不等式解法

合集下载

解不等式的方法

解不等式的方法

解不等式的方法解不等式是代数学中的重要内容,它在数学建模、优化问题、函数图像等方面都有着重要的应用。

在解不等式的过程中,我们需要掌握一些基本的方法和技巧,下面我将为大家介绍几种解不等式的常用方法。

一、一元一次不等式的解法。

对于一元一次不等式ax+b>c,我们可以按照以下步骤来解题:1. 将不等式转化为等价的形式,即ax+b-c>0;2. 根据a的正负情况进行讨论:a. 若a>0,则不等式的解集为x>-b/a+c;b. 若a<0,则不等式的解集为x<-b/a+c。

二、一元二次不等式的解法。

对于一元二次不等式ax^2+bx+c>0,我们可以按照以下步骤来解题:1. 求出二次函数的判别式Δ=b^2-4ac的值;2. 根据Δ的正负情况进行讨论:a. 若Δ>0,则二次函数有两个不等实根,即x的取值范围为x<x1或x>x2;b. 若Δ=0,则二次函数有两个相等的实根,即x的取值范围为x=x1=x2;c. 若Δ<0,则二次函数无实根,即不等式无解。

三、绝对值不等式的解法。

对于绝对值不等式|ax+b|<c,我们可以按照以下步骤来解题:1. 分情况讨论:a. 若a>0,则不等式的解集为-b<c<ax+b;b. 若a<0,则不等式的解集为-b<c<-ax-b。

四、分式不等式的解法。

对于分式不等式f(x)>0,我们可以按照以下步骤来解题:1. 求出分式的定义域;2. 求出分式的零点;3. 根据零点的正负情况进行讨论:a. 若零点为实数且大于0,则不等式的解集为定义域内使分式大于0的实数;b. 若零点为实数且小于0,则不等式的解集为空集。

五、不等式组的解法。

对于不等式组{f(x)>0, g(x)>0},我们可以按照以下步骤来解题:1. 求出每个不等式的解集;2. 将每个不等式的解集取交集,得到不等式组的解集。

基本不等式的所有公式及常用解法

基本不等式的所有公式及常用解法

基本不等式的所有公式及常用解法1.加减法不等式公式:若a>b,则a+/-c>b+/-c,其中c为任意实数。

2.乘法不等式公式:若a>b且c>0,则a*c>b*c;若a>b且c<0,则a*c<b*c。

3.幂次不等式公式:对任意非零实数a和b若a>b且n>0且n为正整数,则a^n>b^n;若a>b且0<n<1,则a^n<b^n。

4.倒数不等式公式:若a>b>0,则1/a<1/b。

5.奇偶性不等式公式:若a>0且n为正整数,则a^n>0。

若a<0且n为奇数整数,则a^n<0。

常用的解基本不等式的方法有:1.用数轴法解:将不等式绘制在数轴上,根据不等式的性质找出符合条件的x的取值范围。

2.用代数方法解:针对不等式上的加减法、乘法、幂次或倒数等,利用基本不等式公式进行运算,化简不等式,最终得到x的取值范围。

3.用平方差、立方差或更高次差法解:对于特定形式的不等式,如二次函数不等式(即含有二次项的不等式),可使用平方差公式将其转化为不等式的标准形式;同样,对于三次函数不等式(即含有三次项的不等式),可使用立方差公式将其转化为不等式的标准形式。

通常,对高次不等式的解法需要更高级的数学知识,此处不再详细介绍。

4.用函数图像解:对于一些特定函数,如一次函数、二次函数等,可通过绘制函数图像来判断不等式的解集。

5.用不等式链解:若能将一个不等式化为多个简单的不等式,即不等式的解集满足一系列条件,可通过每个条件对应的不等式求解解集。

以上是基本不等式的一些公式和常用解法。

对于不同的不等式,我们需要根据具体情况选择合适的解法。

希望以上内容对您有所帮助。

不等式的解法

不等式的解法

复习重点:不等式的解法,主要有一元一次、一元二次、一元高次不等式,分式不等式,无理不等式,指数、对数不等式及含绝对值的不等式的解法;在复习中强调基本方法及易错点。

复习难点:含字母系数的二次型不等式,无理不等式解法,数形结合的方法解不等式,及不等式变形的等价性问题。

(一)各种类型不等式基本解法中的易错点:1.二次型不等式:ax2+bx+c>0(<0)易错点:<1>是否为二次不等式;<2>含字母表示的二根的大小。

2.一元高次不等式:a(x-x1)(x-x2)……(x-x n)>0。

易错点:<1>a>0时,从右上方开始穿线;<2>奇穿偶切,如(x-2)2(x+1)3>0.各因式的幂指数为奇数时穿过ox轴,若幂指数为偶数时,与ox轴相切不穿过;<3>孤立点容易遗漏。

