高中数学解析几何题型
高中数学解析几何大题(附有答案及详解)

47. 已知椭圆E :()222210x y a b a b +=>>,其短轴为2.(1)求椭圆E 的方程;(2)设椭圆E 的右焦点为F ,过点()2,0G 作斜率不为0的直线交椭圆E 于M ,N 两点,设直线FM 和FN 的斜率为1k ,2k ,试判断12k k +是否为定值,若是定值,求出该定值;若不是定值,请说明理由.48. 如图,椭圆()2222:10x y C a b a b +=>>⎛ ⎝⎭,P 为椭圆上的一动点.(1)求椭圆C 的方程;(2)设圆224:5O x y +=,过点P 作圆O 的两条切线1l ,2l ,两切线的斜率分别为1k ,2k . ①求12k k 的值;①若1l 与椭圆C 交于P ,Q 两点,与圆O 切于点A ,与x 轴正半轴交于点B ,且满足OPA OQB S S =△△,求1l 的方程.49. 已知椭圆E :22221x y a b +=(a >b >0)的左、右焦点分別为12,F F ,离心率为e =左焦点1F 作直线1l 交椭圆E 于A ,B 两点,2ABF 的周长为8. (1)求椭圆E 的方程;(2)若直线2l :y =kx +m (km <0)与圆O :221x y +=相切,且与椭圆E 交于M ,N 两点,22MF NF +是否存在最小值?若存在,求出22MF NF +的最小值和此时直线2l 的方程.50. 已知动点M 与两个定点()0,0O ,()3,0A 的距离的比为12,动点M 的轨迹为曲线C .(1)求C 的轨迹方程,并说明其形状;(2)过直线3x =上的动点()()3,0P p p ≠分别作C 的两条切线PQ 、PR (Q 、R 为切点),N 为弦QR 的中点,直线l :346x y +=分别与x 轴、y 轴交于点E 、F ,求NEF 的面积S的取值范围.51. 在平面直角坐标系xOy 中,已知直线l :20x y ++=和圆O :221x y +=,P 是直线l 上一点,过点P 作圆C 的两条切线,切点分别为A ,B . (1)若PA PB ⊥,求点P 的坐标; (2)求线段PA 长的最小值;(3)设线段AB 的中点为Q ,是否存在点T ,使得线段TQ 长为定值?若存在,求出点T ;若不存在,请说明理由.52. 已知以1C 为圆心的圆221:1C x y +=.(1)若圆222:(1)(1)4C x y -+-=与圆1C 交于,M N 两点,求||MN 的值;(2)若直线:l y x m =+和圆1C 交于,P Q 两点,若132PC PQ ⋅=,求m 的值. 53. 已知圆()22:21M x y +-=,点P 是直线:20l x y +=上的一动点,过点P 作圆M 的切线P A ,PB ,切点为A ,B .(1)当切线P A P 的坐标;(2)若PAM △的外接圆为圆N ,试问:当P 运动时,圆N 是否过定点?若存在,求出所有的定点的坐标;若不存在,请说明理由; (3)求线段AB 长度的最小值.54. 已知圆22:2O x y +=,直线:2l y kx =-.(1)若直线l 与圆O 交于不同的两点,A B ,当90AOB ∠=︒时,求实数k 的值;(2)若1,k P =是直线l 上的动点,过P 作圆O 的两条切线PC 、PD ,切点为C 、D ,试探究:直CD 是否过定点.若存在,请求出定点的坐标;否则,说明理由.55. 在平面直角坐标系xOy中,(A,B ,C 是满足π3ACB ∠=的一个动点. (1)求ABC 垂心H 的轨迹方程;(2)记ABC 垂心H 的轨迹为Γ,若直线l :y kx m =+(0km ≠)与Γ交于D ,E 两点,与椭圆T :2221x y +=交于P ,Q 两点,且||2||DE PQ =,求证:||k > 56. 平面上一动点C的坐标为),sin θθ.(1)求点C 轨迹E 的方程;(2)过点()11,0F -的直线l 与曲线E 相交于不同的两点,M N ,线段MN 的中垂线与直线l 相交于点P ,与直线2x =-相交于点Q .当MN PQ =时,求直线l 的方程.答案及解析47.(1)2212x y +=;(2)是定值,该定值为0.【分析】(1)依题意求得,a b ,进而可得椭圆E 的方程;(2)设直线MN 的方程为()()20y k x k =-≠,与椭圆E 方程联立,利用韦达定理和斜率公式即可求得12k k +的值. 【详解】(1)由题意可知:22b =,1b =,椭圆的离心率c e a ==a =①椭圆E 的标准方程:2212x y +=;(2)设直线MN 的方程为()()20y k x k =-≠.22(2)12y k x x y =-⎧⎪⎨+=⎪⎩,消去y 整理得:()2222128820k x k x k +-+-=.设()11,M x y ,()22,N x y , 则2122812k x x k +=+,21228212k x x k -=+,()()()1212121212121212222211111k x k x y y x x k k k x x x x x x x x ⎡⎤--+-+=+=+=-⎢⎥-----++⎢⎥⎣⎦222222228242122208282111212k k k k k k k k k k ⎡⎤-⎢⎥⎛⎫-+=-=-=⎢⎥ ⎪--⎝⎭⎢⎥-+⎢⎥++⎣⎦. ①120k k +=为定值.【点睛】关键点点睛:第(2)问的关键点是:得出()12121212221x x k k k x x x x ⎡⎤+-+=-⎢⎥-++⎢⎥⎣⎦.48.(1)2214x y +=;(2)①14- ;①yy =+【分析】(1)根据已知条件结合222c a b =-列关于,a b 的方程,解方程即可求解;(2)①设()00,P x y ,切线:l 00()y y k x x -=-,利用圆心到切线的距离列方程,整理为关于k 的二次方程,计算两根之积结合点P 在椭圆上即可求12k k ;①由OPA OQB S S =△△可得PA BQ =,可转化为A B P Q x x x x +=+,设1l :y kx m =+,与椭圆联立可得P Q x x +,再求出A x 、B x ,即可求出k 的值,进而可得出m 的值,以及1l 的方程. 【详解】(1)因为22222234c a b e a a -===,所以2a b =,因为点⎛ ⎝⎭在椭圆上,所以221314a b +=即2213144b b +=, 解得:1b =,2a =,所以椭圆方程为:2214x y +=;(2)①设()00,P x y ,切线:l 00()y y k x x -=-即000kx y y kx -+-= 圆心()0,0O到切线的距离d r ==整理可得:2220000442055x k x y k y ⎛⎫--+-= ⎪⎝⎭,所以2020122200441451544455x y k k x x ⎛⎫-- ⎪-⎝⎭===---,①因为OPA OQB S S =△△所以PA BQ =,所以A P Q B x x x x -=-,所以A B P Q x x x x +=+, 设切线为1:l y kx m =+,由2244y kx m x y =+⎧⎨+=⎩可得:()222418440k x kmx m +++-= 所以2841P Q kmx x k -+=+, 令0y =可得B mx k=-,设(),A A A x kx m +, 则1A OA A kx m k x k +==-,所以21A km x k -=+, 所以228411P Q km m kmx x k k k --+==-+++, 整理可得:()()()2222814121k k k k +=++,所以221k =,解得:k =, 因为圆心()0,0O 到1:l y kx m =+距离d ,所以mm =,因为0B mx k=->,所以当k =m =k =时,m =;所以所求1l的方程为y =或y = 【点睛】思路点睛:圆锥曲线中解决定值、定点的方法(1)从特殊入手,求出定值、定点、定线,再证明定值、定点、定线与变量无关; (2)直接计算、推理,并在计算、推理的过程中消去变量是此类问题的特点,设而不求的方法、整体思想和消元思想的运用可以有效的简化运算.49.(1)2214x y +=;(2)最小值为2,0x =或0x +-=.【分析】(1)由椭圆定义结合已知求出a ,半焦距c 即可得解;(2)由直线2l 与圆O 相切得221m k =+,联立直线2l 与椭圆E 的方程消去y ,借助韦达定理表示出22MF NF +,利用函数思想方法即可作答. 【详解】(1)依题意,结合椭圆定义知2ABF 的周长为4a ,则有4a =8,即a =2,又椭圆的离心率为c e a =c =2221b a c =-=, 所以椭圆E 的方程为2214x y +=;(2)因直线2l :y =kx +m (km <0)与圆O :221x y +=1=,即221m k =+,设()()()112212,,,,2,2M x y N x y x x ≤≤,而点M 在椭圆E 上,则221114x y +=,即221114x y =-,又2F ,21|2|MF x =-=12x -,同理222NF x =,于是得)22124MF NF x x +=+, 由2214y kx mx y =+⎧⎪⎨+=⎪⎩消去y 得:()222148440k x kmx m +++-=,显然Δ0>,则122814km x x k +=-+, 又km <0,且221m k =+,因此得1228||14km x x k +=+令2411t k =+≥,则12x x +=113t =,即t =3时等号成立,于是得22MF NF +存在最小值,且)221242MF NF x x +=+≥,22MF NF +的最小值为2,由2221413m k k ⎧=+⎨+=⎩,且km <0,解得k m ⎧=⎪⎪⎨⎪=⎪⎩或k m ⎧=⎪⎪⎨⎪=⎪⎩. 所以所求直线2l的方程为y x =y x =0x =或0x +=.【点睛】关键点睛:解决直线与椭圆的综合问题时,要注意:(1)观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题. 50.(1)()2214x y ++=,曲线C 是以1,0为圆心,半径为2的圆;(2)5542⎡⎤⎢⎥⎣⎦,.【分析】(1)设出动点M 坐标,代入距离比关系式,化简方程可得;(2)先求切点弦方程,再根据切点弦过定点及弦中点性质得出N 点轨迹,然后求出动点N 到定直线EF 的距离最值,最后求出面积最值.