2019版高考数学总复习专题五立体几何5.1三视图与几何体的体积、表面积课件理

合集下载

2019高考数学二轮复习专题五第九讲空间几何体的三视图、表面积与体积课件文

2019高考数学二轮复习专题五第九讲空间几何体的三视图、表面积与体积课件文

3 ,若该圆 1.(2018福建福州模拟)已知圆柱的高为2,底面半径为
柱的两个底面的圆周都在同一个球面上,则这个球的表面积等于
(
)
16 B. π 3
A.4π
32 C. π 3
D.16π
答案 D
如图,由题意知圆柱的中心O为这个球的球心,于是,球
OA2 AB2 = 12 ( 3)2 =2.故这个球的表面积S=4πr2 的半径r=OB=
(2018重庆调研)已知三棱锥A-BCD中,平面ABC⊥平面BCD,BC⊥ CD,AB⊥AC,CD=2,BC=2 2 ,则该三棱锥外接球的表面积为 ( A.4π B.4 3π C.12π
3π D.9
)
答案 解析
C 如图,取BC的中点E,BD的中点O,连接OA,OE,OC,AE,则OE
∥CD.由平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,CD⊂平 面BCD,CD⊥BC,得CD⊥平面ABC,则OE⊥平面ABC,所以OE⊥ BC,OE⊥AE.在Rt△ABC中,AE= BC=BE=CE,则Rt△OCE≌Rt△ OAE≌Rt△OBE,所以OC=OA=OB,又OB=OD,所以O为三棱锥ABCD的外接球的球心,外接球的半径R= BD= BC 2 CD2 = 3 ,
1 2
方法归纳 求几何体的表面积的方法 (1)求表面积问题的思路是将立体几何问题转化为平面图形问题, 即空间图形平面化,这是解决立体几何问题的主要出发点. (2)求不规则几何体的表面积时,通常将所给几何体分割成柱、 锥、台体,先求出这些柱、锥、台体的表面积,再通过求和或作差 求得所给几何体的表面积.
(3)由几何体的三视图还原几何体的形状解决此类问题的三个步 骤:
考点二
空间几何体的表面积与体积

2019年高考数学大二轮复习专题五立体几何第1讲空间几何体的三视图表面积和体积课件理ppt版本

2019年高考数学大二轮复习专题五立体几何第1讲空间几何体的三视图表面积和体积课件理ppt版本
【答案】 (1)A (2)112
• 单击此处编辑母版文本样式 – 第二级 • 第三级 – 第四级 »第五级
• 单击此处编辑母版文本样式 – 第二级 • 第三级 – 第四级 »第五级
2 A. 2
5 B. 2
6 C. 2
D.3
(2)(2018·黄冈模拟)三棱锥 P-ABC 中,D,E 分别为
PB,PC 的中点,记三棱锥 D-ABE 的体积为 V1,P-
• 单击此处编辑母版文本样式 – 第二级 • 第三级 – 第四级 »第五级
高考导航·考题考情
体验真题
• 单击此处编辑母版文本样式 – 第二级 • 第三级 – 第四级 »第五级
• 单击此处编辑母版文本样式 – 第二级 • 第三级 – 第四级 »第五级
2.(2018·全国卷Ⅰ)已知圆柱的上、下底面的中心分
【答案】 (1)36π (2)92π
解析 设该球的球心为 O,三棱锥为 A-BCD,依题
• 单击意此可知处:编VA辑-BC母D=版VO文-AB本C+样VO式-BCD+VO-CDA+VO-DAB,
– 第二级 即13S△BCD·h=13S△ABC·r+13S△BCD·r+13S△CDA·r+13
S△D•AB第·–r三.第所级以四13×级43×32·
解法三 在上方补一模一样的半个圆柱,V=π× 32×14×12=63π.
(2)由三视图知,该几何体是底面边长为 22+22= 2 2的正方形,高 PD=2 的四棱锥 P-ABCD,因为 PD⊥平面 ABCD,且四边形 ABCD 是正方形,易得 BC⊥PC,BA⊥PA,
又 PC= PD2+CD2= 22+(2 2)2=2 3, 所以 S△PCD=S△PAD=12×2×2 2=2 2, S△PAB=S△PBC=12×2 2×2 3=2 6. 所以几何体的表面积为 4 6+4 2+8.

高考数学 二轮 专题五 5.1 空间几何体的三视图、表面积与体积 新人教A

高考数学 二轮 专题五 5.1 空间几何体的三视图、表面积与体积 新人教A
2.若球面上四点P,A,B,C构成的三条线段PA,PB,PC两两互相垂直,且 PA=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,利用 4R2=a2+b2+c2求解.
专题五
第1讲 空间几何体的三视图、表面积与体积
聚焦考题
高频考点
新题演练
命题热点
解析:
易错题型
高频考点高频 考点高频考点
命题热点
解析:
易错题型
高频考点高频 考点高频考点
高频考点
热点一 热点二 热点三
-17-
(1)由三视图可知,该几何体是一个组合体,如图所示. 其左侧是一个直三棱柱,右侧是一个长方体.其中三棱柱的底面是一个直角三角 形,其两直角边长分别是3 cm和4 cm,三棱柱的高为3 cm,因此其体积 V1=Sh=×4×3×3=18(cm3).长方体中三条棱的长度分别为4 cm,6 cm,3 cm,因此其 体积V2=4×6×3=72(cm3). 故该几何体的体积V=V1+V2=18+72=90(cm3),应选B.
点评:本题需要根据三视图中正方形内的实线和虚线,采用构造正方体的方法确 定直观图.解题时需注意求解的几何体的表面积在正方体的表面积的基础上应该 去掉哪些和补充哪些.
新题演练
-35-
1234 1.如图,在正四棱柱ABCD-A1B1C1D1中,点P是平面A1B1C1D1内一点,则三棱锥PBCD的正视图与侧视图的面积之比为( )
命题热点
易错题型
高频考点
热点一 热点二 热点三
-25-
规律方法
1.涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般 为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找 几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄 清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.

高考数学总复习1三视图与几何体的体积表面积习题课件文

高考数学总复习1三视图与几何体的体积表面积习题课件文

D.66斛
2021/12/13
第三十页,共九十二页。
-31-
答案(dá àn):B
解析:设圆锥的底面半径为R,高为h.
∵米堆底部的弧长为8尺,
1
16
∴4·2πR=8,∴R= π .∵h=5,
1
1
1
∴米堆的体积 V=4 × 3πR h=12×π×
320
2
16 2
π
∴堆放的米约有9×1 62≈22(斛).
1.(2018全国Ⅰ·5)已知圆柱的上、下底面的中心(zhōngxīn)分别为O1,O2,过直线
O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为
(
)
A.12 2π
B.12π
C.8 2π
D.10π
答案:B
解析:过直线O1O2的平面截该圆柱所得的截面为圆柱的轴截面,设底面半径为r,
后得到的几何体如图②,则该几何体的侧视图为(
2021/12/13
第二十六页,共九十二页。
)
-27-
答案:A
解析:因为平面DEHG⊥平面EFD,所以(suǒyǐ)几何体的侧视图为直角梯形,且直
角腰在侧视图的左侧,故选A.
2021/12/13
第二十七页,共九十二页。
-28-
空间几何体的体积、表面积
高考真题体验·对方向
第十九页,共九十二页。
-20-
4.(2018江西赣州十四县(市)期中(qī zhōnɡ))某几何体的三视图如图所示,则此几何
体的各面中最大面的面积为(
A.2 2
B.2 3
)
C.3 2
2021/12/13
第二十页,共九十二页。
D.2

高中数学复习课件-复习 空间几何体的三视图、表面积及体积

高中数学复习课件-复习 空间几何体的三视图、表面积及体积

[典例] (1)(2015·全国卷Ⅰ)圆柱被
一个平面截去一部分后与半球(半径为r)
组成一个几何体,该几何体三视图中的
正视图和俯视图如图所示.若该几何体
的表面积为16+20π,则r= ( )
A.1
B.2
C.4
D.8
[解析] 如图,该几何体是一个半球与一个半圆柱的组 合体,球的半径为 r,圆柱的底面半径为 r,高为 2r,则表 面积 S=12×4πr2+πr2+4r2 +πr·2r=(5π+4)r2.
令y′=0,解得h=2 3 ,易知当h=2 3 时,y取最大值,
正六棱柱的体积最大.
答案:D
THANKS!
>>谢谢观看
正棱柱的体积取最大值时,其高的值为
()
A.3 3
B. 3
C.2 6
D.2 3
解析:设正六棱柱的底面边长为a,高为h,则可得a2+
h2 4
=9,即a2=9-
h2 4
,那么正六棱柱的体积V=

