【广东省广州市】2017年高考一模数学(文科)试卷(附答案)

合集下载

2017年广州市高三一模文科数学试卷及答案

2017年广州市高三一模文科数学试卷及答案

2017年广州市普通高中毕业班文科数学综合测试(一)第Ⅰ卷一、选择题:本小题共12题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.复数21i+的虚部是( )A .2- B .1- C .1 D .22.已知集合}{}{2001x x ax ,+==,则实数a 的值为( )A .1-B .0C .1D .2 3.已知tan 2θ=,且θ∈0,2π⎛⎫⎪⎝⎭,则c o s 2θ=( ) A .45 B .35 C .35- D .45-4.阅读如图的程序框图. 若输入5n =,则输出k 的值为( )A .2B .3C .4D .55.已知函数()122,0,1l o g,0,+⎧≤=⎨->⎩x x f x x x 则()()3=f f ( )A .43 B .23 C .43-D .3- 6.已知双曲线C 222:14x y a -=的一条渐近线方程为230+=x y ,1F ,2F 分别是双曲线C 的左、右焦点,点P 在双曲线C 上, 且12=PF , 则2PF 等于( )A .4B .6C .8D .10 7.四个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的硬币.若硬币正面朝上,则这个人站起来;若硬币正面朝下,则这个人继续坐着.那么,没有相邻的两个人站起来的概率为( )A .14 B .716C .12 D .9168.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为83,则该几何体的俯视图可以是( )9.设函数()32f x x ax =+,若曲线()=y f x 在点()()00,P x f x 处的切线方程为0+=x y ,则点P 的坐标为( )A .()0,0B .()1,1-C .()1,1-D .()1,1-或()1,1-10.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥-P ABC 为鳖臑,PA ⊥平面ABC ,2PA AB ==,4AC =,三棱锥-P ABC 的四个顶点都在球O 的球面上,则球O 的表面 积为( )A .8πB .12πC .20πD .24π11.已知函数()()()()s in co =+++ωϕωϕfx x x是奇函数,直线y =与函数()f x 的图象的两个相邻交点的横坐标之差的绝对值为2π,则( )A .()f x 在0,4π⎛⎫⎪⎝⎭上单调递减B .()f x 在3,88ππ⎛⎫⎪⎝⎭上单调递减C .()f x 在0,4π⎛⎫⎪⎝⎭上单调递增D .()f x 在3,88ππ⎛⎫⎪⎝⎭上单调递增12.已知函数()1cos 212x f x x x π+⎛⎫=+- ⎪-⎝⎭, 则201612017k k f =⎛⎫ ⎪⎝⎭∑的值为( ) A .2016 B .1008 C .504 D .0 第Ⅱ卷二、填空题:本小题共4题,每小题5分 13.已知向量a ()1,2=,b (),1=-x ,若a //()a b -,则a b ⋅= 14.若一个圆的圆心是抛物线24=x y 的焦点,圆的标准方_____15.满足不等式组⎩⎨⎧≤≤≥-++-a x y x y x 00)3)(1(的点(),x y 组成的图形的面积是5,则实数a 的值是_____ 16.在ABC ∆中,160,1,2ACB BC AC AB ︒∠=>=+,当ABC ∆的周长最短时,BC 的长是 三、解答题:解答应写出文字说明、证明过程或演算步骤 17. 已知数列{}n a 的前n 项和为n S ,且22n n S a =-(*N n ∈)(Ⅰ)求数列{}n a 的通项公式; (Ⅱ) 求数列{}n S 的前n 项和n T18.(本小题满分12分)某企业生产的某种产品被检测出其中一项质量指标存在问题.该企业为了检查生产该产品的甲,乙两条流水线的生产情况,随机地从这两条流水线上生产的大量产品中各抽取50件产品作为样本,测出它们的这一项质量指标值.若该项质量指标值落在(]195,210内,则为合格品,否则为不合格品.表1是甲流水线样本的频数分布表,图1是乙流水线样本的频率分布直方图(Ⅰ)根据图1,估计乙流水线生产产品该质量指标值的中位数;(Ⅱ)若将频率视为概率,某个月内甲,乙两条流水线均生产了5000件产品,则甲、乙两条流水线分别生产出不合格品约多少件? (Ⅲ)根据已知条件完成下面22⨯列联表,并回答是否有85%的把握认为“该企业生产的这种产品的质量指标值与甲,乙两条流水线的选择有关”?附:()()()()()22n ad bc K a b c d a c b d -=++++(其中=+++n a b cd 为样本容量) 19.(本小题满分12分)如图1,在直角梯形ABCD 中,AD //BC ,AB⊥BC ,BD ⊥DC ,点E 是BC 边的中点,将ABD ∆沿BD 折起,使平面ABD ⊥平面BCD ,连接AE ,AC ,DE ,得到如图2所示的几何体 (Ⅰ)求证:AB ⊥平面ADC ; (Ⅱ)若1=AD ,AC 与其在平面ABD 内的正投影所成角的正切值为6,求点B 到平面ADE 的距离 20.(本小题满分12分)已知椭圆)0(1:2222>>=+b a b y a x C 的离心率为23,且过点)1,2(A (Ⅰ)求椭圆C 的方程;(Ⅱ)若Q P ,是椭圆C 上的两个动点,且使PAQ ∠的角平分线总垂直于x 轴,试判断直线PQ 的斜率是否为定值?若是,求出该值;若不是,说明理由 21.(本小题满分12分) 已知函数)0(ln )(>+=a xax x f (Ⅰ)若函数)(x f 有零点,求实数a 的取值范围;(Ⅱ)证明:当e a 2≥时,xex f ->)(请考生在第22~23题中任选一题作答,如果多做,则按所做的第一题计分22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线l 的参数方程为B3,(1,=-⎧⎨=+⎩x t t y t 为参数).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中, 曲线:2c o s .4⎛⎫=- ⎪⎝⎭πρθC(Ⅰ)求直线l 的普通方程和曲线C 的直角坐标方程;(Ⅱ)求曲线C 上的点到直线l 的距离的最大值 23.(本小题满分10分)选修4-5:不等式选讲已知函数()12=+-+-f x x a x a .(Ⅰ)若()13<f ,求实数a 的取值范围;(Ⅱ)若1,≥∈a x R ,求证:()2≥f x .2017年广州市普通高中毕业班文科数学综合测试(一)答案评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数.选择题不给中间分. 一、选择题(1)B (2)A (3)C (4)B (5)A (6)C(7)B (8)D (9)D (10)C (11)D (12)B 二、填空题(13)52- (14)()2212x y +-= (15)3 (16)12+三、解答题 (17) 解:(Ⅰ)当1n =时,1122S a =-,即1122a a =-, (1)分 解得12a =. ………………………………………………………2分当2n ≥时,11(22)n n n n a S S a --=-=-, ………………3分即12n n a a -=, ………………………………………………………4分所以数列{}n a 是首项为2,公比为2的等比数列.……………………………………5分所以122n nn a -=⨯=(n ∈N *). ………………………………………………6分 (Ⅱ) 因为12222n n n S a +=-=-, ………………………………………………8分所以12n n T S S S =++⋅⋅⋅+ ………………………………………………9分2312222n n +=++⋅⋅⋅+- ………………………………………………10分()412212n n ⨯-=-- ………………………………………………11分2242n n +=--. ………………………………………………12分 (18) 解:(Ⅰ)设乙流水线生产产品的该项质量指标值的中位数为x ,因为()(0.480.0120.0320.05250.50.0=++⨯<<+,………………………………………1分 则()()0.0120.0320.05250.0762050.5,x ++⨯+⨯-= ……………………………3分 解得390019x =. ………………………………………4分 (Ⅱ)由甲,乙两条流水线各抽取的50件产品可得,甲流水线生产的不合格品有15件,则甲流水线生产的产品为不合格品的概率为153,5010P ==甲 ………………………5分乙流水线生产的产品为不合格品的概率为()10.0120.02855P =+⨯=乙, ………6分 于是,若某个月内甲,乙两条流水线均生产了5000件产品,则甲,乙两条流水线生产的不合格品件数分别为:315000=1500,5000=1000105⨯⨯. …………………………8分(Ⅲ)列联表:…………………………10分 则()2210035060041.3505075253K ⨯-==≈⨯⨯⨯, ……………………………………………11分 因为1.3 2.072,<所以没有85%的把握认为“该企业生产的这种产品的该项质量指标值与甲,乙两条流水线 的选择有关”. ……………………………………………………12分 (19) 解:(Ⅰ) 因为平面ABD ⊥平面BCD ,平面ABD 平面BCD BD =,又BD ⊥DC ,所以DC ⊥平面ABD . …………………………………1分因为AB ⊂平面ABD ,所以DC ⊥AB .......................................2分 又因为折叠前后均有AD ⊥AB ,DC ∩AD D =, (3)分所以AB ⊥平面A D. …………………………………4分(Ⅱ) 由(Ⅰ)知DC ⊥平面ABD ,所以AC 在平面ABD 内的正投影为AD ,即∠CAD 为AC 与其在平面ABD 内的正投影所成角. ……………………………5分 依题意6tan ==∠AD CDCAD , 因为1A D ,=所以6=CD . …………………………6分设()0AB x x =>,则12+=x BD ,因为△ABD ~△BDC ,所以BDDCAD AB =, ………………………………7分即1612+=x x ,=,故3. …………………,AB ⊥AC , E 为BC 由平面几何知识得AE 322BC ==, 同理DE 322==BC ,所以22=∆ADS .…………………………9分因为DC ⊥平面ABD ,所以3331=⋅=-AB DBC D A S CD V . ………………………10分设点B 到平面ADE 的距离为d , 则632131====⋅---BCD A BDE A ADE B ADE V V V S d ,…………………………11分 所以26=d ,即点B 到平面ADE 的距离为26. …………………………12分 (20) 解:(Ⅰ) 因为椭圆C, 且过点()2,1A ,所以22411a b +=,2c a =. ………………………………………………2分因为222a b c =+, 解得28a =, 22b =, ………………………………………………3分 所以椭圆C 的方程为22182x y +=. ……………………………………………4分(Ⅱ)法1:因为PAQ ∠的角平分线总垂直于x 轴, 所以PA 与AQ 所在直线关于直线2x =对称. 设直线PA 的斜率为k , 则直线AQ 的斜率为k -. ………………………………5分所以直线PA 的方程为()12y k x -=-,直线AQ 的方程为()12y k x -=--.设点(),P P P x y , (),Q Q Q x y ,由()2212,1,82y k x x y -=-⎧⎪⎨+=⎪⎩消去y ,得()()222214168161640k x k k x k k +--+--=. ①因为点()2,1A 在椭圆C 上, 所以2x =是方程①的一个根, 则2216164214P k k x k --=+,……………………………………………6分所以2288214P k k x k --=+. ……………………………………………7分同理2288214Q k k x k +-=+. ……………………………………………8分所以21614P Q kx x k-=-+. ……………………………………………9分又()28414P Q P Q ky y k x x k -=+-=-+. ……………………………………………10分所以直线PQ 的斜率为12P Q PQ P Qy y k x x -==-. …………………………………………11分所以直线PQ 的斜率为定值,该值为12. ……………………………………………12分 法2:设点()()1122,,,P x y Q x y , 则直线PA 的斜率1112PA y k x -=-, 直线QA 的斜率2212QA y k x -=-. 因为PAQ ∠的角平分线总垂直于x 轴, 所以PA 与AQ 所在直线关于直线2x =对称. 所以P A Q k k=-, 即1112y x --22102y x -+=-,① ………………………………………5分 因为点()()1122,,,P x y Q x y 在椭圆C 上,所以2211182x y +=,② 2222182x y +=. ③ 由②得()()22114410x y -+-=, 得()111112241y x x y -+=--+, ④ ………………………6分 同理由③得()222212241y x x y -+=--+,⑤ (7)分由①④⑤得()()12122204141x x y y +++=++,化简得()()12211212240x y x y x x y y ++++++=, ⑥ ……………………………8分 由①得()()12211212240x y x y x x y y +-+-++=, ⑦ ……………………………9分⑥-⑦得()12122x x y y +=-+. …………………………………………10分 ②-③得22221212082x x y y --+=,得()12121212142y y x x x x y y -+=-=-+. …………………11分所以直线PQ 的斜率为121212PQy y k x x -==-为定值. …………………………………12分法3:设直线PQ 的方程为y k x b=+,点()()1122,,,P x y Q x y , 则1122,y kx b y kx b =+=+, 直线PA 的斜率1112PAy k x -=-, 直线QA 的斜率2212QAy k x -=-. ………………………5分 因为PAQ ∠的角平分线总垂直于x 轴, 所以PA 与AQ 所在直线关于直线2x =对称. 所以P Ak k =-, 即1112y x --2212y x -=--, ……………………………………………6分 化简得()()12211212240x y x y x x y y +-+-++=.把1122,y kx b y kx b =+=+代入上式, 并化简得 ()()1212212440k x x bk x x b +--+-+=.(*) …………………………………7分由22,1,82y kx b x y =+⎧⎪⎨+=⎪⎩消去y 得()222418480k x kbx b +++-=, (**)则2121222848,4141kb b x x x x k k -+=-=++, ……………………………………………8分代入(*)得()()2222488124404141k b kb b k b k k -----+=++, ……………………………9分整理得()()21210k b k -+-=, 所以12k =或12b k =-. ……………………………………………10分若12b k =-, 可得方程(**)的一个根为2,不合题意. ………………………………11分 若12k =时, 合题意. 所以直线PQ 的斜率为定值,该值为12. ……………………………………………12分 (21) 解:(Ⅰ)法1: 函数()ln af x x x =+的定义域为()0,+∞. 由()ln af x x x=+, 得()221a x af x x x x-'=-=. ……………………………………1分因为0a >,则()0,x a ∈时,()0f x '<;(),x a ∈+∞时, ()0f x '>.所以函数()f x 在()0,a 上单调递减, 在(),a +∞上单调递增. ………………………2分当x a =时,()minln 1f x a =+⎡⎤⎣⎦. …………………………………………………3分当ln 10a +≤, 即0a <≤1e时, 又()1ln10=+=>f a a , 则函数()f x 有零点. …4分所以实数a 的取值范围为10,e ⎛⎤ ⎥⎝⎦. ……………………………………………………5分法2:函数()ln af x x x =+的定义域为()0,+∞. 由()ln 0af x x x=+=, 得ln a x x =-. …………………………………………………1分令()ln g x x x =-,则()()ln 1g x x '=-+.当10,x e ⎛⎫∈ ⎪⎝⎭时, ()0g x '>; 当1,x e ⎛⎫∈+∞ ⎪⎝⎭时, ()0g x '<.所以函数()g x 在10,e ⎛⎫ ⎪⎝⎭上单调递增, 在1,e ⎛⎫+∞ ⎪⎝⎭上单调递减. ……………………2分 故1x e=时, 函数()g x 取得最大值1111ln g e e e e ⎛⎫=-= ⎪⎝⎭. …………………………3分因而函数()ln af x x x=+有零点, 则10a e<≤. ………………………………………4分所以实数a 的取值范围为10,e ⎛⎤ ⎥⎝⎦. …………………………………………………5分(Ⅱ) 要证明当2a e≥时, ()->x f x e , 即证明当0,x >2a e ≥时, ln x ax e x-+>, 即ln x x x a xe -+>.………………………6分 令()ln h x x x a =+, 则()ln 1h x x '=+.当10x e <<时, ()0f x '<;当1x e >时,()0f x '>.所以函数()h x 在10,e ⎛⎫ ⎪⎝⎭上单调递减, 在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增. 当1x e=时,()min1h x a e=-+⎡⎤⎣⎦. ……………………………………………………7分于是,当2a e≥时, ()11.h x a e e ≥-+≥ ① ……………………………………8分 令()xx xe ϕ-=, 则()()1x x x x e xe e x ϕ---'=-=-.当01x <<时,()0f x '>;当1x >时,()0f x '<. 所以函数()x ϕ在()0,1上单调递增, 在()1,+∞上单调递减.当1x =时,()max1x eϕ=⎡⎤⎣⎦. ……………………………………………………9分于是,当0x >时,()1.x e ϕ≤② ……………………………………………………10分显然, 不等式①、②中的等号不能同时成立. …………………………………11分 故当2a e≥时,()->x f x e . ……………………………………………………12分 (22)解: (Ⅰ)由3,1,=-⎧⎨=+⎩x t y t消去t 得40+-=x y , ………………………………………1分所以直线l 的普通方程为40+-=x y . ………………………………………2分由4⎛⎫=-⎪⎝⎭πρθcos cos sin sin 2cos 2sin 44⎫=+=+⎪⎭ππθθθθ,……3分得22cos 2sin =+ρρθρθ. ………………………………………4分将222,cos ,sin =+==ρρθρθx y x y 代入上式,得曲线C 的直角坐标方程为2222+=+x y x y , 即()()22112-+-=x y . ………5分(Ⅱ)法1:设曲线C上的点为()1c o ,12s i nααP , ………………………………6分 则点P 到直线l的距离为2s i n 4-=d …………………………7分=………………………………………8分当sin 14⎛⎫+=- ⎪⎝⎭πα时, max =d , ………………………………………9分所以曲线C 上的点到直线l 的距离的最大值为分法2: 设与直线l 平行的直线为:0l x y b '++=, ………………………………………6分当直线l '与圆C 相切时,得=, ………………………………………7分解得0b =或4b =-(舍去), 所以直线l '的方程为0x y +=. ………………………………………8分所以直线l 与直线l '的距离为d ==. …………………………………9分所以曲线C 上的点到直线l 的距离的最大值为分(23)解: (Ⅰ)因为()13<f ,所以123+-<a a . ………………………………………1分① 当0≤a 时,得()123-+-<a a ,解得23>-a ,所以203-<≤a ; ……………2分② 当102<<a 时,得()123+-<a a ,解得2>-a ,所以102<<a ; ……………3分③ 当12a ≥时,得()123--<a a ,解得43<a ,所以1423a ≤<; ……………4分综上所述,实数a 的取值范围是24,33⎛⎫- ⎪⎝⎭. ………………………………………5分(Ⅱ) 因为1,≥∈a x R , 所以()()()121=+-fxx……………………………7分31=-a ……………………………………………………………………8分31=-a ……………………………………………………………………9分2≥. ……………………………………………………………………10分。