如:(x-3)(x+2)2(x-1)≥0(x-3)(x-1)≥0或x=-2。

3.分式不等式:,易错点:<1>方法的规范,化为(1)的形式;<2>等价性;如(2)。

4.无理不等式<1>易错点:①遗漏情况(2);②不等式组(1),省略f(x)≥0,可简化运算。

<2>注:g(x)=0为孤立点,易遗漏。

5.含绝对值不等式:注意:<1>方法的选择:分段去绝对值号;用等价不等式解或数形结合方法解决。

<2>形如的基本解法:<i>分段讨论;<ii>数形结合。

6.指数不等式及对数不等式基本类型:<1>同底型;<2>a f(x)<b、log a f(x)<b型用定义;<3>换元法解。

易错点:<1>定义域:对数式中底数、真数的限制条件;<2>利用函数单调性,要分成底数大于1还是在0与1之间考虑。

解不等式问题重点注意:i.等价变形;ii.数形结合的方法。

不等式的解法

不等式的解法

不等式的解法不等式,即数学中用来表示大小关系的符号,它与等式不同的地方在于,不等式可以有无数个解,而不像等式只有一个解。

解不等式的方法有很多种,接下来将介绍几种常见的解不等式的方法。

一、一元一次不等式一元一次不等式是最基本的不等式,它的形式通常为ax+b>0或ax+b<0,其中a和b为已知数,x为未知数。

解一元一次不等式的方法有两种:图解法和代数法。

1. 图解法图解法是通过在数轴上画出所给不等式的解集来解不等式。

首先,我们将不等式中的x系数作为直线的斜率,常数项作为直线的截距,画出不等式对应的直线。

然后,根据不等式符号的方向,涂色标记出不等式的解集。

例如,对于不等式3x+2>0,我们可以画出直线y=3x+2,并根据大于号的方向,将直线上大于0的部分涂色。

2. 代数法代数法是通过代数运算解不等式。

首先,根据不等式符号的方向,确定不等式的类型是大于、小于还是等于。

然后,根据不等式中的系数和常数项,进行加法、减法、乘法和除法运算,将未知数x的系数和常数项移到不等式的一侧,使得不等式变为0的形式。

最后,通过考察几个关键点的取值情况,确定不等式的解集。

二、一元二次不等式一元二次不等式是一元二次方程的不等式形式,它的形式通常为ax^2+bx+c>0或ax^2+bx+c<0,其中a、b、c为已知数,x为未知数。

解一元二次不等式的方法有两种:图解法和代数法。

1. 图解法图解法是通过在坐标平面上画出所给不等式的解集来解不等式。

首先,我们将不等式转化为对应的一元二次方程,找到方程的判别式,判断方程的根的情况。

根据根的位置,将坐标平面分为几个区域,并确定每个区域对应的不等式的正负。

然后,将不等式对应的曲线画在坐标平面上,并根据不等式符号的方向,将曲线上符合条件的部分涂色。

2. 代数法代数法是通过代数运算解一元二次不等式。

首先,根据不等式符号的方向,确定不等式的类型是大于、小于还是等于。

然后,根据不等式中的系数和常数项,进行移项、配方、因式分解等运算,将不等式变为一元二次方程的零点形式。

不等式的解法

不等式的解法

不等式的解法不等式是数学中常见的问题,解不等式可以帮助我们找到满足特定条件的数值范围。

本文将介绍几种常用的不等式的解法。

一、一元一次一元一次不等式是形如ax+b>c或ax+b<c的不等式,其中a、b、c都是已知的实数,x是未知数。

1. 等价变形法通过对不等式进行等价变形,使得未知数x单独在一边,从而得到不等式的解。

例如,对于不等式3x+4>10,我们可以通过减4,并除以3来消去4和3,得到x>2。

所以x的取值范围为大于2的所有实数。

2. 符号法考虑不等式中的符号,根据不等式关系的性质确定解的范围。

例如,对于不等式5x-7≥8,我们观察到不等式中的符号是≥,根据≥的意义,我们知道等号成立时也是一个解。

所以我们可以解得5x-7=8,得到x=3。

因此,x的取值范围为大于等于3的所有实数。

二、一元二次一元二次不等式是形如ax^2+bx+c>d或ax^2+bx+c<d的不等式,其中a、b、c、d都是已知的实数,x是未知数。

1. 图像法将一元二次不等式转化为二次函数的图像,通过观察函数图像来确定不等式的解。

例如,对于不等式x^2-4x<3,我们可以将不等式转化为方程x^2-4x=3,并求得其根为x=1和x=3。

然后绘制出函数图像y=x^2-4x的图像,在图像上观察x轴上落在1和3之间的部分,即得到不等式的解为1<x<3。

2. 化简法将一元二次不等式进行化简,将不等式转化为一个或多个一元一次不等式,然后求解这些一元一次不等式的解。

例如,对于不等式x^2+2x-3>0,我们可以将不等式因式分解为(x-1)(x+3)>0。

然后我们考虑两个因式的正负情况,得到两个一元一次不等式x-1>0和x+3>0。

解这两个一元一次不等式,得到x>1和x>-3。

因此,x的取值范围为大于1和大于-3的所有实数。

三、多元多元不等式是包含两个或多个未知数的不等式,解多元不等式可以使用代入法、图像法或数学方法。

常见不等式的解法

常见不等式的解法

常见不等式的解法【知识要点】一、一元一次不等式的解法任何一个一元一次不等式经过不等式的同解变形后,都可以化为(0)ax b a >≠的形式.当0a >时,不等式的解集为b x x a ⎧⎫>⎨⎬⎩⎭;当0a <时,不等式的解集为b x x a ⎧⎫<⎨⎬⎩⎭.二、一元二次不等式20(0)ax bx c a ++≥≠的解法1、二次不等式2()0f x ax bx c =++≥(0a >)的解法:最好的方法是图像法,充分体现了数形结合的思想.也可以利用口诀(大于取两边,小于取中间)解答.2、当二次不等式()f x =20(0)ax bx c a ++≥<时,可以画图,解不等式,也可以把二次项的系数a 变成正数,再利用上面的方法解答. 3、温馨提示(1)不要把不等式20ax bx c ++>看成了一元二次不等式,一定邀注意观察分析2x 的系数.(2)对于含有参数的不等式注意考虑是否要分类讨论.(3)如果运用口诀解一元二次不等式,一定要注意使用口诀必须满足的前提条件. (4)不等式的解集必须用集合或区间,不能用不等式,注意结果的规范性. 三、指数不等式和对数不等式的解法解指数不等式和对数不等式一般有以下两种方法(1)同底法:如果两边能化为同底的指数或对数,先化为同底,再根据指数、对数的单调性转化为代数不等式,底数是参数时要注意观察分析是否要对其进行讨论,并注意到对数真数大于零的限制条件.①当1a >时,()()()()f x g x a a f x g x >⇔>; ()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩②当01a <<时,()()()()f x g x a a f x g x >⇔<; ()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩(2)对指互化法:如果两边不能化成同底的指数或对数时,一般用对指互化法.对数不等式两边取指数,转化成整式不等式来解;指数不等式两边取对数,转化成整式不等式来解.(1)x a b a >>log ()log log x a a a a b x b ⇒>⇒> (01)x a b a ><<log ()log log x a a a a b x b ⇒<⇒<log 00log (1)aa xb x x x b a x b aa >>⎧⎧>⇒⇒>⎨⎨>>⎩⎩其中log 00log (1)aa xb x x x b a x b a a >>⎧⎧>⇒⇒<<⎨⎨<<⎩⎩其中0四、分式不等式的解法把分式不等式通过移项、通分、因式分解等化成()0()f x g x ≥的形式→化成不等式组()0()()0g x f x g x ≠⎧⎨≥⎩→解不等式组得解集.温馨提示:解分式不等式一定要考虑定义域. 五、高次不等式的解法先把高次不等式分解因式化成123()()()()0n x a x a x a x a ---->的形式(x 的系数必须为正)→标记方程的实根(注意空心和实心之分)→穿针引线,从右往左,从上往下穿(奇穿偶不穿)→写出不等式的解集.实际上,序轴标根法适用于所有的整式不等式,根据它可以很快地写出整式不等式的解集. 六、绝对值不等式的解法方法一:公式法 解只含有一个绝对值形如()ax b c +><的不等式,一般直接用公式x a x a x a >⇔><-或 x a a x a <⇔-<<,注意集合的关系和集合的运算,集合的运算主要利用数轴.方法二:零点讨论法 解含有两个绝对值形如()x a x b c +++><的不等式,常用零点讨论法和数形结合法.注意小分类求交大综合求并.方法三:平方法 如果绝对值的不等式的两边都是非负数,如:3x >,可以使用平方法. 七、无理不等式的解法无理不等式一般利用平方法和分类讨论解答.无理不等式转化为有理不等式,要注意平方的条件和根式有意义的条件,一般情况下,)()(x g x f ≥可转化为)()(x g x f >或)()(x g x f =,而)()(x g x f >等价于:⎩⎨⎧<≥0)(0)(x g x f 或⎪⎩⎪⎨⎧>≥≥2)]([)(0)(0)(x g x f x g x f .八、抽象的函数不等式的解法一般利用函数的单调性解答,先研究函数的单调性,再利用函数的单调性把抽象的函数不等式转化成具体的函数不等式解答. 学科#网 【方法讲评】【例1】 解关于x 的不等式01)1(2<++-x a ax .②当0>a 时,①式变为0)1)(1(<--x ax . ② ∵a a a -=-111,∴当10<<a 时,11>a ,此时②的解为ax 11<<.当1=a 时,11=a ,此时②的解为11<<x a. 【点评】解本题要注意分类讨论思想的运用,关键是要找到分类的标准,就本题来说有三级分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧>=<<><≠=∈11100000a a a a a a a R a 分类应做到使所给参数a 的集合的并集为全集,交集为空集,要做到不重不漏.另外,解本题还要注意在讨论0<a 时,解一元二次不等式01)1(2<++-x a ax 应首选做到将二次项系数变为正数再求解.【反馈检测1】 解关于x 的不等式0)(322>++-a x a a x .【例2】解不等式211126()82x x ---⨯<【点评】解这类指数不等式,常常需要通过变量代换把它变为整式不等式来解.【反馈检测2】解关于x 的不等式:)22(223x x x xa --<-(其中0a >)【例3】已知0>a 且1a ≠,关于x 的不等式1xa >的解集是{}0x x >,解关于x 的不等式1log ()0a x x-<的解集.【点评】本题选同底法解答,把0写成log 1a ,再利用对数函数的图像和性质将不等式变成分式不等式 组解答.【反馈检测3】解不等式21log (2)1x x x +-->.【例4】解关于x 的不等式12>-x【点评】分析:若将原不等式移项、通分整理可得:02)2()1(>----x a x a ⇔0)2)](2()1[(>----x a x a显然,现在有两个问题:(1)1a -的符号怎样?(2)12--a a 与2的大小关系怎样?这也就是本题的分类标准所在.【反馈检测4】 解不等式x xx x x <-+-+222322.)(n x a -数必须为正)→标记方程的实根(注意空心和实心之分)→穿针引线,从右往左,从上【例5】解不等式: 015223>--x x x【点评】如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或0)(<x f )可用“穿根法”求解,但要注意处理好有重根的情况.学科#网【反馈检测5】0)2()5)(4(32<-++x x x【例6】|5||23|1x x --+<【点评】该题由于有两个不等式,所以一般利用零点讨论法.对于含有两个和两个以上的不等式,一般利用零点讨论法.【反馈检测6】解不等式242+<-x x【例7】 解关于x 的不等式)0(122>->-a x a ax .【解析】原不等式⎪⎩⎪⎨⎧->-≥->-⇔;)1(2,01,02)1(222x a ax x a ax 或⎩⎨⎧<-≥-.01,02)2(2x a x由0>a ,得:⎪⎪⎩⎪⎪⎨⎧<+++-≤>⇔;01)1(2,1,2)1(22a x a x x a x ⎪⎩⎪⎨⎧>≥⇔.1,2)2(x a x由判别式08)1(4)1(422>=+-+=∆a a a ,故不等式01)1(222<+++-a x a x 的解是a a x a a 2121++<<-+.当20≤<a 时,1212≤-+≤a a a,121>++a a ,不等式组(1)的解是121≤<-+x a a ,不等式组(2)的解是1>x .当2>a 时,不等式组(1)无解,(2)的解是2a x ≥. 综上可知,当20≤<a时,原不等式的解集是[)+∞-+,21a a ;当2>a 时,原不等式的解集是⎪⎭⎫⎢⎣⎡+∞,2a .【点评】本题分类讨论标准“20≤<a ,2>a ”是依据“已知0>a 及(1)中‘2ax >,1≤x ’,(2)中‘2ax ≥,1>x ’”确定的.解含有参数的不等式是不等式问题中的难点,也是近几年高考的热点.一般地,分类讨论标准(解不等式)大多数情况下依“不等式组中的各不等式的解所对应的区间的端点”去确定.本题易误把原不等式等价于不等式)1(22x a ax ->-.纠正错误的办法是熟练掌握无理不等式基本类型的解法.【反馈检测7】解不等式x x x ->--81032.【例8】若非零函数对任意实数均有,且当时,. (1)求证:;(2)求证:为减函数;(3)当时,解不等式.(3)由 原不等式转化为,结合(2)得:故不等式的解集为【点评】(1)第(3)问的关键是找到1(?)4f =,再利用函数的单调性把抽象的函数不等式转化成具()f x ,a b ()()()f a b f a f b +=0x <()1f x >()0f x >()f x 1(4)16f =21(3)(5)4f x f x --≤211(4)(2)1(2)164f f f ==⇒=,由())2()53(2f x x f ≤-+-10222≤≤⇒≥-+x x x {}10|≤≤x x体函数不等式.【反馈检测8】函数对任意(0)x y ∈+∞,,满足()()()f xy f x f y =+且当1x >时,()0f x <. (l )判断函数的单调性并证明相关结论;(2) 若(2)1f =-,试求解关于x 的不等式()(3)2f x f x +-≥-.【反馈检测9】【2017江苏,11】已知函数31()2e e x xf x x x =-+-, 其中e 是自然对数的底数. 若 2(1)(2)0f a f a -+≤,则实数a 的取值范围是 .不等式的解法参考答案【反馈检测1答案】见解析【反馈检测2答案】见解析【反馈检测2详细解析】解原不等式得:即),12()12(2222-<-x xxa0)14)(4(),14()14(4<--∴-<-x x x x x a a)0,(log ,14,104a a a x 此时不等式的解集为时当<<<<此时不等式无解时当,0)14(,12<-=x a )log ,0(,41,14a a a x 此时不等式的解集为时当<<>【反馈检测3答案】3x >()f x ()fx【反馈检测3详细解析】[法一]原不等式同解于所以原不等式的解为3x >.[法二]原不等式同解于211log (2)log (1)x x x x x ++-->+所以原不等式的解为3x >.【反馈检测4答案】}321{><<-x x x 或【反馈检测5答案】{}2455>-<<--<x x x x 或或【反馈检测5详细解析】原不等式等价于⎩⎨⎧>-<-≠⇔⎩⎨⎧>-+≠+⇔>-++2450)2)(4(050)2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{}2455>-<<--<x x x x 或或【反馈检测6答案】{}31<<x x【反馈检测6详细解析】解法一:原不等式⎪⎩⎪⎨⎧+<-<-⎪⎩⎪⎨⎧+<-≥-⇔240424042222x x x x x x 或 即⎩⎨⎧>-<<<-⎩⎨⎧<<--≤≥1222222x x x x x x x 或或或 ∴32<≤x 或21<<x 故原不等式的解集为{}31<<x x .解法二:原不等式等价于 24)2(2+<-<+-x x x即⎪⎩⎪⎨⎧+->-+<-)2(42422x x x x ∴312132<<⎩⎨⎧-<><<-x x x x 故或. 【反馈检测7答案】⎭⎬⎫⎩⎨⎧>1374x x【反馈检测8答案】(1)()f x 在(0,)+∞上单调递减;(2){34}x x <≤.学科#网【反馈检测8详细解析】(1)()f x 在(0,)+∞上单调递减1212,,(0,)x x x x <∈+∞任取且 2221111()()()()x x f x f x f x f x x =⋅=+则 2211()()()x f x f x f x ∴-= 120x x << 21()0x f x ∴< 2112()()0()()f x f x f x f x ∴-<>即 ()(0,)f x ∴+∞在单调递减 (2)2)2()2()4(-=+=f f f ((3))(4f x x f ∴-≥原不等式可化为 ()0f x +∞又在(,)上单调递增030(3)4x x x x >⎧⎪∴->⎨⎪-≤⎩34x <≤解得 {34}x x ∴<≤原不等式解集为. 【反馈检测9答案】1[1,]2-。