43a2 ×h
=32 39-h42h=323-h43+9h,令y=-h43+9h, 则y′=-34h2+9,
16 2
∴V新工件= V原工件 2
272π=98π.故选A.
3
[答案] A
变式:某几何体的三视图(单位:cm)如图所示,其中侧视 图是一个边长为 2 的正三角形,则这个几何体的体积是 () A.2 cm3
B. 3 cm3
C.3 3 cm3 D.3 cm3
答案:B [解析] 该几何体的直观图如图,其体积 V=1×1× 32
(2)柱体、锥体、台体的体积公式: ①V 柱体=Sh(S 为底面面积,h 为高); ②V 锥体=13Sh(S 为底面面积,h 为高); ③V 台=13(S+ SS′+S′)h(不要求记忆); (3)球的表面积和体积公式: ①S 球表=4πR2(R 为球的半径);

推荐-高考数学二轮复习专题五立体几何5.1空间几何体的三视图表面积和体积课件理

推荐-高考数学二轮复习专题五立体几何5.1空间几何体的三视图表面积和体积课件理
答案:A
2.某几何体的三视图如图所示,则该几何体的表面积为( A ) A.7+ 5 B.7+2 5 C.4+2 2 D.4+ 5
解析:由三视图知该几何体是一个棱长为 2 的正方体中的一个 三棱锥 P-ABC,如图所示,
S△PAC=12×2×2=2,S△ABC=12×2×2=2. 因为 AB= 5,所以 S△ABP=12×2× 5= 5. 在△PBC 中,BC= 5,PC=2 2,PB=3, 则由余弦定理,得 cos∠BCP= 52×2+52×222-2 32= 1100,所以
例 3(1)(2017·全国卷Ⅲ)已知圆柱的高为 1,它的两个底面的圆
周在直径为 2 的同一个球的球面上,则该圆柱的体积为( B )
A.π B.34π
π
π
C.2 D.4
(2)在封闭的直三棱柱 ABC-A1B1C1 内有一个体积为 V 的球, 若 AB⊥BC,AB=6,BC=8,AA1=3,则 V 的最大值是( B )
积 V=π×32×10-12×π×32×6=63π. 方法二 依题意,该几何体由底面半径为 3,高为 10 的圆柱截
去底面半径为 3,高为 6 的圆柱的一半所得,其体积等价于底面半 径为 3,高为 7 的圆柱的体积,所以它的体积 V=π×32×7=63π, 选择 B.
【答案】 B
[技法领悟] 求几何体体积的类型及思路 (1)若所给定的几何体是柱体、锥体或台体,则可直接利用公式 进行求解. (2)若所给定的几何体的体积不能直接利用公式得出,则常用等 积转换法或割补法进行求解.其中,等积转换法多用来求锥体的体 积. (3)若以三视图的形式给出几何体,则应先根据三视图得到几何 体的直观图,然后根据条件求解.
sin∠BCP=31010.所以 S△BCP=12×2 2× 5×31010=3. 所以该三棱锥的表面积为 2+2+ 5+3=7+ 5.故选 A.