切点弦方程的求法可用以下两种方法.法一:由两切点即为两圆公共点,利用两圆相交弦方程(两圆方程作差)求出切点弦方程;法二:先分别求过Q 、R 两点的切线方程,再代入点P 坐标,得到Q 、R 两点都适合的同一直线方程,即切点弦方程. 【详解】解:(1)设(),M x y ,由12MO MA =12=. 化简得22230x y x ++-=,即()2214x y ++=. 故曲线C 是以1,0为圆心,半径为2的圆.(2)法一(由两圆相交弦方程求切点弦方程):由题意知,PQ 、PR 与圆相切,Q 、R 为切点,则DQ PQ ⊥,DR PR ⊥,则D 、R 、P 、Q 四点共圆,Q 、R 在以DP 为直径的圆上(如图).设()1,0D -,又()()3,0P p p ≠,则DP 的中点为1,2p ⎛⎫⎪⎝⎭,DP .以线段DP 为直径的圆的方程为()22212p x y ⎛⎫-+-= ⎪⎝⎭⎝⎭, 整理得22230x y x py +---=①(也可用圆的直径式方程()()()()1300x x y y p +-+--=化简得. ) 又Q 、R 在C :22230x y x ++-=①上, 由两圆方程作差即①-①得:40x py +=. 所以,切点弦QR 所在直线的方程为40x py +=. 法二(求Q 、R 均满足的同一直线方程即切点弦方程): 设()1,0D -,()11,Q x y ,()22,R x y .由DQ PQ ⊥,可得Q 处的切线上任一点(,)T x y 满足0QT DQ ⋅=(如图), 即切线PQ 方程为()()()()1111100x x x y y y -++--=.整理得()221111110x x y y x y x ++---=.又22111230x y x ++-=,整理得()111130x x y y x +++-=.同理,可得R 处的切线PR 方程为()222130x x y y x +++-=. 又()3,P p 既在切线PQ 上,又在切线PR 上,所以()()11122231303130x py x x py x ⎧+++-=⎪⎨+++-=⎪⎩,整理得11224040x py x py +=⎧⎨+=⎩. 显然,()11,Q x y ,()22,R x y 的坐标都满足直线40x py +=的方程. 而两点确定一条直线,所以切点弦QR 所在直线的方程为40x py +=. 则QR 恒过坐标原点()0,0O .由()2240,14x py x y +=⎧⎪⎨++=⎪⎩消去x 并整理得()22168480p y py +--=. 设()11,Q x y ,()22,R x y ,则122816py y p +=+.点N 纵坐标1224216N y y py p +==+. 因为0p ≠,显然0N y ≠,所以点N 与点()1,0D -,()0,0O 均不重合.(或者由对称性可知,QR 的中点N 点在x 轴上当且仅当点P 在x 轴上,因为0p ≠,点P 不在x 轴上,则点N 也不在x 轴上,所以点N 与D 、O 均不重合.) 因为N 为弦QR 的中点,且()1,0D -为圆心,由圆的性质,可得DN QR ⊥,即DN ON ⊥(如图).所以点N 在以OD 为直径的圆上,圆心为1,02G ⎛⎫- ⎪⎝⎭,半径12r =.因为直线346x y +=分别与x 轴、y 轴交于点E 、F ,所以()2,0E ,30,2F ⎛⎫⎪⎝⎭,52EF =.又圆心1,02G ⎛⎫- ⎪⎝⎭到直线3460x y +-=的距离32d ==. 设NEF 的边EF 上的高为h ,则点N 到直线346x y +=的距离h 的最小值为31122d r -=-=; 点N 到直线346x y +=的距离h 的最大值为31222d r +=+=(如图).则S 的最小值min 1551224S =⨯⨯=,最大值max 1552222S =⨯⨯=.因此,NEF 的面积S 的取值范围是5542⎡⎤⎢⎥⎣⎦,.【点睛】设00(,)P x y 是圆锥曲线外一点,过点P 作曲线的两条切线,切点为A 、B 两点,则 A 、B 两点所在的直线方程为切点弦方程.常见圆锥曲线的切点弦方程有以下结论: 圆222()()x a y b r -+-=的切点弦方程:200()()()()x a x a y b y b r --+--=, 圆220x y Dx Ey F ++++=的切点弦方程: 0000022x x y yx x y y D E F ++++++= 椭圆22221x y a b+=的切点弦方程:00221x x y y a b +=;双曲线22221x y a b-=的切点弦方程:00221x x y y a b -=;抛物线22y px =的切点弦方程为:00()y y p x x =+.特别地,当00(,)P x y 为圆锥曲线上一点时,可看作两切线重合,两切点A 、B 重合,以上切点弦方程即曲线在P 处的切线方程.51.(1)()1,1P --;(2)1;(3)存在点11,44T ⎛⎫-- ⎪⎝⎭,使得线段TQ 长为定值.理由见解析.【分析】(1)依题意可得四边形PAOB 为正方形,设(),2P x x --,利用平面直角坐标系上两点的距离公式得到方程,计算可得;(2)由221PA PO =-可知当线段PO 长最小时,线段PA 长最小,利用点到线的距离公式求出PO 的最小值,即可得解;(3)设()00,2P x x --,求出以OP 为直径的圆的方程,即可求出公共弦AB 所在直线方程,从而求出动点Q 的轨迹方程,即可得解; 【详解】解:(1)若PA PB ⊥,则四边形PAOB 为正方形, 则P①P 在直线20x y ++=上,设(),2P x x --,则OP =,解得1x =-,故()1,1P --.(2)由221PA PO =-可知当线段PO 长最小时,线段PA 长最小. 线段PO 长最小值即点O 到直线l的距离,故min PO ==所以min 1PA =.(3)设()00,2P x x --,则以OP 为直径的圆的方程为()2222000022224x x x x x y +----⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭, 化简得()220020x x x x y y -+++=,与221x y +=联立,可得AB 所在直线方程为()0021x x x y -+=,联立()002221,1,x x x y x y ⎧-+=⎨+=⎩得()222000002443024x x x x x x x ++----=, ①Q 的坐标为002200002,244244x x x x x x --++++⎛⎫⎪⎝⎭,可得Q 点轨迹为22111448x y ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭,圆心11,44⎛⎫-- ⎪⎝⎭,半径R =.其中原点()0,0为极限点(也可以去掉).故存在点11,44T ⎛⎫-- ⎪⎝⎭,使得线段TQ 长为定值.【点睛】本题考查了直线与圆的位置关系、方程思想、数形结合方法、转化方法,考查运算求解能力和应用意识.52.(1;(2)m = 【分析】(1)由两个圆相交,可将两个圆的方程相减求得直线MN 的方程.利用圆心到直线的距离,结合垂径定理即可求得||MN 的值.(2)设()()1122,,,P x y Q x y ,利用向量的坐标运算表示出1,PC PQ .将直线方程与圆的方程联立,化简后由>0∆求得m 的取值范围,并表示出12x x +,12x x ,进而由直线方程表示出12y y .根据平面向量数量积的坐标运算,代入化简计算即可求得m 的值. 【详解】(1)直线MN 的方程为2222(1)(1)410x y x y -+----+=, 即2 2 10x y ++=;故圆1C 的圆心到2210x y ++=的距离d =故||MN == (2)设()()1122,,,P x y Q x y ,则()()1112121,,,PC x y PQ x x y y =--=--,由22,1,y x m x y =+⎧⎨+=⎩化简可得222210x mx m ++-=, 故()222481840,m m m ∆=--=->解得m < 12x x m +=-,2121,2m x x -=所以()()()212121212y y x m x m x x m x x m =++=+++,又()()2211121211212113,,2PC PQ x y x x y y x x y y x y ⋅=--⋅--=--++=, 又22111x y +=故121212x x y y +=-,故()21212122x x m x x m +++=-, 将12x x m +=-,2121,2m x x -=代入可得222112m m m --+=-,解得m =又因为m <所以2m =± 【点睛】本题考查了圆与圆的位置关系及公共弦长度的求法,直线与圆位置关系的综合应用,由韦达定理求参数的值,平面向量数量积的运算,综合性强,计算量大,属于难题.53.(1)()0,0P 或84,55P ⎛⎫- ⎪⎝⎭;(2)圆过定点()0,2,42,55⎛⎫- ⎪⎝⎭;(3)当25b =时,AB 有最小【分析】(1)设()2,P b b -,由MP b ,得出结果;(2)因为A 、P 、M 三点的圆N 以MP 为直径,所以圆N 的方程为()()222242224b b b x b y +-+⎛⎫++-=⎪⎝⎭,化简为()()222220x y b x y y -+++-=,由方程恒成立可知2222020x y x y y -+=⎧⎨+-=⎩,即可求得动圆所过的定点; (3)由圆M 和圆N 方程作差可得直线AB 方程,设点()0,2M 到直线AB 的距离d ,则AB =.【详解】(1)由题可知,圆M 的半径1r =,设()2,P b b -, 因为P A 是圆M 的一条切线,所以90MAP ∠=︒,所以2MP ==,解得0b =或45b =, 所以点P 的坐标为()0,0P 或84,55P ⎛⎫- ⎪⎝⎭.(2)设()2,P b b -,因为90MAP ∠=︒, 所以经过A 、P 、M 三点的圆N 以MP 为直径, 其方程为()()222242224b b b x b y +-+⎛⎫++-=⎪⎝⎭, 即()()222220x y b x y y -+++-=,由2222020x y x y y -+=⎧⎨+-=⎩, 解得02x y =⎧⎨=⎩或4525x y ⎧=-⎪⎪⎨⎪=⎪⎩,所以圆过定点()0,2,42,55⎛⎫- ⎪⎝⎭.