【高三数学试题精选】2018届高考数学基础知识剖析复习06
【备战2018】高考数学分项汇编 专题06 数列(含解析)文
专题06 数列一.基础题组1. 【2014上海,文10】设无穷等比数列{n a }的公比为q ,若)(lim 431 ++=∞→a a a n ,则q= .【考点】无穷递缩等比数列的和.2. 【2013上海,文2】在等差数列{a n }中,若a 1+a 2+a 3+a 4=30,则a 2+a 3=______.【答案】15 3. 【2013上海,文7】设常数a ∈R .若25()a x x+的二项展开式中x 7项的系数为-10,则a =______.【答案】-2 4. 【2012上海,文7】有一列正方体,棱长组成以1为首项、12为公比的等比数列,体积分别记为V 1,V 2,…,V n ,…,则12lim ()n n V V V →∞+++=…__________.【答案】875. 【2012上海,文8】在(x -1x)6的二项展开式中,常数项等于__________.【答案】-206. 【2012上海,文14】已知1()1f xx=+,各项均为正数的数列{a n}满足a1=1,a n+2=f(a n).若a2010=a2 012,则a20+a11的值是__________.7. 【2012上海,文18】若π2ππsin sin sin777nnS=+++…(n∈N*),则在S1,S2,…,S100中,正数的个数是( )A.16 B.72 C.86 D.100【答案】 C 8. 【2008上海,文14】若数列{}n a 是首项为1,公比为32a =的无穷等比数列,且{}n a 各项的和为a ,则a 的值是( )A.1 B.2 C.12 D.54【答案】B9. 【2007上海,文14】数列{}n a 中,22211100010012n n n a n n n n⎧⎪⎪=⎨⎪⎪-⎩,≤≤, 则数列{}n a 的极限值( )A.等于0B.等于1C.等于0或1D.不存在【答案】B二.能力题组1. 【2014上海,文23】(本题满分18分)本题共3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.已知数列{}n a 满足1113,*,13n n n a a a n N a +≤≤∈=.(1)若2342,,9a a x a ===,求x 的取值范围;(2)若{}n a 是等比数列,且11000m a =,正整数m 的最小值,以及m 取最小值时相应{}n a 的仅比;(3)若12100,,,a a a 成等差数列,求数列12100,,,a a a 的公差的取值范围.【答案】(1)[3,6];(2)1[,2]3;(3)k的最大值为1999,此时公差为11999d=-.【考点】解不等式(组),数列的单调性,分类讨论,等差(比)数列的前n项和.2. 【2013上海,文22】已知函数f(x)=2-|x|,无穷数列{a n}满足a n+1=f(a n),n∈N*.(1)若a1=0,求a2,a3,a4;(2)若a1>0,且a1,a2,a3成等比数列,求a1的值;(3)是否存在a1,使得a1,a2,…,a n,…成等差数列?若存在,求出所有这样的a1;若不存在,说明理由.【答案】(1)a2=2,a3=0,a4=2 ;(2)a1=2-舍去)或a1=2+(3) 当且仅当a1=1时,a1,a2,a3,…构成等差数列3. 【2012上海,文23】对于项数为m的有穷数列{a n},记b k=max{a1,a2,…,a k}(k=1,2,…,m),即b k为a1,a2,…,a k中的最大值,并称数列{b n}是{a n}的控制数列.如1,3,2,5,5的控制数列是1,3,3,5,5.(1)若各项均为正整数的数列{a n}的控制数列为2,3,4,5,5,写出所有的{a n};(2)设{b n}是{a n}的控制数列,满足a k+b m-k+1=C(C为常数,k=1,2,…,m),求证:b k=a k(k=1,2,…,m);(3)设m=100,常数a∈(12,1),若(1)22(1)n nna an n+=--,{b n}是{a n}的控制数列,求(b1-a1)+(b2-a2)+…+(b100-a100).【答案】(1)参考解析;(2) 参考解析;(3) 2 525(1-a)4.【2011上海,文23】已知数列{a n }和{b n }的通项公式分别为a n =3n +6,b n =2n +7(n ∈N *).将集合{x |x =a n ,n ∈N *}∪{x |x =b n ,n ∈N *}中的元素从小到大依次排列,构成数列c 1,c 2,c 3,…c n ,….(1)求三个最小的数,使它们既是数列{a n }中的项又是数列{b n }中的项;(2) c 1,c 2,c 3,…,c 40中有多少项不是数列{b n }中的项?请说明理由;(3)求数列{a n }的前4n 项和S 4n (n ∈N *).【答案】(1)9,15,21; (2)10; (3)241233n S n n=+5. 【2010上海,文21】已知数列{a n }的前n 项和为S n ,且S n =n -5a n -85,n ∈N *.(1)证明:{a n -1}是等比数列;(2)求数列{S n }的通项公式,并求出使得S n +1>S n 成立的最小正整数n .【答案】(1)参考解析; (2) S n =n +75·(56)n -1-90, 最小正整数n =156. (2009上海,文23)已知{a n}是公差为d的等差数列,{b n}是公比为q的等比数列.(1)若a n=3n+1,是否存在m、k∈N*,有a m+a m+1=a k?请说明理由;(2)若b n=aq n(a,q为常数,且aq≠0),对任意m存在k,有b m·b m+1=b k,试求a、q满足的充要条件;(3)若a n=2n+1,b n=3n,试确定所有的p,使数列{b n}中存在某个连续p项的和是数列{a n}中的一项,请证明.【答案】(1)不存在m、k∈N*, (2) a=q c,其中c是大于等于-2的整数;(3) p为奇数7. 【2008上海,文21】(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知数列{}n a :11a =,22a =,3a r =,32n n a a +=+(n 是正整数),与数列{}n b :11b =,20b =,31b =-,40b =,4n n b b +=(n 是正整数).记112233n n n T b a b a b a b a =++++ .(1)若1231264a a a a ++++= ,求r 的值;(2)求证:当n 是正整数时,124n T n =-;(3)已知0r >,且存在正整数m ,使得在121m T +,122m T +, ,1212m T +中有4项为100.求r 的值,并指出哪4项为100.【答案】(1)4;(2)参考解析;(3)293294297298,,,T T T T()1241.121,12241;123,12441;125,12645;127,1284;129,121044;m n n n n T m m n m m T m n m m T m r nn m m T m r n m m T m r n m m T m =-≥=++=+=++=-+-=++=+-=++=--=++=+当时,当时,当时,当时,当时,8. 【2007上海,文20】(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.如果有穷数列123m a a a a ,,,,(m 为正整数)满足条件m a a =1,12-=m a a ,…,1a a m =,即1+-=i m i a a (12i m = ,,,),我们称其为“对称数列”. 例如,数列12521,,,,与数列842248,,,,,都是“对称数列”.(1)设{}n b 是7项的“对称数列”,其中1234b b b b ,,,是等差数列,且21=b ,114=b .依次写出{}n b 的每一项;(2)设{}n c 是49项的“对称数列”,其中492625,,c c c ⋅⋅⋅是首项为1,公比为2的等比数列,求{}n c 各项的和S ;(3)设{}n d 是100项的“对称数列”,其中5152100d d d ,,,是首项为2,公差为3的等差数列.求{}n d 前n 项的和n S (12100)n = ,,,.【答案】(1)25811852,,,,,,;(2)67108861;(3)参考解析9. 【2006上海,文20】(本题满分14)本题共有2个小题,第1小题满分6分,第2小题满分8分。
高三数学-2018详解2018年普通高等学校招生全国统一考
2018年普通高等学校招生全国统一考试 文科数学(全国卷Ⅰ河北、河南、安徽、山西、山东、湖北、湖南江西、福建、广西、黑龙江、内蒙、陕西、宁夏浙江、海南、云南)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用黑色签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。
3.本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果时间A 、B 互斥,那么()()()P A B P A P B +=+如果时间A 、B 相互独立,那么()()()B P A P B A P =⋅如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率()()1n kk kn n P k C P P -=-球的表面积公式24S R π=,其中R 表示球的半径 球的体积公式343V R π=,其中R 表示球的半径 一、选择题⑴、已知向量a 、b41==,且2=∙b a ,则a 与b 的夹角为CA .6π B .4π C .3π D .2π 【考点分析】本题考查向量的数量积运算,基础题。
解析:32142π=⇒===,故选择C 。
【名师点拔】向量的夹角计算是向量的基本运算,必须掌握。
⑵、设集合{}20M x x x =-<,{}2N x x =<,则BA .M N =∅B .M N M =C .M N M =D .M N R =(同全国卷Ⅰ理1)【考点分析】本题考查解简单的不等式与集合的运算,基础题。
解析:{}20M x x x =-<()1,0=,{}2N x x =<()2,2-=,故选择B 。
高考数学 专题06 确定抽象函数单调性解函数不等式黄金解题模板-人教版高三全册数学试题
专题06 确定抽象函数单调性解函数不等式【高考地位】函数的单调性是函数的一个非常重要的性质,也是高中数学考查的重点内容。
而抽象函数的单调性解函数不等式问题,其构思新颖,条件隐蔽,技巧性强,解法灵活,往往让学生感觉头痛。
因此,我们应该掌握一些简单常见的几类抽象函数单调性及其应用问题的基本方法。
【方法点评】确定抽象函数单调性解函数不等式使用情景:几类特殊函数类型解题模板:第一步 (定性)确定函数)(x f 在给定区间上的单调性和奇偶性; 第二步 (转化)将函数不等式转化为)()(N f M f <的形式;第三步 (去f )运用函数的单调性“去掉”函数的抽象符号“f ”,转化成一般的不等式或不等式组;第四步 (求解)解不等式或不等式组确定解集;第五步 (反思)反思回顾,查看关键点,易错点及解题规X.例 1 已知函数()f x 是定义在R 上的奇函数,若对于任意给定的实数12,x x ,且12x x ≠,不等式()()()()11221221x f x x f x x f x x f x +<+恒成立,则不等式()()1120x f x +-<的解集为__________.【答案】11,2⎛⎫- ⎪⎝⎭. 例2.已知定义为R 的函数()f x 满足下列条件:①对任意的实数,x y 都有:()()()1f x y f x f y +=+-;②当0x >时,()1f x >.(1)求()0f ;(2)求证:()f x 在R 上增函数;(3)若()67,3f a =≤-,关于x 的不等式()()223f ax f x x -+-<对任意[)1,x ∈-+∞恒成立,某某数a 的取值X 围.【答案】(1)()01f =;(2)证明见解析;(3)(]5,3--.即()2130x a x -++>在[)1,x ∈-+∞上恒成立,令()()213g x x a x =-++,即()min 0g x >成立即可.①当112a +<-,即3a <-时,()g x 在[)1,x ∈-+∞上单调递增, 则()()()min 11130g x g a =-=+++>解得5a >-,所以53a -<<-,②当112a +≥-即3a ≥-时,有()()2min 111130222a a a g x g a +++⎛⎫⎛⎫==-++> ⎪ ⎪⎝⎭⎝⎭解得231231a -<<,而2313-<-,所以3231a -≤<, 综上,实数a 的取值X 围是(]5,3-- 【变式演练1】设奇函数()f x 在区间[1,1]-上是增函数,且(1)1f -=-.当[1,1]x ∈-时,函数2()21f x t at ≤-+,对一切[1,1]a ∈-恒成立,则实数t 的取值X 围为( ) A.22t -≤≤ B.2t ≤-或2t ≥ C.0t ≤或2t ≥ D.2t ≤-或2t ≥或0t = 【答案】D 【解析】试题分析:由奇函数()f x 在区间[1,1]-上是增函数,且(1)1f -=-,所以在区间[1,1]x ∈-的最大值为1,所以2121t at ≤-+当0t =时显然成立,当0t ≠时,则220t at -≥成立,又[1,1]a ∈-,令()22,[1,1]g a at t a =-∈-,当0t >时,()g a 是减函数,故令()10g ≥,解得2t ≥;当0t <时,()g a 是增函数,故令()10g -≥,解得2t ≤-,综上所述,2t ≥或2t ≤-或0t =,故选D. 考点:函数的单调性与函数的奇偶性的应用.【变式演练2】已知定义在R 上的函数()f x 为增函数,当121x x +=时,不等式()()()()1201f x f f x f +>+恒成立,则实数1x 的取值X 围是( )A. (),0-∞B. 10,2⎛⎫ ⎪⎝⎭C. 1,12⎛⎫⎪⎝⎭D. ()1,+∞ 【答案】D【变式演练3】定义在非零实数集上的函数()f x 满足()()()f xy f x f y =+,且()f x 是区间(0,)+∞上的递增函数.(1)求(1),(1)f f -的值; (2)求证:()()f x f x -=; (3)解不等式1(2)()02f f x +-≤.【答案】(1)(1)0f =,(1)0f -=;(2)证明见解析;(3)⎥⎦⎤ ⎝⎛⎪⎭⎫⎢⎣⎡1,2121,0 .考点:抽象函数及应用.【变式演练4】定义在(1,1)-上的函数()f x 满足下列条件:①对任意,(1,1)x y ∈-,都有()()()1x yf x f y f x y++=++;②当(1,0)x ∈-时,有()0f x >,求证:(1)()f x 是奇函数; (2)()f x 是单调递减函数; (3)21111()()()()1119553f f f f n n +++>++,其中*n N ∈. 【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析.【解析】试题分析:(1)由奇函数的定义及特殊值0)0(=f 即可证明;(2)由单调性的定义,做差证明;(3)先由题(3)211()1(3)(2)23()[][]1155(2)(3)11()23n n n n f f f n n n n n n +-+-+++==++++-+-++ 1111()()()()2323f f f f n n n n =+-=-++++∴2111()()()111955f f f n n +++++111111[()()][()()][()()]344523f f f f f f n n =-+-++-++ 1111()()()()3333f f f f n n =-=+-++∵1013n <<+,∴1()03f n ->+,∴111()()()333f f f n +->+.故21111()()()()1119553f f f f n n +++>++.考点:1.抽象函数;2.函数的单调性,奇偶性;3.数列求和. 【高考再现】1.【2017全国卷一理】函数()f x 在()-∞+∞,单调递减,且为奇函数.若()11f =-,则满足()121f x --≤≤的x 的取值X 围是()A .[]22-,B .[]11-,C .[]04,D .[]13,【答案】D【解析】因为()f x 为奇函数,所以()()111f f -=-=,于是()121f x --≤≤等价于()()()121f f x f --≤≤| 【解析】又()f x 在()-∞+∞,单调递减 【解析】121x ∴--≤≤3x ∴1≤≤ 故选D2.【2017某某理】已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为 (A )a b c << (B )c b a <<(C )b a c <<(D )b c a <<【答案】C3. 【2016高考新课标2理数】已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()miii x y =+=∑( )(A )0 (B )m (C )2m (D )4m 【答案】C 【解析】试题分析:由于()()2f x f x -+=,不妨设()1f x x =+,与函数111x y x x+==+的交点为()()1,2,1,0-,故12122x x y y +++=,故选C. 考点:函数图象的性质【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图象有对称轴2a bx +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数的图象有对称中心.4.【2015高考,理7】如图,函数()f x 的图象为折线ACB ,则不等式()()2log 1f x x +≥的解集是()A .{}|10x x -<≤B .{}|11x x -≤≤C .{}|11x x -<≤D .{}|12x x -<≤【答案】C础题,首先是函数图象平移变换,把2log y x =沿x 轴向左平移2个单位,得到2log (y x =+2)的图象,要求正确画出画出图象,利用数形结合写出不等式的解集.5. 【2014高考某某版理第7题】下列函数中,满足“()()()f x y f x f y +=”的单调递增函数是( )(A )()12f x x = (B )()3f x x = (C )()12xf x ⎛⎫= ⎪⎝⎭(D )()3x f x =【答案】D6. 【2014某某理12】已知定义在[0,1]上的函数()f x 满足: ①(0)(1)0f f ==;②对所有,[0,1]x y ∈,且x y ≠,有1|()()|||2f x f y x y -<-. 若对所有,[0,1]x y ∈,|()()|f x f y k -<,则k 的最小值为( )A .12B .14C .12πD .18【答案】B 【解析】考点:1.