0)两点,与y轴交于点A(0,2).(1)求出此抛物线和直线AC的解析式;(2)在直线AC上方的抛物线上有一动点M,求点M的横坐标x为何值时四边形ABCM 的面积最大?最大值是多少?并写出此时点M的坐标.17.已知抛物线L1的顶点为(1,),且经过点(0,3),L1关于x轴对称的抛物线为L2.(1)求抛物线L1的表达式;(2)点E在x轴上方的抛物线L1上,过点E作EF∥x轴,与抛物线L1交于点F(点E 在点F的左侧),那么在抛物线L2上是否存在点M、点N,使得四边形EFMN是矩形,且其长与宽的长度之比为3:1?若存在,求出点F的坐标;若不存在,请说明理由.18.如图,抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,已知点A(﹣3,0),抛物线的对称轴是直线x=﹣1,连接BC、AC.(1)用含a的代数式求S△ABC;(2)若S△ABC=6,求抛物线的函数表达式;(3)在(2)的条件下,当m﹣1≤x≤1时,y的最小值是﹣2,求m的值.19.已知抛物线y=ax2﹣mx+2m﹣3经过点A(2,﹣4).(1)求a的值;(2)若抛物线与y轴的公共点为(0,﹣1),抛物线与x轴是否有公共点,若有,求出公共点的坐标;若没有,请说明理由;(3)当2≤x≤4时,设二次函数y=ax2﹣mx+2m﹣3的最大值为M,最小值为N,若=,求m的值.20.设二次函数y=(x﹣a)(x﹣a+2),其中a为实数.(1)若二次函数的图象经过点P(2,﹣1),求二次函数的表达式;(2)把二次函数的图象向上平移k个单位,使图象与x轴无交点,求k的取值范围;(3)若二次函数的图象经过点A(m,t),点B(n,t),设|m﹣n|=d(d≥2),求t的最小值.参考答案1.解:(1)由y=ax2﹣2ax﹣3a得到:y=a(x﹣3)(x+1),故A(﹣1,0),B(3,0).由y=ax2﹣2ax﹣3a得到:y=a(x﹣1)2﹣4a,故抛物线的对称轴是直线x=1;(2)由(1)知,抛物线的对称轴是直线x=1,所以点P(1,y3)是抛物线y=ax2﹣2ax ﹣3a的顶点坐标,∵始终满足y1>y2>y3,∴该抛物线的开口方向向上.当点M(t,y1),N(t+3,y2)都在对称轴左侧时,t+3<1,则t<﹣2.当点M(t,y1),N(t+3,y2)分别位于对称轴两侧时,1﹣t>t+3﹣1,则t<﹣.当t=﹣2时,t+3=1,此时y2=y3,与已知矛盾,故t≠﹣2.综上所述,t的取值范围是t<﹣且t≠﹣2.2.解:(1)∵直线y=﹣x﹣1经过点A,∴令y=0,则0=﹣x﹣1,∴x=﹣1,∴A(﹣1,0),将A(﹣1,0),C(0,3)代入y=ax2+2x+c得:,解得:,∴抛物线的解析式为:y=﹣x2+2x+3;(2)﹣x2+2x+3=﹣x﹣1,解得:x1=﹣1,x2=4,∴D(4,﹣5),过点P作PE∥y轴,交AD于E,设P(t,﹣t2+2t+3),则E(t,﹣t﹣1),∴PE=(﹣t2+2t+3)﹣(﹣t﹣1)=﹣t2+3t+4,∴△P AD的面积=•PE•(4+1)=(﹣t2+3t+4)=﹣(t﹣)2+,当t=时,△P AD的面积最大,且最大值是.3.解:(1)把A(2,4),C(5,2)代入抛物线y=ax2+bx中得:,解得:,∴抛物线的解析式为:y=﹣x2+x;(2)若a=﹣1时,抛物线的解析式为:y=﹣x2+bx,①当x=5时,y=﹣25+5b,∴M(5,﹣25+5b),当y=0时,﹣x2+bx=0,x1=0(舍),x2=b,∴E(b,0),∴S△OME=•OE•y M=b(﹣25+5b)=5,解得:b1=或b2=(不符合题意,舍);②∵y=﹣x2+bx=﹣(x﹣)2+,∴抛物线的顶点坐标为(,),令=x,则抛物线的顶点所在的图象的解析式为:y=x2,当抛物线经过点B时满足题意,将点B的坐标(2,2)代入y=﹣x2+bx得:2=﹣4+2b,∴b=3,当抛物线经过点D时满足题意,将点D的坐标(5,4)代入y=﹣x2+bx得:4=﹣25+5b,∴b=,∴3≤b≤.4.解:(1)令y=0得:mx2+4mx﹣5m=0,∴m(x2+4x﹣5)=0,∵m为二次函数二次项系数,∴m≠0,∴x2+4x﹣5=0,∴x1=﹣5,x2=1,∴与x轴交点坐标为(﹣5,0)和(1,0),∴与x轴两交点间的距离为1﹣(﹣5)=6;(2)∵直线l过点(0,2)且平行于x轴,∴直线l的解析式为y=2,∴y=mx2+4mx﹣5m中令y=2得:∴2=mx2+4mx﹣5m,∴mx2+4mx﹣5m﹣2=0,∴x1+x2=﹣4,x1x2=﹣5﹣,∴(x1﹣x2)2=(x1+x2)2﹣4x1x2=16+20+,∵x2﹣x1=8,∴(x1﹣x2)2=64,∴16+20+=64,36+=64,=28,∴m=,∴y=x2+x﹣.5.解:(1)将y=0代入y=x2﹣2x﹣3得x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴抛物线与x轴交点坐标为(﹣1,0),(3,0),将x=0代入y=x2﹣2x﹣3得y=﹣3,∴抛物线与y轴交点坐标为(0,﹣3),∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线顶点坐标为(1,﹣4),故答案为:(﹣1,0),(3,0);(0,﹣3);(1,﹣4).(2)∵抛物线顶点坐标为(1,﹣4),∴抛物线对称轴为直线x=1,∵抛物线经过(0,﹣3),∴抛物线经过(2,3),列表如下:x…﹣10 1 2 3…y…0 ﹣3 ﹣4 ﹣3…图象如下:(3)将x=﹣2代入y=x2﹣2x﹣3得y=4+4﹣3=5,∵抛物线开口向上,抛物线顶点坐标为(1,﹣4)且经过(2,﹣3),∴当﹣2<x<2时,﹣4≤y<5.6.解:(1)将(2,4)代入y=x2+mx+m2﹣3得4=4+2m+m2﹣3,解得m1=1,m2=﹣3,又∵m>0,∴m=1.(2)∵m=1,∴y=x2+x﹣2,∵Δ=b2﹣4ac=12+8=9>0,∴二次函数图象与x轴有2个交点.7.解:(1)将点A(3,0)代入y=ax2﹣2ax﹣3中,得9a﹣6a﹣3=0,解得a=1.∴抛物线的解析式为y=x2﹣2x﹣3.∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点坐标为(1,﹣4);(2)画出函数y=x2﹣2x﹣3的图象如图1所示:(3)∵y'=﹣x2+2x+m=﹣(x﹣1)2+m+1,∴该抛物线的对称轴为直线x=1,开口向下,与y轴的交点的坐标为(0,m),且可看成由抛物线y=﹣(x﹣1)2沿对称轴(直线x=1)上下平移得到,当抛物线y'=﹣(x﹣1)2+m+1的顶点坐标为(1,﹣4)时,符合题意,即m+1=﹣4,解得m=﹣5;当抛物线y'=﹣(x﹣1)2+m+1经过点B(0,﹣3)时,如图所示,此时有1个交点.将B(0,﹣3)代入y'=﹣(x﹣1)2+m+1,即可解得m=﹣3;当抛物线y'=﹣(x﹣1)2+m+1经过点A(3,0)时,如图3所示,此时没有交点;将A(3,0)代入y'=﹣(x﹣1)2+m+1,即可解得m=3;如图4所示,当﹣3<m<3时,此时有一个交点.综上所述,m的取值范围为﹣3≤m<3或m=﹣5.8.解:(1)由图象和抛物线解析式可知,抛物线C1的开口向上,对称轴为x=﹣4,∴当x<﹣4时,y随x的增大而减小;故答案为:上,减小;(2)把点B的坐标(2,0)代入y=a(x+4)2﹣6得,0=a(2+4)2﹣6,解得:a=;(3)由(2)知抛物线C1的解析式为y=(x+4)2﹣6,∵抛物线C2与抛物线C1关于x轴对称,∴抛物线C2与的解析式为y=﹣(x+4)2+6,∵将抛物线C2在x轴上平移,平移后的抛物线记为C3,∴抛物线C3:y=﹣(x﹣h)2+6,联立得,(x+4)2﹣6=﹣(x﹣h)2+6,整理得:2x2+(8﹣2h)x+h2﹣56=0,∵抛物线C3与抛物线C1只有一个交点,∴Δ=(8﹣2h)2﹣4×2(h2﹣56)=0,整理得:h2+8h﹣128=0,解得:h1=﹣16,h2=8,∴抛物线C3的解析式为y=﹣(x﹣8)2+6或y=﹣(x+16)2+6;把h=8或h=﹣16代入2x2+(8﹣2h)x+h2﹣56=0中,解得:x1=x2=2或x3=x4=﹣10,当x=2时,y=(2+4)2﹣6=0,当x=﹣10时y=(﹣10+4)2﹣6=0,∴抛物线C3与抛物线C1交点坐标为(2,0)或(﹣10,0).9.解:(1)将点A(3,0)和B(0,3)代入y=﹣x2+bx+c,∴,解得,∴y=﹣x2+2x+3;(2)∵A(3,0)和B(0,3),∴OA=OB=3,∴∠BAO=45°,∵DF⊥AB,∴EF=AE,∵AB=3,S△BEF=2S△AEF,∴AE=,∴AF=2,∴F(1,0),∴E(2,1),∴设直线DF的解析式为y=k'x+b',∴,解得,∴y=x﹣1,联立方程组,解得x=或x=,∵点D在第一象限,∴x=,∴D(,).10.解:(1)∵y=ax2+bx+3,∴C(0,3),∵OB=OC,∴B(3,0),又∵A(﹣1,0).