数学专业毕业论文开题报告
数学与应用数学毕业论文开题报告
数学与应用数学毕业论文开题报告“Hapionl”投稿了18篇数学与应用数学毕业论文开题报告,以下是我为大家准备了数学与应用数学毕业论文开题报告,欢迎参阅。
篇1:数学与应用数学毕业论文开题报告数学与应用数学毕业论文开题报告模板论文题目不定积分的计算方法文献综述:不定积分是大学数学中非常重要的知识,但是当今许多大学生学习不定积分的时候,感觉学习和理解的难度很大,所以不定积分有一定的研究价值。
不定积分是导数运算的逆运算,要想学好不定积分,必须要理解原函数f(x)的意义,知道原函数的性质,学会求简单的原函数。
然后就是理解不定积分的概念,掌握不定积分的线性性质,学会定义求简单函数的不定积分。
本文研究了不定积分的几种解题方法,在前人的研究成果上作进一步的探索与探究。
社会在不断的进步,许多高科技的技术,都涉及到不定积分,研究不定积分也是社会发展的需要。
人类在17世纪的时候就发现了微积分,当时被誉为人类精神上的重大发现。
后来人类创立了微积分学,专门研究微积分,是数学有了重大发展和进步,解决了许多以前人们无法解决的数学问题,可见微积分在数学中的重要地位,而不定积分是微积分中最基础的知识之一,也是最重要的知识之一、人们常用的不定积分的解题方法有:一.利用不定积分的定义性质和基本积分公式求不定积分;二.利用换元积分法求不定积分;三.利用分部积分的方法求不定积分;有时有一些特殊函数也有一些特殊的解题方法,例如有理函数和无理函数,可以用有理函数的积分法和无理函数的积分法。
由此可见前人对不定积分的解题方法和思路有了一定的研究成果,但是后人也不会停下脚步,继续研究下去。
不定积分的解题方法和思路有很多种,这就要求学生有很高的抽象思维和逻辑理解能力,而且学生在学习不定积分的过程中计算和理解的难度比较大,很多老师讲课的时候,学生根本就没听懂,所以对不定积分和不定积分的计算方法的'研究,不管是从客观需求还是客观实际上都有着必然的研究需求。
数学毕业论文开题报告
数学毕业论文开题报告一、选题的背景和意义数学是一门广泛应用于自然科学、社会科学、技术科学和管理科学等领域的基础学科。
数学的发展促进了世界科学技术进步,正深刻地影响着各行各业的发展。
在现代社会中,数学的应用越来越广泛,不断涌现新领域和新问题,数学学科也需要不断地更新和挑战。
因此,以数学为研究对象的毕业论文具有重要意义。
本文选取的题目是“矩阵理论在图像处理中的应用研究”,该题目结合了矩阵理论和图像处理两大学科,探讨了它们之间的联系、应用和发展,并可在图像识别、图像增强、数码信号等领域中得到广泛应用和推广。
因此,本文选题具有较高的实践意义、社会影响力和学术价值。
二、研究的内容和目的本文主要研究矩阵理论在图像处理中的应用,包括矩阵代数、线性代数、矩阵分解等基础理论在图像处理中的应用,以及矩阵运算、图像压缩、图像增强、图像识别等方面的研究。
论文的目的是深入研究矩阵与图像处理的联系,探讨其中的数学原理和方法,为图像处理提供数学基础和理论支持,同时创新性地利用矩阵理论,对图像处理中存在的问题进行解决,提出一些新的算法和方法,达到提高图像处理质量和效率的目的。
三、研究方法和步骤1. 文献阅读和综述。
首先,对相关的矩阵理论和图像处理领域进行深入的文献调查和资料收集,对于研究领域的发展趋势、最新技术和方法有必要的了解和掌握。
2. 矩阵理论在图像处理中的应用研究。
通过对矩阵理论的数学原理、基本概念和运算方法的分析,深入研究矩阵在图像处理中的应用,并探讨矩阵算法,并以矩阵分解为主要方法研究图像的数据压缩与重建,以及图像的降噪与增强。
3. 图像处理中的应用研究。
在数学理论的基础上,探讨图像处理中存在的问题,例如分辨率、噪声、光照等问题,提出解决问题的方法,并在MATLAB或其他数学软件中进行模拟实验。
4. 结果分析和总结。
对于矩阵理论在图像处理中的应用研究进行实验分析和总结,提出新的算法和技术,并对实验结果进行分析和比较,探究成果的局限性和未来发展方向。
数学课题开题报告
数学课题开题报告一、选题背景数学作为一门基础学科,在现代科学和技术发展中具有重要的地位和作用。
作为学生,我们需要通过数学课程的学习来培养和提高我们的逻辑思维、数理能力和问题解决能力。
二、选题意义在选择我们的数学课题时,我们希望选一个具有实际意义和应用前景的课题。
我们希望通过深入研究和分析,能够找出一些有关数学的新发现或者解决实际问题的方法,从而提高我们的数学水平。
三、选题内容在前期的调研和讨论中,我们注意到了一个与数学相关的问题,即“如何优化城市交通网络的设计”。
城市交通问题一直存在着诸多挑战,包括交通拥堵、交通安全等。
我们认为通过数学的方法可以对城市交通网络进行优化和改进,从而提高交通系统的效率和安全性。
四、研究方案为了研究和解决城市交通网络优化的问题,我们计划采用以下研究方案:1. 收集和整理相关数据:我们将收集和整理城市交通数据,包括交通流量、道路状况、交通事故等信息,以便于后续的分析和建模。
2. 分析交通网络性能指标:我们将通过数学的方法分析交通网络的性能指标,比如交通流量、道路拥堵程度、车辆平均速度等,以评估交通网络的效率。
3. 建立数学模型:基于收集到的数据和分析的结果,我们将建立相应的数学模型,以描述城市交通网络的特征和规律,从而为优化交通网络提供参考。
4. 优化交通网络设计:利用建立的数学模型,我们将探索不同的方法和算法来优化城市交通网络的设计,从而提高交通系统的效率和安全性。
五、预期成果通过我们的研究和努力,我们希望能够达到以下预期成果:1. 提出一种有效的城市交通网络优化算法,用于改善城市交通拥堵问题。
