七年级下册平行线教案
初中平行线判定定理教案
初中平行线判定定理教案教学目标:知识与技能目标:学生能够理解平行线的定义,掌握平行线的判定定理,并能够运用判定定理判断两条直线是否平行。
过程与方法目标:通过观察、操作、交流等活动,培养学生的逻辑思维能力和空间想象能力。
情感态度与价值观目标:激发学生对数学的兴趣,培养学生的合作意识和探究精神。
教学重点:平行线的判定定理。
教学难点:平行线的判定定理的理解和运用。
教学准备:三角板、直尺、铅笔、投影仪。
教学过程:一、导入新课1. 教师通过展示生活中的图片,如楼梯、铁轨等,引导学生观察并找出其中的平行线。
2. 学生分享观察到的平行线,教师总结并板书平行线的定义。
二、探究平行线的判定定理1. 教师提出问题:“如何判断两条直线是否平行?”引导学生进行思考和讨论。
2. 学生尝试用尺子和三角板画出两条直线,并判断它们是否平行。
3. 教师引导学生总结判断两条直线平行的方法,学生得出平行线的判定定理。
三、巩固练习1. 教师给出几组直线,要求学生判断它们是否平行,并说明判断的依据。
2. 学生独立完成练习,教师巡回指导。
四、课堂小结1. 教师引导学生总结本节课所学的平行线的判定定理。
2. 学生分享学习收获和感悟。
教学反思:本节课通过观察生活中的实例,引导学生发现平行线,激发学生的学习兴趣。
在探究平行线的判定定理时,教师引导学生通过操作和交流,培养学生的逻辑思维能力和空间想象能力。
练习环节,教师给予学生足够的自主空间,让学生在实践中巩固知识,提高运用能力。
总体来说,本节课达到了预期的教学目标,学生对平行线的判定定理有了较好的理解和掌握。
七年级下册《相交线与平行线》教案优秀范文五篇
七年级下册《相交线与平行线》教案优秀范文五篇令公桃李满天下,何用堂前更种花。
今天小编为大家带来的是七年级下册《相交线与平行线》教案优秀范文,供大家阅读参考。
七年级下册《相交线与平行线》教案优秀范文一1两条直线的位置关系(第1课时)课时安排说明:《两条直线的位置关系》共分两课时,第一课时,主要内容是探索两条直线的位置关系,了解对顶角、余角、补角的定义及其性质;第二课时,主要内容是垂直的定义、表示方法、性质及其简单应用.一、学生起点分析学生的知识技能基础:学生在小学已经认识了平行线、相交线、角;在七年级上册中,已经对角及其分类有了一定的认识。
这些知识储备为本节课的学习奠定了良好的基础,使学生具备了掌握本节知识的基本技能。
学生活动经验基础:在前面知识的学习过程中,教师为学生提供了广阔的可供探讨和交流的空间,学生已经经历了一些动手操作,探索发现的数学活动,积累了初步的数学活动经验,具备了一定的图形认识能力和借助图形分析问题解决问题的能力;能够将直观与简单推理相结合;在合作探究的过程中,学生在以前的数学学习中学生已经经历了小组合作的学习过程,积累了大量的方法和经验,具备了一定的合作与交流能力。
二、教学任务分析针对七年级学生的学情,本节从学生熟悉的、感兴趣的情境出发,引导学生自主提炼归纳出同一平面内两直线的位置关系,了解补角、余角、对顶角的概念及其性质并能够进行简单的应用;通过“让学生经历观察、操作、推理、想象等探索过程” ,发展学生的空间观念及推理能力;能从实际情境中抽象出数学模型,为后续学习“空间与图形”这一数学领域而打下坚实的基础;激发学生从数学的角度认识现实,能够敏锐的发现问题、提出问题,并运用所掌握的数学知识初步解决问题;引导学生在思考、交流、表达的基础上逐步达成有关情感与态度目标. 本节内容在教材中处于非常重要的地位,起着承前启后的作用。
因此,本节课的目标是:1.知识与技能:在具体情境中了解相交线、平行线、补角、余角、对顶角的定义,知道同角或等角的余角相等、同角或等角的补角相等、对顶角相等,并能解决一些实际问题。
初一下学期数学平行线教案5篇
初一下学期数学平行线教案5篇初一下学期数学平行线教案篇1教学目标:1、了解证明的必要性,知道推理要有依据;熟悉综合法证明的格式,能说出证明的步骤.2、能用符号语言写出一个命题的题设和结论.3、通过对真命题的分析,加强推理能力的训练,培养学生逻辑思维能力.教学重点:证明的步骤与格式.教学难点:将文字语言转化为几何符号语言.教学过程:一、复习提问1、命题“两直线平行,内错角相等”的题设和结论各是什么2、根据题设,应画出什么样的图形(答:两条平行线a、b被第三条直线c所截)3、结论的内容在图中如何表示(答:在图中标出一对内错角,并用符号表示)二、例题分析例1、证明:两直线平行,内错角相等.已知:a∥b,c是截线.求证:∠1=∠2.分析:要证∠1=∠2,只要证∠3=∠2即可,因为∠3与∠1是对顶角,根据平行线的性质,易得出∠3=∠2.证明:∵a∥b(已知),∴∠3=∠2(两直线平行,同位角相等).∵∠1=∠3(对顶角相等),∴∠1=∠2(等量代换).例2、证明:邻补角的平分线互相垂直.已知:如图,∠AOB+∠BOC=180°,OE平分∠AOB,OF平分∠BOC.求证:OE⊥OF.分析:要证明OE⊥OF,只要证明∠EOF=90°,即∠1+∠2=90°即可.三、课堂练习:1、平行于同一条直线的两条直线平行.2、两条平行线被第三条直线所截,同位角的平分线互相平行.四、归纳小结主要通过学生回忆本节课所学内容,从知识、技能、数学思想方法等方面加以归纳,有利于学生掌握、运用知识.然后见投影仪.五、布置作业课本P143 5、(2),7.六、课后思考:1、垂直于同一条直线的两条直线的位置关系怎样2、两条平行线被第三条直线所截,内错角的平分线位置关系怎样3、两条平行线被第三条直线所截,同旁内角的平分线位置关系怎样初一下学期数学平行线教案篇2教学目的1.理解用一元一次方程解工程问题的本质规律;通过对“工程问题”的分析进一步培养学生用代数方法解决实际问题的能力。