∴,解得:,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,∴二次函数表达式为y=﹣x2+2x+3,顶点坐标为(1,4);(2)Ⅰ如图:D(1,4),则D关于x轴的对称点D′坐标为(1,﹣4),∵翻折前后抛物线的形状、大小都相同,开口方向相反,∴翻折后的图象对应的函数表达式为y=(x﹣1)2﹣4=x2﹣2x﹣3;Ⅱ翻折后关于抛物线的对称轴对称,此时对称轴为直线x=1,同时两个图象关于两个图象的交点所在的中线对称,此时对称轴为直线y=0(或x轴);(3)当直线y=﹣x+k过点A时,则有三个交点,把A(﹣1,0)代入y=﹣x+k,得k=﹣1;当直线y=﹣x+k与抛物线y=x2﹣2x﹣3只有一个交点(相切)时,则有三个交点,联立,则x2﹣2x﹣3=﹣x+k,即x2﹣x﹣3﹣k=0,Δ=1﹣4×1×(﹣3﹣k)=13+4k=0,解得:k=﹣,由图像可知,若直线y=﹣x+k与两抛物线所剩部分有4个交点,k的取值范围为﹣<k<﹣1.11.解:(1)由题意设抛物线y=a(x+1)2+4,代入点C(0,3)得,a+4=3,解得a=﹣1,∴抛物线的解析式为y=﹣(x+1)2+4=﹣x2﹣2x+3;(2)∵点M(m,y1),N(m+2,y2)都在该抛物线上,∴y1﹣y2=(﹣m2﹣2m+3)﹣[﹣(m+2)2﹣2(m+2)+3=4m+8,当4m+8>0,即m>﹣2时,y1>y2,当4m+8=0,即m=﹣2时,y1=y2,当4m+8<0,即m<﹣2时,y1<y2.(3)∵二次函数图象的对称轴是直线x=﹣1,∴当x=2与x=﹣4时的函数值相等,∵a<0,∴抛物线的开口方向向下,∵当t﹣1≤x1≤t+2,x2≥2时均满足y1≥y2,∴,解得:﹣3≤t≤0.12.解:(1)∵一次函数y=﹣x+3的图象经过点B,C,∴C(0,3),B(3,0),设点A(m,0),∴抛物线对称轴为x=(3+m),∴点D(+,﹣m+),∵S△ABD=4,∴(3﹣m)(﹣m+)=4,解得:m=﹣1或m=7(舍去),∴点A(﹣1,0),将A,B,C三点坐标代入解析式得:,解得:,∴抛物线的函数解析式为y=﹣x2+2x+3;(2)过点P作PE∥OC交BC于E,PF⊥BC于F,∵OC=OB=3,∠COB=90°,∴∠OCB=∠OBC=45°,∵PE∥OC,∴∠PEF=∠OBC=45°,∴PF=PE×sin45°=PE,∴点P到直线BC的距离的最大只需PE最大,设P(x,﹣x2+2x+3),则点E(x,﹣x+3),∴PE=﹣x2+2x+3﹣(﹣x+3)=﹣x2+3x=﹣(x﹣)2+,∵﹣1<0,∴当x=时,PE最大值为,∴PF最大=PE最大=×=,∴点P到直线BC的距离的最大值为.13.解:(1)设直线OD解析式为y=kx,将(2,2)代入y=kx得2=2k,解得k=1,∴y=x,设点A坐标为(m,m),则抛物线解析式为y=(x﹣m)2+m,将x=0代入y=(x﹣m)2+m得y=m2+m=(m+1)2﹣,∴点B纵坐标最小值为﹣,此时m=﹣1,∴点A坐标为(﹣1,﹣1).(2)由(1)得y=﹣(x+1)2﹣1,将y=0代入y=﹣(x+1)2﹣1得0=﹣(x+1)2﹣1,解得x1=﹣1+,x2=﹣1﹣,∴EF=﹣1+﹣(﹣1﹣)=2.14.解:(1)由题意得,,解得.∴抛物线的解析式为y=x2﹣2x﹣3.(2)设过A、C两点直线的解析式为y=kx+n,由题意得,,解得.∴直线AC的解析式为y=x﹣3.∵点P在第四象限的抛物线上,∴设点P的坐标为(x,x2﹣2x﹣3)且0<x<3.∵PE⊥x轴交直线AC于点D,∴可设点D的坐标为(x,x﹣3),∴PD=|x﹣3﹣(x2﹣2x﹣3)|,∵点D在点P的上方,∴PD=﹣x2+3x(0<x<3),即线段PD的长为﹣x2+3x(0<x<3).∵线段PD的长为﹣x2+3x,∴﹣x2+3x是开口向下的抛物线,∴PD有最大值,∴当x=﹣=时,PD最大值=.∴此时点P的纵坐标为y=﹣2×﹣3=﹣.∴此时点P的坐标为(,﹣).15.解:(1)∵二次函数y1=2x2+bx+c过点A(1,0)、B(2,0),∴y1=2(x﹣1)(x﹣2),即y1=2x2﹣6x+4.∴抛物线的对称轴为直线x=﹣=.(2)把y1=2(x﹣h)2﹣2化成一般式得,y1=2x2﹣4hx+2h2﹣2.∴b=﹣4h,c=2h2﹣2.∴b+c=2h2﹣4h﹣2=2(h﹣1)2﹣4.把b+c的值看作是h的二次函数,则该二次函数开口向上,有最小值,∴当h=1时,b+c的最小值是﹣4.(3)由题意得,y=y1﹣y2=2(x﹣m)(x﹣m﹣2)﹣(x﹣m)=(x﹣m)[2(x﹣m)﹣5].∵函数y的图象经过点(x0,0),∴(x0﹣m)[2(x0﹣m)﹣5]=0.∴x0﹣m=0,或2(x0﹣m)﹣5=0.即x0﹣m=0或x0﹣m=.16.解:(1)将(﹣2,0)、(4,0),(0,2)代入y=ax2+bx+c中得,解得,∴抛物线的解析式为y=﹣x2+x+2.设直线AC的解析式为y=kx+n,将(0,2),(4,0)代入y=kx+n得,解得,∴直线AC的解析式为y=﹣x+2.(2)如图,作ME⊥x轴,交AC于点N,设M点坐标为(m,﹣m2+m+2),则N点坐标为(m,﹣m+2).∴MN=﹣m2+m+2﹣(﹣m+2)=﹣m2+m,∴S四边形ABCM=S△ABC+S△ACM=×6×2+4(﹣m2+m)=﹣(m﹣2)2+8.∴当m=2时,S四边形ABCM有最大值为8,此时M点坐标为(2,2).17.解:(1)∵抛物线L1的顶点为(1,),∴设抛物线L1的解析式为y=a(x﹣1)2+,将(0,3)代入解析式可得:a(0﹣1)2+=3,解得:a=﹣,∴抛物线L1的解析式为y=﹣(x﹣1)2+;(2)存在.∵L1的解析式为y=﹣(x﹣1)2+,且L1、L2关于x轴对称,∴L2的解析式为y=(x﹣1)2﹣,∵E在x轴上方的抛物线L1上,故可设E(m,﹣(m﹣1)2+),∵EF∥x轴,点E在点F的左侧,且对称轴为x=1,∴F(2﹣m,﹣(m﹣1)2+),即EF=2﹣2m,∵四边形EFMN是矩形,∴可设N(m,(m﹣1)2﹣),故EN=﹣(m﹣1)2+﹣(m﹣1)2+=﹣(m﹣1)2+,∵矩形长与宽的长度之比为3:1,当EF为长时:=,整理得:3m2﹣10m﹣32=0,解得:m1=﹣2,m2=,当m=时,EF=2﹣2m=﹣,不符合实际意义,舍去,∴m=﹣2,此时F(4,1);当EF为宽时,=,整理得:m2﹣14m=0,解得:m1=0,m2=14,当m=14时,EF=2﹣2m=﹣26,不符合实际意义,舍去,∴m=0,此时F(2,3).综上所述:F(2,3)或(4,1).18.解:(1)∵A(﹣3,0),对称轴为x=﹣1,点B的坐标为:(1,0);∵点B(1,0)在抛物线y=ax2+bx+c上,∴a+b+c=0,∵函数的对称轴为:x=﹣1=﹣∴b=2a,将b=2a代入a﹣b+c=0得:c=﹣3a,故抛物线的表达式为:y=ax2+2ax﹣3a,∴C(0,﹣3a),∵a>0,∴OC=3a,∴S△ABC=AB•OC=×4×3a=6a;(2)∵S△ABC=6a=6,∴a=1,∴抛物线的函数表达式为y=x2+2x﹣3;(3)①当m﹣1≥﹣1时,即m≥0,函数在x=m﹣1时,取得最小值,即:(m﹣1)2+2(m+1)﹣3=﹣2,解得:m=±(舍去负值),故m=;②当m﹣1<﹣1,即m<0时,函数在顶点处取得最小值,而顶点纵坐标为﹣4≠﹣2,故不存在m值;综上,m=.19.解:(1)∵抛物线y=ax2﹣mx+2m﹣3经过点A(2,﹣4),∴4a﹣2m+2m﹣3=﹣4,解得:a=﹣;(2)由(1)知a=﹣,∴抛物线解析式为y=﹣x2﹣mx+2m﹣3,∵抛物线与y轴的公共点为(0,﹣1),∴2m﹣3=﹣1,解得m=1,∴y=﹣x2﹣x﹣1,∴Δ=b2﹣4ac=(﹣1)2﹣4×(﹣)×(﹣1)=1﹣1=0,∴抛物线与x轴是有一个公共点,令y=0,则﹣x2﹣x﹣1=0,解得:x1=x2=﹣2,∴公共点的坐标为(﹣2,0);(3)由(1)知,抛物线解析式为y=﹣x2﹣mx+2m﹣3,∴对称轴为直线x=﹣=﹣2m,①当﹣2m<2,即m>﹣1时,∵a<0,抛物线开口向下,∴当2≤x≤4时,y随x的增大而减小,∴当x=2时,M=y max=﹣×22﹣2m+2m﹣3=﹣4,当x=4时,N=y min=﹣×16﹣4m+2m﹣3=﹣2m﹣7,∵=,∴=,解得:m=﹣,不符合题意;②当2≤﹣2m≤4即﹣2≤m≤﹣1时,若直线x=2与直线x=﹣2m接近时,则当x=﹣2m时y取得最大值,即M=﹣×(﹣2m)2﹣m×(﹣2m)+2m﹣3=m2+2m ﹣3,当x=4时,y取得最小值,即N=﹣×42﹣4m+2m﹣3=﹣2m﹣7,∵=,∴=,解得:m1=﹣,m2=﹣(不合题意,舍去);若直线x=4与直线x=﹣2m接近时,则当x=﹣2m时y取得最大值,即M=﹣×(﹣2m)2﹣m×(﹣2m)+2m﹣3=m2+2m ﹣3,当x=2时,y取得最小值,即N=﹣×22﹣2m+2m﹣3=﹣4,∵=,∴=,解得:m1=,m2=(不符合题意,舍去);③当﹣2m>4即m<﹣2时,∵a<0,抛物线开口向下,∴当2≤x≤4时,y随x的增大而增大,∴当x=2时,N=﹣×22﹣2m+2m﹣3=﹣4,当x=4时,M=﹣×16﹣4m+2m﹣3=﹣2m﹣7,∵=,∴=,解得:m=﹣(不符合题意,舍去),综上所述,m的值为﹣或.20.解:(1)∵二次函数的图象经过点P(2,﹣1),∴(2﹣a)(2﹣a+2)=﹣1,解得:a=3,∴y=(x﹣3)(x﹣3+2)=x2﹣4x+3,∴二次函数的表达式为y=x2﹣4x+3;(2)由二次函数的交点式得二次函数与x轴交点横坐标x1=a,x2=a﹣2,∴二次函数的对称轴为直线x==a﹣1,把x=a﹣1代入解析式得顶点纵坐标为﹣1,∴将二次函数图象向上平移k个单位可得顶点纵坐标为k﹣1,∵图象与轴无交点,∴k﹣1>0,∴k>1;(3)∵二次函数的对称轴为直线x==a﹣1,不妨设m<n,∵|m﹣n|=d,∴m=a﹣1﹣,n=a﹣1+,把x=a﹣1﹣,y=t代入函数解析式,得t=d2﹣1,∵d≥2,∴t的最小值为0.。