抽象函数问题;2.绝对值不等式.【名师点睛】本题考查抽象函数问题、绝对值不等式、函数的最值等.解答本题的关键,是利用分类讨论思想、转化与化归思想,逐步转化成不含绝对值的式子,得出结论.本题属于能力题,中等难度.在考查抽象函数问题、绝对值不等式、函数的最值等基础知识的同时,考查了考生的逻辑推理能力、运算能力、分类讨论思想及转化与化归思想.7. 【2016高考某某理数】已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 足1(2)(2)a f f ->,则a 的取值X 围是______.【答案】13(,)22考点:利用函数性质解不等式【名师点睛】不等式中的数形结合问题,在解题时既要想形又要以形助数,常见的“以形助数”的方法有:(1)借助数轴,运用数轴的有关概念,解决与绝对值有关的问题,解决数集的交、并、补运算非常有效. (2)借助函数图象性质,利用函数图象分析问题和解决问题是数形结合的基本方法,需注意的问题是准确把握代数式的几何意义实现“数”向“形”的转化. 【反馈练习】1. 【2017-2018学年某某省某某市高一上学期第一次联考数学试题】函数()y f x =在R 上为增函数,且()()29f m f m >+,则实数m 的取值X 围是( )A. ()9+∞,B. [)9+∞,C. (),9-∞-D. (]9-∞, 【答案】A2.【2018届某某省某某市第一中学高三10月调研数学(理)试题】设奇函数()f x 在()0,+∞上为增函数,且()20f =,则不等式()()0f x f x x--<的解集为()A. ()()2,02,-⋃+∞B. ()(),20,2-∞-⋃C. ()(),22,-∞-⋃+∞D. ()()2,00,2-⋃【答案】D 【解析】函数()f x 为奇函数,则()()f x f x -=-,()()0f x f x x--<,化为()20f x x<,等价于()0xf x <,当0x >时,解得02x <<,当0x <时,20x -<<,不等式的解集为:()()2,00,2-⋃,选D.3.【2018届某某省某某市第一中学高三上学期第三次考试数学(文)试题】已知函数是定义在上的偶函数,且在区间上单调递增.若实数满足,则的取值X 围是( )A. B. C. D.【答案】C4.【2017届某某市滨海新区高三上学期八校联考(理科)数学试卷】已知()f x 是定义在R 上的奇函数,对任意两个不相等的正数12,x x ,都有()()2112120x f x x f x x x -<-,记()0.20.24.14.1f a =, ()2.12.10.40.4f b =,()0.20.2log 4.1log 4.1f c =,则()A. a c b <<B. a b c <<C. c b a <<D. b c a << 【答案】A【解析】设120x x << ,则()()()()122112120f x f x x f x x f x x x ->⇒>所以函数()()f x g x x=在()0,+∞上单调递减,因为()f x 是定义在R 上的奇函数,所以()g x 是定义在R上的偶函数,因此()0.20.24.14.1f a =()()0.24.11gg =<, ()2.12.10.40.4f b =()()()2.120.40.40.5gg g =>> ,()0.20.2log 4.1log 4.1f c =()()()0.251log 4.1log 4.11,2g g g g ⎛⎫⎛⎫==∈ ⎪ ⎪⎝⎭⎝⎭,即a c b << ,选A.点睛:利用函数性质比较两个函数值或两个自变量的大小,首先根据函数的性质构造某个函数,然后根据函数的奇偶性转化为单调区间上函数值,最后根据单调性比较大小,要注意转化在定义域内进行 5.【2017届某某省高三教育质量诊断性联合考试数学(文)试卷】已知定义在R 上的奇函数()f x 在[)0,+∞上递减,若()()321f x x a f x -+<+对[]1,2x ∈-恒成立,则a 的取值X 围为( ) A. ()3,-+∞ B. (),3-∞- C. ()3,+∞ D. (),3-∞ 【答案】C7.【2018届某某省六校高三上学期第五次联考理数试卷】已知函数是上的奇函数,当时为减函数,且,则=( ) A. B.C.D.【答案】A【解析】∵奇函数满足f (2)=0, ∴f (−2)=−f (2)=0.对于{x |f (x −2)>0},当x −2>0时,f (x −2)>0=f (2), ∵x ∈(0,+∞)时,f (x )为减函数, ∴0<x −2<2, ∴2<x <4.当x −2<0时,不等式化为f (x −2)<0=f (−2), ∵当x ∈(0,+∞)时,f (x )为减函数, ∴函数f (x )在(−∞,0)上单调递减, ∴−2<x −2<0,∴0<x <2.综上可得:不等式的解集为{x ∣∣0<x <2或2<x <4} 故选D. 8.【2017—2018学年某某省某某市邗江区公道中学高一数学第二次学情测试题】()f x 是定义在R 上的偶函数,且对任意的(]0a b ∈-∞,,,当a b ≠时,都有()()0f a f b a b->-.若()()121f m f m +<-,则实数m 的取值X 围为_________. 【答案】(0,2)9. 【2017届某某省某某师X 大学附属中学高三高考模拟考试二数学试题】已知()f x 是定义在区间[]1,1-上的奇函数,当0x <时,()()1f x x x =-.则关于m 的不等式()()2110f m f m -+-<的解集为__________. 【答案】[)0,1【解析】当0x >时,则()()()0,11x f x x x x x -<-=---=+,即()()1f x x x -=+,所以()()1f x x x =-+,结合图像可知:函数在[]1,1-单调递减,所以不等式()()2110f m f m -+-<可化为2220{111 111m m m m -->-≤-≤-≤-≤,解之得01m ≤<,应填答案[)0,1。
2018版高考数学(全国人教B版理)大一轮复习讲义第六章数列第4讲Word版含解析
基础巩固题组(建议用时:40分钟)一、选择题1.等差数列{a n }的通项公式为a n =2n +1,其前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项的和为( )A.120B.70C.75D.100 解析 因为S n n =n +2,所以⎩⎨⎧⎭⎬⎫S n n 的前10项和为10×3+10×92=75. 答案 C2.数列{a n }的前n 项和为S n ,已知S n =1-2+3-4+…+(-1)n -1·n ,则S 17=( )A.9B.8C.17D.16解析 S 17=1-2+3-4+5-6+…+15-16+17=1+(-2+3)+(-4+5)+(-6+7)+…+(-14+15)+(-16+17)=1+1+1+…+1=9.答案 A3.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( )A.200B.-200C.400D.-400解析 S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200.答案 B4.(2017·淄博一中模拟)已知数列5,6,1,-5,…,该数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前16项之和S 16等于( )A.5B.6C.7D.16解析 根据题意这个数列的前7项分别为5,6,1,-5,-6,-1,5,6,发现从第7项起,数字重复出现,所以此数列为周期数列,且周期为6,前6项和为5+6+1+(-5)+(-6)+(-1)=0.又因为16=2×6+4,所以这个数列的前16项之和S 16=2×0+7=7.故选C. 答案 C5.已知数列{a n }满足a 1=1,a n +1·a n =2n (n ∈N *),则S 2 016=( )A.22 016-1B.3·21 008-3C.3·21 008-1D.3·21 007-2解析 a 1=1,a 2=2a 1=2,又a n +2·a n +1a n +1·a n =2n +12n =2.∴a n +2a n=2.∴a 1,a 3,a 5,…成等比数列;a 2,a 4,a 6,…成等比数列,∴S 2 016=a 1+a 2+a 3+a 4+a 5+a 6+…+a 2 015+a 2 016=(a 1+a 3+a 5+…+a 2 015)+(a 2+a 4+a 6+…+a 2 016)=1-21 0081-2+2(1-21 008)1-2=3·21 008-3.故选B. 答案 B二、填空题6.(2017·保定模拟)有穷数列1,1+2,1+2+4,…,1+2+4+…+2n -1所有项的和为________.解析 由题意知所求数列的通项为1-2n1-2=2n -1,故由分组求和法及等比数列的求和公式可得和为2(1-2n )1-2-n =2n +1-2-n . 答案 2n +1-2-n7.(2016·宝鸡模拟)数列{a n }满足a n +a n +1=12(n ∈N *),且a 1=1,S n 是数列{a n }的前n 项和,则S 21=________.解析 由a n +a n +1=12=a n +1+a n +2,∴a n +2=a n ,则a 1=a 3=a 5=…=a 21,a 2=a 4=a 6=…=a 20,∴S 21=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 20+a 21)=1+10×12=6.答案 68.(2017·安阳二模)已知数列{a n }中,a n =-4n +5,等比数列{b n }的公比q 满足q =a n -a n -1(n ≥2)且b 1=a 2,则|b 1|+|b 2|+|b 3|+…+|b n |=________.解析 由已知得b 1=a 2=-3,q =-4,∴b n =(-3)×(-4)n -1,∴|b n |=3×4n -1,即{|b n |}是以3为首项,4为公比的等比数列,∴|b 1|+|b 2|+…+|b n |=3(1-4n )1-4=4n -1.答案 4n -1三、解答题9.(2016·北京卷)已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4.(1)求{a n }的通项公式;(2)设c n =a n +b n ,求数列{c n }的前n 项和.解 (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q ,由⎩⎨⎧b 2=b 1q =3,b 3=b 1q 2=9得⎩⎨⎧b 1=1,q =3. ∴b n =b 1q n -1=3n -1,又a 1=b 1=1,a 14=b 4=34-1=27,∴1+(14-1)d =27,解得d =2.∴a n =a 1+(n -1)d =1+(n -1)×2=2n -1(n =1,2,3,…).(2)由(1)知a n =2n -1,b n =3n -1,因此c n =a n +b n =2n -1+3n -1.从而数列{c n }的前n 项和S n =1+3+…+(2n -1)+1+3+…+3n -1=n (1+2n -1)2+1-3n1-3=n 2+3n -12. 10.(2017·沈阳测试)已知数列{a n }的前n 项和是S n ,且S n +12a n =1(n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =log 13(1-S n +1)(n ∈N *),令T n =1b 1b 2+1b 2b 3+…+1b n b n +1,求T n . 解 (1)当n =1时,a 1=S 1,由S 1+12a 1=1,得a 1=23,当n ≥2时,S n =1-12a n ,S n -1=1-12a n -1,则S n -S n -1=12(a n -1-a n ),即a n =12(a n -1-a n ),所以a n =13a n -1(n ≥2).故数列{a n }是以23为首项,13为公比的等比数列.故a n =23·⎝ ⎛⎭⎪⎫13n -1=2·⎝ ⎛⎭⎪⎫13n (n ∈N *). (2)因为1-S n =12a n =⎝ ⎛⎭⎪⎫13n . 所以b n =log 13(1-S n +1)=log 13⎝ ⎛⎭⎪⎫13n +1=n +1, 因为1b n b n +1=1(n +1)(n +2)=1n +1-1n +2, 所以T n =1b 1b 2+1b 2b 3+…+1b n b n +1 =⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n +1-1n +2=12-1n +2=n 2(2n +2). 能力提升题组(建议用时:20分钟)11.(2016·郑州模拟)已知数列{a n }的通项公式为a n =1(n +1)n +n n +1(n ∈N *),其前n 项和为S n ,则在数列S 1,S 2,…,S 2 016中,有理数项的项数为( )A.42B.43C.44D.45解析 a n =1(n +1)n +n n +1=(n +1)n -n n +1[(n +1)n +n n +1][(n +1)n -n n +1] =n n -n +1n +1. 所以S n =1-22+⎝ ⎛⎭⎪⎫22-33+⎝ ⎛⎭⎪⎫33-44+…+⎝ ⎛⎭⎪⎫n n-n +1n +1=1-n +1n +1, 因此S 3,S 8,S 15…为有理项,又下标3,8,15,…的通项公式为n 2-1(n ≥2),所以n 2-1≤2 016,且n ≥2,所以2≤n ≤44,所以有理项的项数为43.答案 B12.(2017·济南模拟)在数列{a n }中,a n +1+(-1)n a n =2n -1,则数列{a n }的前12项和等于( )A.76B.78C.80D.82解析 因为a n +1+(-1)n a n =2n -1,所以a 2-a 1=1,a 3+a 2=3,a 4-a 3=5,a 5+a 4=7,a 6-a 5=9,a 7+a 6=11,…,a 11+a 10=19,a 12-a 11=21,所以a 1+a 3=2,a 4+a 2=8,…,a 12+a 10=40,所以从第一项开始,依次取两个相邻奇数项的和都等于2,从第二项开始,依次取两个相邻偶数项的和构成以8为首项,以16为公差的等差数列,以上式相加可得,S 12=a 1+a 2+a 3+…+a 12=(a 1+a 3)+(a 5+a 7)+(a 9+a 11)+(a 2+a 4)+(a 6+a 8)+(a 10+a 12)=3×2+8+24+40=78.答案 B13.设f (x )=4x 4x +2,若S =f ⎝ ⎛⎭⎪⎫12 015+f ⎝ ⎛⎭⎪⎫22 015+…+f ⎝ ⎛⎭⎪⎫2 0142 015,则S =________. 解析 ∵f (x )=4x4x +2, ∴f (1-x )=41-x 41-x +2=22+4x, ∴f (x )+f (1-x )=4x 4x +2+22+4x=1. S =f ⎝ ⎛⎭⎪⎫12 015+f ⎝ ⎛⎭⎪⎫22 015+…+f ⎝ ⎛⎭⎪⎫2 0142 015,① S =f ⎝ ⎛⎭⎪⎫2 0142 015+f ⎝ ⎛⎭⎪⎫2 0132 015+…+f ⎝ ⎛⎭⎪⎫12 015,② ①+②得,2S =⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫12 015+f ⎝ ⎛⎭⎪⎫2 0142 015+⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫22 015+f ⎝ ⎛⎭⎪⎫2 0132 015+…+⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫2 0142 015+f ⎝ ⎛⎭⎪⎫12 015=2 014,∴S =2 0142=1 007.答案 1 00714.(2015·山东卷)已知数列{a n }是首项为正数的等差数列,数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n ·a n +1的前n项和为n 2n +1. (1)求数列{a n }的通项公式;(2)设b n =(a n +1)·2a n ,求数列{b n }的前n 项和T n . 解 (1)设数列{a n }的公差为d ,令n =1,得1a 1a 2=13, 所以a 1a 2=3.①令n =2,得1a 1a 2+1a 2a 3=25, 所以a 2a 3=15.②解①②得a 1=1,d =2,所以a n =2n -1.(2)由(1)知b n =2n ·22n -1=n ·4n , 所以T n =1×41+2×42+…+n ×4n , 所以4T n =1×42+2×43+…+n ×4n +1, 两式相减,得-3T n =41+42+…+4n -n ·4n +1 =4(1-4n )1-4-n ·4n +1=1-3n 3×4n +1-43. 所以T n =3n -19×4n +1+49=4+(3n -1)4n +19.。
18年高考真题——理科数学(江苏卷)知识讲解
为
。
二.解答题 (本大题共 6 小题,共 90 分。解答应写出文字说明、证明过程
或演算步骤。 )
15.(本小题 14 分)在平行六面体 ABCD A1B1C1D1 中, AA1 AB ,
AB1 B1C1 。求证:⑴ AB // 平面 A1B1C ;⑵平面 ABB1 A1 平面 A1BC 。
16.( 本小题 14 分)已知 , 为锐角, tan
数 学 II 卷 【选做题】本题包括四小题,请选定.其.中.两.小.题.,.并.在.相.应.的.答.题.区.域.内.作.答... 小题评分。解答时应写出文字说明、证明过程或演算步骤
21—A .[ 选修 4—1:几何证明选讲 ] 如图,圆 O 的半径为 2, AB 为圆 O 的直径, P 为 AB 延长线上一点,过 P 作圆 O 的切线,切点为 C 。若
。若多做,则按作答的前两
PC 2 3 ,求 BC 的长。
12.在平面直角坐标系 xOy 中, A 为直线 l : y 2x 上在第一象限内的点, B 5,0 ,以 AB 为直径
的圆 C 与直线 l 交于另一点 D 。若 AB CD 0 ,则点 A 的横坐标为
。
13.在 ABC 中,角 A, B ,C 的对边分别为 a, b, c , ABC 1200 , ABC 的平分线交 AC 于点 D ,
列。⑴设 a1 0 ,b1 1 ,q 2 ,若 | an bn | b1对 n 1,2,3,4 均成立, 求 d 的取值范围; ⑵若 a1 b1 0 , m N , q 1,m 2 ,证明:存在 d R ,使得 | an bn | b1 对 n 2,3, , m 1 均成立,并求 d 的取值
范围(用 b1, m,q 表示)。
x
2018年高考数学全国卷试题答案解析(6套)
中,最短路径的长度为
5
A. 【答案】B
B.