高中数学复习精讲 空间几何体的三视图、表面积和体积

高中数学复习精讲  空间几何体的三视图、表面积和体积

空间几何体的三视图、表面积和体积1.以三视图为载体,考查空间几何体面积、体积的计算.2.考查空间几何体的侧面展开图及简单的组合体问题.热点一 三视图与直观图 1.一个物体的三视图的排列规则俯视图放在正(主)视图的下面,长度与正(主)视图的长度一样,侧(左)视图放在正(主)视图的右面,高度与正(主)视图的高度一样,宽度与俯视图的宽度一样.即“长对正、高平齐、宽相等”. 2.由三视图还原几何体的步骤一般先依据俯视图确定底面再利用正(主)视图与侧(左)视图确定几何体.例1 (1)将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧(左)视图为( )答案 D解析 所得几何体的轮廓线中,除长方体原有的棱外,有两条是原长方体的面对角线,它们在侧(左)视图中落在矩形的两条边上,另一条是原长方体的体对角线,在侧(左)视图中体现为矩形的自左下至右上的一条对角线,因不可见,故用虚线表示,由以上分析可知,故选D.(2)有一块多边形的菜地,它的水平放置的平面图形的斜二测直观图是直角梯形(如图所示),∠ABC =45°,AB =AD =1,DC ⊥BC ,则这块菜地的面积为________. 答案 2+22解析 如图,在直观图中,过点A 作AE ⊥BC ,垂足为点E ,则在Rt △ABE 中,AB =1,∠ABE =45°,∴BE =22.而四边形AECD 为矩形,AD =1, ∴EC =AD =1,∴BC =BE +EC =22+1. 由此可还原原图形如图所示.在原图形中,A ′D ′=1,A ′B ′=2,B ′C ′=22+1, 且A ′D ′∥B ′C ′,A ′B ′⊥B ′C ′, ∴这块菜地的面积为S =12(A ′D ′+B ′C ′)·A ′B ′ =12×⎝⎛⎭⎫1+1+22×2=2+22. 思维升华 空间几何体的三视图是从空间几何体的正面、左面、上面用平行投影的方法得到的三个平面投影图,因此在分析空间几何体的三视图问题时,先根据俯视图确定几何体的底面,然后根据正(主)视图或侧(左)视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置,再确定几何体的形状,即可得到结果.在还原空间几何体实际形状时,一般是以正(主)视图和俯视图为主,结合侧(左)视图进行综合考虑.跟踪演练1 (1)(2017·河北省武邑中学模拟)已知某锥体的正(主)视图和侧(左)视图如图,则该锥体的俯视图不可能是( )答案 D解析 A 项,该锥体是底面边长为2,高为3的正四棱锥. B 项,该锥体为底面半径为1,高为3的圆锥.C 项,该锥体是底面为等腰直角三角形,高为3的三棱锥.D 项,由于该图形不满足三视图原则“宽相等”,所以不可能是该锥体的俯视图,故D 项不符合题意. 故选D.(2)(2017·衡阳联考)如图所示,三棱锥V -ABC 的底面是以B 为直角顶点的等腰直角三角形,侧面VAC 与底面ABC 垂直,若以垂直于平面VAC 的方向作为正(主)视图的方向,垂直于平面ABC 的方向为俯视图的方向,已知其正(主)视图的面积为23,则其侧(左)视图的面积是( ) A.32B. 3 C .2 3 D .3 答案 B解析 设三棱锥的高为h ,AB =BC =2a ,则AC =2a ,S 正(主)视图=12×2a ×h =23⇒h =23a ,S 侧(左)视图=12ah =a 2×23a = 3.故选B.热点二 几何体的表面积与体积空间几何体的表面积和体积计算是高考中常见的一个考点,解决这类问题,首先要熟练掌握各类空间几何体的表面积和体积计算公式,其次要掌握一定的技巧,如把不规则几何体分割成几个规则几何体的技巧,把一个空间几何体纳入一个更大的几何体中的补形技巧.例2 (1)下图画出的是某几何体的三视图,网格纸上小正方形的边长为1,则该几何体的体积为( )A .48-πB .96-πC .48-2πD .96-2π 答案 D解析 由已知中的三视图可知,该几何体是一个长方体挖掉两个圆锥所得的组合体,所以几何体的体积为4×4×6-2×13×π×12×3=96-2π,故选D.(2)(2017·山东)由一个长方体和两个14圆柱构成的几何体的三视图如图,则该几何体的体积为________.答案 2+π2解析 该几何体由一个长、宽、高分别为2,1,1的长方体和两个半径为1,高为1的14圆柱体构成,∴V =2×1×1+2×14×π×12×1=2+π2.思维升华 (1)求多面体的表面积的基本方法就是逐个计算各个面的面积,然后求和.(2)求简单几何体的体积时若所给的几何体为柱体、锥体或台体,则可直接利用公式求解;求组合体的体积时若所给定的几何体是组合体,不能直接利用公式求解,则常用转换法、分割法、补形法等进行求解;求以三视图为背景的几何体的体积时应先根据三视图得到几何体的直观图,然后根据条件求解.跟踪演练2 (1)(2016·山东)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A.13+23π B.13+23π C.13+26π D .1+26π 答案 C解析 由三视图知,半球的半径R =22,四棱锥为底面边长为1,高为1的正四棱锥,所以几何体的体积V =13×1×1×1+12×43π×⎝⎛⎭⎫223=13+26π,故选C.(2)(2017届云南省师范大学附属中学月考)如图,是某组合体的三视图,则外部几何体的表面积为( )A .4πB .12πC .24πD .36π答案 D解析 组合体为轴截面为等边三角形的圆锥和它的内切球,球的半径为r =2,圆锥的高为3r =6,圆锥底面半径为3r =23,圆锥母线长为23r =43,所以S 圆锥表=π()232+12()2π·23·43=36π,故选D.热点三 多面体与球与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图.如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径.球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.球与旋转体的组合,通常作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心(或“切点”“接点”)作出截面图.例3 (1)一个三棱锥的三视图如图所示,则该棱锥的外接球的体积为( )A .1 0002πB .1252πC.1 0002π3D.1252π3答案 D解析 由三视图可知该三棱锥为棱长为5,4,3的长方体切去四个小棱锥得到的几何体,∴该三棱锥的外接球和长方体的外接球相同. 设该三棱锥的外接球半径为R , ∴2R =52+42+32=5 2.∴R =522,∴外接球的体积为V =43πR 3=1252π3,故选D.(2)(2017届咸阳二模)已知一个三棱锥的所有棱长均为2,则该三棱锥的内切球的体积为____________. 答案354π解析 由题意可知,该三棱锥为正四面体,如图所示. AE =AB ·sin60°=62,AO =23AE =63, DO =AD 2-AO 2=233,三棱锥的体积V D -ABC =13S △ABC ·DO =13,设内切球的半径为r ,则V D -ABC =13r ()S △ABC +S △ABD +S △BCD +S △ACD =13,r =36,V 内切球=43πr 3=354π.思维升华 三棱锥P -ABC 可通过补形为长方体求解外接球问题的两种情形 (1)点P 可作为长方体上底面的一个顶点,点A ,B ,C 可作为下底面的三个顶点. (2)P -ABC 为正四面体,则正四面体的棱都可作为一个正方体的面对角线.跟踪演练3 (1)若在三棱锥P -ABC 中, AB =AC =1,AB ⊥AC ,P A ⊥平面ABC ,且直线P A 与平面PBC 所成角的正切值为12,则三棱锥P -ABC 的外接球的表面积为( )A .4πB .8πC .16πD .32π答案 A解析 如图,取BC 的中点D ,连接AD ,PD, ∵AB =AC ,∴AD ⊥BC ,又∵P A ⊥平面ABC ,∴BC ⊥P A ,又P A ,AD ⊂平面P AD ,P A ∩AD =A ,∴BC ⊥平面P AD ,过A 作AH ⊥PD 于点H ,易知AH ⊥平面PBC , ∴∠APD 是直线P A 与平面PBC 所成的角,∴tan ∠APD =AD AP =12,∵AD =12BC =22,∴AP =2,∵AB ,AC ,AP 相互垂直, ∴以AB ,AC ,AP 为棱的长方体的外接球就是三棱锥P -ABC 的外接球,∴三棱锥P -ABC 的外接球的半径为12+12+()222=1,三棱锥P -ABC 的外接球的表面积为4π,故选A.(2)(2017届石家庄质检)四棱锥P -ABCD 的底面ABCD 是边长为6的正方形,且P A =PB =PC =PD ,若一个半径为1的球与此四棱锥所有面都相切,则该四棱锥的高是( ) A .6 B .5 C.92 D.94答案 D解析 由题意知,四棱锥P -ABCD 是正四棱锥,球的球心O 在四棱锥的高PH 上,过正四棱锥的高作组合体的轴截面如图,其中PE ,PF 是斜高,G 为球面与侧面的切点.设PH =h ,易知Rt △PGO ∽Rt △PHF ,所以OG FH =POPF ,即13=h -1h 2+32,解得h =94,故选D.真题体验1.(2017·北京改编)某三棱锥的三视图如图所示,则该三棱锥的体积为________.答案 10解析 由三视图画出如图所示的三棱锥P -ACD ,过点P 作PB ⊥平面ACD 于点B ,连接BA ,BD ,BC ,根据三视图可知,底面ABCD 是矩形,AD =5,CD =3,PB =4,所以V 三棱锥P ACD =13×12×3×5×4=10.2.(2017·全国Ⅱ)长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为________. 答案 14π解析 ∵长方体的顶点都在球O 的球面上, ∴长方体的体对角线的长度就是其外接球的直径. 设球的半径为R , 则2R =32+22+12=14. ∴球O 的表面积为S =4πR 2=4π×⎝⎛⎭⎫1422=14π. 3.(2017·全国Ⅰ)已知三棱锥S —ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S —ABC 的体积为9,则球O 的表面积为________. 答案 36π解析 如图,连接OA ,OB .由SA =AC ,SB =BC ,SC 为球O 的直径知,OA ⊥SC ,OB ⊥SC .由平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC ,OA ⊥SC 知,OA ⊥平面SCB . 设球O 的半径为r ,则 OA =OB =r ,SC =2r , ∴三棱锥S -ABC 的体积 V =13×12×SC ×OB ×OA =r 33,即r 33=9,∴r =3,∴S 球表=4πr 2=36π.4.(2017·江苏)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.