数学九年级上册复习题答案
数学九年级上册复习题答案数学九年级上册复习题答案数学是一门抽象而又实用的学科,它贯穿了我们生活的方方面面。
在九年级上册的学习中,我们学习了许多重要的数学知识和技巧。
为了帮助大家更好地复习和巩固所学内容,下面将给出一些九年级上册的复习题答案。
一、整式的加减法和乘法1. 将下列各式化为最简整式:a) 3x + 2x - x + 5 - 2答案:4x + 3b) 5a - 2b + 3a + 4b - 6a答案:-2a + 2b2. 计算下列各式的值:a) 2x - 3y,当x = 4,y = -2时答案:14b) 3a² + 2b,当a = -1,b = 5时答案:133. 将下列各式相乘,并化简结果:a) (x + 3)(x - 2)答案:x² + x - 6b) (2a - 3b)(-a + b)答案:-2a² + 5ab - 3b²二、一元一次方程与不等式1. 解下列方程:a) 3x + 5 = 14答案:x = 3b) 2(3x - 1) = 10答案:x = 22. 解下列不等式,并表示解集:a) 4x + 3 > 15答案:x > 3b) 2(x - 1) ≤ 8答案:x ≤ 5三、平面图形的认识与计算1. 计算下列图形的面积:a) 长方形,长为5cm,宽为3cm 答案:15cm²b) 正方形,边长为6m答案:36m²2. 计算下列图形的周长:a) 长方形,长为8cm,宽为4cm 答案:24cmb) 正方形,边长为5m答案:20m四、立体图形的认识与计算1. 计算下列图形的体积:a) 长方体,长为6cm,宽为4cm,高为3cm答案:72cm³b) 正方体,边长为5m答案:125m³2. 计算下列图形的表面积:a) 长方体,长为8cm,宽为5cm,高为4cm答案:186cm²b) 正方体,边长为6m答案:216m²五、数据的收集、整理与分析1. 根据下列数据,绘制条形统计图:年份:2016 2017 2018 2019 2020销量: 50 60 45 70 80答案:请根据数据自行绘制条形统计图。
(word完整版)九年级数学总复习试卷及参考答案
九年级数学总复习练习卷一.选择题(共10小题)1.在Rt△ABC中,∠C=90°,cosA=,则tanB等于()A.B.C.D.2.在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C对边,如果3a=4b,则cosB的值是()A.B.C.D.3.在△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C的对边,下列关系中错误的是()A.b=c•cosB B.b=a•tanB C.b=c•sinB D.a=b•tanA 4.一斜坡的坡度是1:,则此斜坡的坡角是()A.15°B.30°C.45°D.60°5.∠A为锐角,若cosA=,则∠A的度数为()A.75°B.60°C.45°D.30°6.如图,在△ABC中,∠C=90°,AB=10,BC=8,则sin∠A=()A.B.C.D.7.在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,tanA 的值为()A.B.C.D.38.已知Rt△ABC中,∠C=90°,tanA=,BC=8,则AB等于()A.6B.C.10D.129.在Rt△ABC中,∠C=90°,∠B=25°,AB=5,则BC的长为()A.5sin25°B.5tan65°C.5cos25°D.5tan25°10.南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向10(1+)海里的C处,为了防止某国海巡警干扰,请求我A处的渔监船前往C处护航.如图,已知C位于A处的东北方向上,A位于B的北偏西30°方向上,则A 和C之间的距离为()A.10海里B.20海里C.20海里D.10海里二.填空题(共6小题)11.已知α为锐角,且sinα=cosα,则α=.12.如果α是锐角,且cotα=tan25°,那么α=度.13.小明同学沿坡度为i=1:的山路向上行走了100米,则小明上升的高度是米.14.若tanα=5,则=.15.如图是某幼儿园的滑滑梯的简易图,已知滑坡AB的坡度是1:3,滑坡的水平宽度是6m,则高BC为m.16.小明沿着坡度为1:的坡面向上走了300米,此时小明上升的垂直高度为米.三.解答题(共11小题)17.如图,某渔船向正东方向航行,在B处测得A岛在北偏东的45°方向,岛C在B处的正东方向且相距30海里,从岛C测得A岛在北偏西的60°方向,已知A岛周围8海里内有暗礁.如果渔船继续向东航行,有无触礁危险?(≈1.4,≈1.7)18.计算:在一次数学社团活动课上,同学们测量一座古塔CD的高度,他们首先在A处安置测量器,测得塔顶C的仰角∠CFE=30°,然后往塔的方向前进100米到达B处,此时测得塔顶C的仰角∠CGE=60°,已知测量器高1.5米,请你根据以上数据计算出古塔CD的高度.(保留根号)19.如图,在Rt△ABC中,∠C=90°,BC=6,tan∠A=.求AB的长和sin∠B 的值.20.计算:﹣sin30°(cos45°﹣sin60°)21.计算:(1)sin260°﹣tan30°•cos30°+tan45°(2)cos245°+sin245°+sin254°+cos25422.如图,学校的实验楼对面是一幢教工宿舍楼,小敏在实验楼的窗口C测得教工宿台楼顶部D仰角为15°,教学楼底部B的俯角为22°,量得实验楼与教学楼之间的距离AB=30m.(1)求∠BCD的度数.(2)求教工宿舍楼的高BD.(结果精确到0.1m,参考数据:tanl5°≈0.268,tan22°=0.404)23.如图,在Rt△ABC中,∠C=90°,D为AC上的一点,CD=3,AD=BD=5.求∠A的三个三角函数值.25.阅读理解:我们已经学习的直角三角形知识包括:勾股定理,30°、45°特殊角的直角三角形的边之间的关系等,在解决初中数学问题上起到重要作用,锐角三角函数是另一个研究直角三角形中边角间关系的知识,通过锐角三角函数也可以帮助解决数学问题.阅读下列材料,完成习题:如图1,在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A 的正弦(sine),记作sinA,即sinA==例如:a=3,c=7,则sinA=问题:在Rt△ABC中,∠C=90°(1)如图2,BC=5,AB=8,求sinA的值.(2)如图3,当∠A=45°时,求sinB的值.(3)AC=2,sinB=,求BC的长度.26.济南市纬十二路的一座过街天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(1)求新坡面的坡角a;(2)原天桥底部正前方7米处(PB的长)有一文化墙PM,若新坡面下A 处与文化墙之间需留下至少3米宽的人行道,问文化墙是否需要拆除?请说明理由.(约为1.732)27.阅读下列材料,并完成相应的任务.初中阶段,我们所学的锐角三角函数反映了直角三角形中的边角关系:sinα=cosα=tanα=一般地,当α、β为任意角时,sin(α+β)与sin(α﹣β)的值可以用下面的公式求得:sin(α+β)=sinαcosβ+cosαsinβsin(α﹣β)=sinαcosβ﹣cosαsinβ例如sin15°=sin(45°﹣30°)=sin45°cos30°﹣cos45°sin30°=根据上述材料内容,解决下列问题:(1)计算:sin75°=;(2)在Rt△ABC中,∠A=75°,∠C=90°,AB=4,请你求出AC和BC的长.九年级数学总复习练习卷一.选择题(共10小题)1.在Rt△ABC中,∠C=90°,cosA=,则tanB等于()A.B.C.D.【分析】根据题意画出图形,进而表示出AC,BC,AB的长,进而求出答案.【解答】解:如图所示:∵cosA=,∴设AC=7x,AB=25x,则BC=24x,则tanB=.故选:C.【点评】此题主要考查了互余两角三角函数关系,正确表示出三角形各边长是解题关键.2.在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C对边,如果3a=4b,则cosB的值是()A.B.C.D.【分析】根据锐角三角函数的定义可得cosB=,然后根据题目所给3a=4b 可求解.【解答】解:因为在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C 对边,如果3a=4b,令b=3x,则a=4x,所以c=5x,所以cosB=故选:D.