C.
D. 2
【解析】分析:首先根据题中所给的三视图,得到点 M 和点 N 在圆柱上所处的位置,点 M 在上底面上,点 N 在下底面上,并且将圆柱的侧面展开图平铺,点 M、N 在其四分之一的 矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果. 详解:根据圆柱的三视图以及其本身的特征, 可以确定点 M 和点 N 分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的 长方形的对角线的端点处, 所以所求的最短路径的长度为 ,故选 B.
【答案】B 【解析】分析:首先利用余弦的倍角公式,对函数解析式进行化简,将解析式化简为 ,之后应用余弦型函数的性质得到相关的量,从而得到正确选项. 详解:根据题意有 所以函数 且最大值为 的最小正周期为 ,故选 B. , ,
点睛: 该题考查的是有关化简三角函数解析式, 并且通过余弦型函数的相关性质得到函数的 性质,在解题的过程中,要注意应用余弦倍角公式将式子降次升角,得到最简结果. 9. 某圆柱的高为 2,底面周长为 16,其三视图如右图.圆柱表面上的点 在正视图上的对 应点为 ,圆柱表面上的点 在左视图上的对应点为 ,则在此圆柱侧面上,从 到 的路径
2018 年高考全国卷数学试题答案解析
目录
文科 全国一卷 全国二卷 全国三卷 2-18 19-35 36-47
理科 全国一卷 全国二卷 全国三卷 48-66 67-80 81-96
1
全国卷 1 ቤተ መጻሕፍቲ ባይዱ科数学试题解析
1. 已知集合 A. 【答案】A 【解析】 分析: 利用集合的交集中元素的特征, 结合题中所给的集合中的元素, 求得集合 中的元素,最后求得结果. 详解:根据集合交集中元素的特征,可以求得 2. 设 A. 0 B. ,则 C. D. ,故选 A. B. , C. D. ,则
【高三数学试题精选】2018届高考数学基础知识剖析复习010
2018届高考数学基础知识剖析复习010
5 高考数学基础知识、常见结论详解
八、平面解析几何
(一)直线与圆知识要点
1.直线的倾斜角与斜率=tgα,直线的倾斜角α一定存在,范围是[0,π],但斜率不一定存在。
牢记下列图像。
斜率的求法依据直线方程依据倾斜角依据两点的坐标
2.直线方程的几种形式,能根据条,合理的写出直线的方程;能够根据方程,说出几何意义。
3.两条直线的位置关系,能够说出平行和垂直的条。
会判断两条直线的位置关系。
(斜率相等还有可能重合)
4.两条直线的交角区别到角和夹角两个不同概念。
5.点到直线的距离式。
6.会用一元不等式表示区域。
能够解决简单的线性规划问题。
7.曲线与方程的概念,会由几何条列出曲线方程。
8.圆的标准方程(x-a)2+(-b)2=r2
圆的一般方程x2+2+Dx+E+F=0 注意表示圆的条。
圆的参数方程
掌握圆的几何性质,会判断直线与圆、圆与圆的位置关系。
会求圆的相交弦、切线问题。
圆锥曲线方程
(二)圆锥曲线
1椭圆及其标准方程
2双曲线及其标准方程
3.抛物线及其标准方程
直线与圆锥曲线。
高考数学真题及解析-2018年江苏省高考数学试卷
2018年江苏省高考数学试卷一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.(5.00分)已知集合A={0,1,2,8},B={﹣1,1,6,8},那么A∩B=.2.(5.00分)若复数z满足i•z=1+2i,其中i是虚数单位,则z的实部为.3.(5.00分)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为.4.(5.00分)一个算法的伪代码如图所示,执行此算法,最后输出的S的值为.5.(5.00分)函数f(x)=的定义域为.6.(5.00分)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为.7.(5.00分)已知函数y=sin(2x+φ)(﹣φ<)的图象关于直线x=对称,则φ的值为.8.(5.00分)在平面直角坐标系xOy中,若双曲线﹣=1(a>0,b>0)的右焦点F(c,0)到一条渐近线的距离为c,则其离心率的值为.9.(5.00分)函数f(x)满足f(x+4)=f(x)(x∈R),且在区间(﹣2,2]上,f(x)=,则f(f(15))的值为.10.(5.00分)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为.11.(5.00分)若函数f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有一个零点,则f(x)在[﹣1,1]上的最大值与最小值的和为.12.(5.00分)在平面直角坐标系xOy中,A为直线l:y=2x上在第一象限内的点,B(5,0),以AB为直径的圆C与直线l交于另一点D.若=0,则点A的横坐标为.13.(5.00分)在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC的平分线交AC于点D,且BD=1,则4a+c的最小值为.14.(5.00分)已知集合A={x|x=2n﹣1,n∈N*},B={x|x=2n,n∈N*}.将A∪B 的所有元素从小到大依次排列构成一个数列{a n},记S n为数列{a n}的前n项和,成立的n的最小值为.则使得S n>12a n+1二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14.00分)在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1.求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.16.(14.00分)已知α,β为锐角,tanα=,cos(α+β)=﹣.(1)求cos2α的值;(2)求tan(α﹣β)的值.17.(14.00分)某农场有一块农田,如图所示,它的边界由圆O的一段圆弧(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为△CDP,要求A,B均在线段MN上,C,D 均在圆弧上.设OC与MN所成的角为θ.(1)用θ分别表示矩形ABCD和△CDP的面积,并确定sinθ的取值范围;(2)若大棚I内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.18.(16.00分)如图,在平面直角坐标系xOy中,椭圆C过点(),焦点F1(﹣,0),F2(,0),圆O的直径为F1F2.(1)求椭圆C及圆O的方程;(2)设直线l与圆O相切于第一象限内的点P.①若直线l与椭圆C有且只有一个公共点,求点P的坐标;②直线l与椭圆C交于A,B两点.若△OAB的面积为,求直线l的方程.19.(16.00分)记f′(x),g′(x)分别为函数f(x),g(x)的导函数.若存在x0∈R,满足f(x0)=g(x0)且f′(x0)=g′(x0),则称x0为函数f(x)与g(x)的一个“S点”.(1)证明:函数f(x)=x与g(x)=x2+2x﹣2不存在“S点”;(2)若函数f(x)=ax2﹣1与g(x)=lnx存在“S点”,求实数a的值;(3)已知函数f(x)=﹣x2+a,g(x)=.对任意a>0,判断是否存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”,并说明理由.20.(16.00分)设{a n}是首项为a1,公差为d的等差数列,{b n}是首项为b1,公比为q的等比数列.(1)设a1=0,b1=1,q=2,若|a n﹣b n|≤b1对n=1,2,3,4均成立,求d的取值范围;(2)若a1=b1>0,m∈N*,q∈(1,],证明:存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,并求d的取值范围(用b1,m,q表示).数学Ⅱ(附加题)【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-1:几何证明选讲](本小题满分10分)21.(10.00分)如图,圆O的半径为2,AB为圆O的直径,P为AB延长线上一点,过P作圆O的切线,切点为C.若PC=2,求BC的长.B.[选修4-2:矩阵与变换](本小题满分10分)22.(10.00分)已知矩阵A=.(1)求A的逆矩阵A﹣1;(2)若点P在矩阵A对应的变换作用下得到点P′(3,1),求点P的坐标.C.[选修4-4:坐标系与参数方程](本小题满分0分)23.在极坐标系中,直线l的方程为ρsin(﹣θ)=2,曲线C的方程为ρ=4cosθ,求直线l被曲线C截得的弦长.D.[选修4-5:不等式选讲](本小题满分0分)24.若x,y,z为实数,且x+2y+2z=6,求x2+y2+z2的最小值.【必做题】第25题、第26题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.25.如图,在正三棱柱ABC﹣A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.26.设n∈N*,对1,2,……,n的一个排列i1i2……i n,如果当s<t时,有i s>i t,则称(i s,i t)是排列i1i2……i n的一个逆序,排列i1i2……i n的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记f n(k)为1,2,…,n的所有排列中逆序数为k的全部排列的个数.(1)求f3(2),f4(2)的值;(2)求f n(2)(n≥5)的表达式(用n表示).2018年江苏省高考数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.(5.00分)已知集合A={0,1,2,8},B={﹣1,1,6,8},那么A∩B={1,8} .【分析】直接利用交集运算得答案.【解答】解:∵A={0,1,2,8},B={﹣1,1,6,8},∴A∩B={0,1,2,8}∩{﹣1,1,6,8}={1,8},故答案为:{1,8}.【点评】本题考查交集及其运算,是基础的计算题.2.(5.00分)若复数z满足i•z=1+2i,其中i是虚数单位,则z的实部为2.【分析】把已知等式变形,再由复数代数形式的乘除运算化简得答案.【解答】解:由i•z=1+2i,得z=,∴z的实部为2.故答案为:2.【点评】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.(5.00分)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为90.【分析】根据茎叶图中的数据计算它们的平均数即可.【解答】解:根据茎叶图中的数据知,这5位裁判打出的分数为89、89、90、91、91,它们的平均数为×(89+89+90+91+91)=90.故答案为:90.【点评】本题考查了利用茎叶图计算平均数的问题,是基础题.4.(5.00分)一个算法的伪代码如图所示,执行此算法,最后输出的S的值为8.【分析】模拟程序的运行过程,即可得出程序运行后输出的S值.【解答】解:模拟程序的运行过程如下;I=1,S=1,I=3,S=2,I=5,S=4,I=7,S=8,此时不满足循环条件,则输出S=8.故答案为:8.【点评】本题考查了程序语言的应用问题,模拟程序的运行过程是解题的常用方法.5.(5.00分)函数f(x)=的定义域为[2,+∞).【分析】解关于对数函数的不等式,求出x的范围即可.【解答】解:由题意得:≥1,解得:x≥2,∴函数f(x)的定义域是[2,+∞).故答案为:[2,+∞).【点评】本题考查了对数函数的性质,考查求函数的定义域问题,是一道基础题.6.(5.00分)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为0.3.【分析】(适合理科生)从2名男同学和3名女同学中任选2人参加社区服务,共有C52=10种,其中全是女生的有C32=3种,根据概率公式计算即可,(适合文科生),设2名男生为a,b,3名女生为A,B,C,则任选2人的种数为ab,aA,aB,aC,bA,bB,Bc,AB,AC,BC共10种,其中全是女生为AB,AC,BC共3种,根据概率公式计算即可【解答】解:(适合理科生)从2名男同学和3名女同学中任选2人参加社区服务,共有C52=10种,其中全是女生的有C32=3种,故选中的2人都是女同学的概率P==0.3,(适合文科生),设2名男生为a,b,3名女生为A,B,C,则任选2人的种数为ab,aA,aB,aC,bA,bB,Bc,AB,AC,BC共10种,其中全是女生为AB,AC,BC共3种,故选中的2人都是女同学的概率P==0.3,故答案为:0.3【点评】本题考查了古典概率的问题,采用排列组合或一一列举法,属于基础题.7.(5.00分)已知函数y=sin(2x+φ)(﹣φ<)的图象关于直线x=对称,则φ的值为.【分析】根据正弦函数的对称性建立方程关系进行求解即可.【解答】解:∵y=sin(2x+φ)(﹣φ<)的图象关于直线x=对称,∴2×+φ=kπ+,k∈Z,即φ=kπ﹣,∵﹣φ<,∴当k=0时,φ=﹣,故答案为:﹣.【点评】本题主要考查三角函数的图象和性质,利用正弦函数的对称性建立方程关系是解决本题的关键.8.(5.00分)在平面直角坐标系xOy中,若双曲线﹣=1(a>0,b>0)的右焦点F(c,0)到一条渐近线的距离为c,则其离心率的值为2.【分析】利用双曲线的简单性质,以及点到直线的距离列出方程,转化求解即可.【解答】解:双曲线=1(a>0,b>0)的右焦点F(c,0)到一条渐近线y=x的距离为c,可得:=b=,可得,即c=2a,所以双曲线的离心率为:e=.故答案为:2.【点评】本题考查双曲线的简单性质的应用,考查转化思想以及计算能力.9.(5.00分)函数f(x)满足f(x+4)=f(x)(x∈R),且在区间(﹣2,2]上,f(x)=,则f(f(15))的值为.【分析】根据函数的周期性,进行转化求解即可.【解答】解:由f(x+4)=f(x)得函数是周期为4的周期函数,则f(15)=f(16﹣1)=f(﹣1)=|﹣1+|=,f()=cos()=cos=,即f(f(15))=,故答案为:【点评】本题主要考查函数值的计算,根据函数的周期性结合分段函数的表达式利用转化法是解决本题的关键.10.(5.00分)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为.【分析】求出多面体中的四边形的面积,然后利用体积公式求解即可.【解答】解:正方体的棱长为2,中间四边形的边长为:,八面体看做两个正四棱锥,棱锥的高为1,多面体的中心为顶点的多面体的体积为:2×=.故答案为:.【点评】本题考查几何体的体积的求法,考查空间想象能力以及计算能力.11.(5.00分)若函数f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有一个零点,则f(x)在[﹣1,1]上的最大值与最小值的和为﹣3.【分析】推导出f′(x)=2x(3x﹣a),x∈(0,+∞),当a≤0时,f′(x)=2x(3x﹣a)>0,f(0)=1,f(x)在(0,+∞)上没有零点;当a>0时,f′(x)=2x(3x﹣a)>0的解为x>,f(x)在(0,)上递减,在(,+∞)递增,由f(x)只有一个零点,解得a=3,从而f(x)=2x3﹣3x2+1,f′(x)=6x(x﹣1),x ∈[﹣1,1],利用导数性质能求出f(x)在[﹣1,1]上的最大值与最小值的和.【解答】解:∵函数f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有一个零点,∴f′(x)=2x(3x﹣a),x∈(0,+∞),①当a≤0时,f′(x)=2x(3x﹣a)>0,函数f(x)在(0,+∞)上单调递增,f(0)=1,f(x)在(0,+∞)上没有零点,舍去;②当a>0时,f′(x)=2x(3x﹣a)>0的解为x>,∴f(x)在(0,)上递减,在(,+∞)递增,又f(x)只有一个零点,∴f()=﹣+1=0,解得a=3,f(x)=2x3﹣3x2+1,f′(x)=6x(x﹣1),x∈[﹣1,1],f′(x)>0的解集为(﹣1,0),f(x)在(﹣1,0)上递增,在(0,1)上递减,f(﹣1)=﹣4,f(0)=1,f(1)=0,∴f(x)min=f(﹣1)=﹣4,f(x)max=f(0)=1,∴f(x)在[﹣1,1]上的最大值与最小值的和为:f(x)max+f(x)min=﹣4+1=﹣3.