最新高中理科数学绝杀80题 解析几何真题篇学生版

合集下载

最新高中理科数学绝杀80题 函数及其应用满分冲刺篇学生版

最新高中理科数学绝杀80题 函数及其应用满分冲刺篇学生版

A.
B.
C.
D.
12.已知函数 y f (x) 的大致图象如图所示,则函数 y f (x) 的解析式可能为 ()
A.
f (x) cos x ln x 1 1 x
B.
f (x) cos x ln x 1 x 1
C.
f
(
x)
sin
x
ln
x 1 1 x
D.
f
(x)
sin
x
ln
x x
1 1
13.函数 f x sinx x2 2 x 的大致图象为( )
C. 0.114
D. 0.116
8.已知函数 f (x) 2sin(x ) 的图象如图所示,则 f (0) ( ).
A. -1
B. 1
C. 2
D. 2
9.定义在 R 上的偶函数 f (x) 满足 f (x 3) f (x) ,对 x1, x2 [0,3] 且 x1 x2 ,都

f
(x1) f (x2 ) x1 x2ห้องสมุดไป่ตู้
20.已知函数 f (x) x a ln x ba,b R .
(1)讨论函数 f (x) 的单调性;
(2)是否存在实数 a、b ,且 b 3 ,使得函数 f (x) 在区间1, e 的值域为2, e ?若
2 存在,求出 a、b 的值;若不存在,请说明理由.
射线的吸收系数.工业上通常用镅 241( 241 Am )低能 射线测量钢板的厚度.若这种
射线对钢板的半价层厚度为 0.8,钢的密度为 7.6,则这种射线的吸收系数为
()
(注:半价层厚度是指将已知射线强度减弱为一半的某种物质厚度,ln 2 0.6931,
结果精确到 0.001)

最新高中理科数学绝杀80题 概率统计真题篇学生版

最新高中理科数学绝杀80题 概率统计真题篇学生版

高中理科数学(学生版)最新高考绝杀80题最新讲义1.【2019年全国卷2】我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________.2.【2019年全国卷1】甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是____________.3.【2019年全国卷1】我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A.516B.1132C.2132D.11164.【2019年江苏卷】从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是_____.5.【2019年理全国卷3】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成,A B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到()P C 的估计值为0.70.(1)求乙离子残留百分比直方图中,a b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).6.【2019年理全国卷3】《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A.0.5B.0.6C.0.7D.0.87.【2019年全国卷2】讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是()A.中位数B.平均数C.方差D.极差8.【2019年江苏卷】已知一组数据6,7,8,8,9,10,则该组数据的方差是____. 9.【2018年理新课标I卷】某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半10.【2018年江苏卷】已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.11.【2018年全国卷Ⅲ理】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m和不超过m的工人数填入下面的列联表:超过m不超过m第一种生产方式第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:K2=n ad−bc2a+b c+d a+c b+d,12.【2018年理数全国卷II】下图是某地区2000年至2016年环境基础设施投资额 (单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了 与时间变量 的两个线性回归模型.根据2000年至2016年的数据(时间变量 的值依次为1, 2, ⋯, 17)建立模型①: =−30.4+13.5 ;根据2010年至2016年的数据(时间变量 的值依次为1, 2, ⋯, 7)建立模型②: =99+17.5 .(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;。