【点评】本题考查了锐角三角函数的定义,解答本题的关键是掌握cosB=,3.在△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C的对边,下列关系中错误的是()A.b=c•cos B B.b=a•tanB C.b=c•sinB D.a=b•tanA 【分析】本题可以利用锐角三角函数的定义求解即可.【解答】解:在Rt△ABC中,∠C=90°,则tanA=,tanB=,cosB=,stnB=;因而b=c•sinB=a•tanB,a=b•tanA,错误的是b=c•cosB.故选:A.【点评】利用锐角三角函数的定义,正确理解直角三角形边角之间的关系.在直角三角形中,如果已知一边及其中的一个锐角,就可以表示出另外的边.4.一斜坡的坡度是1:,则此斜坡的坡角是()A.15°B.30°C.45°D.60°【分析】坡度=坡角的正切值,依此求出坡角的度数.【解答】解:设坡角为α,由题意知:tanα==,∴∠α=30°.即斜坡的坡角为30°.故选:B.【点评】此题考查的是解直角三角形的应用﹣坡度坡角问题,坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h:l=tanα.5.∠A为锐角,若cosA=,则∠A的度数为()A.75°B.60°C.45°D.30°【分析】根据特殊角的三角函数值求解.【解答】解:∵∠A为锐角,cosA=,∴∠A=60°.故选:B.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.6.如图,在△ABC中,∠C=90°,AB=10,BC=8,则sin∠A=()A.B.C.D.【分析】根据锐角的正弦等于对边比斜边列式计算即可得解.【解答】解:∵∠C=90°,AB=10,BC=8,∴在Rt△ABC中,sinA===,故选:A.【点评】本题考查的是锐角三角函数的定义,掌握锐角A的对边a与斜边c 的比叫做∠A的正弦是解题的关键.7.在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,tanA 的值为()A.B.C.D.3【分析】根据锐角三角函数的定义即可求出答案.【解答】解:由题意可知:sinA===,∴tanA==,故选:B.【点评】本题考查锐角三角函数,解题的关键是熟练运用锐角三角函数的定义,本题属于基础题型.8.已知Rt△ABC中,∠C=90°,tanA=,BC=8,则AB等于()A.6B.C.10D.12【分析】根据锐角三角函数的定义即可求出答案.【解答】解:∵tanA=,∴sinA=,∴=,∴AB=10,故选:C.【点评】本题考查锐角三角函数,解题的关键是熟练运用锐角三角函数的定义,本题属于基础题型.9.在Rt△ABC中,∠C=90°,∠B=25°,AB=5,则BC的长为()A.5sin25°B.5tan65°C.5cos25°D.5tan25°【分析】在Rt△ABC中,由AB及∠B的值,可求出BC的长.【解答】解:在Rt△ABC中,∠C=90°,∠B=25°,AB=5,∴BC=AB•cos∠B=5cos25°.故选:C.【点评】本题考查了解直角三角形,牢记直角三角形中边角之间的关系是解题的关键.10.南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向10(1+)海里的C处,为了防止某国海巡警干扰,请求我A处的渔监船前往C处护航.如图,已知C位于A处的东北方向上,A位于B的北偏西30°方向上,则A 和C之间的距离为()A.10海里B.20海里C.20海里D.10海里【分析】过点A作AD⊥BC于点D,设AD=x,则CD=x,AC=x,BD=x,结合BC=10(1+)即可求出x的值,进而即可得出A和C之间的距离.【解答】解:过点A作AD⊥BC于点D,如图所示.设AD=x,则CD=x,AC=x,BD=x.∵BC=BD+CD=(+1)x=10(1+),∴x=10,∴AC=10.故选:A.【点评】本题考查了解直角三角形的应用﹣方向角问题,通过解一元一次方程求出AD的长度是解题的关键.二.填空题(共6小题)11.已知α为锐角,且sinα=cosα,则α=45°.【分析】根据一个角的正弦等于这个角的余角的余弦解答.【解答】解:∵sinα=cos(90°﹣α),∴α=90°﹣α,解得,α=45°,故答案为:45°.【点评】本题考查的是同角三角函数的关系,掌握一个角的正弦等于这个角的余角的余弦是解题的关键,12.如果α是锐角,且cotα=tan25°,那么α=65度.【分析】依据α是锐角,且cotα=tan25°,即可得出α=65°.【解答】解:∵α是锐角,且cotα=tan25°,∴α=65°,故答案为:65.【点评】本题主要考查了互余两角三角函数的关系,若∠A+∠B=90°,那么sinA=cosB或sinB=cosA.13.小明同学沿坡度为i=1:的山路向上行走了100米,则小明上升的高度是50米.【分析】由斜坡的坡度i=1:=,可得坡角α的度数,再求得斜坡的正弦值sinα,那么它垂直上升的高度可利用正弦函数求得.【解答】解:∵斜坡的坡度i=1:=,∴坡角α=60°,∴斜坡的正弦值sinα=,∴小明上升的高度是100×sinα=50(米).故答案为50.【点评】本题考查了解直角三角形的应用﹣﹣﹣坡度坡角问题,根据坡度求出坡角是解题的关键.坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h:l=tanα.14.若tanα=5,则=.【分析】根据同角的三角函数的关系即可求出答案.【解答】解:原式=∵tanα=5,∴原式=故答案为:【点评】本题考查同角三角函数的关系,解题的关键熟练运用同角三角函数的关系,本题属于基础题型.15.如图是某幼儿园的滑滑梯的简易图,已知滑坡AB的坡度是1:3,滑坡的水平宽度是6m,则高BC为2m.【分析】根据滑坡的坡度及水平宽,可求出坡面的铅直高度,此题得解.【解答】解:∵滑坡AB的坡度是1:3,滑坡的水平宽度是6m,∴AC=6m,∴BC=×6=2m.故答案为:2.【点评】本题考查了解直角三角形的应用中的坡度坡角问题,牢记坡度的定义是解题的关键.16.小明沿着坡度为1:的坡面向上走了300米,此时小明上升的垂直高度为150米.【分析】根据坡度算出坡角的度数,利用坡角的正弦值即可求解.【解答】解:∵坡度tanα==1:=,∴α=30°.∴上升的垂直高度=坡长×sin30°=300×=150(米).故答案为150.【点评】此题考查了解直角三角形的应用﹣坡度坡角问题,坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h:l=tanα.掌握坡度、坡角的定义是解答本题的关键.三.解答题(共11小题)17.如图,某渔船向正东方向航行,在B处测得A岛在北偏东的45°方向,岛C在B处的正东方向且相距30海里,从岛C测得A岛在北偏西的60°方向,已知A岛周围8海里内有暗礁.如果渔船继续向东航行,有无触礁危险?(≈1.4,≈1.7)【分析】判断渔船有无危险只要求出点A到BC的距离,与8海里比较大小就可以.【解答】解:若渔船继续向东航行,无触礁的危险.理由如下:如图,过点A作AD⊥BC于点D.由题意得:∠ABD=45°,∠ACD=30°.设AD=x海里.在Rt△ABD中,∵∠ABD=45°,∴BD=AD=x海里.在Rt△ACD中,∵∠ACD=30°,∴CD=AD=x海里.∵BD+DC=30,∴x+x=30,解得x=15(﹣1),17(﹣1)≈10.5>8,即:若渔船继续向东航行,无触礁危险.【点评】本题考查了解直角三角形的应用﹣方向角问题,特殊角的三角函数等知识,解题的关键是添加辅助线构造直角三角形,把实际问题转化为解直角三角形问题,属于中考常考题型.18.计算:在一次数学社团活动课上,同学们测量一座古塔CD的高度,他们首先在A处安置测量器,测得塔顶C的仰角∠CFE=30°,然后往塔的方向前进100米到达B处,此时测得塔顶C的仰角∠CGE=60°,已知测量器高1.5米,请你根据以上数据计算出古塔CD的高度.(保留根号)【分析】先分析图形,根据题意构造直角三角形.本题涉及到两个直角三角形△CEF、△CGE,利用其公共边CE构造等量关系,借助FG=EF﹣GE=100,构造关系式求解.【解答】解:由题意知CD⊥AD,EF∥AD.∴∠CEF=90°.设CE=x米,∵在Rt△CEF中,tan∠CFE=,∴EF===x,∵在Rt△CEG中,tan∠CGE=,∴GE===x.∵FG=EF﹣GE=100,∴x﹣x=100,解得x=50.∴CD=CE+ED=50+1.5(米).答:古塔CD的高度是(50+1.5)米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,此类题目要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.19.如图,在Rt△ABC中,∠C=90°,BC=6,tan∠A=.求AB的长和sin∠B 的值.【分析】根据∠A的正切值用BC表示出AC,再利用勾股定理列式求解即可得到BC的长,然后求出AB的长,再根据锐角的正弦等于对边比斜边列式计算即可得解.