2. 通过数学模型的建立和分析,提供一种可行的方法来预测和评估未来的交通流量和交通状况。
3. 为城市交通规划和设计提供科学依据和决策支持。
4. 培养我们的数学能力和问题解决能力,提高我们的学术水平和创新能力。
六、工作计划为了达到以上的预期成果,我们制定了以下的工作计划:1. 进一步收集和整理相关数据,包括城市交通数据和交通网络的结构信息。
数学开题报告
数学开题报告数学开题报告标题:探究二次方程的根与系数之间的关系引言:二次方程是数学中的一种常见形式,它包含一个未知数的平方项、一次项和常数项。
在解二次方程的过程中,我们发现根与方程的系数之间存在着一定的关系,本报告将对该关系进行探究并进行详细的解释和数学证明。
目标:通过研究二次方程的根与系数之间的关系,理解二次方程的求解过程,并能够利用这一关系推导二次方程的根。
方法:1. 列出一般形式的二次方程 ax^2 + bx + c = 0;2. 利用求根公式解出二次方程的根;3. 观察根与系数之间的关系,进行推理和数学探究。
主体:一、求解二次方程的根二次方程的一般形式为 ax^2 + bx + c = 0,其中a、b、c分别是方程的系数。
我们可以通过求根公式来解二次方程,求根公式为:x = (-b ± √(b^2 - 4ac)) / (2a)二、根与系数之间的关系根与系数之间的关系可以通过观察求根公式得出。
首先观察根的符号,可以发现根的正负取决于分子部分的正负。
然后观察根的大小,可以发现根的绝对值取决于分母部分的大小。
1. 根的符号根的符号取决于 (-b ± √(b^2 - 4ac)) 的正负,其中b^2 - 4ac 称为二次方程的判别式。
当判别式大于0时,根为两个实数,当判别式等于0时,根为两个相等的实数,当判别式小于0时,根为两个共轭复数。
2. 根的大小根的绝对值取决于分母部分 (2a) 的大小。
当系数a大于0时,根的绝对值与b的绝对值成正比;当系数a小于0时,根的绝对值与b的绝对值成反比。
结论:根与系数之间的关系可以总结为以下几点:1. 根的符号与二次方程的判别式的正负有关;2. 根的绝对值与系数b的绝对值成正比或反比。
这些关系可以帮助我们更好地理解和求解二次方程,通过分析根与系数之间的关系,我们可以预测二次方程的根的性质,并在实际问题中应用。
参考文献:[1] 高等数学教材[2] 陈纪莫. (2000). 高等代数学[M]. 高等教育出版社.。
数学与应用数学毕业设计开题报告
数学与应用数学毕业设计开题报告一、选题背景在当今社会,数学作为一门基础学科,对于各行各业都有着深远的影响。
数学与应用数学专业作为培养数学人才的重要专业之一,旨在培养具备扎实的数学理论基础和较强的数学建模与问题解决能力的高级数学人才。
因此,本次毕业设计选题旨在通过深入研究某一具体数学问题,结合实际应用背景,探讨数学在现实生活中的应用,为毕业生提供一个展示自己所学知识和能力的平台。
二、选题意义本次毕业设计选题旨在通过研究某一具体数学问题,探讨其在实际应用中的意义和作用,进一步拓展学生对数学知识的理解和运用能力。
同时,通过毕业设计的完成,可以锻炼学生的动手能力、团队协作能力和解决实际问题的能力,为其未来从事相关领域工作打下坚实基础。
三、选题内容本次毕业设计选题为《某某数学问题的建模与分析》,主要包括以下几个方面内容:问题背景分析:介绍选定数学问题的来源和背景,阐明研究意义。
相关理论知识:梳理与选定数学问题相关的理论知识,包括但不限于微积分、线性代数等内容。
建模方法:探讨选定数学问题的建模方法,分析建模过程中可能遇到的困难和挑战。
模型求解:运用所学数学知识和方法,对建立的数学模型进行求解,并分析结果的合理性和可行性。
实际应用与展望:将研究结果与实际应用结合起来,展望该数学问题在未来的发展方向和应用前景。
四、预期目标通过本次毕业设计,希朥达到以下几个预期目标:深入理解所选定数学问题及其相关理论知识;熟练掌握数学建模与分析方法;提高动手能力和团队协作能力;培养解决实际问题的能力;为将来从事相关领域工作做好准备。
五、总结本次毕业设计选题旨在通过深入研究某一具体数学问题,结合实际应用背景,探讨数学在现实生活中的应用。
通过对该数学问题进行建模与分析,希望能够培养学生扎实的数学理论基础和较强的问题解决能力,为其未来职业发展打下坚实基础。
希望同学们能够认真对待本次毕业设计,并取得优异成绩!以上为本次毕业设计开题报告内容,请指导!。
数学专业毕业论文开题报告
数学专业毕业论文开题报告数学专业毕业论文开题报告一、引言数学作为一门基础学科,对于现代科学和技术的发展起着重要的推动作用。
随着社会的进步和科技的发展,数学专业的研究也日益深入和广泛。
本文旨在探讨数学专业毕业论文的开题报告,介绍研究的背景、目的和方法,以及预期的研究结果和意义。
二、研究背景数学作为一门抽象的学科,与现实世界密切相关。
在物理学、经济学、计算机科学等领域中,数学方法被广泛应用。
然而,尽管数学在实践中具有巨大的价值,但在教育中,数学的教学效果却不尽如人意。
许多学生对数学的学习兴趣和能力不高,导致数学教育的效果不佳。
因此,研究如何提高数学教育的质量和效果成为了一个重要的课题。
三、研究目的本研究的目的是探究如何提高数学教育的质量和效果。
具体来说,我们将通过以下几个方面进行研究:1. 分析数学教育中存在的问题和挑战;2. 探讨现有的数学教育方法和策略;3. 提出改进数学教育的新方法和策略;4. 实施并评估新方法和策略的有效性。
四、研究方法本研究将采用综合性的研究方法,包括文献综述、问卷调查和实证研究。
首先,我们将对数学教育领域的相关文献进行综述,了解现有的研究成果和观点。