高中理科数学解题方法竞赛篇(解析几何).doc

高中理科数学解题方法竞赛篇(解析几何).doc

学习必备 欢迎下载高中数学解析几何问题研究x 2 y 21题 1. Let point M movealong the ellipse 98,and point F be itsright focus, then for fixed point P(6,2) ,then maximum of 3|MF|-|MP| is ,where the coordinate of M is. (ellipse 椭圆; focus 焦点; coordinate 坐标 ) (第十四届高二第二试第 18 题)x 2 y 2译文:点 M 是椭圆91上一点,点 F 是椭圆的右焦点,点 P (6,2),那8么 3|MF|-|MP| 的最大值是,此时点 M 的坐标是.x 2y 2 1y在椭圆98解中 ,MMQ D a29,b28 ,则 c 21, c 1 ,PG 所以椭圆的右焦点 F 的坐标Fc 1-3O 1369 xea 3 ,l为(1,0),离心率a 2 9l : x右准线c,显然点x 2y 21P (6,2)在椭圆98的外部 . 过点 P 、M 分别作 PG ⊥ l于 G ,MD ⊥ l于 D ,过点 P 作 PQ ⊥MD 于 Q ,由椭圆的定义知,3|MF|-|MP|=|MD|- |MP|≤|MD|-|MQ|=|QD|=|PG|=9-6=3 ,当且仅当点 P 位于线段MD 上,即点 P 与 Q 点重合时取等号 . 由点 P 位于线段 MD 上,MD ⊥ l及点 P (6,2),x 02 41 知点 M 的纵坐标为 2,设 M 的横坐标为x 0,即 M (x 0,2),则有98 ,解3 23 2x 02,因此 3|MF|-|MP| 的最大值是 3,此时点 M 的坐标是( 2 ,2). 得评析 若设点 M 的坐标为 (x,y) ,则可将 3|MF|-|MP| 表示成 x 、y 的二元无理函数,然后再求其最大值,可想而知,这是一件相当麻烦的事,运用椭圆的定义,将3|MF|-|MP| 转化为 ||MD|-|MP| ,就把无理运算转化为有理运算, 从而大大简化了解题过程 .拓展 将此题引伸拓广,可得x 2y 2 1(a b0)定理 M 是椭圆 E : a 2b 2上的动点, F 是椭圆 E 的一个焦点, c为椭圆 E 的半焦距, P ( m,n )为定点 .1a 2m若点 P 在椭圆 E 内,则当 F 是右焦点时, e |MF|+|MP| 的最小值是 c;当 F是左焦1a 2m点时, e |MF|+|MP| 的最小值是 c.若点 P 在椭圆 E 外,则a 21a 2mF 是右焦点,且 0≤m ≤ c ,|n| ≤b 时, e |MF|-|MP| 的最大值是c.a 21ma 2F 是右焦点,且 m>cc .,|n| ≤b 时, |MP|- e|MF| 的最小值是a 21a 2F 是左焦点,且mc ≤m ≤0,|n| ≤b 时, e |MF|-|MP| 的最大值是c.a 21ma 2 F 是左焦点,且 m ≤c,|n| ≤b 时, |MP|- e|MF| 的最小值是 c .1简证 1 、如图 1,作 MN ⊥右准线 l 于 N ,PQ ⊥l 于 Q ,由椭圆定义, |MN|= e|MF|.1a 2mm∴ e |MF|+|MP|=|MN|+|MP| ≥|PQ|=c,当且仅当 P 、M 、Q 三点共线,且 M1a 2在 P 、Q 之间时取等号 . 如图 2,同理可证 e|MF|+|MP||=|MN|+|MP|≥|PQ|= mc ,y当且仅当 P 、M 、Q 三点共线,且MNyNMP M QQMPOm FxlF mOxl图 1图 2M 在 P 、Q 之间时取等号 .1a 2如图 3, e|MF|-|MP|=|MN|- |MP|≤|MN|-|MR|=|RN|=|PQ|= m,当且仅当 Pc位于线段 MN 上,即 P 与 R 重合时取等号 .1a 2如图 4,|MP|- e|MF|=|MP|- |MN|≥|MQ|-|MN|=|NQ|= m,当且仅当 P 位于直c 线 MN 上,即点 P 与 Q 重合时取等号 .yyMm MN QMMR NPQPOFmxOF m xll图 3 图 41a 2m如图 5, e |MF|-|MP|=|MN|- |MP|≤|MN|-|MR|=|RN|=|PQ|= c,当且仅当 P位于线段 MN 上,即 P 与 R 重合时取等号 .1a 2如图 6,|MP|- e |MF|=|MP|- |MN|≥|MQ|-|MN|=|NQ|=mc,当且仅当 P 位于yyN R MMQ NMMQPPmF O xmF O xll图 5图 6直线 MN 上,即点 P 与 Q 重合时取等号 .题 2 已知双曲线 x2y2k关于直线 x-y=1 对称的曲线与直线 x+2y=1 相切,则 k 的 值 等 于( )2454A 、3B 、 3C 、4D5(第十五届高二培训题第 19 题)解 设点 P (x0,y0 )是双曲线 x 2y 2k上任意一点,点 P 关于直线 x-y=1 的对称点为x x 0y y 0 1y y 01P ’( x,y ), 则 22①,又 xx 0②,解①、②联立方程组得x 0y 1y 0 x1③. ∵P 点在双曲线x 2y2k 上,∴x 02y 02 k④. ③代入④,得( y 1) 2 (x 1) 2k ⑤,此即对称曲线的方程,由 x+2y=1,得 x=1-2y`, 代入⑤并整理,得 3 y 242 y k 1 0. 由题意,△ =4-12 ( k-1 )=0,解得 k= 3,故选 B.评析 解决此题的关键是求出对称曲线的方程 . 由于对称曲线与直线相切,故由 △=0 便可求得 k 的值 . 拓展 关于直线的对称,我们应熟知下面的 结论 1 、点( x0,y0 )关于 x 轴的对称点是( x0,-y0 ). 2、点( x0,y0 )关于 y 轴的对称点是( -x0, y0 ). 3、点( x0,y0 )关于 y=x 的对称点是( y0,x0 ). 4、点( x0,y0 )关于 y=-x 的对称点是( -y0,-x0 ). 5、点( x0,y0 )关于 y=x+m 的对称点是( y0-m,x0+m ). 6、点( x0,y0 )关于 y=-x+n 的对称点是( n-y0,n-x0 ) .7、点( x0,y0 )关于直线 Ax+By+C=0的对称点是( x,y ),x,y 是方程组 Ax 0 x 1By 0 y 1c 022A( y 0 y 1 ) B( x 0 x 1 )的解 .根据以上结论,不难得到一曲线关于某直线对称的曲线的方程,比如曲线 f(x,y)=0 关于直线 y=x+m 对称的曲线的方程是 f(y-m,x+m)=0.3.F 1, F2是双曲线x 23y23的左、右焦点,A, B两点在右支上, 且与F2在同一条直线上,则F 1 A F 1B的最小值是y____________. CA(第四届高二第二试第 15 题)x 22NM双曲线 x23y23,即 3y1解,如图,OF2xF1BDlA, B在双曲线右支上,AF 1AF 2 2 3 ,BF 1BF 2 2 3, 故当 AF 2BF 2 取得最小值时, AF 1 BF 1 也取最小值 . 设l是双曲线对应于 F2的准线,ACl , BDl, 垂足为C, D,则由双曲线定义可知AF 2e AC , BF 2eBD,而ACBD 2 MN,其中 MN 是梯形 ACDB 的中位23 122 ,这时,AF2BF2取得最小值线,当ABF 1F2时, MN 取最小值2e MN24 2 143 , 从而AF1BF133取最小值 33.评析 解决此题的关键是灵活运用双曲线的第一、第二定义,发现 AF 2BF2,即e( ACBD ),亦即2eMN最小时, F 1AF 1 B也最小,并能知道 AB F 1F 2时MN最小(这点请读者自己证明) . 本题虽然也有其他解法, 但都不如此法简单,双曲线定义及平几知识的运用在简化本题解题过程中起了决定性的作用.拓展 将本题中的双曲线一般化,便得x 2 y 21F1、F2是双曲线 a2b2A, B两点在右支上,且与F2定理的左、右焦点,4a2b 2a .在同一条直线上,则F 1 A F 1B的最小值是 仿照本题的解法易证该定理(证明留给读者) .43 2 1214 3 用此定理可知本题中的最小值为33.题4.方 程 x 2 2y 2 2| x y 3 | 表 示的曲线是( )A 、直线B、椭圆C、双曲线D、抛物线(第十二届高二培训题第23 题)解法1 由x 22y 2 2| x y3 |的两边平方并整理得2xy 10x 2 y 1 0 . 令 xu v, y uv,则2 u v uv 10 u v 2 u v 1 0,整 理 得2u 2 8u 8 2v 2 12v 18 9 ,即 2 u 2 2 2 v 3 2 9,故已知方程表示双曲线,选 C. x 2 y 22 | x y 3 |2 2解法 2 已知方程就是 2 ,由双曲线的第二定义,可知动点 P x, y到定点(2,2)的距离与到定直线x y 3 0的距离比为 2 ,因为2 1,所以选 C.评析根据选择支,可知解决本题的关键是将已知方程化为某二次曲线的标准方程或直线方程 . 显然,平方可去掉根号与绝对值符号,但却出现了乘积项xy . 如何消去乘积项便成了问题的关键. 解法 1 表明对称换元是消去乘积项的有效方法 .解法 2 从已知方程的结构特征联想到两点距离公式与点线距离公式,发现方程表示的曲线是到定点( 2,2)的距离与到定直线x y30的距离之比为2的动点x, y的轨迹,根据双曲线定义选 C.显示了发现与联想在解题中的作用 .拓展将此题一般化,我们有下面的定理若x a 2 y b 2 | Ax By C |( A、B、 C、 a、 b 为常数,且 A、 B不全为零),则(1)当0A2 B 2 1时,方程表示a, b为一个焦点,直线Ax ByC 0为相应准线的椭圆 .( 2)当 A2 B2 1时,方程表示a,b为一个焦点,直线Ax By C 0为相应准线的双曲线 .(3)当 A2 B2 1 且 Aa Bb c 0 时,方程表示过点a,b且与直线Ax By C 0垂直的直线 .(4)当 A2 B2 1 且 Aa Bb c0 时,方程表示a, b为焦点,直线Ax By C 0为准线的抛物线 .读者可仿照解法2,运用二次曲线的第二定义自己证明该定理 .1,则动点 A x1, x 1题 5. 已知xxx与点 B( 1, 0)的距离的最小值是_________.(第七届高二第一试第 23 题)ABx 12x1 0211 22解法 1由已知得xxx21 211 27142 x2 321xx xx22xxx将此式看作以1x1, 1 1xx2x2, 这表明该二次函数的定x为自变量的二次函数,xx1 2义域是2,.该函数在 2,x上是增函数,当x时 ,272 2 211, AB m i n 1ABm i n22 .x tan ,x 1tan1 22csc22解法 2x tansin2令42,则x 1x1 2 , x1 tan1 2 2cot 2 .x xtantan 22AB2csc 222cot 2 28csc 22 4csc 238 csc 21 7.1421 2ABmin71当 csc21,即8 124时,4.x1tty1t解 法 3设t( t1),两式平方并相减,得yB x 2y 24(x 2, y 0), 即动点 A 的轨迹是双曲线x2 y 24O1 2x的 右半支在 x 轴上方的部分(含点( 2,0)),由图知 |AB|min=1.