不等式的解法

不等式的解法

不等式的解法 一.不等式解法总结: 1.一元二次不等式的解法求一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->解集的步骤:一化:化二次项前的系数为正数. 二判:判断对应方程的根. 三求:求对应方程的根. 四画:画出对应函数的图象.五解集:根据图象写出不等式的解集.规律:当二次项系数为正时,小于取中间,大于取两边. 2.高次不等式的解法:穿根法. 分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向,写出不等式的解集.3.分式不等式的解法:先移项通分标准化,则()0()()0()()()0()0()0()f x f x g x g x f x g x f x g x g x >⇔⋅>⋅≥⎧≥⇔⎨≠⎩ (<≤“或”时同理)规律:把分式不等式等价转化为整式不等式求解. 4.无理不等式的解法:转化为有理不等式求解 ⑴2()0()(0)()f x f x a a f x a ≥⎧>>⇔⎨>⎩ ⑵2()0()(0)()f x f x a a f x a≥⎧<>⇔⎨<⎩ ⑶2()0()0()()()0()0()[()]f x f x f x g x g x g x f x g x >⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或 ⑷2()0()()()0()[()]f x f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩ ⑸()0()()()0()()f x f x g x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解. 5.指数不等式的解法:⑴当1a >时,()()()()f x g x a a f x g x >⇔>;⑵当01a <<时,()()()()f x g x a a f x g x >⇔<规律:根据指数函数的性质转化. 6.对数不等式的解法⑴当1a >时, ()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩⑵当01a <<时, ()0log ()log ()()0.()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩规律:根据对数函数的性质转化. 7.含绝对值不等式的解法:⑴定义法:(0).(0)a a a a a ≥⎧=⎨-<⎩⑵平方法:22()()()().f x g x f x g x ≤⇔≤ ⑶同解变形法,其同解定理有: ①(0);x a a x a a ≤⇔-≤≤≥ ②(0);x a x a x a a ≥⇔≥≤-≥或③()()()()()(()0)f x g x g x f x g x g x ≤⇔-≤≤≥ ④()()()()()()(()0)f x g x f x g x f x g x g x ≥⇔≥≤-≥或规律:关键是去掉绝对值的符号.8.含有两个(或两个以上)绝对值的不等式的解法:规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集. 9.含参数的不等式的解法解形如20ax bx c ++>且含参数的不等式时,要对参数进行分类讨论,分类讨论的标准有:⑴讨论a 与0的大小; ⑵讨论∆与0的大小; ⑶讨论两根的大小. 10.恒成立问题⑴不等式20ax bx c ++>的解集是全体实数(或恒成立)的条件是:①当0a =时 0,0;b c ⇒=> ②当0a ≠时00.a >⎧⇒⎨∆<⎩⑵不等式20ax bx c ++<的解集是全体实数(或恒成立)的条件是:①当0a =时0,0;b c ⇒=< ②当0a ≠时00.a <⎧⇒⎨∆<⎩⑶()f x a <恒成立max ();f x a ⇔< ()f x a ≤恒成立max ();f x a ⇔≤ ⑷()f x a >恒成立min ();f x a ⇔> ()f x a ≥恒成立min ().f x a ⇔≥ 二.练习: 1.解不等式:(1)23440x x -++> (2)213022x x ++> (3)()()21322x x x x +->-- (4)2232142-<---<-x x2. 函数)1(log 221-=x y 的定义域为 ______.3..二次函数y=ax 2+bx+c (x ∈R )的部分对应值如下表:则不等式ax 2+bx+c>0的解集是______.4.若不等式02>++c bx x 的解集是}13{-<>x x x 或,则b =______ c =______. 5.解关于x的不等式)1(12)1(≠>--a x x a6.若关于x 的不等式210,ax ax a ++-<的解集为R ,则a 的取值范围是______. 7.不等式220ax bx ++>解集为1123x -<<,则ab 值分别为______. x -3 -2 -1 0 1 2 3 4 y6-4-6-6-46。

不等式的解法

不等式的解法

不等式的解法不等式是数学中常见的一种表示数值关系的方法。

解不等式就是找出使不等式成立的数值范围。

在解不等式时,可以通过几种常见的方法来确定解集。

一、图像法图像法适用于简单的一元一次不等式。

通过将不等式转化为直线的形式,并在数轴上画出对应的线段,可以直观地找到满足不等式的数值范围。

例如,对于不等式x + 3 > 2,我们可以将其转化为x > -1的形式。

在数轴上,我们可以画出一个开口向右的箭头,箭头的起点为-1,表示解集为大于-1的所有实数。

二、代入法代入法是一种常见的解不等式的方法,特别适用于含有绝对值的不等式。

通过将可能的解代入到不等式中,验证是否满足不等式的关系,可以逐步缩小解集。

例如,对于不等式|2x - 3| < 5,我们可以先将其拆分成两个不等式:2x - 3 < 5和2x - 3 > -5。

然后分别解这两个不等式,可以得到解集为-1 < x < 4。

三、性质法性质法是解不等式的一种常用方法,通过利用不等式的性质和常用不等式的性质,可以快速求解不等式。

例如,对于不等式x^2 - 4x > 3,我们可以将其转化为x^2 - 4x - 3 > 0的形式。

通过因式分解或配方法,可以求得该不等式的根为x > 3或x < 1。

然后,结合二次函数的凹凸性质,可以得到解集为x < 1或x > 3。

四、区间法区间法是一种用于求解一元二次不等式的常用方法。

通过将一元二次不等式转化为标准形式,然后结合图像法和区间划分的方法,可以求解出不等式的解集。

例如,对于不等式x^2 - 5x + 6 > 0,可以将其转化为(x - 2)(x - 3) > 0的形式。

通过将x^2 - 5x + 6 = 0的根-1, 2, 3绘制在数轴上,并观察函数的正负性,可以得到解集为-1 < x < 2或x > 3。

综上所述,解不等式的方法有很多种,包括图像法、代入法、性质法和区间法等。

求解不等式的方法

求解不等式的方法

求解不等式的方法在数学学习中,不等式是一个非常重要的概念。

它不仅在数学中有广泛的应用,而且在生活中也有很多实际的应用。

因此,掌握解不等式的方法对于中学生来说是至关重要的。

本文将介绍一些常见的解不等式的方法,帮助学生们更好地理解和掌握这一知识点。

一、一元一次不等式的解法一元一次不等式是指只含有一个未知数的一次不等式。

解一元一次不等式的方法与解方程的方法类似,可以通过移项、合并同类项等步骤来求解。

例如,对于不等式2x + 3 > 7,我们可以先将3移到等式的另一边,得到2x > 7 - 3,即2x > 4。

接着,我们将不等式两边都除以2,得到x > 2。

因此,不等式的解集为{x | x > 2}。

二、一元二次不等式的解法一元二次不等式是指含有一个未知数的二次不等式。

解一元二次不等式的方法相对复杂一些,需要考虑不等式的开口方向以及二次函数的图像。

对于形如ax^2 + bx + c > 0的一元二次不等式,我们可以先求出二次函数的零点,然后根据二次函数的图像来确定不等式的解集。

例如,对于不等式x^2 - 4x + 3 > 0,我们可以先求出二次函数x^2 - 4x + 3 = 0的零点,得到x = 1和x = 3。

然后,我们可以绘制二次函数的图像,根据图像可以确定不等式的解集为{x | 1 < x < 3}。

三、绝对值不等式的解法绝对值不等式是指含有绝对值符号的不等式。

解绝对值不等式的方法比较灵活,可以根据不等式的形式来选择不同的解法。

对于形如|ax + b| > c的绝对值不等式,我们可以分两种情况讨论。

当ax + b > 0时,不等式可以化简为ax + b > c,解得x > (c - b)/a;当ax + b < 0时,不等式可以化简为-(ax + b) > c,解得x < (b - c)/a。

因此,绝对值不等式的解集为{x | x < (b - c)/a 或 x > (c - b)/a}。

不等式的解法

不等式的解法

不等式的解法不等式是数学中常见的一种关系式,描述了数值之间的大小关系。

它是由不等号(例如>, <, ≥, ≤, ≠)连接的两个数或表达式组成的。

解不等式就是找出满足该不等式的所有数值。

在解不等式的过程中,需要考虑不等式中的未知数、常数以及可能存在的绝对值、平方根等特殊情况。

以下是几种常见的不等式解法方法:一、加减法解不等式若不等式中的未知数带有符号,并且仅涉及到加减法运算,则可以通过移项的方式解不等式。

具体步骤如下:1. 将所有含有未知数的项放在一边,将常数放在另一边,确保未知数的系数为正数;2. 合并同类项;3. 如果未知数系数为负数,将不等号反转;4. 如果不等式两侧都含有未知数,则根据大小关系进行筛选;5. 最后化简,得到不等式的解。

举例说明:解不等式2x + 5 < 7 - x。

1. 将所有含有未知数的项放在一边,将常数放在另一边,得到2x + x < 7 - 5;2. 合并同类项,得到3x < 2;3. 未知数系数为正数,不需要改变不等号;4. 进行筛选,得到x < 2/3;5. 最后化简,得到解集{x | x < 2/3}。