2024年浙教版数学七年级下册11《平行线》参考教案
一、教学内容本节课选自2024年浙教版数学七年级下册第十一章《平行线》。
具体内容包括:平行线的定义、平行线的判定方法、平行线性质及其应用。
涉及章节为11.1节和11.2节。
二、教学目标1. 知识与技能:掌握平行线的定义,理解平行线的判定方法,掌握平行线的性质,并能运用这些知识解决实际问题。
3. 情感态度与价值观:激发学生对数学学习的兴趣,培养学生勇于探索、严谨治学的精神。
三、教学难点与重点重点:平行线的定义、判定方法及性质。
难点:平行线性质的灵活运用。
四、教具与学具准备教具:多媒体课件、直尺、三角板、量角器。
学具:直尺、三角板、量角器。
五、教学过程1. 实践情景引入展示生活中常见的平行线现象,如铁轨、斑马线等,引导学生观察并思考这些现象中存在的共同特征。
2. 教学新课(1)平行线的定义(2)平行线的判定方法① 同位角相等;② 内错角相等;③ 同旁内角互补。
(3)平行线的性质通过例题讲解,引导学生发现平行线的性质:① 平行线之间的距离相等;② 平行线上的对应角相等。
3. 例题讲解讲解与平行线相关的典型例题,让学生掌握平行线性质的应用。
4. 随堂练习设计针对性的练习题,巩固学生对平行线性质的理解。
六、板书设计1. 《平行线》2. 定义:在同一个平面内,不相交的两条直线叫做平行线。
3. 判定方法:同位角相等、内错角相等、同旁内角互补。
4. 性质:平行线之间的距离相等,平行线上的对应角相等。
5. 例题及解答。
七、作业设计1. 作业题目a) 如果直线a与直线b同位角相等,那么直线a与直线b平行。
b) 如果直线a与直线b内错角相等,那么直线a与直线b平行。
(2)如图,已知AB∥CD,求∠AEC的度数。
2. 答案(1)a) 不正确;b) 正确。
(2)∠AEC=∠BEC=180°∠BED(根据平行线性质求解)。
八、课后反思及拓展延伸本节课通过实践情景引入,让学生充分理解平行线的概念和性质。
在教学中,要注意引导学生运用判定方法,提高解题能力。
七年级数学下册教案平行线
七年级数学下册教案平行线七年级数学下册教案平行线(6篇)作为一名教师,总归要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。
教案要怎么写呢?以下是小编精心整理的七年级数学下册教案平行线,仅供参考,大家一起来看看吧。
七年级数学下册教案平行线1教学过程一、目标展示二、情景导入。
装修工人正在向墙上钉木条,如果木条b与墙壁边缘垂直,那么木条a与墙壁边缘所夹角为多少度时,才能使木条a与木条b平行?要解决这个问题,就要弄清楚平行的判定。
三、直线平行的条件以前我们学过用直尺和三角尺画平行线,如图(课本P13图5、2—5)在三角板移动的过程中,什么没有变?三角板经过点P的边与靠在直尺上的边所成的角没有变。
∠1与∠2是三角板经过点P的边与靠在直尺上的边所成的角移动前后的位置,显然∠1与∠2是同位角并且它们相等,由此我们可以知道什么?两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
简单地说:同位角相等,两条直线平行。
符号语言:∵∠1=∠2∴AB∥CD、如图(课本P145、2—7),你能说出木工用图中这种叫做角尺的工具画平行线的道理吗?用角尺画平行线,实际上是画出了两个直角,根据“同位角相等,两条直线平行。
”,可知这样画出的就是平行线。
学习目标一:了解平行线的概念、平面内两条直线的两种位置关系。
题组一:1、叫做平行线。
如图:a与b互相平行,记作,a。
2、在同一平面内,两条直线的位置关系b只有与两种。
3、下列生活实例中:(1)交通道路上的斑马线;(2)天上的彩虹;(3)阅兵队的纵队;(4)百米跑道线,属于平行线的有。
学习目标二:掌握两个平行公理;会用三角尺和直尺过已知直线外一点画这条直线的平行线。
题组二:4、通过画图和观察,可得两个平行公理:①、经过点,一条直线平行于已知直线;②、如果两条直线都与第三条直线平行,那么这两条直线,符号表达式:若b∥a,c∥a,则。
5、在同一平面内直线a与b满足下列条件,写出其对应的位置关系:①、a与b没有公共点,则a与b;②、a与b有且只有一个公共点,则a与b;③、 a与b有两个公共点,则a与b;6、过一点画已知直线的平行线有()A、有且只有一条;B、有两条;C、不存在;D、不存在或只有一条教学设计1、落实教学常规,践行学校《教师日常教学行为要求》。
七年级下册《平行线》说课稿
七年级下册《平行线》说课稿七年级下册《平行线》说课稿1说教学目标知识与技能:1、会用三角尺和直尺熟练准确的画出一组平行线。
2、会利用画垂线的方法准确的画出长方形。
3、培养学生作图的能力。
过程与方法:通过操作活动,使学生经历画平行线的全过程,培养学生作图的能力。