答案 32解析 设球O 的半径为R ,∵球O 与圆柱O 1O 2的上、下底面及母线均相切, ∴圆柱O 1O 2的高为2R ,底面半径为R . ∴V 1V 2=πR 2·2R 43πR 3=32. 押题预测1.一个几何体的三视图及其尺寸如图所示,则该几何体的表面积为( )A .16B .82+8C .22+26+8D .42+46+8押题依据 求空间几何体的表面积或体积是立体几何的重要内容之一,也是高考命题的热点.此类题常以三视图为载体,给出几何体的特征,求几何体的表面积或体积. 答案 D解析 由三视图知,该几何体是底面边长为22+22=22的正方形,高PD =2的四棱锥P -ABCD ,因为PD ⊥平面ABCD ,且四边形ABCD 是正方形, 易得BC ⊥PC ,BA ⊥P A ,又PC =PD 2+CD 2=22+(22)2=23, 所以S △PCD =S △P AD =12×2×22=22,S △P AB =S △PBC =12×22×23=2 6.所以几何体的表面积为46+42+8.2.在正三棱锥S -ABC 中,点M 是SC 的中点,且AM ⊥SB ,底面边长AB =22,则正三棱锥S -ABC 的外接球的表面积为( ) A .6π B .12π C .32πD .36π押题依据 灵活运用正三棱锥中线与线之间的位置关系来解决外接球的相关问题,是高考的热点. 答案 B解析 因为三棱锥S -ABC 为正三棱锥,所以SB ⊥AC ,又AM ⊥SB ,AC ∩AM =A ,所以SB ⊥平面SAC ,所以SB ⊥SA ,SB ⊥SC ,同理SA ⊥SC ,即SA ,SB ,SC 三线两两垂直,且AB =22,所以SA =SB =SC =2,所以(2R )2=3×22=12, 所以球的表面积S =4πR 2=12π,故选B.3.已知半径为1的球O 中内接一个圆柱,当圆柱的侧面积最大时,球的体积与圆柱的体积的比值为________.押题依据 求空间几何体的体积是立体几何的重要内容之一,也是高考的热点问题之一,主要是求柱体、锥体、球体或简单组合体的体积.本题通过球的内接圆柱,来考查球与圆柱的体积计算,设问角度新颖,值得关注. 答案423解析 如图所示,设圆柱的底面半径为r ,则圆柱的侧面积为S =2πr ×21-r 2=4πr 1-r 2≤4π×r 2+(1-r 2)2=2π(当且仅当r 2=1-r 2,即r =22时取等号).所以当r =22时,V 球V 圆柱=4π3×13π⎝⎛⎭⎫222×2=423.A组专题通关1.一几何体的直观图如图,下列给出的四个俯视图中正确的是()答案 B解析由直观图可知,该几何体是由一个长方体和一个截角三棱柱组合而成.从上往下看,外层轮廓线是一个矩形,矩形内部有一条线段连接着两个三角形.2.(2017届太原模拟)某几何体的三视图如图所示,则该几何体中最长的棱长为()A.3 3 B.2 6C.21 D.2 5答案 B解析如图所示,在长、宽、高分别为3,4,2的长方体中,三视图表示的是如图所示的四棱锥P-ABCD,其最长的棱为BP=22+22+42=2 6 .故选B.3.(2017·日照模拟)某几何体的三视图如图所示,则该几何体的体积为()A.9+36πB.6+36πC.3+36πD.12+36π答案 A解析 根据三视图可知,原几何体表示上部为底面圆半径为1,高为3的圆锥的12,下部为底面圆半径为1,高为2的圆柱的34,故该几何体的体积为V =V 1+V 2=12×13πr 2h 1+34×πr 2h 2=3π6+3π2=3+96π.4.(2017届四川省泸州市四诊)某几何体的正(主)视图和侧(左)视图如图(1)所示,它的俯视图的直观图是A ′B ′C ′,如图(2)所示,其中O ′A ′=O ′B ′=2,O ′C ′=3,则该几何体的表面积为( )A .36+12 3B .24+8 3C .24+12 3D .36+8 3 答案 C解析 由图(2)可知,该几何体的俯视图是一个底面边长为4,高为23的等腰三角形,即该三角形为等边三角形,在如图所示的长方体中,长、宽、高分别为4,23,6,三视图还原为几何体是图中的三棱锥P -ABC ,且S △P AB =S △PBC =12×4×6=12, S △ABC =12×4×23=43,△P AC 是腰长为52,底面边长为4的等腰三角形, S △P AC =8 3.综上可知,该几何体的表面积为2×12+43+83=24+12 3.故选C.5.(2017届玉林、贵港质检)网络用语“车珠子”,通常是指将一块原料木头通过加工打磨,变成球状珠子的过程.某同学有一圆锥状的木块,想把它“车成珠子”,经测量,该圆锥状木块的底面直径为12 cm ,体积为96π cm 3,假设条件理想,他能成功,则该珠子的体积最大值是( ) A .36π cm 3B .12π cm 3C .9π cm 3D .72π cm 3 答案 A解析 由题可令圆锥的高为x cm ,可得13π·62·x =96π,则x =8,由底面直径为12,得母线长为10,可设轴截面的内切圆半径为r ,由12×12×8=12×()10+10+12r ,可得r =3.那么珠子的体积最大值为43π·33=36π(cm)3.故选A.6.(2017·哈尔滨师范大学附属中学模拟)已知三棱锥P —ABC 的四个顶点均在同一个球面上,底面△ABC 满足BA =BC =6, ∠ABC =π2,若该三棱锥体积的最大值为3,则其外接球的体积为( )A .8πB .16π C.16π3 D.32π3 答案 D解析 因为△ABC 是等腰直角三角形,所以外接圆的半径是r =12×12=3,设外接球的半径是R ,球心O 到该底面的距离为d ,如图,则S △ABC =12×6=3,BD =3,由题设V =13S △ABC ·h =13×3h =3,最大体积对应的高为PD =h =3,故R 2=d 2+3,即R 2=()3-R 2+3,解得R =2,所以外接球的体积是43πR 3=32π3,故选D.7.(2017届石家庄模拟)三棱锥S -ABC 中,侧棱SA ⊥底面ABC, AB =5, BC =8, ∠B =60°, SA =25,则该三棱锥的外接球的表面积为( ) A.643π B.2563π C.4363π D .2 048327π 答案 B解析 由题意知,侧棱SA ⊥底面ABC, AB =5,BC =8,∠B =60°,则根据余弦定理可得 AC =52+82-2×5×8×12=7,△ABC 的外接圆圆心2r =AC sin B =732∴r =73,三棱锥的外接球的球心到平面ABC 的距离d =12SA =5,则外接球的半径R =⎝⎛⎭⎫732+()52=643,则该三棱锥的外接球的表面积为S =4πR 2=2563π. 8.如图所示,图中阴影部分绕AB 旋转一周所形成的几何体的体积为________.答案140π3解析 由题意知,旋转一周后形成的几何体是一圆台去掉一个半球,其中圆台的体积为V =13×(π×22+π×22×π×52+π×52)×4=156π3,半球的体积V =12×43×π×23=16π3,则所求体积为156π3-16π3=140π3.9.体积为163的正四棱锥S —ABCD 的底面中心为O ,SO 与侧面所成角的正切值为22,那么过S —ABCD的各顶点的球的表面积为________. 答案 16π解析 如图,取AB 的中点为F ,连接SF ,过点O 作OG ⊥SF ,则∠OSG 为SO 与侧面所成的角,且tan ∠OSG =OF SO =22.设AB =2a ,则SO =2a ,所以13×4a 2×2a =163,得a = 2.延长SO 交外接球于E ,则EB ⊥SB ,由OB 2=SO ·OE ,得4=2·(2R -2), 所以R =2,S =4π×22=16π.10.(2017·天津市第一中学月考)某几何体的三视图如图所示(单位: cm),则该几何体的体积为________ cm 3.答案 6+32π解析 由三视图还原几何体如图所示,该几何体是一个半圆柱与一个直三棱柱的组合体,半圆柱的底面半径为1,高为3;直三棱柱底面是等腰直角三角形,直角边为2,高为3. 所以V =12×2×2×3+12×π×12×3=6+32π.11.如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为2,点E 为线段A 1B 1的中点,点F ,G 分别是线段A 1D 与BC 1上的动点,当三棱锥E -FGC 的俯视图的面积最大时,该三棱锥的正(主)视图的面积是________. 答案 2解析 由题意知,E 点在底面的射影E ′为AB 的中点,F 点在底面的射影F ′在AD 上,G 点在底面的射影G ′在BC 上,三棱锥E -FGC 的俯视图的面积是以E ′C 为底边,F ′,G ′到E ′C 的距离和为高的三角形的面积,又E ′C 为定值,所以当F 点与D 点重合,G 点与B 点重合时面积最大,此时正(主)视图的面积为12×2×2=2.12.已知三棱锥P -ABC 的三条侧棱两两垂直,且AB =5,BC =7,AC =2,则此三棱锥外接球的表面积是______. 答案 8π解析 如图P A, PB, PC 两两垂直,设PC =h , 则PB =BC 2-PC 2 =7-h 2,P A =AC 2-PC 2=4-h 2, ∵P A 2+PB 2=AB 2, ∴4-h 2+7-h 2=5,解得h =3,在三棱锥P -ABC 中, P A, PB, PC 两两垂直,且P A =1, PB =2,PC =3, ∴以P A, PB, PC 为棱构造一个长方体,则这个长方体的外接球就是三棱锥P -ABC 的外接球, ∴由题意可知,这个长方体的中心是三棱锥的外接球的球心,三棱锥的外接球的半径为R =1+4+32=2, ∴外接球的表面积为S =4πR 2=4π×()22=8π.B 组 能力提高13.四棱锥P -ABCD 的三视图如图所示,则该四棱锥的外接球的表面积为( )A.81π5B.81π20C.101π5 D .101π20答案 C解析 根据三视图还原几何体为一个四棱锥P -ABCD ,平面P AD ⊥平面ABCD ,由于△P AD 为等腰三角形,P A =PD =3,AD =4,四边形ABCD 为矩形,CD =2,过△P AD 的外心F 作平面P AD 的垂线,过矩形ABCD 的中心H 作平面ABCD 的垂线,两条垂线交于一点O ,O 为四棱锥外接球的球心,在三角形P AD 中,cos ∠APD =32+32-422×3×3=19,则sin ∠APD =459 ,2PF =AD sin ∠APD =4459=955 ,PF =9510 ,PE =9-4= 5 ,OH =EF =5-9510=510, BH =1216+4=5,OB =OH 2+BH 2=5100+5=50510, S =4π×505100=101π5.故选C.14.如图是某组合体的三视图,则内部几何体的体积的最大值为( )A.52()2-1π B.254()3-22π C .25()3-22π D.1256()52-7π 答案 D解析 内部几何体是底面为直角三角形的直三棱柱的内切球,内切球的半径即为底面直角三角形内切圆的半径,由等面积法易得r =ab a +b +5,且a 2+b 2=25.由基本不等式,知r =ab a +b +5≤ab 2ab +5, 0<ab ≤a 2+b 22=252,即0<ab ≤522,当且仅当a =b =522时,等号成立.