二、乘除法解不等式若不等式中的未知数带有符号,并且仅涉及到乘除法运算,则可以通过乘除法的逆运算解不等式。

具体步骤如下:1. 将不等式中的未知数项移动一侧,将常数项移动到另一侧;2. 如果是乘法,则将未知数系数为正数;3. 如果是除法,则需考虑被除数符号与除数符号的关系;4. 根据大小关系进行筛选;5. 最后化简,得到不等式的解。

举例说明:解不等式3x - 4 > 2x + 1。

1. 将未知数项移动到一侧,将常数项移动到另一侧,得到3x - 2x > 1 + 4;2. 未知数系数为正数,不需要改变不等号;3. 进行筛选,得到x > 5;4. 最后化简,得到解集{x | x > 5}。

三、绝对值不等式的解法对于含有绝对值的不等式,需要分情况进行讨论。

不等式的解法

不等式的解法

不等式的解法数学中的不等式是我们在初中阶段学习的重要内容之一。

解不等式是解决数学问题的基本技能,也是我们日常生活中需要运用的数学知识。

在这篇文章中,我将为大家介绍几种常见的不等式解法,并通过具体的例子来说明。

一、一元一次一元一次不等式是最基础的不等式类型,它的解法与一元一次方程类似。

我们以不等式2x + 3 > 5为例进行讲解。

首先,我们将不等式中的等号去掉,得到2x + 3 = 5。

然后,我们根据方程的性质,将x的系数化为1,得到x + 3/2 = 5/2。

最后,我们将x的系数化为1后的方程进行求解,得到x = 1/2。

根据不等式的性质,我们可以知道,当x > 1/2时,不等式2x + 3 > 5成立。

因此,不等式的解集为x > 1/2。

二、一元二次一元二次不等式是稍微复杂一些的不等式类型,它的解法需要运用到二次函数的性质。

我们以不等式x^2 - 4x + 3 > 0为例进行讲解。

首先,我们将不等式中的等号去掉,得到x^2 - 4x + 3 = 0。

然后,我们求出方程的根,得到x = 1和x = 3。

接下来,我们将数轴分成三段:x < 1,1 < x < 3和x > 3。

我们可以通过代入法来判断每一段的取值范围。

当x < 1时,代入x = 0,得到0^2 - 4*0 + 3 = 3 > 0,因此不等式在这一段成立。

当1 < x < 3时,代入x = 2,得到2^2 - 4*2 + 3 = -1 < 0,因此不等式在这一段不成立。

当x > 3时,代入x = 4,得到4^2 - 4*4 + 3 = 7 > 0,因此不等式在这一段成立。

综上所述,不等式的解集为x < 1或x > 3。

三、绝对值绝对值不等式是一种常见的不等式类型,它的解法需要运用到绝对值的性质。

我们以不等式|2x - 3| < 5为例进行讲解。

不等式的解法

不等式的解法

不等式的解法不等式是数学中最基本的一个概念,它包括两个数的比较,表达方法是“大于”,“小于”,“等于”类型的箭头符号,如“3>2”,表明3大于2;“2≤7”,表明2小于等于7。

不等式是学习运算及分析问题时,很常见的知识点,学过基本运算、数学概念的学生,都需要掌握这方面的知识。

不等式的解法,是一种数学技能,通过这种技能,能够对不等式问题做出正确的判断和结论。

二、不等式的解法1、一元不等式的解法一元不等式的解法指的是,一个变量的不等式的解法,常见的一元不等式比如“x>2”,“2x-1<7”等。

解一元不等式的思路通常如下:(1)将不等式两边同乘以变量上的系数,使不等式两边都变成常数;(2)重新组合不等式两边,取一个公约数;(3)正负号的变换,有助于理解;(4)最后求得不等式的解。

2、二元不等式的解法二元不等式的解法指的是,两个变量的不等式的解决,如解决“x+y<3”等。

解二元不等式的步骤通常如下:(1)首先将不等式的一边化为一个数,再解两个变量的方程;(2)解出方程的解,再结合方程的不等式;(3)求出不等式的解。

三、不等式在实际应用中的作用1、不等式在经济学上的应用不等式也可以用于把经济问题表达为数学模型,比如把一种商品的价格变化率表示为不等式,“P-M<0”,其中P代表市场价格,M代表成本价格。