2017年广州一模(文数)试题及答案

2017年广州一模(文数)试题及答案

2017年广州一模(文数)试题及答案2017年广州市一模(文科数学)第I卷一、选择题:本小题共12题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)复数右的虚部是(B) 135(4)阅读如图的程序框图. 的值为(A) 2(D)(5)已知函数f x2 2 (6)已知双曲线cA (C)1(2)已知集合(A) 1(D) 22x x ax 0 0,1 ,贝V实数a的值为(B) 0(C)(3)已知tan(D ) 22,且0,2,则cos21Jlog2 x,(C )输(B)x35x(A ) 3( B ) 2 ( c )2七i 的一条渐近线方程为a 42x 3y 0,»F 2分另U是双曲线C 的左,右焦点,点P 在双曲线C 上, 且I PR 2,则PF 2等于(A )4( B )6( C )(D)10(7)四个人围坐在一张圆桌旁,每个人面前放 着完全相同的硬币,所有人同时翻转自己的 硬币•若硬币正面朝上,则这个人站起来;若 硬币正面朝下,则这个人继续坐着•那么,没 有相邻的两个人站起来的概率为 (A) I( B )16(C)(D)97(8)如图,网格纸上小正方形的边长为1,粗线 画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为8,则该几何体的俯视图可以是(A)(B)(c)(D)(9)设函数f x X3ax2,若曲线y f x在点P x。

, f x。

处的切线方程为x y 0,则点P的坐标为(A )0,0 (B )i, i(C )1,1 (D )i, i 或i,i(10)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑. 若三棱锥P ABC为鳖臑,PA丄平面ABC,PA AB 2 , AC 4,三棱锥P ABC的四个顶点都在球O的球面上,则球O的表面积为(A)8(B) 12 (C ) 520( D ) 24(11)已知函数fx sin x cos x 0,0奇函数,直线y .2与函数f x 的图象的两个相邻交点的 横坐标之差的绝对值为q 则 (A ) f x 在o,-上单调递减 (B ) f x在8令上单调递减8 8(C ) f x 在0,-上单调递增 (D ) f x在«,3T 上单调递增8 8(12)已知函数fX cos X,则―f盏的 值为(A ) 2016(B ) 1008(C )504( D ) 0第H 卷本卷包括必考题和选考题两部分。