评析 所求距离 |AB| 显然是 x 的函数,然而它是一个复杂的分式函数与无理函数的复合函数,在定义域 1,上的最小值并不好求,解法 1 根据 |AB| ≥0,通过平方,先求| AB |m2| AB |min2 ,并将x1in,再求 |AB|min=x看作一个整体,将原问题化为求二次函数在 2,上的最值问题;解法 2 通过三角换元,把求 |AB|min的问题转化为求关于csc2的二次函数在2,的最小值问题,整体思想、转化思想使得问题化繁为简,化生为熟; 解法 3 则求出点 A 的轨迹,从图形上直观地看出答案,简捷得让人拍案叫绝,这应当归功于数形结合思想的确当运用 . 许多最值问题,一旦转化为图形,往往答案就在眼前 .题 6. 抛物线yx 2 上到直线x y 2 0的距离最小的点的坐标是________.(第九届高二培训题第 27 题)解法 1 设抛物线 yx 2 上的点的坐标是 x, x 2 ,则它到直线x y 2 0的距离是x x 22 (x 1 )27d22 2 4x1y1时 d最小,此时,当 2 4. 故所求点的坐标1 , 1是24.解法 2 如图,将直线xy 20 平移至与抛物线yx 2 相切,则此时的切点即为 所 求 点 . 设 切 线方 程 为yx k , 代 入 y x 2 ,得y1x2xk 0 . 由o , 即 14k 0 , 得k4. 解y=x2 yx 2x 12-2Ox111 , 1y x y-24 得4. 故所求点的坐标是2 4 .解法 3设所求点的坐标为 Px 0, y 0,则过点 P 的抛物线的y y 0 x 0 x,故 2x 01 ,切线应与直线 x y 2平行 . 而其切线方程为2x 01 y 0 x 02 1故所求点的坐标为 1 , 12 .4 . 2 4 .评析 解法 1 由点线距离公式将抛物线上的任意一点 x, x 2到直线x y2 0的距离 d表示成 x的二次函数,再通过配方求最值,体现了函数思想在解析几何中的运用 .解法 2 运用数形结合思想发现与直线 xy 2 0 平行的抛物线 y x 2的切线的切点就是所求点,设切线方程为yxk后运用方程思想求出k,进而求出切点坐标 .解法 3 则设切点为 P x 0 , y0 ,直接写出过二次曲线f x, y 0 上一点 P x 0, y 0的 切线方程,由切线与已知直线平行 . 两斜率相等,求出切点坐标 . 解法 2、3 不仅适用于求抛物线上到直线的距离最小的点的坐标,同样也适用于 求椭圆、双曲线上到直线的距离最小的点的坐标,故为通法.解法 3 涉及到过抛物线上一点的抛物线的切线方程, 下面用导数证明一般情形的 结论:定理 过抛物线 yax 2 bx c 上一点 P x 0 , y 0的切线方程是yy 0 ax x b xx 0 c2 02 .证 明设过点 Px 0 , y 0 的抛物线 y ax 2bx c的切线的方程为y y 0 k x x 0 ①.y /2ax b ,k y / xx 02ax 0 b ,代入①得 yy 02ax 0 b xx 0 ,yy 0 2ax 0 b x x 02 y 0y y 0x x 02bx②. 点222 , 2ax 0 x b 2y 0 ax 0x 0 , y 0 在抛物线yax 2 bxc上, y 0ax 02 bx 0c , y 0ax 02bx 0c,代y y 0 ax 0 x b x x 0 c入②,得切线方程为 22 .拓展 观察切线方程的特征,就是同时将曲线方程中的x2, y 2x 0 x,分别换成y 0 y,把 x, y 分别换成x 0x , yy2 2 便得切线方程 . 事实上,对于一般二次曲线,有下面的定理 .定理过二次曲线Ax 2Bxy Cy 2 Dx EyF 0 上一点 Ρ x 0 , y 0 的该曲线Ax xBx 0y xyCyyDxx EyyF 0的切线方程是20 22.运用该定理必须注意点 Ρx 0, y在曲线上 .例 求过点2,3 的曲线 2x23xy 4 y 2 4 x 8 y 30的切线的方程 .解 经验证,点 2,3 在曲线 2x23xy 4 y24x 8 y 30上,根据上面的定理,所求切线方程为2 2x 32 y 3x4 3 y 4 2 x 83 y30 0222, 即13 x 22 y 92 0.题 7在抛物线y2 4x 上恒有两点关于直线 y kx3 对称 , 则 k 的取值范围是.(第十五届高二培训题第 71 题)解法 1设两点 Bx 1, y1、Cx 2, y2关于直线ykx3对称,直线 BC 的方程为xky m,将其代入抛物线方程y24x ,得 y24ky4m 0. 若设 BC 的中点y 1 y 22ky 02. 因为 M 在直线ykx 3上,所以为 Mx 0, y,则k 2k2m 3.m2k 3 2k 22k 32k 32kkk,因为 BC 与抛物线相交 于两个不同点,所以16k 216 m. 再将m的式 子代 入, 经 化 简得k 3 2k3k,即k 1 k 2k 3k0 ,因为 k2k 3,所以 1 k 0 .y 1 y 28k 38k 12 解 法 2 由 解 法 1 , 得 y 1y24mk. 因 为4k ,y 1 2y2y 1 y 2 4k28k 38k 1221 k 0 .,所以k,解得解法 3设 Bx 1, y1、Cx 2, y2是抛物线 y24x上关于直线ykx 3对称的两点,且 BC 中点为 Mx 0, y 0.因为y124x 1 , y 2 2 4 x2,所以y22y 1 24 x 2x1,y 2y 1 y 1 y 2 412 y 04, y 02k即 x 2x 1kx 03,所以, 所 以 k. 又 y 0x 02k 3在抛 物线 y24x 的内部,所以 y24x,即k, 因为 Mx 0, y2k 2 42k3k,解得 1 k 0 .解法 4 设 B 、C 是抛物线 y24x上关于直线ykx3对称的两点, M 是 BC中点 . 设 M x 0 , y 0 , B x, y , C 2x 0x,2 y 0y , 则 y24x ① ,2 y 0y 24 2x 0 x ②. ①- ②,得 2x y 0 y y 022x 00 ③. 因为点 M x 0 , y 0 在直 线ykx 3 上 ,y 0kx 0 3④.④代入③得直线 BC 的方程为px 0 ,2x 02x kx 0 3 ykx 03 22x 0 0,故直线 BC 的方向向量为kx 0 3 ,同理得直线ykx3的方向向量vx 0 , kx 0 . 因为直线 BC 与直线ykx3垂2x 0直,所以 p v 0,即 x 0 ,kx 03 x 0 , kx 0 0,化简得 x 0 2 kx 0 2k32kx 0 3,得kx2k 3或x(舍去) . 显然k,解得x 02k 3, y 0kx 0 32k . 因为 M x 0 , y 0 在抛物线 y24x的内部,所以k2k 24 2k 3k 32k 3 0, ( k1)(k 2k 3)y 0 24x, 即0,k,kk又k 2k 3,所以 1 k 0 .评析 定(动)圆锥曲线上存在关于动(定)直线对称的两点,求直线(圆锥曲 线)方程中参数的取值范围 . 这是解析几何中一类常见的问题 . 解决这类问题的关 键是构造含参数的不等式,通过解不等式求出参数的范围.解法 1 运用二次方程根的判别式,解法 2 运用均值不等式,解法 3、4 运用抛物线弦的中点在抛物线内部,分别成功地构造了关于k的不等式,这其中,韦达定理、曲线与方程的关系、两垂直直线的方向向量的数量积为零等为构造关于 k 的不等式起了积极作用 .练习 若抛物线 yax 21上总存在关于直线xy对称的两个点,则实数a的 取 值范围是 ( )1 ,3 ,0,11 , 3A 、4B 、4C、 4D、4 4答案: B题 8 抛物线 y24x的一条弦的倾斜角是, 弦长是4csc 2, 那么这种弦都经过一定点 , 该定点是 .(第十三届高二培训题第 73 题)解法 1 设弦过点M (a,0),则弦所在的直线是yk( xa),k tan, 90 ,yy 2 a)k y 2 y akk(,即4代入抛物线方程,消去 x得 4.(弦2cot 24 16a1 cot 21616a长)2=(1 )ktan 2csc 2 16cot 216a=16 csc4,即 16cot216a 16csc 216 16cot 2,由此得 a1 .x ax a 当90 时,弦所在直线方程为x a (a0) ,弦长为 4.由 y 24x ,得 y2 a或x ay2a.又由弦长4a4 ,得 a1 .综上,这些弦都经过点( 1,0).解法 2 由题意,对任意 都得同一结论,故运用特殊化思想解.4csc 24x a (a 0) ,代入令2,则弦长为2,此时弦所在直线方程为y24x ,得 y 24a , y2 a.由题设, 4 a 4,即 a 1 .所以2时,弦所在直线方程为x 1.4csc 28y b x 1 ,得再令4,则弦长为 4,设此时弦所在直线方程为x y 1 b , 代 入 y 24x 并 整 理 , 得 y24y 4b4 0,弦长1 1 ( y1 y2 ) 2 4 y1 y2 2 16 4(4b 4) 8,解得 b0,所以 4x 1时,弦所在直线方程为y x 1.解y x 1,得定点为( 1,0).评析题目本身反映了对于一条确定的抛物线,若确定,则以为其倾斜角的弦的长也确定,变化,则以为其倾斜角的弦的长也变化.但不论怎样变化,这样的弦都过一个定点,这反映了客观世界运动变化中的相对不变因素的存在.由题设可知0 ,故解法 1 设弦过点( a,0) ,并分直线的斜率存在与不存在两类情形,根据弦长是4csc2 ,直接求出 a 1 .从而说明不论为何值,弦总过定点( 1,0).这是合情合理的常规思维.然而,根据题意,这些弦过定点肯定是正确的,这就意味着满足题设的任意两弦的交点就是所求定点.这就具备了运用特殊化思想解题的前提.解法 2 分别令2 与 4 ,得到两个相应的弦所在直线的方程,解其联立方程组得其交点为 (1,0) ,即为所求.这种解法的逻辑依据是“若对一般正确,则对一般中的特7 3殊也正确.”至于解法2中为什么令2 与 4 ,而不令13与25,主要是为了计算的方便,这也是用此法解题时应当十分注意的.应当指出,凡解某种一般情形下某确定结论是什么的问题都可用这种方法解.拓展原题中弦长 4 csc2 中的 4 恰好为抛物线方程中的2 p,而答案中的定点(1,0) 又恰好为抛物线 y2 4x的焦点.这是偶然的巧合,还是普遍规律呢?经研究,这并非巧合,而是一个定理 .定理若抛物线 y 2 2 px ( p 0)的弦 PQ 的倾斜角为,则 PQ 2p csc2 的充分必要条件是 PQ经过抛物线的焦点F (p, 0)2 .证明先证必要性 :由已知,可设 PQ 的方程为y k ( xa) (k tan , 90 ) ,代入 y2 2 px ,得k 2 x22( k2 a p)x k 2 a 2 0 ①.由已知及弦长公式得2(1 k 2 ) (x1 x2 ) 2 4 x1x2② .