令t =ab ,则r ≤t 22t +5, f ()t =t 22t +5=15t 2+2t =15⎝⎛⎭⎫1t +152-15⎝⎛⎭⎫0<t ≤522是增函数,或f ′(t )=2t ()t +5()2t +52>0, 0<t ≤522,所以f ()t =t 22t +5在⎝⎛⎦⎤0,522上是增函数,所以r max =f ()t max =f ⎝⎛⎭⎫522=52()2-1,所以内切球的体积的最大值为43π()r max 3=1256()52-7π,故选D.15.(2017·上海市黄浦区模拟)三棱锥P -ABC 满足: AB ⊥AC, AB ⊥AP , AB =2, AP +AC =4,则该三棱锥的体积V 的取值范围是____________. 答案 ⎝⎛⎦⎤0,43 解析 由于AB ⊥AP ,AB ⊥AC ,AC ∩AP =A ,∴AB ⊥平面APC, V =13S △APC ·AB =23S △APC ,在△APC 中,AP +AC =4,所以AP ·AC ≤⎝⎛⎭⎫AP +AC 22=4,所以S △APC =12·AP ·AC ·sin ∠P AC ≤2sin ∠P AC ,要使△APC 面积最大,只需AP =AC ,∠P AC =90°, S △APC 的最大值为12×2×2=2, V 的最大值为13×2×2=43,该三棱锥的体积V 的取值范围是⎝⎛⎦⎤0,43. 16.如图所示,三棱锥P -ABC 中,△ABC 是边长为3的等边三角形, D 是线=32,PB =段AB 的中点, DE ∩PB =E ,且DE ⊥AB ,若∠EDC =120°,P A 332,则三棱锥P -ABC 的外接球的表面积为________. 答案 13π解析 在三棱锥P -ABC 中, △ABC 是边长为3的等边三角形,设△ABC 的外心为O 1,外接圆的半径O 1A =32sin60°=3,在△P AB 中, P A =32,PB =332,AB =3,满足P A 2+PB 2=AB 2,所以△P AB 为直角三角形,△P AB 的外接圆的圆心为D ,由于CD ⊥AB ,ED ⊥AB, ∠EDC =120°为二面角P -AB -C 的平面角,分别过两个三角形的外心O 1,D 作两个半平面的垂线交于点O ,则O 为三棱锥P -ABC 的外接球的球心, 在Rt △OO 1D 中, ∠ODO 1=30°,DO 1=32, 则cos30°=O 1D OD =32OD ,OD =1,连接OA ,设OA =R ,则R 2=AD 2+OD 2=⎝⎛⎭⎫322+12=134, S 球=4πR 2=4π×134=13π.空间几何体的三视图、表面积与体积A组基础题组1.如图所示是一个物体的三视图,则此三视图所描述物体的直观图是( )2.将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图是( )3.某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x的值是( )A.2B.C.D.34.“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图,图中四边形是为体现其直观性所作的辅助线.当其正视图和侧视图完全相同时,它的俯视图可能是( )5.(2017新疆第二次适应性检测)球的体积为4π,平面α截球O的球面所得圆的半径为1,则球心O到平面α的距离为( )A.1B.C.D.6.(2017合肥第一次教学质量检测)一个几何体的三视图如图所示(其中正视图的弧线为四分之一圆周),则该几何体的表面积为( )A.72+6πB.72+4πC.48+6πD.48+4π7.(2017石家庄教学质量检测(二))某几何体的三视图如图所示,则该几何体的体积是( )A.16B.20C.52D.608.(2016贵州贵阳监测考试)甲、乙两个几何体的正视图和侧视图相同,俯视图不同,如图所示,记甲的体积为V甲,乙的体积为V乙,则( )A.V甲<V乙B.V甲=V乙C.V甲>V乙D.V甲、V乙大小不能确定9.(2017浙江,3,5分)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是( )A.+1B.+3C.+1D.+310.在棱长为3的正方体ABCD-A1B1C1D1中,P在线段BD1上,且=,M为线段B1C1上的动点,则三棱锥M-PBC 的体积为( )A.1B.C. D.与M点的位置有关11.若正三棱锥A-BCD中,AB⊥AC,且BC=1,则三棱锥A-BCD的高为( )A. B. C. D.12.一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的外接球的表面积为( )A. B. C.4π D.π13.已知某组合体的正视图与侧视图相同(其中AB=AC,四边形BCDE为矩形),则该组合体的俯视图可以是(把正确的图的序号都填上).14.如图,正方体ABCD-A1B1C1D1的棱长为1,E,F分别为线段AA1,B1C上的点,则三棱锥D1-EDF的体积为.15.(2017广西三市第一次联考)已知长方体ABCD-A1B1C1D1内接于球O,底面ABCD是边长为2的正方形,E为AA1的中点,OA⊥平面BDE,则球O的表面积为.16.(2017山东,13,5分)由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为.B组提升题组1.(2017郑州第一次质量预测)某几何体的三视图如图所示,则其体积为( )A.207B.216-C.216-36πD.216-18π2.某几何体的三视图如图所示(网格线中每个小正方形的边长为1),则该几何体的表面积为( )A.48B.54C.64D.603.(2017石家庄第一次模拟)祖暅是南北朝时期的伟大数学家,5世纪末提出体积计算原理,即祖暅原理:“幂势既同,则积不容异”.意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任何一个平面所截,如果截面面积都相等,那么这两个几何体的体积一定相等.现有以下四个几何体:图①是从圆柱中挖去一个圆锥所得的几何体,图②、图③、图④分别是圆锥、圆台和半球,则满足祖暅原理的两个几何体为( )A.①②B.①③C.②④D.①④4.(2017郑州第二次质量预测)将一个底面半径为1,高为2的圆锥形工件切割成一个圆柱体,能切割出的圆柱的最大体积为( )A. B. C. D.5.(2017兰州高考实战模拟)某几何体的三视图如图所示,则下列说法正确的是( )①该几何体的体积为;②该几何体为正三棱锥;③该几何体的表面积为+;④该几何体外接球的表面积为3π.A.①②③B.①②④C.①③④D.②③④6.(2017洛阳第一次统一考试)已知三棱锥P-ABC的四个顶点均在某球面上,PC为该球的直径,△ABC是边长为4的等边三角形,三棱锥P-ABC的体积为,则此三棱锥的外接球的表面积为( )A. B. C. D.7.某几何体的三视图如图所示,当xy取得最大值时,该几何体的体积是.8.(2017合肥第二次教学质量检测)某几何体的三视图如图所示,其中俯视图是边长为1的等边三角形,则此几何体的体积为.9.(2017长春普通高中质量检测(二))已知四棱锥P-ABCD的底面为矩形,平面PBC⊥平面ABCD,PE⊥BC于点E,EC=1,AB=,BC=3,PE=2,则四棱锥P-ABCD的外接球半径为.10.(2017课标全国Ⅰ,16,5分)如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D,E,F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D,E,F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为.答案精解精析A组基础题组1.D 先观察俯视图,由俯视图可知选项B和D中的一个正确,再由正视图和侧视图可知选项D正确,故选D.2.D 由几何体可以看出,侧视图应为一个矩形外加一条从右上到左下的对角线,故选D.3.D 由三视图知,该几何体是四棱锥,底面是一个直角梯形,底面积为×(1+2)×2=3,四棱锥的高为x,因为该几何体的体积为3,所以×3x=3,解得x=3,故选D.4.B 根据直观图以及题图中的辅助四边形分析可知,当正视图和侧视图完全相同时,俯视图为B,故选B.5.B 依题意,设该球的半径为R,则有R3=4π,解得R=,因此球心O到平面α的距离d==,选B.6.A 由三视图知,该几何体由一个正方体的四分之三与一个圆柱的四分之一组合而成(如图所示),表面积为16×2+(16-4+π)×2+4×(2+2+π)=72+6π,故选A.7.B 由三视图知,该几何体由直三棱柱(底面是直角边长分别为3,4的直角三角形,高为6)截去两个相同的四棱锥所得,且四棱锥的底面是长、宽分别为4,2的矩形,高是3,所以该几何体的体积V=×3×4×6-2××2×4×3=20,故选B.8.C 由三视图知,甲几何体是一个以俯视图为底面的四棱锥,乙几何体是在甲几何体的基础上去掉一个角,即去掉一个三个面是直角三角形的三棱锥后得到的一个三棱锥,所以V甲>V乙,故选C.9.A 由三视图可知该几何体是由底面半径为1,高为3的半个圆锥和三棱锥S-ABC组成的,如图,三棱锥的高为3,底面△ABC中,AB=2,OC=1,AB⊥OC.故其体积V=××π×12×3+××2×1×3=+1.故选A.10.B ∵=,∴点P到平面BC1的距离是D1到平面BC1距离的,即为=1.∵M为线段B1C1上的点,∴S△MBC=×3×3=,∴V M-PBC=V P-MBC=××1=.11.A 设三棱锥A-BCD的高为h,依题意得AB,AC,AD两两垂直,且AB=AC=AD=BC=,△BCD的面积为×12=.由V A-BCD=V B-ACD得S△BCD·h=S△ACD·AB,即××h=×××,解得h=,即三棱锥A-BCD的高h=,故选A.12.A 由三视图可知,该几何体为一个三棱锥,设其为三棱锥A-BCD,由俯视图可知,底面BCD是一个等腰直角三角形,∠BCD为直角,平面ABD⊥平面BCD,易知外接球的球心O为△ABD的中心,则球O的半径R=,外接球的表面积等于4πR2=4π×=.13.答案①②③④解析该组合体由四棱锥与四棱柱组成时,得①正确;该组合体由四棱锥与圆柱组成时,得②正确;该组合体由圆锥与圆柱组成时,得③正确;该组合体由圆锥与四棱柱组成时,得④正确.14.答案解析=,=,点F到平面D1ED的距离为1,∴==××1=.15.答案16π解析取BD的中点为O1,连接OO1,OE,O1E,O1A,则四边形OO1AE为矩形,∵OA⊥平面BDE,∴OA⊥EO1,即四边形OO1AE为正方形,则球O的半径R=OA=2,∴球O的表面积S=4π×22=16π.16.答案2+解析由三视图得该几何体的直观图(如图).其中,长方体的长、宽、高分别为2,1,1,圆柱体的底面半径为1,高为1.所以该几何体的体积V=2×1×1+×π×12×1=2+.B组提升题组1.B 由三视图知,该几何体是由一个棱长为6的正方体挖去一个底面半径为3,高为6的圆锥而得到的,所以该几何体的体积V=63-××π×32×6=216-,故选B.2.D 根据三视图还原直观图,如图所示,则该几何体的表面积S=6×3+×6×4+2××3×5+×6×5=60,故选D.3.D 设截面与底面的距离为h,则①中截面内圆的半径为h,则截面圆环的面积为π(R2-h2);。