然后,我们将设计并分发一份问卷,收集学生和教师对数学教育的看法和建议。
最后,我们将设计并实施一套新的数学教育方法,并通过实证研究来评估其有效性。
五、预期结果我们预期本研究将有以下几个方面的结果:1. 对数学教育中存在的问题和挑战进行全面的分析和总结;2. 对现有的数学教育方法和策略进行全面的评估和归纳;3. 提出一套新的数学教育方法和策略,以提高学生的学习兴趣和能力;4. 通过实证研究,评估新方法和策略的有效性,并提出改进的建议。
六、研究意义本研究的意义在于提高数学教育的质量和效果,促进学生对数学的学习兴趣和能力的提升。
通过研究和改进数学教育的方法和策略,我们可以更好地满足社会对数学人才的需求,推动数学在实践中的应用,促进科学和技术的发展。
数学专业毕业论文开题报告
数学专业毕业论文开题报告一、研究背景数学作为一门基础学科,具有广泛的应用领域和重要的理论基础,为各行各业的发展和创新提供了强大的支持。
随着社会的不断进步和科技的快速发展,对数学专业研究的需求也日益增加。
因此,本文打算从数学专业的相关知识与应用出发,展开研究,为数学专业的发展提供新的思路和方法。
二、研究目的和意义本研究的目的是探索数学专业的相关知识与应用,分析其发展现状和存在的问题,并提出相应的解决方案,以促进数学专业的进一步发展和创新。
数学专业作为一门基础学科,对其他学科的发展具有重要而深远的影响。
通过对数学专业的研究,我们可以更好地理解和应用数学知识,提高数学专业人才的培养质量,为社会各行业的发展提供强有力的数学支撑。
另外,还可以推动数学专业的创新,促进数学理论与实践的结合,培养更多具有实践能力和创新精神的数学专业人才。
三、研究内容和方法本研究将围绕数学专业的相关知识与应用展开,主要包括以下内容:1. 数学专业知识的总结与分析:对数学专业的核心知识进行总结和分析,深入研究各个领域的理论基础和应用方法。
2. 数学专业发展现状的调研:通过调查问卷、实地考察等方法,了解数学专业的发展现状和存在的问题,为后续的研究提供依据。
3. 数学专业问题的解决方案:针对数学专业存在的问题,结合理论和实践,提出相应的解决方案,并进行实证研究和验证。
4. 数学专业人才培养的探索与实践:通过与相关高校和企事业单位的合作,探索数学专业人才培养的新模式和方法,并进行实践和案例分析。
本研究将采用文献研究、实证研究、案例分析等方法,综合运用定性和定量的研究手段,以全面、系统地探索数学专业知识与应用的发展规律和创新方法。
四、论文结构本论文将分为以下几个部分:1.绪论:介绍数学专业的背景和研究目的,阐述研究的意义和价值。
2.相关理论与方法:系统总结和分析与数学专业相关的理论知识和研究方法。
3.数学专业发展现状分析:通过调研和实证研究,对数学专业的发展现状和存在的问题进行分析。
【参考文档】数学课题开题报告(共9篇-word范文 (12页)
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==数学课题开题报告(共9篇篇一:数学论文开题报告第 1 页共 8 页说明本表需在指导教师和有关领导审查批准的情况下,要求学生认真填写。
说明课题的来源(自拟题目或指导教师承担的科研任务)、课题研究的目的和意义、课题在国内外研究现状和发展趋势。
若课题因故变动时,应向指导教师提出申请,提交题目变动论证报告。
第 2 页共 8 页第 3 页共 8 页第 4 页共 8 页第 5 页共 8 页篇二:先学后教数学课题开题报告[1]“先学后教”小学数学课堂模式探究开题报告一、课题研究的背景、价值和意义(一)课题研究的背景1、教师对课堂教学的起点认识不够高。
2、只注重自己的教学环节进展情况,对于学生的行为不关注,或关注不多,3、只关注教学方法,对学生学习方法的研究不够。
4、课堂上教师讲得多、学生练得少,导致课后作业负担过重。
(二)课题研究的价值及意义“先学后教”的小学数学课堂教学模式,就是要求教师转变以往的教学观念,关注学生的学习目标、关注学生的学习行为。
学生是教学资源的重要构成和生成者,学生个体的独立思考尤为关键,学生的错误或个性见解是重要的动态生成资源,教师要善于利用动态资源转化为有利的教学资源,要坚信学生的自学能力,给学生充分独立思考的时间,丰富学生的自学方法,提高学生自学的水平。
教师作为课堂的组织者,将更多地表现在为学生设计探索交流的情境,提供共同活动的空间,把学习的主动权(如独立思考,动手拭错,自我纠正等等)完全交给孩子,让学生学会合作,学会从他人智慧中获得启迪。
每个学生在“合作探究”的氛围中思维得到碰撞,情感得到交流。
教学评价也不仅仅是教师的事,学生与学生之间、小组与小组之间也进行适当的评价,让评价的方式更加灵活、多样。
总之,我们要让学生主体作用和教师的主导作用都得到充分的发挥,使课堂教学发生根本的变化;教师由知识的传授变为学生学习的组织者、引导者,课堂教学的过程由传授知识的过程变为学生自己探索、获取的过程、研究信息、增长知识、形成才能的过程,师生经历的将是真实高效的学习过程,这样的过程是培养学生创新意识和实践能力的过程,也是全面提高学生素质,为学生终身发展打基础必不可少的过程。
数学系毕业论文开题报告
数学系毕业论文开题报告数学系毕业论文开题报告一、研究背景数学作为一门基础学科,对于现代科学和技术的发展起着重要的推动作用。
在数学领域中,人们一直致力于探索数学的本质和应用。
本文旨在研究数学的某一特定领域,并深入探讨其相关问题。
二、研究目的本研究的目的是通过对数学的某一特定领域进行深入研究,探索其中的规律和应用,为该领域的进一步发展提供理论基础和实践指导。