将①的两根之和与积代入②,得PQ241 k2 22p csck4p 2apk,从而得 p 2 csc 4tan 4sec2( p22ap tan 2 ),a pF (p, 0)90时,结论也成立.解得2 ,即知 PQ过焦点2.容易验证当再证充分性:yk( xptan, 90 )由已知可设PQ的方程为 ) ( ky 22 px ,得2,代入4k 2 x 2 4 p( k 2 2) xk 2 p 2③,将③的两根之和与积代入②得PQ 2 p csc 2.容易验证当90时,结论也成立.应用该定理,可解决下面的问题:1.斜率为 1 的直线经过抛物线 y 24x的焦点,与抛物线相交于 A 、B 两点,求线段 AB 的长.2.PQ是经过抛物线y 2 4ax (a 0)焦点 F 的弦,若 PQb ,试求△ POQ 的面积( O是坐标原点).(91 年全国高中联赛题)3.PQ是经过抛物线y 2 4x焦点 F 的弦, O 是抛物线的顶点,若△POQ的面积为 4,求PQ的倾斜角.(98 年上海高考题)答案: 1. 8 2.aab3. 30 或 150题 9 长为 l (l1)的线段 AB 的两端在抛物线yx 2 上滑动,则线段 AB 的中点 M到 x轴的最短距离等于.(第 13 届高二第二试第 20 题)解 设 AB 的中点为 M (x, y),点 A 的坐标为(x, y),由对称性知 B 的坐y( x )2① ,)2y( x② ,22( l )2标为x, y,于是有以下关系成立:③ .2①+② , 得 y x22④,-②,得2 x ⑤.将④、⑤代入③,得22l 2yl 2 x21 [l 22)1]( yx )(1 4x )4 x 2 )4x 2 )(1 4x4 , 即4(14 (1, 因 为u xa 2(a x1 4x 2l (l0, x 0),a时, u 有最小值 , 当x a时 ,u是单调增加的 . 又当xl 21), y 关于 x2是单调增加的 , 所以 , 当x 0时 , y取得最小值 4.评析 点 M 到 x轴的最短距离显然就是点 M 的纵坐标的最小值 . 巧妙利用对称性,设出点 M 、A 、B 的坐标后,利用曲线与方程的关系及平几知识,可以得到三个关系式,这又有何用处呢?我们要求的是y的最小值,现在却出现了四个变量x 、 y 、 、 ,能否消去、从而得到y f (x),再求其最小值呢?果然,可以、yl 2 x 2 消去 ,得到4(1 4x 2 ) ⑥(这里用到了“设而不求”及函数的思想方法) . 若变形为yl 2 4x 216x 4x 24 16 x2,再令u,得到y l 2 4u 16u 216u 2(4 16 y)u l 2 4y0(u0)⑦,则可由方程⑦有非4 16u负实数解求出 y的最小值,但方程⑦有非负实数解的充要条件很复杂 . 能否用别的 什 么 方 法 呢 ? 考 虑 到 ⑥ 式 中 的1 4x2,故将⑥式变形为1 l 22l 2y4[1 4x 2(1 4x ) 1]⑧,由于14x 2 与 1 4x 2的积是定值,故当l 2l时, 有 y 最小值 .. 然而,因为l1 4 x 2=14x2 ,即14x21,所以 1 4x 2l ,0时,yminl 2即 1 4x 2取不到 l,故由函数⑧为x 2的单调增函数,可知当x4 .f (x) xa 2 ( a 0)0, 则当 x a 时 ,f ( x)取得最小值注:形如x的函数,若x2a ; 若xa (b b0 ), 则f ( x)单 调 递 增 ,f ( x)minf (ab) ; 若0 xab( 0 b , a) f ( x)则单调递减, f (x) minf (a b).( 请读者自己证明该结论 )拓展 将此题推广,可得定理 1 长为l的线段 AB 的两端在抛物线x22 py( p0)上滑动,线段 AB 的中点 M到x轴的距离为d,则0 l 2 p时, d min l 2;当8 p当 l 2p时, d min lp, d max l 22 8 p .证明由题意,直线 AB 的斜率k存在 . 设A( x1 ,x12), B( x2,x22 ), M ( x0 , y0 ),2 p 2 p 则x12 x22kAB 2 p 2px1 x2x2 2pyx1 x2 x0y y0 x0(x x0 ) y y0x0(x x0 )2p p,所以直线 AB的方程为p p,由,2x02,因为点 M在抛物线的内部,即yx02消去y,得 x2 2 x0 x 2 py0 2p ,所以(4 2py0 x02) 0,又x1 x2 2 ,x0 x1 2 x22 x20所p 0 y,以2l 1 x2 | x1 x2 | p1 p2 x02 ( x1 x2 )2 4x1x2 2 p2 x02 2 py0 x02p p . 于是d y0 p 2 l x02 ,8( p2 x 2 ) x02 p对求导数,得0' pl 2( 2 ) x12xx20[1 )p2l 22]2dx08 p 1 x0 ( 0p0 2 2 22 p 4( p x0 )x0x02 )2 [2( p 2 2 pl ][ 2( p 24p( p2 x0 ) x02 ) pl ] .(1)若0l2p(抛物线的通径长),令dx',得x,易知x,是 ddminl 2x 0AB y 8 p的唯一极小值点,所以当(即 轴)时,;',得xx 02 p(l 2 p),易知当x 0 0时,( 2)若l22 p,令d x0 或l 2 x 02 p(l2 p) lpdmax2时, dmin2 .8 p ;当l 2令定理中的 2 p 1 ,由定理的结论( 1)可知本赛题的答案为 4.此定理尽管也可以用均值不等式加以证明,但配凑的技巧性很强 . 这里,运用高中数学的新增内容导数进行证明,显得较为简洁 . 用导数研究函数的最值问 题,顺理成章,不必考虑特殊技巧,易被大家接受,应当加以重视并大力提倡 .此定理还可进一步拓广到椭圆、双曲线的情形,便得如下:x 2 y 2 1(a b0)定理 2已知 A 、 B 两点在椭圆a 2b2上滑动, |AB| =l,线段 AB 的中点 M 到 y 轴的距离为 d,则当 2b 2 l 2a 时, d max a( 2a l )a 2 a 2b 2( 1);( 2)当 l2b 2 时, d maxa 4b 2 l 2 .a2bx 2 y21(a,b 0)定理 3已知 A 、B 两点同在双曲线a 2b 2的右(或左)分支上滑动, |AB| = l ,线段 AB 的中点 M 到 y 轴的距离为 d,则当l 2b 2 时, d mina(2a l )( 1)a2 a 2 b 2 ;l2b 2 时, d mina 4b 2 l 2( 2)当a2b.为证定理 2、3,可以先证引理 在圆锥曲线过焦点的弦中,垂直于对称轴的弦最短 .ep l证明 设圆锥曲线的极坐标方程为1ecos,其中 e表AOFxBx示圆锥曲线的离心率,p表示焦点 F 到对应准线 l的距离,设 AB 是圆锥曲线过焦点 F 的弦,且 A ( 1,), B( 2 ,) ,epepep1,2ecos ,所以 | AB | 1因为1 ecos1 ecos() 1 2ep ep2ep1 ecos + 1 ecos= 1 e 2 cos 2 . 当2 ,即当 AB 与对称轴 x轴垂直时,| AB |min2ep,故在圆锥曲线过焦点的弦中,垂直于对称轴的弦最短.下面运用引理证明定理 2 .xa 2 证明 (1)不妨设椭圆的右焦点为 F (c,0),A 、M 、B 三点到右准线 c 的距离分别是t 1、 t 、 t 2,则 t t 1t2,由 椭 圆 的 第 二 定 义 知 : |AF|=et1,2|BF|= et 2 (e c )a ,|AF|+|BF||AB|= l,所以 t l2b 2 ,当 l 2b 2 时,2e. 又过焦点的弦最小值为aa线段lAB 可 以 过 焦 点 F , 当 AB 过 焦 点 F 时 , t有 最 小 值2e, 因 此a2la(2a l ) a( 2a l )d m a x2 a 2 b 2c2e2c.当 l2b 2 时,a( 2)线段 AB 不可能过焦点 F ,但点 M总可以在过 F 垂直于 x轴的椭圆的弦的右侧, 如右图,在△ AFM 中,设 ∠AMF= ,由余弦定理知| AF |2 | FM |2 | AM |22 | FM || AM |cosyAt1FOM t xBt2| FM |21l21l 2 cos在 △BFM42, 中 ,|BF|2|FM |21 l2 1l 2cos|AF |2| BF |2 2 | FM |21l 242,所以2,所以1(2|AF| 222| FM | ta 2 cb 2|FM || BF | ) lcc,所以2,又t1 22) l 2b 2(2|AF||BF|2c①,无论线段 AB 在什么位置,不等式①都成立.又(2|AF| 22) l 2(|AF |2l 22(t 1 t 2 ) 2l 22 22, 故|BF | |BF |)e4e tl t2 21 2b 2ta 2a 4b 2l 2e tlcc2b③,当线段 AB 垂4②. 解此不等式,得直 于 x轴 且 在焦 点 F 的 右侧 时, 不等 式 ① 、 ② 、 ③ 都 取等 号, 此时t min a2a 4b 2 l2dmaxa 2( a 2a 4b 2 l 2 ) a4b 2 l 2c2b, cc2b2b. 仿此亦可证明定理 1、3,不再赘述 .题 10动圆 M 过定点 A 且与定圆 O相切,那么动圆M 的中心的轨迹 是( )A 、圆B 、圆,或椭圆C 、圆,或椭圆,或双曲线D 、圆,或椭圆,或双曲线,或直线(第三届高二第二试第 10 题)解 动圆 M 、定点 A 、定圆 O, 这三者的位置关系有 5种可能,如图⑴~⑸:O在情形⑴: A 在圆O上,这时动圆 M 与定圆O相切于 A ,所以 M 点的轨迹是过O, A的一条直线 .在情形⑵: A 与O重合,这时动圆 M 在定圆O的内部,与它内切,所以 M 点的轨迹是以O为圆心,以定圆O的半径的一半为半径的圆 .在情形⑶: A 在定圆O的内部但不重合于 O 点,动圆 M 过 A 且与定圆 O 内切,这时动点 M 与定点 O 、 A 的距离的和是MOMA ( R x)xR(定值),其中的 R 、x分别表示定圆 O 、动圆 M 的半径 . 可知点 M 的轨迹是以 O、A 为焦点,R 为长轴长的椭圆 .在情形⑷: A 在定圆O的外部,动圆M 过 A 且与定圆O外切,这时MO MA(R x) x R(定值) . 可知 M 的轨迹是以 O 、 A 为焦点, R 为实轴长的双曲线的一支 .在情形⑸: A 在定圆O的外部,动圆M 与定圆O内切,这时MAMOx ( xR)R(定值). 可知 M 点的轨迹也是以O, A为焦点 . R 为实轴长的双曲线的一支(和情形 4 对应的另一支) .综上,可知选 D.评析 分类讨论是参加高考与竞赛必须掌握的数学思想 . 分类要注意标准的统一,不可重复,也不能遗漏 . 此题的关键是要搞清全部情形有 5 种,然后再分别求动圆中心的轨迹 . 运用二次曲线的定义大大简化了解题过程 .应当指出,当点 A 在圆O上时,动圆 M 的中心的轨迹是直线OA,但应除去点 O 、A . 另外,讨论完第一种情形后就可排除A, B, C,而选 D,这样就更快捷了.。