(3)因为圆N 方程为()()222242224b b b x b y +-+⎛⎫++-=⎪⎝⎭, 即()222220x y bx b y b ++-++=①又圆22:430M x y y +-+=①①-①得圆M 方程与圆N 相交弦AB 所在直线方程为 ()22230bx b y b --+-=.点()0,2M 到直线AB的距离d =所以相交弦长AB == 所以当25b =时,AB【点睛】本题考查直线和圆的位置关系,考查定点问题和距离的最值问题,难度较难. 54.(1)k =(2)直线CD 过定点(1,1)- 【分析】(1)由已知结合垂径定理求得圆心到直线的距离,再由点到直线的距离公式列式求得k ; (2)解法1:设切点11(,)C x y ,22(,)D x y ,动点00(,)P x y ,求出两条切线方程,计算出直线CD 的方程,从而得到定点坐标;解法2:由题意可知,O 、P 、C 、D 四点共圆且在以OP为直径的圆上,求出公共弦所在直线方程,再由直线系方程求得定点坐标. 【详解】(1)2AOB π∠=,∴点O 到l 的距离2d r =,k = (2)解法1:设切点11(,)C x y ,22(,)D x y ,动点00(,)P x y ,则圆在点C 处的切线方程为 1111()()0y y y x x x -+-=,所以221111x x y y x y +=+,即112x x y y +=同理,圆在点D 处的切线方程为222x x y y += 又点00(,)P x y 是两条切线的交点, 10102x x y y ∴+=,20202x x y y +=,所以点()11,C x y ,()22,D x y 的坐标都适合方程002x x y y +=, 上述方程表示一条直线,而过C 、D 两点的直线是唯一的, 所以直线CD 的方程为:002x x y y +=. 设(,2)P t t -,则直线CD 的方程为(2)2tx t y +-=, 即()(22)0x y t y +-+=, ∴0220x y y +=⎧⎨+=⎩,解得11x y =⎧⎨=-⎩,故直线CD 过定点(1,1)-.解法2:由题意可知:O 、P 、C 、D 四点共圆且在以OP 为直径的圆上, 设(,2)P t t -,则此圆的方程为:()(2)0x x t y y t -+-+=, 即:22(2)0x tx y t y -+--=, 又C 、D 在圆22:2O x y +=上,两圆方程相减得():220CD l tx t y +--=, 即()(22)0x y t y +-+=, ∴0220x y y +=⎧⎨+=⎩,解得11x y =⎧⎨=-⎩,故直线CD 过定点(1,1)-. 【点睛】本题考查了直线与圆的相交问题,由弦长求直线斜率,只需结合弦长公式计算圆心到直线的距离,然后求得结果,在求直线恒过定点坐标时,一定要先表示出直线方程,然后在求解. 55.(1)22(1)4x y ++=(2y ≠-);(2)证明见解析. 【分析】(1)由题可求出顶点C 的轨迹方程,再利用相关点法可求垂心H 的轨迹方程;(2)利用弦长公式可求||DE ,再利用韦达定理法求||PQ ,由||2||DE PQ =得出2221m k ≥+,然后结合判别式大于零即可证. 【详解】设ABC 的外心为1O ,半径为R ,则有22sin ABR ACB==∠,所以1πcos 13OO R ==即1(0,1)O ,设(,)C x y ,()00,H x y ,有1O C R =,即有22(1)4x y +-=(0y ≠), 由CH AB ⊥,则有0x x =,由AH BC ⊥,则有(00(0AH BC x x y y ⋅=+=,所以有(220(3(1)12x x x y y y yy y---=-===-,则有()220014x y ++=(02y ≠-),所以ABC 垂心H 的轨迹方程为22(1)4x y ++=(2y ≠-); (2)记点(0,1)-到直线l 的距离为d ,则有d =所以||DE==,设()11,P x y,()22,Q x y,联立2221y kx mx y=+⎧⎨+=⎩,有()2222210k x kmx m+++-=,所以()224220k m∆=+->,||PQ==由||2||DE PQ=,可得()()()()()2222222222222418141(1)8412222k m k km mk k kk k++++-=-≤-+++++,所以()22222248(1)212m mk kk++≤+++,即有()()()22222224181(1)22k k mmk k+++≤+++,所以()()()22222222418122(1)22k k mm mk k+++--≥-++,即22222222222221(1)101222k k m k mm mk k k k⎛⎫-=-⇒-≥⇒≥+⎪+++⎝⎭又0∆>,可得2212km<+,所以222112kk+<+,解得22k>,故||k>56.(1)2212xy+=;(2)10x y±-=.【分析】(1)利用22sin cos1θθ+=求得点C的轨迹E的方程.(2)设直线l的方程为1x my=-,联立直线l的方程和曲线E的方程,化简写出根与系数关系,求得MN、PQ,由1PQMN=求得m的值,从而求得直线l的方程.【详解】 (1)设(),C x y ,则,sin x y θθ⎧=⎪⎨=⎪⎩,即cos sin yθθ⎧=⎪⎨⎪=⎩, 所以2212x y +=,所以E 的方程为2212x y +=.(2)由题意知,直线l 的斜率不为0,设直线:1l x my =-,()()()1122,,,,,p p M x y N x y P x y .联立2221,1x y x my ⎧+=⎨=-⎩,消去x ,得()22+2210m y my --=,此时()281m ∆=+0>,且12222m y y m +=+,12212y y m =-+又由弦长公式得MN =整理得2212m MN m ++. 又122+=22p y y m y m =+,所以2212p p x my m -=-=+,所以222222p m PQ x m ++=+,所以1PQMN =, 所以21m =,即1m =±.综上,当1m =±,即直线l 的斜率为±1时,MN PQ =, 此时直线l 为10x y ±-=. 【点睛】求解直线和圆锥曲线相交所得弦长,往往采用设而不求,整体代入的方法来求解.。
高中数学平面解析几何的常见题型及解答方法

高中数学平面解析几何的常见题型及解答方法在高中数学学习中,平面解析几何是一个重要的内容,也是考试中的重点。
平面解析几何主要研究平面上的点、直线、圆等几何图形的性质和关系,通过坐标系和代数方法进行分析和解决问题。
下面我们将介绍一些常见的平面解析几何题型及解答方法,希望能给同学们提供一些帮助。
一、直线方程的求解直线方程的求解是平面解析几何中的基础内容。
常见的题型有已知直线上的两点,求直线方程;已知直线的斜率和一点,求直线方程等。
这里我们以已知直线上的两点,求直线方程为例进行说明。
例如,已知直线上的两点为A(2,3)和B(4,5),求直线方程。
解题思路:设直线的方程为y = kx + b,其中k为斜率,b为截距。
根据已知条件,我们可以列出方程组:3 = 2k + b5 = 4k + b解方程组,得到k和b的值,从而得到直线方程。
解题步骤:1.将方程组改写为矩阵形式:| 2 1 | | k | | 3 || 4 1 | | b | = | 5 |2.利用矩阵的逆运算,求出k和b的值。
3.将k和b的值代入直线方程y = kx + b,即可得到直线方程。
通过这个例子,我们可以看到求解直线方程的方法是通过已知条件列方程组,然后通过矩阵运算求解出未知数的值,最后将值代入直线方程得到结果。
二、直线与圆的位置关系直线与圆的位置关系是平面解析几何中的一个重要内容。
常见的题型有直线与圆的切线问题、直线与圆的交点问题等。
这里我们以直线与圆的切线问题为例进行说明。
例如,已知圆的方程为x^2 + y^2 = 4,直线的方程为y = 2x - 1,求直线与圆的切点坐标。
解题思路:首先,我们需要确定直线与圆是否有交点。
当直线与圆有交点时,我们可以通过求解方程组得到交点坐标。
当直线与圆没有交点时,我们需要判断直线与圆的位置关系,进而确定是否有切点。
解题步骤:1.将直线方程代入圆的方程,得到一个关于x的二次方程。
2.求解二次方程,得到x的值。
高中解析几何典型题

高中解析几何典型题全文共四篇示例,供读者参考第一篇示例:一、直线和平面的关系题目题目1:设直线L经过平面α和β两个平面的交点A和B,问直线L在平面α和平面β之间的位置关系是怎样的?解析:直线L在平面α和平面β之间的位置关系有三种情况,分别是直线L既不垂直于平面α,也不垂直于平面β;直线L既垂直于平面α,也垂直于平面β;直线L既不垂直于平面α,但垂直于平面β。
具体位置可根据直线和平面的垂直关系来确定。
解析:点P在平面α和平面β之间的位置关系根据两个平面的相交线和点P所在位置的具体情况来确定。
如果直线L和点P的位置不同,点P在两个平面之间;如果直线L和点P的位置相同,点P在两个平面外部;如果直线L和点P的位置重合,点P在两个平面上。
题目3:已知平面α和平面β相交于直线m,直线n与直线m相交于点A,平面α和平面β的交线分别为l1和l2,求证:∠l1An=∠l2An。
解析:根据已知条件可得到∠l1An=∠mAn,∠l2An=∠mAn,即∠l1An=∠l2An。
解析:根据已知条件可得到∠A和∠B垂直于直线m,因此∠A和∠B所成的角度为90度。
通过以上的几个典型题目及其解析,我们不难看出解析几何题目的解题思路主要是根据已知条件,运用几何知识和性质来推导出结论。
在解析几何的学习过程中,学生应该注重培养逻辑思维能力和数学运算能力,多进行几何图形的分析和推理,提高解题的能力和速度。
在解析几何的学习过程中,还需要注意以下几点:1、熟练掌握基本几何知识和性质,包括直线、角、三角形、四边形等几何图形的性质和计算方法。
2、善于画图分析,对于解析几何题目一定要画出清晰准确的图形,以便更直观地理解题意和计算。
3、多练习典型题目,通过多做题目来积累经验,查漏补缺,加深对解析几何知识的理解。
4、注意总结归纳,将解析几何的各种题目和性质进行分类和总结,形成自己的知识体系。