三、研究内容和方法1. 研究内容本研究将聚焦于数学的某一特定领域,具体内容包括该领域的基本概念、理论框架、相关模型和方法等。
2. 研究方法本研究将采用数学分析、数值计算、统计分析等方法,通过对已有文献和数据的梳理和分析,结合实际问题的探索,来验证和证明相关理论和模型的有效性和适用性。
四、研究意义1. 学术意义通过对数学的某一特定领域进行深入研究,可以推动该领域的理论发展,丰富数学学科体系,提高数学的应用价值。
2. 实践意义该研究的成果可以为相关领域的实际问题提供解决方案和决策支持,促进科技创新和社会进步。
五、研究计划1. 文献综述首先,将对该领域的相关文献进行综述和梳理,了解已有研究的基础和现状,明确研究的方向和目标。
2. 理论分析在对已有文献的基础上,将对该领域的基本概念、理论框架和相关模型进行深入分析,探索其中的规律和特点。
3. 模型建立根据理论分析的结果,将建立相应的数学模型,用于描述和解决该领域的实际问题。
4. 数值计算通过数值计算的方法,对所建立的模型进行求解和验证,检验模型的有效性和适用性。
5. 结果分析对数值计算得到的结果进行分析和解释,总结出研究的结论和发现。
6. 论文撰写最后,将研究的过程和结果进行整理和归纳,撰写毕业论文,并准备答辩。
六、预期成果通过本研究,预期可以获得以下成果:1. 对该领域的深入理解和把握,为相关问题的解决提供理论支持和实践指导。
2. 提出新的数学模型和方法,为该领域的进一步研究和应用提供新的思路和途径。
3. 发表相关研究成果于学术期刊,提升个人学术水平和研究能力。
数学毕业论文开题报告
数学毕业论文开题报告数学毕业论文开题报告一、选题背景和意义数学作为一门基础学科,对于现代科学和技术的发展起着重要的推动作用。
数学的研究不仅仅是为了解决实际问题,更是为了发现数学本身的美和规律。
因此,选择一门有挑战性和实用性的数学课题进行研究,不仅可以提高自己的数学能力,还可以为学术界和实际应用领域做出贡献。
二、选题内容和研究目标本次毕业论文的选题是“基于深度学习的图像识别算法研究”。
随着人工智能的发展,图像识别技术已经广泛应用于各个领域,如医学影像诊断、自动驾驶、安防监控等。
然而,传统的图像识别算法在复杂场景下的准确率和鲁棒性仍然存在一定的局限性。
因此,本次研究旨在通过深度学习方法,提高图像识别算法的准确性和鲁棒性。
三、研究方法和技术路线本次研究将采用深度学习方法,结合卷积神经网络(CNN)和循环神经网络(RNN),对图像识别算法进行改进。
具体的技术路线如下:1. 数据集准备:收集大量的图像数据,并进行标注和预处理,以构建适合深度学习算法的数据集。
2. 模型设计:设计一种新的深度学习模型,结合CNN和RNN的特点,提高图像识别算法的准确率和鲁棒性。
3. 模型训练:使用已准备好的数据集对设计的深度学习模型进行训练,并通过调整模型参数和优化算法,提高模型的性能。
4. 模型评估:使用测试集对训练好的深度学习模型进行评估,比较其与传统图像识别算法的性能差异,并进行结果分析。
四、预期成果和创新点本次研究的预期成果包括:1. 提出一种基于深度学习的图像识别算法,具有更高的准确率和鲁棒性。
2. 构建一个适用于图像识别的数据集,为后续研究和实际应用提供参考。
3. 对比分析传统图像识别算法和深度学习算法的性能差异,探索深度学习在图像识别领域的优势和应用前景。
本次研究的创新点主要有:1. 结合CNN和RNN的特点,设计一种新的深度学习模型,提高图像识别算法的准确率和鲁棒性。
2. 构建适用于图像识别的数据集,充分利用深度学习算法的特点,提高模型的泛化能力。
数学开题报告(精选5篇)
数学开题报告数学开题报告(精选5篇)随着个人素质的提升,报告的使用频率呈上升趋势,我们在写报告的时候要注意逻辑的合理性。
我们应当如何写报告呢?下面是小编精心整理的数学开题报告(精选5篇),仅供参考,希望能够帮助到大家。
1.研究背景与研究目的:函数的一致连续性是在使用连续函数的过程中发展起来的一个概念,它是比函数在区间上连续更强的的一种连续性。
而关于函数一致连续性与函数在区间上连续这两个概念令许多人容易混淆。
本文通过对函数一致连续性的概念、判别方法进行较为系统和全面的论述,并在二元函数上加以推广,使得对函数一致连续的内涵有了更全面更深刻的理解和认识。
最后结合一些具体实例,对其判别条件和方法加以应用。
2.研究内容与进度安排:研究内容:一元函数一致连续性的概念(与函数连续进行对比)函数一致连续性的几种判别条件和方法一致连续性推广到二元函数一致连续性的应用(具体例题)进度安排:(1) 12月初至12月25日查阅资料,讨论论文题目;(2) 12月26日至12月31日阅读文献,最终确定论文选题,完成开题报告;(3) 1月1日至3月31日论文写作,完成论文的初稿;(4) 4月1日至4月29日对论文的格式及内容进行修改;(5)4月3日论文最后定稿。