广东省广州市2017-2018学年高三数学一模试卷(文科) Word版含解析

广东省广州市2017-2018学年高三数学一模试卷(文科) Word版含解析

2017-2018学年广东省广州市高考数学一模试卷(文科)一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|﹣1≤x≤1},B={x|x2﹣2x≤0},则A∩B=()A.{x|﹣1≤x≤2}B.{x|﹣1≤x≤0}C.{x|1≤x≤2}D.{x|0≤x≤1}2.已知复数z满足z=(i为虚数单位),则复数z所对应的点所在象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知函数则f(f(﹣2))的值为()A.B.C. D.4.设P是△ABC所在平面内的一点,且=2,则△PAB与△PBC的面积之比是()A.B.C.D.5.如果函数(ω>0)的相邻两个零点之间的距离为,则ω的值为()A.3 B.6 C.12 D.246.执行如图所示的程序框图,如果输入x=3,则输出k的值为()A.6 B.8 C.10 D.127.在平面区域{(x,y)|0≤x≤1,1≤y≤2}内随机投入一点P,则点P的坐标(x,y)满足y≤2x的概率为()A.B.C.D.8.已知f(x)=sin(x+),若sinα=(<α<π),则f(α+)=()A.B.﹣C.D.9.如果P1,P2,…,P n是抛物线C:y2=4x上的点,它们的横坐标依次为x1,x2,…,x n,F是抛物线C的焦点,若x1+x2+…+x n=10,则|P1F|+|P2F|+…+|P n F|=()A.n+10 B.n+20 C.2n+10 D.2n+2010.一个六棱柱的底面是正六边形,侧棱垂直于底面,所有棱的长都为1,顶点都在同一个球面上,则该球的体积为()A.20πB. C.5πD.11.已知下列四个:p1:若直线l和平面α内的无数条直线垂直,则l⊥α;p2:若f(x)=2x﹣2﹣x,则∀x∈R,f(﹣x)=﹣f(x);p3:若,则∃x0∈(0,+∞),f(x0)=1;p4:在△ABC中,若A>B,则sinA>sinB.其中真的个数是()A.1 B.2 C.3 D.412.如图,网格纸上小正方形的边长为1,粗线画出的是某个四面体的三视图,则该四面体的表面积为()A.8+8+4B.8+8+2C.2+2+D. ++二.填空题:本大题共4小题,每小题5分.13.函数f(x)=x3﹣3x的极小值为.14.设实数x,y满足约束条件,则z=﹣2x+3y的取值范围是.15.已知双曲线C:(a>0,b>0)的左顶点为A,右焦点为F,点B(0,b),且,则双曲线C的离心率为.16.在△ABC中,点D在边AB上,CD⊥BC,,CD=5,BD=2AD,则AD的长为.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.已知数列{a n}是等比数列,a2=4,a3+2是a2和a4的等差中项.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=2log2a n﹣1,求数列{a n b n}的前n项和T n.18.从某企业生产的某中产品中抽取100件,测量这些产品的质量指标值.由测量结果得到如图所示的频率分布直方图,质量指标值落在区间[55,65),[65,75),[75,85]内的频率之比为4:2:1.(Ⅰ)求这些产品质量指标落在区间[75,85]内的概率;(Ⅱ)用分层抽样的方法在区间[45,75)内抽取一个容量为6的样本,将该样本看成一个总体,从中任意抽取2件产品,求这2件产品都在区间[45,65)内的概率.19.如图,四棱柱ABCD﹣A1B1C1D1的底面ABCD是菱形,AC∩BD=O,A1O⊥底面ABCD,AB=AA1=2.(Ⅰ)证明:BD⊥平面A1CO;(Ⅱ)若∠BAD=60°,求点C到平面OBB1的距离.20.已知椭圆C的中心在坐标原点,焦点在x轴上,左顶点为A,左焦点为F1(﹣2,0),点B(2,)在椭圆C上,直线y=kx(k≠0)与椭圆C交于E,F两点,直线AE,AF 分别与y轴交于点M,N(Ⅰ)求椭圆C的方程;(Ⅱ)在x轴上是否存在点P,使得无论非零实数k怎样变化,总有∠MPN为直角?若存在,求出点P的坐标,若不存在,请说明理由.21.已知函数f(x)=me x﹣lnx﹣1.(Ⅰ)当m=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)当m≥1时,证明:f(x)>1.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.【选修4-1:几何证明选讲】22.如图所示,△ABC内接于⊙O,直线AD与⊙O相切于点A,交BC的延长线于点D,过点D作DE∥CA交BA的延长线于点E.(I)求证:DE2=AE•BE;(Ⅱ)若直线EF与⊙O相切于点F,且EF=4,EA=2,求线段AC的长.选修4-4:坐标系与参数方程23.在平面直角坐标系xOy中,以坐标原点0为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2sinθ,θ∈[0,2π).(1)求曲线C的直角坐标方程;(2)在曲线C上求一点D,使它到直线l:,(t为参数,t∈R)的距离最短,并求出点D的直角坐标.选修4-5:不等式选讲24.设函数f(x)=|x+|﹣|x﹣|.(I)当a=1时,求不等式f(x)≥的解集;(Ⅱ)若对任意a∈[0,1],不等式f(x)≥b的解集为空集,求实数b的取值范围.2016年广东省广州市高考数学一模试卷(文科)参考答案与试题解析一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|﹣1≤x≤1},B={x|x2﹣2x≤0},则A∩B=()A.{x|﹣1≤x≤2}B.{x|﹣1≤x≤0}C.{x|1≤x≤2}D.{x|0≤x≤1}【考点】交集及其运算.【分析】求出集合的等价条件,根据集合的基本运算进行求解即可.【解答】解:B={x|x2﹣2x≤0}={x|0≤x≤2},则A∩B={x|0≤x≤1},故选:D2.已知复数z满足z=(i为虚数单位),则复数z所对应的点所在象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】复数的代数表示法及其几何意义.【分析】根据复数的几何意义,即可得到结论.【解答】解:z===,对应的坐标为(2,﹣1),位于第四象限,故选:D.3.已知函数则f(f(﹣2))的值为()A.B.C. D.【考点】函数的值.【分析】利用分段函数的性质求解.【解答】解:∵函数,∴f(﹣2)=(﹣2)2﹣(﹣2)=6,f(f(﹣2))=f(6)==﹣.故选:C.4.设P是△ABC所在平面内的一点,且=2,则△PAB与△PBC的面积之比是()【考点】向量数乘的运算及其几何意义.【分析】由=2可知P 为AC 上靠近A 点的三等分点.【解答】解:∵=2,∴P 为边AC 靠近A 点的三等分点,∴△PAB 与△PBC 的面积比为1:2. 故选:B .5.如果函数(ω>0)的相邻两个零点之间的距离为,则ω的值为( ) A .3 B .6 C .12 D .24【考点】y=Asin (ωx +φ)中参数的物理意义.【分析】根据余弦函数的相邻两个零点之间的距离恰好等于半个周期,即可求得ω的值.【解答】解:函数(ω>0)的相邻两个零点之间的距离为,∴T=2×=,又=,解得ω=6. 故选:B .6.执行如图所示的程序框图,如果输入x=3,则输出k 的值为( )A .6B .8C .10D .12【考点】程序框图.【分析】根据框图的流程依次计算程序运行的结果,直到满足条件x >100,跳出循环体,确定输出k 的值.【解答】解:模拟执行程序,可得 x=3,k=0 x=9,k=2不满足条件x >100,x=21,k=4 不满足条件x >100,x=45,k=6 不满足条件x >100,x=93,k=8 不满足条件x >100,x=189,k=10满足条件x >100,退出循环,输出k 的值为10. 故选:C .7.在平面区域{(x ,y )|0≤x ≤1,1≤y ≤2}内随机投入一点P ,则点P 的坐标(x ,y )满足y ≤2x 的概率为( )【考点】简单线性规划;几何概型.【分析】作出不等式组对应的区域,利用几何概型的概率公式,即可得到结论.【解答】解:不等式组表示的平面区域为D的面积为1,不等式y≤2x对应的区域为三角形ABC,则三角形ABC的面积S==,则在区域D内任取一点P(x,y),则点P满足y≤2x的概率为,故选:A.8.已知f(x)=sin(x+),若sinα=(<α<π),则f(α+)=()A.B.﹣C.D.【考点】两角和与差的正弦函数.【分析】根据同角的三角函数的关系,以及两角和的正弦公式,即可求出.【解答】解:∵<α<π,sinα=,∴cosα=﹣∵f(x)=sin(x+),∴f(α+)=sin(α++)=sin(α+)=sinαcos+cosαsin=﹣(﹣)=,故选:C.9.如果P1,P2,…,P n是抛物线C:y2=4x上的点,它们的横坐标依次为x1,x2,…,x n,F是抛物线C的焦点,若x1+x2+…+x n=10,则|P1F|+|P2F|+…+|P n F|=()A.n+10 B.n+20 C.2n+10 D.2n+20【考点】抛物线的简单性质.【分析】由抛物线性质得|P n F|==x n+1,由此能求出结果.【解答】解:∵P1,P2,…,P n是抛物线C:y2=4x上的点,它们的横坐标依次为x1,x2,…,x n,F是抛物线C的焦点,x1+x2+…+x n=10,∴|P1F|+|P2F|+…+|P n F|=(x1+1)+(x2+1)+…+(x n+1)=x1+x2+…+x n+n=n+10.故选:A.10.一个六棱柱的底面是正六边形,侧棱垂直于底面,所有棱的长都为1,顶点都在同一个球面上,则该球的体积为()A.20πB. C.5πD.【考点】球的体积和表面积.【分析】作出六棱柱的最大对角面与外截球的截面,设正六棱柱的上下底面中心分别为O1,O2,球心为O,一个顶点为A,如右图.可根据题中数据结合勾股定理算出球的半径OA,再用球的体积公式即可得到外接球的体积.【解答】解:作出六棱柱的最大对角面与外截球的截面,如右图,则该截面矩形分别以底面外接圆直径和六棱柱高为两边,设球心为O,正六棱柱的上下底面中心分别为O1,O2,则球心O是O1,O2的中点.∵正六棱柱底面边长为1,侧棱长为1,∴Rt△AO1O中,AO1=1,O1O=,可得AO==,因此,该球的体积为V=π•()3=.故选:D.11.已知下列四个:p1:若直线l和平面α内的无数条直线垂直,则l⊥α;p2:若f(x)=2x﹣2﹣x,则∀x∈R,f(﹣x)=﹣f(x);p3:若,则∃x0∈(0,+∞),f(x0)=1;p4:在△ABC中,若A>B,则sinA>sinB.其中真的个数是()A.1 B.2 C.3 D.4【考点】的真假判断与应用.【分析】p1:根据线面垂直的判断定理判定即可;p2:根据奇函数的定义判定即可;p3:对表达式变形可得=x+1+﹣1,利用均值定理判定即可;p4:根据三角形角边关系和正弦定理判定结论成立.【解答】解:p1:根据判断定理可知,若直线l和平面α内两条相交的直线垂直,则l⊥α,若没有相交,无数的平行直线也不能判断垂直,故错误;p2:根据奇函数的定义可知,f(﹣x)=2﹣x﹣2x=﹣f(x),故∀x∈R,f(﹣x)=﹣f(x),故正确;p3:若=x+1+﹣1≥1,且当x=0时,等号成立,故不存在x0∈(0,+∞),f(x0)=1,故错误;p4:在△ABC中,根据大边对大角可知,若A>B,则a>b,由正弦定理可知,sinA>sinB,故正确.故选:B.12.如图,网格纸上小正方形的边长为1,粗线画出的是某个四面体的三视图,则该四面体的表面积为()A.8+8+4B.8+8+2C.2+2+D. ++【考点】由三视图求面积、体积.【分析】由三视图可知几何体为从边长为4的正方体切出来的三棱锥.作出直观图,计算各棱长求面积.【解答】解:由三视图可知几何体为从边长为4的正方体切出来的三棱锥A﹣BCD.作出直观图如图所示:其中A,C,D为正方体的顶点,B为正方体棱的中点.∴S△ABC==4,S△BCD==4.∵AC=4,AC⊥CD,∴S△ACD==8,由勾股定理得AB=BD==2,AD=4.∴cos∠ABD==﹣,∴sin∠ABD=.∴S△ABD==4.∴几何体的表面积为8+8+4.故选A.二.填空题:本大题共4小题,每小题5分.13.函数f(x)=x3﹣3x的极小值为﹣2.【考点】利用导数研究函数的极值.【分析】首先求导可得f′(x)=3x2﹣3,解3x2﹣3=0可得其根,再判断导函数的符号分析函数的单调性,即可得到极小值.【解答】解析:令f′(x)=3x2﹣3=0,得x=±1,可求得f(x)的极小值为f(1)=﹣2.故答案:﹣2.14.设实数x,y满足约束条件,则z=﹣2x+3y的取值范围是[﹣6,15] .【考点】简单线性规划.【分析】由题意作平面区域,化简z=﹣2x+3y为y=x+,从而结合图象求解.【解答】解:由题意作平面区域如下,化简z=﹣2x+3y为y=x+,故结合图象可知,在点B(3,0)处有最小值,在点C(﹣3,3)处有最大值,故﹣2×3+3×0≤z≤﹣2×(﹣3)+3×3,即z∈[﹣6,15],故答案为:[﹣6,15].15.已知双曲线C:(a>0,b>0)的左顶点为A,右焦点为F,点B(0,b),且,则双曲线C的离心率为.【考点】双曲线的简单性质.【分析】设出A,F的坐标,运用向量的数量积的坐标表示,结合a,bc的关系和离心率公式,计算即可得到所求值.【解答】解:由题意可得A(﹣a,0),F(c,0),B(0,b),可得=(﹣a,﹣b),=(c,﹣b),由,可得﹣ac+b2=0,即有b2=c2﹣a2=ac,由e=,可得e2﹣e﹣1=0,解得e=(负的舍去).故答案为:.16.在△ABC中,点D在边AB上,CD⊥BC,,CD=5,BD=2AD,则AD的长为5.【考点】三角形中的几何计算.【分析】根据题意画出图象,延长BC、过A做AE⊥BC、垂足为E,根据平行线的性质和勾股定理依次求出AE、CE、BC、BD,由条件求出AD的长.【解答】解:如图所示:延长BC,过A做AE⊥BC,垂足为E,∵CD⊥BC,∴CD∥AE,∵CD=5,BD=2AD,∴,解得AE=,在RT△ACE,CE===,由得BC=2CE=5,在RT△BCD中,BD===10,则AD=5,故答案为:5.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.已知数列{a n}是等比数列,a2=4,a3+2是a2和a4的等差中项.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=2log2a n﹣1,求数列{a n b n}的前n项和T n.【考点】数列递推式;等差数列与等比数列的综合.【分析】(Ⅰ)等比数列{a n}中,a2=4,a3+2是a2和a4的等差中项,有等比数列的首项和公比分别表示出已知条件,解方程组即可求得首项和公比,代入等比数列的通项公式即可求得结果;(Ⅱ)把(1)中求得的结果代入b n=2log2a n﹣1,求出b n,利用错位相减法求出T n.【解答】解:(Ⅰ)设数列{a n}的公比为q,因为a2=4,所以a3=4q,.)因为a3+2是a2和a4的等差中项,所以2(a3+2)=a2+a4.即2(4q+2)=4+4q2,化简得q2﹣2q=0.因为公比q≠0,所以q=2.所以(n∈N*).(Ⅱ)因为,所以b n=2log2a n﹣1=2n﹣1.所以.则,①,,②,①﹣②得,.=,所以.18.从某企业生产的某中产品中抽取100件,测量这些产品的质量指标值.由测量结果得到如图所示的频率分布直方图,质量指标值落在区间[55,65),[65,75),[75,85]内的频率之比为4:2:1.(Ⅰ)求这些产品质量指标落在区间[75,85]内的概率;(Ⅱ)用分层抽样的方法在区间[45,75)内抽取一个容量为6的样本,将该样本看成一个总体,从中任意抽取2件产品,求这2件产品都在区间[45,65)内的概率.【考点】列举法计算基本事件数及事件发生的概率;频率分布直方图.【分析】(I)由题意,质量指标值落在区间[55,65),[65,75),[75,85]内的频率之和,利用之比为4:2:1,即可求出这些产品质量指标值落在区间[75,85]内的频率;(2)由频率分布直方图得从[45,65)的产品数中抽取5件,记为A,B,C,D,E,从[65,75)的产品数中抽取1件,记为a,由此利用列举法求出概率.【解答】解:(I)由题意,质量指标值落在区间[55,65),[65,75),[75,85]内的频率之和为1﹣0.04﹣0.12﹣0.19﹣0.3=0.35,∵质量指标值落在区间[55,65),[65,75),[75,85]内的频率之比为4:2:1,∴这些产品质量指标值落在区间[75,85]内的频率为0.35×=0.05,(Ⅱ)由频率分布直方图得:这些产品质量指标值落在区间[55,65)内的频率为0.35×=0.2,这些产品质量指标值落在区间[65,75)内的频率为0.35×=0.1,这些产品质量指标值落在区间[45,55)内的频率为0.03×10=0.30,所以这些产品质量指标值落在区间[45,65)内的频率为0.3+0.2=0.5,∵=∴从[45,65)的产品数中抽取6×=5件,记为A,B,C,D,E,从[65,75)的产品数中抽取6×=1件,记为a,从中任取两件,所有可能的取法有:(A,B),(A,C),(A,D),(A,E),(A,a),(B,C),(B,D),(B,E),(B,a),(C,D),(D(C,E),(C,a),(D,E),(D,a),(E,a),共15种,这2件产品都在区间[45,65)内的取法有10种,∴从中任意抽取2件产品,求这2件产品都在区间[45,65)内的概率=.19.如图,四棱柱ABCD﹣A1B1C1D1的底面ABCD是菱形,AC∩BD=O,A1O⊥底面ABCD,AB=AA1=2.(Ⅰ)证明:BD⊥平面A1CO;(Ⅱ)若∠BAD=60°,求点C到平面OBB1的距离.【考点】点、线、面间的距离计算;直线与平面垂直的判定.【分析】(Ⅰ)证明A1O⊥BD.CO⊥BD.即可证明BD⊥平面A1CO.(Ⅱ)解法一:说明点B1到平面ABCD的距离等于点A1到平面ABCD的距离A1O.设点C到平面OBB1的距离为d,通过,求解点C到平面OBB1的距离.解法二:连接A1C1与B1D1交于点O1,连接CO1,OO1,推出OA1O1C为平行四边形.证明CH⊥平面BB1D1D,然后求解点C到平面OBB1的距离.【解答】(Ⅰ)证明:因为A1O⊥平面ABCD,BD⊂平面ABCD,所以A1O⊥BD.…因为ABCD是菱形,所以CO⊥BD.…因为A1O∩CO=O,A1O,CO⊂平面A1CO,所以BD⊥平面A1CO.…(Ⅱ)解法一:因为底面ABCD是菱形,AC∩BD=O,AB=AA1=2,∠BAD=60°,所以OB=OD=1,.…所以△OBC的面积为.…因为A1O⊥平面ABCD,AO⊂平面ABCD,所以A1O⊥AO,.…因为A1B1∥平面ABCD,所以点B1到平面ABCD的距离等于点A1到平面ABCD的距离A1O.…由(Ⅰ)得,BD⊥平面A1AC.因为A1A⊂平面A1AC,所以BD⊥A1A.因为A1A∥B1B,所以BD⊥B1B.…所以△OBB1的面积为.…设点C到平面OBB1的距离为d,因为,所以.…所以.所以点C到平面OBB1的距离为.…解法二:由(Ⅰ)知BD⊥平面A1CO,因为BD⊂平面BB1D1D,所以平面A1CO⊥平面BB1D1D.…连接A1C1与B1D1交于点O1,连接CO1,OO1,因为AA1=CC1,AA1∥CC1,所以CAA1C1为平行四边形.又O,O1分别是AC,A1C1的中点,所以OA1O1C为平行四边形.所以O1C=OA1=1.…因为平面OA1O1C与平面BB1D1D交线为OO1,过点C作CH⊥OO1于H,则CH⊥平面BB1D1D.…因为O1C∥A1O,A1O⊥平面ABCD,所以O1C⊥平面ABCD.因为OC⊂平面ABCD,所以O•1C⊥OC,即△OCO1为直角三角形.…所以.所以点C到平面OBB1的距离为.…20.已知椭圆C的中心在坐标原点,焦点在x轴上,左顶点为A,左焦点为F1(﹣2,0),点B(2,)在椭圆C上,直线y=kx(k≠0)与椭圆C交于E,F两点,直线AE,AF 分别与y轴交于点M,N(Ⅰ)求椭圆C的方程;(Ⅱ)在x轴上是否存在点P,使得无论非零实数k怎样变化,总有∠MPN为直角?若存在,求出点P的坐标,若不存在,请说明理由.【考点】椭圆的简单性质.【分析】(Ⅰ)由题意可设椭圆标准方程为+=1(a>b>0),结合已知及隐含条件列关于a,b,c的方程组,求解方程组得到a2,b2的值,则椭圆方程可求;(Ⅱ)设F(x0,y0),E(﹣x0,﹣y0),写出AE、AF所在直线方程,求出M、N的坐标,得到以MN为直径的圆的方程,由圆的方程可知以MN为直径的圆经过定点(±2,0),即可判断存在点P.【解答】解:(Ⅰ)由题意可设椭圆方程为+=1(a>b>0),则c=2,a2﹣b2=c2, +=1,解得:a2=8,b2=4.可得椭圆C的方程为+=1;(Ⅱ)如图,设F(x0,y0),E(﹣x0,﹣y0),则+=1,A(﹣2,0),AF所在直线方程y=(x+2),取x=0,得y=,∴N (0,),AE 所在直线方程为y=(x +2),取x=0,得y=.则以MN 为直径的圆的圆心坐标为(0,),半径r=,圆的方程为x 2+(y ﹣)2==,即x 2+(y +)2=.取y=0,得x=±2.可得以MN 为直径的圆经过定点(±2,0). 可得在x 轴上存在点P (±2,0),使得无论非零实数k 怎样变化,总有∠MPN 为直角.21.已知函数f (x )=me x ﹣lnx ﹣1.(Ⅰ)当m=1时,求曲线y=f (x )在点(1,f (1))处的切线方程; (Ⅱ)当m ≥1时,证明:f (x )>1.【考点】导数在最大值、最小值问题中的应用;利用导数研究曲线上某点切线方程. 【分析】(Ⅰ)求得m=1时,f (x )的导数,可得切点坐标和切线的斜率,由点斜式方程可得所求切线的方程;(Ⅱ)证法一:运用分析法证明,当m ≥1时,f (x )=me x ﹣lnx ﹣1≥e x ﹣lnx ﹣1.要证明f (x )>1,只需证明e x ﹣lnx ﹣2>0,思路1:设g (x )=e x ﹣lnx ﹣2,求得导数,求得单调区间,可得最小值,证明大于0即可; 思路2:先证明e x ≥x +1(x ∈R ),设h (x )=e x ﹣x ﹣1,求得导数和单调区间,可得最小值大于0;证明x ﹣lnx ﹣1≥0.设p (x )=x ﹣lnx ﹣1,求得导数和单调区间,可得最小值大于0,即可得证;思路3:先证明e x﹣lnx>2.:因为曲线y=e x与曲线y=lnx的图象关于直线y=x对称,结合点到直线的距离公式,求得两曲线上的点的距离AB>2,即可得证;证法二:因为f(x)=me x﹣lnx﹣1,要证明f(x)>1,只需证明me x﹣lnx﹣2>0.思路1:设g(x)=me x﹣lnx﹣2,求得导数和单调区间,求得最小值,证明大于0,即可得证;思路2:先证明e x≥x+1(x∈R),且lnx≤x+1(x>0).设F(x)=e x﹣x﹣1,求得导数和单调区间,可得最小值大于0,再证明me x﹣lnx﹣2>0,运用不等式的性质,即可得证.【解答】(Ⅰ)解:当m=1时,f(x)=e x﹣lnx﹣1,所以.…所以f(1)=e﹣1,f'(1)=e﹣1.…所以曲线y=f(x)在点(1,f(1))处的切线方程为y﹣(e﹣1)=(e﹣1)(x﹣1).即y=(e﹣1)x.…(Ⅱ)证法一:当m≥1时,f(x)=me x﹣lnx﹣1≥e x﹣lnx﹣1.要证明f(x)>1,只需证明e x﹣lnx﹣2>0.…以下给出三种思路证明e x﹣lnx﹣2>0.思路1:设g(x)=e x﹣lnx﹣2,则.设,则,所以函数h(x)=在(0,+∞)上单调递增.…因为,g'(1)=e﹣1>0,所以函数在(0,+∞)上有唯一零点x0,且.…因为g'(x0)=0时,所以,即lnx0=﹣x0.…当x∈(0,x0)时,g'(x)<0;当x∈(x0,+∞)时,g'(x)>0.所以当x=x0时,g(x)取得最小值g(x0).…故.综上可知,当m≥1时,f(x)>1.…思路2:先证明e x≥x+1(x∈R).…设h(x)=e x﹣x﹣1,则h'(x)=e x﹣1.因为当x<0时,h'(x)<0,当x>0时,h'(x)>0,所以当x<0时,函数h(x)单调递减,当x>0时,函数h(x)单调递增.所以h(x)≥h(0)=0.所以e x≥x+1(当且仅当x=0时取等号).…所以要证明e x﹣lnx﹣2>0,只需证明(x+1)﹣lnx﹣2>0.…下面证明x﹣lnx﹣1≥0.设p(x)=x﹣lnx﹣1,则.当0<x<1时,p'(x)<0,当x>1时,p'(x)>0,所以当0<x<1时,函数p(x)单调递减,当x>1时,函数p(x)单调递增.所以p(x)≥p(1)=0.所以x﹣lnx﹣1≥0(当且仅当x=1时取等号).…由于取等号的条件不同,所以e x﹣lnx﹣2>0.综上可知,当m≥1时,f(x)>1.…(若考生先放缩lnx,或e x、lnx同时放缩,请参考此思路给分!)思路3:先证明e x﹣lnx>2.因为曲线y=e x与曲线y=lnx的图象关于直线y=x对称,设直线x=t(t>0)与曲线y=e x,y=lnx分别交于点A,B,点A,B到直线y=x的距离分别为d1,d2,则.其中,(t>0).①设h(t)=e t﹣t(t>0),则h'(t)=e t﹣1.因为t>0,所以h'(t)=e t﹣1>0.所以h(t)在(0,+∞)上单调递增,则h(t)>h(0)=1.所以.②设g(t)=t﹣lnt(t>0),则.因为当0<t<1时,g'(t)<0;当t>1时,g'(t)>0,所以当0<t<1时,g(t)=t﹣lnt单调递减;当t>1时,g(t)=t﹣lnt单调递增.所以g(t)≥g(1)=1.所以.所以.综上可知,当m≥1时,f(x)>1.…证法二:因为f(x)=me x﹣lnx﹣1,要证明f(x)>1,只需证明me x﹣lnx﹣2>0.…以下给出两种思路证明me x﹣lnx﹣2>0.思路1:设g(x)=me x﹣lnx﹣2,则.设,则.所以函数h(x)=在(0,+∞)上单调递增.…因为,g'(1)=me﹣1>0,所以函数在(0,+∞)上有唯一零点x0,且.…因为g'(x0)=0,所以,即lnx0=﹣x0﹣lnm.…当x∈(0,x0)时,g'(x)<0;当x∈(x0,+∞)时,g'(x)>0.所以当x=x0时,g(x)取得最小值g(x0).…故.综上可知,当m≥1时,f(x)>1.…思路2:先证明e x≥x+1(x∈R),且lnx≤x+1(x>0).…设F(x)=e x﹣x﹣1,则F'(x)=e x﹣1.因为当x<0时,F'(x)<0;当x>0时,F'(x)>0,所以F(x)在(﹣∞,0)上单调递减,在(0,+∞)上单调递增.所以当x=0时,F(x)取得最小值F(0)=0.所以F(x)≥F(0)=0,即e x≥x+1(当且仅当x=0时取等号).…由e x≥x+1(x∈R),得e x﹣1≥x(当且仅当x=1时取等号).…所以lnx≤x﹣1(x>0)(当且仅当x=1时取等号).…再证明me x﹣lnx﹣2>0.因为x>0,m≥1,且e x≥x+1与lnx≤x﹣1不同时取等号,所以me x﹣lnx﹣2>m(x+1)﹣(x﹣1)﹣2=(m﹣1)(x+1)≥0.综上可知,当m≥1时,f(x)>1.…请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.【选修4-1:几何证明选讲】22.如图所示,△ABC内接于⊙O,直线AD与⊙O相切于点A,交BC的延长线于点D,过点D作DE∥CA交BA的延长线于点E.(I)求证:DE2=AE•BE;(Ⅱ)若直线EF与⊙O相切于点F,且EF=4,EA=2,求线段AC的长.【考点】与圆有关的比例线段.【分析】(Ⅰ)推导出△AED∽△DEB,由此能证明DE2=AE•BE.(Ⅱ)由切割线定理得EF2=EA•EB,由DE∥CA,得△BAC∽△BED,由此能求出AC.【解答】证明:(Ⅰ)∵AD是⊙O的切线,∴∠DAC=∠B,∵DE∥CA,∴∠DAC=∠EDA,∴∠EDA=∠B,∵∠AED=∠DEB,∴△AED∽△DEB,∴,∴DE2=AE•BE.解:(Ⅱ)∵EF是⊙O的切线,EAB是⊙O割线,∴EF2=EA•EB,∵EF=4,EA=2,∴EB=8,AB=EB﹣EA=6,由(Ⅰ)知DE2=AE•BE,∴DE=4,∵DE∥CA,∴△BAC∽△BED,∴,∴AC==.选修4-4:坐标系与参数方程23.在平面直角坐标系xOy中,以坐标原点0为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2sinθ,θ∈[0,2π).(1)求曲线C的直角坐标方程;(2)在曲线C上求一点D,使它到直线l:,(t为参数,t∈R)的距离最短,并求出点D的直角坐标.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(I)利用可把圆C的极坐标方程化为普通方程.(II)消去参数把直线l的参数方程化为普通方程,求出圆心C到直线l的距离d,得出直线与圆的位置关系即可得出.【解答】解:(1)曲线C的极坐标方程为ρ=2sinθ,θ∈[0,2π),即ρ2=2ρsinθ,化为x2+y2﹣2y=0,配方为x2+(y﹣1)2=1.(2)曲线C的圆心C(0,1),半径r=1.直线l:,(t为参数,t∈R)化为普通方程:﹣y﹣1=0,可得圆心C到直线l的距离d==1=0,∴直线l与圆C相切,其切点即为所求.联立,解得D.选修4-5:不等式选讲24.设函数f(x)=|x+|﹣|x﹣|.(I)当a=1时,求不等式f(x)≥的解集;(Ⅱ)若对任意a∈[0,1],不等式f(x)≥b的解集为空集,求实数b的取值范围.【考点】绝对值不等式的解法.【分析】(I)当a=1时,利用绝对值的意义求得不等式的解集.(Ⅱ)由题意可得b大于f(x)的最大值.再根据绝对值的意义可得f(x)的最大值为1,可得实数b的范围.【解答】解:(I)当a=1时,不等式f(x)≥,即|x+1|﹣|x|≥,即数轴上的x对应点到﹣1对应点的距离减去它到原点的距离大于,而﹣0.25对应点到﹣1对应点的距离减去它到原点的距离正好等于,故|x+1|﹣|x|≥的解集为{x|x≥﹣0.25}.(Ⅱ)若对任意a∈[0,1],不等式f(x)≥b的解集为空集,则b大于f(x)的最大值.而由绝对值的意义可得f(x)的最大值为1,故实数b>1.2016年7月29日。

广东省广州市2017年普通高中毕业班综合测试文科数学试卷(一)

广东省广州市2017年普通高中毕业班综合测试文科数学试卷(一)