高中数学《三视图、表面积、体积的综合应用》精品课件

高中数学《三视图、表面积、体积的综合应用》精品课件

D
例 6. (湖南卷)某几何体的正视图和侧视图均如图所示,则 该几何体的俯视图不可能 是( ... )

例 7. (陕西卷)将正方体(如图①所示)截去两 个三棱锥,得到图②所示的几何体, 则该几何体的 左视图为( )
解析: AD1 的投影是左上到右下的实线, B1C 的投影是左下到右上的虚线.

投射面.投射到这个平面内的图形叫做 主视图 .
3.和直立、水平两个投射面都垂直的投射面叫做侧
立投射面.投射到这个平面内的图形叫做 左视图 .
4.将空间图形向这三个平面作正投影,然后把这三个
投影按一定的布局放在一个平面内,这样构成的图形
叫做空间图形的 三视图 .
探究2
三视图
直立投射面 侧立投射面
正 面
故S侧=6ah=3×2ah=3S.
三视图与直观图的转换
例1.如图所示的是一个零件的直观图,画出这个
几何体的三视图.
解答:这个几何体的三视图如图所示,
在视图中,被挡住的轮廓线画成虚线,尺寸线用
细实线标出;D表示直径,R表示半径;单位不注
明时按mm计.
2. (2012·福建高考)一个几何体的三视图形状都相
方向上是对正的,称长对正.
主视图与左视图都体现形体的高度,且高度在水平 方向上是平齐的,称高平齐. 左视图与俯视图都体现形体的宽度,且同一形体的 宽度是相等的,称宽相等.
总之,三视图之间的关系是:
长对正 高平齐 宽相等


主视图
左视图
球体

俯视图
四棱锥的三视图
主视图
左视图
俯视图
在画图时,能看见部 分的轮廓线通常画成 实线,看不见部分的轮 廓线通常画成虚线.

高考数学二轮专题复习 专题五 5.1 空间几何体的三视图、表面积与体积课件 新人教A版

高考数学二轮专题复习 专题五 5.1 空间几何体的三视图、表面积与体积课件 新人教A版
积是( )
A.72 cm3 C.108 cm3
B.90 cm3 D.138 cm3
命题热点
易错题型
高频考点高频 考点高频考点
高频考点
热点一 热点二 热点三
(2)(2015安徽,文9)一个四面体的三视图如图所示,则该四面体的表面积是( )
A.1+ B.1+2 C.2+ D.2 (1)B (2)C
关闭
积为
A.8S+=2 1×2B+.112+×22+1×2+2×2+2×1+2×1
C.14+2 D.15
2
=2+2 2+2+4+3
=11+2 2.故选 B.
关闭
B
解析 答案
聚焦考题
热点考题诠释 能力目标解读
12345
4.(2015天津,文10)一个几何体的三视图如图所示(单位:m),则该几何体的体积

几何体的俯视图与侧视图如下图所示,则该几何体的正视图为( )
关闭
根据俯视图和侧视图可知,该几何体的直观图如下图所示:
C 据此可知该几何体的正视图如选项 C 中图所示.
关闭
解析 答案
命题热点
易错题型
高频考点
热点一 热点二 热点三
空间几何体的表面积与体积
例2(1)(2014浙江,文3)某几何体的三视图(单位:cm)如图所示,则该几何体的体
热点考题诠释 能力目标解读
聚焦考题
通过对近几年高考试题的分析可看出,空间几何体的命题形式比较稳定,多为选 择题或填空题,有时也出现在解答题的某一问中,题目难度常为中低档题.考查的重 点是直观图、三视图、面积与体积等知识,此类问题多为考查三视图的还原问题, 且常与空间几何体的表面积、体积等问题交会,是每年必考的内容.

2019届高考数学总复习5.1几何体的三视图与面积、体积课件理

2019届高考数学总复习5.1几何体的三视图与面积、体积课件理
3 2 3
3
1
1
3
关闭
解析
答案
-19-


15.已知一个圆锥的母线长为2,侧面展开是半圆,则该圆锥的体积 为 .
关闭
由题意,得圆锥的底面周长为 2π.设圆锥的底面半径是 r,则 2πr=2π, 解得 r=1,
∴圆锥的高为 h=
3 3
22 -12
π
= 3.∴圆锥的体积为 V=3πr h= 3 π.
2
关闭
B
A.3 2
B.2 3
C.2 2
D.2
解析
答案
-17-


二、填空题(共4小题,满分20分) 1 13.由一个长方体和两个 4 圆柱体构成的几何体的三视图如下图, 则该几何体的体积为 .
关闭
由三视图还原几何体如图所示,故该几何体的体积 1 π V=2×1×1+2× π×12×1=2+ .
4 2
解析
答案
-15-


11.(2018全国Ⅰ,理7)某圆柱的高为2,底面周长为16,其三视图如右 图.圆柱表面上的点M在正(主)视图上的对应点为A,圆柱表面上的 点N在侧(左)视图上的对应点为B,则在此圆柱侧面上,从M到N的路 径中,最短路径的长度为( )
关闭
如图所示,易知 N 为������������的中点,将圆柱的侧面沿母线 MC 剪开,展平为 1 矩形 MCC'M',易知 CN=4CC'=4,MC=2,从 M 到 N 的路程中最短路径 为 MN.
× 3������ × 3������ ×4r=24π+48,解得 r=2,所以 S= ×12×8+ ×6×6+ ×