【点评】本题考查函数的单调性、最值,导数的运算及其应用,同时考查逻辑思维能力和综合应用能力,是中档题.12.(5.00分)在平面直角坐标系xOy中,A为直线l:y=2x上在第一象限内的点,B(5,0),以AB为直径的圆C与直线l交于另一点D.若=0,则点A的横坐标为3.【分析】设A(a,2a),a>0,求出C的坐标,得到圆C的方程,联立直线方程与圆的方程,求得D的坐标,结合=0求得a值得答案.【解答】解:设A(a,2a),a>0,∵B(5,0),∴C(,a),则圆C的方程为(x﹣5)(x﹣a)+y(y﹣2a)=0.联立,解得D(1,2).∴=.解得:a=3或a=﹣1.又a>0,∴a=3.即A的横坐标为3.故答案为:3.【点评】本题考查平面向量的数量积运算,考查圆的方程的求法,是中档题.13.(5.00分)在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC的平分线交AC于点D,且BD=1,则4a+c的最小值为9.【分析】根据面积关系建立方程关系,结合基本不等式1的代换进行求解即可.【解答】解:由题意得acsin120°=asin60°+csin60°,即ac=a+c,得+=1,得4a+c=(4a+c)(+)=++5≥2+5=4+5=9,当且仅当=,即c=2a时,取等号,故答案为:9.【点评】本题主要考查基本不等式的应用,利用1的代换结合基本不等式是解决本题的关键.14.(5.00分)已知集合A={x|x=2n﹣1,n∈N*},B={x|x=2n,n∈N*}.将A∪B 的所有元素从小到大依次排列构成一个数列{a n},记S n为数列{a n}的前n项和,则使得S n>12a n成立的n的最小值为27.+1【分析】采用列举法,验证n=26,n=27即可.【解答】解:利用列举法可得:当n=26时,A∪B中的所有元素从小到大依次排列,构成一个数列{a n},所以数列{a n}的前26项分别1,3,5,7,9,11,13,15,17,19,21,23.25,…41,2,4,8,16,32.S26=,a27=43,⇒12a27=516,不符合题意.当n=27时,A∪B中的所有元素从小到大依次排列,构成一个数列{a n},所以数列{a n}的前26项分别1,3,5,7,9,11,13,15,17,19,21,23.25,…41,43,2,4,8,16,32.S27==546,a28=45⇒12a28=540,符合题意,故答案为:27.【点评】本题考查了集合、数列的求和,属于中档题.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14.00分)在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1.求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.【分析】(1)由⇒AB∥平面A1B1C;(2)可得四边形ABB1A1是菱形,AB1⊥A1B,由AB1⊥B1C1⇒AB1⊥BC⇒AB1⊥面A1BC,⇒平面ABB1A1⊥平面A1BC.【解答】证明:(1)平行六面体ABCD﹣A1B1C1D1中,AB∥A1B1,AB∥A1B1,AB⊄平面A1B1C,A1B1⊂∥平面A1B1C⇒AB∥平面A1B1C;(2)在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,⇒四边形ABB1A1是菱形,⊥AB1⊥A1B.在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1⇒AB1⊥BC.∴⇒AB1⊥面A1BC,且AB1⊂平面ABB1A1⇒平面ABB1A1⊥平面A1BC.【点评】本题考查了平行六面体的性质,及空间线面平行、面面垂直的判定,属于中档题.16.(14.00分)已知α,β为锐角,tanα=,cos(α+β)=﹣.(1)求cos2α的值;(2)求tan(α﹣β)的值.【分析】(1)由已知结合平方关系求得sinα,cosα的值,再由倍角公式得cos2α的值;(2)由(1)求得tan2α,再由cos(α+β)=﹣求得tan(α+β),利用tan(α﹣β)=tan[2α﹣(α+β)],展开两角差的正切求解.【解答】解:(1)由,解得,∴cos2α=;(2)由(1)得,sin2,则tan2α=.∵α,β∈(0,),∴α+β∈(0,π),∴sin(α+β)==.则tan(α+β)=.∴tan(α﹣β)=tan[2α﹣(α+β)]==.【点评】本题考查三角函数的恒等变换及化简求值,考查同角三角函数基本关系式的应用,是中档题.17.(14.00分)某农场有一块农田,如图所示,它的边界由圆O的一段圆弧(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为△CDP,要求A,B均在线段MN上,C,D 均在圆弧上.设OC与MN所成的角为θ.(1)用θ分别表示矩形ABCD和△CDP的面积,并确定sinθ的取值范围;(2)若大棚I内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.【分析】(1)根据图形计算矩形ABCD和△CDP的面积,求出sinθ的取值范围;(2)根据题意求出年总产值y的解析式,构造函数f(θ),利用导数求f(θ)的最大值,即可得出θ为何值时年总产值最大.=(40sinθ+10)•80cosθ【解答】解:(1)S矩形ABCD=800(4sinθcosθ+cosθ),S△CDP=•80cosθ(40﹣40sinθ)=1600(cosθ﹣cosθsinθ),当B、N重合时,θ最小,此时sinθ=;当C、P重合时,θ最大,此时sinθ=1,∴sinθ的取值范围是[,1);(2)设年总产值为y,甲种蔬菜单位面积年产值为4t,乙种蔬菜单位面积年产值为3t,则y=3200t(4sinθcosθ+cosθ)+4800t(cosθ﹣cosθsinθ)=8000t(sinθcosθ+cosθ),其中sinθ∈[,1);设f(θ)=sinθcosθ+cosθ,则f′(θ)=cos2θ﹣sin2θ﹣sinθ=﹣2sin2θ﹣sinθ+1;令f′(θ)=0,解得sinθ=,此时θ=,cosθ=;当sinθ∈[,)时,f′(θ)>0,f(θ)单调递增;当sinθ∈[,1)时,f′(θ)<0,f(θ)单调递减;∴θ=时,f(θ)取得最大值,即总产值y最大.=800(4sinθcosθ+cosθ),答:(1)S矩形ABCDS△CDP=1600(cosθ﹣cosθsinθ),sinθ∈[,1);θ=时总产值y最大.【点评】本题考查了解三角形的应用问题,也考查了构造函数以及利用导数求函数的最值问题,是中档题.18.(16.00分)如图,在平面直角坐标系xOy中,椭圆C过点(),焦点F1(﹣,0),F2(,0),圆O的直径为F1F2.(1)求椭圆C及圆O的方程;(2)设直线l与圆O相切于第一象限内的点P.①若直线l与椭圆C有且只有一个公共点,求点P的坐标;②直线l与椭圆C交于A,B两点.若△OAB的面积为,求直线l的方程.【分析】(1)由题意可得.,又a2﹣b2=c2=3,解得a=2,b=1即可.(2)①可设直线l的方程为y=kx+m,(k<0,m>0).可得.由,可得(4k2+1)x2+8kmx+4m2﹣4=0,△=(8km)2﹣4(4k2+1)(4m2﹣4)=0,解得k=﹣,m=3.即可②设A(x1,y1),B(x2,y2),联立直线与椭圆方程得(4k2+1)x2+8kmx+4m2﹣4=0,O到直线l的距离d=,|AB|=|x2﹣x1|=,△OAB的面积为S===,解得k=﹣,(正值舍去),m=3.即可【解答】解:(1)由题意可设椭圆方程为,∵焦点F1(﹣,0),F2(,0),∴.∵∴,又a2﹣b2=c2=3,解得a=2,b=1.∴椭圆C的方程为:,圆O的方程为:x2+y2=3.(2)①可知直线l与圆O相切,也与椭圆C,且切点在第一象限,∴可设直线l的方程为y=kx+m,(k<0,m>0).由圆心(0,0)到直线l的距离等于圆半径,可得.由,可得(4k2+1)x2+8kmx+4m2﹣4=0,△=(8km)2﹣4(4k2+1)(4m2﹣4)=0,可得m2=4k2+1,∴3k2+3=4k2+1,结合k<0,m>0,解得k=﹣,m=3.将k=﹣,m=3代入可得,解得x=,y=1,故点P的坐标为(.②设A(x1,y1),B(x2,y2),由⇒k<﹣.联立直线与椭圆方程得(4k2+1)x2+8kmx+4m2﹣4=0,|x2﹣x1|==,O到直线l的距离d=,|AB|=|x2﹣x1|=,△OAB的面积为S===,解得k=﹣,(正值舍去),m=3.∴y=﹣为所求.【点评】本题考查了椭圆的方程,直线与圆、椭圆的位置关系,属于中档题.19.(16.00分)记f′(x),g′(x)分别为函数f(x),g(x)的导函数.若存在x0∈R,满足f(x0)=g(x0)且f′(x0)=g′(x0),则称x0为函数f(x)与g(x)的一个“S点”.(1)证明:函数f(x)=x与g(x)=x2+2x﹣2不存在“S点”;(2)若函数f(x)=ax2﹣1与g(x)=lnx存在“S点”,求实数a的值;(3)已知函数f(x)=﹣x2+a,g(x)=.对任意a>0,判断是否存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”,并说明理由.【分析】(1)根据“S点”的定义解两个方程,判断方程是否有解即可;(2)根据“S点”的定义解两个方程即可;(3)分别求出两个函数的导数,结合两个方程之间的关系进行求解判断即可.【解答】解:(1)证明:f′(x)=1,g′(x)=2x+2,则由定义得,得方程无解,则f(x)=x与g(x)=x2+2x﹣2不存在“S 点”;(2)f′(x)=2ax,g′(x)=,x>0,由f′(x)=g′(x)得=2ax,得x=,f()=﹣=g()=﹣lna2,得a=;(3)f′(x)=﹣2x,g′(x)=,(x≠0),由f′(x0)=g′(x0),假设b>0,得b=﹣>0,得0<x0<1,由f(x0)=g(x0),得﹣x02+a==﹣,得a=x02﹣,令h(x)=x2﹣﹣a=,(a>0,0<x<1),设m(x)=﹣x3+3x2+ax﹣a,(a>0,0<x<1),则m(0)=﹣a<0,m(1)=2>0,得m(0)m(1)<0,又m(x)的图象在(0,1)上连续不断,则m(x)在(0,1)上有零点,则h(x)在(0,1)上有零点,则存在b>0,使f(x)与g(x)在区间(0,+∞)内存在“S”点.【点评】本题主要考查导数的应用,根据条件建立两个方程组,判断方程组是否有解是解决本题的关键.20.(16.00分)设{a n}是首项为a1,公差为d的等差数列,{b n}是首项为b1,公比为q的等比数列.(1)设a1=0,b1=1,q=2,若|a n﹣b n|≤b1对n=1,2,3,4均成立,求d的取值范围;(2)若a1=b1>0,m∈N*,q∈(1,],证明:存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,并求d的取值范围(用b1,m,q表示).【分析】(1)根据等比数列和等差数列的通项公式,解不等式组即可;(2)根据数列和不等式的关系,利用不等式的关系构造新数列和函数,判断数列和函数的单调性和性质进行求解即可.【解答】解:(1)由题意可知|a n﹣b n|≤1对任意n=1,2,3,4均成立,∵a1=0,q=2,∴,解得.即≤d≤.证明:(2)∵a n=a1+(n﹣1)d,b n=b1•q n﹣1,若存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,则|b1+(n﹣1)d﹣b1•q n﹣1|≤b1,(n=2,3,…,m+1),即b1≤d≤,(n=2,3,…,m+1),∵q∈(1,],∴则1<q n﹣1≤q m≤2,(n=2,3,…,m+1),∴b1≤0,>0,因此取d=0时,|a n﹣b n|≤b1对n=2,3,…,m+1均成立,下面讨论数列{}的最大值和数列{}的最小值,①当2≤n≤m时,﹣==,当1<q≤时,有q n≤q m≤2,从而n(q n﹣q n﹣1)﹣q n+2>0,因此当2≤n≤m+1时,数列{}单调递增,故数列{}的最大值为.②设f(x)=2x(1﹣x),当x>0时,f′(x)=(ln2﹣1﹣xln2)2x<0,∴f(x)单调递减,从而f(x)<f(0)=1,当2≤n≤m时,=≤(1﹣)=f()<1,因此当2≤n≤m+1时,数列{}单调递递减,故数列{}的最小值为,∴d的取值范围是d∈[,].【点评】本题主要考查等比数列和等差数列以及不等式的综合应用,考查学生的运算能力,综合性较强,难度较大.数学Ⅱ(附加题)【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-1:几何证明选讲](本小题满分10分)21.(10.00分)如图,圆O的半径为2,AB为圆O的直径,P为AB延长线上一点,过P作圆O的切线,切点为C.若PC=2,求BC的长.【分析】连接OC,由题意,CP为圆O的切线,得到垂直关系,由线段长度及勾股定理,可以得到PO的长,即可判断△COB是等边三角形,BC的长.【解答】解:连接OC,因为PC为切线且切点为C,所以OC⊥CP.因为圆O的半径为2,,所以BO=OC=2,,所以,所以∠COP=60°,所以△COB为等边三角形,所以BC=BO=2.【点评】本题主要考查圆与直线的位置关系,切线的应用,考查发现问题解决问题的能力.B.[选修4-2:矩阵与变换](本小题满分10分)22.(10.00分)已知矩阵A=.(1)求A的逆矩阵A﹣1;(2)若点P在矩阵A对应的变换作用下得到点P′(3,1),求点P的坐标.【分析】(1)矩阵A=,求出det(A)=1≠0,A可逆,然后求解A的逆矩阵A﹣1.(2)设P(x,y),通过•=,求出=,即可得到点P的坐标.【解答】解:(1)矩阵A=,det(A)=2×2﹣1×3=1≠0,所以A可逆,从而:A的逆矩阵A﹣1=.(2)设P(x,y),则•=,所以=A﹣1=,因此点P的坐标为(3,﹣1).【点评】本题矩阵与逆矩阵的关系,逆矩阵的求法,考查转化思想的应用,是基本知识的考查.C.[选修4-4:坐标系与参数方程](本小题满分0分)23.在极坐标系中,直线l的方程为ρsin(﹣θ)=2,曲线C的方程为ρ=4cosθ,求直线l被曲线C截得的弦长.【分析】将直线l、曲线C的极坐标方程利用互化公式可得直角坐标方程,利用直线与圆的相交弦长公式即可求解.【解答】解:∵曲线C的方程为ρ=4cosθ,∴ρ2=4ρcosθ,⇒x2+y2=4x,∴曲线C是圆心为C(2,0),半径为r=2得圆.∵直线l的方程为ρsin(﹣θ)=2,∴﹣=2,∴直线l的普通方程为:x﹣y=4.圆心C到直线l的距离为d=,∴直线l被曲线C截得的弦长为2.【点评】本题考查了极坐标方程化为直角坐标方程、直线与圆的相交弦长关系、点到直线的距离公式,属于中档题.D.[选修4-5:不等式选讲](本小题满分0分)24.若x,y,z为实数,且x+2y+2z=6,求x2+y2+z2的最小值.【分析】根据柯西不等式进行证明即可.【解答】解:由柯西不等式得(x2+y2+z2)(12+22+22)≥(x+2y+2z)2,∵x+2y+2z=6,∴x2+y2+z2≥4是当且仅当时,不等式取等号,此时x=,y=,z=,∴x2+y2+z2的最小值为4【点评】本题主要考查不等式的证明,利用柯西不等式是解决本题的关键.,【必做题】第25题、第26题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.25.如图,在正三棱柱ABC﹣A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.