高中解析几何是一个非常重要的学科,学生在学习过程中要认真对待,多加练习,提高理解能力和解题能力,从而取得更好的学习成绩。
高中数学竞赛专题讲座之五:解析几何_2_

高中数学竞赛专题讲座之五: 《解析几何》各类竞赛试题选讲一、选择题1.(04湖南)湖南)已知曲线已知曲线C :x x y 22--=与直线0:=-+m y x l 有两个交点,则m 的取值范围是(C) A .)2,12(-- B .)12,2(--C .)12,0[-D .)12,0(-2.(05全国)方程13cos 2cos 3sin 2sin 22=-+-y x 表示的曲线是表示的曲线是( )A .焦点在x 轴上的椭圆轴上的椭圆B .焦点在x 轴上的双曲线轴上的双曲线C .焦点在y 轴上的椭圆轴上的椭圆D .焦点在y 轴上的双曲线轴上的双曲线3.(06浙江)已知两点A (1,2), B (3,1) 到直线L 的距离分别是25,2-,则满足条件的直线L 共有(共有( C )条. A .1 B .2 C .3 D .4 解: 由,5=AB 分别以A ,B 为圆心,2,5为半径作两个圆,则两圆外切,有三条共切线。
正确答案为C. 4.(06安徽)过原点O 引抛物线224y x ax a =++的切线,当a 变化时,两个切点分别在抛物线(线( )上)上A .2213,22y x y x == B .2235,22y x y x ==C .22,3y x y x ==D .223,5y x y x ==5.若在抛物线)0(2>=a ax y 的上方可作一个半径为r 的圆与抛物线相切于原点O ,且该圆与抛物线没有别的公共点,则r 的最大值是(A ) A .a 21 B .a1C .aD .a 26.(06江苏)已知抛物线y 2=2px ,o 是坐标原点,F 是焦点,P 是抛物线上的点,使得△POF 是直角三角形,则这样的点P 共有(B) A .0个B .2个C .4个D .6个7.(06全国)如图3,从双曲线22221(0,0)x y a b a b-=>>的左焦点F 引圆222x y a +=的切线,切点为T .延长FT 交双曲线右支于P 点.若M 为线段FP 的中点,O 为坐为坐 标原点,则||||MO MT -与b a -的大小关系为(的大小关系为( ) A .||||MO MT b a ->-B .||||MO MT b a -=-C .||||MO MT b a -<-D .不确定.不确定8.(05四川)双曲线12222=-b y a x 的左焦点为1F ,顶点为21,A A ,P 是该双曲线右支上任意一点,则分别以线段211,A A PF 为直径的两圆一定为直径的两圆一定 ( )A .相交.相交B .内切.内切C .外切.外切D .相离.相离解:设双曲线的另一个焦点为2F ,线段1PF 的中点为C ,在△PF F 21中,C 为1PF 的中点,O 为21F F 的中点,从而|)||(|21||212112A A PF PF OC -==,从而以线段211,A A PF 为直径的两圆一定内切. 9.点A 是直线x y l 3:=上一点,且在第一象限,点B 的坐标为(3,2),直线AB 交x 轴正半轴于点C ,那么三角形AOC 面积的最小值是(A )10.(02湖南)已知A (-7,0),B (7,0),C (2,-12)三点,若椭圆的一个焦点为C ,且过A 、B 两点,此椭圆的另一个焦点的轨迹为(两点,此椭圆的另一个焦点的轨迹为( )(奥析263) A .双曲线.双曲线 B .椭圆.椭圆 C .椭圆的一部分.椭圆的一部分 D .双曲线的一部分.双曲线的一部分11.(03全国)过抛物线)2(82+=x y 的焦点F 作倾斜角为60O的直线。
高中数学解析几何深度练习题及答案

高中数学解析几何深度练习题及答案1. 平面几何题目一:已知平面上三点A(1, -2),B(3, 4),C(7, 1),求证:三角形ABC为等腰三角形。
解答:首先计算AB、AC、BC的长度,分别利用两点之间的距离公式:AB = √[(3-1)^2 + (4-(-2))^2] = √[4 + 36] = √40AC = √[(7-1)^2 + (1-(-2))^2] = √[36 + 9] = √45BC = √[(7-3)^2 + (1-4)^2] = √[16 + 9] = √25由于AB的平方等于BC的平方,即AB^2 = BC^2,可以得出AB = BC。
因此,三角形ABC为等腰三角形。
题目二:已知平面上直线L1过点A(2, -1),斜率为k,与直线L2:3x + ky + 5 = 0 互相垂直,求k的值。
解答:首先计算直线L2的斜率:L2: 3x + ky + 5 = 0化简得:ky = -3x - 5因此,L2的斜率k2为 -3/k。
由于L1与L2互相垂直,根据垂直直线的特性可知斜率k1与k2之积为 -1。
即 k * (-3/k) = -1。
解上述方程可以得出:k^2 = 3,因此k的两个解为k = √3 和 k = -√3。
题目三:已知直线L1:4x + 3y - 2 = 0 与直线L2垂直,并且直线L2通过点A(5,-1),求直线L2的方程式。
解答:由于L1与L2垂直,它们的斜率之积为 -1。
L1的斜率为 -4/3,所以L2的斜率为 3/4。
通过点斜式可以得到L2的方程式:y - (-1) = (3/4)(x - 5)化简得到:y = (3/4)x + 2因此,直线L2的方程式为:y = (3/4)x + 2。
2. 空间几何题目一:已知直线L1:x = 3 - 2t,y = 5 + 3t,z = -1 + 4t,求直线L1的参数方程。
解答:直线的参数方程为x = x0 + at,y = y0 + bt,z = z0 + ct,其中(a, b, c)为直线的方向向量。
高中数学解析几何测试题(答案版)

解析几何练习题一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0 C.2x+y-2=0 D.x+2y-1=0 2.若直线210ay -=与直线(31)10a x y -+-=平行,则实数a 等于( )A 、12B 、12- C 、13D 、13-3.若直线32:1+=x y l ,直线2l 与1l 关于直线x y -=对称,则直线2l 的斜率为 ( )A .21B .21- C .2 D .2- 4.在等腰三角形AOB 中,AO =AB ,点O(0,0),A(1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( )A .y -1=3(x -3)B .y -1=-3(x -3)C .y -3=3(x -1)D .y -3=-3(x -1)5.直线02032=+-=+-y x y x 关于直线对称的直线方程是 ( ) A .032=+-y xB .032=--y xC .210x y ++=D .210x y +-=6.若直线()1:4l y k x =-与直线2l 关于点)1,2(对称,则直线2l 恒过定点( )A .0,4B .0,2C .2,4D .4,27.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y 轴上的截距为31,则m ,n 的值分别为A.4和3B.-4和3C.- 4和-3D.4和-3 8.直线x-y+1=0与圆(x+1)2+y 2=1的位置关系是( ) A 相切 B 直线过圆心 C .直线不过圆心但与圆相交 D .相离 9.圆x 2+y 2-2y -1=0关于直线x -2y -3=0对称的圆方程是( )A.(x -2)2+(y+3)2=12B.(x -2)2+(y+3)2=2C.(x +2)2+(y -3)2=12D.(x +2)2+(y -3)2=210.已知点(,)P x y 在直线23x y +=上移动,当24x y +取得最小值时,过点(,)P x y 引圆22111()()242x y -++=的切线,则此切线段的长度为( )A .2B .32C .12D .211.经过点(2,3)P -作圆22(1)25x y ++=的弦AB ,使点P 为弦AB 的中点,则弦AB 所在直线方程为( ) A .50x y --=B .50x y -+=C .50x y ++=D .50x y +-=12.直线3y kx =+与圆()()22324x y -+-=相交于M,N 两点,若MN ≥则k 的取值范围是( )A. 304⎡⎤-⎢⎥⎣⎦,B.[]304⎡⎤-∞-+∞⎢⎥⎣⎦,,C. ⎡⎢⎣⎦ D. 203⎡⎤-⎢⎥⎣⎦, 二填空题:(本大题共4小题,每小题4分,共16分.)13.已知点()1,1A -,点()3,5B ,点P 是直线y x =上动点,当||||PA PB +的值最小时,点P 的坐标是 。
历年全国高中数学联赛《解析几何》专题真题汇编

历年全国高中数学联赛《解析几何》专题真题汇编1、已知点A 为双曲线x 2-y 2=1的左顶点,点B 和点C 在双曲线的右分支上,△ABC 是等边三角形,则△ABC 的面积是 ( C )(A) 33 (B) 233 (C) 33 (D) 633、若实数x, y 满足(x+5)2+(y12)2=142,则x 2+y 2的最小值为( )(A) 2 (B) 1 (C) 3 (D)2 【答案】B【解析】利用圆的知识结合数形结合分析解答,22x y +表示圆上的点(x,y )到原点的距离。
4、直线134=+yx 椭圆191622=+y x 相交于A ,B 两点,该圆上点P ,使得⊿PAB 面积等于3,这样的点P 共有( )(A) 1个 (B) 2个 (C) 3个 (D) 4个【答案】B5、设a ,b ∈R ,ab ≠0,那么直线ax -y +b=0和曲线bx 2+ay 2=ab 的图形是( )【答案】B6、过抛物线y 2=8(x +2)的焦点F 作倾斜角为60°的直线,若此直线与抛物线交于A 、B 两点,弦AB 的中垂线与x 轴交于点P ,则线段PF 的长等于( ) (A)163 (B) 83 (C) 1633 (D) 8 3 【答案】A【解析】抛物线的焦点为原点(0,0),弦AB 所在直线方程为y=3x ,弦的中点yxO Ox yO xyyx O A. B. C.D.在y=pk =43上,即AB中点为(43,43),中垂线方程为y=-33(x-43)+43,令y=0,得点P的坐标为163.∴PF=163.选A.7、已知M={(x,y)|x2+2y2=3},N={(x,y)|y=mx+b}.若对于所有的m∈R,均有M∩N≠∅,则b的取值范围是( )A.[-62,62] B.(-62,62) C.(-233,233] D.[-233,233] 【答案】A【解析】点(0,b)在椭圆内或椭圆上,⇒2b2≤3,⇒b∈[-62,62].选A.8、方程13cos2cos3sin2sin22=-+-yx表示的曲线是()A.焦点在x轴上的椭圆B.焦点在x轴上的双曲线C.焦点在y轴上的椭圆D.焦点在y轴上的双曲线【答案】C9、设圆O1和圆O2是两个定圆,动圆P与这两个定圆都相切,则圆P的圆心轨迹不可能是()【答案】A【解析】设圆O1和圆O2的半径分别是r1、r2,|O1O2|=2c,则一般地,圆P的圆心轨迹是焦点为O1、O2,且离心率分别是212rrc+和||221rrc-的圆锥曲线(当r1=r2时,O1O2的中垂线是轨迹的一部份,当c=0时,轨迹是两个同心圆)。