2019高考数学二轮复习 专题五 立体几何 第一讲 空间几何体的三视图、表面积与体积学案 理

2019高考数学二轮复习 专题五 立体几何 第一讲 空间几何体的三视图、表面积与体积学案 理

第一讲空间几何体的三视图、表面积与体积考点一空间几何体的三视图与直观图1.三视图的排列规则俯视图放在正(主)视图的下面,长度与正(主)视图的长度一样,侧(左)视图放在正(主)视图的右面,高度与正(主)视图的高度一样,宽度与俯视图的宽度一样.即“长对正、高平齐、宽相等”.2.原图形面积S与其直观图面积S′之间的关系S′=24 S.[对点训练]1.(2018·全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )[解析] 两个木构件咬合成长方体时,小长方体(榫头)完全嵌入带卯眼的木构件,易知俯视图可以为A.故选A.[答案] A2.(2018·河北衡水中学调研)正方体ABCD-A1B1C1D1中,E为棱BB1的中点(如图),用过点A,E,C1的平面截去该正方体的上半部分,则剩余几何体的左视图为( )[解析] 过点A,E,C1的截面为AEC1F,如图,则剩余几何体的左视图为选项C中的图形.故选C.[答案] C3.(2018·江西南昌二中模拟)一个几何体的三视图如图所示,在该几何体的各个面中,面积最小的面的面积为( )A .8B .4C .4 3D .4 2[解析] 由三视图可知该几何体的直观图如图所示,由三视图特征可知,PA ⊥平面ABC ,DB ⊥平面ABC ,AB ⊥AC ,PA =AB =AC =4,DB =2,则易得S △PAC =S △ABC =8,S △CPD =12,S 梯形ABDP=12,S △BCD =12×42×2=42,故选D.[答案] D4.如图所示,一个水平放置的平面图形的直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则该平面图形的面积为________.[解析] 直观图的面积S ′=12×(1+1+2)×22=2+12.故原平面图形的面积S =S ′24=2+ 2.[答案] 2+ 2[快速审题] (1)看到三视图,想到常见几何体的三视图,进而还原空间几何体. (2)看到平面图形直观图的面积计算,想到斜二侧画法,想到原图形与直观图的面积比为24.由三视图还原到直观图的3步骤(1)根据俯视图确定几何体的底面.(2)根据正(主)视图或侧(左)视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置.(3)确定几何体的直观图形状.考点二 空间几何体的表面积与体积1.柱体、锥体、台体的侧面积公式 (1)S 柱侧=ch (c 为底面周长,h 为高); (2)S 锥侧=12ch ′(c 为底面周长,h ′为斜高);(3)S 台侧=12(c +c ′)h ′(c ′,c 分别为上下底面的周长,h ′为斜高).2.柱体、锥体、台体的体积公式 (1)V 柱体=Sh (S 为底面面积,h 为高); (2)V 锥体=13Sh (S 为底面面积,h 为高);(3)V 台=13(S +SS ′+S ′)h (不要求记忆).3.球的表面积和体积公式S 表=4πR 2(R 为球的半径),V 球=43πR 3(R 为球的半径).[对点训练]1.(2018·浙江卷)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A .2B .4C .6D .8[解析] 由三视图可知该几何体是直四棱柱,其中底面是直角梯形,直角梯形上,下底边的长分别为1 cm,2 cm ,高为2 cm ,直四棱柱的高为2 cm.故直四棱柱的体积V =1+22×2×2=6 cm 3.[答案] C2.(2018·哈尔滨师范大学附中、东北师范大学附中联考)某几何体的三视图如图所示,其中正视图是半径为1的半圆,则该几何体的表面积是( )A.(5-1)π2+2 B.(5+1)π2+2 C.π2+3 D.52π+2[解析] 由三视图知,此几何体为一个半圆锥,其底圆半径为1,高为2,故母线长为22+12=5,所以该几何体的表面积S =12π×1×5+12π×12+12×2×2=(5+1)π2+2.故选B.[答案] B3.一个几何体的三视图如图所示,则这个几何体的体积是( )A .1B .2C .3D .4[解析] 由已知易得该几何体是一个以正视图为底面,高为2的四棱锥.由于正视图是一个上底边为2,下底边为4,高为2的直角梯形,故该四棱锥的底面积S =12×(2+4)×2=6,则V =13Sh =13×6×2=4.故选D.[答案] D4.(2018·太原一模)某几何体的三视图如图所示,则该几何体的表面积为( )A .6π+1 B.(24+2)π4+1 C.(23+2)π4+12D.(23+2)π4+1 [解析] 由几何体的三视图知,该几何体为一个组合体,其中下部是底面直径为2,高为2的圆柱,上部是底面直径为2,高为1的圆锥的四分之一,所以该几何体的表面积为4π+π+3π4+2π4+1=(23+2)π4+1,故选D.[答案] D[快速审题] (1)看到求规则图形的表面积(体积),想到相应几何体的表面积(体积)公式.(2)看到求不规则图形的表面积,想到几何体的侧面展开图.(3)看到求不规则图形的体积,想到能否用割补思想、特殊值法等解决.求几何体表面积和体积关键过好“两关”(1)还原关,即利用“长对正,宽相等,高平齐”还原空间几何体的直观图. (2)公式关,即会利用空间几何体的体积或表面积公式求简单组合体的体积或表面积.考点三 多面体与球的切接问题与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图.角度1:与球的组合体中求棱柱(锥)的表面积或体积[探究追问] 若本例中的条件变为“直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上”,若AB=3,AC=4,AB⊥AC,AA1=12,求球O的表面积.[解] 将直三棱柱补形为长方体ABEC-A1B1E1C1,则球O是长方体ABEC-A1B1E1C1的外接球.∴体对角线BC1的长为球O的直径.因此2R=32+42+122=13.故S球=4πR2=169π.“切”“接”问题的处理方法(1)“切”的处理:解决与球有关的内切问题主要是指球内切多面体与旋转体,解答时要先找准切点,通过作截面来解决.如果内切的是多面体,则多通过多面体过球心的对角面来作截面.(2)“接”的处理:把一个多面体的几个顶点放在球面上即球的外接问题.解决这类问题的关键是抓住外接的特点,即球心到多面体的顶点的距离等于球的半径.[对点训练]1.[角度1](2018·广东惠州二模)已知三棱锥S-ABC的底面是以AB为斜边的等腰直角三角形,AB=2,SA=SB=SC=2,则三棱锥S-ABC的外接球的球心到平面ABC的距离是( )A.33 B .1 C. 3 D.332[解析] ∵三棱锥S -ABC 的底面是以AB 为斜边的等腰直角三角形,SA =SB =SC =2,∴S 在底面ABC 内的射影为AB 的中点,设AB 的中点为H ,连接SH ,CH ,∴SH ⊥平面ABC ,∴SH 上任意一点到A ,B ,C 的距离相等,易知SH =3,CH =1,∴Rt △SHC 中∠HSC =30°.在面SHC 内作SC 的垂直平分线MO ,交SH 于点O ,交SC 于点M ,则O 为三棱锥S -ABC 的外接球的球心.∵SC =2,∴SM =1,又∠OSM =30°,∴SO =233,OH =33,∴球心O 到平面ABC 的距离为33,故选A. [答案] A2.[角度2](2018·武汉调研)一个三棱锥的三视图如图所示,其中俯视图为等腰直角三角形,正视图和侧视图是全等的等腰三角形,则此三棱锥外接球的表面积为( )A .16πB .9πC .4πD .π[解析] 三棱锥如右图,设外接球半径为R ,AB =AC =2,∠BAC =90°,D 为BC 中点.SD ⊥面ABC .球心O 在SD 上,SD =2.在直角△ODC 中,OC =R ,OD =2-R ,DC = 2.则(2-R )2+(2)2=R 2,即R =32,故V -ABC 的外接圆的表面积为S =4πR 2=9π,选B.[答案] B1.(2018·全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为( )A.217 B.2 5 C.3 D.2[解析] 由圆柱的三视图及已知条件可知点M与点N的位置如图1所示,设ME与FN 为圆柱的两条母线,沿FN将圆柱的侧面展开,如图2所示,连接MN,MN即为从M到N的最短路径,由题意知,ME=2,EN=4,∴MN=42+22=2 5.故选B.[答案] B2.(2018·北京卷)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )A.1 B.2 C.3 D.4[解析] 由三视图得四棱锥的直观图如图所示.其中SD⊥底面ABCD,AB⊥AD,AB∥CD,SD=AD=CD=2,AB=1.由SD⊥底面ABCD,AD,DC,AB⊂底面ABCD,得SD⊥AD,SD⊥DC,SD⊥AB,故△SDC,△SDA为直角三角形,又∵AB⊥AD,AB⊥SD,AD,SD⊂平面SAD,AD∩SD =D,∴AB⊥平面SAD,又SA⊂平面SAD,∴AB⊥SA,即△SAB也是直角三角形,从而SB=SD2+AD2+AB2=3,又BC=22+12=5,SC=22,∴BC2+SC2≠SB2,∴△SBC不是直角三角形,故选C.[答案] C3.(2017·浙江卷)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A.π2+1 B.π2+3 C.3π2+1 D.3π2+3 [解析] 由三视图可知该几何体是由底面半径为1 cm ,高为3 cm 的半个圆锥和三棱锥S -ABC 组成的,如图,三棱锥的高为3 cm ,底面△ABC 中,AB =2 cm ,OC =1 cm ,AB ⊥OC .故其体积V =13×12×π×12×3+13×12×2×1×3=⎝ ⎛⎭⎪⎫π2+1cm 3.故选A.[答案] A4.(2018·天津卷)已知正方体ABCD -A 1B 1C 1D 1的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M -EFGH 的体积为________.[解析] 由题意知四棱锥的底面EFGH 为正方形,其边长为22,即底面面积为12,由正方体的性质知,四棱锥的高为12.故四棱锥M -EFGH 的体积V =13×12×12=112.[答案]1125.(2017·江苏卷)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.