情感态度和价值观:通过活动,让学生从中感受到学习的乐趣,体会到成功的喜悦,从而提高学习的兴趣。
说重点难点重点:巩固对平行线的认识,会用三角尺和直尺准确的画出一组平行线。
难点:准确的画出垂线和一组平行线。
会利用画垂线和画平行线的方法准确的画出长方形。
教学过程一、复习导入1、回忆一下,什么叫平行线?2、我们身边哪些物体的边是互相平行的。
我们怎么样才能画出一组平行线呢?这节课我们就来学习画平行线板书课题:画平行线二、探究新知1、可以用直尺和三角尺画平行线。
步骤:1)用左手固定直尺,用右手将三角尺的一条直角边紧贴着直尺,沿另一条直角边画一条直线。
2)将三角尺紧贴着直尺移动位置,再画出一条直线,这条直线与第一步画出的直线平行。
可以用画平行线的方法检验两条直线是不是互相平行。
2、大家用自己手中的直尺和三角板自己画一组平行线,然后小组内的同学互相检查,对方画的是否平行。
3、小组活动:在你所画的这组平行线之间画几条与平行线垂直的线段,量一量这些线段的长度,你能发现什么?在小组内交流一下全班汇报小结:平行线间的距离是相等的。
学生汇报学生举生活中的实例。
学生认真观察后叙述画平行线的步骤学生画一组平行线,组内的同学互相检查。
小组讨论后全班汇报复习所学的平行线知识,为学习新知识作准备。
使学生掌握画平行线的方法,培养学生作图的能力。
通过动手操作,使学生理解平行线间的距离是相等的4、小组讨论:怎样画一个长3厘米、宽2厘米的长方形?长方形的对边是互相平行的。
相邻的两条边是互相垂直的。
可以用垂线或平行线的方法来画。
全班汇报组内研究的画法:先画一条长3厘米的线段,再过两个端点在线段的同侧分别画两条与它垂直的2厘米长的线段,最后把两条线段的端点用线连接起来。
七年级下册数学平行线教案
七年级下册数学平行线教案一、教学目标:知识与技能:1. 理解平行线的概念,掌握平行线的性质和判定方法。
2. 能够运用平行线的性质和判定方法解决实际问题。
过程与方法:1. 通过观察、操作、推理等过程,培养学生的空间想象能力和逻辑思维能力。
2. 学会运用同位角、内错角、同旁内角等概念判定两条直线是否平行。
情感态度价值观:1. 培养学生的团队合作精神,学会与他人交流和分享。
2. 激发学生对数学的兴趣,培养学生的自信心和自主学习能力。
二、教学内容:第一课时:平行线的概念及性质1. 引入平行线的概念,通过实例让学生感受平行线的特征。
2. 引导学生观察和探索平行线的性质,总结出平行线的性质定理。
第二课时:平行线的判定1. 引入同位角、内错角、同旁内角的概念,让学生通过观察和操作,探索判断两条直线是否平行的方法。
2. 引导学生总结出平行线的判定定理,并进行练习。
第三课时:平行线的应用1. 通过实例引导学生运用平行线的性质和判定方法解决实际问题。
2. 让学生进行练习,巩固所学知识,提高解决问题的能力。
三、教学重点与难点:重点:1. 平行线的概念及性质。
2. 平行线的判定方法。
难点:1. 理解并运用同位角、内错角、同旁内角的概念判断两条直线是否平行。
2. 解决实际问题,运用平行线的性质和判定方法。
四、教学方法:采用问题驱动法、小组合作探究法、案例分析法等多种教学方法,引导学生主动参与课堂,培养学生的思维能力和实践能力。
五、教学准备:教师准备PPT、教学案例、练习题等教学资源;学生准备笔记本、文具等学习用品。
六、教学过程:第一课时:平行线的概念及性质1. 引入平行线的概念,通过实例让学生感受平行线的特征。
2. 引导学生观察和探索平行线的性质,总结出平行线的性质定理。
第二课时:平行线的判定1. 引入同位角、内错角、同旁内角的概念,让学生通过观察和操作,探索判断两条直线是否平行的方法。
2. 引导学生总结出平行线的判定定理,并进行练习。
人教版数学七年级下册《5-2-1 平行线》教学设计
人教版数学七年级下册《5-2-1 平行线》教学设计一. 教材分析《5-2-1 平行线》是人教版数学七年级下册的一章内容,主要介绍了平行线的概念、性质及判定方法。
本章内容在学生的数学知识体系中占据重要地位,为后续学习几何知识打下基础。
教材从生活实例引入平行线的概念,接着引导学生探究平行线的性质和判定方法,最后通过练习题巩固所学知识。
二. 学情分析七年级的学生已具备一定的几何基础,对图形的认知和观察能力较强。
但学生在学习过程中,可能对平行线的判定方法理解不够深入,容易混淆。
因此,在教学过程中,要注重引导学生理解和掌握平行线的判定方法,提高学生的空间想象力。
三. 教学目标1.理解平行线的概念,掌握平行线的性质和判定方法。
2.培养学生的空间想象力,提高学生解决实际问题的能力。
3.培养学生合作探究、积极思考的学习态度。
四. 教学重难点1.平行线的判定方法2.平行线在实际问题中的应用五. 教学方法1.情境教学法:通过生活实例引入平行线概念,激发学生兴趣。
2.引导发现法:引导学生探究平行线的性质和判定方法,培养学生自主学习能力。
3.合作学习法:分组讨论,培养学生团队协作能力。
4.练习法:通过适量练习,巩固所学知识。
六. 教学准备1.教学PPT:制作含有生活实例、图片、动画等多媒体素材的PPT。
2.练习题:准备适量练习题,包括判断题、填空题、解答题等。
3.教学用具:直尺、三角板、圆规等。