3.拟采取的研究方法:查阅文献确定一元函数一致连续性的定义、判别方法、性质等概念,并与“函数在区间上连续”进行对比;将一致连续性推广到二元函数的情形;最后选用一些例题,应用一致连续性的判别法、性质等概念解决4.已完成的准备工作(含文献资料查阅与调研情况):[1] 复旦大学数学系(第二版)上册. 数学分析[M]. 高等教育出版社,1983[2] 贺自树,刘学文,杜昌友,朱大钧. 数学分析习题课选讲[M]. 重庆大学出版社,27[3] 邱德华,李水田. 函数一致连续的几个充分条件[J].大学数学,26, 22(3):136~138.[4] 高智明,刘慧瑾,蒋佩佩.关于连续性和一致连续性的一个定理[J]. 高等数学研究,28,11(4)[5] 钱吉林.数学分析题解精粹[M].武汉:崇文书局,23[6] 陈文灯,黄先开. 211版考研数学复习指南:经济类[M]. 世界图书出版公司,21[7] 裴礼文.数学分析中的典型问题与方法[M].北京:高等教育数出版社,21[8] 刘勇. 关于一元函数一致连续性的讨论[J]. 赤峰学院学报:自然科学版,29,25(11)[9] 翟明清. 浅析二元函数的一致连续性[J]. 滁州学院学报,24,6(3)[1] 常明. 一元函数一致连续性的判定及性质[J]. 数学教学,29,7课题名称小学生数学作业常见错例分析研究课题研究的背景和意义对于小学生来说,每天的数学作业必不可少,而作业中出现的一些习惯性错误总是困扰着他们,每次学生考试结束后,不难发现学生解题错误大同小异……这些现象令老师十分头疼,同时阻碍着学生的进步。
数学毕业论文开题报告
数学毕业论文开题报告数学毕业论文开题报告范文3篇数学毕业论文开题报告范文篇一:选题的准备、背景、意义、基本思路、方法和主要观点背景:本身对几何有些许兴趣,偶然中了解到了等周不等式。
意义:在等周不等式的基础上,做些条件的变换,运用初等方法进行证明。
基本思路:对已经有的一些方法进行推广,得出一些新的求法;不同的条件得到不一样的结果。
方法:吸取原有方法的精髓,在通过自己的观点进行证明。
主要观点:周长定值的情况下,面积最大值。
选题的需要性、创新性、科学性和可行性论证研究方法和手段、论证方法及其特点写作提纲三角形(等周长)无其他约束条件三角形。
一边长固定三角形。
固定以夹角和一边长三角行。
四边形 (等周长)无其他约束条件四边形。
固定一边长四边形。
固定所有边长四边形。
推广到多边形。
计划进度(以周为单位)主要参考文献[1] 张克新四边形面积定值的一个初等证明黄冈职业技术学院 438002期[2] 项武义等周问题的一个初等证明庆贺苏步青教授百岁华诞[3] 田畴姜国英等曲线与曲面的微积分几何 1976年数学毕业论文开题报告范文篇二:题目利用数学模型预测未来50年的丁克人口1、研究目的和意义未来学家曾尖锐地指出:二十一世纪人类将面临三大问题:首先是人口膨胀,第二是就业困难,第三是环境污染。
这三大问题的焦点和后面两大问题产生的根源在于人口问题。
人口系统是一个复杂的动态系统,人口变化对未来经济,社会发展有着直接的影响。
人口年龄结构是人口研究的重要指标之一,人口年龄结构的发展趋势的预报对人口政策的制定有着非常重要的作用。
而现在随着国家对大学的扩招,大学生越来越多,而大学生的就业现状并不看好,刚刚毕业的大学生或者在踏入社会时间不太长的毕业生经济水平不高,有了孩子负担会更重,而作为受过高等教育的大学生本身就具有较强的接受新事物的能力,自然而然的就成了丁克一族的后备军,这类的大学生越来越多,现的大学生大多是80后人,更具有发展成为丁克一族的可能,因此,丁克现象在最近二十年之内必将发展非常迅速,直接影响着人口老龄化的加快。
数学论文开题报告
数学论文开题报告开题报告一、选题背景和意义数学是一门基础性学科,具有广泛的应用领域和重要的学科地位。
在现代科学和技术的发展过程中,数学的应用越来越广泛且深入。
数学论文的撰写不仅可以提高数学素养,更有助于加深对数学问题的理解和研究。
二、选题目的和内容本论文选题的目的是研究某一具体数学问题,进行深入的分析和探讨,并尝试提出解决该问题的方法或结论。
具体内容将在后续的研究中进行详细论述。
三、研究方法和步骤本论文的研究方法主要包括:1. 文献综述:对相关的数学理论、方法和问题进行梳理和总结,理清研究的基础和现状。
2. 建立数学模型:通过对问题的分析,选择适当的数学模型来描述和解决问题,确立研究的数学框架。
3. 推导和证明:运用数学分析和推理的方法,对模型进行详细推导和证明,得出结论或结论的一部分。
4. 数值计算和实验仿真:根据所建立的数学模型,通过计算机仿真和数值方法进行求解和验证,对结论进行进一步的分析和验证。
5. 结论和展望:总结研究结果,提出问题的解决方法或结论,并对进一步的研究方向进行展望。
四、预期成果和创新点预期的成果是解决或部分解决所研究的数学问题,并得出结论。
创新点主要体现在对问题的独立思考和剖析,尤其是在建立数学模型和解决方法的选择上。
五、论文进度安排1. 第一阶段:对问题进行综述和分析,确定研究方向和内容。
预计用时1周。
2. 第二阶段:建立数学模型,推导和证明相关结论。
预计用时3周。
3. 第三阶段:进行数值计算和实验仿真,验证模型并得出结论。
预计用时4周。
4. 第四阶段:总结成果,撰写论文,并进行稿件修改。
预计用时2周。
六、存在的问题和解决办法目前存在的问题主要是对所选题目的背景和研究基础不够全面和充分了解。
解决办法是通过查阅文献、请教导师和进行实践探索来弥补这一不足。
以上是我对于数学论文开题报告的分析和总结。
具体实施过程可能会有一定变化,需要随时根据实际情况进行调整。
数学毕业论文开题报告.doc
数学毕业论文开题报告教学史能够揭示数学知识的现实来源和应用,展现数学问题的提出、解决与发展,激发学生对数学的兴趣,揭示数学在文化史和科学进步史上的地位与影响,对于大学数学教学具有很强的积极作用。
下面是我为大家整理的数学毕业论文,供大家参考。
数学毕业论文范文一:高等数学在高职教育中的对策分析一、高等数学在地方高等职业教育中遇到的问题及解决办法(一)数学师资力量短缺,教师学历偏低地方高等职业学校通常有以下办学途径:一是通过改革,将原有高等专科学校升格成规范化的高等职业院校;二是将具备条件的成人高校扩大招生,强强联合办学,突出高职特色;三是发挥一些重点中专的专业优势,在校内办高职班。