高考数学复习训练:解析几何100道经典大题(含答案)高中生打印

高考数学复习训练:解析几何100道经典大题(含答案)高中生打印
所以今天给同学们整理了一份高中数学几何的题库大全,包含解析,一共79页,希望同学们可以认真做题,认真复习。家长也可以给孩子打印下来。
篇幅有限,仅为部分资料。但,可免费领取电子版。
所以今天给同学们整理了一份高中数学几何的题库大全包含解析一共79页希望同学们可以认真做题认真复习
高考数学复习训练:解析几何100道经典大题(含答案)高中生打印
几何是高中数学最常考的考点之一,用代数的方法解决几何问题,难度பைடு நூலகம்用我说,大家都知道怎么回事。在几何的学习中,重点是用“数形结合”的思想把几何转化为代数问题。

最新高中理科数学绝杀80题 数列真题篇学生版

最新高中理科数学绝杀80题 数列真题篇学生版

(1)求{an}的通项公式; (2)求 Sn,并求 Sn 的最小值.
20.(2018•新课标Ⅲ)等比数列{an}中,a1=1,a5=4a3.
(1)求{an}的通项公式;
(2)记 Sn 为{an}的前 n 项和.若 Sm=63,求 m.
(2)若{an}为等比数列,且nli→m∞Sn<12,求公比 q 的取值范围. 11.【2019 年理北京卷】已知数列{an},从中选取第 i1 项、第 i2 项、…、第 im 项(i1<i2<…<im), 若 ai1 ai2 aim ,则称新数列 ai1,ai2,,aim 为{an}的长度为 m 的递增子列.规定:数列{an} 的任意一项都是{an}的长度为 1 的递增子列. (Ⅰ)写出数列 1,8,3,7,5,6,9 的一个长度为 4 的递增子列;
9.(2019•新课标Ⅱ)已知数列{an}和{bn}满足 a1=1,b1=0,4an+1=3an﹣bn+4,4bn+1=3bn﹣ an﹣4. (1)证明:{an+bn}是等比数列,{an﹣bn}是等差数列; (2)求{an}和{bn}的通项公式. 10.(2019•上海学业考试)已知数列{an},a1=3,前 n 项和为 Sn. (1)若{an}为等差数列,且 a4=15,求 Sn;
5.(2019•新课标Ⅲ)记 Sn 为等差数列{an}的前 n 项和.若 a1≠0,a2=3a1,则SS150 = 6.(2019•新课标Ⅰ)记 Sn 为等比数列{an}的前 n 项和.若 a1= 13,a42=a6,则 S5= 7.(2019•北京)设等差数列{an}的前 n 项和为 Sn,若 a2=﹣3,S5=﹣10,则 a5=
的通项公式.
12.(2018•新课标Ⅰ)记 Sn 为等差数列{an}的前 n 项和.若 3S3=S2+S4,a1=2,则 a5=( )