七. 教学过程1.导入(5分钟)利用生活实例引入平行线的概念,如在黑板上画两辆火车在铁轨上并行行驶的图片,引导学生观察并说出平行线的特点。
2.呈现(10分钟)展示PPT,讲解平行线的性质和判定方法。
通过动画演示,让学生直观地理解平行线的特点。
同时,引导学生发现平行线在实际生活中的应用,如道路、铁路等。
3.操练(10分钟)学生分组讨论,运用平行线的判定方法,判断给出的图形中哪些是平行线。
每组选一名代表进行解答,其他组进行评价。
4.巩固(10分钟)学生独立完成练习题,检测对平行线知识的掌握程度。
2024年浙教版数学七年级下册11《平行线》参考教案
一、教学内容本节课选自2024年浙教版数学七年级下册第11章《平行线》。
教学内容主要包括:平行线的定义、平行公理及推论、平行线的性质、平行线的判定方法等。
具体涉及章节如下:1. 平行线的定义(第11章第1节)2. 平行公理及推论(第11章第2节)3. 平行线的性质(第11章第3节)4. 平行线的判定方法(第11章第4节)二、教学目标1. 理解并掌握平行线的定义,能准确判断两条直线是否平行。
2. 掌握平行公理及推论,能运用其解决相关问题。
3. 了解平行线的性质,能运用性质解决实际问题。
4. 学会平行线的判定方法,能灵活运用判定方法解决几何问题。
三、教学难点与重点重点:平行线的定义、性质及判定方法。
难点:平行线的判定方法在实际问题中的应用。
四、教具与学具准备1. 教具:黑板、粉笔、直尺、圆规、三角板等。
2. 学具:直尺、圆规、三角板、练习本等。
五、教学过程1. 实践情景引入:展示生活中的平行线现象,如铁轨、电梯扶手等,引导学生发现平行线并思考其特点。
2. 知识讲解:(1)平行线的定义:在同一平面内,两条不相交的直线称为平行线。
(2)平行公理及推论:通过直观演示和推理,引导学生理解平行公理及推论。
(3)平行线的性质:结合实例,讲解平行线的性质。
(4)平行线的判定方法:介绍常用的判定方法,如同位角相等、内错角相等、同旁内角互补等。
3. 例题讲解:选取典型例题,讲解解题思路和步骤。
4. 随堂练习:布置相关练习题,让学生巩固所学知识。
六、板书设计1. 平行线2. 定义:平行线的定义3. 性质:平行线的性质4. 判定方法:平行线的判定方法5. 例题:典型例题及解题步骤6. 练习题:随堂练习题目七、作业设计1. 作业题目:(1)判断下列直线是否平行,并说明理由。
(2)已知直线a平行于直线b,求证:直线a与直线c平行。
(3)运用平行线的性质解决实际问题。
2. 答案:见附件。
八、课后反思及拓展延伸1. 反思:对本节课的教学过程进行反思,分析学生的掌握情况,找出不足之处,为下一步教学做好准备。
初中两直线平行教案
初中两直线平行教案教学目标:1. 理解两直线平行的概念,掌握平行线的性质和判定方法。
2. 能够运用平行线的性质解决实际问题。
3. 培养学生的逻辑思维能力和图形直观感知能力。
教学重点:1. 两直线平行的概念及性质。
2. 平行线的判定方法。
教学难点:1. 理解并运用平行线的性质解决实际问题。
2. 熟练掌握平行线的判定方法。
教学准备:1. 教学课件或黑板。
2. 直尺、三角板等绘图工具。
教学过程:一、导入(5分钟)1. 利用日常生活实例,如双轨铁路、尺子等,引导学生思考:什么是平行线?2. 学生分享对平行线的理解,教师总结并板书平行线的定义。
二、新课讲解(15分钟)1. 利用PPT或黑板,展示直线和平行线的图像,引导学生观察并思考:平行线有哪些性质?2. 学生分享观察结果,教师总结并板书平行线的性质。
3. 讲解平行线的判定方法,引导学生通过画图实践并理解判定方法。
三、课堂练习(15分钟)1. 学生独立完成练习题,教师巡回指导。
2. 选取部分学生的作业进行讲解和评价。
四、应用拓展(10分钟)1. 出示实际问题,如道路设计、建筑设计等,引导学生运用平行线的性质解决问题。
2. 学生分组讨论并展示解题过程,教师点评并总结。
五、课堂小结(5分钟)1. 学生总结本节课所学内容,教师补充并强调重点。
2. 布置课后作业,巩固所学知识。
教学反思:本节课通过导入、新课讲解、课堂练习、应用拓展和课堂小结等环节,使学生掌握了两直线平行的概念、性质和判定方法。
在教学过程中,注意调动学生的积极性,鼓励学生分享自己的思考,培养学生的逻辑思维能力和图形直观感知能力。
同时,通过实际问题的解决,使学生能够将所学知识应用于生活实际,提高学生的解决问题的能力。
在今后的教学中,要继续关注学生的学习情况,针对不同学生的特点进行有针对性的辅导,使全体学生都能达到教学目标。
同时,注重培养学生的数学思维,提高学生的数学素养。
人教版七年级数学下册教案5.2.1平行线教案
b.引导学生根据平行线性质分析题目中的角度关系。
c.演示如何运用这些性质进行逻辑推理,解决相关问题。
针对实际问题的解决,教师可以提供一些生活中的实例,如建筑设计中的平行线应用,让学生了解平行线在实际中的应用,并学会如何识别和解决问题。
四、教学流程
(一)导入新课(用时5分钟)
在新课讲授中,我采用了案例分析、重点难点解析等方法,希望能够让学生更好地理解平行线在实际中的应用。从学生的反馈来看,这种方法还是比较有效的,他们能够通过具体案例和实际操作,逐步掌握平行线的判定方法。