高考解析几何大题题型归纳

高考解析几何大题题型归纳高考解析几何大题题型归纳一、三角形的性质与判定在高中数学中,三角形是一个重要的图形。
学生在高考中常常会遇到与三角形性质与判定相关的大题。
在这一题型中,常见的题目包括用三角形的边长、角度或者特殊性质来判断三角形的形状、大小或者其他性质。
二、直线与线段的相交问题直线和线段是解析几何题目中常见的图形。
学生在高考中常常会遇到关于直线和线段相交问题的大题。
在这一题型中,学生需要根据已知条件求解未知的角度、线段长度或者其他相关问题。
三、圆的性质与判定圆是解析几何题目中一个重要的图形。
学生在高考中经常会遇到与圆的性质与判定相关的大题。
在这一题型中,学生需要利用已知条件来判断圆的位置,或者通过已知条件求解未知物品与圆的关系。
四、平行线与垂直线的判定平行线与垂线也是高考解析几何题目中常见的考点。
在这一题型中,学生需要利用已知条件来判定两条线是否平行或者垂直,或者根据已知条件求解未知的线段长度或者角度。
五、多边形的性质与判定在解析几何题中,多边形也是一个重要的图形。
学生在高考中常常会遇到与多边形的性质与判定相关的大题。
在这一题型中,学生需要利用已知条件来判断多边形的形状、大小或者其他性质,或者求解未知的角度或者线段长度。
六、空间几何问题空间几何问题在高考中也是一个重要的考点。
在这一题型中,学生需要利用已知条件来求解空间中的角度、线段长度或者其他相关问题。
这类题目常常需要学生运用立体几何知识和空间想像力来进行推理和求解。
七、向量的应用在解析几何题目中,向量是一个重要的工具。
学生在高考中常常会遇到与向量的应用相关的大题。
在这一题型中,学生需要利用向量的性质来求解角度、线段长度或者其他相关问题。
总结:解析几何题目涉及到的题型很多,常见的包括三角形的性质与判定、直线与线段相交问题、圆的性质与判定、平行线与垂直线的判定、多边形的性质与判定、空间几何问题以及向量的应用等。
针对这些题型,学生在备考中应该重点复习相关知识,并且多进行一些练习题,以加深对题型的理解和应用能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析几何题型考点1.求参数的值求参数的值是高考题中的常见题型之一,其解法为从曲线的性质入手,构造方程解之.例1.若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为( )A .2-B .2C .4-D .4考查意图: 本题主要考查抛物线、椭圆的标准方程和抛物线、椭圆的基本几何性质.解答过程:椭圆22162x y +=的右焦点为(2,0),所以抛物线22y px =的焦点为(2,0),则4p =,考点2. 求线段的长求线段的长也是高考题中的常见题型之一,其解法为从曲线的性质入手,找出点的坐标,利用距离公式解之.例2.已知抛物线y-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于A.3B.4C.32D.42 考查意图: 本题主要考查直线与圆锥曲线的位置关系和距离公式的应用.解:设直线AB 的方程为y x b =+,由22123301y x x x b x x y x b⎧=-+⇒++-=⇒+=-⎨=+⎩,进而可求出AB 的中点11(,)22M b --+,又由11(,)22M b --+在直线0x y +=上可求出1b =,∴220x x +-=,由弦长公式可求出221114(2)32AB =+-⨯-=.例3.如图,把椭圆2212516x y +=的长轴AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部分于1234567,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点, 则1234567PF P F P F P F P F P F P F ++++++=____________. 考查意图: 本题主要考查椭圆的性质和距离公式的灵活应用.解答过程:由椭圆2212516x y +=的方程知225, 5.a a =∴=∴12345677277535.2a PF P F P F P F P F P F P F a ⨯++++++==⨯=⨯= 考点3. 曲线的离心率曲线的离心率是高考题中的热点题型之一,其解法为充分利用: (1)椭圆的离心率e =ac ∈(0,1) (e 越大则椭圆越扁);(2) 双曲线的离心率e =ac ∈(1, +∞) (e 越大则双曲线开口越大).例4.已知双曲线的离心率为2,焦点是(4,0)-,(4,0),则双曲线方程为A .221412x y -=B .221124x y -=C .221106x y -=D .221610x y -=考查意图:本题主要考查双曲线的标准方程和双曲线的离心率以及焦点等基本概念. 解答过程: 2,4,c e c a===Q 所以22,12.a b ∴==故选(A).例5.已知双曲线9322=-y x ,则双曲线右支上的点P 到右焦点的距离与点P 到右准线的距离之比等于( ) A.2 B.332 C. 2 D.4考查意图: 本题主要考查双曲线的性质和离心率e =a c ∈(1, +∞) 的有关知识的应用能力.解答过程:依题意可知 3293,322=+=+==b a c a . 考点4.求最大(小)值求最大(小)值, 是高考题中的热点题型之一.其解法为转化为二次函数问题或利用不等式求最大(小)值:特别是,一些题目还需要应用曲线的几何意义来解答.例6.已知抛物线y 2=4x ,过点P (4,0)的直线与抛物线相交于A(x 1,y 1),B(x 2,y 2)两点,则y 12+y 22的最小值是 .考查意图: 本题主要考查直线与抛物线的位置关系,以及利用不等式求最大(小)值的方法. 解:设过点P (4,0)的直线为()()224,8164,y k x k x x x =-∴-+=()()122222222122284160,8414416232.k x k x k k y y x x k k ∴-++=+⎛⎫∴+=+=⨯=+≥ ⎪⎝⎭故填32.考点5 圆锥曲线的基本概念和性质例7. 在平面直角坐标系xOy 中,已知圆心在第二象限、半径为22的圆C 与直线y =x 相切于坐标原点O .椭圆9222y a x +=1与圆C 的一个交点到椭圆两焦点的距离之和为10.(1)求圆C 的方程;(2)试探究圆C 上是否存在异于原点的点Q ,使Q 到椭圆右焦点F 的距离等于线段OF 的长.若存在,请求出点Q 的坐标;若不存在,请说明理由. [解答过程] (1) 设圆C 的圆心为 (m, n)则,222,m n n =-⎧⎪⎨⋅=⎪⎩ 解得2,2.m n =-⎧⎨=⎩ 所求的圆的方程为 22(2)(2)8x y ++-= (2) 由已知可得 210a = , 5a =.椭圆的方程为 221259x y += , 右焦点为 F( 4, 0) ;假设存在Q 点()222cos ,222sin θθ-++使QF OF =,()()22222cos 4222sin 4θθ-+-++=.整理得 sin 3cos 22θθ=+, 代入 22sin cos 1θθ+=.得:210cos 122cos 70θθ++= , 122812222cos 1θ-±-±==<-.因此不存在符合题意的Q 点. 例8.如图,曲线G 的方程为)0(22≥=y x y .以原点为圆心,以)0(>t t 为半径的圆分别与曲线G 和y 轴的 正半轴相交于 A 与点B . 直线AB 与 x 轴相交于点C .(Ⅰ)求点 A 的横坐标 a 与点 C 的横坐标c 的关系式;(Ⅱ)设曲线G 上点D 的横坐标为2+a ,求证:直线CD 的斜率为定值. [解答过程](I )由题意知,).2,(a a A 因为.2,||22t a a t OA =+=所以 由于.2,02a a t t +=>故有 (1)由点B (0,t ),C (c ,0)的坐标知,直线BC 的方程为.1=+tyc x 又因点A 在直线BC 上,故有,12=+ta ca将(1)代入上式,得,1)2(2=++a a a ca 解得 )2(22+++=a a c .(II )因为))2(22(++a a D ,所以直线CD 的斜率为1)2(2)2(2))2(22(2)2(22)2(2-=+-+=+++-++=-++=a a a a a a c a a k CD ,所以直线CD 的斜率为定值.例9.已知椭圆2222x y E :1(a b 0)a b +=>>,AB 是它的一条弦,M(2,1)是弦AB 的中点,若以点M(2,1)为焦点,椭圆E 的右准线为相应准线的双曲线C 和直线AB 交于点N(4,1)-,若椭圆离心率e 和双曲线离心率1e 之间满足1ee 1=,求: (1)椭圆E 的离心率;(2)双曲线C 的方程.解答过程:(1)设A 、B 坐标分别为1122A(x ,y ),B(x ,y ), 则221122x y 1a b +=,222222x y 1a b+=,二式相减得: 21212AB 21212y y (x x )b k x x (y y )a-+==-=-+2MN 22b 1(1)k 1a 24---===--, 所以2222a 2b 2(a c )==-,22a 2c =, 则c 2e a==;(2)椭圆E 的右准线为22a (2c)x 2c c ===,双曲线的离心率11e 2e==,设P(x,y)是双曲线上任一点,则:22(x 2)(y 1)|PM |2|x 2c |-+-==-,两端平方且将N(4,1)-代入得:c 1=或c 3=,当c 1=时,双曲线方程为:22(x 2)(y 1)0---=,不合题意,舍去; 当c 3=时,双曲线方程为:22(x 10)(y 1)32---=,即为所求. 