这样,就可以利用不等式,比较客观的研究经济问题,获取有效的经济数据。

2、不等式在工程学上的应用不等式也可以用于工程中,比如在水力学或梯形法中,用于研究水的流速、水的流量及水的流压。

在这些模型中,都会使用不等式来表达某个条件,从而获取工程中有用的结论。

3、不等式在物理学上的应用在物理学中,也可以使用不等式来表达某个物理现象,比如动量定理:“p=mv”,其中p代表动量,m代表质量,v代表速度。

另外,物理学中的许多原理,如能量守恒原理,都可以用不等式的形式来描述,可以更方便地描述物理现象,从而让科学家更好地掌握科学知识。

不等式的解法

不等式的解法

不等式的解法●知识梳理1.一元一次不等式的解法.任何一个一元一次不等式经过不等式的同解变形后,都可以化为ax >b (a ≠0)的形式. 当a >0时,解集为{x |x >ab };当a <0时,解集为{x |x <ab }.2.一元二次不等式的解法.任何一个一元二次不等式经过不等式的同解变形后,都可以化为ax 2+bx +c >0(或<0)(其中a >0)的形式,再根据“大于取两边,小于夹中间”求解集.3.简单的高次不等式、分式不等式的求解问题可采用“数轴标根法”.思考讨论用“数轴标根法”解高次、分式不等式时,对于偶次重根应怎样处理? ●点击双基1.(2004年全国Ⅳ,5)不等式32-+x x x )(<0的解集为A.{x |x <-2或0<x <3}B.{x |-2<x <0或x >3}C.{x |x <-2或x >0}D.{x |x <0或x >3} 解析:在数轴上标出各根.-2 0 3答案:A2.(2003年北京)若不等式|ax +2|<6的解集为(-1,2),则实数a 等于 A.8 B.2 C.-4 D.-8 解析:由|ax +2|<6得-6<ax +2<6,即-8<ax <4.∵不等式|ax +2|<6的解集为(-1,2),易检验a =-4. 答案:C3.(2003年重庆市诊断性考试题)已知函数f (x )是R 上的增函数,A (0,-1)、B (3,1)是其图象上的两点,那么| f (x +1)|<1的解集是A.(1,4)B.(-1,2)C.(-∞,1]∪[4,+∞)D.(-∞,-1]∪[2,+∞)解析:由题意知f (0)=-1,f (3)=1.又| f (x +1)|<1⇔-1<f (x +1)<1, 即f (0)<f (x +1)<f (3).又f (x )为R 上的增函数, ∴0<x +1<3.∴-1<x <2.答案:B 4.(理)(2003年山东潍坊市第二次模拟考试题)不等式x 2-|x -1|-1≤0的解集为____________.解析:当x -1≥0时,原不等式化为x 2-x ≤0,解得0≤x ≤1.∴x =1;当x -1<0时,原不等式化为x 2+x -2≤0,解得-2≤x ≤1.∴-2≤x <1. (文)不等式ax 2+(ab +1)x +b >0的解集为{x |1<x <2},则a +b =_______. 解析:∵ax 2+(ab +1)x +b >0的解集为{x |1<x <2},∴⎪⎪⎪⎩⎪⎪⎪⎨⎧==+-<.2310aba ab a ,,解得⎪⎩⎪⎨⎧-=-=121b a ,或⎩⎨⎧-=-=.21b a ,∴a +b =-23或-3. 5.不等式ax 2+bx +c >0的解集为{x |2<x <3},则不等式ax 2-bx +c >0的解集为_______. 解析:令f (x )=ax 2+bx +c ,其图象如下图所示,xyy y O = = f x ( )f x ()-3 -2 2 3-再画出f (-x )的图象即可.答案:{x |-3<x <-2} ●典例剖析 【例1】 解不等式3252---x x x<-1.剖析:这是一个分式不等式,其左边是两个关于x 的多项式的商,而右边是非零常数,故需移项通分,右边变为零,再利用商的符号法则,等价转化成整式不等式组.解:原不等式变为3252---x xx+1<0,即322322--+-x xx x <0⇔⎪⎩⎪⎨⎧<-->+-⎪⎩⎪⎨⎧>--<+-⇔0320230320232222x x x x x x x x 或,-1<x <1或2<x <3.∴原不等式的解集是{x |-1<x <1或2<x <3}.【例2】 求实数m 的范围,使y =lg [mx 2+2(m +1)x +9m +4]对任意x ∈R 恒有意义. 剖析:mx 2+2(m +1)x +9m +4>0恒成立的含义是该不等式的解集为R . 故应⎩⎨⎧>.00<,Δm解:由题意知mx 2+2(m +1)x +9m +4>0的解集为R ,则⎩⎨⎧<+-+=>.04941402)()(,m m m Δm 解得m >41. 评述:二次不等式ax 2+bx +c >0恒成立的条件:⎩⎨⎧<>.00Δa ,若未说明是二次不等式还应讨论a =0的情况.思考讨论本题若要使值域为全体实数,m 的范围是什么? 提示:对m 分类讨论,m =0适合. 当m ≠0时,⎩⎨⎧≥>.00Δm ,解m 即可.【例3】 若不等式2x -1>m (x 2-1)对满足|m |≤2的所有m 都成立,求x 的取值范围. 剖析:对于m ∈[-2,2],不等式2x -1>m (x 2-1)恒成立,把m 视为主元,利用函数的观点来解决.解:原不等式化为(x 2-1)m -(2x -1)<0. 令f (m )=(x 2-1)m -(2x -1)(-2≤m ≤2).则⎪⎩⎪⎨⎧<---=<----=-.01212201212222)()()(,)()()(x x f x x f 解得271+-<x <231+.深化拓展1.本题若变式:不等式2x -1>m (x 2-1)对一切-2≤x ≤2都成立,求m 的取值范围.2.本题若把m 分离出来再求m 的范围能行吗? ●闯关训练 夯实基础1.(2004年重庆,4)不等式x +12+x >2的解集是 A.(-1,0)∪(1,+∞) B.(-∞,-1)∪(0,1) C.(-1,0)∪(0,1)D.(-∞,-1)∪(1,+∞)解法一:x +12+x >2⇔x -2+12+x >0⇔11+-x x x )(>0⇔x (x -1)(x +1)>0⇔-1<x <0或x >1.解法二:验证,x =-2、21不满足不等式,排除B 、C 、D.2.设f (x )和g (x )都是定义域为R 的奇函数,不等式f (x )>0的解集为(m ,n ),不等式g (x )>0的解集为(2m ,2n ),其中0<m <2n ,则不等式f (x )·g (x )>0的解集是A.(m ,2n )B.(m ,2n )∪(-2n ,-m )C.(2m ,2n )∪(-n ,-m )D.(2m ,2n )∪(-2n ,-2m )解析:f (x )、g (x )都是定义域为R 的奇函数,f (x )>0的解集为(m ,n ),g (x )>0的解集为(2m ,2n ).∴f (-x )>0的解集为(-n ,-m ),g (-x )>0的解集为(-2n,-2m ),即f (x )<0的解集为(-n ,-m ),g (x )<0的解集为(-2n ,-2m ).由f (x )·g (x )>0得⎩⎨⎧>>00)(,)(x g x f 或⎩⎨⎧<<.00)(,)(x g x f .又0<m <2n,∴m <x <2n 或-2n <x <-m .3.若关于x 的不等式-21x 2+2x >mx 的解集为{x |0<x <2},则实数m 的值为_______.解析:由题意,知0、2是方程-21x 2+(2-m )x =0的两个根,∴-212--m =0+2.∴m =1.4.(2004年浙江,13)已知f (x )=⎩⎨⎧<-≥.0101x x ,则不等式x +(x +2)·f (x +2)≤5的解集是____________.解析:当x +2≥0,即x ≥-2时.x +(x +2)f (x +2)≤5⇔2x +2≤5⇔x ≤23.∴-2≤x ≤23.当x +2<0即x <-2时,x +(x +2)f (x +2)≤5 ⇔x +(x +2)·(-1)≤5⇔-2≤5,∴x <-2.综上x ≤23.5.(2004年宣武二模题)定义符号函数sgn x =⎪⎩⎪⎨⎧<-=>.010001)(),(),(x x x 当x ∈R 时,解不等式(x +2)>(2x -1)sgn x .解:当x >0时,原不等式为x +2>2x -1.∴0<x <3.当x =0时,成立.当x <0时,x +2>121-x .x -121-x +2>0.1224122--+--x x x x>0.123322--+x x x>0.∴-4333+<x <0.综上,原不等式的解集为{x |-4333+<x <3}.6.(2003年北京西城区一模题)解关于x 的不等式ax 2-2≥2x -ax (a ∈R ). 解:原不等式变形为ax 2+(a -2)x -2≥0. ①a =0时,x ≤-1;②a ≠0时,不等式即为(ax -2)(x +1)≥0, 当a >0时,x ≥a2或x ≤-1;由于a2-(-1)=aa 2+,于是当-2<a <0时,a2≤x ≤-1;当a =-2时,x =-1;当a <-2时,-1≤x ≤a2.综上,当a =0时,x ≤-1;当a >0时,x ≥a2或x ≤-1;当-2<a <0时,a2≤x ≤-1;当a =-2时,x =-1;当a <-2时,-1≤x ≤a2.培养能力7.(2004年春季安徽)解关于x 的不等式log a 3x <3log a x (a >0,且a ≠1). 解:令y =log a x ,则原不等式化为y 3-3y <0,解得y <-3或0<y <3,即log a x <-3或0<log a x <3. 当0<a <1时,不等式的解集为{x |x >a 3-}∪{x |a3<x <1};当a >1时,不等式的解集为{x |0<x <a 3-}∪{x |1<x <a3}.8.有点难度哟!(2003年天津质量检测题)已知适合不等式|x 2-4x +a |+|x -3|≤5的x 的最大值为3,求实数a 的值,并解该不等式.解:∵x ≤3,∴|x -3|=3-x .若x 2-4x +a <0,则原不等式化为x 2-3x +a +2≥0.此不等式的解集不可能是集合{x |x ≤3}的子集,∴x 2-4x +a <0不成立.于是,x 2-4x +a ≥0,则原不等式化为x 2-5x +a -2≤0.∵x ≤3,令x 2-5x +a -2=(x -3)(x -m )=x 2-(m +3)x +3m ,比较系数,得m =2,∴a =8. 此时,原不等式的解集为{x |2≤x ≤3}. 探究创新9.关于x 的不等式⎪⎩⎪⎨⎧<+++>--055220222k x k x x x )(,的整数解的集合为{-2},求实数k 的取值范围.解:由x 2-x -2>0可得x <-1或x >2.∵⎪⎩⎪⎨⎧<+++>--055220222k x k x x x )(,的整数解为x =-2,又∵方程2x 2+(2k +5)x +5k =0的两根为-k 和-25.①若-k <-25,则不等式组的整数解集合就不可能为{-2};②若-25<-k ,则应有-2<-k ≤3.∴-3≤k <2.综上,所求k 的取值范围为-3≤k <2.●思悟小结1.一元二次不等式的解集与二次项系数及判别式的符号有关.2.解分式不等式要使一边为零,转化为不等式组.如果能分解,可用数轴标根法或列表法.3.解高次不等式的思路是降低次数,利用数轴标根法求解较为容易.4.解含参数的不等式的基本途径是分类讨论,能避免讨论的应设法避免讨论. ●教师下载中心 教学点睛1.解不等式的过程,实质上是不等式等价转化过程.因此在教学中向学生强调保持同解变形是解不等式应遵循的基本原则.2.各类不等式最后一般都要化为一元一次不等式(组)或一元二次不等式(组)来解, 这体现了转化与化归的数学思想.3.解不等式几乎是每年高考的必考题,重点仍是含参数的有关不等式,对字母参数的逻辑划分要具体问题具体分析,必须注意分类不重、不漏、完全、准确. 拓展题例【例1】 (2003年南京市第二次质量检测题)解关于x 的不等式12-ax ax>x (a ∈R ).解法一:由12-ax ax>x ,得12-ax ax-x >0,即1-ax x >0.此不等式与x (ax -1)>0同解.若a <0,则a1<x <0; 若a =0,则x <0;若a >0,则x <0或x >a1.综上,a <0时,原不等式的解集是(a1,0);a =0时,原不等式的解集是(-∞,0); a >0时,原不等式的解集是(-∞,0)∪(a 1,+∞). 解法二:由12-ax ax>x ,得12-ax ax-x >0,即1-ax x>0.此不等式与x (ax -1)>0同解. 显然,x ≠0.(1)当x >0时,得ax -1>0.若a <0,则x <a1,与x >0矛盾,∴此时不等式无解;若a =0,则-1>0,此时不等式无解; 若a >0,则x >a1.(2)当x <0时,得ax -1<0.若a <0,则x >a1,得a1<x <0;若a =0,则-1<0,得x <0;若a >0,则x <a1,得x <0.