广东省广州市2017年普通高中毕业班综合测试文科数学试卷(一)第Ⅰ卷一、选择题:本小题共12题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数21i+的虚部是( ) A .2-B .1-C .1D .22.已知集合2{0}={0,1}+=x|x ax ,则实数a 的值为( ) A .1-B .0C .1D .23.已知tan 2=θ,且π(0,)2∈θ,则cos 2=θ( ) A .45B .35C .35-D .45-4.阅读如图的程序框图.若输入5=n ,则输出k 的值为( )A .2B .3C .4D .55.已知函数122,0()1log ,0+⎧≤=⎨->⎩x x f x x x ,则((3))=f f ( )A .43B .23C .43-D .3-6.已知双曲线222:14-=x y C a 的一条渐近线方程为230+=x y ,1F ,2F 分别是双曲线C 的左,右焦点,点P 在双曲线C 上,且1||2=PF ,则2||PF 等于( )A .4B .6C .8D .107.四个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的硬币.若硬币正面朝上,则这个人站起来;若硬币正面朝下,则这个人继续坐着.那么,没有相邻的两个人站起来的概率为( )A .1B.7 C .1 D .9 8.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为83,则该几何体的俯视图可以是( )ABCD9.设函数32()=+f x x ax ,若曲线()=y f x 在点00(,())P x f x 处的切线方程为0+=x y ,则点P 的坐标为( ) A .(0,0)B .(1,1)-C .(1,1)-D .(1,1)-或(1,1)-10.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥-P ABC 为鳖臑,⊥PA 平面ABC ,2==PA AB ,4=AC ,三棱锥-P ABC 的四个顶点都在球O 的球面上,则球O 的表面积为( )A .8πB .12πC .20πD .24π11.已知函数()sin()cos()=+++ωϕωϕf x x x ,(0,0π)><<ωϕ是奇函数,直线=y 与函数()f x 的图象的两个相邻交点的横坐标之差的绝对值为2π,则( ) A .()f x 在(0,)4π上单调递减 B .()f x 在3(,)88ππ上单调递减C .()f x 在(0,)4π上单调递增 D .()f x 在3(,)88ππ上单调递增12.已知函数π1()cos()212+=+--x f x x x ,则20161()2017=∑k k f 的值为( ) A .2 016B .1 008C .504D .0第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个考生都必须作答.第22~23题为选考题,考生根据要求作答.二、填空题:本小题共4题,每小题5分.13.已知向量(1,2)=a ,(,1)=-x b ,若()-∥a a b ,则a b =__________.14.若一个圆的圆心是抛物线24=x y 的焦点,且该圆与直线3=+y x 相切,则该圆的标准方程是__________.15.满足不等式组(1)(3)00-++-≥⎧⎨≤≤⎩x y x y x a的点(,)x y 组成的图形的面积是5,则实数a 的值为__________.16.在△ABC 中,60∠=︒ACB ,1>BC ,12=+AC AB ,当△ABC 的周长最短时,BC 的长是__________. 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,且22=-n n S a (*∈N n ). (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列{}n S 的前n 项和n T . 18.(本小题满分12分)某企业生产的某种产品被检测出其中一项质量指标存在问题.该企业为了检查生产该产品的甲、乙两条流水线的生产情况,随机地从这两条流水线上生产的大量产品中各抽取50件产品作为样本,测出它们的这一项质量指标值.若该项质量指标值落在(195,210]内,则为合格品,否则为不合格品.表1是甲流水线样本的频数分布表,图1是乙流水线样本的频率分布直方图.表1:甲流水线样本的频数分布表 图1:乙流水线样本频率分布直方图(Ⅰ)根据图1,估计乙流水线生产产品该质量指标值的中位数;(Ⅱ)若将频率视为概率,某个月内甲、乙两条流水线均生产了5 000件产品,则甲、乙两条流水线分别生产出不合格品约多少件?(Ⅲ)根据已知条件完成下面22⨯列联表,并回答是否有85%的把握认为“该企业生产的这种产品的质量指标值与甲、乙两条流水线的选择有关”?附:22()()()()()-=++++n ad bc K a b c d a c b d (其中=+++n a b c d 为样本容量)19.(本小题满分12分)如图1,在直角梯形ABCD 中,∥AD BC ,⊥AB BC ,⊥BD DC ,点E 是BC 边的中点,将△ABD 沿BD 折起,使平面⊥ABD 平面BCD ,连接AE ,AC ,DE 得到如图2所示的几何体. (Ⅰ)求证:⊥AB 平面ADC ;(Ⅱ)若1=AD ,AC 与其在平面ABD 内的正投影所成角的正切值为6,求点B 到平面ADE 的距离.图1 图220.(本小题满分12分)已知椭圆2222:1+=x y C a b (0>>a b (2,1)A .(Ⅰ)求椭圆C 的方程;(Ⅱ)若P ,Q 是椭圆C 上的两个动点,且使∠PAQ 的角平分线总垂直于x 轴,试判断直线PQ 的斜率是否为定值?若是,求出该值;若不是,说明理由. 21.(本小题满分12分)已知函数()ln =+af x x x(0>a ). (Ⅰ)若函数()f x 有零点,求实数a 的取值范围;(Ⅱ)证明:当2e≥a 时,()e ->xf x . 请考生在第22~23题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线l 的参数方程为31=-⎧⎨=+⎩x t y t (t 为参数)在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线π:)4=-ρθC . (Ⅰ)求直线l 的普通方程和曲线C 的直角坐标方程; (Ⅱ)求曲线C 上的点到直线l 的距离的最大值. 23.(本小题满分10分)选修4-5:不等式选讲 已知函数()|1||2|=+-+-f x x a x a . (Ⅰ)若(1)3<f ,求实数a 的取值范围;(Ⅱ)若1≥a ,∈R x ,求证:()2≥f x .。

2017年广州市普通高中毕业班综合测试(一)文科数学试题及参考答案

2017年广州市普通高中毕业班综合测试(一)文科数学试题及参考答案

绝密 ★ 启用前2017年广州市普通高中毕业班综合测试(一)文科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上,并用铅笔在答题卡上的相应位置填涂考生号。

2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题:本小题共12题,每小题5分,在每小题给出的四个选项中,只有一项是符合 题目要求的。

(1)复数21i+的虚部是 (A )2- (B ) 1- (C )1 (D )2 (2)已知集合}{}{2001x x ax ,+==,则实数a 的值为(A ) 1- (B )0 (C )1 (D )2 (3)已知tan 2θ=,且θ∈0,2π⎛⎫⎪⎝⎭,则cos 2θ= (A)45 (B) 35 (C) 35- (D) (4)阅读如图的程序框图. 若输入5n =, 则输出k 的值为(A )2 (B )3 (C )4 (D )(5)已知函数()122,0,1log ,0,+⎧≤=⎨->⎩x x f x x x 则()()3=f f(A)43 (B) 23 (C) 43- (D) (6)已知双曲线C 222:14x y a -=的一条渐近线方程为230+=x y ,1F ,2F 是双曲线C 的左, 右焦点, 点P 在双曲线C 上, 且12=PF , 则2PF (A )4 (B )6 (C )8 (D )(10)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四 个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥-P ABC 为鳖臑, PA ⊥平面ABC , 2PA AB ==,4AC =,三棱锥-P ABC 的四个顶点都在球O 的球面上, 则球O 的表面积为(A )8π (B )12π (C )20π (D )24π (11)已知函数()()()()sin cos 0,0=+++><<ωϕωϕωϕπf x x x 是奇函数,直线y =()f x 的图象的两个相邻交点的横坐标之差的绝对值为2π,则 (A )()f x 在0,4π⎛⎫ ⎪⎝⎭上单调递减 (B )()f x 在3,88ππ⎛⎫ ⎪⎝⎭上单调递减 (C )()f x 在0,4π⎛⎫ ⎪⎝⎭上单调递增 (D )()f x 在3,88ππ⎛⎫ ⎪⎝⎭上单调递增 (12)已知函数()1cos 212x f x x x π+⎛⎫=+- ⎪-⎝⎭, 则201612017k k f =⎛⎫⎪⎝⎭∑的值为 (A )2016 (B )1008 (C )504 (D )0第Ⅱ卷本卷包括必考题和选考题两部分。

广东省广州2017届高三下学期第一次模拟数学(文)---精校解析Word版

广东省广州2017届高三下学期第一次模拟数学(文)---精校解析Word版

的虚部是(B. C. D.【解析】,故虚部为已知集合,则实数的值为(B. C. D.【解析】依题意,有,所以,,且B. C. D.【答案】【解析】.选4. 阅读如图的程序框图,若输入,则输出B. C. D.【解析】第,;,;,退出循环,已知函数(B. C. D.【答案】【解析】,选求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,的形式时,应从内到外依次求值的一条渐近线方程为,,分别是双曲线的左,右焦点,点在上,且,则B. C. D.,所以,,因为.所以,点在双曲线的左支,故有,解得:四个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的硬币.若硬币正B. C. D.【答案】种,有不相邻人站起来的可能有所以所求概率为:如图,网格纸上小正方形的边长为且该几何体的体积为B. C. D.该几何体的俯视图为设函数若曲线在点处的切线方程为则点B. C. D. 或【解析】,依题意,有:或《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥为鳖臑,,,的四个顶点都在球的球面上,则球的表面积为(B. C. D.,如下图所示,,所以,,球的表面积为:.选构成的三条线段且已知函数是奇函数,直线与函数两个相邻交点的横坐标之差的绝对值为,则(上单调递减 B. 在上单调递增 D. 在【答案】D【解析】,所以,,所以,,又,所以,,.选求对称轴由已知函数,则的值为().B. C. D.【解析】函数化为:,有:,所以,.选(1)运用函数性质解决问题时,先要正确理解和把握函数相关性质本身的含义及其应用方向性可实现去已知向量,,若,则__________【答案】【解析】,因为,,解得:若一个圆的圆心是抛物线的焦点,且该圆与直线【答案】,故圆心为圆的半径为,故圆的方程为:.满足不等式组的点组成的图形的面积是,则实数【答案】或画出平面区域如下图所示,平面区域为三角形、,,面积为:,解得:中,,,当的周长最短时,【答案】【解析】设边、、、,由余弦定理,得:,即,的周长:.令,则三角形周长为:,时的周长最短.三、解答题:解答应写出文字说明、证明过程或演算步骤.已知数列的前项和为,且的通项公式.的前.)【解析】试题分析:(1)由和项与通项关系将条件转化为项之间递推关系:的通项公式.)先求,再根据分组求和法求数列的前项和.(Ⅰ)当时,,解得,,所以数列是首项为,公比为(Ⅱ)因为与的递推关系求,常用思路是:一是利用转化为的递推关系,先求出与. 应用关系式时,一定要注意分两种情况,在求出结果后,看看这两种情况能否整合在一起.内,则为合格品,否则为不合格品.表(Ⅱ)若将频率视为概率,某个月内甲,乙两条流水线均生产了根据已知条件完成下面的把握认为“该企业生产的这种产品的质量(其中(,)没有【解析】试题分析:代入卡方公式计算(Ⅰ)设乙流水线生产产品的该项质量指标值的中位数为.(Ⅱ)由甲,乙两条流水线各抽取的件产品可得,甲流水线生产的不合格品有乙流水线生产的产品为不合格品的概率为乙两条流水线均生产了件产品,则甲乙两条流水线生产的不合格品件数分别为,(Ⅲ)列联表:因为,所以没有如图中,,,,点是沿起,使平面,连接,所示的几何体.平面.(Ⅱ)若内的正投影所成角的正切值为,求点到平面由翻折前后线面间的关系,可得,⊥平面)由的正投影的正切角可求出图中各边的值,将点到平面的距离可看作三棱锥底面上的高.利用体积可求.求三棱锥的体积即求的⊥平面,平面平面,⊥,所以⊥平面因为,所以,,所以⊥平面.⊥平面,所以在平面内的正投影为即∠与其在平面依题意,因为所以.,则因为△~△,所以,,解得,故由于⊥平面,⊥为由平面几何知识得同理所以因为⊥平面,所以设点到平面的距离为,,所以,即点到平面的距离为.已知椭圆的离心率为,且过点.的方程.(Ⅱ)若是椭圆上两个不同的动点,且使的角平分线垂直于轴,试判断直线(试题分析:(I)由离心率可得关系,再将点坐标代入,可得间关系,又方程可得)由的角平分线总垂直于轴,可判断直线的斜率互为相反数,由两直线都过的值,点满足条件,可求得点的坐标,用表示.再由斜率公式可得直线的离心率为且过点所以, .因为,解得所以椭圆的方程为:因为的角平分线总垂直于与所在直线关于直线设直线的斜率为则直线的斜率为所以直线的方程为直线的方程为.设点,消去. ①因为点在椭圆是方程①的一个根所以.同理所以所以直线的斜率为.所以直线的斜率为定值,该值为.:设点则直线的斜率, 直线的斜率的角平分线总垂直于所以与所在直线关于直线, 即因为点在椭圆上,,②. ③由②得, ④, ⑤,化简得由①得, ⑦⑦得.③得.所以直线的斜率为为定值.:设直线的方程为,点,,的斜率, 的斜率.的角平分线总垂直于所以与所在直线关于直线, 即化简得代入上式, 并化简得消去代入(*)得整理得,或.,时所以直线已知函数.有零点,其实数时,.(【解析】试题分析:的导数,讨论两种情况,分别研究函数的单调性,求其最值,结合,令,令)函数的定义域为,得.时,恒成立,函数在上单调递增,又所以函数在定义域上有时,时,时,所以函数在时,所以函数上有的取值范围为时,,即证明当时,,即,则,当时,;当时,所以函数在上单调递减,在当时,于是,当时,.①令,则.当时,当时,.所以函数上单调递增,在当时,于是,当时,.②显然,不等时,.请考生在第中,直线的参数方程为(.在以坐标原点为极点,.的普通方程和曲线的直角坐标方程.上的点到直线,(得直线的普通方程为.,可得曲线的直角坐标方程为.(Ⅱ) 设曲线上的点为到直线当, 可得曲线上的点到直线的距离的最大值为.(Ⅰ) 由消去得,所以直线的普通方程为.,.代入上式得曲线的直角坐标方程为设曲线上的点为,则点到直线的距离为当,所以曲线上的点到直线的距离的最大值为设与直线平行的直线为,当直线与圆解得或),所以直线的方程为.所以直线与直线的距离为所以曲线上的点到直线的距离的最大值为.已知函数(Ⅰ)若,求实数(Ⅱ)若,求证:最小值:,所以.时,得,解得,所以时,得,解得,所以.时,得,解得,所以.综上所述,实数的取值范围是.(Ⅱ)因为。

2017届广东省广州市高三毕业班综合测试(一)文科数学试

2017届广东省广州市高三毕业班综合测试(一)文科数学试

2017年广州市普通高中毕业班综合测试一文科数学第Ⅰ卷(共50分)一、选择题:本大题共10个小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.函数()()ln 1f x x =+的定义域为( )A.(),1-∞-B.(),1-∞C.()1,-+∞D.()1,+∞2.已知i 是虚数单位,若()234m i i +=-,则实数m 的值为( )A.2-B.2±C.D.23.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,若2C B =,则cb为( )A.2sin CB.2cos BC.2sin BD.2cos C4.圆()()22121x y -+-=关于直线y x =对称的圆的方程为( )A.()()22211x y -+-=B.()()22121x y ++-=C.()()22211x y ++-=D.()()22121x y -++=5.已知1x >-,则函数11y x x =++的最小值为( ) A.1- B.0 C.1 D.26.函数()21xf x x =+的图象大致是( )Ks5u7.已知非空集合M 和N ,规定{}M N x x M x N -=∈∉且,那么()M M N --等于( )A.M NB.M NC.MD.N8.任取实数a 、[]1,1b ∈-,则a 、b 满足22a b -≤的概率为( ) A.18B.14C.34D.789.设a 、b 是两个非零向量,则使a b a b ⋅=⋅ 成立的一个必要非充分的条件是( ) A.a b = B.a b ⊥C.()0a b λλ=>D.//a b10.在数列{}n a 中,已知11a =,()11sin 2n n n a a π++-=,记n S 为数列{}n a 的前n 项和,则2014S =( )A.1006B.1007C.1008D.1009第Ⅱ卷(共100分)二、填空题(本大题共5小题,考生作答4小题,,每小题5分,满分20分) 11.执行如图1所示的程序框图,若输出7S =,则输入()k k N *∈的值为 .12.一个四棱锥的底面为菱形,其三视图如图2所示,则这个四棱锥的体积是.图2侧(左)视图正(主)视图13.由空间向量()1,2,3a = ,()1,1,1b =- 构成的向量集合{},A x x a kb k Z ==+∈,则向量x的模x 的最小值为 . Ks5u(二)选做题(14~15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在极坐标系中,直线()sin cos a ρθθ-=与曲线2cos 4sin ρθθ=-相交于A 、B 两点,若AB =a 的值为 .15.(几何证明选讲选做题)如图3,PC 是圆O 的切线,切点为点C ,直线PA 与圆O 交于A 、B 两点,APC ∠的角平分线交弦CA 、CB 于D 、E 两点,已知3PC =,2PB =,则PEPD的值为 .三、解答题 (本大题共6小题,满分80分.解答写出文字说明、证明过程或演算步骤.)16.(本小题满分12分)已知某种同型号的6瓶饮料中有2瓶已过了保质期. (1)从6瓶饮料中任意抽取1瓶,求抽到没过保质期的饮料的概率; (2)从6瓶饮料中随机抽取2瓶,求抽到已过保质期的饮料的概率. Ks5u17.(本小题满分12分)已知函数()sin cos f x x a x =+的图象经过点,03π⎛⎫- ⎪⎝⎭. (1)求实数a 的值;(2)设()()22g x f x =-⎡⎤⎣⎦,求函数()g x 的最小正周期与单调递增区间.18.(本小题满分14分)如图4,在棱长为a 的正方体1111ABCD A BC D -中,点E 是棱1D D 的中点,点F 在棱1B B 上,且满足12B F BF =. (1)求证:11EF AC ⊥;(2)在棱1C C 上确定一点G ,使A 、E 、G 、F 四点共面,并求此时1C G 的长; (3)求几何体ABFED 的体积.图4D 1C 1B 1A 1FE DCBA19.(本小题满分14分)已知等差数列{}n a 的首项为10,公差为2,数列{}n b 满足62n n nb a n =-,n N *∈. (1)求数列{}n a 与{}n b 的通项公式;(2)记{}max ,n n n c a b =,求数列{}n c 的前n 项和n S . (注:{}max ,a b 表示a 与b 的最大值.)20.(本小题满分14分)已知函数()32693f x x x x =-+-. (1)求函数()f x 的极值;(2)定义:若函数()h x 在区间[](),s t s t <上的取值范围为[],s t ,则称区间[],s t 为函数()h x 的“域同区间”.试问函数()f x 在()3,+∞上是否存在“域同区间”?若存在,求出所有符合条件的“域同区间”;若不存在,请说明理由.21.(本小题满分14分)已知双曲线()222:104x y E a a -=>的中心为原点O ,左、右焦点分别为1F 、2F,离心率为5,点P 是直线23a x =上任意一点,点Q 在双曲线E 上,且满足220PF QF ⋅=.(1)求实数a的值;(2)证明:直线PQ与直线OQ的斜率之积是定值;(3)若点P的纵坐标为1,过点P作动直线l与双曲线右支交于不同的两点M、N,在线段MN上去异于点M、N的点H,满足PM MH,证明点H恒在一条定直PN HN线上.。