然而,我也发现了一些问题。在实践活动和小组讨论中,有些同学参与度不高,可能是因为他们对平行线知识点的掌握还不够熟练ቤተ መጻሕፍቲ ባይዱ导致在讨论过程中有些吃力。针对这一点,我考虑在今后的教学中,加强对学生的个别辅导,帮助他们更好地消化吸收课堂知识。
三、教学难点与重点
1.教学重点
-平行线的定义:理解同一平面内两条永不相交直线称为平行线的概念,这是本节课的核心内容。
-平行线的性质:掌握同位角、内错角、同旁内角的定义及它们之间的关系,这是平行线理论的基础。
-平行线的判定方法:学会使用同位角相等、内错角相等、同旁内角互补等条件判断两条直线是否平行,这是解决实际问题的关键。
2.提升逻辑推理能力:引导学生运用平行线的性质进行推理,学会用严谨的逻辑思维分析问题、解决问题,培养他们的逻辑推理能力。
3.增强数学应用意识:通过解决实际问题,让学生体会数学知识在实际生活中的应用,培养他们运用数学知识解决实际问题的能力,提高数学应用意识。
本节课将紧扣教材内容,注重培养学生的核心素养,使他们在掌握平行线相关知识的同时,提高数学学科素养。
初中数学认识平行线教案
初中数学认识平行线教案一、教学目标:1. 知识与技能:使学生掌握平行线的定义、性质和判定,能运用平行线的知识解决一些实际问题。
2. 过程与方法:通过观察、操作、推理等活动,培养学生的空间观念和逻辑思维能力。
3. 情感、态度、价值观:激发学生对数学的兴趣,培养学生的团队合作精神,使学生逐步养成言之有理的习惯。
二、教学内容:1. 平行线的定义:在同一平面内,不相交的两条直线叫做平行线。
2. 平行线的性质:(1)平行线上的对应角相等。
(2)平行线之间的夹角相等。
(3)平行线与截线所成的角相等。
3. 平行线的判定:(1)同位角相等,两直线平行。
(2)内错角相等,两直线平行。
(3)同旁内角互补,两直线平行。
三、教学重点与难点:1. 教学重点:平行线的定义、性质和判定。
2. 教学难点:平行线的性质和判定。
四、教学过程:1. 导入:利用实物展示,如黑板、书桌等,引导学生观察并发现其中的平行线,激发学生的兴趣。
2. 新课导入:介绍平行线的定义,通过图示和实例使学生理解平行线的概念。
3. 性质讲解:(1)利用教具演示,引导学生发现平行线上的对应角相等。
(2)通过实际操作,使学生理解平行线之间的夹角相等。
(3)利用几何画板或实物,展示平行线与截线所成的角相等。
4. 判定讲解:(1)利用图示和实例,引导学生理解同位角相等,两直线平行。
(2)通过实际操作,使学生明白内错角相等,两直线平行。
(3)利用几何画板或实物,展示同旁内角互补,两直线平行。
5. 练习与巩固:布置一些相关的练习题,让学生独立完成,检验学生对平行线知识的掌握程度。
6. 总结与拓展:对本节课的内容进行总结,强调平行线的性质和判定,并引导学生思考如何运用平行线的知识解决实际问题。
五、教学反思:通过本节课的教学,学生应掌握平行线的定义、性质和判定。
在教学过程中,要注意引导学生观察、操作、推理,培养学生的空间观念和逻辑思维能力。
同时,要关注学生的学习兴趣,激发学生对数学的热爱,使学生在轻松愉快的氛围中学习。
沪科版数学七年级下册10.2《平行线的判定》教学设计2
沪科版数学七年级下册10.2《平行线的判定》教学设计2一. 教材分析《平行线的判定》是沪科版数学七年级下册第10.2节的内容。
本节内容主要让学生掌握同位角相等、内错角相等、同旁内角互补三种判定方法,以及平行线的性质。
通过这些判定方法,学生能够判断两条直线是否平行,并理解平行线的性质。
教材通过丰富的例题和练习题,帮助学生巩固所学知识,提高解决问题的能力。
二. 学情分析七年级的学生已经学习了直线、射线、线段的基本概念,对图形的认知有一定的基础。
但是,对于平行线的判定和性质,学生可能还比较陌生,需要通过具体的例题和实践活动来理解和掌握。
此外,学生可能对一些专业术语如“同位角”、“内错角”、“同旁内角”等概念理解起来有一定的困难,需要教师进行详细的解释和引导。
三. 教学目标1.知识与技能:使学生掌握同位角相等、内错角相等、同旁内角互补三种判定方法,以及平行线的性质。
2.过程与方法:通过观察、操作、猜想、证明等过程,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和问题解决能力。
四. 教学重难点1.教学重点:同位角相等、内错角相等、同旁内角互补三种判定方法,以及平行线的性质。
2.教学难点:对“同位角”、“内错角”、“同旁内角”等概念的理解,以及如何运用这些判定方法判断两条直线是否平行。
五. 教学方法1.情境教学法:通过生活实例引入平行线的概念,让学生在具体的情境中感受和理解平行线的性质。
2.小组合作学习:引导学生分组讨论,共同探究平行线的判定方法,培养学生的团队合作意识。
3.引导发现法:教师通过提问、启发,引导学生发现平行线的性质,培养学生的逻辑思维能力。
4.实践操作法:让学生动手画图、观察、测量,提高学生的动手能力和空间想象能力。
六. 教学准备1.教学课件:制作课件,展示平行线的判定方法和性质。
2.练习题:准备一些有关平行线的练习题,巩固所学知识。
七年级下册数学5.2.1 平行线 教案