【解答】解:∵在Rt△ABC中,∠C=90°,BC=6,tan∠A==,∴AC=12,∴AB===6,∴sin∠B===.【点评】本题考查了锐角三角函数的定义,勾股定理,用BC表示出AC是解题的关键.20.计算:﹣sin30°(cos45°﹣sin60°)【分析】依据30°、45°、60°角的各种三角函数值,即可得到计算结果.【解答】解:原式=﹣(﹣)=﹣==【点评】本题主要考查了特殊角的三角函数值,其应用广泛,一是它可以当作数进行运算,二是具有三角函数的特点,在解直角三角形中应用较多.21.计算:(1)sin260°﹣tan30°•cos30°+tan45°(2)cos245°+sin245°+sin254°+cos254°【分析】根据特殊角的锐角三角函数的值即可求出答案.【解答】解:(1)原式=()2﹣×+1=﹣+1=,(2)原式=(cos245°+sin245°)+(sin254°+cos254°)=1+1=2【点评】本题考查锐角三角函数的定义,解题的关键是熟练运用特殊角的锐角三角函数的定义,本题属于基础题型.22.如图,学校的实验楼对面是一幢教工宿舍楼,小敏在实验楼的窗口C测得教工宿台楼顶部D仰角为15°,教学楼底部B的俯角为22°,量得实验楼与教学楼之间的距离AB=30m.(1)求∠BCD的度数.(2)求教工宿舍楼的高BD.(结果精确到0.1m,参考数据:tanl5°≈0.268,tan22°=0.404)【分析】(1)作CH⊥BD于H,如图,利用仰角和俯角定义得到∠DCH=15°,∠BCH=22°,然后计算它们的和即可得到∠BCD的度数;(2)利用正切定义,在Rt△DCH中计算出DH=30tan15°=8.04,在Rt△BCH 中计算出BH=30tan22°=12.12,然后计算BH+DH即可得到教工宿舍楼的高BD.【解答】解:(1)作CH⊥BD于H,如图,根据题意得∠DCH=15°,∠BCH=22°,∴∠BCD=∠DCH+∠BCH=15°+22°=37°;(2)易得四边形ABHC为矩形,则CH=AB=30,在Rt△DCH中,tan∠DCH=,∴DH=30tan15°=30×0.268=8.04,在Rt△BCH中,tan∠BCH=,∴BH=30tan22°=30×0.404=12.12,∴BD=12.12+8.04=20.16≈20.1(m).答:教工宿舍楼的高BD为20.1m.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.23.计算:sin45°+cos45°.【分析】直接利用特殊角的三角函数值代入求出答案.【解答】解:原式=+=.【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.24.如图,在Rt△ABC中,∠C=90°,D为AC上的一点,CD=3,AD=BD=5.求∠A的三个三角函数值.【分析】在Rt△BCD中由勾股定理求得BC=4,在Rt△ABC中求得AB=4,再根据三角函数的定义求解可得.【解答】解:在Rt△BCD中,∵CD=3、BD=5,∴BC===4,又AC=AD+CD=8,∴AB===4,则sinA===,cosA===,tanA===.【点评】本题主要考查锐角的三角函数的定义,解题的关键是掌握勾股定理及三角函数的定义.25.阅读理解:我们已经学习的直角三角形知识包括:勾股定理,30°、45°特殊角的直角三角形的边之间的关系等,在解决初中数学问题上起到重要作用,锐角三角函数是另一个研究直角三角形中边角间关系的知识,通过锐角三角函数也可以帮助解决数学问题.阅读下列材料,完成习题:如图1,在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A 的正弦(sine),记作sinA,即sinA==例如:a=3,c=7,则sinA=问题:在Rt△ABC中,∠C=90°(1)如图2,BC=5,AB=8,求sinA的值.(2)如图3,当∠A=45°时,求sinB的值.(3)AC=2,sinB=,求BC的长度.【分析】(1)根据正弦函数的定义解答;(2)设AC=x,则BC=x,利用方程解答;(3)由锐角三角函数定义求得AB=4,然后由勾股定理解答.【解答】解:(1)sinA=;(2)在Rt△ABC中,∠A=45°,设AC=x,则BC=x,AB=,则sinB=;(3)sinB=,则AB=4,由勾股定理得:BC2=AB2﹣AC2=16﹣12=4,∴BC=2.【点评】考查了锐角三角函数定义,勾股定理,直角三角形的性质以及特殊角的三角函数值.注意:勾股定理应用的前提条件是在直角三角形中.26.济南市纬十二路的一座过街天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(1)求新坡面的坡角a;(2)原天桥底部正前方7米处(PB的长)有一文化墙PM,若新坡面下A 处与文化墙之间需留下至少3米宽的人行道,问文化墙是否需要拆除?请说明理由.(约为1.732)【分析】(1)作CH⊥AB于H,如图,利用坡度的定义得到tan∠CAH===,然后根据特殊角的三角函数值求出∠CAH即;(2)另一条坡度定义得到tan∠CBH==,所以BH=CH=6,再利用=得到AH=6,接着计算出AB≈4.392,然后根据3+4.392>7可判断文化墙需要拆除.【解答】解:(1)作CH⊥AB于H,如图,在Rt△ACH中,∵tan∠CAH===,∴∠CAH=30°,即新坡面的坡角a为30°;(2)文化墙需要拆除.理由如下:∵tan∠CBH==,∴BH=CH=6,∵=,∴AH=CH=6≈10.392,∴AB=AH﹣BH=6﹣6=4.392,∵3+4.392>7,∴文化墙需要拆除.【点评】本题考查了解直角三角形的应用﹣坡度坡角问题:坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.27.阅读下列材料,并完成相应的任务.初中阶段,我们所学的锐角三角函数反映了直角三角形中的边角关系:sinα=cosα=tanα=一般地,当α、β为任意角时,sin(α+β)与sin(α﹣β)的值可以用下面的公式求得:sin(α+β)=sinαcosβ+cosαsinβsin(α﹣β)=sinαcosβ﹣cosαsinβ例如sin15°=sin(45°﹣30°)=sin45°cos30°﹣cos45°sin30°=根据上述材料内容,解决下列问题:(1)计算:sin75°=;(2)在Rt△ABC中,∠A=75°,∠C=90°,AB=4,请你求出AC和BC的长.【分析】(1)根据公式可求.(2)根据锐角的三角函数值,求AC和BC的值.【解答】解:(1)sin75°=sin(30°+45°)=sin30°cos45°+cos30°sin45°=×+×=,故答案为:.(2)Rt△ABC中,∵sin∠A=sin75°==∴BC=AB×=4×=∵∠B=90﹣∠A∴∠B=15°∵sin∠B=sin15°==∴AC=AB×=【点评】本题考查了同角三角函数关系,利用特殊的三角函数值求线段的长度是本题的关键.。
九年级数学总复习题十二
我虽然一直生活在西安城,有时也喜欢捉个笔写东写西,然而有关西安城的大题目却是从来不敢轻易触碰的。因为自己知道自己有几斤几两,充其量也就几块砖的分量罢了。若是当真敷浅着却不自 知,且还要到人前自鸣得意地去卖派,那实在就是“丢人不知道高低”了。设若都已被这样定了位却还要去强出头,那“你喔脸皮比城墙西南角的那个拐弯还厚”就妥妥的了。这后一个称号可是个精品, 是地道些消息:军车陆续从不同方向驶抵武汉,由解放军各医院抽调多人组成的医疗队也已到达武汉。上海、四川、江西、重庆、东莞等省市的医疗救援队陆续出发……
此刻,怎能不向这一批批奔赴武汉的兄弟姐妹敬礼!
通过微信看到一些约稿的帖子,但都明确要求:“请勿因创作之名,未经组织安排前往疫区采写。本刊征稿亦不鼓励此类采写。”我想,遵照政府要求“宅”在家里,总要做些工作吧,遂随手记下 了上述沧桑往事。
九年级数学总复习题十二
还能怎么吃?放口中嚼,再粗还能粗过整根黄瓜?整根的黄瓜水中洗洗,没有水怎么办?手搓巴搓巴,说一句不干不净吃了没病,歪着嘴就啃,一样吃的美。出门旅游,景区水果价昂,买几根清洗 过的黄瓜,一样代替水果,吃起来一样爬山有劲。谁用刀切成丝啊片啊再吃?矫情!
凉拌黄瓜丝也简单,见过猪跑的就会。最复杂的无非是汁料的配制。一种方法是:将少量油倒入锅中,七成热时,放入辣椒粉、蒜泥;可马上接着放入适量盐、糖、白醋;翻炒几下,等各调料溶化, 再加入少量味精。冷却之后,再倒在已经切好的黄瓜上,黄瓜。那时候,黄瓜一头苦——瓜蒂部分确实很苦。不过,现在的黄瓜,被“科学科”了,早就没有了苦味,代之的是从头到脚,都是甜丝丝的。365平台是什么平台
黄瓜的吃法很多。凉拌是最主要的。常见的无非是切丝切片切丁等等。这些我都做过。
黄瓜丝是人们常见且最常吃的。用菜刀切丝,真的需要操刀技术。先将黄瓜洗净,左手抓紧,手背顶着刀,一片一片切,厚薄要均匀。切完之后,码整齐,左手中三指微微弯曲,扣住黄瓜片,刀微 斜向外,于是,右手快速落刀,嚓嚓嚓,一股劲切下去,直到最后。当然,左手手指要往后移动,技术高没得说,技术差就有的看了。丝不是丝,条不是条,粗细不匀,粗的手指般,细的如发丝,有时 还能听到“哎呀!”剌破手指了,莫非想吃肉了?