综上,a <0时,原不等式的解集是(a1,0);a =0时,原不等式的解集是(-∞,0);a >0时,原不等式的解集是(-∞,0)∪(a1,+∞).【例2】 f (x )是定义在(-∞,3]上的减函数,不等式f (a 2-sin x )≤f (a +1+cos 2x )对一切x ∈R 均成立,求实数a 的取值范围.解:由题意可得⎪⎪⎩⎪⎪⎨⎧++≥-≤++≤-x a x a x a x a 2222cos 1sin 3cos 13sin ,,即⎪⎪⎩⎪⎪⎨⎧--≥---≤+≤222221sin 49cos 2sin 3)(,,x a a x a x a 对x ∈R 恒成立.故⎪⎪⎩⎪⎪⎨⎧--≥--≤≤max22221sin 4912)(,,x a a a a ∴-2≤a ≤2101-.●知识梳理1.|x |>a ⇔x >a 或x <-a (a >0); |x |<a ⇔-a <x <a (a >0).2.形如|x -a |+|x -b |≥c 的不等式的求解通常采用“零点分段讨论法”.3.含参不等式的求解,通常对参数分类讨论.4.绝对值不等式的性质: ||a |-|b ||≤|a ±b |≤|a |+|b |. 思考讨论1.在|x |>a ⇔x >a 或x <-a (a >0)、|x |<a ⇔-a <x <a (a >0)中的a >0改为a ∈R 还成立吗?2.绝对值不等式的性质中等号成立的条件是什么?●点击双基1.(2003年成都第三次诊断题)设a 、b 是满足ab <0的实数,那么 A.|a +b |>|a -b | B.|a +b |<|a -b | C.|a -b |<||a |-|b || D.|a -b |<|a |+|b | 解析:用赋值法.令a =1,b =-1,代入检验.2.(2004年春季安徽)不等式|2x 2-1|≤1的解集为 A.{x |-1≤x ≤1}B.{x |-2≤x ≤2}C.{x |0≤x ≤2}D.{x |-2≤x ≤0}解析:由|2x 2-1|≤1得-1≤2x 2-1≤1. ∴0≤x 2≤1,即-1≤x ≤1.3.不等式|x +log 3x |<|x |+|log 3x |的解集为 A.(0,1) B.(1,+∞) C.(0,+∞)D.(-∞,+∞)解析:∵x >0,x 与log 3x 异号, ∴log 3x <0.∴0<x <1. 4.已知不等式a ≤||22x x+对x 取一切负数恒成立,则a 的取值范围是____________.解析:要使a ≤||22x x +对x 取一切负数恒成立,令t =|x |>0,则a ≤tt22+.而tt22+≥tt 22=22,∴a ≤22.答案:a ≤225.已知不等式|2x -t |+t -1<0的解集为(-21,21),则t =____________.解析:|2x -t |<1-t ,t -1<2x -t <1-t ,2t -1<2x <1,t -21<x <21.∴t =0.●典例剖析【例1】 解不等式|2x +1|+|x -2|>4.剖析:解带绝对值的不等式,需先去绝对值,多个绝对值的不等式必须利用零点分段法去绝对值求解.令2x +1=0,x -2=0,得两个零点x 1=-21,x 2=2.解:当x ≤-21时,原不等式可化为-2x -1+2-x >4,∴x <-1.当-21<x ≤2时,原不等式可化为2x +1+2-x >4,∴x >1.又-21<x ≤2,∴1<x ≤2.当x >2时,原不等式可化为2x +1+x -2>4,∴x >35.又x >2,∴x >2.综上,得原不等式的解集为{x |x <-1或1<x }. 深化拓展若此题再多一个含绝对值式子.如:|2x +1|+|x -2|+|x -1|>4,你又如何去解? 分析:令2x +1=0,x -2=0,x -1=0,得x 1=-21,x 2=1,x 3=2.解:当x ≤-21时,原不等式化为-2x -1+2-x +1-x >4,∴x <-21.当-21<x ≤1时,原不等式可化为2x +1+2-x +1-x >4,4>4(矛盾).当1<x ≤2时,原不等式可化为2x +1+2-x +x -1>4,∴x >1. 又1<x ≤2,∴1<x ≤2.当x >2时,原不等式可化为2x +1+x -2+x -1>4,∴x >23.又x >2,∴x >2.综上所述,原不等式的解集为{x |x <-21或x >1}.【例2】 解不等式|x 2-9|≤x +3.剖析:需先去绝对值,可按定义去绝对值,也可利用|x |≤a ⇔-a ≤x ≤a 去绝对值.解法一:原不等式⇔(1)⎪⎩⎪⎨⎧+≤-≥-390922x x x ,或(2)⎪⎩⎪⎨⎧+≤-<-.390922x x x ,不等式(1)⇔⎩⎨⎧≤≤-≥≤4333x x x 或⇔x =-3或3≤x ≤4;不等式(2)⇔⎩⎨⎧≥-≤<<-2333x x x 或⇔2≤x <3.∴原不等式的解集是{x |2≤x ≤4或x =-3}.解法二:原不等式等价于⎩⎨⎧+≤-≤+-≥+393032x x x x )(⇔⎪⎩⎪⎨⎧≤≤--≤-≥4333x x x ,或x ≥2⇔x=-3或2≤x ≤4. ∴原不等式的解集是{x |2≤x ≤4或x =-3}. 【例3】 (理)已知函数f (x )=x |x -a |(a ∈R ). (1)判断f (x )的奇偶性;(2)解关于x 的不等式:f (x )≥2a 2. 解:(1)当a =0时, f (-x )=-x |-x |=-x |x |=-f (x ), ∴f (x )是奇函数.当a ≠0时,f (a )=0且f (-a )=-2a |a |.故f (-a )≠f (a )且f (-a )≠-f (a ). ∴f (x )是非奇非偶函数. (2)由题设知x |x -a |≥2a 2, ∴原不等式等价于⎩⎨⎧≥+-<222aax xa x , ①或⎩⎨⎧≥-≥.222a ax xa x , ②由①得⎩⎨⎧≤+-<.0222a ax x a x ,x ∈∅.由②得⎩⎨⎧≥+-≥.02))((,a x a x a x 当a =0时,x ≥0.当a >0时,⎩⎨⎧-≥≤≥,或,a x a x a x 2∴x ≥2a .当a <0时,⎩⎨⎧-≤≥≥,或,a x a x a x 2x≥-a . 综上a ≥0时,f (x )≥2a 2的解集为{x |x ≥2a };a <0时,f (x )≥2a 2的解集为{x |x ≥-a }.(文)设函数f (x )=ax +2,不等式| f (x )|<6的解集为(-1,2),试求不等式)(x f x ≤1的解集.解:|ax +2|<6,∴(ax +2)2<36,即a 2x 2+4ax -32<0.由题设可得⎪⎪⎩⎪⎪⎨⎧-=-=-.2321422aa a ,解得a =-4.∴f (x )=-4x +2.由)(x f x≤1,即24+-x x ≤1可得2425--x x ≥0.解得x >21或x ≤52.∴原不等式的解集为{x |x >21或x ≤52}.●闯关训练夯实基础1.(2003年北京海淀区一模题)已知集合A ={x |a -1≤x ≤a +2},B ={x |3<x <5},则能使A ⊇B 成立的实数a 的取值范围是A.{a |3<a ≤4}B.{a |3≤a ≤4}C.{a |3<a <4}D.∅解析:由题意知⎩⎨⎧≥+≤-,,5231a a 得3≤a ≤4.2.不等式|x 2+2x |<3的解集为____________. 解析:-3<x2+2x <3,即⎪⎩⎪⎨⎧>++<-+.03203222x x x x ,∴-3<x <1.3.(2004年全国Ⅰ,13)不等式|x +2|≥|x |的解集是____________.解法一:|x +2|≥|x |⇔(x +2)2≥x 2⇔4x +4≥0⇔x ≥-1.解法二: 在同一直角坐标系下作出f (x )=|x +2|与g (x )=|x |的图象,根据图象可得x ≥-1.|解法三:根据绝对值的几何意义,不等式|x +2|≥|x |表示数轴上x 到-2的距离不小于到0的距离,∴x ≥-1.答案:{x |x ≥-1}评述:本题的三种解法均为解绝对值不等式的基本方法,必须掌握. 4.(2004年春季北京)当0<a <1时,解关于x 的不等式a 12-x <a x -2.解:由0<a <1,原不等式可化为12-x >x -2.这个不等式的解集是下面不等式组①及②的解集的并集.⎩⎨⎧<-≥-02012x x , ⎪⎩⎪⎨⎧->-≥-≥-.212020122)(,,x x x x解不等式组①得解集为{x |21≤x <2},解不等式组②得解集为{x |2≤x <5}, 所以原不等式的解集为{x |21≤x <5}.5.关于x 的方程3x 2-6(m -1)x +m 2+1=0的两实根为x 1、x 2,若|x 1|+|x 2|=2,求m 的值.解:x 1、x 2为方程两实根,∴Δ=36(m -1)2-12(m 2+1)≥0.∴m ≥253+或m ≤253-.又∵x 1·x 2=212+m>0,∴x 1、x 2同号.∴|x 1|+|x 2|=|x 1+x 2|=2|m -1|.于是有2|m -1|=2,∴m =0或2.∴m =0. 培养能力 6.解不等式212-x≤||1x .解:(1)当x 2-2<0且x ≠0,即当-2<x <2且x ≠0时,原不等式显然成立. (2)当x 2-2>0时,原不等式与不等式组⎪⎩⎪⎨⎧≥->||22||2x xx ,等价.x 2-2≥|x |,即|x |2-|x |-2≥0.∴|x |≥2.∴不等式组的解为|x |≥2,即x ≤-2或x ≥2.∴原不等式的解集为(-∞,-2]∪(-2,0)∪(0,2)∪[2,+∞). 7.(2003年湖北黄冈模拟题)已知函数f (x )=xx ax122-+的定义域恰为不等式log 2(x +3)+log 21x ≤3的解集,且f (x )在定义域内单调递减,求实数a 的取值范围.解:由log 2(x +3)+log 21x ≤3得⎪⎩⎪⎨⎧>≤+033log 2x x x ⇔⎪⎩⎪⎨⎧>≤+⇔083x x x x ≥73,即f (x )的定义域为[73,+∞).∵f (x )在定义域[73,+∞)内单调递减,∴当x 2>x 1≥73时,f (x 1)-f (x 2)>0恒成立,即有(ax 1-11x +2)-(ax 2-21x +2>0⇔a (x 1-x 2)-(11x -21x )>0⇔(x 1-x 2)(a +211x x )>0恒成立.∵x 1<x 2,∴(x 1-x 2)(a +211x x )>0⇔a +211x x <0. ∵x 1x 2>499⇒-211x x >-949,要使a <-211x x 恒成立,则a 的取值范围是a ≤-949.8.有点难度哟!已知f (x )=x 2-x +c 定义在区间[0,1]上,x 1、x 2∈[0,1],且x 1≠x 2,求证: (1)f (0)=f (1);(2)| f (x 2)-f (x 1)|<|x 1-x 2|; (3)| f (x 1)-f (x 2)|<21;(4)| f (x 1)-f (x 2)|≤41.证明:(1)f (0)=c ,f (1)=c ,∴f (0)=f (1). (2)| f (x 2)-f (x 1)|=|x 2-x 1||x 2+x 1-1|.∵0≤x 1≤1,∴0≤x 2≤1,0<x 1+x 2<2(x 1≠x 2).∴-1<x 1+x 2-1<1. ∴| f (x 2)-f (x 1)|<|x 2-x 1|. (3)不妨设x 2>x 1,由(2)知| f (x 2)-f (x 1)|<x 2-x 1而由f (0)=f (1),从而| f (x 2)-f (x 1)|=| f (x 2)-f (1)+f (0)-f (x 1)|≤| f (x 2)-f (1)|+| f (0)- f (x 1)|<|1-x 2|+|x 1|<1-x 2+x 1. ②①+②得2| f (x 2)-f (x 1)|<1,即| f (x 2)-f (x 1)|<21.(4)|f (x 2)-f (x 1)|≤f max -f min =f (0)-f (21)=41.探究创新9.(1)已知|a |<1,|b |<1,求证:|ba ab --1|>1;(2)求实数λ的取值范围,使不等式|ba ab --λλ1|>1对满足|a |<1,|b |<1的一切实数a 、b 恒成立;(3)已知|a |<1,若|abb a ++1|<1,求b 的取值范围.(1)证明:|1-ab |2-|a -b |2=1+a 2b 2-a 2-b 2=(a 2-1)(b 2-1).∵|a |<1,|b |<1,∴a 2-1<0,b 2-1<0.∴|1-ab |2-|a -b |2>0.∴|1-ab |>|a -b |,|||1|b a ab --=|||1|b a b a -⋅->1.(2)解:∵|ba ab --λλ1|>1⇔|1-ab λ|2-|a λ-b |2=(a 2λ2-1)(b 2-1)>0.∵b 2<1,∴a 2λ2-1<0对于任意满足|a |<1的a 恒成立.。