【广东省广州市】2017年高考一模数学(文科)试卷-答案

【广东省广州市】2017年高考一模数学(文科)试卷-答案

广东省广州市2017年高考一模数学(文科)试卷答 案一、选择题 1~5.BACBA 6~10.CBCDC 11~12.DB 二、填空题 13.52-14.()2212x y +-= 15.316.1+三、解答题 17.解:(Ⅰ)∵S n =2a n ﹣2(n ∈N *),∴n=1时,a 1=2a 1﹣2,解得a 1=2.n ≥2时,a n =S n ﹣S n ﹣1=2a n ﹣2﹣(2a n ﹣1﹣2),化为:a n =2a n ﹣1, ∴数列{a n }是等比数列,公比为2. ∴a n =2n .所以1222n nn a -=⨯=(n ∈N *).(Ⅱ)S n ==2n +1﹣2.∴数列{S n }的前n 项和T n =﹣2n=2n +2﹣4﹣2n .18.解:(Ⅰ)设乙流水线生产产品的该项质量指标值的中位数为x ,因为()()0.480.0120.0320.05250.50.0120.0320.0520.07650.86=++⨯<<+++⨯=,则()()0.0120.0320.05250.0762050.5,x ++⨯+⨯-= 解得390019x =. (Ⅱ)由甲,乙两条流水线各抽取的50件产品可得,甲流水线生产的不合格品有15件,则甲流水线生产的产品为不合格品的概率为153,5010P ==甲 乙流水线生产的产品为不合格品的概率为()10.0120.02855P =+⨯=乙, 于是,若某个月内甲,乙两条流水线均生产了5000件产品,则甲,乙两条流水线生产 的不合格品件数分别为:315000=1500,5000=1000105⨯⨯. (Ⅲ)22⨯列联表:…………………………10分 则()2210035060041.3505075253K ⨯-==≈⨯⨯⨯, 因为1.3 2.072,<所以没有85%的把握认为“该企业生产的这种产品的该项质量指标值与甲,乙两条流水线 的选择有关”. 19.解:(Ⅰ)证明∵平面ABD ⊥平面BCD ,平面ABD 平面BCD BD =,又BD ⊥DC ,∴DC ⊥平面ABD . 因为AB ⊂平面ABD ,所以DC ⊥AB 又因为折叠前后均有AD ⊥AB ,DC ∩AD D = 所以AB ⊥平面ADC .(Ⅱ)由(Ⅰ)知DC ⊥平面ABD ,所以AC 在平面ABD 内的正投影为AD , 即∠CAD 为AC 与其在平面ABD 内的正投影所成角.依题意tan CDCAD AD∠=因为1,AD =所以CD =.设()0AB x x =>,则BD = 因为△ABD ~△BDC ,所以AB DCAD BD=,即1x =解得x =3AB BD BC ==.由于AB ⊥平面ADC ,AB ⊥AC ,E 为BC 的中点, 由平面几何知识得AE 322BC ==, 同理DE 322BC ==, 所以.因为DC ⊥平面ABD,所以13A BCD ABD V CD S -=⋅=. 设点B 到平面ADE 的距离为d ,则11326ADE B ADE A BDE A BCD d S V V V ---⋅====,所以d =,即点B 到平面ADE20.解:(Ⅰ)因为椭圆C,且过点()2,1A , 所以22411a b +=,c a =. 因为222a b c =+, 解得28a =,22b =,所以椭圆C 的方程为22182x y +=.(Ⅱ)解法一:因为PAQ ∠的角平分线总垂直于x 轴,所以PA 与AQ 所在直线关于直线2x =对称.设直线PA 的斜率为k ,则直线AQ 的斜率为k -.所以直线PA 的方程为()12y k x -=-,直线AQ 的方程为()12y k x -=--. 设点(),P P P x y ,(),Q Q Q x y ,由()2212,1,82y k x x y ⎧-=-⎪⎨+=⎪⎩消去y ,得()()222214168161640k x k k x k k +--+--=.①因为点()2,1A 在椭圆C 上,所以2x =是方程①的一个根,则2216164214P k k x k --=+,所以2288214P k k x k --=+.同理2288214Q k k x k +-=+.所以21614P Q kx x k-=-+. 又()28414P Q P Q ky y k x x k -=+-=-+.所以直线PQ 的斜率为12P Q PQ P Qy y k x x -==-. 所以直线PQ 的斜率为定值,该值为12. 法2:设点()()1122,,,P x y Q x y , 则直线PA 的斜率1112PA y k x -=-,直线QA 的斜率2212QA y k x -=-.因为PAQ ∠的角平分线总垂直于x 轴,所以PA 与AQ 所在直线关于直线2x =对称. 所以PA QA k k =-,即1112y x --22102y x -+=-,① 因为点()()1122,,,P x y Q x y 在椭圆C 上,所以2211182x y +=,②2222182x y +=.③ 由②得()()22114410x y -+-=,得()111112241y x x y -+=--+,④ 同理由③得()222212241y x x y -+=--+,⑤ 由①④⑤得()()12122204141x x y y +++=++,化简得()()12211212240x y x y x x y y ++++++=,⑥ 由①得()()12211212240x y x y x x y y +-+-++=,⑦ ⑥-⑦得()12122x x y y +=-+.②-③得22221212082x x y y --+=,得()12121212142y y x x x x y y -+=-=-+.所以直线PQ 的斜率为121212PQ y y k x x -==-为定值.法3:设直线PQ 的方程为y kx b =+,点()()1122,,,P x y Q x y , 则1122,y kx b y kx b =+=+, 直线PA 的斜率1112PA y k x -=-,直线QA 的斜率2212QA y k x -=-.因为PAQ ∠的角平分线总垂直于x 轴,所以PA 与AQ 所在直线关于直线2x =对称. 所以PA QA k k =-,即1112y x --2212y x -=--, 化简得()()12211212240x y x y x x y y +-+-++=. 把1122,y kx b y kx b =+=+代入上式,并化简得()()1212212440kx x b k x x b +--+-+=.(*)由22,1,82y kx b x y =+⎧⎪⎨+=⎪⎩消去y 得()222418480k x kbx b +++-=,(**)则2121222848,4141kb b x x x x k k -+=-=++, 代入(*)得()()2222488124404141k b kb b k b k k -----+=++,整理得()()21210k b k -+-=,所以12k =或12b k =-. 若12b k =-,可得方程(**)的一个根为2,不合题意.若12k =时,合题意. 所以直线PQ 的斜率为定值,该值为12. 21.解:(Ⅰ)法1:函数()ln af x x x=+的定义域为()0,+∞. 由()ln a f x x x=+,得()221a x af x x x x -'=-=.因为0a >,则()0,x a ∈时,()0f x '<;(),x a ∈+∞时,()0f x '>. 所以函数()f x 在()0,a 上单调递减,在(),a +∞上单调递增. 当x a =时,()min ln 1f x a ⎡⎤=+⎣⎦. 当ln 10a +≤,即0a <≤1e时,又()1ln10f a a =+=>,则函数()f x 有零点. 所以实数a 的取值范围为10,e ⎛⎤⎥⎝⎦.法2:函数()ln af x x x=+的定义域为()0,+∞. 由()ln 0af x x x=+=,得ln a x x =-. 令()ln g x x x =-,则()()ln 1g x x '=-+.当10,x e ⎛⎫∈ ⎪⎝⎭时,()0g x '>;当1,x e ⎛⎫∈+∞ ⎪⎝⎭时,()0g x '<.所以函数()g x 在10,e ⎛⎫ ⎪⎝⎭上单调递增,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递减故1x e =时,函数()g x 取得最大值1111ln g e e e e ⎛⎫=-= ⎪⎝⎭.因而函数()ln a f x x x =+有零点,则10a e<≤. 所以实数a 的取值范围为10,e ⎛⎤⎥⎝⎦.(Ⅱ)要证明当2a e ≥时,()xf x e ->, 即证明当0,x >2a e ≥时,ln xa x e x-+>,即ln x x x a xe -+>.令()ln h x x x a =+,则()ln 1h x x '=+. 当10x e <<时,()0f x '<;当1x e>时,()0f x '>. 所以函数()h x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增.当1x e=时,()min1h x a e ⎡⎤=-+⎣⎦.于是,当2a e≥时,()11.h x a e e ≥-+≥①令()x x xe ϕ-=,则()()1xx x x exe e x ϕ---'=-=-.当01x <<时,()0f x '>;当1x >时,()0f x '<. 所以函数()x ϕ在()0,1上单调递增,在()1,+∞上单调递减.当1x =时,()max 1x e ϕ⎡⎤=⎣⎦. 于是,当0x >时,()1.x eϕ≤②显然,不等式①、②中的等号不能同时成立.故当2a e≥时,()xf x e ->. 22.解:(Ⅰ)由直线l 的参数方程3,1,x t y t =-⎧⎨=+⎩消去t 得40x y +-=,所以直线l 的普通方程为40x y +-=.由4πρθ⎛⎫=- ⎪⎝⎭cos cos sin sin 2cos 2sin 44ππθθθθ⎫=+=+⎪⎭,得22cos 2sin ρρθρθ=+.将222,cos ,sin x y x y ρρθρθ=+==代入上式,得曲线C 的直角坐标方程为2222x y x y +=+,即()()22112x y -+-=.(Ⅱ)法1:设曲线C上的点为()1,1P αα,则点P 到直线l的距离为d == 当sin 14πα⎛⎫+=- ⎪⎝⎭时,max d =,所以曲线C 上的点到直线l 的距离的最大值为 法2:设与直线l 平行的直线为:0l x y b '++=,当直线l '与圆C =解得0b =或4b =-(舍去), 所以直线l '的方程为0x y +=.所以直线l 与直线l '的距离为d ==所以曲线C 上的点到直线l 的距离的最大值为 23.解:(Ⅰ)因为()13f <,所以123a a +-<.①当0a ≤时,得()123a a -+-<,解得23a >-,所以203a -<≤; ②当102a <<时,得()123a a +-<,解得2a >-,所以102a <<;③当12a ≥时,得()123a a --<,解得43a <,所以1423a ≤<;综上所述,实数a 的取值范围是24,33⎛⎫- ⎪⎝⎭.(Ⅱ)因为1,a x ≥∈R ,所以()()()1212f x x a x a x a x a =+-+-≥+---31a =- 31a =-2≥.广东省广州市2017年高考一模数学(文科)试卷解 析一、选择题1.【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、虚部的定义即可得出. 【解答】解:复数==1﹣i 的虚部是﹣1.故选:B.2.【考点】集合的表示法.【分析】集合{x|x2+ax=0}={0,1},则x2+ax=0的解为0,1,利用韦达定理,求出a的值.【解答】解:由题意,0+1=﹣a,∴a=﹣1,故选A.3.【考点】二倍角的余弦.【分析】由已知利用同角三角函数关系式可求cosθ,进而利用二倍角的余弦函数公式即可计算求值得解.【解答】解:∵tanθ=2,且θ∈,4.【考点】循环结构.【分析】按照程序框图的流程写出前几次循环的结果;直到满足判断框中的条件,执行输出.【解答】解:经过第一次循环得到的结果为k=0,n=16,经过第二次循环得到的结果为k=1,n=49,经过第三次循环得到的结果为k=2,n=148,经过第四次循环得到的结果为k=3,n=445,满足判断框中的条件,执行“是”输出的k为3故选B5.【考点】函数的值.【分析】由解析式先求出f(3),由指数的运算法则求出(f(3))的值.【解答】解:由题意知,f(x)=,则f(3)=1﹣,所以f(f(3))==4•=,故选A.6.【考点】双曲线的简单性质.【分析】由双曲线的方程、渐近线的方程求出a,由双曲线的定义求出|PF2|.【解答】解:由双曲线的方程、渐近线的方程可得=,∴a=3.由双曲线的定义可得|PF2|﹣2=6,∴|PF2|=8,故选C.7.【考点】列举法计算基本事件数及事件发生的概率.【分析】列举出所有情况,求出满足条件的概率即可.【解答】解:由题意得:正面不能相邻,即正反正反,反正反正,3反一正,全反,其中3反一正中有反反反正,反反正反,反正反反,正反反反,故共7中情况,故P==,故选:B.8.【考点】简单空间图形的三视图.【分析】该几何体为正方体截去一部分后的四棱锥P﹣ABCD,作出图形,可得结论.【解答】解:该几何体为正方体截去一部分后的四棱锥P﹣ABCD,如图所示,该几何体的俯视图为C.故选:C.9.【考点】利用导数研究曲线上某点切线方程.【分析】由曲线y=f(x)在点P(x0,f(x0))处的切线方程为x+y=0,导函数等于﹣1求得点(x0,f(x0))的横坐标,进一步求得f(x0)的值,可得结论.【解答】解:∵f(x)=x3+ax2,∴f′(x)=3x2+2ax,∵函数在点(x0,f(x0))处的切线方程为x+y=0,∴3x02+2ax0=﹣1,∵x0+x03+ax02=0,解得x0=±1.当x0=1时,f(x0)=﹣1,当x0=﹣1时,f(x0)=1.故选:D.10.【考点】球的体积和表面积.【分析】由题意,PC为球O的直径,求出PC,可得球O的半径,即可求出球O的表面积.【解答】解:由题意,PC为球O的直径,PC==2,∴球O的半径为,∴球O的表面积为4π•5=20π,故选C.11.【考点】三角函数中的恒等变换应用.【分析】根据两角和的正弦函数化简解析式,由条件和诱导公式求出φ的值,由条件和周期共识求出ω的值,根据正弦函数的单调性和选项判断即可.【解答】解:由题意得,f(x)=sin(ωx+φ)+cos(ωx+φ)= [sin(ωx+φ)+cos(ωx+φ)]=,∵函数f(x)(ω>0,0<φ<π)是奇函数,∴,则,又0<φ<π,∴φ=,∴f(x)==,∵y=与f(x)的图象的两个相邻交点的横坐标之差的绝对值为,∴T=,则ω=4,即f(x)=,由得4x∈(0,π),则f(x)在上不是单调函数,排除A、C;由得4x∈,则f(x)在上是增函数,排除B,故选:D.12.【考点】数列的求和.【分析】函数f(x)=+cos(x﹣),可得f(x)+f(1﹣x)=0,即可得出.【解答】解:∵函数f(x)=+cos(x﹣),∴f(x)+f(1﹣x)=+cos(x﹣)++=1+0=1,则=2016=1008.故选:B.二、填空题13.【考点】平面向量的坐标运算.【分析】利用向量共线定理即可得出.【解答】解:=(1﹣x,3),∵∥(﹣),∴2(1﹣x)﹣3=0,解得x=﹣.则•=﹣﹣2=﹣.故答案为:﹣.14.【考点】抛物线的简单性质.【分析】求出抛物线的焦点即圆心坐标,利用切线的性质计算点C到切线的距离即为半径,从而得出圆的方程.【解答】解:抛物线的标准方程为:x2=4y,∴抛物线的焦点为F(0,1).即圆C的圆心为C(0,1).∵圆C与直线y=x+3相切,∴圆C的半径为点C到直线y=x+3的距离d==.∴圆C的方程为x2+(y﹣1)2=2.故答案为:x2+(y﹣1)2=2.15.【考点】简单线性规划;二元一次不等式(组)与平面区域.【分析】根据题意,将不等式组表示的平面区域表示出来,分析可得必有a>1,此时阴影部分的面积S=×2×1+×(a﹣1)×[a+1﹣(3﹣a)]=5,解可得a的值,即可得答案.【解答】解:根据题意,不等式组⇔或;其表示的平面区域如图阴影部分所示:=×2×1=1,不合题意,当a≤1时,其阴影部分面积S<S△AOB必有a>1,当a>1时,阴影部分面积S=×2×1+×(a﹣1)×[a+1﹣(3﹣a)]=5,解可得a=3或﹣1(舍);故答案为:3.16.【考点】三角形中的几何计算.【分析】设A,B,C所对的边a,b,c,则根据余弦定理可得a2+b2+c2=2abcosC,以及b=c+可得c的长,再利用均值不等式即可求出答案.【解答】解:设A,B,C所对的边a,b,c,则根据余弦定理可得a2+b2+c2=2abcosC,将b=c+代入上式,可得a2+c+=ac+,化简可得c=,所以△ABC的周长l=a+b+c=++a,化简可得l=3(a﹣1)++,因为a>1,所以由均值不等式可得3(a﹣1)=时,即6(a﹣1)2=3,解得a=+1时,△ABC的周长最短,故答案为: +1.三、解答题17.【考点】数列的求和;数列递推式.【分析】(I)S n=2a n﹣2(n∈N*),可得n=1时,a1=2a1﹣2,解得a1.n≥2时,a n=S n﹣S n﹣1,再利用等比数列的通项公式即可得出.(II)利用等比数列的求和公式即可得出.18.【考点】独立性检验的应用;频率分布直方图.【分析】(Ⅰ)利用(0.012+0.032+0.052)×5+0.076×(x﹣205)=0.5,即可估计乙流水线生产产品该质量指标值的中位数;(Ⅱ)求出甲,乙两条流水线生产的不合格的概率,即可得出结论;(Ⅲ)计算可得K2的近似值,结合参考数值可得结论.19.【考点】点、线、面间的距离计算;直线与平面垂直的判定.【分析】(Ⅰ)由题意结合面面垂直的性质可得BD⊥DC,有DC⊥平面ABD,进一步得到DC⊥AB,再由线面垂直的判定可得AB⊥平面ADC;(Ⅱ)由(Ⅰ)知DC⊥平面ABD,可得AC在平面ABD内的正投影为AD,求解直角三角形得到AB的值,然后利用等积法求得点B到平面ADE的距离.20.【考点】直线与椭圆的位置关系.【分析】(Ⅰ)由椭圆C的离心率为,且过点A(2,1),列出方程组,求出a,b,由此能求出椭圆C的方程.(Ⅱ)法一:由∠PAQ的角平分线总垂直于x轴,知PA与AQ所在直线关于直线x=2对称.设直线PA的方程为y﹣1=k(x﹣2),直线AQ的方程为y﹣1=﹣k(x﹣2).由,得(1+4k2)x2﹣(16k2﹣8k)x+16k2﹣16k﹣4=0.由点A(2,1)在椭圆C上,求出.同理,由此能求出直线PQ的斜率为定值.法二:设点P(x1,y1),Q(x2,y2),则直线PA的斜率,直线QA的斜率.由∠PAQ的角平分线总垂直于x轴,知,再由点P(x1,y1),Q(x2,y2)在椭圆C上,能求出直线PQ的斜率为定值.法三:设直线PQ的方程为y=kx+b,点P(x1,y1),Q(x2,y2),则y1=kx1+b,y2=kx2+b,直线PA的斜率,直线QA的斜率.由∠PAQ的角平分线总垂直于x轴,知=,由,得(4k2+1)x2+8kbx+4b2﹣8=0,由此利用韦达定理能求出直线PQ的斜率为定值.21.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)法一:求出函数f(x)的导数,根据函数的单调性求出a的范围即可;法二:求出a=﹣xlnx,令g(x)=﹣xlnx,根据函数的单调性求出a的范围即可;(Ⅱ)问题转化为xlnx+a>xe﹣x,令h(x)=xlnx+a,令φ(x)=xe﹣x,根据函数的单调性证明即可.22.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(Ⅰ)将直线l的参数方程消去t参数,可得直线l的普通方程,将ρcosθ=x,ρsinθ=y,ρ2=x2+y2,带入ρ=2cos(θ﹣)可得曲线C的直角坐标方程.(Ⅱ)法一:设曲线C上的点为,点到直线的距离公式建立关系,利用三角函数的有界限可得最大值.法二:设与直线l平行的直线为l':x+y+b=0,当直线l'与圆C相切时,得,点到直线的距离公式可得最大值.23.【考点】绝对值不等式的解法;绝对值三角不等式.【分析】(Ⅰ)通过讨论a的范围得到关于a的不等式,解出取并集即可;(Ⅱ)基本基本不等式的性质证明即可.。

2017年广州市一模(文科数学).