解析几何 高考数学大题热点50题训练学生版

解析几何  高考数学大题热点50题训练学生版

2023 解几大题热点50 题训练一.解答题(共50 小题)1.(2023•五华区校级模拟)已知双曲线2222:1(0,0)x y C a b a b -=>>的右焦点为F ,C 的两条渐近线分别与直线2a x c=交于A ,B 两点,且AB 的长度恰好等于点F (1)求双曲线的离心率;(2)已知过点F 且斜率为1的直线l 与双曲线交于M ,N 两点,O 为坐标原点,若对于双曲线上任意一点P ,均存在实数λ,μ,使得OP OM ON λμ=+,试确定λ,μ的等量关系式.2.(2023•江西模拟)已知点F 为抛物线2:2(0)C y px p =>的焦点,点(4,)M a 在抛物线上,且||6FM =.(1)求抛物线C 的方程;(2)过点F 分别作两条互相垂直的直线与抛物线C 分别交于A ,B 与P ,Q ,记AFP ∆,BFQ ∆的面积分别为1S ,2S ,求12S S +的最小值.3.(2023•潍坊模拟)已知动点P 与两定点1(2,0)A -,2(2,0)A ,直线1PA 与2PA 的斜率之积为34-,记动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)设(D a ,0)(12)a <<,E 为直线2x a =上一动点,直线DE 交曲线C 于G ,H 两点,若||GD 、||HE 、||GE 、||HD 依次为等比数列{}n b 的第m 、n 、p 、q 项,且m n p q +=+,求实数a 的值.4.(2023•西安模拟)已知椭圆2222:1(0)x y C a b a b +=>>的焦点为1F 、2F ,离心率为22,直线:0l x y m ++=,1F 、2F 在直线l 上的射影分别为M 、N ,且||MN =.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设直线l 与椭圆C 交于A 、B 两点,(2,0)P -.求ABP ∆的面积的最大值.5.(2023•聊城一模)已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,一条渐近线的倾斜角为60︒,且C 上的点到F 的距离的最小值为1.(1)求C 的方程;(2)设点(0,0)O ,(0,2)M ,动直线:l y kx m =+与C 的右支相交于不同两点A ,B ,且AFM BFM ∠=∠,过点O 作OH l ⊥,H 为垂足,证明:动点H 在定圆上,并求该圆的方程.6.(2023•周至县二模)如图,已知椭圆2222:1(0)y x E a b a b +=>>的一个焦点为1(0,1)F ,离心率为22.(1)求椭圆E 的方程;(2)过点I F 作斜率为k 的直线交椭圆E 于A ,B 两点,AB 的中点为M .设O 为原点,射线OM 交椭圆E 于点C .当四边形OACB 为平行四边形时,求k的值.7.(2023•太原模拟)已知椭圆2222:1(0)x y C a b a b+=>>的右顶点为A ,上顶点为B ,其离心率12e =,直线AB 与圆22127x y +=相切.(1)求椭圆C 的方程;(2)过点M 的直线与椭圆C 相交于P ,Q 两个不同点,过点P 作x 轴的垂线分别与AB ,AQ 相交于点D 和N ,证明:D 是PN 中点.8.(2023•江苏模拟)已知直线l 与抛物线21:2C y x =交于两点1(A x ,1)y ,2(B x ,2)y ,与抛物线22:4C y x =交于两点3(C x ,3)y ,4(D x ,4)y ,其中A ,C 在第一象限,B ,D 在第四象限.(1)若直线l 过点(1,0)M,且11||||BM AM -=l 的方程;(2)①证明:12341111y y y y +=+;②设AOB ∆,COD ∆的面积分别为1S ,2(S O 为坐标原点),若||2||AC BD =,求12S S .9.(2022秋•滨江区校级期末)已知1F ,2F 为椭圆2222:1(0)x y C a b a b+=>>的左、右焦点.点M 为椭圆上一点,当12F MF ∠取最大值3π时,121()6MF MF MF +⋅= .(1)求椭圆C 的方程;(2)点P 为直线4x =上一点(且P 不在x 轴上),过点P 作椭圆C 的两条切线PA ,PB ,切点分别为A ,B ,点B 关于x 轴的对称点为B ',连接AB '交x 轴于点G .设△2AF G ,△2BF G 的面积分别为1S ,2S ,求12||S S -的最大值.10.(2023春•广东月考)已知点(1,0)F ,点P 为平面上的动点,过点P 作直线:1l x =-的垂线,垂足为Q ,且QP QF FP FQ ⋅=⋅ .(Ⅰ)求动点P 的轨迹C 的方程;(Ⅱ)设点P 的轨迹C 与x 轴交于点M ,点A ,B 是轨迹C 上异于点M 的不同的两点,且满足0MA AB ⋅=,求||MB的最小值.11.(2023春•商丘月考)已知动点P 到直线8y =-的距离比到点(0,1)的距离大7.(Ⅰ)求动点P 的轨迹方程;(Ⅱ)记动点P 的轨迹为曲线C ,点M 在直线1:1l y =-上运动,过点M 作曲线C 的两条切线,切点分别为A ,B ,点N 是平面内一定点,线段MA ,NA ,NB ,MB 的中点依次为E ,F ,G ,H ,若当M 点运动时,四边形EFGH 总为矩形,求定点N 的坐标.12.(2023•铜仁市模拟)已知双曲线2222:13x y C a a -=-的一条渐近线方程为20x y -=,若过点(0,3)E -的直线l 交C 于A ,B 两点.(1)求直线l 的斜率范围;(2)若l 交C 的两条渐近线于C ,D 两点且满足CA AB BD ==,求直线l 的斜率的大小.13.(2023•抚顺模拟)已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点坐标为(1,0)-,A ,B 分别是椭圆的左、右顶点,点(,)D x y 在椭圆C 上,且直线AD 与BD 的斜率之积为34-.(1)求椭圆C 的标准方程;(2)设直线230x ty +-=与椭圆分别相交于M ,N 两点,直线(MO O 为坐标原点)与椭圆的另一个交点为E ,求MNE ∆的面积S 的最大值.14.(2023•湛江一模)已知1F ,2F 分别为椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,椭圆E 的离心率为12,过2F 且不与坐标轴垂直的直线l 与椭圆E 交于A ,B 两点,△1F AB 的周长为8.(1)求椭圆E 的标准方程;(2)过1F 且与l 垂直的直线l '与椭圆E 交于C ,D 两点,求四边形ACBD 面积的最小值.15.(2023•辽宁一模)如图,A ,B ,C ,D 是抛物线2:4E y x =上的四个点(A ,B 在x 轴上方,C ,D 在x 轴下方),已知直线AC 与BD 的斜率分别为63-和2,且直线AC 与BD 相交于点P .(1)若点A 的横坐标为6,则当ADC ∆的面积取得最大值时,求点D 的坐标.(2)试问||||||||PA PC PB PD ⋅⋅是否为定值?若是,求出该定值;若不是,请说明理由.16.(2023•咸阳二模)椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F 、2F ,且椭圆C 过点(2,0)-,离心率为12.(1)求椭圆C 的方程;(2)若点1(M x ,1)y 是椭圆22221(0)x y m n m n+=>>上任一点,那么椭圆在点M 处的切线方程为11221x x y y m n +=.已知0(N x ,0)y 是(1)中椭圆C 上除顶点之外的任一点,椭圆C 在N 点处的切线和过N 点垂直于切线的直线分别与y 轴交于点P 、Q .求证:点P 、N 、Q 、1F 、2F 在同一圆上.17.(2023•赤峰三模)法国数学家加斯帕尔⋅蒙日是19世纪著名的几何学家,他创立了画法几何学,推动了空间解析几何学的独立发展,奠定了空间微分几何学的宽厚基础,根据他的研究成果,我们定义:给定椭圆2222:1(0)x y C a b a b +=>>,则称圆心在原点O 的圆为“椭圆C 的伴随圆”,已知椭圆22221(0)x y a b a b +=>>的一个焦点为F ,其短轴的一个端点到焦点F (1)若点A 为椭圆C 的“伴随圆”与x 轴正半轴的交点,B ,D 是椭圆C 的两相异点,且BD x ⊥轴,求AB AD ⋅的取值范围.(2)在椭圆C 的“伴随圆”上任取一点P ,过点P 作直线1l ,2l ,使得1l ,2l 与椭圆C 都只有一个交点,试判断1l ,2l 是否垂直?并说明理由.18.(2023•开封二模)如图,过抛物线2:2(0)E x py p =>的焦点F 作直线l 交E 于A ,B 两点,点A ,B 在x 轴上的射影分别为D ,C .当AB 平行于x 轴时,四边形ABCD 的面积为4.(1)求p 的值;(2)过抛物线上两点的弦和抛物线弧围成一个抛物线弓形,古希腊著名数学家阿基米德建立了这样的理论:以抛物线弓形的弦为底,以抛物线上平行于弦的切线的切点为顶点作抛物线弓形的内接三角形,则抛物线弓形的面积等于该内接三角形面积的43倍.已知点P 在抛物线E 上,且E 在点P 处的切线平行于AB ,根据上述理论,从四边形ABCD 中任取一点,求该点位于图中阴影部分的概率为12时直线l 的斜率.19.(2023•吉州区校级一模)已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F 、2F ,若C 过点3(1,2A ,且12|||4AF AF +=.(1)求C 的方程;(2)过点2F 且斜率为l 的直线与C 交于点M 、N ,求OMN ∆的面积.20.(2023•毕节市模拟)在圆22:1O x y +=上任取一点P ,过点P 作y 轴的垂线,垂足为D ,点Q 满足2DQ PQ =.当点P 在圆O 上运动时,点Q 的轨迹为曲线C .(1)求曲线C 的方程;(2)设曲线C 与y 轴正半轴交点为A ,不过点A 的直线l 与曲线C 交于M ,N 两点,若0AM AN ⋅=,试探究直线l 是否过定点.若过定点,求出该点的坐标;若不过定点,请说明理由.21.(2023•大庆模拟)已知椭圆2222:1(0)x y C a b a b+=>>的离心率12e =,短轴长为.(1)求椭圆C 的方程;(2)已知经过定点(1,1)P 的直线l 与椭圆相交于A ,B 两点,且与直线34y x =-相交于点Q ,如果AQ AP λ= ,QB PB μ=,那么λμ+是否为定值?若是,请求出具体数值;若不是,请说明理由.22.(2023•成都模拟)已知中心为坐标原点O ,对称轴为坐标轴的椭圆C 经过P ,3,Q ,3两点.(Ⅰ)求椭圆C 的方程;(Ⅱ)设过点(0,1)的直线l 与椭圆C 相交于A ,B 两点,23OD OB = ,OE OD OA =+,且点E 在椭圆C 上,求直线l 的方程.23.(2023•湖南模拟)在平面直角坐标系xOy 中,双曲线2222:1(0,0)y x C a b a b-=>>的焦点到渐近线的距离(1)求C 的方程;(2)如图,点A 为双曲线的下顶点,点P 在y 轴上(位于原点与上顶点之间),过P 作x 轴的平行线l ,过P 的另一条直线交双曲线于G ,H 两点,直线AG ,AH 分别与l 交于M ,N 两点,若ANM AOM π∠+∠=,求点P 的坐标.24.(2023•贵州模拟)已知抛物线2:2(0)C x py p =>上的点0(2,)y 到其焦点F 的距离为2.(1)求抛物线C 的方程;(2)已知点D 在直线:3l y =-上,过点D 作抛物线C 的两条切线,切点分别为A ,B ,直线AB 与直线l 交于点M ,过抛物线C 的焦点F 作直线AB 的垂线交直线l 于点N ,当||MN 最小时,求||||AB MN 的值.25.(2023•广西模拟)已知抛物线2:2(0)C y px p =>的焦点F 到准线的距离为2.(1)求C 的方程;(2)若P 为直线:2l x =-上的一动点,过P 作抛物线C 的切线PA ,PB ,A ,B 为切点,直线AB 与l 交于点M ,过F 作AB 的垂线交l 于点N ,当||MN 最小时.求||AB .26.(2023•昆明一模)已知过点(1,)e 的椭圆2222:1(0)x y E a b a b+=>>的焦距为2,其中e 为椭圆E 的离心率.(1)求E 的标准方程;(2)设O 为坐标原点,直线l 与E 交于A ,C 两点,以OA ,OC 为邻边作平行四边形OABC ,且点B 恰好在E 上,试问:平行四边形OABC 的面积是否为定值?若是定值,求出此定值;若不是,说明理由.27.(2023•全国一模)已知双曲线2222:1(0,0)x y C a b a b-=>>过点(3,A ,且渐近线方程为0x ±=.(1)求双曲线C 的方程;(2)如图,过点(1,0)B 的直线l 交双曲线C 于点M 、N .直线MA 、NA 分别交直线1x =于点P 、Q ,求||||PB BQ 的值.28.(2023•邯郸一模)已知椭圆2222:1(0)x y C a b a b+=>>的离心率与双曲线221x y -=的离心率互为倒数,点(2,2)A 在椭圆C 上,不过点A 的直线l 与椭圆C 交于P ,Q 两点.(1)求椭圆C 的标准方程;(2)若直线AP ,AQ 的斜率之和为1,试问直线l 是否过定点?若过定点,求出此定点;若不过定点,请说明理由.29.(2023•成都模拟)已知1F ,2F 分别为椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,与椭圆C 有相同焦点的双曲线2214x y -=在第一象限与椭圆C 相交于点P ,且2||1PF =.(1)求椭圆C 的方程;(2)设直线1y kx =+与椭圆C 相交于A ,B 两点,O 为坐标原点,且(0)OD mOB m =>.若椭圆C 上存在点E ,使得四边形OAED 为平行四边形,求m 的取值范围.30.(2023•商洛一模)已知1F ,2F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,Q 是椭圆E 的右顶点,2||1F Q =,且椭圆E 的离心率为12.(1)求椭圆E 的方程.(2)过1F 的直线交椭圆E 于A ,B 两点,在x 轴上是否存在一定点P ,使得1()||||PA PBPF PA PB λ=+,λ为正实数.如果存在,求出点P 的坐标;如果不存在,说明理由.31.(2023•石景山区一模)已知椭圆2222:1(0)x y C a b a b+=>>过点,且离心率为12.(Ⅰ)求椭圆C 的方程;(Ⅱ)过点(1,1)P -且互相垂直的直线1l ,2l 分别交椭圆C 于M ,N 两点及S ,T 两点.求||||||||PM PN PS PT 的取值范围.32.(2023•西城区校级模拟)已知点A ,B 是椭圆2222:1(0)x y E a b a b+=>>的左,右顶点,椭圆E 的短轴长为2,离心率为32.(1)求椭圆E 的方程;(2)点O 是坐标原点,直线l 经过点(2,2)P -,并且与椭圆E 交于点M ,N ,直线BM 与直线OP 交于点T ,设直线AT ,AN 的斜率分别为1k ,2k ,求证:12k k 为定值.33.(2023•江西模拟)设椭圆E 的方程为2221(1)x y a a+=>,点O 为坐标原点,点A ,B 的坐标分别为(,0)a ,(0,1),点M 在线段AB 上,满足||2||BM MA =,直线OM 的斜率为14.(1)求椭圆的方程;(2)若动直线l 与椭圆E 交于P ,Q 两点,且恒有OP OQ ⊥,是否存在一个以原点O 为圆心的定圆C ,使得动直线l 始终与定圆C 相切?若存在,求圆C 的方程,若不存在,请说明理由.34.(2023•天津模拟)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为22,直线:1l x =与C 交于M ,N 两点,且||MN =(1)求C 的方程;(2)若C 的左、右顶点分别为A ,B ,点D (不同于M ,)N 为直线l 上一动点,直线AD ,BD 分别与C 交于点P ,Q ,证明:直线PQ 恒过定点,并求出该定点的坐标.35.(2023•江西模拟)已知椭圆2222:1(,02)x y C a b b a b+=><<的左、右焦点分别为1F ,2F ,点M 在椭圆上,212MF F F ⊥,若△12MF F 的周长为6,面积为32.(1)求椭圆C 的标准方程;(2)过点2F 的直线l 交椭圆于A ,B 两点,交y 轴于P 点,设1222,PA AF PB BF λλ==,试判断12λλ+是否为定值?请说明理由.36.(2023•兴庆区校级一模)已知椭圆2222:1(0)x y C a b a b+=>>的焦距为2,经过点3(1,2,若点P 是椭圆C上一个动点(异于椭圆C 的左右顶点),点(3,0)N -,(2,0)E -,(2,0)F ,直线PN 与曲线C 的另一个公共点为Q ,直线EP 与FQ 交于点M .(1)求椭圆C 的标准方程;(2)求证:当点P 变化时,点M 恒在一条定直线上.37.(2023•渝中区校级模拟)已知椭圆2222:1x y C a b+=的焦点在x 轴上,它的离心率为12,且经过点23(3P .(1)求椭圆C 的方程;(2)若椭圆C 的左焦点为F ,过点F 的直线l 与椭圆C 交于A ,B 两点,且过点A ,B 和点2Q 的圆的圆心在x 轴上,求直线l 的方程及此圆的圆心坐标.38.(2023•兴庆区校级一模)如图所示,由半椭圆2212:1(0)4x y C y b += 和两个半圆222:(1)1(0)C x y y ++= 、223:(1)1(0)C x y y -+= 组成曲线:(,)0C F x y =,其中点1A ,2A 依次为1C 的左、右顶点,点B 为1C 的下顶点,点1F ,2F 依次为1C 的左、右焦点.若点1F ,2F 分别为曲线2C ,3C 的圆心.(1)求1C 的方程;(2)若过点1F ,2F 作两条平行线1l ,2l 分别与1C ,2C 和1C ,3C 交与M ,N 和P ,Q ,求||||MN PQ +的最小值.39.(2023•浙江模拟)已知双曲线E 的顶点为(1,0)A -,(1,0)B ,过右焦点F 作其中一条渐近线的平行线,与另一条渐近线交于点G ,且4OFG S ∆=.点P 为x 轴正半轴上异于点B 的任意点,过点P 的直线l 交双曲线于C ,D 两点,直线AC 与直线BD 交于点H .(1)求双曲线E 的标准方程;(2)求证:OP OH ⋅为定值.40.(2023•呼和浩特模拟)已知椭圆22221(0)x y a b a b +=>>的一个焦点为(2,0)F ,且离心率e =.(1)求椭圆的标准方程;(2)设点A 、B 是x 轴上的两个动点,1)M -且||||AM BM =,直线AM 、BM 分别交椭圆于点P 、Q (均异于)M ,证明:直线PQ 的斜率为定值.41.(2023•龙岩模拟)已知椭圆2222:1(0)x y K a b a b+=>>的左、右焦点分别为1(2,0)F -,2(2,0)F ,过右焦点2F 的直线l 交椭圆K 于M ,N 两点,以线段2||MF 为直径的圆C 与圆221:8C x y +=内切.(1)求椭圆K 的方程;(2)过点M 作ME x ⊥轴于点E ,过点N 作NQ x ⊥轴于点Q ,OM 与NE 交于点P ,是否存在直线l 截得PMN ∆的面积等于62若存在,求出直线l 的方程;若不存在,请说明理由.42.(2023•济宁一模)已知直线10x y ++=与抛物线2:2(0)C x py p =>相切于点A ,动直线l 与抛物线C 交于不同两点M ,(N M ,N 异于点)A ,且以MN 为直径的圆过点A .(1)求抛物线C 的方程及点A 的坐标;(2)当点A 到直线l 的距离最大时,求直线l 的方程.43.(2023•宁波模拟)已知双曲线2222:1(,0)x y C a b a b-=>的渐近线与曲线21:22E y x =+相切.横坐标为t 的点P 在曲线E 上,过点P 作曲线E 的切线l 交双曲线C 于不同的两点A ,B .(1)求双曲线C 的离心率;(2)记AB 的中垂线交x 轴于点M .是否存在实数t ,使得30APM ∠=︒?若存在,请求出t 的值;若不存在,请说明理由.44.(2023•沙坪坝区校级模拟)已知双曲线2222:1(0,0)x y C a b a b-=>>的实轴长为F 到双曲线C 的渐近线距离为1.(1)求双曲线C 的方程;(2)点P 在第一象限,P ,Q 在直线12y x =上,点P ,A ,B 均在双曲线C 上,且AQ x ⊥轴,M 在直线AQ 上,P ,M ,B 三点共线.从下面①②中选取一个作为条件,证明另外一个成立:①Q 是AM 的中点;②直线AB 过定点(0,1)T .45.(2023•石家庄模拟)已知点(4,3)P 在双曲线2222:1(0,0)x y C a b a b-=>>上,过P 作x 轴的平行线,分别交双曲线C 的两条渐近线于M ,N 两点,||||4PM PN ⋅=.(Ⅰ)求双曲线C 的方程;(Ⅱ)若直线:l y kx m =+与双曲线C 交于不同的两点A ,B ,设直线PA ,PB 的斜率分别为1k ,2k ,从下面两个条件中选一个(多选只按先做给分),证明:直线l 过定点.①121k k +=;②121k k =.46.(2023•广州模拟)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为22,以C 的短轴为直径的圆与直线6y ax =+相切.(1)求C 的方程;(2)直线:(1)(0)l y k x k =- 与C 相交于A ,B 两点,过C 上的点P 作x 轴的平行线交线段AB 于点Q ,直线OP 的斜率为(k O '为坐标原点),APQ ∆的面积为1.S BPQ ∆的面积为2S ,若21||||AP S BP S ⋅=⋅,判断k k '⋅是否为定值?并说明理由.47.(2023•南充模拟)如图,已知A ,B 分别为椭圆2222:1(0)x y M a b a b+=>>的左,右顶点,0(P x ,0)y 为椭圆M 上异于点A ,B 的动点,若4AB =,且ABP ∆面积的最大值为2.(1)求椭圆M 的标准方程;(2)已知直线l 与椭圆M 相切于点0(P x ,0)y ,且l 与直线x a =和x a =-分别相交于C ,D 两点,记四边形ABCD 的对角线AC ,BD 相交于点N .问:是否存在两个定点1F ,2F ,使得12||||NF NF +为定值?若存在,求1F ,2F 的坐标;若不存在,说明理由.48.(2023•赣州模拟)已知抛物线2:2(0)C y px p =>,F 为其焦点,点0(2,)M y 在C 上,且4(OFM S O ∆=为坐标原点).(1)求抛物线C 的方程;(2)若A ,B 是C 上异于点O 的两个动点,当90AOB ∠=︒时,过点O 作ON AB ⊥于,问平面内是否存在一个定点Q ,使得||NQ 为定值?若存在,请求出定点Q 及该定值;若不存在,请说明理由.49.(2023•杭州模拟)已知双曲线2222:1(0,0)x y E a b a b-=>>,并且经过点,2).(1)求双曲线E 的方程.(2)若直线l 经过点(2,0),与双曲线右支交于P 、Q 两点(其中P 点在第一象限),点Q 关于原点的对称点为A ,点Q 关于y 轴的对称点为B ,且直线AP 与BQ 交于点M ,直线AB 与PQ 交于点N ,证明:双曲线在点P 处的切线平分线段MN .50.(2023•浦东新区模拟)已知椭圆22122:1(0)x y C a b a b +=>>的离心率为2,且点(-在椭圆1C 上.(1)求椭圆1C 的方程;(2)过点(0,1)Q 的直线l 与椭圆1C 交于D ,E 两点,已知2DQ QE = ,求直线l 的方程;(3)点P 为椭圆1C 上任意一点,过点P 作1C 的切线与圆222:12C x y +=交于A ,B 两点,设直线OA ,OB 的斜率分别为1k ,2k .证明:12k k ⋅为定值,并求该定值.。