考点6 利用向量求曲线方程和解决相关问题例10.双曲线C 与椭圆22184x y +=有相同的焦点,直线y =x 3为C 的一条渐近线.(1)求双曲线C 的方程;(2)过点P (0,4)的直线l ,交双曲线C 于A,B 两点,交x 轴于Q 点(Q 点与C 的顶点不重合).当12PQ QA QB λλ==u u u r u u u r u u u r,且3821-=+λλ时,求Q 点的坐标.考查意图: 本题考查利用直线、椭圆、双曲线和平面向量等知识综合解题的能力,以及运用数形结合思想,方程和转化的思想解决问题的能力.解答过程:(Ⅰ)设双曲线方程为22221x y a b-=,由椭圆22184x y +=,求得两焦点为(2,0),(2,0)-,∴对于双曲线:2C c =,又y 为双曲线C 的一条渐近线∴b a解得 221,3a b ==,∴双曲线C 的方程为2213y x -=(Ⅱ)解法一:由题意知直线l 的斜率k 存在且不等于零.设l 的方程:114,(,)y kx A x y =+,22(,)B x y ,则4(,0)Q k-.1PQ QA λ=u u u r u u u rQ ,11144(,4)(,)x y kkλ∴--=+.111111114444()44x k k x k k y y λλλλ⎧=--⎧⎪-=+⎪⎪∴⇒⎨⎨⎪⎪-==-⎩⎪⎩Q 11(,)A x y 在双曲线C 上, ∴2121111616()10kλλλ+--=.∴222211161632160.3k k λλλ++--=∴2221116(16)32160.3k k λλ-++-=同理有:2222216(16)32160.3k k λλ-++-=若2160,k -=则直线l 过顶点,不合题意.2160,k ∴-≠12,λλ∴是二次方程22216(16)32160.3k x x k -++-=的两根.122328163k λλ∴+==--,24k ∴=,此时0,2k ∆>∴=±. ∴所求Q 的坐标为(2,0)±.解法二:由题意知直线l 的斜率k 存在且不等于零 设l 的方程,11224,(,),(,)y kx A x y B x y =+,则4(,0)Q k-.1PQ QAλ=u u u r u u u r Q , Q ∴分PA uu u r 的比为1λ. 由定比分点坐标公式得1111111111144(1)14401x x k k y y λλλλλλλ⎧⎧-==-+⎪⎪+⎪⎪→⎨⎨+⎪⎪=-=⎪⎪+⎩⎩下同解法一解法三:由题意知直线l 的斜率k 存在且不等于零 设l 的方程:11224,(,),(,)y kx A x y B x y =+,则4(,0)Q k-.12PQ QA QB λλ==u u u r u u u r u u u rQ , 111222444(,4)(,)(,)x y x y kkkλλ∴--=+=+.11224y y λλ∴-==, 114y λ∴=-,224y λ=-,又1283λλ+=-, 121123y y ∴+=,即12123()2y y y y +=.将4y kx =+代入2213y x -=得222(3)244830k y y k --+-=.230k -≠Q ,否则l 与渐近线平行.212122224483,33k y y y y k k -∴+==--.222244833233k k k -∴⨯=⨯--.2k ∴=±(2,0)Q ∴±.解法四:由题意知直线l 得斜率k 存在且不等于零,设l 的方程:4y kx =+,1122(,),(,)A x y B x y ,则4(,0)Q k-1PQ QA λ=u u u v u u u v Q ,11144(,4)(,)x y k kλ∴--=+.∴1114444k kx x kλ-==-++.同理 1244kx λ=-+.1212448443kx kx λλ+=--=-++.即2121225()80k x x k x x +++=.(*)又 22413y kx y x =+⎧⎪⎨-=⎪⎩消去y 得22(3)8190k x kx ---=.当230k -=时,则直线l 与双曲线得渐近线平行,不合题意,230k -≠.由韦达定理有: 12212283193k x x k x x k ⎧+=⎪⎪-⎨⎪=-⎪-⎩代入(*)式得24,2k k ==±.∴所求Q 点的坐标为(2,0)±.例11.设动点P 到点A (-l ,0)和B (1,0)的距离分别为d 1和d 2, ∠APB =2θ,且存在常数λ(0<λ<1=,使得d 1d 2 sin 2θ=λ. (1)证明:动点P 的轨迹C 为双曲线,并求出C 的方程;(2)过点B 作直线交双曲线C 的右支于M 、N 两点,试确定λ的范围, 使OM ·ON =0,其中点O 为坐标原点.[解答过程]解法1:(1)在PAB △中,2AB =,即222121222cos 2d d d d θ=+-, 2212124()4sin d d d d θ=-+,即2121244sin 212d d d d θλ-=-=-<(常数), 点P 的轨迹C 是以A B ,为焦点,实轴长221a λ=-的双曲线.方程为:2211x y λλ-=-.(2)设11()M x y ,,22()N x y ,①当MN 垂直于x 轴时,MN 的方程为1x =,(11)M ,,(11)N -,在双曲线上. 即211151101λλλλλ-±-=⇒+-=⇒=-,因为01λ<<,所以51λ-=.②当MN 不垂直于x 轴时,设MN 的方程为(1)y k x =-.由2211(1)x y y k x λλ⎧-=⎪-⎨⎪=-⎩得:2222(1)2(1)(1)()0k x k x k λλλλλ⎡⎤--+---+=⎣⎦, 由题意知:2(1)0k λλ⎡⎤--≠⎣⎦,所以21222(1)(1)k x x k λλλ--+=--,2122(1)()(1)k x x k λλλλ--+=--.于是:22212122(1)(1)(1)k y y k x x kλλλ=--=--. 因为0=⋅ON OM ,且M N ,在双曲线右支上,所以2121222122212(1)0(1)512101131001x x y y k x x k x x λλλλλλλλλλλλλλλ-⎧+=⎧-⎧=⎪>-⎪⎪⎪+-+>⇒⇒⇒<<+--⎨⎨⎨⎪⎪⎪>+->>⎩⎩⎪-⎩.C BA oy x23λ<.解法2:(1)同解法1(2)设11()M x y ,,22()N x y ,,MN 的中点为00()E x y ,. ①当121x x ==时,221101MB λλλλλ=-=⇒+-=-,因为01λ<<,所以λ;②当12x x ≠时,002222212111111y x k y x y x MN ⋅-=⇒⎪⎪⎩⎪⎪⎨⎧=--=--λλλλλλ. 又001MN BE y k k x ==-.所以22000(1)y x x λλλ-=-;由2MON π=∠得222002MN x y ⎛⎫+= ⎪⎝⎭,由第二定义得2212()222MN e x x a ⎛⎫+-⎡⎤= ⎪⎢⎥⎣⎦⎝⎭220001(1)21x x λλ==+---. 所以222000(1)2(1)(1)y x x λλλλ-=--+-.于是由22000222000(1),(1)2(1)(1),y x x y x x λλλλλλλ⎧-=-⎪⎨-=--+-⎪⎩得20(1).23x λλ-=- 因为01x >,所以2(1)123λλ->-,又01λ<<,23λ<<23λ<.考点7 利用向量处理圆锥曲线中的最值问题例12.设椭圆E 的中心在坐标原点O ,焦点在xC(1,0)-的直线交椭圆E 于A 、B 两点,且CA 2BC =u u u r u u u r,求当AOB ∆的面积达到最大值时直线和椭圆E 的方程.,故可设椭圆方程为222x 3y t(t 0)+=>,直线方程为my x 1=+,由222x 3y t my x 1⎧+=⎨=+⎩得:22(2m 3)y 4my 2t 0+-+-=,设1122A(x ,y ),B(x ,y ), 则1224m y y 2m 3+=+…………①又CA 2BC =u u u r u u u r,故1122(x 1,y )2(1x ,y )+=---,即12y 2y =-…………② 由①②得:128m y 2m 3=+,224m y 2m 3-=+, 则AOB 1221mS |y y |6||22m 3∆=-=+=632|m ||m |≤+当23m 2=,即m =AOB ∆面积取最大值,此时2122222t 32m y y 2m 3(2m 3)-==-++,即t10=,所以,直线方程为x 10+=,椭圆方程为222x 3y 10+=.例13.已知PA (x y)=u u u r,PB (x y)=u u u r ,且|PA ||PB |6+=u u u r u u u r , 求|2x 3y 12|--的最大值和最小值.解答过程:设P(x,y),A(,0),因为|PA ||PB |6+=u u u r u u u r,且|AB |6=,所以,动点P 的轨迹是以A 、B 为焦点,长轴长为6的椭圆, 椭圆方程为22x y 194+=,令x 3cos ,y 2sin =θ=θ,则|2x 3y 12|--=|)12|4πθ+-,当cos()14πθ+=-时,|2x 3y 12|--取最大值12+当cos()14πθ+=时,|2x 3y 12|--取最小值12-考点8 利用向量处理圆锥曲线中的取值范围问题例14.(2006年福建卷) 已知椭圆2212x y +=的左焦点为F ,O 为坐标原点.(I )求过点O 、F ,并且与椭圆的左准线l 相切的圆的方程; (II )设过点F 且不与坐标轴垂直的直线交椭圆于A 、B 两点, 线段AB 的垂直平分线与x 轴交于点G ,求点G 横坐标的取值范围. 考查意图:本小题主要考查直线、圆、椭圆和不等式等基本知识,考 查平面解析几何的基本方法,考查运算能力和综合解题能力. 解答过程:(I )222,1,1,(1,0),: 2.a b c F l x ==∴=-=-QQ 圆过点O 、F ,∴圆心M 在直线12x =-上.