2017年广州市一模(文科数学).

试卷类型:A2017年广州市普通高中毕业班综合测试(一)数学(文科)2017.3参考公式:锥体的体积公式Sh V 31=,其中S 是锥体的底面积,h 是锥体的高.()()22221211236n n n n ++++++= ()*n ∈N . 一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.函数()()ln 1f x x =+的定义域为A .(),1-∞-B .(),1-∞C .()1,-+∞D .()1,+∞2.已知i 是虚数单位,若()2i 34i m +=-,则实数m 的值为A .2-B .2± C.D .23.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若2C B =,则cb为A .2sin CB .2cos BC .2sin BD .2cos C4.圆()()22121x y -+-=关于直线y x =对称的圆的方程为A .()()22211x y -+-= B .()()22121x y ++-= C .()()22211x y ++-= D .()()22121x y -++=5.已知1x >-,则函数11y x x =++的最小值为 A .1- B .0 C .1 D .26.函数()2xf x =的图象大致是7.已知非空集合M 和N ,规定M N x x M x N -=∈∉且,那么M M N --等于A .M NB .M NC .MD .N8.任取实数a ,b ∈[]1,1-,则a ,b 满足22a b -≤的概率为A .18B .14C .34D .789.设a ,b 是两个非零向量,则使 a b =a b 成立的一个必要非充分条件是A .=a bB .a bC .⊥a bD .λ=a b ()0λ> 10.在数列{}n a 中,已知11a =,()11sin2n n n a a ++π-=,记n S 为数列{}n a 的前n 项和,则2014S =A .1006B .1007C .1008D .1009二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题)11.执行如图1的程序框图,若输入=3k ,则输出S 的值为________. 12.一个四棱锥的底面为菱形,其三视图如图2所示,则这个四棱锥的体积是________.13.由空间向量()1,2,3=a ,()1,1,1=-b 构成的向量集合{},A k k ==+∈Z x x a b ,则向量x 的模x 的最小值为________.(二)选做题(14~15题,考生只能从中选做一题) 14.(坐标系与参数方程选做题)在极坐标系中,直线()sin cos a ρθθ-=与曲线2cos 4sin ρθθ=-相交于A ,B 两点,若AB=a 的值为_______.15.(几何证明选讲选做题)如图3,PC 是圆O 的切线,切点为C ,直线PA 与圆O 交于 A ,B 两点,APC ∠的平分线分别交弦CA ,CB 于D ,E两点,已知3PC =,2PB =,则PEPD的值为_______.图1侧(左)视图图2俯视图 P图3三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知某种同型号的6瓶饮料中有2瓶已过保质期.(1)从6瓶饮料中任意抽取1瓶,求抽到没过保质期的饮料的概率; (2)从6瓶饮料中随机抽取2瓶,求抽到已过保质期的饮料的概率. 17.(本小题满分12分)已知函数()sin cos f x x a x =+的图象经过点π03⎛⎫- ⎪⎝⎭,.(1)求实数a 的值;(2)求函数()x f 的最小正周期与单调递增区间. 18.(本小题满分14分)如图4,在棱长为a 的正方体1111ABCD A B C D -中,点E 是 棱1D D 的中点,点F 在棱1B B 上,且满足12B F FB =. (1)求证:11EF AC ⊥;(2)在棱1C C 上确定一点G ,使A ,E ,G ,F 四点共面, 并求此时1C G 的长;(3)求几何体ABFED 的体积.1D ABCDEF 1A1B1C 图419.(本小题满分14分)已知等差数列{}n a 的首项为10,公差为2,数列{}n b 满足62n n nb a n =-,*n ∈N . (1)求数列{}n a 与{}n b 的通项公式;(2)记{}max ,n n n c a b =,求数列{}n c 的前n 项和n S . (注:{}max ,a b 表示a 与b 的最大值.) 20.(本小题满分14分)已知函数()32693f x x x x =-+-.(1)求函数()f x 的极值;(2)定义:若函数()h x 在区间[],s t ()s t <上的取值范围为[],s t ,则称区间[],s t 为函数()h x 的“域同区间”.试问函数()f x 在()3,+∞上是否存在“域同区间”?若存在,求出所有符合条件的“域同区间”;若不存在,请说明理由.21.(本小题满分14分)已知双曲线E :()222104x y a a -=>的中心为原点O ,左,右焦点分别为1F ,2F ,离心率为5,点P 是直线23a x =上任意一点,点Q 在双曲线E 上,且满足220PF QF = .(1)求实数a 的值;(2)证明:直线PQ 与直线OQ 的斜率之积是定值;(3)若点P 的纵坐标为1,过点P 作动直线l 与双曲线右支交于不同两点M ,N ,在线段MN 上取异于点M ,N 的点H ,满足PM MHPN HN=,证明点H 恒在一条定直线上.2017年广州市普通高中毕业班综合测试(一)数学(文科)试题参考答案及评分标准16.(本小题满分)(本小题主要考查古典概型等基础知识,考查化归与转化的数学思想方法,以及数据处理能力与应用意识)(1)解:记“从6瓶饮料中任意抽取1瓶,抽到没过保质期的饮料”为事件A ,从6瓶饮料中中任意抽取1瓶,共有6种不同的抽法.因为6瓶饮料中有2瓶已过保质期,所以事件A 包含4种情形.则()4263P A ==.所以从6瓶饮料中任意抽取1瓶,抽到没过保质期的饮料的概率为23.(2)解法1:记“从6瓶饮料中随机抽取2瓶,抽到已过保质期的饮料”为事件B ,随机抽取2瓶饮料,抽到的饮料分别记为x ,y ,则),(y x 表示第一瓶抽到的是x ,第二瓶抽到的是y ,则),(y x 是一个基本事件. 由于是随机抽取,所以抽取到的任何基本事件的概率相等.不妨设没过保质期的饮料为1,2,3,4, 已过保质期的饮料为a ,b , 则从6瓶饮料中依次随机抽取2瓶的基本事件有:()1,2,()1,3,()1,4,()1,a ,()1,b ,()2,1,()2,3,()2,4,()2,a ,()2,b ,()3,1,()3,2,()3,4,()3,a ,()3,b ,()4,1,()4,2,()4,3,()4,a ,()4,b , (),1a ,(),2a ,(),3a ,(),4a ,(),a b ,(),1b ,(),2b ,(),3b ,(),4b ,(),b a .共30种基本事件.由于2瓶饮料中有1瓶已过保质期就表示抽到已过保质期的饮料,所以事件B 包含的基本事件有:()1,a ,()1,b ,()2,a ,()2,b ,()3,a ,()3,b ,()4,a ,()4,b ,(),1a ,(),2a ,(),3a ,(),4a ,(),a b ,(),1b ,(),2b ,(),3b ,(),4b ,(),b a .共18种基本事件.则183()305P B ==. 所以从6瓶饮料中随机抽取2瓶,抽到已过保质期的饮料的概率为35.解法2:记“从6瓶饮料中随机抽取2瓶,抽到已过保质期的饮料”为事件B ,随机抽取2瓶饮料,抽到的饮料分别记为x ,y ,则),(y x 是一个基本事件. 由于是随机抽取,所以抽取到的任何基本事件的概率相等.不妨设没过保质期的饮料为1,2,3,4, 已过保质期的饮料为a ,b , 则从6瓶饮料中随机抽取2瓶的基本事件有:()1,2,()1,3,()1,4,()1,a ,()1,b ,()2,3,()2,4,()2,a ,()2,b ,()3,4,()3,a ,()3,b ,()4,a ,()4,b ,(),a b .共15种基本事件.由于2瓶饮料中有1瓶已过保质期就表示抽到已过保质期的饮料,所以事件B 包含的基本事件有:()1,a ,()1,b ,()2,a ,()2,b ,()3,a ,()3,b ,()4,a ,()4,b ,(),a b .共9种基本事件.则93()155P B ==.所以从6瓶饮料中随机抽取2瓶,抽到已过保质期的饮料的概率为35.17.(本小题满分)(本小题主要考查三角函数图象的周期性与单调性、同角三角函数的基本关系、三角函数的化简等知识,考查化归与转化的数学思想方法,以及运算求解能力)解:(1)因为函数()sin cos f x x a x =+的图象经过点π03⎛⎫- ⎪⎝⎭,,所以03f π⎛⎫-= ⎪⎝⎭.即ππsin cos 033a ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭.即022a -+=.解得a =(2)由(1)得,()sin f x x x =12sin 2x x ⎛⎫=+ ⎪ ⎪⎝⎭2sin cos cos sin 33x x ππ⎛⎫=+ ⎪⎝⎭π2sin 3x ⎛⎫=+ ⎪⎝⎭.所以函数()x f 的最小正周期为2π.因为函数sin y x =的单调递增区间为2,222k k ππ⎡⎤π-π+⎢⎥⎣⎦()k ∈Z ,所以当πππ2π2π232k x k -≤+≤+()k ∈Z 时,函数()x f 单调递增,即5ππ2π2π66k x k -≤≤+()k ∈Z 时,函数()x f 单调递增. 所以函数()x f 的单调递增区间为5ππ2π,2π66k k ⎡⎤-+⎢⎥⎣⎦()k ∈Z .18.(本小题满分)(本小题主要考查空间线面关系、几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力) (1)证明:连结11B D ,BD ,因为四边形1111A B C D 是正方形,所以1111AC B D ⊥.在正方体1111ABCD A B C D -中,1DD ⊥平面1111A B C D ,11AC ⊂平面1111A B C D ,所以111AC DD ⊥.因为1111B D DD D = ,11B D ,1DD ⊂平面11BB D D ,所以11AC ⊥平面11BB D D . 因为EF ⊂平面11BB D D ,所以11EF AC ⊥. (2)解:取1C C 的中点H ,连结BH ,则BH AE .在平面11BB C C 中,过点F 作FG BH ,则FG AE . 连结EG ,则A ,E ,G ,F 四点共面. 因为11122CH C C a ==,11133HG BF C C a ===,所以1C G 116C C CH HG a =--=. 故当1C G 16a =时,A ,E ,G ,F 四点共面.(3)解:因为四边形EFBD 是直角梯形,所以几何体ABFED 为四棱锥A EFBD -.因为()2113222EFBD a a BF DE BD S a ⎛⎫+ ⎪+⎝⎭===, 点A 到平面EFBD的距离为12h AC ==,所以231153312236A EFBD EFBD V S h a a -==⨯⨯=.故几何体ABFED 的体积为3536a .19.(本小题满分)(本小题主要考查等差数列、分组求和等知识,考查化归与转化的数学思想方法,以及运算求解能力和创新意识) 解:(1)因为等差数列{}n a 的首项为10,公差为2,所以()1012n a n =+-⨯,即28n a n =+.所以62n n nb a n =-22n n =-. (2)由(1)知()()2228n n b a n n n -=--+()(24822n n n n ⎡⎤⎡⎤=--=+-+⎣⎦⎣⎦,1D A CD E F1A1B 1C1DACD EF1A1B1CG H所以{}max ,n n n c a b =228,5,2, 5.n n n n n +≤⎧=⎨->⎩当5n ≤时,123n n S c c c c =++++ 123n a a a a =++++()10121428n =+++++()10282n n ++=⨯29n n =+. 当5n >时,123n n S c c c c =++++()()12567n a a a b b b =+++++++()()()()()222225956267278282n n ⎡⎤=+⨯+-⨯+-⨯+-⨯++-⨯⎣⎦ ()()2222706782678n n ⎡⎤=+++++-++++⎣⎦()()()()22222222265701231234522n n n +-⎡⎤=+++++-++++-⎢⎥⎣⎦()()()()1217055656n n n n n ++⎡⎤=+--+-⎢⎥⎣⎦3211545326n n n =--+.综上可知,n S 2329,5,11545, 5.326n n n n n n n ⎧+≤⎪=⎨--+>⎪⎩20.(本小题满分)(本小题主要考查函数的极值、函数的导数、函数的零点与单调性等知识,考查数形结合、化归与转化、分类与讨论的数学思想方法,以及运算求解能力、抽象概括能力与创新意识) 解:(1)因为()32693f x x x x =-+-,所以()23129f x x x '=-+()()313x x =--. 令'()0f x =,可得1x =或3x =.则'(),()f x f x 在R 上的变化情况为:所以当1x =时,函数f x 有极大值为1,当3x =时,函数f x 有极小值为3-. (2)假设函数()f x 在()3,+∞上存在“域同区间”[],s t ()3s t <<,由(1)知函数()f x 在()3,+∞上单调递增.所以()(),.f s s f t t =⎧⎪⎨=⎪⎩即3232693,693.s s s s t t t t ⎧-+-=⎪⎨-+-=⎪⎩ 也就是方程32693x x x x -+-=有两个大于3的相异实根. 设32()683g x x x x =-+-()3x >,则2()3128g x x x '=-+.令()g x '0=,解得123x =<,223x =+>. 当23x x <<时,()g x '0<,当2x x >时,()g x '0>,所以函数()g x 在区间()23,x 上单调递减,在区间()2,x +∞上单调递增. 因为()3 60g =-<,()()230g x g <<,()5120g =>, 所以函数()g x 在区间()3,+∞上只有一个零点.这与方程32693x x x x -+-=有两个大于3的相异实根相矛盾,所以假设不成立. 所以函数()f x 在()3,+∞上不存在“域同区间”. 21.(本小题满分)(本小题主要考查直线的斜率、双曲线的方程、直线与圆锥曲线的位置关系等知识,考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力和运算求解能力)(1)解:设双曲线E 的半焦距为c ,由题意可得22 4.c a c a ⎧=⎪⎨⎪=+⎩解得a =.(2)证明:由(1)可知,直线2533a x ==,点()23,0F .设点5,3P t ⎛⎫⎪⎝⎭,()00,Q x y , 因为220PF QF = ,所以()0053,3,03t x y ⎛⎫----= ⎪⎝⎭.所以()00433ty x =-.因为点()00,Q x y 在双曲线E 上,所以2200154x y -=,即()2200455y x =-. 所以20000200005533PQ OQ y t y y ty k k x x x x --⋅=⋅=-- ()()2002004453453553x x x x ---==-.所以直线PQ 与直线OQ 的斜率之积是定值45.(3)证法1:设点(),H x y ,且过点5,13P ⎛⎫⎪⎝⎭的直线l 与双曲线E 的右支交于不同两点()11,M x y ,()22,N x y ,由(2)知()2211455y x =-,()2222455y x =-.设PM MH PN HN λ==,则,.PM PN MH HN λλ⎧=⎪⎨=⎪⎩ .即()()1122112255,1,1,33,,.x y x y x x y y x x y y λλ⎧⎛⎫⎛⎫--=--⎪⎪ ⎪⎝⎭⎝⎭⎨⎪--=--⎩ 整理,得()()()1212121251,31,1,1.x x y y x x x y y y λλλλλλλλ⎧-=-⎪⎪⎪-=-⎨⎪+=+⎪+=+⎪⎩①②③④ 由①×③,②×④得()()22221222221251,31.x x x y y y λλλλ⎧-=-⎪⎨⎪-=-⎩⑤⑥将()2211455y x =-,()2222455y x =-代入⑥,得2221224451x x y λλ-=⨯--. ⑦ 将⑤代入⑦,得443y x =-.所以点H 恒在定直线43120x y --=上.证法2:依题意,直线l 的斜率k 存在.设直线l 的方程为513y k x ⎛⎫-=- ⎪⎝⎭,由2251,31.54y k x x y ⎧⎛⎫-=- ⎪⎪⎪⎝⎭⎨⎪-=⎪⎩ 消去y 得()()()22229453053255690k x k k x k k -+---+=.因为直线l 与双曲线E 的右支交于不同两点()11,M x y ,()22,N x y ,则有()()()()()()()22222122212290053900455690,3053,95425569.954k k k k k k k x x k k k x x k ⎧⎪∆=-+--+>⎪⎪-⎪+=⎨-⎪⎪-+⎪=⎪-⎩ 设点(),H x y , 由PM MH PN HN =,得112125353x x x x x x --=--. 整理得()()1212635100x x x x x x -+++=. 将②③代入上式得()()()()()2222150569303553100954954k k x k k x k k -++--+=--. 整理得()354150x k x --+=. ④因为点H 在直线l 上,所以513y k x ⎛⎫-=- ⎪⎝⎭. ⑤ 联立④⑤消去k 得43120x y --=.所以点H 恒在定直线43120x y --=上.(本题(3)只要求证明点H 恒在定直线43120x y --=上,无需求出x 或y 的范围.)① ② ③。