最新高中文科数学绝杀80题 解析几何模拟篇学生版

最新高中文科数学绝杀80题  解析几何模拟篇学生版
高中文科数学(学生版)
最新高考绝杀 80 题
最 新 讲 义
1
解析几何
1.(2020·东北师大附中高三模拟(文))已知
F1
,
F2
是双曲线
E
:
x a
2 2
y2 b2
1a
0,b
0 的左、
右焦点,若点 F1 关于双曲线渐近线的对称点 P 满足 OPF2 POF2 ( O 为坐标原点),则 E 的 离心率为( )
x a
2 2
y2 b2
1a>b>0 的右焦点为 F,
O 为坐标原点.以 F 为圆心,OF 为半径作圆 F,圆 F 与 C 的渐近线交于异于 O 的 A,B 两点.
若|AB| 3 |OF|,则 C 的离心率为( )
A. 2 10 5
B. 1 7 3
C. 2 3 3
D.2
2
6.(2020·福建省漳州市高三测试(文)已知双曲线 C1 :
A. y 3 x 3
B. y 3x
C.
y
1 2
x
D. y 2x
12.(2020·河南省开封市高三模拟(理))关于渐近线方程为 x y 0 的双曲线有下述四个结 论:①实轴长与虚轴长相等,②离心率是 2, ③过焦点且与实轴垂直的直线被双曲线截得的线
段长与实轴长相等,④顶点到渐近线与焦点到渐近线的距离比值为 2 .其中所有正确结论的编
x2 a2
y2 b2
1( a
b
0 )的左、右焦
点分别为
F1 、
F2
,点
A 是椭圆短轴的一个顶点,且 cos F1AF2
7 8
,则椭圆的离心率 e


A. 1 2

最新高中理科数学绝杀80题 不等式模拟篇学生版

最新高中理科数学绝杀80题 不等式模拟篇学生版

4
15.(2020·江西省名高三第二次大联考(理))若函数
f
(x)
x2
ax2 2x 1
为奇函数,则
a
_______.
y x
16.(2020·陕西省西安中学高三三模(理))若实数
x,
y
满足不等式组
x
2
2x
y y
3 6
,则
z
1
x
y
的最大值为__________.
17.【2019 届河南省名校联盟尖子生期中】已知命题 p:4 > 3ln2;命题 q:∀a,b ∈ (0, + ∞),
x

y
满足
y
2
x
1,如果目标函数
z
x
y
的最
x y m
小值为 2 ,则 y 的最小值为_______. x
3x y 2 0 14.(2020·江西省名高三第二次大联考(理))若实数 x,y 满足约束条件 x y 2 0 ,则
x 4y 4 0
z x 2y 的最大值为________.
(2a
+
b)(
1 a
+
2 b
)

16,则下列命题中的真命题是(
)
A.q B.p ∧ q C.(¬p) ∨ q D.p ∧ (¬q)[:ZXXK]
5x + 4y − 6 ≥ 6 18.【2019 届吉林省高中期末】设 x,y 满足约束条件 2x − y − 5 ≤ 0 ,则 z = y − x 的最小值
x
的最大值是( )
A.-1
B.0
C. 1 2
D.2
3.(2020·江西省名高三第二次大联考(理))已知函数 f (x) memx ln x ,当 x 0 时,f (x) 0

最新高中理科数学绝杀80题 导数及其应用满分冲刺篇学生版

最新高中理科数学绝杀80题 导数及其应用满分冲刺篇学生版

(1)若 a R ,求函数 f (x) 的极值点个数;
(2)若函数
f
(x)
在区间 (1,1+ea ) 上不单调,证明:
1 a
1 a 1
a
.
15.已知函数 f x x 1ln x ax , a 是实数.
(1)当 a 2 时,求证: f x 在定义域内是增函数;
(2)讨论函数 f x 的零点个数.
19.已知函数 f x ax ln x .
(Ⅰ)求 f x 的极值;
(Ⅱ)若 a 1, b 1, g x f x bex ,求证: g x 0 .
20.(1)证明函数 y ex 2sin x 2x cos x 在区间 ( , ) 上单调递增; 2
(2)证明函数
f
(x)
17.已知函数 f (x) ex ax 2 bx 1 ,其中 a,b R ,e 2.71828为自然对数的底
数. (Ⅰ)设 g(x) 是函数 f (x) 的导函数,求函数 g(x) 在区间[0,1] 上的最小值; (Ⅱ)若 f (1) 0 ,函数 f (x) 在区间 (0,1) 内有零点,求 a 的取值范围 18.已知函数 f (x) me x ln x 1 . (1)当 m 1时,求曲线 y f (x) 在点 (1, f (1)) 处的切线方程; (2)若 m (1, ) ,求证: f (x) 1.
11.已知函数 f(x)=-2xlnx+x2-2ax+a2,其中 a>0.
(Ⅰ)设 g(x)为 f(x)的导函数,讨论 g(x)的单调性;
(Ⅱ)证明:存在 a∈(0,1),使得 f(x)≥0 恒成立,且 f(x)=0 在区间(1,+∞)
内有唯一解.
12.已知函数 f (x) lnx ax 1有两ห้องสมุดไป่ตู้零点 x1, x2 .