【分析】设AC,A1C1的中点分别为O,O1,以{}为基底,建立空间直角坐标系O﹣xyz,(1)由|cos|=可得异面直线BP与AC1所成角的余弦值;(2)求得平面AQC1的一个法向量为,设直线CC1与平面AQC1所成角的正弦值为θ,可得sinθ=|cos|=,即可得直线CC1与平面AQC1所成角的正弦值.【解答】解:如图,在正三棱柱ABC﹣A1B1C1中,设AC,A1C1的中点分别为O,O1,则,OB⊥OC,OO1⊥OC,OO1⊥OB,故以{}为基底,建立空间直角坐标系O﹣xyz,∵AB=AA1=2,A(0,﹣1,0),B(,0,0),C(0,1,0),A1(0,﹣1,2),B1(,0,2),C1(0,1,2).(1)点P为A1B1的中点.∴,∴,.|cos|===.∴异面直线BP与AC1所成角的余弦值为:;(2)∵Q为BC的中点.∴Q()∴,,设平面AQC1的一个法向量为=(x,y,z),由,可取=(,﹣1,1),设直线CC1与平面AQC1所成角的正弦值为θ,sinθ=|cos|==,∴直线CC1与平面AQC1所成角的正弦值为.【点评】本题考查了向量法求空间角,属于中档题.26.设n ∈N *,对1,2,……,n 的一个排列i 1i 2……i n ,如果当s <t 时,有i s >i t ,则称(i s ,i t )是排列i 1i 2……i n 的一个逆序,排列i 1i 2……i n 的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记f n (k )为1,2,…,n 的所有排列中逆序数为k 的全部排列的个数.(1)求f 3(2),f 4(2)的值;(2)求f n (2)(n ≥5)的表达式(用n 表示).【分析】(1)由题意直接求得f 3(2)的值,对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置,由此可得f 4(2)的值;(2)对一般的n (n ≥4)的情形,可知逆序数为0的排列只有一个,逆序数为1的排列只能是将排列12…n 中的任意相邻两个数字调换位置得到的排列,f n (1)=n ﹣1.为计算f n +1(2),当1,2,…,n 的排列及其逆序数确定后,将n +1添加进原排列,n +1在新排列中的位置只能是最后三个位置,可得f n +1(2)=f n (2)+f n (1)+f n (0)=f n (2)+n ,则当n ≥5时,f n (2)=[f n (2)﹣f n ﹣1(2)]+[f n ﹣1(2)﹣f n ﹣2(2)]+…+[f 5(2)﹣f 4(2)]+f 4(2),则f n (2)(n ≥5)的表达式可求.【解答】解:(1)记μ(abc )为排列abc 得逆序数,对1,2,3的所有排列,有μ(123)=0,μ(132)=1,μ(231)=2,μ(321)=3,∴f3(0)=1,f3(1)=f3(2)=2,对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置.因此,f4(2)=f3(2)+f3(1)+f3(0)=5;(2)对一般的n(n≥4)的情形,逆序数为0的排列只有一个:12…n,∴f n(0)=1.逆序数为1的排列只能是将排列12…n中的任意相邻两个数字调换位置得到的排列,f n(1)=n﹣1.为计算f n+1(2),当1,2,…,n的排列及其逆序数确定后,将n+1添加进原排列,n+1在新排列中的位置只能是最后三个位置.因此,f n+1(2)=f n(2)+f n(1)+f n(0)=f n(2)+n.当n≥5时,f n(2)=[f n(2)﹣f n﹣1(2)]+[f n﹣1(2)﹣f n﹣2(2)]+…+[f5(2)﹣f4(2)]+f4(2)=(n﹣1)+(n﹣2)+…+4+f4(2)=.因此,当n≥5时,f n(2)=.【点评】本题主要考查计数原理、排列等基础知识,考查运算求解能力和推理论证能力,是中档题.。
备战2018年高考数学一轮复习(热点难点)专题06充分条件与必要条件的合理判定
专题06 充分条件与必要条件的合理判定考纲要求:1、理解必要条件、充分条件与充要条件的意义;2、掌握必要条件、充分条件与充要条件的判定. 基础知识回顾: 充分条件与必要条件已知命题p 是条件,命题q 是结论(1)充分条件:若p q ⇒,则p 是q 充分条件;所谓“充分”,意思是说,只要这个条件就够了,就很充分了,不要其它条件了。
如:3x <是4x <的充分条件。
(2)必要条件:若q p ⇒,则p 是q 必要条件;所谓“必要”,意思是说,这个条件是必须的,必要的,当然,还有可能需要其它条件。
如:某个函数具有奇偶性的必要条件是其定义域关于原点对称。
函数要具有奇偶性首先必须定义域关于原点对称,否则一定是非奇非偶。
但是定义域关于原点对称并不就一定是奇偶函数,还必须满足)()(x f x f =-才是偶函数,满足)()(x f x f -=-是奇函数。
(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件.(4)两种常见说法:A 是B 的充分条件,是指A ⇒B ;A 的充分条件是B ,是指B ⇒AA 的充要条件是...B .,充分性是指B ⇒A ,必要性是A ⇒B ,此语句应抓“条件是B ”;A ·是.B 的充要条件..,此语句应抓“A 是条件”. 应用举例:类型一:充分条件与必要条件的判定——函数【例1】【2017长郡中学高三入学考试】“0a <”是“函数()|(1)|f x x ax =+在区间(,0)-∞内单调递减”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要【答案】A【解析】当0a <时,在区间(,0)-∞上,1()|(1)|()f x x ax ax x a=+=--单调递减,但()|(1)|f x x ax =+区间(,0)-∞上单调递减时,0a ≤,所以“0a <”是“()|(1)|f x x ax =+在区间(,0)-∞内单调递减”的.【例2】【2017浙江省温州市高三模拟考试】设函数()()2,,R 0f x ax bx c a b c a =++∈>且,则“(())02bf f a-<”是“()f x 与()()f f x 都恰有两个零点”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C类型二:充分条件与必要条件的判定——不等式 【例3】【北京市朝阳区2017届高三二模】“”是“”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】当时,由均值不等式成立。
高考数学(理)之立体几何与空间向量 专题06 平面与平面的平行、垂直的判定与性质(解析版)
立体几何与空间向量06 平面与平面的平行、垂直的判定与性质【考点讲解】一、具体目标:1.理解空间直线、平面位置关系的定义,并了解可以作为推理依据的公理和定理;2.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理;3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.二、知识概述:1.面面平行的判定与性质a⊂β,b⊂β,a∩b=P,α∥β,α∩γ=a,(1)定义:两个平面没有公共点,称这两个平面平行;(2)判定定理:a⊂α,b⊂α,a∩b=M,a∥β,b∥β⇒α∥β;(3)推论:a∩b=M,a,b⊂α,a′∩b′=M′,a′,b′⊂β,a∥a′,b∥b′⇒α∥β.3.两个平面平行的性质定理(1)α∥β,a⊂α⇒a∥β;(2)α∥β,γ∩α=a,γ∩β=b⇒a∥b.3.平面与平面垂直的判定与性质(1)平面与平面垂直的判定方法①定义法.②利用判定定理:如果一个平面过另一个平面的一条垂线,则这两个平面互相垂直.(2)平面与平面垂直的性质:如果两平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.4.定义:两个平面相交,如果所成的二面角是直二面角,就说这两个平面互相垂直.5.定理:⎭⎪⎬⎪⎫AB βAB ⊥α⇒β⊥α⎭⎪⎬⎪⎫α⊥βα∩β=MNAB βAB ⊥MN⇒AB ⊥α1.【2019年高考全国Ⅱ卷理数】设α,β为两个平面,则α∥β的充要条件是( ) A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线D .α,β垂直于同一平面【解析】本题考查了空间两个平面的判定与性质及充要条件.由面面平行的判定定理知:α内两条相交直线都与β平行是αβ∥的充分条件,由面面平行性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是αβ∥的必要条件,故选B . 【答案】B2.【2019年高考浙江卷】设三棱锥V –ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P –AC –B 的平面角为γ,则( ) A .β<γ,α<γB .β<α,β<γC .β<α,γ<αD .α<β,γ<β【解析】本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算.如图,G 为AC 中点,连接VG ,V 在底面ABC 的投影为O ,则P 在底面的投影D 在线段AO 上,过D 作DE 垂直于AC 于E ,连接PE ,BD ,易得PE VG ∥,过P 作PF AC ∥交VG 于F ,连接BF ,过D 作DH AC ∥,交BG 于H ,则,,BPF PBD PED αβγ=∠=∠=∠,结合△PFB ,△BDH ,△PDB 均为直角三角形,可得cos cos PF EG DH BDPB PB PB PBαβ===<=,即αβ>; 【真题分析】在Rt △PED 中,tan tan PD PDED BDγβ=>=,即γβ>,综上所述,答案为B.【变式1】【2018年高考浙江卷】已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则( )A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ1【解析】设O 为正方形ABCD 的中心,M 为AB 中点,过E 作BC 的平行线EF ,交CD 于F ,过O 作ON 垂直EF 于N ,连接SO ,SN ,SE ,SM ,OM ,OE ,则SO 垂直于底面ABCD ,OM 垂直于AB , 因此123,,,SEN SEO SMO ∠=∠=∠=θθθ从而123tan ,tan ,tan ,SN SN SO SOEN OM EO OM====θθθ 因为SN SO EO OM ≥≥,,所以132tan tan tan ,≥≥θθθ即132≥≥θθθ,故选D. 【答案】D【变式2】【2017年高考浙江卷】如图,已知正四面体–D ABC (所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP=PB ,2BQ CR QC RA==,分别记二面角D –PR –Q ,D –PQ –R ,D –QR –P 的平面角为αβγ,,,则( )A . γαβ<<B .αγβ<<C .αβγ<<D .βγα<<【解析】设O 为三角形ABC 中心,则O 到PQ 距离最小,O 到PR 距离最大,O 到RQ 距离居中,而三棱锥的高相等,因此αγβ<<,所以选B . 【答案】B3.【2018优选题】空间中,设,m n 表示不同的直线, ,,αβγ表示不同的平面,则下列命题正确的是( )A. 若,αγβγ⊥⊥,则//αβB. 若,m m αβ⊥⊥,则//αβC. 若,m βαβ⊥⊥,则//m αD. 若,n m n α⊥⊥,则//m α 【解析】本题考点是面面平行,线面平行的判定.A 项,若,αγβγ⊥⊥,过正方体同一顶点的三个平面分别为,,αβγ,则αβ⊥,故A 项不合题意;B 项,若,m m αβ⊥⊥,根据垂直于同一条直线的两个平面平行,则//αβ,故B 项符合题意;C 项,若,m βαβ⊥⊥,由同时垂直于一个平面的直线和平面的位置关系可以是直线在平面内或平行可知,直线m 在平面α内或平行,故C 项不合题意;D 项,若,n m n α⊥⊥,由同时垂直于一条直线的直线和平面的位置关系可以是直线在平面内或平行可知,直线m 在平面α内或平行,故D 项不合题意. 故选B. 【答案】B4.【2019优选题】在正四面体P -ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,则下面四个结论中不成立的是( ) A .BC ∥平面PDF B .DF ⊥平面P AE C .平面PDF ⊥平面ABCD .平面P AE ⊥平面ABC【解析】画出图形,如图所示,则BC ∥DF ,又DF ⊂平面PDF ,BC ⊄平面PDF ,∴BC ∥平面PDF ,故A 成立;由题意可得AE ⊥BC ,PE ⊥BC ,BC ∥DF ,则DF ⊥AE ,DF ⊥PE ,∴DF ⊥平面P AE ,故B 成立; 又DF ⊂平面ABC ,∴平面ABC ⊥平面P AE ,故D 成立.本题的考点是平面与平面垂直的判定.【答案】C5.【2016全国新课标2】α,β是两个平面,m ,n 是两条直线,有下列四个命题:①如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. ②如果m ⊥α,n ∥α,那么m ⊥n . ③如果α∥β,m ⊂α,那么m ∥β.④如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 .(填写所有正确命题的编号)【解析】对于①,,,//m n m n αβ⊥⊥,则,αβ的位置关系无法确定,故错误;对于②,因为//n α,所以过直线n 作平面γ与平面α相交于直线c ,则//n c ,因为,,m m c m n α⊥⊥⊥所以所以,故②正确;对于③,由两个平面平行的性质可知正确;对于④,由线面所成角的定义和等角定理可知其正确,故正确的命题有②③④.本题考点是空间中的线面关系. 【答案】②③④6.【2019年高考全国Ⅰ卷理数】如图,直四棱柱ABCD–A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求二面角A−MA 1−N 的正弦值.【解析】(1)连结B 1C ,ME .因为M ,E 分别为BB 1,BC 的中点,所以ME ∥B 1C ,且ME =12B 1C . 又因为N 为A 1D 的中点,所以ND =12A 1D .由题设知A 1B 1=P DC ,可得B 1C =P A 1D ,故ME =P ND , 因此四边形MNDE 为平行四边形,MN ∥ED .又MN ⊄平面EDC 1,所以MN ∥平面C 1DE .(2)由已知可得DE ⊥DA .以D 为坐标原点,DA uuu r的方向为x 轴正方向,建立如图所示的空间直角坐标系D −xyz ,则(2,0,0)A ,A 1(2,0,4),2)M ,(1,0,2)N ,1(0,0,4)A A =-u u u r ,1(12)A M =--u u u u r ,1(1,0,2)A N =--u u u u r,(0,MN =u u u u r .设(,,)x y z =m 为平面A 1MA 的法向量,则1100A M A A ⎧⋅=⎪⎨⋅=⎪⎩u u u u r u u u rm m ,所以2040x z z ⎧--=⎪⎨-=⎪⎩,.可取=m .设(,,)p q r =n 为平面A 1MN 的法向量,则100MN A N ⎧⋅=⎪⎨⋅=⎪⎩u u u u r u u u ur ,.n n所以020p r ⎧=⎪⎨--=⎪⎩,.可取(2,0,1)=-n.于是cos ,||⋅〈〉===‖m n m n m n , 所以二面角1A MA N --的正弦值为5. 7.【2019年高考全国Ⅲ卷理数】图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的二面角B −CG −A 的大小.【解析】(1)由已知得AD P BE ,CG P BE ,所以AD P CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ⊥BE ,AB ⊥BC ,故AB ⊥平面BCGE . 又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE .(2)作EH ⊥BC ,垂足为H .因为EH ⊂平面BCGE ,平面BCGE ⊥平面ABC ,所以EH ⊥平面ABC . 由已知,菱形BCGE 的边长为2,∠EBC =60°,可求得BH =1,EHH 为坐标原点,HC u u u r的方向为x 轴的正方向,建立如图所示的空间直角坐标系H –xyz ,则A (–1,1,0),C (1,0,0),G (2,0),CG uuu r =(1,0),AC uuu r=(2,–1,0).设平面ACGD 的法向量为n =(x ,y ,z ),则0,0,CG AC ⎧⋅=⎪⎨⋅=⎪⎩u u u ru u u r n n即0,20.x x y ⎧+=⎪⎨-=⎪⎩ 所以可取n =(3,6,.又平面BCGE 的法向量可取为m =(0,1,0),所以cos ,||||2⋅〈〉==n m n m n m . 因此二面角B –CG –A 的大小为30°.8.【2019年高考北京卷文数】如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底部ABCD 为菱形,E 为CD 的中点.(1)求证:BD ⊥平面PAC ;(2)若∠ABC =60°,求证:平面PAB ⊥平面PAE ;(3)棱PB 上是否存在点F ,使得CF ∥平面PAE ?说明理由.【解析】本题主要考查线面垂直的判定定理,面面垂直的判定.(1)因为PA ⊥平面ABCD ,所以PA BD ⊥.又因为底面ABCD 为菱形,所以BD AC ⊥. 所以BD ⊥平面PAC .(2)因为PA ⊥平面ABCD ,AE ⊂平面ABCD ,所以PA ⊥AE .因为底面ABCD 为菱形,∠ABC =60°,且E 为CD 的中点,所以AE ⊥CD .所以AB ⊥AE .所以AE ⊥平面PAB .所以平面PAB⊥平面PAE.(3)棱PB上存在点F,使得CF∥平面PAE.取F为PB的中点,取G为PA的中点,连结CF,FG,EG.则FG∥AB,且FG=12 AB.因为底面ABCD为菱形,且E为CD的中点,所以CE∥AB,且CE=12AB.所以FG∥CE,且FG=CE.所以四边形CEGF为平行四边形.所以CF∥EG.因为CF⊄平面PAE,EG⊂平面PAE,所以CF∥平面PAE.9.【2019年高考全国Ⅲ卷文数】图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的四边形ACGD的面积.【解析】本题从多面体折叠开始,考查考生在折叠过程中掌握哪些量的大小与位置关系是不变与变化的,折叠后的多面体的性质解决题中的要求.(1)由已知得AD P BE,CG P BE,所以AD P CG,故AD,CG确定一个平面,从而A,C,G,D四点共面.由已知得AB⊥BE,AB⊥BC,故AB⊥平面BCGE.又因为AB⊂平面ABC,所以平面ABC⊥平面BCGE.(2)取CG的中点M,连结EM,DM.因为AB∥DE,AB⊥平面BCGE,所以DE⊥平面BCGE,故DE⊥CG.由已知,四边形BCGE是菱形,且∠EBC=60°得EM⊥CG,故CG⊥平面DEM.因此DM⊥CG.在Rt△DEM中,DE=1,EM DM=2.所以四边形ACGD的面积为4.10.【2019年高考北京卷理数】如图,在四棱锥P–ABCD中,PA⊥平面ABCD,AD⊥CD,AD∥BC,PA=AD=CD=2,BC =3.E 为PD 的中点,点F 在PC 上,且13PF PC =. (1)求证:CD ⊥平面PAD ; (2)求二面角F –AE –P 的余弦值; (3)设点G 在PB 上,且23PG PB =.判断直线AG 是否在平面AEF 内,说明理由.【解析】(1)因为PA ⊥平面ABCD ,所以PA ⊥CD .又因为AD ⊥CD ,所以CD ⊥平面PAD . (2)过A 作AD 的垂线交BC 于点M .因为PA ⊥平面ABCD ,所以PA ⊥AM ,PA ⊥AD .如图建立空间直角坐标系A −xyz ,则A (0,0,0),B (2,-1,0),C (2,2,0),D (0,2,0), P (0,0,2).因为E 为PD 的中点,所以E (0,1,1).所以(0,1,1),(2,2,2),(0,0,2)AE PC AP ==-=u u u ru u u r u u u r.所以1222224,,,,,3333333PF PC AF AP PF ⎛⎫⎛⎫==-=+= ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r u u u r u u u r .设平面AEF 的法向量为n =(x ,y ,z ),则0,0,AE AF ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r n n 即0,2240.333y z x y z +=⎧⎪⎨++=⎪⎩ 令z =1,则1,1y x =-=-.于是=(1,1,1)--n .又因为平面PAD 的法向量为p =(1,0,0),所以3cos ,||3⋅〈〉==-‖n p n p n p . 由题知,二面角F −AE −P .(3)直线AG 在平面AEF 内.因为点G 在PB 上,且2,(2,1,2)3PG PB PB ==--u u ur ,所以2424422,,,,,3333333PG PB AG AP PG ⎛⎫⎛⎫==--=+=- ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r u u u r u u u r .由(2)知,平面AEF 的法向量=(1,1,1)--n .所以4220333AG ⋅=-++=u u u r n .所以直线AG 在平面AEF 内.11.【2019年高考天津卷文数】如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PCD △为等边三角形,平面PAC ⊥平面PCD ,,2,3PA CD CD AD ⊥==.(1)设G ,H 分别为PB ,AC 的中点,求证:GH ∥平面PAD ; (2)求证:PA ⊥平面PCD ;(3)求直线AD 与平面PAC 所成角的正弦值.【解析】(1)连接BD ,易知AC BD H =I ,BH DH =.又由BG=PG ,故GH PD ∥. 又因为GH ⊄平面P AD ,PD ⊂平面P AD ,所以GH ∥平面P AD . (2)取棱PC 的中点N ,连接DN .依题意,得DN ⊥PC ,又因为平面PAC ⊥平面PCD ,平面PAC I 平面PCD PC =,所以DN ⊥平面P AC , 又PA ⊂平面P AC ,故DN PA ⊥.又已知PA CD ⊥,CD DN D =I ,所以PA ⊥平面PCD . (3)连接AN ,由(2)中DN ⊥平面P AC ,可知DAN ∠为直线AD 与平面P AC 所成的角, 因为PCD △为等边三角形,CD =2且N 为PC的中点,所以DN =又DN AN ⊥, 在Rt AND △中,3sinDN DAN AD ∠==.所以,直线AD 与平面P AC 所成角的正弦值为3.12.【2019年高考天津卷理数】如图,AE ⊥平面ABCD ,,CF AE AD BC ∥∥,,AD AB ⊥1,2AB AD AE BC ====.(1)求证:BF ∥平面ADE ;(2)求直线CE 与平面BDE 所成角的正弦值; (3)若二面角E BD F --的余弦值为13,求线段CF 的长.【解析】依题意,可以建立以A 为原点,分别以AB AD AE u u u r u u u r u u u r,,的方向为x 轴,y 轴,z 轴正方向的空间直角坐标系(如图),可得(0,0,0),(1,0,0),(1,2,0),(0,1,0)A B C D ,(0,0,2)E .设(0)CF h h =>>,则()1,2,F h .(1)依题意,(1,0,0)AB =u u u r 是平面ADE 的法向量,又(0,2,)BF h =u u u r ,可得0BF AB ⋅=u u u r u u u r ,又因为直线BF ⊄平面ADE ,所以BF ∥平面ADE . (2)依题意,(1,1,0),(1,0,2),(1,2,2)BD BE CE =-=-=--u u u ru u u r u u u r.设(,,)x y z =n 为平面BDE 的法向量,则0,0,BD BE ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r n n 即0,20,x y x z -+=⎧⎨-+=⎩不妨令1z =,可得(2,2,1)=n .因此有4cos ,9||||CE CE CE ⋅==-u u u ru u u r u u u r n n n .所以,直线CE 与平面BDE 所成角的正弦值为49.(3)设(,,)x y z =m 为平面BDF 的法向量,则0,0,BD BF ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r m m 即0,20,x y y hz -+=⎧⎨+=⎩不妨令1y =,可得21,1,h ⎛⎫=- ⎪⎝⎭m.由题意,有||1cos ,||||3⋅〈〉===m n m n m n ,解得87h =.经检验,符合题意. 所以,线段CF的长为87.【模拟考场】1.设α,β是两个不同的平面,m 是直线且m α⊂.“m β∥”是“αβ∥”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【解析】本题考点是线面平行与面面平行与充要条件的综合应用.因为α,β是两个不同的平面,m 是直线且m α⊂.若“m β∥”,则平面、αβ可能相交也可能平行,不能推出//αβ,反过来若//αβ,m α⊂,则有m β∥,则“m β∥”是“αβ∥”的必要而不充分条件,故选B. 【答案】B2.设,a b 是空间中不同的直线, ,αβ是不同的平面,则下列说法正确的是( )A. //,a b b α⊂,则//a αB. ,,//a b αβαβ⊂⊂,则//a bC. ,,//,//a b b αααββ⊂⊂,则//αβD. //,a αβα⊂,则//a β【解析】本题考点是线面平行,面面平行的判定。
2018版高考数学人教A版理一轮复习真题集训第六章数列61和答案
课外拓展阅读由递推公式求通项的常用方法和技巧递推数列是高考考查的热点,由递推公式求通项时,一般需要先对递推公式进行变形,然后利用转化与化归的思想解决递推数列问题.下面给出几种常见的递推数列,并讨论其通项公式的求法.类型1 a n+1=a n+f(n)把原递推公式转化为a n+1-a n=f(n),再利用累加法(逐差相加法)求解.已知数列{a n}中,a1=2,a n+1=a n+n+1,求数列{a n}的通项公式.因为a1=2,a n+1-a n=n+1,所以a n-a n-1=(n-1)+1,an-1-a n-2=(n-2)+1,a n-2-a n-3=(n-3)+1,…a2-a1=1+1,由已知,a1=2=1+1,将以上各式相加,得an=+n+1=n-n-+1]2+n+1=n n-2+n+1=n n+2+1.类型2 a n+1=f(n)a n把原递推公式转化为an+1an=f(n),再利用累乘法(逐商相乘法)求解.已知数列{a n}满足a1=23,a n+1=nn+1·a n,求数列{a n}的通项公式.由a n+1=nn+1·a n,得an+1an=nn+1.当n≥2,n∈N*时,a n=anan-1·an-1an-2·…·a2a1·a1=n-1n·n-2n-1·…·12·23=23n,即a n=23n .又当n=1时,23×1=23=a1,故a n=23n.类型3 a n+1=pa n+q先用待定系数法把原递推公式转化为a n+1-t=p(a n-t),其中t=q1-p,再利用换元法转化为等比数列求解.已知数列{a n}中,a1=1,a n+1=2a n+3,求数列{a n}的通项公式.设递推公式a n +1=2a n +3可以转化为a n +1-t =2(a n -t ), 即a n +1=2a n -t ,解得t =-3. 故a n +1+3=2(a n +3).令b n =a n +3,则b 1=a 1+3=4,且b n +1b n =a n +1+3a n +3=2. 所以{b n }是以4为首项,以2为公比的等比数列. 所以b n =4×2n -1=2n +1, 即a n =2n +1-3. 类型4 a n +1=pa n +q n(1)一般地,要先在递推公式两边同除以q n +1,得a n +1q n +1=p q ·a n q n +1q,引入辅助数列{b n }⎝⎛⎭⎪⎫其中b n =a n q n ,得b n +1=p q ·b n +1q ,再用待定系数法解决;(2)也可在原递推公式两边同除以pn +1,得a n +1p n +1=a n p n +1p ⎝ ⎛⎭⎪⎫q p n,引入辅助数列{b n }⎝⎛⎭⎪⎫其中b n =a n p n ,得b n +1-b n =1p ⎝ ⎛⎭⎪⎫q p n ,再利用累加法(逐差相加法)求解.已知数列{a n }中,a 1=56,a n +1=13a n +⎝ ⎛⎭⎪⎫12n +1,求数列{a n }的通项公式.解法一:将a n +1=13a n +⎝ ⎛⎭⎪⎫12n +1两边分别乘以2n +1,得2n +1a n +1=23(2n a n )+1.令b n =2na n ,则b n +1=⎝ ⎛⎭⎪⎫23b n +1,根据待定系数法,得b n +1-3=23(b n -3).所以数列{b n -3}是首项为b 1-3=2×56-3=-43,公比为23的等比数列.所以b n -3=-43·⎝ ⎛⎭⎪⎫23n -1,即b n =3-2·⎝ ⎛⎭⎪⎫23n.于是,a n =b n 2n =32n -23n .解法二:将a n +1=13a n +⎝ ⎛⎭⎪⎫12n +1两边分别乘以3n +1,得3n +1a n +1=3na n +⎝ ⎛⎭⎪⎫32n +1.令b n =3n a n ,则b n +1=b n +32n +1, 所以b n -b n -1=⎝ ⎛⎭⎪⎫32n ,b n -1-b n -2=⎝ ⎛⎭⎪⎫32n -1,…,b 2-b 1=⎝ ⎛⎭⎪⎫322.将以上各式叠加,得b n -b 1=⎝ ⎛⎭⎪⎫322+…+⎝ ⎛⎭⎪⎫32n -1+⎝ ⎛⎭⎪⎫32n , 又b 1=3a 1=3×56=52=1+32,所以b n =1+32+⎝ ⎛⎭⎪⎫322+…+⎝ ⎛⎭⎪⎫32n -1+⎝ ⎛⎭⎪⎫32n =1·⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫32n +11-32=2·⎝ ⎛⎭⎪⎫32n +1-2,即b n =2·⎝ ⎛⎭⎪⎫32n +1-2.故a n =b n 3n =32n -23n .类型5 a n +1=pa n +an +b (p ≠1,p ≠0,a ≠0)这种类型的题目一般是利用待定系数法构造等比数列,即令a n +1+x (n +1)+y =p (a n +xn +y ),然后与已知递推式比较,解出x ,y ,从而得到{a n +xn +y }是公比为p 的等比数列.设数列{a n }满足a 1=4,a n =3a n -1+2n -1(n ≥2),求数列{a n }的通项公式.a n =3a n -1+2n -1→利用待定系数法得到一个等比数列→ 利用等比数列的知识可解 设递推公式可以转化为a n +An +B =3,化简后与原递推式比较,得 ⎩⎨⎧2A =2,2B -3A =-1,解得⎩⎨⎧A =1,B =1.则a n +n +1=3. 令b n =a n +n +1,(*) 则b n =3b n -1,又b 1=6,故b n =6·3n -1=2·3n , 代入(*),得a n =2·3n -n -1. 类型6 a n +1=pa r n (p >0,a n >0)这种类型的题目一般是将等式两边取对数后转化为a n +1=pa n +q 型,再利用待定系数法求解.已知数列{a n }中,a 1=1,a n +1=1m·a 2n (m >0),求数列{a n }的通项公式.对a n +1=1m·a 2n 两边取对数,得lg a n +1=2lg a n +lg 1m.令b n =lg a n ,则b n +1=2b n +lg 1m.