广东省广州2017届高三下学期第一次模拟数学(文)试题Word版含解析

广东省广州2017届高三下学期第一次模拟数学(文)试题Word版含解析

2017年广州市普通高中毕业班综合测试(一)文科数学第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数的虚部是().A. B. C. D.【答案】B【解析】,故虚部为.选B.2. 已知集合,则实数的值为().A. B. C. D.【答案】A【解析】依题意,有,所以,.选A.3. 已知,且,则().A. B. C. D.【答案】C【解析】.选C.4. 阅读如图的程序框图,若输入,则输出的值为().A. B. C. D.【答案】B【解析】第步:,;第步:,;第步:,;退出循环,.选B.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.5. 已知函数则().A. B. C. D.【答案】A【解析】,,选.点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.6. 已知双曲线的一条渐近线方程为,,分别是双曲线的左,右焦点,点在双曲线上,且,则等于().A. B. C. D.【答案】C【解析】依题意,有:,所以,,因为.所以,点在双曲线的左支,故有,解得:,选C.7. 四个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的硬币.若硬币正面朝上,则这个人站起来;若硬币正面朝下,则这个人继续坐着.那么,没有相邻的两个人站起来的概率为().A. B. C. D.【答案】B【解析】四个人抛硬币的可能结果有种,有不相邻人站起来的可能为:正反正反,反正反正,只有人站起来的可能有种,没有人站起来的可能有种,所以所求概率为:.选B.8. 如图,网格纸上小正方形的边长为,粗线画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为,则该几何体的俯视图可以是().A. B. C. D.【答案】C【解析】该几何体为正方体截去一部分后的四棱锥,如下图所示,该几何体的俯视图为.点睛:三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.9. 设函数,若曲线在点处的切线方程为,则点的坐标为().A. B. C. D. 或【答案】D【解析】,依题意,有:,解得:或.选D.10. 《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥为鳖臑,平面,,,三棱锥的四个顶点都在球的球面上,则球的表面积为().A. B. C. D.【答案】C【解析】该几何体可以看成是长方体中截出来的三棱锥,如下图所示,其外接球的直径为对角线,,所以,,球的表面积为:.选C.点睛:空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点构成的三条线段两两互相垂直,且,一般把有关元素“补形”成为一个球内接长方体,利用求解.11. 已知函数是奇函数,直线与函数的图象的两个相邻交点的横坐标之差的绝对值为,则().A. 在上单调递减B. 在上单调递减C. 在上单调递增D. 在上单调递增【答案】D【解析】,因为函数为奇函数且,所以,,即,所以,,又,所以,,,其一个单调增区间为.选D.【点睛】函数的性质(1).(2)周期(3)由求对称轴(4)由求增区间; 由求减区间12. 已知函数,则的值为().A. B. C. D.【答案】B【解析】函数化为:,,有:,所以,.选B.点睛:(1)运用函数性质解决问题时,先要正确理解和把握函数相关性质本身的含义及其应用方向.(2)在研究函数性质特别是奇偶性、周期、对称性、单调性、最值、零点时,要注意用好其与条件的相互关系,结合特征进行等价转化研究.如奇偶性可实现自变量正负转化,周期可实现自变量大小转化,单调性可实现去,即将函数值的大小转化自变量大小关系, 对称性可得到两个对称的自变量所对应函数值关系.第Ⅱ卷二、填空题:本题共4小题,每小题5分.13. 已知向量,,若,则__________.【答案】【解析】,因为,所以,,解得:,所以,.14. 若一个圆的圆心是抛物线的焦点,且该圆与直线相切,则该圆的标准方程是__________.【答案】【解析】抛物线的焦点为,故圆心为,圆的半径为,故圆的方程为:.15. 满足不等式组的点组成的图形的面积是,则实数的值为__________.【答案】【解析】不等式组化为:或,画出平面区域如下图所示,平面区域为三角形、,,,,面积为:,解得:.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.或根据可行域图像确定求面积的公式及方法.16. 在中,,,,当的周长最短时,的长是__________.【答案】【解析】设边、、所对边分别为、、,依题意,有:,由余弦定理,得:,即,化简,得:,的周长:.令,则三角形周长为:,当,即,时的周长最短.三、解答题:解答应写出文字说明、证明过程或演算步骤.17. 已知数列的前项和为,且.(Ⅰ)求数列的通项公式.(Ⅱ)求数列的前项和.【答案】(1)(2)【解析】试题分析:(1)由和项与通项关系将条件转化为项之间递推关系:,再根据等比数列定义及通项公式求数列的通项公式.(2)先求,再根据分组求和法求数列的前项和.试题解析:(Ⅰ)当时,,即,解得.当时,,即,所以数列是首项为,公比为的等比数列.所以.(Ⅱ)因为,所以.点睛:给出与的递推关系求,常用思路是:一是利用转化为的递推关系,再求其通项公式;二是转化为的递推关系,先求出与之间的关系,再求. 应用关系式时,一定要注意分两种情况,在求出结果后,看看这两种情况能否整合在一起.18. 某企业生产的某种产品被检测出其中一项质量指标存在问题.该企业为了检查生产该产品的甲,乙两条流水线的生产情况,随机地从这两条流水线上生产的大量产品中各抽取件产品作为样本,测出它们的这一项质量指标值.若该项质量指标值落在内,则为合格品,否则为不合格品.表是甲流水线样本的频数分布表,图是乙流水线样本的频率分布直方图.表:甲流水线样本的频数分布表图:乙流水线样本频率分布直方图(Ⅰ)根据图,估计乙流水线生产产品该质量指标值的中位数.(Ⅱ)若将频率视为概率,某个月内甲,乙两条流水线均生产了件产品,则甲,乙两条流水线分别生产出不合格品约多少件.。

2017年广州一模试题和标准答案(文科数学)

2017年广州一模试题和标准答案(文科数学)

2017年广州市普通高中毕业班综合测试(一)文科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上,并用铅笔在答题卡上的相应位置填涂考生号。

2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题:本小题共12题,每小题5分,在每小题给出的四个选项中,只有一项是符合 题目要求的。

(1)复数21i+的虚部是 (A )2- (B ) 1- (C )1 (D )2 (2)已知集合}{}{2001x x ax ,+==,则实数a 的值为(A ) 1- (B )0 (C )1 (D )2 (3)已知tan 2θ=,且θ∈0,2π⎛⎫⎪⎝⎭,则cos2θ= (A)45 (B) 35 (C) 35- ((4)阅读如图的程序框图. 若输入5n =, 则输出k 的值为(A )2 (B )3 (C )4 (D )5(5)已知函数()122,0,1log ,0,+⎧≤=⎨->⎩x x f x x x 则()()3=f f(A)43 (B) 23 (C) 43- ((6)已知双曲线C 222:14x y a -=的一条渐近线方程为230+=x y ,1F , 是双曲线C 的左, 右焦点, 点P 在双曲线C 上, 且12=PF , 则(A )4 (B )6 (C )8 (D )10(7)四个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的()1,1-(10)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四 个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥-P ABC 为鳖臑, PA ⊥平面ABC ,2PA AB ==,4AC =,三棱锥-P ABC 的四个顶点都在球O 的球面上, 则球O 的表面 积为(A )8π (B )12π (C )20π (D )24π(11)已知函数()()()()sin cos 0,0=+++><<ωϕωϕωϕπf x x x 是奇函数,直线y =()f x 的图象的两个相邻交点的横坐标之差的绝对值为2π,则 (A )()f x 在0,4π⎛⎫ ⎪⎝⎭上单调递减 (B )()f x 在3,88ππ⎛⎫ ⎪⎝⎭上单调递减 (C )()f x 在0,4π⎛⎫ ⎪⎝⎭上单调递增 (D )()f x 在3,88ππ⎛⎫ ⎪⎝⎭上单调递增 (12)已知函数()1cos 212x f x x x π+⎛⎫=+- ⎪-⎝⎭, 则201612017k k f =⎛⎫⎪⎝⎭∑的值为(A )2016 (B )1008 (C )504 (D )0第Ⅱ卷本卷包括必考题和选考题两部分。

2017年广东省广州市番禺区高考数学一模试卷(文科)含答案解析

2017年广东省广州市番禺区高考数学一模试卷(文科)含答案解析
2017 年广东省广州市番禺区高考数学一模试卷(文科)
一、选择题(共 12 小题,每小题 5 分,满分 60 分) 1.设集合 S={ x| x<﹣ 5 或 x> 5} ,T={ x| ﹣7<x<3} ,则 S∩T=( ) A. { x | ﹣7<x<﹣ 5} B.{ x | 3<x<5} C. { x| ﹣5<x<3} D.{{ x| ﹣7<x < 5}
A. 6x﹣5y﹣ 14=0 B.6x﹣ 5y+14=0 C.6x+5y+14=0 D. 6x+5y﹣14=0
二、填空题(共 4 小题,每小题 5 分,满分 20 分)
13.若复数 a+i 是纯虚数,则实数 a= .
14.曲线 y=sinx+1 在点( 0,1)处的切线方程为

15.已知 f( x)是定义在 R 上的奇函数, f( x)满足 f(x+2) =﹣ f(x ),当 0≤
2017 年广东省广州市番禺区高考数学一模试卷(文科)
参考答案与试题解析
一、选择题(共 12 小题,每小题 5 分,满分 60 分) 1.设集合 S={ x| x<﹣ 5 或 x> 5} ,T={ x| ﹣7<x<3} ,则 S∩T=( ) A. { x | ﹣7<x<﹣ 5} B.{ x | 3<x<5} C. { x| ﹣5<x<3} D.{{ x| ﹣7<x < 5} 【考点】 交集及其运算. 【分析】 利用交集定义和不等式性质求解. 【解答】 解:∵集合 S={ x| x<﹣ 5 或 x> 5} ,T={ x| ﹣7<x<3} , ∴ S∩ T={ x| ﹣7<x<﹣ 5} . 故选: A.
的焦点,设 P 为两曲线的一个公共点,则△ PF1F2 的面积为(

2017广东高考文科数学真题

2017广东高考文科数学真题

2017年普通高等学校招生全国统一考试文科数学一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合}023|{}2|{>-=<=x x B x x A ,则A 。

}23|{<=x x B A B 。

=B A ∅ C.}23|{<=x x B A D 。

R =B A 2.为评估一种农作物的种植效果,选了n 块地作试验田。

这n 块地的亩产量(单位:kg )分别为x1,x2,…,xn ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是 A .x1,x2,…,xn 的平均数 B .x1,x2,…,xn 的标准差 C .x1,x2,…,xn 的最大值 D .x1,x2,…,xn 的中位数 3.下列各式的运算结果为纯虚数的是 A .i (1+i)2 B .i 2(1—i) C .(1+i)2 D .i (1+i ) 4.如图,正方形ABCD 内的图形来自中国古代的太极图。