最新高中理科数学绝杀80题 解析几何满分冲刺篇学生版

最新高中理科数学绝杀80题 解析几何满分冲刺篇学生版

线 C 的渐近线相切, M 是圆 F2 与双曲线 C 的一个交点.若 F1M F2M =0 ,则双曲线
C 的离心率等于( )
A. 5
B. 2
C. 3
D. 2
10.直线 l 经过抛物线 C :y2 12x 的焦点 F ,且与抛物线 C 交于 A ,B 两点,弦 AB
的长为 16,则直线 l 的倾斜角等于__________. 11.若直线 2x cy 1 0 是抛物线 x2 y 的一条切线,则 c __________.
B. x2 y2 1 3
C. x2 y2 1
D.
12 8
x2 y2 1 12 4
2.若双曲线
x a
2 2
y2 b2
1(a
0 ,b 0 )的一条渐近线经过点 (1, 2) ,则该双曲线的
离心率为( )
A. 3
B. 5
2
C. 5
D. 2
3.已知动点 M
在以 F1 , F2 为焦点的椭圆 x2
y2 4
1上,动点 N
在以 M
为圆心,
半径长为| MF1 | 的圆上,则 | NF2 | 的最大值为( )
A. 2
B. 4
C. 8
D. 16
4.已知双曲线
x2 a2
y2 b2
1(a
0, b
0)
的左,右焦点分别为
F1 ,F2
,点
A 在双曲线上,
且 AF2 x 轴,若 AF1F2 的内切圆半径为 ( 3 1)a ,则其离心率为( )
是_______
15.已知椭圆 C
:
x2 a2
y2 b2
1a b 0 的离心率为
3 ,其右顶点为 A ,下顶点为 B , 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4 12
B. x2 − y2 = 1
12 4
C. x2 − y2 = 1
39
D. x2 − y2 = 1
93
16.【2018 年理新课标 I 卷】已知双曲线 C:x2 − y2 = 1,O 为坐标原点,F 为 C 的右焦点,
3
过 F 的直线与 C 的两条渐近线的交点分别为 M、N.若 OMN 为直角三角形,则|MN|=( )
3.【2019 年理全国卷 3】已知曲线 C:y= x2 ,D 为直线 y= 1 上的动点,过 D 作 C 的两条切
2
2
线,切点分别为 A,B.
(1)证明:直线 AB 过定点:
(2)若以
E(0,
5 2
)为圆心的圆与直线
AB
相切,且切点为线段
AB
的中点,求四边形
ADBE
的面积.
4.【2019 年全国卷 2】已知点 A(−2,0),B(2,0),动点 M(x,y)满足直线 AM 与 BM 的斜率之积为 − 1 .记 M 的轨迹为曲线 C.
D. 5
12.【2019
年全国卷
1】已知双曲线
C:
x2 a2
y2 b2
1(a
0,b 0) 的左、右焦点分别为
F1,F2,过
F1 的直线与 C 的两条渐近线分别交于 A,B 两点.若 F1A AB , F1B F2B 0 ,则 C 的离心率
为____________.
13.【2019
年江苏卷】在平面直角坐标系 xOy 中,若双曲线 x2
y2 b2
1(b
0) 经过点(3,4),
则该双曲线的渐近线方程是_____. 14.【2018 年浙江卷】双曲线x2 − y2=1 的焦点坐标是( )
3
A. (− 2,0),( 2,0) B. (−2,0),(2,0) C. (0,− 2),(0, 2)
(1)求椭圆 C 的标准方程; (2)求点 E 的坐标. 9.【2019 年浙江卷】渐近线方程为 x y 0 的双曲线的离心率是( )
A. 2
B. 1
2
C. 2
D. 2
10.【2019 年理全国卷 3】双曲线 C: x2 y2 =1 的右焦点为 F,点 P 在 C 的一条渐近线上,O 42
为坐标原点,若 PO = PF ,则△PFO 的面积为( )
A.
3 2
B. 3
C. 2 3
D. 4
17.【2018
年全国卷Ⅲ理】设F1 , F2是双曲线
C:
x2 a2

y2 b2
=
1(a
>
0 , b
>
0)的左、右焦
点,O 是坐标原点.过F2作 C 的一条渐近线的垂线,垂足为 P.若 PF1 = 6 OP ,则 C 的离
心率为( )
A. 5 B. 2 C. 3 D. 2
C. x2 y2 1 43
D. x2 y2 1
54
7.【2019
年理北京卷】已知椭圆
x2 a2
y2 b2
1(a>b>0)的离心率为
1 2
,则(

A. a2=2b2
B. 3a2=4b2
C. a=2b
D. 3a=4b
8.【2019
年江苏卷】如图,在平面直角坐标系
xOy
中,椭圆
C:
x2 a2
y2 b2
A. 3 2 4
B. 3 2 2
C.
x1 x2
D. 3 2
11.【2019
年全国卷
2】设
F
为双曲线
C:
x a
2 2
y2 b2
1(a>0,b>0)的右焦点,O
为坐标原点,
以 OF 为直径的圆与圆 x2+y2=a2 交于 P、Q 两点.若|PQ|=|OF|,则 C 的离心率为( )
A. 2
B. 3
C. 2
3p p
A. 2
B. 3
C. 4
D. 8
6.【2019 年全国卷 1】已知椭圆 C 的焦点为 F1( 1, 0),F2(1, 0),过 F2 的直线与 C 交于 A,B 两
点.若│AF│2 2│F2B│,│AB││BF│1 ,则 C 的方程为( )
A. x2 y2 1 2
B. x2 y2 1 32
18.【2018
年理数全国卷
II】双曲线xa22

y2 b2
=
1 (a
>
0, b
>
0)的离心率为
3,则其渐近线方
程为( )
A. y =± 2x
B. y =± 3x
C. y

2 2
x
D. y

3 2
x
பைடு நூலகம்
19.【2018
年理数全国卷
II】已知F1,F2是椭圆
C:
x2 a2
+
y2 b2
=
1 (a
>
b
>
0)的左,右焦点,A
是 C 的左顶点,点 P 在过 A 且斜率为 63的直线上,△ PF1F2为等腰三角形,∠F1F2P = 120°,则
1(a
b
0) 的焦点为
F1(–1、0),
F2(1,0).过 F2 作 x 轴的垂线 l,在 x 轴的上方,l 与圆 F2: (x 1)2 y2 4a2 交于点 A,与椭
5 圆 C 交于点 D.连结 AF1 并延长交圆 F2于点 B,连结 BF2 交椭圆 C 于点 E,连结 DF1.已知 DF1= 2 .
D. (0,−2),(0,2)
15.【2018
年理数天津卷】已知双曲线xa22

y2 b2
=
1 (a
>
0 , b
>
0)的离心率为
2,过右焦点且垂
直于 x 轴的直线与双曲线交于 A,B 两点. 设 A,B 到双曲线同一条渐近线的距离分别为d1和d2,
且d1 + d2 = 6,则双曲线的方程为( )
A. x2 − y2 = 1
高中理科数学(学生版)
最新高考绝杀 80 题
最 新 讲 义
1.【2019 年浙江卷】已知椭圆 x2 y2 1的左焦点为 F ,点 P 在椭圆上且在 x 轴的上方,若线 95
段 PF 的中点在以原点 O 为圆心, OF 为半径的圆上,则直线 PF 的斜率是_______.
2.【2019
年理天津卷】设椭圆
2 (1)求 C 的方程,并说明 C 是什么曲线;
(2)过坐标原点的直线交 C 于 P,Q 两点,点 P 在第一象限,PE⊥x 轴,垂足为 E,连结 QE
并长交 C 于点 G. (i)证明: PQG 是直角三角形; (ii)求 PQG 面积的最大值.
5.【2019 年全国卷 2】若抛物线 y2=2px(p>0)的焦点是椭圆 x2 y2 1 的一个焦点,则 p=( )
x2 a2
y2 b2
1(a
b
0) 的左焦点为 F
,上顶点为 B .已知椭圆的短
轴长为 4,离心率为 5 . 5
(Ⅰ)求椭圆的方程;
(Ⅱ)设点 P 在椭圆上,且异于椭圆的上、下顶点,点 M 为直线 PB 与 x 轴的交点,点 N 在 y
轴的负半轴上.若| ON || OF | ( O 为原点),且 OP MN ,求直线 PB 的斜率.
相关文档
最新文档