第4讲------不等式的解法

第4讲------不等式的解法

第4讲 不等式的解法一、简单一元高次不等式解法(解一元高次不等式,一般采取数轴标根法) 其步骤如下:(1)将f(x)的最高次项的系数化为正数;(2)将f(x)分解为若干个一次因式的积;(3)将每一个根顺次表在数轴上,再从右到左依次标出区间;(4)f(x)>0时取奇数区间;f(x)<0时取偶数区间.例1、解不等式(1)2 >0; (2)(x+4) <0.解析:(1)原式=x (2 -x-15)>0⟹x (x-3)(2x+5)>0,得不等式的解集为奇数区间,即{x ∣- <x <0或x >3}.(2)学生自行解决.答案:{x ∣x <-5或-5<x <-4或x >2}.二、分式不等式的解法例2、解不等式: > . 解析:原式变为 >0,通分 ( ) ( )>0, ⟹ ( )( )>0⟹ >0⟹ 或0<x<1. 练习:1、解下列不等式(1)2 ; (2)-4 ;(3)(x-2)( ;(4)(x-3)(x+2) (x-4)>0.2、解不等式:<0. 三、无理不等式解法 (1) g(x)⇔ 或 ;-5/203(2)g(x)⇔ ;(3)f(x)>g(x)0.例3、若不等式+的解集为(4,b),求a、b的值.解析:设=u,则原不等式为u>a+,即a-u+<0,∵不等式的解集为(4,b),∴方程a-u+=0的两个根分别为2,,由韦达定理得解得.练习:解不等式(1)<x-1;(2)>x+3.解析:(1)<x-1,⟹x∈(2,3];①等价转化法:⟹或②换元法:设t=(t0)x=3-,即t<3--1, ⟹(t-1)(t+2)<0,-2<t<1,故0t<1,0<1⟹2<x3.③求补集法:x-1⟹ 或⟹x2或x>3,故原不等式解集为(2,3].<即x∈(2,3].(2)>x+3,解析:用①②③④种方法由学生完成.答案:(-∞,-).四、指数、对数不等式的解法例4、解关于x的不等式lg(2ax)-lg(a+x)<1.解析:⟹a>0,x>0⟹ lg(2ax)<lg(10a+10x)⟹2ax<10a+10x,即(a-5)x<5a.当0<a<5时,a-5<0,x>0当a=5时,不等式0x<25,得x>0;当a>5时,a-5>0,解得0<x<.五、含绝对值不等式的解法例5、解不等式:∣∣x+1∣+∣x-1∣∣<+1.解析:+1>0恒成立,x>-2.①当x1时,原不等式可以变形为2x<+1,,无解;②当-1x<1时,∣∣x+1∣+∣x-1∣∣=2,则原不等式可变形为无解;③当-2<x<-1时,原不等式可以变形为,无解.综合①②③可知,原不等式无解.六、含参不等式的解法例4、试求不等式>-1对一切实数x恒成立的θ取值范围.解析:∵>0,故原不等式变为(θθ)θθθθ>0,令θθ=t,则t∈[-,],不等式变为(t+1)-(t-4)x+t+4>0对x∈R恒成立,由二次函数可知,∴t>0或t<(舍),故0<θθ ,即2k-<θ2k+(k∈Z).练习:1、解不等式(1)2ax>5-x(a∈R);(2)mx>k-nx (m、n、k∈R)解析:(1)(2a+1)x>5,(2)(m+n)x>ka>-时,x>;m+n>0,x>;a<- 时,x<;m+n<0,x<;a=- 时,x∈∅. m+n=0,,∈,∈∅.2、解不等式>1.解析:原不等式变为>0⟹[(a-1)x-(a-2)](x-2)>0,⟹(a-1)[x-](x-2)>0,当a>1时,[x-](x-2)>0⟹(-∞,)∪(2,+∞);当a<1时,[x-](x-2)<0,∵2-=,①当0<a<1时,解是(2,)②当a=0时,解为空集,即x∈∅;③a<0时,解为(,2).课外练习:一、选择题1、若0<a<1,则不等式(a-x)(x- )>0的解集为()A 、{x∣a<x<};B、{x∣<x<a};C、{x∣x>或x<a};D、{x∣x<或x>a}.2、不等式∣x+1∣(2x-1)0的解集为()A、{x∣x=-1或x};B、{x∣x-1或x};C、{x∣x};D、{x∣-1x}.3、若a>1且0<b<1,则不等式的解集为()A、x>3;B、x<4;C、3<x<4;D、x>4.4、不等式2的解集是()A、[-3,];B、[- ,3];C、[,1)∪(1,3];D、[- ,1)∪(1,3].5、已知∣a-c∣<∣b∣,则()A、a<b+c;B、a>c-b;C、∣a∣>∣b∣-∣c∣;D、∣a∣<∣b∣+∣c∣.6、设f(x),,则不等式f(x)>2的解集为()A、(1,2)∪(3,+∞);B、(,+∞);C、(1,2)∪(,+∞);D、(1,2).二、填空题7、不等式-∣x∣<0的解集是 .8、不等式的解集是.9、定义符号函数sgn x=,当x∈R时,则不等式x+2>的解集为.三、解答题10、解不等式(∣3x-1∣-1)(.11、已知函数f(x)=,当a>0时,解关于x的不等式f(x)<0.12、设有关于x的不等式lg(∣x+3∣+∣x-7∣)>a.(1)当a=1时,解此不等式;(2)求当a为何值时,此不等式的解集为R.。

解不等式的方法

解不等式的方法

解不等式的方法解不等式是数学中的重要内容,它在我们的日常生活和工作中都有着广泛的应用。

解不等式的方法有很多种,接下来我们将逐一介绍常见的解不等式方法,希望能帮助大家更好地理解和掌握这一部分知识。

一、一元一次不等式的解法。

对于一元一次不等式ax+b>0(或<0),我们可以通过以下步骤来解决:1. 将不等式化为等式ax+b=0;2. 求出等式的解x0;3. 根据a的正负分情况讨论:a)若a>0,则不等式的解集为{x|x>x0}(或{x|x<x0});b)若a<0,则不等式的解集为{x|x<x0}(或{x|x>x0})。

二、一元二次不等式的解法。

对于一元二次不等式ax^2+bx+c>0(或<0),我们可以通过以下步骤来解决:1. 利用一元二次不等式的解法,将不等式化为二元一次不等式;2. 求出二元一次不等式的解集{x1, x2};3. 根据a的正负和二次项系数b的正负分情况讨论:a)若a>0,且Δ=b^2-4ac>0,则不等式的解集为{x|x<x1}∪{x2<x<x2}(或{x|x>x1}∪{x2>x>x2});b)若a>0,且Δ=0,则不等式的解集为{x|x=x1};c)若a>0,且Δ<0,则不等式的解集为空集;d)若a<0,则不等式的解集为{x1<x<x2}。

三、绝对值不等式的解法。

对于绝对值不等式|ax+b|>c(或< c),我们可以通过以下步骤来解决:1. 根据不等式的正负情况分情况讨论:a)若c≥0,且a>0,则不等式的解集为{x|x<-b-a}∪{x>-b+a}(或{x|x>-b-a}∪{x<-b+a});b)若c≥0,且a<0,则不等式的解集为{x|x<-b+a}∪{x>-b-a}(或{x|x>-b+a}∪{x<-b-a});c)若c<0,则不等式的解集为全体实数集。

不等式的解法

不等式的解法

不等式的解法不等式是数学中常见的一种关系表达式,它描述了两个数之间的大小关系。

在解决实际问题时,经常会遇到需要求解不等式的情况,本文将介绍常见的不等式解法方法,帮助读者更好地理解和掌握不等式的求解过程。

一、一元一次一元一次不等式是指只含有一个未知数并且次数为1的不等式。

常见的一元一次不等式形式为ax + b < c或者ax + b > c。

求解一元一次不等式的方法如下:1. 将不等式转化为等式,得到ax + b = c的形式。

2. 根据a的正负情况,分别讨论两种情况:- 当a > 0时,解为x > (c - b) / a。

- 当a < 0时,解为x < (c - b) / a。

3. 以解集的形式表示不等式的解。

例如,对于不等式3x + 4 > 10,可以按照上述步骤求解:1. 将不等式转化为等式,得到3x + 4 = 10。

2. 根据3的正负,讨论两种情况:- 当3 > 0时,解为x > (10 - 4) / 3,即x > 2。

- 当3 < 0时,解为x < (10 - 4) / 3,即x < 2。

3. 不等式的解为解集{x | x > 2}。

二、二元一次二元一次不等式是指含有两个未知数并且次数为1的不等式。

常见的二元一次不等式形式为ax + by > c或者ax + by < c。

求解二元一次不等式的方法如下:1. 将不等式转化为等式,得到ax + by = c的形式。

2. 根据a、b的正负情况,分别讨论四个象限的情况:- 当a > 0,b > 0时,解为x > (c - by) / a。

- 当a > 0,b < 0时,解为x > (c - by) / a。

- 当a < 0,b > 0时,解为x < (c - by) / a。

- 当a < 0,b < 0时,解为x < (c - by) / a。

不等式的解法

不等式的解法

不等式的解法不等式是数学中常见的一种符号表示方式,用来比较数的大小关系。

求解不等式的解集是解决数学问题、推导关系式的重要步骤之一。

本文将介绍不等式的解法,并通过具体的例子来说明。

一、一元一次不等式的解法一元一次不等式是形如ax + b > 0 或 ax + b < 0的不等式,其中a和b是已知常数,x是未知数。

通过以下步骤可以求解一元一次不等式的解集:1. 将不等式转化为相等式:a) 若不等式中有“>”或“<”符号,则去掉不等号改为等号;b) 若不等式中有“≥”或“≤”符号,则保留不等号不变。

2. 化简相等式,将未知数移到一边,常数移到另一边。

3. 根据未知数系数的正负情况判断解集:a) 当未知数系数大于0(正系数)时,比较常数的正负情况确定解集;- 若常数大于0,则解集为实数集;- 若常数等于0,则解集为{x | x ≥ 0}或{x | x > 0};- 若常数小于0,则解集为空集。

b) 当未知数系数小于0(负系数)时,比较常数的正负情况确定解集;- 若常数大于0,则解集为空集;- 若常数等于0,则解集为{x | x ≤ 0}或{x | x < 0};- 若常数小于0,则解集为实数集。

例如:求解不等式3x - 2 < 4:1. 将不等式转化为相等式得到3x - 2 = 4。

2. 化简得到3x = 6,将未知数移到一边,常数移到另一边。

3. 未知数系数为正,常数为正,解集为实数集。

二、一元二次不等式的解法一元二次不等式是形如ax² + bx + c > 0或ax² + bx + c < 0的不等式,其中a、b和c是已知常数,x是未知数。

求解一元二次不等式的解集可以通过以下步骤实现:1. 将不等式转化为相等式:a) 若不等式中有“>”或“<”符号,则去掉不等号改为等号;b) 若不等式中有“≥”或“≤”符号,则保留不等号不变。