正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称。

在正方形内随机取一点,则此点取自黑色部分的概率是A.41 B. 8π C 。

21 D . 4π5.已知F 是双曲线C:1322=-y x 的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3).则△APF 的面积为 A.31 B. 21 C 。

32 D . 23 6.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是7.设x ,y 满足约束条件⎪⎩⎪⎨⎧≥≥-≤+0133y y x y x ,则z=x+y 的最大值为A .0B .1C .2D .38.函数xxy cos 12sin -=的部分图像大致为9.已知函数)2ln(ln )(x x x f -+=,则A .)(x f 在(0,2)单调递增B .)(x f 在(0,2)单调递减C .y=)(x f 的图像关于直线x=1对称D .y=)(x f 的图像关于点(1,0)对称 10.如图是为了求出满足100023>-nn的最小偶数n ,那么在和两个空白框中,可以分别填入A .A>1000和n=n+1B .A>1000和n=n+2C .A ≤1000和n=n+1D .A ≤1000和n=n+211.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c. 已知0)cos (sin sin sin =-+C C A B ,a=2,c=2,则C=A.12π B 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东省广州市2017年高考一模数学(文科)试卷答 案一、选择题1~5.BACBA6~10.CBCDC11~12.DB二、填空题13.52-14.()2212x y +-=15.316.1+ 三、解答题17.解:(Ⅰ)∵S n =2a n ﹣2(n ∈N *),∴n=1时,a 1=2a 1﹣2,解得a 1=2.n ≥2时,a n =S n ﹣S n ﹣1=2a n ﹣2﹣(2a n ﹣1﹣2),化为:a n =2a n ﹣1,∴数列{a n }是等比数列,公比为2.∴a n =2n .所以1222n n n a -=⨯=(n ∈N *).(Ⅱ)S n ==2n +1﹣2.∴数列{S n }的前n 项和T n =﹣2n=2n +2﹣4﹣2n .18.解: (Ⅰ)设乙流水线生产产品的该项质量指标值的中位数为x ,因为()()0.480.0120.0320.05250.50.0120.0320.0520.07650.86=++⨯<<+++⨯=,则()()0.0120.0320.05250.0762050.5,x ++⨯+⨯-=解得390019x =. (Ⅱ)由甲,乙两条流水线各抽取的50件产品可得,甲流水线生产的不合格品有15件, 则甲流水线生产的产品为不合格品的概率为153,5010P ==甲 乙流水线生产的产品为不合格品的概率为()10.0120.02855P =+⨯=乙, 于是,若某个月内甲,乙两条流水线均生产了5000件产品,则甲,乙两条流水线生产的不合格品件数分别为:315000=1500,5000=1000105⨯⨯. (Ⅲ)22⨯列联表:…………………………10分则()221003506004 1.3505075253K ⨯-==≈⨯⨯⨯, 因为1.3 2.072,<所以没有85%的把握认为“该企业生产的这种产品的该项质量指标值与甲,乙两条流水线的选择有关”. 19.解:(Ⅰ)证明∵平面ABD ⊥平面BCD ,平面ABD平面BCD BD =, 又BD ⊥DC ,∴DC ⊥平面ABD .因为AB ⊂平面ABD ,所以DC ⊥AB又因为折叠前后均有AD ⊥AB ,DC ∩AD D =所以AB ⊥平面ADC .(Ⅱ)由(Ⅰ)知DC ⊥平面ABD ,所以AC 在平面ABD 内的正投影为AD ,即∠CAD 为AC 与其在平面ABD 内的正投影所成角.依题意tan CD CAD AD∠=因为1,AD =所以CD =设()0AB x x =>,则BD =因为△ABD ~△BDC ,所以AB DC AD BD=,即1x =,解得x3AB BD BC ===.由于AB ⊥平面ADC ,AB ⊥AC ,E 为BC 的中点,由平面几何知识得AE 322BC ==, 同理DE 322BC ==, 所以. 因为DC ⊥平面ABD,所以13A BCD ABD V CD S -=⋅=. 设点B 到平面ADE 的距离为d ,则11326ADE B ADE A BDE A BCD d S V V V ---⋅====,所以2d =,即点B 到平面ADE的距离为2. 20.解:(Ⅰ)因为椭圆C,且过点()2,1A , 所以22411a b +=,c a = 因为222a b c =+,解得28a =,22b =,所以椭圆C 的方程为22182x y +=. (Ⅱ)解法一:因为PAQ ∠的角平分线总垂直于x 轴,所以PA 与AQ 所在直线关于直线2x =对 称.设直线PA 的斜率为k ,则直线AQ 的斜率为k -.所以直线PA 的方程为()12y k x -=-,直线AQ 的方程为()12y k x -=--.设点(),P P P x y ,(),Q Q Q x y , 由()2212,1,82y k x x y ⎧-=-⎪⎨+=⎪⎩消去y ,得()()222214168161640k x k k x k k +--+--=.①因为点()2,1A 在椭圆C 上,所以2x =是方程①的一个根,则2216164214P k k x k --=+, 所以2288214P k k x k--=+. 同理2288214Q k k x k+-=+. 所以21614P Q k x x k -=-+. 又()28414P Q P Q k y y k x x k -=+-=-+. 所以直线PQ 的斜率为12P QPQ P Q y y k x x -==-. 所以直线PQ 的斜率为定值,该值为12.法2:设点()()1122,,,P x y Q x y ,则直线PA 的斜率1112PA y k x -=-,直线QA 的斜率2212QA y k x -=-. 因为PAQ ∠的角平分线总垂直于x 轴,所以PA 与AQ 所在直线关于直线2x =对称.所以PA QA k k =-,即1112y x --22102y x -+=-,① 因为点()()1122,,,P x y Q x y 在椭圆C 上, 所以2211182x y +=,② 2222182x y +=.③ 由②得()()22114410x y -+-=,得()111112241y x x y -+=--+,④ 同理由③得()222212241y x x y -+=--+,⑤ 由①④⑤得()()12122204141x x y y +++=++, 化简得()()12211212240x y x y x x y y ++++++=,⑥由①得()()12211212240x y x y x x y y +-+-++=,⑦⑥-⑦得()12122x x y y +=-+.②-③得22221212082x x y y --+=,得()12121212142y y x x x x y y -+=-=-+. 所以直线PQ 的斜率为121212PQ y y k x x -==-为定值. 法3:设直线PQ 的方程为y kx b =+,点()()1122,,,P x y Q x y ,则1122,y kx b y kx b =+=+,直线PA 的斜率1112PA y k x -=-,直线QA 的斜率2212QA y k x -=-. 因为PAQ ∠的角平分线总垂直于x 轴,所以PA 与AQ 所在直线关于直线2x =对称.所以PA QA k k =-,即1112y x --2212y x -=--, 化简得()()12211212240x y x y x x y y +-+-++=.把1122,y kx b y kx b =+=+代入上式,并化简得()()1212212440kx x b k x x b +--+-+=.(*) 由22,1,82y kx b x y =+⎧⎪⎨+=⎪⎩消去y 得()222418480k x kbx b +++-=,(**) 则2121222848,4141kb b x x x x k k -+=-=++, 代入(*)得()()2222488124404141k b kb b k b k k -----+=++,整理得()()21210k b k -+-=, 所以12k =或12b k =-. 若12b k =-,可得方程(**)的一个根为2,不合题意. 若12k =时,合题意. 所以直线PQ 的斜率为定值,该值为12.21.解:(Ⅰ)法1:函数()ln a f x x x=+的定义域为()0,+∞. 由()ln a f x x x =+,得()221a x a f x x x x -'=-=. 因为0a >,则()0,x a ∈时,()0f x '<;(),x a ∈+∞时,()0f x '>.所以函数()f x 在()0,a 上单调递减,在(),a +∞上单调递增.当x a =时,()min ln 1f x a ⎡⎤=+⎣⎦.当ln 10a +≤,即0a <≤1e时,又()1ln10f a a =+=>,则函数()f x 有零点. 所以实数a 的取值范围为10,e ⎛⎤ ⎥⎝⎦. 法2:函数()ln a f x x x =+的定义域为()0,+∞. 由()ln 0a f x x x=+=,得ln a x x =-. 令()ln g x x x =-,则()()ln 1g x x '=-+. 当10,x e ⎛⎫∈ ⎪⎝⎭时,()0g x '>;当1,x e ⎛⎫∈+∞ ⎪⎝⎭时,()0g x '<. 所以函数()g x 在10,e ⎛⎫ ⎪⎝⎭上单调递增,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递减 故1x e =时,函数()g x 取得最大值1111ln g e e e e ⎛⎫=-= ⎪⎝⎭. 因而函数()ln a f x x x =+有零点,则10a e<≤. 所以实数a 的取值范围为10,e ⎛⎤ ⎥⎝⎦. (Ⅱ)要证明当2a e≥时,()x f x e ->, 即证明当0,x >2a e ≥时,ln x a x e x -+>,即ln x x x a xe -+>. 令()ln h x x x a =+,则()ln 1h x x '=+. 当10x e <<时,()0f x '<;当1x e>时,()0f x '>.所以函数()h x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增. 当1x e=时,()min 1h x a e ⎡⎤=-+⎣⎦. 于是,当2a e ≥时,()11.h x a e e ≥-+≥① 令()x x xe ϕ-=,则()()1x x x x e xe e x ϕ---'=-=-.当01x <<时,()0f x '>;当1x >时,()0f x '<.所以函数()x ϕ在()0,1上单调递增,在()1,+∞上单调递减.当1x =时,()max 1x eϕ⎡⎤=⎣⎦. 于是,当0x >时,()1.x e ϕ≤② 显然,不等式①、②中的等号不能同时成立. 故当2a e≥时,()x f x e ->. 22.解:(Ⅰ)由直线l 的参数方程3,1,x t y t =-⎧⎨=+⎩消去t 得40x y +-=, 所以直线l 的普通方程为40x y +-=.由4πρθ⎛⎫=- ⎪⎝⎭cos cos sin sin 2cos 2sin 44ππθθθθ⎫=+=+⎪⎭, 得22cos 2sin ρρθρθ=+.将222,cos ,sin x y x y ρρθρθ=+==代入上式,得曲线C 的直角坐标方程为2222x y x y +=+,即()()22112x y -+-=. (Ⅱ)法1:设曲线C上的点为()1,1P αα, 则点P 到直线l的距离为d =当sin 14πα⎛⎫+=- ⎪⎝⎭时,max d =, 所以曲线C 上的点到直线l的距离的最大值为法2:设与直线l 平行的直线为:0l x y b '++=,当直线l '与圆C=解得0b =或4b =-(舍去),所以直线l '的方程为0x y +=.所以直线l 与直线l '的距离为d ==所以曲线C 上的点到直线l的距离的最大值为23.解:(Ⅰ)因为()13f <,所以123a a +-<.①当0a ≤时,得()123a a -+-<,解得23a >-,所以203a -<≤; ②当102a <<时,得()123a a +-<,解得2a >-,所以102a <<; ③当12a ≥时,得()123a a --<,解得43a <,所以1423a ≤<; 综上所述,实数a 的取值范围是24,33⎛⎫- ⎪⎝⎭. (Ⅱ)因为1,a x ≥∈R ,所以()()()1212f x x a x a x a x a =+-+-≥+---31a =-31a =-2≥.广东省广州市2017年高考一模数学(文科)试卷解析一、选择题1.【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、虚部的定义即可得出.【解答】解:复数==1﹣i的虚部是﹣1.故选:B.2.【考点】集合的表示法.【分析】集合{x|x2+ax=0}={0,1},则x2+ax=0的解为0,1,利用韦达定理,求出a的值.【解答】解:由题意,0+1=﹣a,∴a=﹣1,故选A.3.【考点】二倍角的余弦.【分析】由已知利用同角三角函数关系式可求cosθ,进而利用二倍角的余弦函数公式即可计算求值得解.【解答】解:∵tanθ=2,且θ∈,4.【考点】循环结构.【分析】按照程序框图的流程写出前几次循环的结果;直到满足判断框中的条件,执行输出.【解答】解:经过第一次循环得到的结果为k=0,n=16,经过第二次循环得到的结果为k=1,n=49,经过第三次循环得到的结果为k=2,n=148,经过第四次循环得到的结果为k=3,n=445,满足判断框中的条件,执行“是”输出的k为3故选B5.【考点】函数的值.【分析】由解析式先求出f(3),由指数的运算法则求出(f(3))的值.【解答】解:由题意知,f(x)=,则f(3)=1﹣,所以f(f(3))==4•=,故选A.6.【考点】双曲线的简单性质.【分析】由双曲线的方程、渐近线的方程求出a,由双曲线的定义求出|PF2|.【解答】解:由双曲线的方程、渐近线的方程可得=,∴a=3.由双曲线的定义可得|PF2|﹣2=6,∴|PF2|=8,故选C.7.【考点】列举法计算基本事件数及事件发生的概率.【分析】列举出所有情况,求出满足条件的概率即可.【解答】解:由题意得:正面不能相邻,即正反正反,反正反正,3反一正,全反,其中3反一正中有反反反正,反反正反,反正反反,正反反反,故共7中情况,故P==,故选:B.8.【考点】简单空间图形的三视图.【分析】该几何体为正方体截去一部分后的四棱锥P﹣ABCD,作出图形,可得结论.【解答】解:该几何体为正方体截去一部分后的四棱锥P﹣ABCD,如图所示,该几何体的俯视图为C.故选:C.9.【考点】利用导数研究曲线上某点切线方程.【分析】由曲线y=f(x)在点P(x0,f(x0))处的切线方程为x+y=0,导函数等于﹣1求得点(x0,f(x0))的横坐标,进一步求得f(x0)的值,可得结论.【解答】解:∵f(x)=x3+ax2,∴f′(x)=3x2+2ax,∵函数在点(x0,f(x0))处的切线方程为x+y=0,∴3x02+2ax0=﹣1,∵x0+x03+ax02=0,解得x0=±1.当x0=1时,f(x0)=﹣1,当x0=﹣1时,f(x0)=1.故选:D.10.【考点】球的体积和表面积.【分析】由题意,PC为球O的直径,求出PC,可得球O的半径,即可求出球O的表面积.【解答】解:由题意,PC为球O的直径,PC==2,∴球O的半径为,∴球O的表面积为4π•5=20π,故选C.11.【考点】三角函数中的恒等变换应用.【分析】根据两角和的正弦函数化简解析式,由条件和诱导公式求出φ的值,由条件和周期共识求出ω的值,根据正弦函数的单调性和选项判断即可.【解答】解:由题意得,f(x)=sin(ωx+φ)+cos(ωx+φ)= [sin(ωx+φ)+cos(ωx+φ)]=,∵函数f(x)(ω>0,0<φ<π)是奇函数,∴,则,又0<φ<π,∴φ=,∴f(x)==,∵y=与f(x)的图象的两个相邻交点的横坐标之差的绝对值为,∴T=,则ω=4,即f(x)=,由得4x∈(0,π),则f(x)在上不是单调函数,排除A、C;由得4x∈,则f(x)在上是增函数,排除B,故选:D.12.【考点】数列的求和.【分析】函数f(x)=+cos(x﹣),可得f(x)+f(1﹣x)=0,即可得出.【解答】解:∵函数f(x)=+cos(x﹣),∴f(x)+f(1﹣x)=+cos(x﹣)++=1+0=1,则=2016=1008.故选:B.二、填空题13.【考点】平面向量的坐标运算.【分析】利用向量共线定理即可得出.【解答】解:=(1﹣x,3),∵∥(﹣),∴2(1﹣x)﹣3=0,解得x=﹣.则•=﹣﹣2=﹣.故答案为:﹣.14.【考点】抛物线的简单性质.【分析】求出抛物线的焦点即圆心坐标,利用切线的性质计算点C到切线的距离即为半径,从而得出圆的方程.【解答】解:抛物线的标准方程为:x2=4y,∴抛物线的焦点为F(0,1).即圆C的圆心为C(0,1).∵圆C与直线y=x+3相切,∴圆C的半径为点C到直线y=x+3的距离d==.∴圆C的方程为x2+(y﹣1)2=2.故答案为:x2+(y﹣1)2=2.15.【考点】简单线性规划;二元一次不等式(组)与平面区域.【分析】根据题意,将不等式组表示的平面区域表示出来,分析可得必有a>1,此时阴影部分的面积S=×2×1+×(a﹣1)×[a+1﹣(3﹣a)]=5,解可得a的值,即可得答案.【解答】解:根据题意,不等式组⇔或;其表示的平面区域如图阴影部分所示:=×2×1=1,不合题意,当a≤1时,其阴影部分面积S<S△AOB必有a>1,当a>1时,阴影部分面积S=×2×1+×(a﹣1)×[a+1﹣(3﹣a)]=5,解可得a=3或﹣1(舍);故答案为:3.16.【考点】三角形中的几何计算.【分析】设A,B,C所对的边a,b,c,则根据余弦定理可得a2+b2+c2=2abcosC,以及b=c+可得c的长,再利用均值不等式即可求出答案.【解答】解:设A,B,C所对的边a,b,c,则根据余弦定理可得a2+b2+c2=2abcosC,将b=c+代入上式,可得a2+c+=ac+,化简可得c=,所以△ABC的周长l=a+b+c=++a,化简可得l=3(a﹣1)++,因为a>1,所以由均值不等式可得3(a﹣1)=时,即6(a﹣1)2=3,解得a=+1时,△ABC的周长最短,故答案为: +1.三、解答题17.【考点】数列的求和;数列递推式.【分析】(I)S n=2a n﹣2(n∈N*),可得n=1时,a1=2a1﹣2,解得a1.n≥2时,a n=S n﹣S n﹣1,再利用等比数列的通项公式即可得出.(II)利用等比数列的求和公式即可得出.18.【考点】独立性检验的应用;频率分布直方图.【分析】(Ⅰ)利用(0.012+0.032+0.052)×5+0.076×(x﹣205)=0.5,即可估计乙流水线生产产品该质量指标值的中位数;(Ⅱ)求出甲,乙两条流水线生产的不合格的概率,即可得出结论;(Ⅲ)计算可得K2的近似值,结合参考数值可得结论.19.【考点】点、线、面间的距离计算;直线与平面垂直的判定.【分析】(Ⅰ)由题意结合面面垂直的性质可得BD⊥DC,有DC⊥平面ABD,进一步得到DC⊥AB,再由线面垂直的判定可得AB⊥平面ADC;(Ⅱ)由(Ⅰ)知DC⊥平面ABD,可得AC在平面ABD内的正投影为AD,求解直角三角形得到AB的值,然后利用等积法求得点B到平面ADE的距离.20.【考点】直线与椭圆的位置关系.【分析】(Ⅰ)由椭圆C的离心率为,且过点A(2,1),列出方程组,求出a,b,由此能求出椭圆C的方程.(Ⅱ)法一:由∠PAQ的角平分线总垂直于x轴,知PA与AQ所在直线关于直线x=2对称.设直线PA的方程为y﹣1=k(x﹣2),直线AQ的方程为y﹣1=﹣k(x﹣2).由,得(1+4k2)x2﹣(16k2﹣8k)x+16k2﹣16k﹣4=0.由点A(2,1)在椭圆C上,求出.同理,由此能求出直线PQ的斜率为定值.法二:设点P(x1,y1),Q(x2,y2),则直线PA的斜率,直线QA的斜率.由∠PAQ的角平分线总垂直于x轴,知,再由点P(x1,y1),Q(x2,y2)在椭圆C上,能求出直线PQ的斜率为定值.法三:设直线PQ的方程为y=kx+b,点P(x1,y1),Q(x2,y2),则y1=kx1+b,y2=kx2+b,直线PA的斜率,直线QA的斜率.由∠PAQ的角平分线总垂直于x轴,知=,由,得(4k2+1)x2+8kbx+4b2﹣8=0,由此利用韦达定理能求出直线PQ的斜率为定值.21.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)法一:求出函数f(x)的导数,根据函数的单调性求出a的范围即可;法二:求出a=﹣xlnx,令g(x)=﹣xlnx,根据函数的单调性求出a的范围即可;(Ⅱ)问题转化为xlnx+a>xe﹣x,令h(x)=xlnx+a,令φ(x)=xe﹣x,根据函数的单调性证明即可.22.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(Ⅰ)将直线l的参数方程消去t参数,可得直线l的普通方程,将ρcosθ=x,ρsinθ=y,ρ2=x2+y2,带入ρ=2cos(θ﹣)可得曲线C的直角坐标方程.(Ⅱ)法一:设曲线C上的点为,点到直线的距离公式建立关系,利用三角函数的有界限可得最大值.法二:设与直线l平行的直线为l':x+y+b=0,当直线l'与圆C相切时,得,点到直线的距离公式可得最大值.23.【考点】绝对值不等式的解法;绝对值三角不等式.【分析】(Ⅰ)通过讨论a的范围得到关于a的不等式,解出取并集即可;(Ⅱ)基本基本不等式的性质证明即可.广东省广州市2017年高考一模数学(文科)试卷一、选择题:本小题共12题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.复数21i+的虚部是( ) A .2- B .1-C .1D .22.已知集合}{}{200,1x x ax +==,则实数a 的值为( ) A .1-B .0C .1D .23.已知tan 2θ=,且θ∈π0,2⎛⎫⎪⎝⎭,则cos2θ=( )A .45B .35C .35-D .45-4.阅读如图的程序框图.若输入5n =,则输出k 的值为( ) A .2B .3C .4D .55.已知函数()122,0,1log ,0,x x f x x x +⎧≤=⎨->⎩则()()3f f =( )A .43B .23C .43-D .3-6.已知双曲线C 222:14x y a -=的一条渐近线方程为230x y +=,1F ,2F 分别是双曲线C 的左、右焦点,点P 在双曲线C 上,且12PF =,则2PF 等于( ) A .4B .6C .8D .107.四个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的硬币.若硬币正面朝上,则这个人站起来;若硬币正面朝下,则这个人继续坐着.那么,没有相邻的两个人站起来的概率为( ) A .14B .716C .12D .9168.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为8,则该几何体的俯视图可以是( )9.设函数()32f x x ax =+,若曲线()y f x =在点()()00,P x f x 处的切线方程为0x y +=,则点P 的坐标为( ) A .()0,0B .()1,1-C .()1,1-D .()1,1-或()1,1-10.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P ABC -为鳖臑,PA ⊥平面ABC ,2PA AB ==,4AC =,三棱锥P ABC -的四个顶点都在球O 的球面上,则球O 的表面积为( )A .8πB .12πC .20πD .24π11.已知函数()()()()sin cos 0,0πf x x x =ω+φ+ω+φω><φ<是奇函数,直线y =与函数()f x 的图象的两个相邻交点的横坐标之差的绝对值为π2,则( ) A .()f x 在π0,4⎛⎫⎪⎝⎭上单调递减B .()f x 在π3π,88⎛⎫⎪⎝⎭上单调递减C .()f x 在π0,4⎛⎫⎪⎝⎭上单调递增D .()f x 在π3π,88⎛⎫⎪⎝⎭上单调递增12.已知函数()π1cos 212x f x x x +⎛⎫=+- ⎪-⎝⎭,则201612017k k f =⎛⎫ ⎪⎝⎭∑的值为( ) A .2 016 B .1 008 C .504D .0二、填空题:本小题共4题,每小题5分.13.已知向量a ()1,2=,b (),1x =-,若a //()-a b ,则⋅a b =__________.14.若一个圆的圆心是抛物线24x y =的焦点,且该圆与直线3y x =+相切,则该圆的标准方程是__________.15.满足不等式组(1)(3)00x y x y x a-++-≥⎧⎨≤≤⎩的点(),x y 组成的图形的面积是5,则实数a 的值是__________.16.在△ABC 中,160,1,2ACB BC AC AB ︒∠=>=+,当△ABC 的周长最短时,BC 的长是__________. 三、解答题:解答应写出文字说明、证明过程或演算步骤 17.已知数列{}n a 的前n 项和为n S ,且22n n S a =-(n ∈*N ) (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列{}n S 的前n 项和n T . 18.(本小题满分12分)某企业生产的某种产品被检测出其中一项质量指标存在问题.该企业为了检查生产该产品的甲,乙两条流水线的生产情况,随机地从这两条流水线上生产的大量产品中各抽取50件产品作为样本,测出它们的这一项质量指标值.若该项质量指标值落在(]195,210内,则为合格品,否则为不合格品.表1是甲流水线样本的频数分布表,图1是乙流水线样本的频率分布直方图.(Ⅰ)根据图1,估计乙流水线生产产品该质量指标值的中位数;(Ⅱ)若将频率视为概率,某个月内甲,乙两条流水线均生产了5 000件产品,则甲、乙两条流水线分别生产出不合格品约多少件?(Ⅲ)根据已知条件完成下面22⨯列联表,并回答是否有85%的把握认为“该企业生产的这种产品的质量指标值与甲,乙两条流水线的选择有关”?附:()()()()()22n ad bcKa b c d a c b d-=++++(其中n a b c d=+++为样本容量)19.(本小题满分12分)如图1,在直角梯形ABCD中,AD//BC,AB⊥BC,BD⊥DC,点E是BC边的中点,将ABD∆沿BD 折起,使平面ABD⊥平面BCD,连接AE,AC,DE,得到如图2所示的几何体.(Ⅰ)求证:AB⊥平面ADC;(Ⅱ)若1=AD,AC与其在平面ABD B到平面ADE的距离.20.(本小题满分12分)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为2,且过点()2,1A(Ⅰ)求椭圆C 的方程;(Ⅱ)若,P Q 是椭圆C 上的两个动点,且使PAQ ∠的角平分线总垂直于x 轴,试判断直线PQ 的斜率是否为定值?若是,求出该值;若不是,说明理由. 21.已知函数()ln (0)af x x a x=+> (Ⅰ)若函数()f x 有零点,求实数a 的取值范围; (Ⅱ)证明:当2ea ≥时,()e xf x ->. 选修4-4:坐标系与参数方程22.在直角坐标系xOy 中,直线l 的参数方程为3,(1,x t t y t =-⎧⎨=+⎩为参数).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线π:4C ⎛⎫ρ=θ- ⎪⎝⎭.(Ⅰ)求直线l 的普通方程和曲线C 的直角坐标方程; (Ⅱ)求曲线C 上的点到直线l 的距离的最大值 选修4-5:不等式选讲23.已知函数()12f x x a x a =+-+-. (Ⅰ)若()13f <,求实数a 的取值范围; (Ⅱ)若1,a x ≥∈R ,求证:()2f x ≥.。

相关文档
最新文档