初三数学专题复习试题九年级最新中考专题训练试卷含答案解析(20套)
初三数学专题复习试题九年级最新中考专题训练试卷含答案解析(20套)1.32的倒数是(). A .32 B .23 C .32- D .23-2.据报道,2010年苏州市政府有关部门将在市区完成130万平⽅⽶⽼住宅⼩区综合整治⼯作.130万(即1 300 000)这个数⽤科学记数法可表⽰为().A .1.3×104B .1.3×105C .1.3×106D .1.3×1073.记n S =n a a a +++ 21,令12n n S S S T n+++=,称n T 为1a ,2a ,……,n a 这列数的“理想数”。
已知1a ,2a ,……,500a 的“理想数”为2004,那么8,1a ,2a ,……,500a 的“理想数”为(). A .2004 B .2006 C .2008 D .20104.某汽车维修公司的维修点环形分布如图。
公司在年初分配给A 、B 、C 、D 四个维修点某种配件各50件。
在使⽤前发现需将A 、B 、C 、D 四个维修点的这批配件分别调整为40、45、54、61件,但调整只能在相邻维修点之间进⾏。
那么要完成上述调整,最少的调动件次(n 件配件从⼀个维修点调整到相邻维修点的调动件次为n )为().A .15B .16C .17D .185.在2,1,0,1-这四个数中,既不是正数也不是负数的是…………………………()A )1- B )0 C )1 D )26. 2010年⼀季度,全国城镇新增就业⼈数为289万⼈,⽤科学记数法表⽰289万正确的是()A )2.89×107.B )2.89×106 .C )2.89×105..7.下⾯两个多位数1248624……、6248624……,都是按照如下⽅法得到的:将第⼀位数字乘以2,若积为⼀位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位。
对第2位数字再进⾏如上操作得到第3位数字……,后⾯的每⼀位数字都是由前⼀位数字进⾏如上操作得到的。
九年级中考数学专题复习:二次函数综合题(特殊三角形问题)含答案
中考数学专题复习:二次函数综合题(特殊三角形问题)1.如图,已知抛物线经过点A (-1,0),B (4,0),C (0,2)三点,点D 与点C 关于x 轴对称,点P 是线段AB 上的一个动点,设点P 的坐标为(m ,0),过点P 作x 轴的垂线l 交抛物线于点Q ,交直线BD 于点M .(1)求该抛物线所表示的二次函数的表达式;(2)在点P 运动过程中,是否存在点Q ,使得△BQM 是直角三角形?若存在,求出点Q 的坐标;若不存在,请说明理由;(3)连接AC ,将△AOC 绕平面内某点H 顺时针旋转90°,得到111A O C △,点A 、O 、C 的对应点分别是点1A 、1O 、1C 、若111A O C △的两个顶点恰好落在抛物线上,那么我们就称这样的点为“和谐点”,请直接写出“和谐点”的个数和点1A 的横坐标.2.如图,已知A (﹣2,0)、B (3,0),抛物线y =ax 2+bx +4经过A 、B 两点,交y 轴于点C .点P 是第一象限内抛物线上的一动点,点P 的横坐标为m .过点P 作PM ⊥x 轴,垂足为点M ,PM 交BC 于点Q .过点P 作PN ⊥BC ,垂足为点N .(1)直接写出抛物线的函数关系式 ;(2)请用含m 的代数式表示线段PN 的长 ;(3)连接PC ,在第一象限的抛物线上是否存在点P ,使得⊥BCO +2⊥PCN =90°?若存在,请求出m 的值;若不存在,请说明理由;(4)连接AQ ,若△ACQ 为等腰三角形,请直接写出m 的值 .3.如图,抛物线2y ax bx =+过()4,0A ,()1,3B 两点,点C 、B 关于抛物线的对称轴对称,过点B 作直线BH x ⊥轴,交x 轴于点H .(1)求抛物线的表达式;(2)求ABC 的面积;(3)若点M 在直线BH 上运动,点N 在x 轴上运动,当CMN △为等腰直角三角形时,点N 的坐标为______.4.如图,已知二次函数的图象经过点()3,3A 、()4,0B 和原点O .P 为二次函数图象上的一个动点,过点P 作x 轴的垂线,垂足为(),0D m ,并与直线OA 交于点C .(1)求出二次函数的解析式;(2)当点P 在直线OA 的上方时,求线段PC 的最大值;(3)当0m >时,探索是否存在点P ,使得PCO △为等腰三角形,如果存在,求出P 的坐标;如果不存在,请说明理由.5.如图,在平面直角坐标系中,抛物线2y ax x m =++(a ≠0)的图象与x 轴交于A 、C 两点,与y 轴交于点B ,其中点B 坐标为(0,-4),点C 坐标为(2,0).(1)求此抛物线的函数解析式.(2)点D 是直线AB 下方抛物线上一个动点,连接AD 、BD ,探究是否存在点D ,使得⊥ABD 的面积最大?若存在,请求出点D 的坐标;若不存在,请说明理由.(3)点P 为该抛物线对称轴上的动点,使得⊥P AB 为直角三角形,请求出点P 的坐标.6.如图,在平面直角坐标系xOy 中,抛物线26y ax bx =++与x 轴交于点()2,0A -和点()6,0B ,与y 轴交于点C ,顶点为D ,连接BC 交抛物线的对称轴l 于点E .(1)求抛物线的表达式;(2)连接CD 、BD ,点P 是射线DE 上的一点,如果PDB CDB S S =△△,求点P 的坐标;(3)点M 是线段BE 上的一点,点N 是对称轴l 右侧抛物线上的一点,如果EMN 是以EM 为腰的等腰直角三角形,求点M 的坐标.7.已知抛物线经过A (-1,0)、B (0、3)、 C (3,0)三点,O 为坐标原点,抛物线交正方形OBDC 的边BD 于点E ,点M 为射线BD 上一动点,连接OM ,交BC 于点F(1)求抛物线的表达式;(2)求证:⊥BOF =⊥BDF :(3)是否存在点M 使⊥MDF 为等腰三角形?若不存在,请说明理由;若存在,求ME 的长8.如图,抛物线23y ax x c =-+与x 轴交于(4,0)A -,B 两点,与y 轴交于点(0,4)C ,点D 为x 轴上方抛物线上的动点,射线OD 交直线AC 于点E ,将射线OD 绕点O 逆时针旋转45︒得到射线OP ,OP 交直线AC 于点F ,连接DF .(1)求抛物线的解析式;(2)当点D 在第二象限且34DE EO =时,求点D 的坐标; (3)当ODF △为直角三角形时,请直接写出点D 的坐标.9.已知二次函数214y x bx c =-++图像的对称轴与x 轴交于点A (1,0),图像与y 轴交于点B (0,3),C 、D 为该二次函数图像上的两个动点(点C 在点D 的左侧),且90CAD ∠=.(1)求该二次函数的表达式;(2)若点C 与点B 重合,求tan⊥CDA 的值;(3)点C 是否存在其他的位置,使得tan⊥CDA 的值与(2)中所求的值相等?若存在,请求出点C 的坐标;若不存在,请说明理由.10.如图1,抛物线y =-x 2+bx +c 交x 轴于A ,B 两点,交y 轴于C 点,D 是抛物线上的动点,已知A 的坐标为(-3,0),C 的坐标为(0,3).(1)求该抛物线的函数表达式以及B 点的坐标;(2)在第二象限内是否存在点D 使得⊥ACD 是直角三角形且⊥ADC=90°,若存在请求出D 点的坐标,若不存在请说明理由;(3)如图2,连接AC ,BC ,当⊥ACD=⊥BCO ,求D 点的坐标.11.如图,在平面直角坐标系中,抛物线C 1:y =ax 2+bx ﹣1经过点A (﹣1,﹣2)和点B (﹣2,1),抛物线C 2:y =3x 2+3x +1,动直线x =t 与抛物线C 1交于点N ,与抛物线C 2交于点M .(1)求抛物线C 1的表达式;(2)求线段MN 的长(用含t 的代数式表达);(3)当⊥BMN 是以MN 为直角边的等腰直角三角形时,求t 的值.12.如图,二次函数23y ax bx =++的图象经过点A (-1,0),B (3,0),与y 轴交于点C .(1)求二次函数的解析式;(2)第一象限内的二次函数23y ax bx =++图象上有一动点P ,x 轴正半轴上有一点D ,且OD =2,当S △PCD =3时,求出点P 的坐标;(3)若点M 在第一象限内二次函数图象上,是否存在以CD 为直角边的Rt MCD ,若存在,求出点M 的坐标,若不存在,请说明理由.13.如图,抛物线23y ax bx =+-与x 轴交于()2,0A -,()6,0B 两点,与y 轴交于点C .直线l 与抛物线交于A ,D 两点,与y 轴交于点E ,点D 的坐标为()4,3-.(1)求抛物线的解析式;(2)若点P 是抛物线上的点,点P 的横坐标为()0m m ≥,过点P 作PM x ⊥轴,垂足为M .PM 与直线l 交于点N ,当点N 是线段PM 的三等分点时,求点P 的坐标;(3)若点Q 是y 轴上的点,且45ADQ ∠=︒,求点Q 的坐标.14.如图,抛物线23y ax bx =+-与x 轴交于()30A -,,()1,0B 两点,与y 轴交于点C .(1)求该抛物线的解析式;(2)若点E 是线段AC 上一动点,过点E 的直线EF 平行于y 轴并交抛物线于点F ,当线段EF 取得最大值时,在x 轴上是否存在这样的点P ,使得以点E 、B 、P 为顶点的三角形是以EB 为腰的等腰三角形?若存在,请求出所有点P 的坐标;若不存在,请说明理由.15.如图,抛物线2y x bx c =-++与x 轴相交于A ,B 两点(点A 位于点B 的左侧),与y 轴相交于点C ,M 是抛物线的顶点,直线1x =是抛物线的对称轴,且点C 的坐标为(0,3).(1)求抛物线的解析式;(2)已知P 为线段MB 上一个动点,过点P 作PD x ⊥轴于点D .若,PD m PCD =△的面积为S .⊥求S 与m 之间的函数关系式,并写出自变量m 的取值范围;⊥当S 取得最大值时,求点P 的坐标.(3)在(2)的条件下,在线段MB 上是否存在点P ,使PCD 为等腰三角形?如果存在,直接写出满足条件的点P 的坐标;如果不存在,请说明理由.16.如图,在平面直角坐标系中,已知抛物线y =ax 2+4x +c 与直线AB 相交于点A (0,1)和点B (3,4).(1)求该抛物线的解析式;(2)设C 为直线AB 上方的抛物线上一点,连接AC ,BC ,以AC ,BC 为邻边作平行四边形ACBP ,求四边形ACBP 面积的最大值;(3)将该抛物线向左平移2个单位长度得到抛物线y =a 1x 2+b 1x +c 1(a 1≠0),平移后的抛物线与原抛物线相交于点D ,是否存在点E 使得△ADE 是以AD 为腰的等腰直角三角形?若存在,直接写出....点E 的坐标;若不存在,请说明理由.17.如图,在平面直角坐标系中,抛物线223y x x =--与x 轴相交于点A 、B (点A 在点B 的左侧),与y 轴相交于点C ,连接,AC BC .(1)求线段AC 的长;(2)若点Р为该抛物线对称轴上的一个动点,当PA PC =时,求点P 的坐标;(3)若点M 为该抛物线上的一个动点,当BCM 为直角三角形时,求点M 的坐标.18.如图,已知抛物线212y x bx c =++经过点B (4,0)和点C (0,-2),与x 轴的另一个交点为点A ,其对称轴l 与x 轴交于点E ,过点C 且平行x 轴的直线交抛物线于点D ,连接AD .