因此得b n +1+lg 1m =2⎝⎛⎭⎪⎫b n +lg 1m ,记c n =b n +lg 1m,则c n +1=2c n .所以数列{c n }是首项c 1=b 1+lg 1m =lg 1m,公比为2的等比数列.所以c n =2n -1·lg 1m.所以b n =c n -lg 1m =2n -1·lg 1m -lg 1m =lg ⎣⎢⎡⎦⎥⎤m ·⎝ ⎛⎭⎪⎫1m 2n -1,即lg a n =lg ⎣⎢⎡⎦⎥⎤m ·⎝ ⎛⎭⎪⎫1m 2n -1,所以a n =m ·⎝ ⎛⎭⎪⎫1m 2n -1.类型7 a n +1=pa nqa n +r(p ,q ,r ≠0且a n ≠0,qa n +r ≠0) 这种类型的题目一般是将等式两边取倒数后,再进一步处理.若p =r ,则有1a n +1=r +qa n pa n =1a n +qp ,此时⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 为等差数列.若p ≠r ,则有1a n +1=r p ·1a n +qp,此时可转化为类型3来处理.已知数列{a n }中,a 1=1,a n +1=2a na n +2,求数列{a n }的通项公式.因为a n +1=2a na n +2,a 1=1, 所以a n ≠0, 所以1a n +1=1a n +12, 即1a n +1-1a n =12. 又a 1=1,则1a 1=1,所以⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 是以1为首项,以12为公差的等差数列.所以1a n =1a 1+(n -1)×12=n +12,所以a n =2n +1(n ∈N *). 类型8 a n +1+a n =f (n )将原递推关系改写成a n +2+a n +1=f (n +1),两式相减即得a n +2-a n =f (n +1)-f (n ),然后将n 按奇数、偶数分类讨论即可.已知数列{a n }中,a 1=1,a n +1+a n =2n ,求数列{a n }的通项公式.因为a n +1+a n =2n ,所以a n +2+a n +1=2n +2,故a n +2-a n =2,即数列{a n }是奇数项与偶数项都是公差为2的等差数列. 当n 为偶数时,a 2=1, 故a n =a 2+2⎝ ⎛⎭⎪⎫n 2-1=n -1.当n 为奇数时,因为a n +1+a n =2n ,a n +1=n (n +1为偶数),故a n =n . 综上知,a n =⎩⎨⎧n ,n 为奇数,n -1,n 为偶数,n ≥1,n ∈N *.类型9 a n +1·a n =f (n )将原递推关系改写成a n +2·a n +1=f (n +1),两式作商可得a n +2a n =f n +f n,然后将n 按奇数、偶数分类讨论即可.已知数列{a n }中,a 1=3,a n +1·a n =2n ,求数列{a n }的通项公式.因为a n +1·a n =2n , 所以a n +2·a n +1=2n +1,故a n +2a n=2, 即数列{a n }是奇数项与偶数项都是公比为2的等比数列.当n 为偶数时,a 2=23,故a n =a 2·2n2-1=23·2n2-1 ,即a n =13·2n2;当n 为奇数时,n +1为偶数,故a n +1=13·2n2+1 ,代入a n +1·a n =2n,得a n =3·2n2-1 .综上知,a n=⎩⎪⎨⎪⎧3·2n2-1 ,n 为奇数,13·2 n2 ,n 为偶数.。
2018版高考数学理北师大版大一轮复习讲义教师版文档
1.等差数列的定义从第2项起,每一项与前一项的差是同一个常数,我们称这样的数列为等差数列,称这个常数为等差数列的公差,通常用字母_d _表示. 2.等差数列的通项公式若首项是a 1,公差是d ,则这个等差数列的通项公式是a n =a 1+(n -1)d . 3.等差中项如果在a 与b 中间插入一个数A ,使a ,A ,b 成等差数列,那么A 叫作a 与b 的等差中项. 4.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N +).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N +),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N +)是公差为md 的等差数列. (6)数列S m ,S 2m -S m ,S 3m -S 2m ,…(m ∈N +)构成等差数列. 5.等差数列的前n 项和公式设等差数列{a n }的公差为d ,其前n 项和S n =n (a 1+a n )2或S n =na 1+n (n -1)2d .6.等差数列的前n 项和公式与函数的关系 S n =d2n 2+⎝⎛⎭⎫a 1-d 2n . 数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数). 7.等差数列的前n 项和的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值. 【知识拓展】等差数列的四种判断方法(1)定义法:a n +1-a n =d (d 是常数)⇔{a n }是等差数列. (2)等差中项法:2a n +1=a n +a n +2 (n ∈N +)⇔{a n }是等差数列. (3)通项公式:a n =pn +q (p ,q 为常数)⇔{a n }是等差数列. (4)前n 项和公式:S n =An 2+Bn (A ,B 为常数)⇔{a n }是等差数列. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( × )(2)等差数列{a n }的单调性是由公差d 决定的.( √ )(3)等差数列的前n 项和公式是常数项为0的二次函数.( × ) (4)已知等差数列{a n }的通项公式a n =3-2n ,则它的公差为-2.( √ )1.在等差数列{a n }中,若a 2=4,a 4=2,则a 6等于( ) A .-1 B .0 C .1 D .6 答案 B解析 由等差数列的性质,得a 6=2a 4-a 2=2×2-4=0,故选B.2.(教材改编)设数列{a n }是等差数列,其前n 项和为S n ,若a 6=2且S 5=30,则S 8等于( ) A .31 B .32 C .33 D .34 答案 B解析 由已知可得⎩⎪⎨⎪⎧a 1+5d =2,5a 1+10d =30,解得⎩⎨⎧a 1=263,d =-43,∴S 8=8a 1+8×72d =32.3.(2016·全国乙卷)已知等差数列{a n }前9项的和为27,a 10=8,则a 100等于( ) A .100 B .99 C .98 D .97 答案 C解析 由等差数列性质,知S 9=9(a 1+a 9)2=9×2a 52=9a 5=27,得a 5=3,而a 10=8,因此公差d =a 10-a 510-5=1,∴a 100=a 10+90d =98,故选C.4.(2016·江西玉山一中模拟)已知数列{a n }是等差数列,其前n 项和为S n ,若a 3+a 4+a 5=9,则S 7等于( )A .21B .28C .35D .42 答案 A解析 ∵a 3+a 4+a 5=9,∴a 4=3, ∴S 7=7a 4=21,故选A.5.若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大. 答案 8解析 因为数列{a n }是等差数列,且a 7+a 8+a 9=3a 8>0,所以a 8>0.又a 7+a 10=a 8+a 9<0,所以a 9<0.故当n =8时,其前n 项和最大.题型一 等差数列基本量的运算例1 (1)在数列{a n }中,若a 1=-2,且对任意的n ∈N +有2a n +1=1+2a n ,则数列{a n }前10项的和为( )A .2B .10 C.52 D.54(2)(2016·北京)已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________. 答案 (1)C (2)6解析 (1)由2a n +1=1+2a n 得a n +1-a n =12,所以数列{a n }是首项为-2,公差为12的等差数列,所以S 10=10×(-2)+10×(10-1)2×12=52.(2)∵a 3+a 5=2a 4=0,∴a 4=0. 又a 1=6,∴a 4=a 1+3d =0,∴d =-2.∴S 6=6×6+6×(6-1)2×(-2)=6.思维升华 等差数列运算问题的通性通法(1)等差数列运算问题的一般求法是设出首项a 1和公差d ,然后由通项公式或前n 项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(1)设S n 是等差数列{a n }的前n 项和,已知a 2=3,a 6=11,则S 7等于( )A .13B .35C .49D .63(2)(2016·江苏)已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是________. 答案 (1)C (2)20解析 (1)∵a 1+a 7=a 2+a 6=3+11=14, ∴S 7=7(a 1+a 7)2=49.(2)设等差数列{a n }的公差为d ,由题意可得 ⎩⎪⎨⎪⎧a 1+(a 1+d )2=-3,5a 1+5×42d =10,解得⎩⎪⎨⎪⎧a 1=-4,d =3, 则a 9=a 1+8d =-4+8×3=20. 题型二 等差数列的判定与证明例2 已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N +),数列{b n }满足b n =1a n -1(n ∈N +).(1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大项和最小项,并说明理由. (1)证明 因为a n =2-1a n -1(n ≥2,n ∈N +),b n =1a n -1(n ∈N +),所以b n +1-b n =1a n +1-1-1a n -1=1(2-1a n)-1-1a n -1=a n a n -1-1a n -1=1.又b 1=1a 1-1=-52.所以数列{b n }是以-52为首项,1为公差的等差数列.(2)解 由(1)知b n =n -72,则a n =1+1b n =1+22n -7.设f (x )=1+22x -7,则f (x )在区间(-∞,72)和(72,+∞)上为减函数.所以当n =3时,a n 取得最小值-1,当n =4时,a n 取得最大值3. 引申探究本例中,若将条件变为a 1=35,na n +1=(n +1)a n +n (n +1),试求数列{a n }的通项公式.解 由已知可得a n +1n +1=a n n +1,即a n +1n +1-a n n=1,又a 1=35,∴⎩⎨⎧⎭⎬⎫a n n 是以a 11=35为首项,1为公差的等差数列,∴a n n =35+(n -1)·1=n -25,∴a n =n 2-25n . 思维升华 等差数列的四个判定方法(1)定义法:证明对任意正整数n 都有a n +1-a n 等于同一个常数.(2)等差中项法:证明对任意正整数n 都有2a n +1=a n +a n +2后,可递推得出a n +2-a n +1=a n +1-a n =a n -a n -1=a n -1-a n -2=…=a 2-a 1,根据定义得出数列{a n }为等差数列.(3)通项公式法:得出a n =pn +q 后,得a n +1-a n =p 对任意正整数n 恒成立,根据定义判定数列{a n }为等差数列.(4)前n 项和公式法:得出S n =An 2+Bn 后,根据S n ,a n 的关系,得出a n ,再使用定义法证明数列{a n }为等差数列.(1)在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N +),则该数列的通项为( ) A .a n =1nB .a n =2n +1C .a n =2n +2D .a n =3n答案 A解析 由已知式2a n +1=1a n +1a n +2可得1a n +1-1a n =1a n +2-1a n +1,知{1a n }是首项为1a 1=1,公差为1a 2-1a 1=2-1=1的等差数列,所以1a n =n ,即a n =1n.(2)数列{a n }满足a 1=1,a 2=2,a n +2=2a n +1-a n +2. ①设b n =a n +1-a n ,证明{b n }是等差数列; ②求{a n }的通项公式.①证明 由a n +2=2a n +1-a n +2, 得a n +2-a n +1=a n +1-a n +2, 即b n +1=b n +2. 又b 1=a 2-a 1=1,所以{b n }是首项为1,公差为2的等差数列. ②解 由①得b n =1+2(n -1)=2n -1, 即a n +1-a n =2n -1.于是∑n k =1(a k +1-a k )=∑n k =1(2k -1), 所以a n +1-a 1=n 2,即a n +1=n 2+a 1.又a 1=1,所以{a n }的通项公式为a n =n 2-2n +2. 题型三 等差数列性质的应用 命题点1 等差数列项的性质例3 (1)(2015·广东)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________. (2)已知{a n },{b n }都是等差数列,若a 1+b 10=9,a 3+b 8=15,则a 5+b 6=________. 答案 (1)10 (2)21解析 (1)因为{a n }是等差数列,所以a 3+a 7=a 4+a 6=a 2+a 8=2a 5,a 3+a 4+a 5+a 6+a 7=5a 5=25,所以a 5=5,故a 2+a 8=2a 5=10.(2)因为{a n },{b n }都是等差数列,所以2a 3=a 1+a 5,2b 8=b 10+b 6,所以2(a 3+b 8)=(a 1+b 10)+(a 5+b 6),即2×15=9+(a 5+b 6),解得a 5+b 6=21. 命题点2 等差数列前n 项和的性质例4 (1)设等差数列{a n }的前n 项和为S n ,且S 3=-12,S 9=45,则S 12=________.(2)在等差数列{a n }中,a 1=-2 018,其前n 项和为S n ,若S 1212-S 1010=2,则S 2 018的值等于( )A .-2 018B .-2 016C .-2 019D .-2 017答案 (1)114 (2)A解析 (1)因为{a n }是等差数列,所以S 3,S 6-S 3,S 9-S 6,S 12-S 9成等差数列,所以2(S 6-S 3)=S 3+(S 9-S 6),即2(S 6+12)=-12+(45-S 6),解得S 6=3. 又2(S 9-S 6)=(S 6-S 3)+(S 12-S 9),即2×(45-3)=(3+12)+(S 12-45),解得S 12=114. (2)由题意知,数列{S nn }为等差数列,其公差为1,∴S 2 0182 018=S 11+(2 018-1)×1 =-2 018+2 017=-1. ∴S 2 018=-2 018.思维升华 等差数列的性质(1)项的性质:在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a nm -n =d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差. (2)和的性质:在等差数列{a n }中,S n 为其前n 项和,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1); ②S 2n -1=(2n -1)a n.