基本不等式的解法

基本不等式的解法

基本不等式的解法如下:
方法一:代数方法。

通过变形和化简等操作,将不等式转化为更简单的形式,从而得到不等式的解集。

例如,对于不等式2x + 5 > 3x - 1,可以移项得到2x - 3x > -1 - 5,然后化简为-x > -6,最后根据-x的系数为负数,将不等式两边的符号取相反,得到x < 6。

方法二:图像法。

将不等式转化为图像的形式,通过观察图像来确定不等式的解集。

例如,对于不等式x + 2 > 0,可以将其转化为x > -2。

然后在数轴上标出-2和1、2、3等点,根据不等号的符号确定解集。

方法三:比较法。

通过比较两个不等式的解集来确定它们是否相同。

例如,对于不等式x + 2 > 0和x + 1 > 0,可以通过比较它们的解集来确定它们是否相同。

方法四:同解变形法。

将不等式进行同解变形,使其转化为另一个不等式,然后求解新的不等式。

例如,对于不等式x + 2 > 0,可以将其转化为x + 1 > -1的形式,然后根据同解变形法则得到x + 1 > 0,从而得到原不等式的解集。

需要注意的是,基本不等式的解法有很多种,不同的方法适用于不同的不等式类型和问题背景。

在实际应用中,需要根据具体情况选择合适的方法进行求解。

不等式的解法及其应用

不等式的解法及其应用

不等式的解法及其应用不等式是数学中常见的一种关系表示方法,它描述了数值之间的相对大小关系。

在实际问题中,我们经常需要求解不等式的解集,并将其应用于解决各种问题。

本文将介绍不等式的解法及其应用。

一、不等式的解法1. 图像法图像法是一种直观的解不等式的方法,它通过将不等式表示为数轴上的区间,来确定不等式的解集。

具体步骤如下:(1)将不等式中的变量系数化为正数。

(2)根据不等式的类型(大于、小于、大于等于、小于等于),在数轴上标出相应的开闭区间。

(3)确定解集,将标出的区间合并。

例如,对于不等式3x - 2 > 7,我们可以将其转化为3x > 9,然后在数轴上标出大于等于3的区间,最终确定解集为x > 3。

2. 线性不等式的解法线性不等式是指不等式中只含有一次线性项的不等式。

常用的线性不等式解法有两种方法:代入法和区间判断法。

(1)代入法:将待求解的不等式代入到一个确定的数值中,判断该数值是否满足不等式,从而得到解集。

(2)区间判断法:将不等式转化为一个关于未知数的方程,通过求解该方程,得到解集。

然后根据不等式的类型,对解集进行调整,最终确定合适的解集。

二、应用:不等式在实际中的应用不等式在各个领域中都有广泛的应用。

以下是一些常见的应用领域:1. 经济学应用在经济学中,不等式常用于描述供需关系、收入分配、资源利用等问题。

通过求解不等式,可以确定经济模型中各个变量的取值范围,帮助分析和解决相关经济问题。

2. 几何学应用在几何学中,不等式可以用于描述图形的属性和关系。

例如,在证明三角形的性质时,通过不等式可以判断三边的关系,从而推导出不等式。

3. 工程学应用在工程学中,不等式被广泛应用于优化问题、约束条件的建立等方面。

通过建立和求解不等式,可以帮助解决各类工程问题,并得出最佳解决方案。

4. 自然科学应用在自然科学中,不等式常被用于描述物理规律、化学反应等现象。

通过求解不等式,可以得到相应的物理量范围,帮助科学家更好地理解和预测自然界的现象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f(x)min=f(-1)=2a+3.要使f(x)≥a恒成立, 只需f(x)min≥a, 即2a+3≥a,解得-3≤a<-1; ②当a∈[-1,+∞)时,f(x)min=f(a)=2-a2,
由2-a2≥a,解得-1≤a≤1.
综上所述,所求a的取值范围是[-3,1].
抓住2个考点 突破3个考向 揭秘3年高考
当x<ln a时,f′(x)<0,f(x)单调递减;
当x>ln a时,f′(x)>0,f(x)单调递增. 故当x=ln a时,f(x)取最小值f(ln a)=a-aln a.
于是对一切x∈R,f(x)≥1恒成立,当且仅当a-aln a≥1,①
令g(t)=t-tln t,则g′(t)=-ln t. 当0<t<1时,g′(t)>0,g(t)单调递增; 当t>1时,g′(t)<0,g(t)单调递减. 故当t=1时,g(t)取最大值g(1)=1.
综上所述,当 a>0
a a 时,不等式的解集为x|x<-4或x>3;
当 a=0 时,不等式的解集为{x|x∈R 且 x≠0}; 当 a<0
a a 时,不等式的解集为x|x<3或x>-4.
抓住2个考点
突破3个考向
揭秘3年高考
二、二次项系数中含有参数的不等式
【例2】不等式ax2+2ax+1≥0对一切x∈R恒成立,则实数a
热点突破11——不等式恒成立问题的化解
【命题研究】 通过近三年的高考试题分析,含参不等式的恒
成立问题越来越受到高考命题者的青睐,由于新课标高考 对导数应用的加强,这些不等式的恒成立问题往往与导数 交织在一起,题型多以解答题出现,难度较大.
抓住2个考点
突破3个考向
揭秘3年高考
【真题探究】► (2012·湖南节选)已知函数f(x)=ex-ax,其中 a>0.若对一切x∈R,f(x)≥1恒成立,求a的取值集合.
集的形式.
抓住2个考点
突破3个考向
揭秘3年高考
【训练】 已知 f(x) = x2 - 2ax + 2(a∈R) ,当 x∈[ - 1 ,+ ∞ )
时,f(x)≥a恒成立,求a的取值范围.
解 =a. f(x)=(x-a)2+2-a2,此二次函数图象的对称轴为x
①当a∈(-∞,-1)时,f(x)在[-1,+∞)上单调递增,
抓住2个考点
突破3个考向
揭秘3年高考
总结
注:解含参数的一元二次不等式,若二次项系数为常数,可 先考虑因式分解,再对根的大小进行分类讨论;若不易因
式分解,则可对判别式进行分类讨论,分类要不重不漏;
抓住2个考点
突破3个考向
揭秘3年高考
【训练1】 求不等式12x2-ax>a2(a∈R)的解集.
解 ∵12x2-ax>a2,∴12x2-ax-a2>0,
1 的取值范围为2,+∞.
抓住2个考点 突破3个考向 揭秘3年高考
抓住2个考点
突破3个考向
揭秘3年高考
a-1 【试一试】 已知函数 f(x) = ax + x + 1 - 2a(a>0) ,若 f(x)≥ln x 在[1,+∞)上恒成立,求 a 的取值范围.
解 a-1 令 g(x)=f(x)-ln x=ax+ x +1-2a-ln x,
a-1 1 x∈[1,+∞),则 g(1)=0,g′(x)=a- x2 -x = ax2-x-a-1 = x2
数的讨论.
抓住2个考点
突破3个考向
揭秘3年高考
解∵x2-(3+a)x+3a>0,∴(x-3)(x-a)>0.
①当a<3时,x<a或x>3,不等式解集为{x|x<a或x>3};
②当 a = 3 时,不等式为 (x - 3)2>0 ,不等式解集为 {x|x∈R 且 x≠3}; ③当a>3时,x<3或x>a,不等式解集为{x|x<3或x>a} .
因此,当且仅当a=1时,①式成立.
综上所述,a的取值集合为{1}.
抓住2个考点 突破3个考向 揭秘3年高考
[反思] 在解决不等式的恒成立问题时,易出现的问题主要有
两个方面:一是不等式的变形不是同解变形,尤其是利用分
离参数法求解参数的取值范围时,不等式两边同除以某个代 数式时忽视其符号的讨论;二是构造与不等式相对应的含参 函数时,忽视函数图象的特征.
即(4x+a)(3x-a)>0,令(4x+a)(3x-a)=0, a a 得:x1=-4,x2=3.
a a a a ①a>0 时,-4<3,解集为x|x<-4或x>3;
②a=0 时,x2>0,解集为{x|x∈R 且 x≠0};
抓住2个点
突破3个考向
揭秘3年高考
a a a a ③a<0 时,-4>3,解集为x|x<3或x>-4.
的解集为________
1 1 3 2
抓住2个考点
突破3个考向
揭秘3年高考
新授部分
含参数的一元二次不等式问题
抓住2个考点
突破3个考向
揭秘3年高考
1、二次项系数为常数含参数不等式: 【例1】:解下列关于x的不等式: x2-(3+a)x+3a>0.
[审题视点] 利用求一元二次不等式的解法求解,注意对参
1-a ax-1x- a
x2

抓住2个考点
突破3个考向
揭秘3年高考
1-a 1-a 1 ①当 a >1 时,0<a<2,则 1<x< a , 故 g′(x)<0,g(x)是减函数, 所以 g(x)<g(1)=0,即 f(x)<ln x, 故 f(x)≥ln x 在[1,+∞)上不恒成立. 1-a 1 ②当 a ≤1 时,a≥2,则 x>1,故 g′(x)>0,g(x)是增函数, g(x)>g(1)=0,即 f(x)>ln x, 故当 x≥1 时,f(x)≥ln x 恒成立. 综上所述,所求 a
的取 值范围是________.
解析 当 a=0 时,不等式为 1≥0 恒成立;
a>0, 时,需 Δ≤0, a>0, 即 2 4a -4a≤0.
当 a≠0
∴0<a≤1,综上 0≤a≤1.
答案 [0,1]
抓住2个考点 突破3个考向 揭秘3年高考
总结
注:二次项系数中含有参数时,则应先考虑二次项是否为 零,然后再讨论二次项系数不为零时的情形,以便确定解
不等式的解法
授课人:曾垂乐
抓住2个考点
突破3个考向
揭秘3年高考
巩固练习
一、解下列关于x的不等式: (1); ( 2):
4 x 3 x2
x
2
1 x 0 5x 6
ax 2 x c 0
2
(3):已知关于x的不等式 则不等式 .
的解集为 ( , )
cx 2 2 x a 0
[教你审题] 第 1 步 f(x)≥1 恒成立即 f(x)的最小值大于或等 于 1,通过求导数得 f(x)的单调区间; 第 2 步 求函数 f(x)的最小值; 第 3 步 解不等式; 第 4 步 构造函数利用导数求最大值为 1.
抓住2个考点
突破3个考向
揭秘3年高考
[解法] f′(x)=ex-a,令f′(x)=0得x=ln a.
相关文档
最新文档