(1)求该抛物线的解析式;(2)判断⊥ABD 的形状,并说明理由;(3)P 为线段AD 上一点,连接PE ,若△APE 是直角三角形,求点P 的坐标;(4)抛物线的对称轴上是否存在一点P ,使△APD 是直角三角形,若存在,求出P 点坐标;若不存在,请说明理由.19.如图,抛物线22y ax x c =-+与x 轴相交于A ,B 两点,与y 轴相交于点C ,点A 在点B 的左侧,()1,0A -,()0,3C -,点E 是抛物线的顶点,P 是抛物线对称轴上的点.(1)求抛物线的函数表达式;(2)当点P 关于直线BC 的对称点Q 落在抛物线上时,求点Q 的横坐标;(3)若点D 是抛物线上的动点,是否存在以点B ,C ,P ,D 为顶点的四边形是平行四边形.若存在,直接写出点D 的坐标__________;若不存在,请说明理由;(4)直线CE 交x 轴于点F ,若点G 是线段EF 上的一个动点,是否存在以点O ,F ,G 为顶点的三角形与ABC 相似,若存在,请直接写出点G 的坐标__________;若不存在,请说明理由.20.如图1,抛物线23y ax bx =++与x 轴交于点()3,0A 、()1,0B -,与y 轴交于点C ,点P 为x 轴上方抛物线上的动点,点F 为y 轴上的动点,连接PA ,PF ,AF .(1)求该抛物线所对应的函数解析式;(2)如图1,当点F 的坐标为()0,4-,求出此时AFP 面积的最大值;(3)如图2,是否存在点F ,使得AFP 是以AP 为腰的等腰直角三角形?若存在,求出所有点F 的坐标;若不存在,请说明理由.参考答案:1.(1)213222y x x =-++ (2)存在,Q (3,2)或Q (-1,0)(3)两个“和谐点”,1A 的横坐标是1或122.(1)222433y x x =-++ (2)22655PN m m =-+ (3)存在,741253.(1)24y x x =-+(2)3(3)(2,0)或(﹣4,0)或(﹣2,0)或(4,0).4.(1)y =-x 2+4x (2)94(3)存在,点P 的坐标为(3+或(3-或(5,-5)或(4,0)5.(1)2142y x x =+- (2)(-2,-4)(3)P 点坐标为:(-1,3),(-1,-5),(12--+,,(12--, 6.(1)21262y x x =-++ (2)()2,2(3)()4,2或(27.(1)2y x 2x 3=-++(2)见解析(3)存在,2或28.(1)234y x x =--+(2)(1,6)D -或(3,4)D -(3)()3,4-或(0,4)或2⎫⎪⎪⎝⎭或2⎫⎪⎪⎝⎭9.(1)211342y x x =-++(2)1(3)()2,1-,()32,(12--10.(1)y =-x 2-2x +3,B (1,0)(2)存在,D (-2,3) (3)D (-52,74)或(-4,-5)11.(1)y =2x 2+3x ﹣1(2)t 2+2(3)t =012.(1)2+23y x x =-+(2)P 1(32,154),P 2(2,3)(3)存在点M 其坐标为1M 43539(,)或2M13.(1)y =14x 2−x −3 (2)(3,−154)或(0,−3) (3)(0,−133)或(0,9)14.(1)223y x x =+-(2)()4,-0,或10⎛⎫ ⎪ ⎪⎝⎭,或10⎛⎫ ⎪ ⎪⎝⎭15.(1)2y x 2x 3=-++ (2)⊥213(04)42S m m m =-+<≤;⊥S 有最大值为94,此时3,32P ⎛⎫ ⎪⎝⎭(3)存在,(6-+-或(42-+16.(1)241y x x =-++ (2)274(3)存在,E (4,3)或(-2,5)或(-3,2)或(3,0).17.(2)()11,-(3)()14-,或()25-,或⎝⎭或⎝⎭18.(1)213222y x x =-- (2)直角三角形,见解析(3)(1,-1)或(32,-54)(4)存在,( 32,-1+2 ),( 32,-1- 2,( 32,5),( 32,-5) 19.(1)223y x x =-- (2)11(3)存在,()2,3-或()4,5或()2,5-(4)存在,39,44⎛⎫-- ⎪⎝⎭或()1,2--20.(1)2y x 2x 3=-++ (2)323(3)存在,12(0,3),(0,1)F F --,32)F。
2024年中考九年级数学复习练习题:一元二次方程含参考答案
2024年中考九年级数学复习练习题:一元二次方程一、选择题1.一元二次方程3x 2=12的二次项,一次项和常数项分别为()A.3x 2,无一次项,−12B.3x 2,无一次项,12C.3x 2,0,−12D.3x 2,0,122.用配方法解方程x 2+4x −1=0,下列配方结果正确的是().A.(x +2)2=5B.(x +2)2=1C.(x −2)2=1D.(x −2)2=53.关于x 的一元二次方程x 2−8x +m =0有两个不相等的实数根,则m 的值可能是()A.15B.16C.17D.184.已知直角三角形的两条直角边长恰好是方程x 2−5x +6=0的两个根,则此直角三角形斜边长是()A.13B.5C.5D.135.已知菱形ABCD 的对角线AC,BD 的长度是方程x 2﹣13x+36=0的两个实数根,则此菱形的面积为()A.18B.24C.30D.366.某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x 株,则可以列出的方程是()A.(3+x)(4-0.5x)=15B.(x+3)(4+0.5x)=15C.(x+4)(3-0.5x)=15D.(x+1)(4-0.5x)=157.若α、β是方程x 2+2x −2005=0的两个实数根,则α2+3α+β的值为()A.2005B.2003C.-2005D.40108.为增强同学们的体质,丰富校园文化体育生活,某校八年级举行了篮球比赛,比赛以循环赛的形式进行,即每个班级之间都要比赛一场,共比赛了45场.该校八年级共有()个班.A.9B.10C.5D.8二、填空题9.一元二次方程x 2=x 的根是.10.若关于x 的一元二次方程x 2+2x +m −1=0有实数根,则m 的取值范围是.11.一个三角形的两边长分别为2和3,第三边的长是方程x 2-10x+21=0的根,则该三角形的第三边的长为.12.已知x 1、x 2是方程x 2﹣2x﹣1=0的两根,则x 12+x 22=.13.要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请个队参赛.14.解方程:(1)x 2﹣6x=0;(2)2x 2+5x﹣1=0;(3)2x(x﹣3)=x﹣3.15.已知关于x 的一元二次方程(x −1)(x −2k)+k(k −1)=0.(1)求证:该一元二次方程总有两个不相等的实数根;(2)若该方程的两个根x 1,x 2是一个矩形的一边长和对角线的长,且矩形的另一边长为3,试求k 的值.16.已知关于x 的一元二次方程x 2+(2m﹣1)x+m 2﹣2=0有实数根.(1)求实数m 的取值范围;(2)当m=1时,方程的根为x 1,x 2,求代数式(x 12+2x 1)(x 22+4x 2+2)的值.17.某农场今年第一季度的产值为50万元,第二季度由于改进了生产方法,产值提高了20%;但在今年第三、第四季度时该农场因管理不善.导致其第四季度的产值与第二季度的产值相比下降了11.4万元.(1)求该农场在第二季度的产值;(2)求该农场在第三、第四季度产值的平均下降的百分率.18.某经销商经销的学生用品,他以每件280元的价格购进某种型号的学习机,以每件360元的售价销售时,每月可售出60个,为了扩大销售,该经销商采取降价的方式促销,在销售中发现,如果每个学习机降价10元,那么每月就可以多售出50个.(1)降价前销售这种学习机每月的利润是多少元?(2)经销商销售这种学习机每月的利润要达到7200元,且尽可能让利于顾客,求每个学习机应降价多少元?(3)在(2)销售过程中,销量好,经销商又开始涨价,涨价后每月销售这种学习机的利润能达到10580元吗?若能,请求出涨多少元;若不能,请说明理由.1.C 2.A 3.A 4.D 5.A 6.A 7.B 8.B9.x 1=1,x 2=010.m ≤211.312.613.814.解:(1)x 2﹣6x=0,x(x﹣6)=0,∴x=0或x﹣6=0,解得:x 1=0,x 2=6;(2)2x 2+5x﹣1=0,∵a=2,b=5,c=﹣1,∴Δ=52﹣4×2×(﹣1)=33>0,∴x =∴x 1=2=(3)2x(x﹣3)=x﹣3,2x(x﹣3)﹣(x﹣3)=0,(x﹣3)(2x﹣1)=0,∴x﹣3=0或2x﹣1=0,∴x 1=3,x 2=12.15.(1)证明:(x −1)(x −2k)+k(k −1)=0,整理得:x 2−(2k +1)x +k 2+k =0∵a =1,b =−(2k +1),c =k 2+k ,∴Δ=b 2−4ac =(2k +1)2−4×1×(k 2+k)=1>0,∴该一元二次方程总有两个不相等的实数根;(2)解:x (2k +1)x +k 2+k =0,x ==2k+1±12,∴x 1=k ,x 2=k +1,①当x =k 为对角线时,k 2=(k +1)2+32,解得:k =−5(不符合题意,舍去),②当x =k +1为对角线时,(k +1)2=k 2+32,解得:k =4;综合可得,k 的值为4.16.解:(1)∵关于x 的一元二次方程x 2+(2m﹣1)x+m 2﹣2=0有实数根,∴Δ≥0,即(2m﹣1)2﹣4(m 2﹣2)≥0,整理得:﹣4m+9≥0,解得:m ≤94.故实数m 的取值范围是m ≤94;(2)当m=1时,方程为x 2+x﹣1=0,∵该方程的两个实数根分别为x 1,x 2,∴x 1+x 2=﹣1,x 1x 2=﹣1,x 12+x 1=1,x 22+x 2=1,∴(x 12+2x 1)(x 22+4x 2+2)=(x 1+1)(3x 2+3)=3[x 1x 2+(x 1+x 2)+1]=3×(﹣1﹣1+1)=3×(﹣1)=﹣3.17.(1)解:第二季度的产值为:50(120%)60⨯+=(万元);(2)解:设该农场在第三、第四季度产值的平均下降的百分率为x ,根据题意得:该农场第四季度的产值为6011.448.6-=(万元),列方程,得:260(1)48.6x -=,即2(1)0.81x -=,解得:120.1 1.9x x ==,(不符题意,舍去).答:该农场在第三、第四季度产值的平均下降百分率为10%.18.(1)解:由题意得:60×(360−280)=4800(元),∴降价前商场每月销售学习机的利润是4800元;(2)解:设每个学习机应降价x 元,由题意得:(360−x −280)(50⋅x10+60)=7200,解得:x =8或x =60,由题意尽可能让利于顾客,x =8舍去,即x =60,∴每个学习机应降价60元;(3)解:设应涨y 元每月销售这种学习机的利润能达到10580元,根据题意得:(360−60+y −280)[5(60−y)+60]=10580,方程整理得:y 2−52y +676=0,解得:y 1=y 2=26,∴应涨26元每月销售这种学习机的利润能达到10580元.。
九年级数学上册教学课件《第二十二章 复习题》
九年级上册
复习巩固
1.如图,正方形ABCD的边长是4. E是AB上一点, F 是AD延长线上的一点,BE=DF. 四边形AEGF是矩形,矩形AEGF的面积 y 随 BE 的长 x 的变化而变化,y 与x 之间的关系可以用怎样的函数来表示?