由于以上原因,在现阶段的高职院校中,存在一部分学历不高的数学教师,这既影响了数学课程的整体教学水平,又影响了学生整体素质的培养与发展。
要解决这一问题就需要做到以下几点:1.依托全国教师培训基地和现有的高等院校教师培训机制,加强对数学课教师的培训,做到教师在职培训和脱产培训相结合,以在职培训为主,通过有计划地培训,促进教师学历达标。
2.提高高职院校人才录用标准,在政策和待遇方面给予照顾,引进更多高学历、高水平的数学专业人才。
(二)学生对数学课重要性认识不够,学习热情不高目前,在高职院校学生中普遍存在着"专业至上"的观念。
他们片面地认为只要专业课学好了,其他的文化课无足轻重。
所以数学课堂上出现了出勤人数少、成绩普遍偏低的情况。
针对这一现象,教师应该处理好数学课和专业课之间的时间分配比例,让学生认识到二者相辅相成的关系,提高他们对数学课重要性的认识。
在教学实践中,笔者发现很多学生对数学缺乏学习兴趣。
他们不习惯数学的独特结构和抽象的思维方式,加之高职数学课跨度大、内容多、解析难,学生学习数学如见猛虎。
这就要求教师在教学中采取灵活多变的教学方法,想方设法地全面激发学生的兴趣关注点,进而带动他们的思维,从而达到课堂气氛轻松活跃、教学成效显著的目的。
数学专业毕业设计开题报告
数学专业毕业设计开题报告一、选题背景在当今社会,数学作为一门基础学科,对于各行各业都有着深远的影响。
数学专业的毕业设计是对学生在大学期间所学知识的综合运用和实践,也是展示学生综合能力的重要环节。
因此,选择一个合适的毕业设计题目至关重要。
二、选题意义本次毕业设计旨在通过深入研究某一具体数学问题,提高学生的数学建模能力、分析问题的能力以及解决问题的能力。
同时,通过毕业设计的完成,使学生对所学数学理论有更深入的理解和应用,为将来从事相关领域的工作打下坚实基础。
三、选题内容本次毕业设计拟选题为《基于数据挖掘技术的金融风险评估研究》。
该选题将结合数学理论和金融实践,利用数据挖掘技术对金融市场中的风险进行评估和预测,旨在提高金融机构对风险的识别和管理能力。
四、拟定研究方法数据收集:搜集金融市场相关数据,包括股票价格、交易量、市场指数等。
数据预处理:对收集到的数据进行清洗、筛选和整理,确保数据质量。
特征提取:通过数学模型和算法提取数据中的特征信息,为后续分析做准备。
建立模型:运用数据挖掘技术建立金融风险评估模型,包括分类模型、聚类模型等。
模型评估:对建立的模型进行评估和优化,确保模型的准确性和稳定性。
五、预期成果通过本次毕业设计,预期可以得到以下成果:完成一份关于金融风险评估的研究报告,包括研究背景、方法论、实验结果等内容。
建立可靠的金融风险评估模型,并进行有效性验证。
提出针对金融风险管理的建议和改进建议。
结语本次毕业设计将围绕“基于数据挖掘技术的金融风险评估研究”展开深入探讨,旨在结合数学理论与实践,为学生提供一个锻炼自身综合能力的机会。
希望通过努力与探索,取得令人满意的成果,并为未来的发展打下坚实基础。
数学课题开题报告常用3篇
数学课题开题报告常用3篇数学课题开题报告1两极分化又是一个比较客观的现象,因为学生之间肯定是存在差异的,肯定是不平衡的,但是两极分化确实不应该扩大。
从心理学上来说,正常情况下的差异应该符合正态分布。
教育理论表明,在正确或正常的教育下,学生的学业成绩应该呈正态分布,即两头小,中间大的分布状态。
如果出现了两头大,中间小的情况,那是不正常的,需要在教学和教育上找原因。
首先,开展“农村小学数学两极分化现象成因与对策研究”研究,是新课程改革强力推进、健康发展的总体需要。
《数学课程标准》明确指出,“数学课程应致力于实现义务教育阶段的培养目标,要突面向全体学生,适应学生个发展的需要,使得人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。
”这无疑对数学教师的教育工作提出了更高的要求。
例如:课改强调变革学习方式、提倡小组合作学习、探究学习。
教师在教学实践中虽然在这方面下了很大的工夫,但如果“探究学习”活动组织不好,就会造成能力强的学生愿意去探究,而学习有困难的学生没有真正的参与到学习过程中去,他们往往会成为课堂学习的旁观者,若教师对此类现象关注不够,长此以往,这部分学生就会成为“学困生”,并有可能在班级中产生两极分化的现象。
所以,我们开展新课程实施中小学数学两极分化产生的原因及对策研究,对推进新课程改革、构筑和谐师生关系意义重大。
其次,开展“农村小学数学两极分化现象成因与对策研究”研究,是我们农村小学数学教学发展的整体需要。
在广大农村学校,一方面由于编制紧导致教师教学任务繁重、研究时间较少,另一方面因为教师往往长期受到应试教育等原因的影响,对新课程、新理念存在理解上的肤浅化、操作上的形式化,课堂教学看似气氛热烈、学生看似积极主动,但实质上并未引起学生的有效学习,极有可能造成两极分化的现象产生。
所以,如何把新课程的'理念内化为教师的观念、外化为教学行为,促进学生有效学习,也是当前农村小学数学教学整体发展亟需解决的问题之一。
数学专业毕业论文开题报告模板_开题报告_
数学专业毕业论文开题报告模板
题目:数学美在中学数学教育中的应用
一、选题的背景与意义
背景:社会的不断发展,人文素质的不断提高,人们对数学也有了更高的要求,所以就产生了数学美。
意义:培养学生的审美心理和数学美感,增强教材的亲和力,唤起学生求知的好奇心,提高解题能力。
二、研究的主要内容和预期目标
主要内容:本文就中学数学教学中所蕴含的数学美的形式特点及其在教学中应用做初步的探讨。
预期目标:让学生体会数学美,进而促使学生形成正确的审美意识。
更好的解决数学问题。
三、拟采用的研究方法、步骤