5.2.1 平行线教学过程设计一、创设情境,探究平行线的概念 活动1观察,分别将木条a 、b 、c 钉在一起,并把它们想象成两端可以无限延伸的三条直线.转动直线a ,直线a 从在直线c 的下侧与直线b 相交逐步变为在上侧与b 相交,想象一下在这个过程中,有没有直线a 与直线b 不相交的位置?学生活动设计:充分发挥学生的想象能力,把三个木条想象成三条直线,想象在转动过程中不相交的情况,进而描述两直线平行的定义.教师活动设计:在学生想象、描述的基础上引导学生进行归纳.在同一平面内,若直线a 和b 不相交,那么就称直线a 和b 平行,记作a //b . 活动2你能举出生活中平行的例子吗?学生活动设计:学生进行想象,在生活中可以看做平行的生活实例,可能举出下列例子: 滑雪板、正方体中的一些棱、运动跑道,等等.教师活动设计:本环节主要关注学生的举例,从举例中巩固学生对平行线的认识和理解. 二、分组探究,探索平行公理和推论,培养学生的探究能力、合作、交流能力. 活动3 (1) 在活动木条a 的过程中,有几个位置使得a 与b 平行; (2) 如图,经过点B 画直线a 的平行线,你能有几种方法?可以画几条?经过点C 呢?aBC(3)经过上述问题的解决,你能得到什么结论? 学生活动设计:学生自主探索,动手操作,观察猜想,对于问题(1),可以发现在木条在转动的过程中,只有一个位置使得a 与b 平行;对于问题(2),可以考虑用小学中学过的画平行线的方法——使用三角板和直尺,如图所示:对于问题(3),经过画图操作,观察归纳,可以发现一个基本事实(平行公理):经过直线外一点,有且只有一条直线与已知直线平行.教师活动设计:教师在本环节主要关注学生:(1)学生参与讨论的程度;(2)学生遇到问题时,对待问题的态度;(3)学生进行总结归纳时,语言的准确性和简洁性.主要培养学生的动手能力、观察能力、合情推理的能力与探究能力、合作、交流能力等.活动4问题:如图,若a//b,b//c,你能得到a//c吗?说明你的理由,从中你能得到什么?abc学生活动设计:学生独立思考,完成结论的探索和理由的说明,然后进行交流,在交流中发现问题,解决问题.教师活动设计:引导学生用几何语言进行说明,适时引入反证法(仅仅介绍,让学生认识到用这样的方法可以说明道理,而不要求会用这样的方法).假设a与c不平行,则可以设a与c相交于点O,又a//b,b//c,于是过O点有两条直线a和c都与b平行,于是和平行公理矛盾,所以假设不正确,因此a和c一定平行.在此环节主要培养学生的逻辑推理能力.三、拓展创新、应用提高,培养学生的应用意识,解决问题的能力.活动5问题探究问题1:如下图,AD∥BC,在AB上取一点M,过M画MN∥BC交CD于N,并说明MN与AD的位置关系,为什么?CB学生活动设计: 学生动手操作,观察猜测,得出平行的结论,然后对平行的原因进行交流,发现AD //BC ,MN //DC ,根据平行于同一直线的两直线平行,可以得到AD //MN .教师活动设计:主要关注学生说理过程中语言的准确性,若学生感觉到困难可以适当提醒.〔解答〕略.问题2:在同一平面内有4条直线,问可以把这个平面分成几部分?学生活动设计:分组探究,小组讨论,发现问题,小组讨论解决,在学生研究结束后,每小组派一名代表进行交流,交流完成后完善自己的结果.学生经过探究可以发现: (1) 当4条直线两两平行时,可以把平面分成5部分;dcb a(2) 当4条直线中只有三条两两平行时,可以把平面分成8部分;cb a (3) 当4条直线仅有两条互相平行时,可以把整个平面分成9部分或10部分;daa(4) 当4条直线中其中两条平行,另两条也平行时,可以把平面分成9部分;dcba(5) 当4条直线任意两条都不平行时,可以把平面分成8或10或11部分;dc b adc b adc ba教师活动设计:本环节主要考察学生探究问题的能力,同时培养学生的合作与交流意识,在探究的过程中教师可以适当引导学生按一定的条件分类,比如按平行线的条数分或按交点的个数分类,让学生养成有序考虑问题的习惯.〔解答〕略四、小结与作业. 小结:1. 平行线的定义;2. 平行公理以及推论;3. 平行公理及推论的应用. 作业:4. 探究同一平面内n 条直线最多可以把平面分成几部分;5. 习题5.2第6、7、9题.。
七年级下册数学平行线教案
七年级下册数学平行线教案一、教学目标1. 知识与技能:(1)理解平行线的概念,掌握平行线的性质和判定方法。
(2)能够运用平行线的性质解决实际问题。
2. 过程与方法:(1)通过观察、操作、探究等活动,培养学生的空间想象能力和思维能力。
(2)学会用画图工具(如直尺、三角板)画平行线。
3. 情感态度与价值观:(1)激发学生对数学的兴趣,培养学生的观察力、动手能力。
(2)培养学生合作、交流的良好学习习惯。
二、教学重点与难点1. 教学重点:(1)平行线的概念及性质。
(2)平行线的判定方法。
2. 教学难点:(1)平行线的判定方法。
(2)运用平行线的性质解决实际问题。
三、教学准备1. 教具:直尺、三角板、多媒体设备。
2. 学具:每人一份平行线学习资料、练习题。
四、教学过程1. 导入新课(1)教师出示两组直线,让学生观察并说出它们的特征。
(2)引导学生思考:这两组直线之间有什么关系?(3)学生回答:这两组直线互相平行。
(4)教师提问:什么是平行线呢?2. 探究平行线的性质(2)学生回答:在同一平面内,不相交的两条直线叫做平行线。