设1(,),2M t -则圆半径13()(2).22r =---=由,OM r =3,2=解得t =∴所求圆的方程为2219()(.24x y ++=(II )设直线AB 的方程为(1)(0),y k x k =+≠ 代入221,2x y +=整理得2222(12)4220.k x k x k +++-=Q 直线AB 过椭圆的左焦点F ,∴方程有两个不等实根.记1122(,),(,),A x y B x y AB 中点00(,),N x y则21224,21k x x k +=-+AB ∴的垂直平分线NG 的方程为001().y y x x k-=--令0,y =得222002222211.21212124210,0,2G G k k k x x ky k k k k k x =+=-+=-=-+++++≠∴-<<Q ∴点G 横坐标的取值范围为1(,0).2-例15.已知双曲线C :2222x y 1(a 0,b 0)a b-=>>,B 是右顶点,F 是右焦点,点A 在x 轴正半轴上,且满足|OA |,|OB |,|OF |u u u r u u u r u u u r成等比数列,过F 作双曲线C 在第一、三象限的渐近线的垂线l ,垂足为P ,(1)求证:PA OP PA FP ⋅=⋅u u u r u u u r u u u r u u r;(2)若l 与双曲线C 的左、右两支分别相交于点D,E ,求双曲线C 的离心率e 的取值范围.解答过程:(1)因|OA |,|OB |,|OF |u u u r u u u r u u u r 成等比数列,故22|OB |a |OA |c|OF |==u u u ru u u r u u u r ,即2a A(,0)c,直线l :a y (x c)b=--,由2a y (x c)a ab bP(,)b c c y x a ⎧=--⎪⎪⇒⎨⎪=⎪⎩, 故:22ab a ab b abPA (0,),OP (,),FP (,)c c c c c=-==-u u u r u u u r u u r , 则:222a b PA OP PA FP c⋅=-=⋅u u u r u u u r u u ur u u r ,即PA OP PA FP ⋅=⋅u u u r u u u r u u u r u u r ;(或PA (OP FP)PA (PF PO)PA OF 0⋅-=⋅-=⋅=u u u r u u u r u u r u u u r u u r u u u r u u u r u u u r,即PA OP PA FP ⋅=⋅u u u r u u u r u u u r u u r )(2)由44422222222222222a y (x c)a a a c (b )x 2cx (a b )0bb b b b x a y a b ⎧=--⎪⇒-+-+=⎨⎪-=⎩, 由4222212422a c (ab )b x x 0a b b -+=<-得:4422222b a b c a a e 2e >⇒=->⇒>⇒> (或由DF DO k k >⇒a b b a->-⇒22222b c a a e 2e =->⇒>⇒>例16.已知a (x,0)=r ,b (1,y)=r,(a (a ⊥r r ,(1)求点P(x,y)的轨迹C 的方程;(2)若直线y kx m(m 0)=+≠与曲线C 交于A 、B 两点,D(0,1)-,且|AD ||BD |=, 试求m 的取值范围.解答过程:(1)a +r=(x,0)y)(x =+,a r=(x,0)y)(x -=,因(a (a ⊥r r,故(a (a 0+⋅=r r ,即22(x (x x 3y 30+⋅=--=,故P 点的轨迹方程为22x y 13-=. (2)由22y kx mx 3y 3=+⎧⎨-=⎩得:222(13k )x 6kmx 3m 30----=,PQCBA xy O设1122A(x ,y ),B(x ,y ),A 、B 的中点为00M(x ,y )则22222(6km)4(13k )(3m 3)12(m 13k )0∆=----=+->,1226km x x 13k +=-,1202x x 3km x 213k +==-,002my kx m 13k=+=-, 即A 、B 的中点为223km m(,)13k 13k --,则线段AB 的垂直平分线为:22m 13kmy ()(x )13k k 13k-=----, 将D(0,1)-的坐标代入,化简得:24m 3k 1=-,则由222m 13k 04m 3k 1⎧+->⎪⎨=-⎪⎩得:2m 4m 0->,解之得m 0<或m 4>,又24m 3k 11=->-,所以1m 4>-, 故m 的取值范围是1(,0)(4,)4-+∞U . 考点9 利用向量处理圆锥曲线中的存在性问题例17.已知A,B,C 是长轴长为4的椭圆上的三点,点A 是长轴的一个顶点,BC 过椭圆的中心O ,且AC BC 0⋅=u u u r u u u r ,|BC |2|AC |=u u u r u u u r,(1)求椭圆的方程;(2)如果椭圆上的两点P ,Q 使PCQ ∠的平分线垂直于OA ,是否总存在实数λ,使得PQ λAB =u u u r u u u r?请说明理由;解答过程:(1)以O 为原点,OA 所在直线为x 轴建立 平面直角坐标系,则A(2,0),设椭圆方程为222x y14b+=,不妨设C 在x 轴上方, 由椭圆的对称性,|BC |2|AC |2|OC ||AC ||OC |==⇒=u u u r u u u r u u u r u u u r u u u r,又AC BC 0⋅=u u u r u u u rAC OC ⇒⊥,即ΔOCA 为等腰直角三角形,由A(2,0)得:C(1,1),代入椭圆方程得:24b 3=, 即,椭圆方程为22x 3y 144+=;(2)假设总存在实数λ,使得PQ λAB =u u u r u u u r,即AB//PQ ,由C(1,1)得B(1,1)--,则AB 0(1)1k 2(1)3--==--,若设CP :y k(x 1)1=-+,则CQ :y k(x 1)1=--+,由22222x 3y 1(13k )x 6k(k 1)x 3k 6k 1044y k(x 1)1⎧+=⎪⇒+--+--=⎨⎪=-+⎩, 由C(1,1)得x 1=是方程222(13k )x 6k(k 1)x 3k 6k 10+--+--=的一个根,由韦达定理得:2P P 23k 6k 1x x 113k --=⋅=+,以k -代k 得2Q 23k 6k 1x 13k +-=+,故P Q P Q PQ P QP Qy y k(x x )2k1k x x x x 3-+-===--,故AB//PQ , 即总存在实数λ,使得PQ λAB =u u u r u u u r.考点10 利用向量处理直线与圆锥曲线的关系问题例18.设G 、M 分别是ABC ∆的重心和外心,A(0,a)-,B(0,a)(a 0)>,且GM AB =λu u u u r u u u r,(1)求点C 的轨迹方程;(2)是否存在直线m ,使m 过点(a,0)并且与点C 的轨迹交于P 、Q 两点,且OP OQ 0⋅=u u u r u u u r ?若存在,求出直线m 的方程;若不存在,请说明理由. 解答过程:(1)设C(x,y),则x y G(,)33,因为GM AB =λu u u u r u u u r ,所以GM//AB ,则xM(,0)3,由M 为ABC ∆的外心,则|MA ||MC |==整理得:2222x y 1(x 0)3a a+=≠;(2)假设直线m 存在,设方程为y k(x a)=-,由2222y k(x a)x y 1(x 0)3a a =-⎧⎪⎨+=≠⎪⎩得:22222(13k )x 6k ax 3a (k 1)0+++-=, 设1122P(x ,y ),Q(x ,y ),则21226k a x x 13k +=+,221223a (k 1)x x 13k -=+, 22212121212y y k (x a)(x a)k [x x a(x x )a ]=--=-++=2222k a 13k -+,由OP OQ 0⋅=u u u r u u u r得:1212x x y y 0+=,即2222223a (k 1)2k a 013k 13k--+=++,解之得k = 又点(a,0)在椭圆的内部,直线m 过点(a,0), 故存在直线m,其方程为y a)=-. 【专题训练与高考预测】 一、选择题1.如果双曲线经过点,且它的两条渐近线方程是1y x 3=±,那么双曲线方程是()A .22x y 1369-= B .22x y 1819-= C .22x y 19-= D .22x y 1183-= 2.已知椭圆2222x y 13m 5n +=和双曲线2222x y 12m 3n-=有公共的焦点,那么双曲线的的渐近线方程为( )A.x =B. y =C. x =D. y = 3.已知12F ,F 为椭圆2222x y 1(a b 0)a b+=>>的焦点,M 为椭圆上一点,1MF 垂直于x 轴, 且12FMF 60∠=︒,则椭圆的离心率为( ) A.124.二次曲线22x y 14m+=,当m [2,1]∈--时,该曲线的离心率e 的取值范围是( )A.B.C.D.5.直线m 的方程为y kx 1=-,双曲线C 的方程为22x y 1-=,若直线m 与双曲线C 的右支相交于不重合的两点,则实数k 的取值范围是( )A.(B.C.[D.6.已知圆的方程为22x y 4+=,若抛物线过点A(1,0)-,B(1,0),且以圆的切线为准线,则抛物线的焦点的轨迹方程为( )A. 22x y 1(y 0)34+=≠ B. 22x y 1(y 0)43+=≠C. 22x y 1(x 0)34-=≠D. 22x y 1(x 0)43-=≠二、填空题7.已知P 是以1F 、2F 为焦点的椭圆)0(12222>>=+b a by a x 上一点,若021=⋅PF PF21tan 21=∠F PF ,则椭圆的离心率为 ______________ .8.已知椭圆x 2+2y 2=12,A 是x 轴正方向上的一定点,若过点A ,斜率为1的直线被椭圆截得的弦长为3134,点A 的坐标是______________ .9.P 是椭圆22x y 143+=上的点,12F ,F 是椭圆的左右焦点,设12|PF ||PF |k⋅=,则k 的最大值与最小值之差是______________ . 10.