研究方法:文献研究法、归纳法、举例法。
研究步骤:1、查阅文献,收集资料
2、拟定大纲,形成初稿
3、根据指导教师的意见,对初稿进行修改
4、定稿、排版、打印
四、研究的总体安排与进度
第1周:查阅文献,整理资料
第2周:按要求指导学生填写
第3周:拟订论文纲要,形成论文初稿
第4、5周:进行论文修改
第6周:定稿、排版、打印
五、已查阅参考文献
[1]《毕达哥拉斯与毕达哥拉斯学派》大庆师范学院图书馆
[2]《论美与数学》江纯浙江大学学报(社会科学版)XX年第七卷第3期
[3]《数学中的对称美与应用》《中国科学信息》XX年05期
[4]《谈谈数学的奇异美》汤波《教育大学学报》XX年02期
[5]《浅谈高中数学中的数学美》王引观《嘉兴学院学报》XX年第14卷。
数学毕业设计开题报告
数学毕业设计开题报告篇一:数学毕业设计开题报告论文题目:浅谈化归思想方法及其在中学数学的应用学生姓名: *****学号: ********专业:数学与应用数学方向:中教法指导教师: *****2006年 12 月 21 日开题报告填写要求1.开题报告作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。
此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期内完成,经指导教师签署意见及系部审查后生效;2.开题报告内容必须用黑墨水笔工整书写或按教务处统一设计的电子文档标准格式(可从教务处网址上下载)打印,禁止打印在其它纸上后剪贴,完成后应及时交给指导教师签署意见;3.学生查阅资料的参考文献应不少于6篇(不包括辞典、手册);4.有关年月日等日期的填写,应当按照国标GB/T 7408—94《数据元和交换格式、信息交换、日期和时间表示法》规定的要求,一律用阿拉伯数字书写。
如“2004年12月16日”或“2004-12-16”。
1.本课题的研究意义和目的数学教育作为教育的一个重要组成部分,在人的发展方向有极其中要的作用。
在中学数学教学中要重视数学思想方法的的教学,数学思想方法的提炼、概括、和应用是顺理成章的。
而化归思想又是数学思想的一大主梁,也是必须要受到重视的数学思想。
在教学中到处蕴涵着化归思想,教师要很好地挖掘教材中蕴涵的转化因素,让学生体验运用化归思想能够使问题简单化。
培养学生的转化意识,使学生初步运用数学思想方法解决问题,既培养学生的思维品质,也可以为以后的学生的中学数学打下基础。
2.本课题的基本内容、重点及难点本课题的基本内容是要了解什么是化归思想?及化归有哪些具体的思想方法?结合具体的数学内容及问题来进一步的探讨、分析及运用化归思想方法,从而使学生更好的了解掌握化归思想方法.化归思想作为数学思想的一大”主梁”体现在整个数学的教学及学习中,结合具体的数学问题来选择合适的化归思想方法是本课题的重点内容.但是如何结合具体的数学问题来选择正确的化归思想方法则就是一个难点问题.3.本课题的研究方法(或技术路线)化归思想是要结合具体的数学问来反应出来的,所以本课题研究的方法主要是以前人的理论为基础,在广泛的搜集图书馆,电子书刊,教育报刊杂志,互联网等有关本课题的前沿信息与资料,向指导老师请求指导,向有关部门联系,向中学一线的老师咨询以及结合教育实习经验,并进行理论的学习,及时总结研究经验与思路,向指导老师报告,反复的进行修改,论证。
数学系开题报告
数学系开题报告一、选题背景与意义数学作为一门基础科学学科,对于其他学科和实际问题的理解和解决起着至关重要的作用。
随着社会的不断发展和科学技术的不断进步,数学在各个领域的应用也日益广泛。
因此,对数学的研究和应用具有重要的意义。
数学系作为培养数学专业人才的重要组织,其开展的科研工作和相关课程设置直接关系到学生的学习和未来的就业。
因此,深入研究和探讨数学系的发展与改革,对于提高学生的数学素养和培养具有创新精神的数学人才至关重要。
二、研究目标本开题报告旨在研究数学系的发展现状和存在的问题,并结合实际情况提出相应的改革方案和措施,以进一步提高数学系的教学质量和培养优秀的数学人才。
三、研究内容和方法在本研究中,我们将围绕以下几个方面展开工作:1.数学系的现状分析:对于数学系的教学资源、师资队伍、教学设施等进行详细调研和分析,了解数学系的整体情况。
2.学生需求调查:对于学生对数学课程的需求和期望进行调查,了解学生对数学教学的满意度和不足之处。
3.课程改革与创新:通过分析数学教学的现状和问题,提出相应的课程改革和创新方案,以提高数学系的教学质量和培养具有创新精神的数学人才。
4.实践教学的重要性:通过实践教学的实施和评估,验证实践教学对于培养学生的能力和素质的重要性,为数学系的课程改革提供实践和经验。
在研究方法方面,我们将采用问卷调查、访谈、实验和文献研究等方法,综合分析和评估数学系的发展和教学改革。
四、预期成果通过本研究,我们预期可以取得以下成果:1.发现数学系存在的问题和不足之处,并提出相应的改革方案和措施。
2.提高数学系的教学质量和培养优秀的数学人才。
3.探索实践教学对于数学系的重要性,并提供实践和经验。
4.为数学系的未来发展提供参考和借鉴。
五、研究计划根据以上内容和目标,我们制定了以下研究计划:1.第一阶段(第1个月):对数学系的现状进行详细调查和分析,包括教学资源、师资队伍、教学设施等方面。
2.第二阶段(第2个月):进行学生需求调查,了解学生对数学课程的需求和期望。
数学论文开题报告
数学论文开题报告研究背景我们生活在一个充满数学的世界中,每个人每天都面临着各种各样的数学问题。
然而,数学并不仅仅限于我们日常生活中的应用。