(3)教师提问:平行线还有其他性质吗?3. 学习平行线的判定方法(1)教师出示几种不同的图形,让学生判断哪些是平行线。
(3)教师提问:如何证明两条直线平行呢?4. 练习与巩固(1)教师出示练习题,让学生独立完成。
(2)学生互相交流、讨论,教师指导。
五、课堂小结1. 本节课我们学习了平行线的概念、性质和判定方法。
2. 平行线的性质:在同一平面内,不相交的两条直线叫做平行线。
3. 平行线的判定方法:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。
注意事项:1. 在教学过程中,要注意引导学生通过观察、操作、探究等活动,发现并理解平行线的性质和判定方法。
2. 针对不同学生的学习情况,给予适当的引导和帮助,使他们在掌握知识的提高空间想象能力和思维能力。
3. 注重培养学生的合作、交流能力,鼓励他们主动参与课堂讨论,激发对数学的兴趣。
新人教版初中七年级数学下册《平行线》教案
平行线教学目标1.经历观察教具模式的演示和通过画图等操作,交流归纳与活动,进一步发展空间观念.2.了解平行线的概念、平面内两条直线的相交和平行的两种位置关系,知道平行公理以及平行公理的推论.3.会用符号语方表示平行公理推论,会用三角尺和直尺过已知直线外一点画这条直线的平行线.重点:探索和掌握平行公理及其推论.难点:对平行线本质属性的理解,用几何语言描述图形的性质.教学过程一、创设问题情境1.复习提问:两条直线相交有几个交点?相交的两条直线有什么特殊的位置关系?学生回答后,教师把教具中木条b与c重合在一起,转动木条a确认学生的回答.教师接着问:在平面内,两条直线除了相交外,还有别的位置关系吗?2.教师演示教具.顺时针转动木条b两圈,让学生思考:把a、b想像成两端可以无限延伸的两条直线,顺时针转动b时,直线b与直线a的交点位置将发生什么变化?3.教师组织学生交流并形成共识.转动b 时,直线b 与c 的交点从在直线a 上A 点向左边距离A 点很远的点逐步接近A 点,并垂合于A 点,然后交点变为在A 点的右边,逐步远离A 点.继续转动下去,b 与a 的交点就会从A 点的左边又转动A 点的左边……可以想象一定存在一个直线b 的位置,它与直线a 左右两旁都没有交点.二、平行线定义表示法1.结合演示的结论,师生用数学语言描述平行定义:同一平面内,存在一条直线a 与直线b 不相交的位置,这时直线a 与b 互相平行.换言之,同一平面内,不相交的两条直线叫做平行线.直线a 与b 是平行线,记作“∥”,这里“∥”是平行符号.教师应强调平行线定义的本质属性,第一是同一平面内两条直线,第二是设有交点的两条直线.2.同一平面内,两条直线的位置关系教师引导学生从同一平面内,两条直线的交点情况去确定两条直线的位置关系.在同一平面内,两条直线只有两种位置关系:相交或平行,两者必居其一.即两条直线不相交就是平行,或者不平行就是相交.三、画图、观察、归纳概括平行公理及平行公理推论1.在转动教具木条b 的过程中,有几个位置能使b 与a 平行?cb ac ba C 本问题是学生直觉直线b 绕直线a 外一点B 转动时,有并且只有一个位置使a 与b 平行.2.用直线和三角尺画平行线.已知:直线a,点B,点C.(1)过点B 画直线a 的平行线,能画几条?(2)过点C 画直线a 的平行线,它与过点B 的平行线平行吗?3.通过观察画图、归纳平行公理及推论.(1)由学生对照垂线的第一性质说出画图所得的结论.(2)在学生充分交流后,教师板书.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.(3)比较平行公理和垂线的第一条性质.共同点:都是“有且只有一条直线”,这表明与已知直线平行或垂直的直线存在并且是唯一的.不同点:平行公理中所过的“一点”要在已知直线外,两垂线性质中对“一点”没有限制,可在直线上,也可在直线外.4.归纳平行公理推论.(1)学生直观判定过B 点、C 点的a 的平行线b 、c 是互相平行.(2)从直线b 、c 产生的过程说明直线b∥直线c.(3)学生用三角尺与直尺用平推方验证b∥c.(4)师生用数学语言表达这个结论,教师板书.结果两条直线都与第三条直线平行,那么这条直线也互相平行. 结合图形,教师引导学生用符号语言表达平行公理推论: c b a如果b∥a,c∥a,那么b∥c.(5)简单应用.练习:如果多于两条直线,比如三条直线a、b、c与直线L都平行,那么这三条直线互相平行吗?请说明理由.本练习是让学生在反复运用平行公理推论中掌握平行公理推论以及说理规范.四、作业:课本P19.7,P20.11.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.2.1 平行线
撰稿人:灵宝市实验中学 周碧洁
审验人:灵宝市实验中学 周碧洁
预习提示
1、在同一平面内,两条直线的位置关系是________和_________
2、什么叫平行线?
3、平行线的表示方法是什么?
4、如何过直线外一点作已知直线的平行线?
教学目标
1.经历观察教具模式的演示和通过画图等操作,交流归纳与活动,进一步发展空间观念.
2.了解平行线的概念、平面内两条直线的相交和平行的两种位置关系, 知道平行公理以及平行公理的推论.
3.会用符号语方表示平行公理推论, 会用三角尺和直尺过已知直线外一点画这条直线的平行线.