给出下列命题:①圆22(x 2)(y 1)1++-=关于点M(1,2)-对称的圆的方程是22(x 3)(y 3)1++-=;②双曲线22x y 1169-=右支上一点P 到左准线的距离为18,那么该点到右焦点的距离为292;③顶点在原点,对称轴是坐标轴,且经过点(4,3)--的抛物线方程只能是29y x 4=-;④P 、Q 是椭圆22x 4y 16+=上的两个动点,O 为原点,直线OP ,OQ 的斜率之积为14-,则22|OP ||OQ |+等于定值20 .把你认为正确的命题的序号填在横线上_________________ . 三、解答题11.已知两点,B(0),动点P 在y 轴上的射影为Q ,2PA PB 2PQ ⋅=u u u u r u u u r u u u r,(1)求动点P 的轨迹E 的方程;(2)设直线m 过点A ,斜率为k ,当0k 1<<时,曲线E 的上支上有且仅有一点C 到直线m k 的值及此时点C 的坐标.FQoyx12.如图,1F (3,0)-,2F (3,0)是双曲线C 的两焦点,直线4x 3=是双曲线C 的右准线,12A ,A是双曲线C 的两个顶点,点P 是双曲线C 右支上异于2A 的一动点,直线1A P 、2A P 交双曲线C 的右准线分别于M,N 两点, (1)求双曲线C 的方程; (2)求证:12FM F N ⋅u u u u r u u u u r是定值.13.已知OFQ ∆的面积为S ,且OF FQ 1⋅=u u u r u u u r,建立如图所示坐标系, (1)若1S 2=,|OF |2=u u u r,求直线FQ 的方程;(2)设|OF |c(c 2)=≥u u u r,3S c 4=,若以O 为中心,F 为焦点的椭圆过点Q ,求当|OQ |u u u r 取得最小值时的椭圆方程.14.已知点H(3,0)-,点P 在y 轴上,点Q 在x 轴的正半轴上,点M 在直线PQ 上,且满足HP PM 0⋅=u u u r u u u r ,3PM MQ 2=-u u u r u u u u r ,(1)当点P 在y 轴上移动时,求点M 的轨迹C ;(2)过点T(1,0)-作直线m 与轨迹C 交于A 、B 两点,若在x 0E(x ,0),使得ABE ∆为等边三角形,求0x 的值.15.已知椭圆)0(12222>>=+b a by a x 的长、短轴端点分别为A 、B ,从此椭圆上一点M 向x 轴作垂线,恰好通过椭圆的左焦点1F ,向量与OM 是共线向量. (1)求椭圆的离心率e ;(2)设Q 是椭圆上任意一点, 1F 、2F 分别是左、右焦点,求∠21QF F 的取值范围;16.已知两点M (-1,0),N (1,0)且点P 使NP NM PN PM MN MP ⋅⋅⋅,,成公差小于零的等差数列,(Ⅰ)点P 的轨迹是什么曲线?(Ⅱ)若点P 坐标为),(00y x ,θ为PN PM 与的夹角,求tan θ.【参考答案】一. 1.C .提示,设双曲线方程为11(x y)(x y)33+-=λ,将点代入求出λ即可.2.D .因为双曲线的焦点在x 轴上,故椭圆焦点为,双曲线焦点为,由22223m 5n 2m 3n -=+得|m |n |=,所以,双曲线的渐近线为y == .3.C .设1|MF |d =,则2|MF |2d =,12|FF |=,1212|FF |c 2c e a 2a |MF ||MF |=====+. 4.C .1>,故选C ;或用2a 4=,2b m =-来计算.5.B .将两方程组成方程组,利用判别式及根与系数的关系建立不等式组. 6.B .数形结合,利用梯形中位线和椭圆的定义.二.7.解:设c 为为椭圆半焦距,∵021=⋅PF PF ,∴21PF PF ⊥ .又21tan 21=∠F PF ∴⎪⎪⎪⎩⎪⎪⎪⎨⎧==+=+212)2(122122221PF PF a PF PF c PF PF解得:25()93,cc e aa === . 选D . 8. 解:设A (x 0,0)(x 0>0),则直线l 的方程为y=x-x 0,设直线l 与椭圆相交于P (x 1,y 1),Q (x 2、y 2),由 y=x-x 0 可得3x 2-4x 0x+2x 02-12=0, x 2+2y 2=12 34021x x x =+,31222021-=⋅x x x ,则20202021221212363234889164)(||x x x x x x x x x -=--=-+=-.∴||13144212x x x -⋅+=,即202363223144x -⋅⋅=.∴x 02=4,又x 0>0,∴x 0=2,∴A (2,0).9.1;22212k |PF ||PF |(a ex)(a ex)a e x =⋅=+-=- .10.②④.三. 11.解(1)设动点P 的坐标为(x,y),则点Q(0,y),PQ (x,0)=-u u u r,PA x,y)=-u u u r ,PB (x,y)=-u u u r ,22PA PB x 2y ⋅=-+u u u r u u u r,因为2PA PB 2PQ ⋅=u u u u r u u u r u u u r ,所以222x 2y 2x -+=,即动点P 的轨迹方程为:22y x 2-=; (2)设直线m:y k(x k 1)=-<<,依题意,点C 在与直线m 平行,且与m设此直线为1m :y kx b =+=2b 2+=,……①把y kx b =+代入22y x 2-=,整理得:222(k 1)x 2kbx (b 2)0-++-=, 则22224k b 4(k 1)(b 2)0∆=---=,即22b 2k 2+=,…………②由①②得:k =b =此时,由方程组22y y x 2⎧=⎪⎨⎪-=⎩. 12.解:(1)依题意得:c 3=,2a 4c 3=,所以a 2=,2b 5=, 所求双曲线C 的方程为22x y 145-=; (2)设00P(x ,y ),11M(x ,y ),22N(x ,y ),则1A (2,0)-,2A (2,0),100A P (x 2,y )=+u u u u r ,200A P (x 2,y )=-u u u u r ,1110A M (,y )3=u u u u r ,222A N (,y )3=-u u u u r ,因为1A P u u u u r 与1A M u u u u r 共线,故01010(x 2)y y 3+=,01010y y 3(x 2)=+,同理:0202y y 3(x 2)=--, 则1113FM (,y )3=u u u u r ,225F N (,y )3=-u u u u r ,所以12FM F N ⋅u u u u r u u u u r =1265y y 9-+=202020y 6599(x 4)---=20205(x 4)206541099(x 4)-⨯--=-- .13.解:(1)因为|OF |2=u u u r ,则F(2,0),OF (2,0)=u u u r,设00Q(x ,y ),则00FQ (x 2,y )=-u u u r ,0OF FQ 2(x 2)1⋅=-=u u u r u u u r ,解得05x 2=,由0011S |OF ||y ||y |22=⋅==u u u r ,得01y 2=±,故51Q(,)22±,所以,PQ 所在直线方程为y x 2=-或y x 2=-+;(2)设00Q(x ,y ),因为|OF |c(c 2)=≥u u u r,则00FQ (x c,y )=-u u u r , 由0OF FQ c(x c)1⋅=-=u u u r u u u r 得:01x c c=+,又013S c |y |c 24==,则03y 2=±,13Q(c ,)c 2+±,2219|OQ |(c )c 4=++u u u r ,易知,当c 2=时,|OQ |u u u r 最小,此时53Q(,)22±,设椭圆方程为2222x y 1,(a b 0)a b +=>>,则2222a b 425914a4b ⎧-=⎪⎨+=⎪⎩,解得22a 10b 6⎧=⎪⎨=⎪⎩, 所以,椭圆方程为22x y 1106+= . 14.解:(1)设M(x,y),由3PM MQ 2=-u u u r u u u u r 得:y P(0,)2-,xQ(,0)3,由HP PM 0⋅=u u u r u u u r 得:y 3y (3,)(x,)022-=,即2y 4x =,由点Q 在x 轴的正半轴上,故x 0>,即动点M 的轨迹C 是以(0,0)为顶点,以(1,0)为焦点的抛物线,除去原点; (2)设m :y k(x 1)(k 0)=+≠,代入2y 4x =得:2222k x 2(k 2)x k 0+-+=…………①设11A(x ,y ),22B(x ,y ),则12x ,x 是方程①的两个实根,则21222(k 2)x x k -+=-,12x x 1=,所以线段AB 的中点为222k 2(,)k k-,线段AB 的垂直平分线方程为22212k y (x )k k k--=--,令y 0=,022x 1k=+,得22E(1,0)k+, 因为ABE ∆为正三角形,则点E 到直线AB|AB |,又|AB|k =,011x 3= .15.解:(1)∵ab yc x c F M M 21,),0,(=-=-则,∴acb k OM 2-= .∵OM a b k AB ,-=是共线向量,∴a b ac b -=-2,∴b=c,故22=e .(2)设1122121212,,,2,2,FQr F Q r F QF r r a F F c θ==∠=∴+==22222221212122121212124()24cos 11022()2r r c r r r r c a a r r r r r r r r θ+-+--===-≥-=+当且仅当21r r =时,cos θ=0,∴θ]2,0[π∈ .16.解:(Ⅰ)记P (x,y ),由M (-1,0)N (1,0)得 (1,),PM MP x y =-=---u u u u r u u u r),1(y x ---=-=, )0,2(=-=NM MN .所以 )1(2x +=⋅ . 122-+=⋅y x , )1(2x -=⋅ .于是, ⋅⋅⋅,,是公差小于零的等差数列等价于⎪⎩⎪⎨⎧<+---++=-+0)1(2)1(2)]1(2)1(2[21122x x x x y x 即 ⎩⎨⎧>=+0322x y x . 所以,点P 的轨迹是以原点为圆心,3为半径的右半圆. (Ⅱ)点P 的坐标为),(00y x 。