它同时也是一门学科,包含着许多深刻的理论和概念。
而现在,研究数学学科中的问题已经成为了一个热门话题。
随着技术和计算能力的不断发展,数学的应用变得越来越广泛。
例如,通过分析大量的数据,在各个领域中,包括金融、物理、生物学、计算机科学等,都能够得到数学的帮助。
因此,对数学学科的深入研究是非常有意义的。
研究目的随着时间和技术的发展,研究数学的目的也在不断改变。
但是,总体来说,我们可以把数学学科的研究目的概括为以下几个方面:1.理论研究。
数学需要开发并完善各种理论,从而推动整个学科的发展。
数学家们需要不断地探索新的方法和思想,以及新的问题和概念,来推进数学理论的进一步发展。
2.应用研究。
数学在各个领域都具有广泛的应用,研究数学的应用是非常有意义的。
数学家们需要开发出实际应用的方法和技术,以便解决复杂的实际问题。
3.教育和培训。
数学教育是非常重要的,它不仅能够培养学生的数学思维和解决问题的能力,而且还可以培养学生的创新精神和实践能力。
研究数学教育和培训是非常有意义的。
以此为背景,我们提出了我们研究的问题:如何在数学教育中开发出更好的方法和技术,以便更好地促进学生的数学学习和思考?研究方法我们将采用以下几种研究方法来解决这个问题:1.文献综述。
通过对现有的数学教育研究文献的综述,来推进我们对该领域的了解和认识,并为我们自己的研究提供启示。
2.数据收集和分析。
我们将收集各种数学教育的数据并进行分析,以便更好地了解学生的数学学习和思考。
3.实验研究。
我们将开展一系列实验研究,实验结果将对我们理论研究提供有效的支持。
研究预期成果通过我们的研究,我们希望能够促进学生的数学学习和思考,并提出更好的数学教育方法和技术,最终产生以下预期的成果:1.我们能够发现一些隐含的规律,从而推进数学教育理论的发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如果您需要使用本文档,请点击下载按钮下载!
XX 师范大学 毕业论文(设计)开题报告
学生姓名: XX 学 号: 2012111137 系 别: 数学与统计学院 专 业: 数学与应用数学 题 目:数学分析教材中的一些等价命题的证明 指导教师: XXX 教授
如果您需要使用本文档,请点击下载按钮下载!
2016 年 3 月 5 日
如果您需要使用本文档,请点击下载按钮下载!
开题报告填写要求
1.开题报告是开展课题研究的依据和撰写论文的基 础,也是毕业论文(设计)答辩委员会对学生答辩资格审 查的依据材料之一。
此报告应在指导教师指导下,由学生 在毕业论文(设计)工作前期完成,经指导教师签署意见 及系审查合格后方可进行毕业论文(设计)的撰写;
2.开题报告必须按教务处统一设计的电子文档标准格 式(可从教务处主页“相关下载”页面上下载)打印,不 得打印在其它纸上后剪贴。
完成后应及时交给指导教师签 署意见;
3.有关年月日等日期的填写,一律用阿拉伯数字书写, 如“2005 年 4 月 26 日”或“2005-04-26”;
4.毕业论文参考文献的格式标准应参照《 XXX 本科生 毕业论文撰写标准》
如果您需要使用本文档,请点击下载按钮下载!
毕 业 论 文(设 计)开 题 报 告
1.本课题的研究目的和意义
在数学中,我们经常对同一问题采用不同的方式加以刻划,使得人们对 问题的研究更加深刻,解决问题更加快捷,实数的完备性定理、可积准则、 曲线积分与路径无关条件等数学分析的理论内容都是以等价命题的形式给出 的,它们在数学分析中发挥的作用是巨大的,既然如此,我们便有必要深入 挖掘数学分析中的等价命题,以此加深我们对于相关知识点的掌握以便能够 灵活的运用。
2.本课题的国内外研究现状
目前通用的《数学分析》教材(如华东师范大学,复旦大学,吉林大学, 北京师范大学等)中介绍的主要内容如下:实数完备性六个基本定理之间的 等价,海涅定理的推广,介值性的刻划,一直连续性的刻划,级数收敛的刻 划等,并且进行了相关等价命题之间详尽的证明,中外学者也相继发表过数 篇相关论文。
当前对数学分析教材中的等价命题的讨论与研究实际上已经到 达比较高级的阶段,发展也相对完善。
但是在许多实际解题过程中,往往不 能熟练的加以运用并且容易混淆。
故此需要进行归纳总结。
3.本课题的研究内容和方法
基本内容:立足于《数学分析》教材中的内容,并借鉴相关论文文献。
基本框架:主要由论文题目“数学分析教材中的一些等价命题”、摘要、 关键词、引言、数学分析中的实数完备性定理相关的六个等价命题及证明、 判断函数的一直连续性相关等价命题及证明、判定级数收敛的相关等价命题 及证明、小结、参考文献等组成。
主要研究方法:注重细节,深度挖掘,充分思考,总结归纳出《数学分 析》教材中常见的几个等价命题,并对例举出的几个等价命题进行深入的研 究推理并且给予证明。
了解使得命题等价的相关条件。
如果您需要使用本文档,请点击下载按钮下载!
毕 业 论 文(设 计)开 题 报 告
4.本课题的实行方案、进度及预期效果
实行方案: 首先给出这些等价的命题的定义及成立条件,然后再进行等价 命题间的互证。
并用相关例题加以说明。
实行进度:
5.已查阅的参考文献
[1]华东师范大学数学系.数学分析(上、下册).[M]北京:高等教育出版社, 2012
[2]数学分析.同步辅导及习题全解(上、下册).[M]青岛:中国海洋大学出版 社,2011
[3]赵宇,等.大学数学第 29 卷第一期.[J]黑龙江:佳木斯大学,2013.2 等.
指导教师意见
如果您需要使用本文档,请点击下载按钮下载!
系审查意见
指导教师: 年月日
系(公章): 年月日
(注:可编辑下载,若有不当之处,请指正,谢谢!)
。