重点、难点
重点:探索和掌握平行公理及其推论.
难点:对平行线本质属性的理解,用几何语言描述图形的性质. 课前准备
分别将木条a 、b 与木条c 钉在一起,做成图所示的教具. 教学过程 一、创设问题情境
1. 复习提问:两条直线相交有几个交点?相交的两条直线有什么特殊的
位置关系? 学生回答后,教师把教具中木条b 与c 重合在一起,转动木条a 确认学生的回答.教师接着问:在平面内,两条直线除了相交外,还有别的位置关系吗?
2.教师演示教具.
顺时针转动木条b 两圈,让学生思考:把a 、b 想像成两端可以无限延伸的两条直线,顺时针转动b 时,直线b 与直线a 的交点位置将发生什么变化?在这
c b
a C 个过程中, 有没有直线
b 与
c 木相交的位置?
3.教师组织学生交流并形成共识.
转动b 时,直线b 与c 的交点从在直线a 上A 点向左边距离A 点很远的点逐步接近A 点,并垂合于A 点,然后交点变为在A 点的右边,逐步远离A 点.继续转动下去,b 与a 的交点就会从A 点的左边又转动A 点的左边……可以想象一定存在一个直线b 的位置,它与直线a 左右两旁都没有交点.
二、平行线定义,表示法
1.结合演示的结论,师生用数学语言描述平行定义:同一平面内,存在一条直线a 与直线b 不相交的位置,这时直线a 与b 互相平行.换言之,同一平面内, 不相交的两条直线叫做平行线.
直线a 与b 是平行线,记作“∥”,这里“∥”是平行符号.
教师应强调平行线定义的本质属性,第一是同一平面内两条直线,第二是设有交点的两条直线.
2.同一平面内,两条直线的位置关系
教师引导学生从同一平面内,两条直线的交点情况去确定两条直线的位置关系.
在同一平面内,两条直线只有两种位置关系:相交或平行,两者必居其一.即两条直线不相交就是平行,或者不平行就是相交.
三、画图、观察、归纳概括平行公理及平行公理推论
1.在转动教具木条b 的过程中,有几个位置能使b 与a 平行?
本问题是学生直觉直线b 绕直线a 外一点B 转动时,有并且只有一个位置使a 与b 平行.
2.用直线和三角尺画平行线.
已知:直线a,点B,点C.
(1)过点B 画直线a 的平行线,能画几条?
(2)过点C 画直线a 的平行线,它与过点B 的平行线平行吗?
3.通过观察画图、归纳平行公理及推论.
(1)由学生对照垂线的第一性质说出画图所得的结论. c b a
(2)在学生充分交流后,教师板书.
平行公理:经过直线外一点,有且只有一条直线与这条直线平行.
(3)比较平行公理和垂线的第一条性质.
共同点:都是“有且只有一条直线”,这表明与已知直线平行或垂直的直线存在并且是唯一的.
不同点:平行公理中所过的“一点”要在已知直线外,两垂线性质中对“一点”没有限制,可在直线上,也可在直线外.
4.归纳平行公理推论.
(1)学生直观判定过B点、C点的a的平行线b、c是互相平行.
(2)从直线b、c产生的过程说明直线b∥直线c.
(3)学生用三角尺与直尺用平推方验证b∥c.
(4)师生用数学语言表达这个结论,教师板书.
结果两条直线都与第三条直线平行,那么这条直线也互相平行.
结合图形,教师引导学生用符号语言表达平行公理推论:
如果b∥a,c∥a,那么b∥c.
(5)简单应用.
练习:如果多于两条直线,比如三条直线a、b、c与直线L都平行, 那么这三条直线互相平行吗?请说明理由.
(6)拓展延伸
小红的妈妈是舞蹈教师,有一次快到六一儿童节了,需要编排一个舞蹈,规定排成三行,然后变换各种队形。
小红一听,高兴地对妈妈说:“这是我们学过的数学知识,让我来替您参谋参谋。
”小红利用我们刚学过的知识:平面内三条直线的位置关系,设计出了四种队形。
小红的妈妈一看,果然好办法,队形变化多端。
你知道小红是怎样设计的
本练习是让学生在反复运用平行公理推论中掌握平行公理推论以及说理规范.
四、作业
课本P19.7,P20.11.
c
b
a
达标检测
一、填空题.
1.在同一平面内,两条直线的位置关系有_________.
2.在同一平面内,一条直线和两条平行线中一条直线相交,那么这条直线与平行线中的另一边必__________.
3.同一平面内,两条相交直线不可能与第三条直线都平行,这是因为________.
4.两条直线相交,交点的个数是________,两条直线平行,交点的个数是_____个.
二、判断题.
1.不相交的两条直线叫做平行线.( )
2.如果一条直线与两条平行线中的一条直线平行, 那么它与另一条直线也互相平行.( )
3.过一点有且只有一条直线平行于已知直线.( )
三、解答题.
1.读下列语句,并画出图形后判断.
(1)直线a、b互相垂直,点P是直线a、b外一点,过P点的直线c垂直于直线b.
(2)判断直线a、c的位置关系,并借助于三角尺、直尺验证.
2.试说明三条直线的交点情况,进而判定在同一平面内三条直线的位置情况. 答案:
一、1.相交与平等两种 2.相交 3.过直线外一点有且只有一条直线与已知直线平行 4.一个,零
二、1.× 2.∨ 3.× 三、1.(1)略(2)a∥c 2. 交点有四种,第一没有交点,这时第三条直线互相平行,第二有一个交点,这时三条直线交于同一点,第三有两个交点,这时是两条平行线与第三条直线都相交,第四有三个交点,这时三条直线两两相交.。