2. 某商场第1年销售计算机5 000台,如果每年的销售量比上年增加相同的百分率工,写出第3年的销售量 y 关于每年增加的百分率 x 的函数解析式.
3.选择题. 在抛物线 y = x2-4x-4上的一个点是( ). (A)(4,4) (B) (3,-1) (C) (-2,-8) (D) (- ,- )
4.先确定下列抛物线的开口方向、对称轴和顶点,再描点画图:
(1)y = x2 +2x-3; (2)y = 1 + 6x-x2 ;(3)y = x2 +2x +1; (4)y = - x2 + x-4.
10.对某条路线的长度进行n次测量,得到n个结果x1,x2,…,xn. 如果用 x 作为这条路线长度的近似值,当 x 取什么值时,(x- x1)2+(x-x2)2+ … +(x- xn)2最小?x 所取的这个值是哪个常用的统计量?
7.如图,用一段长为30 m的篱笆围成一个一边靠墙的矩形莱园,墙长为18 m,这个矩形的长、宽各为多少时,莱园的面积最大?最大面积是多少?
8.已知矩形的周长为36 cm,矩形绕它的一条边旋转形成一个圆柱. 矩形的长、宽各为多少时,旋转形成的圆柱的侧面积最大?
拓广探索
9.如图,点E, F, G, H分别在菱形ABCD的四条边上,BE=BF= DG= DH,连接EF,FG,GH,HE,得到四边形EFGH.(1)求证:四边形EFGH是矩形.(2) பைடு நூலகம் AB = a,∠A=60°,当BE为何值时,矩形EFGH的面积最大?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[单选]男性,26岁,突然出现阵发性抽搐,历时2分钟,自然缓解,抽搐从一侧手指开始向腕部、臂部、肩部、下肢扩散,神志始终清楚。诊断最可能的是()。A.大发作B.精神运动性发作C.小发作D.Jackson发作E.感觉性发作 [单选]个人注册客户使用网上银行可以激活哪种贷记卡()?A、本人新申请的贷记卡B、他人新申请的贷记卡C、本人到期换卡后的新卡D、他人到期换卡后的新卡 [问答题,简答题]《药品生产质量管理规范》的具体实施办法、实施步骤由那个部门规定? [单选]亚硝酸盐中毒的特效解毒药()。A.碳酸氢钠B.醋酸C.阿托品D.维生素CE.美兰 [单选,A2型题,A1/A2型题]关于造影剂的使用,哪项是错误的()A.胆影葡胺--胆道造影B.医用硫酸钡--消化道造影C.碘化油--心血管造影D.空气--脑室造影E.泛影葡胺--尿路造影 [单选]关于换热器管程和壳程的介质,下列说法错误的是()。A、有腐蚀性介质走管程B、有毒性的介质走管程C、压力高的介质走壳程D、不清洁的易于结垢的介质走管程 [单选]胶印机的三滚筒机构中,中间滚筒为()。A.橡皮滚筒B.印版滚筒C.压印滚筒D.传纸滚筒 [单选,A1型题]以下关于视野缺损不正确的病变定位是()。A.一侧视神经病变引起单眼全盲B.一侧视束病变引起双颞侧偏盲C.一侧枕叶视中枢病变引起双眼同向性偏盲、黄斑回避D.颞叶病变引起双眼同向性上象限盲E.顶叶病变引起双眼同向性下象限盲 [单选,A1型题]医师在进行实验性临床医疗时,应充分保障()的知情同意权。A.患者B.患者家属C.患者和其家属D.患者或其家属 [多选]目前我行柜员级别分为()。A.B级柜员B.A级柜员C.现金柜员D.一般柜员 [填空题]受拉热轧光圆钢筋(HPB235)的末端应倒做()弯钩,其弯曲直径d不得小于钢筋直径的(),钩端应留有不小于钢筋直径3倍的直线段。 [单选]为预防Rh阴性妇女发生致敏,下列哪些情况不适合预防性应用抗D球蛋白()A.第1次分娩Rh阳性婴儿后,于72小时内应用B.Rh(-)女婴出生时即应用C.流产(自然或人工流产)后D.在羊膜腔穿刺后E.产前出血、宫外孕、妊娠期高血压疾病 [判断题]对于放热的熵减小的反应,必定是高温下自发而低温下非自发的反应。A.正确B.错误 [单选]书刊校对的依据是()。A.达到"齐、清、定"标准的原稿B.作者提交的原稿打印件C.装帧设计稿D.实物原稿 [多选]下面对于组织纪律的观念的必要性描述正确的是?()A、因为宾客构成的多样性和复杂性B、因为岗位、部门的不同,员工工作内客、规范要求也各不相同C、因为酒店人员多D、因为酒店要使众多不同素质的员工按规范要求进行工作 [单选,A2型题,A1/A2型题]轨道半径最小的壳层是()A.K层B.L层C.M层D.N层E.O层 [单选]选煤厂工艺流程图一般由()等作业组成。A、选前准备、分选、产品分级脱水和煤泥水处理B、选前准备、跳汰、产品分级脱水和煤泥水处理C、选前准备、浮选、产品分级脱水和煤泥水处理 [单选]高血压病脑出血时,最常见的出血部位是()A.小脑齿状核B.小脑皮质C.脑桥D.基底节E.延脑 [单选]根据《反垄断法》的规定,下列各项中,属于纵向垄断协议行为的是()。A.处于产业链同一环节的经营者通过协议、决议或其他协同一致的方式确定、维持或者改变价格的行为B.处于产业链同一环节的经营者通过协议、决议或其他协同一致的方式分割销售市场或者原材料采购市场的行为 [单选]某进口设备采用运费在内价(CFR)形式,在该价格中包含的费用是()。A.出口国装运港至进口国目的港之间的运输保险费B.进口国国内运费、装卸费C.进口国国内运输保险费D.出口国装运港至进口国目的港之间的海运费 [单选]()不属于生产物流控制的内容。A.进度控制B.制成品管理C.在制品管理D.偏差的测定和处理 [单选]罗素认为哲学是介于()和()之间的东西。A、论理学,科学B、神学,论理学C、神学,科学 [单选,B1型题]持续存在的局限性干啰音的疾病是()A.支气管内膜结核B.心源性哮喘C.支气管肺炎D.慢性支气管炎E.支气管哮喘 [单选]58型焦炉用焦炉煤气加热时煤气的入炉方式为()A.侧入B.下喷C.A+B [单选]热处理车间属于()。A.动力车间B.其他建筑C.生产辅助用房D.生产厂房 [单选]下列不是物业服务费核算要点及方法的是()。A.物业的大修、更新、改造费用的核算B.确定服务费成本构成的注意事项C.收集原始数据D.物业服务费的测算 [单选]大脑前动脉阻塞时出现小便失禁,是由于损害了()A.额极B.旁中央小叶C.胼胝体前4/5D.扣带回E.额叶底部 [问答题,计算题]已知某飞机执行航班任务,起飞机场标高为860m,当日机场场压为718.8mmhg,查气压表知道,机场标高为900m时,标准场压为682.50mmhg;机场标高为990m时,标准场压为675.13mmhg,该飞机机型规定,当场压高于(或低于)标准场压10mmhg时,飞机的最大起飞重量可以增加( [问答题,简答题]何为指示指标?何为有效指标? [单选,B1型题]高血压脑病的治疗首选()A.硝普钠B.呋塞米C.洛汀新(贝那普利)D.硝苯地平E.利血平 [单选,A2型题,A1/A2型题]C反应蛋白在哪种情况下不升高().A.病毒感染B.细菌感染C.高血压D.急性心肌梗塞E.大面积烧伤 [填空题]钢水中的C含量在()范围时连铸坯易产生纵裂、角裂,甚至产生漏钢事故。 [单选,A1型题]《执业医师法》规定,在医疗、预防、保健机构中试用期满一年,具有以下学历者,可以参加执业医师资格考试()A.高等学校医学专业本科以上学历B.高等学校医学专业专科学历C.取得助理执业医师执业证书后,具有高等学校医学专科学历D.中等专业学校医学专业学历E.取得助 [单选]下列关于类风湿关节炎药物治疗正确的是()。A.早期应用快作用抗风湿病药B.大部分患者用一种慢作用药就可以阻止关节破坏C.可以常规应用糖皮质激素D.非甾体抗炎药是改善关节症状的一线药物E.不能使用中枢性镇痛药 [单选]方差分析的主要应用是()A.两个或多个样本均数的比较B.两个或多个总体均数的比较C.两个或多个样本率的比较D.多个或多个总体率的比较E.分类资料的相关分析 [单选]以下招聘方法中不属于外部招聘的是()。A.员工推荐B.猎头公司C.职位转换D.就业机构介绍 [单选]下列关于冠状动脉瘤的CT表现哪项是正确的()A.多层螺旋CT不能显示动脉瘤全貌B.CT横断面图像不利于观察动脉瘤壁C.多见附壁血栓D.动脉瘤壁无钙化E.CT横断面图像不利于观察动脉瘤壁局限性或弥漫性扩张,形态为囊状、梭形或不规则形 [单选]下列关于会计凭证,表述错误的是()。A.会计凭证是记录经济业务、明确经济责任的书面证明B.会计凭证是登记账簿的依据C.填制原始凭证是会计处理程序的第一个关键步骤D.会计凭证根据填制的程序和用途不同分为原始凭证和记账凭证 [填空题]网站是互联网(Internet)各种业务活动的() [单选]从()入手,立足当前,着眼长远,整体推进,突出重点,综合施策,标本兼治,全面提高质量管理水平,推动建设质量强国,促进经济社会又好又快发展。A.强化法治、落实责任、加强惩处、增强全社会质量意识;B.强化法制、落实责任、加强监督、增强全社会质量意识;C.强