(1)在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11等于( )A .58B .88C .143D .176(2)等差数列{a n }与{b n }的前n 项和分别为S n 和T n ,若S n T n =3n -22n +1,则a 7b 7等于( )A.3727 B.3828 C.3929D.4030答案 (1)B (2)A解析 (1)S 11=11(a 1+a 11)2=11(a 4+a 8)2=11×162=88. (2)a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=a 1+a 132×13b 1+b 132×13=S 13T 13=3×13-22×13+1=3727.6.等差数列的前n 项和及其最值考点分析 公差不为0的等差数列,求其前n 项和与最值在高考中时常出现,题型有小题,也有大题,难度不大.典例1 (1)在等差数列{a n }中,2(a 1+a 3+a 5)+3(a 7+a 9)=54,则此数列前10项的和S 10等于( ) A .45 B .60 C .75D .90(2)在等差数列{a n }中,S 10=100,S 100=10,则S 110=________. 解析 (1)由题意得a 3+a 8=9,所以S 10=10(a 1+a 10)2=10(a 3+a 8)2=10×92=45.(2)方法一 设数列{a n }的首项为a 1,公差为d , 则⎩⎨⎧10a 1+10×92d =100,100a 1+100×992d =10,解得⎩⎨⎧a 1=1 099100,d =-1150.所以S 110=110a 1+110×1092d =-110.方法二 因为S 100-S 10=(a 11+a 100)×902=-90,所以a 11+a 100=-2, 所以S 110=(a 1+a 110)×1102=(a 11+a 100)×1102=-110.答案 (1)A (2)-110典例2 在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 取得最大值,并求出它的最大值. 规范解答解 ∵a 1=20,S 10=S 15,∴10×20+10×92d =15×20+15×142d ,∴d =-53.方法一 由a n =20+(n -1)×⎝⎛⎭⎫-53=-53n +653, 得a 13=0.即当n ≤12时,a n >0,当n ≥14时,a n <0. ∴当n =12或n =13时,S n 取得最大值,且最大值为S 12=S 13=12×20+12×112×⎝⎛⎭⎫-53=130.方法二 S n =20n +n (n -1)2·⎝⎛⎭⎫-53 =-56n 2+1256n=-56⎝⎛⎭⎫n -2522+3 12524. ∵n ∈N +,∴当n =12或n =13时,S n 有最大值,且最大值为S 12=S 13=130. 方法三 由S 10=S 15,得a 11+a 12+a 13+a 14+a 15=0. ∴5a 13=0,即a 13=0.∴当n =12或n =13时,S n 有最大值,且最大值为S 12=S 13=130.1.(2016·重庆一诊)在数列{a n }中,a n +1-a n =2,a 2=5,则{a n }的前4项和为( ) A .9 B .22 C .24 D .32答案 C解析 由a n +1-a n =2,知{a n }为等差数列且公差d =2,∴由a 2=5,得a 1=3,a 3=7,a 4=9,∴前4项和为3+5+7+9=24,故选C.2.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何?”其意思为:“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位)这个问题中,甲所得为( ) A.54钱 B.53钱 C.32钱 D.43钱 答案 D解析 设等差数列{a n }的首项为a 1,公差为d , 依题意有⎩⎪⎨⎪⎧2a 1+d =3a 1+9d ,2a 1+d =52,⎩⎨⎧a 1=43,d =-16,故选D.3.(2016·佛山模拟)已知等差数列{a n }满足a 2=3,S n -S n -3=51(n >3),S n =100,则n 的值为( ) A .8 B .9 C .10 D .11答案 C解析 由S n -S n -3=51,得a n -2+a n -1+a n =51, 所以a n -1=17,又a 2=3, S n =n (a 2+a n -1)2=100,解得n =10.4.(2017·北师大附中质检)《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第五节的容积为( ) A .1升 B.6766升 C.4744升 D.3733升 答案 B解析 设竹子自上而下各节的容积分别为a 1,a 2,…,a 9,且为等差数列, 根据题意得a 1+a 2+a 3+a 4=3,a 7+a 8+a 9=4, 即4a 1+6d =3,① 3a 1+21d =4,②②×4-①×3得66d =7,解得d =766,把d =766代入①,得a 1=1322,则a 5=1322+766(5-1)=6766. 5.已知数列{a n }满足a n +1=a n -57,且a 1=5,设{a n }的前n 项和为S n ,则使得S n 取得最大值的序号n 的值为( ) A .7 B .8 C .7或8D .8或9答案 C解析 由题意可知数列{a n }是首项为5,公差为-57的等差数列,所以a n =5-57(n -1)=40-5n 7,该数列前7项是正数项,第8项是0,从第9项开始是负数项,所以S n 取得最大值时,n =7或n =8,故选C. 6.设等差数列{a n }满足a 1=1,a n >0(n ∈N+),其前n 项和为S n ,若数列{S n }也为等差数列,则S n +10a 2n的最大值是( ) A .310 B .212C .180D .121 答案 D解析 设数列{a n }的公差为d ,依题意得2S 2=S 1+S 3,因为a 1=1,所以22a 1+d =a 1+3a 1+3d ,化简可得d =2a 1=2,所以a n =1+(n -1)×2=2n -1,S n =n +n (n -1)2×2=n 2, 所以S n +10a 2n =(n +10)2(2n -1)2=(n +102n -1)2 =⎣⎢⎢⎡⎦⎥⎥⎤12(2n -1)+2122n -12 =14⎝⎛⎭⎫1+212n -12≤121, 故选D.7.(2015·安徽)已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于________. 答案 27解析 由题意知数列{a n }是以1为首项,以12为公差的等差数列,∴S 9=9×1+9×82×12=9+18=27.8.已知数列{a n }中,a 1=1且1a n +1=1a n +13(n ∈N +),则a 10=________. 答案 14解析 由已知得1a 10=1a 1+(10-1)×13=1+3=4, 故a 10=14. 9.设数列{a n }的通项公式为a n =2n -10(n ∈N +),则|a 1|+|a 2|+…+|a 15|=________. 答案 130解析 由a n =2n -10(n ∈N +)知{a n }是以-8为首项,2为公差的等差数列,又由a n =2n -10≥0,得n ≥5,∴当n ≤5时,a n ≤0,当n >5时,a n >0,∴|a 1|+|a 2|+…+|a 15|=-(a 1+a 2+a 3+a 4)+(a 5+a 6+…+a 15)=20+110=130.10.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意自然数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为________. 答案1941 解析 ∵{a n },{b n }为等差数列,∴a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=a 9+a 32b 6=a 6b 6. ∵S 11T 11=a 1+a 11b 1+b 11=2a 62b 6=2×11-34×11-3=1941, ∴a 9b 5+b 7+a 3b 8+b 4=1941. 11.在等差数列{a n }中,a 1=1,a 3=-3.(1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值.解 (1)设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d .由a 1=1,a 3=-3,可得1+2d =-3,解得d =-2.从而a n =1+(n -1)×(-2)=3-2n .(2)由(1)可知a n =3-2n ,所以S n =n [1+(3-2n )]2=2n -n 2. 由S k =-35,可得2k -k 2=-35,即k 2-2k -35=0,解得k =7或k =-5.又k ∈N +,故k =7.12.若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12. (1)求证:数列⎩⎨⎧⎭⎬⎫1S n 是等差数列; (2)求数列{a n }的通项公式.(1)证明 当n ≥2时,由a n +2S n S n -1=0,得S n -S n -1=-2S n S n -1,所以1S n -1S n -1=2, 又1S 1=1a 1=2, 故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列. (2)解 由(1)可得1S n =2n ,∴S n =12n. 当n ≥2时,a n =S n -S n -1=12n -12(n -1)=n -1-n 2n (n -1)=-12n (n -1). 当n =1时,a 1=12不适合上式. 故a n =⎩⎨⎧ 12,n =1,-12n (n -1),n ≥2. 13.已知数列{a n }的各项均为正数,前n 项和为S n ,且满足2S n =a 2n +n -4(n ∈N+).(1)求证:数列{a n }为等差数列;(2)求数列{a n }的通项公式.(1)证明 当n =1时,有2a 1=a 21+1-4, 即a 21-2a 1-3=0,解得a 1=3(a 1=-1舍去).当n ≥2时,有2S n -1=a 2n -1+n -5,又2S n =a 2n +n -4,两式相减得2a n =a 2n -a 2n -1+1,即a 2n -2a n +1=a 2n -1,也即(a n -1)2=a 2n -1,因此a n -1=a n -1或a n -1=-a n -1.若a n -1=-a n -1,则a n +a n -1=1.而a 1=3,所以a2=-2,这与数列{a n}的各项均为正数相矛盾,所以a n-1=a n-1,即a n-a n-1=1,因此数列{a n}是首项为3,公差为1的等差数列.(2)解由(1)知a1=3,d=1,所以数列{a n}的通项公式a n=3+(n-1)×1=n+2,即a n=n+2.。
高三数学复习(3年真题分类+考情精解读+知识全通关+题型全突破+能力大提升)第六章 数列试题 理(
2018版高三数学一轮复习(3年真题分类+考情精解读+知识全通关+题型全突破+能力大提升)第六章数列试题理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高三数学一轮复习(3年真题分类+考情精解读+知识全通关+题型全突破+能力大提升)第六章数列试题理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高三数学一轮复习(3年真题分类+考情精解读+知识全通关+题型全突破+能力大提升)第六章数列试题理的全部内容。
专题六数列考点1 数列的概念及简单表示法1.(2016·浙江,13)设数列{a n}的前n项和为S n。
若S2=4,a n+1=2S n+1,n∈N*,则a1=________,S=________。
51.1,121 由于错误!解得a1=1,a2=3,当n≥2时,由已知可得:a n=2S n+1,①+1a n=2S n+1,②-1①-②得a n+1-a n=2a n,∴a n+1=3a n,又a2=3a1,∴{a n}是以a1=1为首项,公比q=3的等比数列.∴S5=错误!=121.2。
(2015·江苏,11)设数列{a n}满足a1=1,且a n+1-a n=n+1(n∈N*),则数列错误!前10项的和为________.2。
错误![∵a1=1,a n+1-a n=n+1,∴a2-a1=2,a3-a2=3,…,a n-a n-1=n,将以上n-1个式子相加得a n-a1=2+3+…+n=错误!,即a n=错误!,令b n=错误!,故b n=错误!=2错误!,故S=b1+b2+…+b10=2错误!=错误!.]103.(2015·安徽,18)设n∈N*,x n是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标。
2018版高考数学(全国人教B版理)大一轮复习讲义:第六章数列第3讲含解析
基础巩固题组(建议用时:40分钟)一、选择题1。
已知{a n},{b n}都是等比数列,那么()A。
{a n+b n},{a n·b n}都一定是等比数列B.{a n+b n}一定是等比数列,但{a n·b n}不一定是等比数列C.{a n+b n}不一定是等比数列,但{a n·b n}一定是等比数列D.{a n+b n},{a n·b n}都不一定是等比数列解析两个等比数列的积仍是一个等比数列.答案C2.(2017·华师附中调研)在等比数列{a n}中,a2a3a4=8,a7=8,则a1=( )A.1 B。
±1 C。
2 D.±2解析由a2a3a4=a错误!=8,得a3=2,所以a7=a3·q4=2q4=8,则q2=2,因此a1=错误!=1。
答案A3。
(教材改编)一个蜂巢里有1只蜜蜂.第1天,它飞出去找回了5个伙伴;第2天,6只蜜蜂飞出去,各自找回了5个伙伴……如果这个找伙伴的过程继续下去,第6天所有的蜜蜂都归巢后,蜂巢中一共有________只蜜蜂()A.55 986B.46 656C.216 D。
36解析设第n天蜂巢中的蜜蜂数量为a n,根据题意得数列{a n}成等比数列,a1=6,q=6,所以{a n}的通项公式a n=6×6n-1,到第6天,所有的蜜蜂都归巢后,蜂巢中一共有a6=6×65=66=46 656只蜜蜂,故选B。
答案B4.(2015·全国Ⅱ卷)已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=( )A。
21 B。
42 C。
63 D.84解析设等比数列{a n}的公比为q,则由a1=3,a1+a3+a5=21得3(1+q2+q4)=21,解得q2=-3(舍去)或q2=2,于是a3+a5+a7=q2(a1+a3+a5)=2×21=42,故选B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018届高考数学基础知识剖析复习06
5
高考数学基础知识、常见结论详解
二、函数
一、映射与函数
(1)映射的概念(2)一一映射(3)函数的概念
如若,;问到的映射有个,到的映射有个;到的函数有个,若,则到的一一映射有个。
函数的图象与直线交点的个数为个。
二、函数的三要素,,。
相同函数的判断方法① ;② (两点必须同时具备)
(1)函数解析式的求法
①定义法(拼凑)②换元法③待定系数法④赋值法
(2)函数定义域的求法
① ,则;② 则;
③ ,则;④如,则;
⑤含参问题的定义域要分类讨论;
如已知函数的定义域是,求的定义域。
⑥对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义确定。
如已知扇形的周长为x)=0 f(x) =f(-x) f(x)为偶函数;
f(x)+f(-x)=0 f(x) =-f(-x) f(x)为奇函数。
判别方法定义法,图像法,复合函数法
应用把函数值进行转化求解。
周期性定义若函数f(x)对定义域内的任意x满足f(x+T)=f(x),则T为函数f(x)的周期。
其他若函数f(x)对定义域内的任意x满足f(x+a)=f(x-a),则2a为函数f(x)的周期。