[解析] 设圆柱内切球的半径为R ,则由题设可得圆柱O 1O 2的底面圆的半径为R ,高为2R ,∴V 1V 2=πR 2·2R 43πR3=32.[答案] 321.该部分在高考中一般会以“两小”或“一小”的命题形式出现,这“两小”或“一小”主要考查三视图,几何体的表面积与体积.2.考查一个小题时,本小题一般会出现在第4~8题的位置上,难度一般;考查2个小题时,其中一个小题难度一般,另一小题难度稍高,一般会出现在第10~16题的位置上,本小题虽然难度稍高,主要体现在计算量上,但仍是对基础知识、基本公式的考查.热点课题12 补形法求几何体的表面积与体积[感悟体验]1.(2018·太原一模)某几何体的三视图如图所示,则该几何体的体积为( )A .2 B.83 C .4 D.209[解析] 观察三视图并依托正方体,可得该几何体直观图为A 1-ABEF ,如图所示,其体积为V正方体-V AFD -BEC -VA 1-BEC 1B 1-VA 1-FEC 1D 1=2×2×2-12×2×1×2-13×2×(1+2)×2×12-13×1×2×2=83.[答案] B2.(2018·合肥联考)如图,网格纸上小正方形的边长为1,粗线(实线和虚线)表示的是某几何体的三视图,则该几何体外接球的体积为( )A.24π B.29π C.48π D.58π[解析] 如图,在3×2×4的长方体中构造符合题意的几何体(三棱锥A-BCD),其外接球即为长方体的外接球,表面积为4πR2=π(32+22+42)=29π.[答案] B专题跟踪训练(二十一)一、选择题1.(2017·北京卷)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( )A.3 2 B.2 3 C.2 2 D.2[解析] 由三视图得该四棱锥的直观图如图中S-ABCD所示,由图可知,其最长棱为SD,且底面ABCD是边长为2的正方形,SB⊥面ABCD,SB=2,所以SD=22+22+22=2 3.故选B.[答案] B2.(2018·益阳、湘潭高三调考)如图所示,网格纸上小正方形的边长为1,粗实线画出的是某三棱锥的三视图,则该三棱锥的体积为( )A.23B.43C.83D .4 [解析] 由三视图可得三棱锥为如图所示的三棱锥A -PBC (放到棱长为2的正方体中),则V A -PBC =13×S △PBC ×AB =13×12×2×2×2=43.故选B.[答案] B3.(2018·辽宁五校联考)一个长方体被一平面截去一部分后,所剩几何体的三视图如图所示,则该几何体的体积为( )A.36 B.48 C.64 D.72[解析] 由几何体的三视图可得该几何体的直观图如图所示,将几何体分割为两个三棱柱,所以该几何体的体积为12×3×4×4+12×3×4×4=48,故选B.[答案] B4.(2018·广东七校联考)某一简单几何体的三视图如图所示,该几何体的外接球的表面积是( )A .13πB .16πC .25πD .27π[解析] 由三视图知该几何体是一个底面为正方形的长方体,由正视图知该长方体的底面正方形的对角线长为4,所以底面边长为22,由侧视图知该长方体的高为3,设该几何体的外接球的半径为R ,则2R =(22)2+(22)2+32=5,解得R =52,所以该几何体的外接球的表面积S =4πR 2=4π×254=25π,故选C. [答案] C5.(2018·洛阳市高三第一次联考)已知球O 与棱长为4的正四面体的各棱相切,则球O 的体积为( )A.823π B.833π C.863π D.1623π [解析] 将正四面体补成正方体,则正四面体的棱为正方体相应面上的对角线,因为正四面体的棱长为4,所以正方体的棱长为2 2.因为球O 与正四面体的各棱都相切,所以球O 为正方体的内切球,即球O 的直径为正方体的棱长,其长为22,则球O 的体积V =43πR3=823π,故选A.[答案] A6.(2018·河北第二次质检)《九章算术》是中国古代第一部数学专著,书中有关于“堑堵”的记载,“堑堵”即底面是直角三角形的直三棱柱.已知某“堑堵”被一个平面截去一部分后,剩下部分的三视图如图所示,则剩下部分的体积是( )A .50B .75C .25.5D .37.5[解析] 由题意及给定的三视图可知,剩余部分是在直三棱柱的基础上,截去一个四棱锥所得的,且直三棱柱的底面是腰长为5的等腰直角三角形,高为 5.如图,图中几何体ABCC 1MN 为剩余部分,因为AM =2,B 1C 1⊥平面MNB 1A 1,所以剩余部分的体积V =V 三棱柱-V 四棱锥=12×5×5×5-13×3×5×5=37.5,故选D.[答案] D7.(2018·广东广州调研)如图,网格纸上小正方形的边长为1,粗线画出的是某个几何体的三视图,则该几何体的表面积为( )A .4+42+2 3B .14+4 2C .10+42+2 3D .4[解析] 如图,该几何体是一个底面为直角梯形,有一条侧棱垂直于底面的四棱锥S -ABCD .连接AC ,因为AC =22+42=25,SC =(25)2+22=26,SD =SB =22+22=22,CD =22+22=22,SB 2+BC 2=(22)2+42=24=SC 2,故△SCD 为等腰三角形,△SCB 为直角三角形.过D 作DK ⊥SC 于点K ,则DK =(22)2-(6)2=2,△SCD 的面积为12×2×26=23,△SBC 的面积为12×22×4=4 2.所求几何体的表面积为12×(2+4)×2+2×12×2×2+42+23=10+42+23,选C.[答案] C8.(2018·河南濮阳二模)已知三棱锥A -BCD 中,△ABD 与△BCD 是边长为2的等边三角形且二面角A -BD -C 为直二面角,则三棱锥A -BCD 的外接球的表面积为( )A.10π3 B .5π C .6π D.20π3[解析] 取BD 中点M ,连接AM ,CM ,取△ABD ,△CBD 的中心即AM ,CM 的三等分点P ,Q,过P作面ABD的垂线,过Q作面CBD的垂线,两垂线相交于点O,则点O为外接球的球心,其中OQ=33,CQ=233,连接OC,则外接球的半径R=OC=153,表面积为4πR2=20π3,故选D.[答案] D9.(2018·广东揭阳一模)某几何体三视图如图所示,则此几何体的表面积为( )A.4π+16 B.2(2+2)π+16C.4π+8 D.2(2+2)π+8[解析] 由三视图知,该几何体是一个棱长为2的正方体和一个底面半径为2、高为1的圆柱的组合体,其表面积S表=5×22+2π·2·1+2π·(2)2-22=2(2+2)π+16.故选B[答案] B10.(2018·福建福州质检)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,俯视图中的两条曲线均为圆弧,则该几何体的体积为( )A .64-32π3B .64-8πC .64-16π3D .64-8π3[解析] 由三视图可知该几何体是由棱长为4的正方体截去14个圆锥和14个圆柱所得到的,且圆锥的底面半径为2,高为4,圆柱的底面半径为2,高为4,所以该几何体的体积为43-14⎝ ⎛⎭⎪⎫π3×4×4+π×4×4=64-16π3.故选C.[答案] C11.(2018·湖南十三校联考)三棱锥S -ABC 及其三视图中的正视图和侧视图如下图所示,则该三棱锥S -ABC 的外接球的表面积为( )A .32π B.1123π C.283π D.643π [解析] 设外接球的半径为r ,球心为O .由正视图和侧视图可知,该三棱锥S -ABC 的底面是边长为4的正三角形.所以球心O 一定在△ABC 的外心上方.记球心O 在平面ABC 上的投影点为点D ,所以AD =BD =CD =4×32×23=433,则由题可建立方程 r 2-⎝⎛⎭⎪⎫4332+r 2-⎝⎛⎭⎪⎫4332=4,解得r 2=283.所以该三棱锥S -ABC 的外接球的表面积S =4πr 2=1123π.故选B.[答案] B12.(2018·中原名校联考)已知A ,B ,C ,D 是球O 表面上四点,点E 为BC 的中点,点AE ⊥BC ,DE ⊥BC ,∠AED =120°,AE =DE =3,BC =2,则球O 的表面积为( )A.73π B.28π3C .4πD .16π[解析] 由题意可知△ABC 与△BCD 都是边长为2的正三角形,如图,过△ABC 与△BCD 的外心M ,N 分别作面ABC 、面BCD 的垂线,两垂线的交点就是球心O .连接OE ,可知∠MEO =∠NEO =12∠AED =60°,在Rt △OME 中,∠MEO =60°,ME =33,所以OE =2ME =233,连接OB ,所以球O 的半径R =OB =OE 2+BE 2=⎝ ⎛⎭⎪⎫2332+12=213,所以球O 的表面积为S =4πR 2=283π,故选B.[答案] B 二、填空题13.(2018·沈阳质检)三棱锥P -ABC 中,D ,E 分别为PB ,PC 的中点,记三棱锥D -ABE 的体积为V 1,P -ABC 的体积为V 2,则V 1V 2的值为________.[解析] 如图,设S △ABD =S 1,S △PAB =S 2,E 到平面ABD 的距离为h 1,C 到平面PAB 的距离为h 2,则S 2=2S 1,h 2=2h 1,V 1=13S 1h 1,V 2=13S 2h 2,所以V 1V 2=S 1h 1S 2h 2=14.[答案] 1414.(2018·宁夏银川一中模拟)如图为某几何体的三视图,则该几何体的体积为________.[解析] 由三视图知,该几何体是一个高为2,底面直径为2的圆柱被一平面从上底面最右边缘斜向下45°切开所剩下的几何体,其体积为对应的圆柱的体积的一半,即V =12×π×12×2=π.故答案为π.[答案] π15.已知某几何体的三视图如图所示,则该几何体最长的棱长为________.[解析] 依题意知,几何体是如图所示的三棱锥A-BCD.其中∠CBD=120°,BD=2,点C到直线BD的距离为3,BC=2,CD=23,AB=2,AB⊥平面BCD,因此AC=AD=22,所以该几何体最长的棱长为2 3.[答案] 2 3.16.(2018·厦门一模)如图所示的是一个几何体的三视图,则该几何体的表面积为________.[解析] 该几何体为一个长方体从正上方挖去一个半圆柱剩下的部分,长方体的长、宽、高分别为4,1,2,挖去半圆柱的底面半径为1,高为1,所以表面积为S =S 长方体表-S 半圆柱底-S 圆柱轴截面+S 半圆柱侧=2×4×1+2×1×2+2×4×2-π×12-2×1+12×2π×1=26.[答案] 26。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新题演练提能·刷高分
解析
如图所示,该四面体在空间直角坐标系O-xyz的图象为下图:
则它在平面 zOx 上的投影即正视图为
,故选 A.
-13-
高考真题体验·对方向
新题演练提能·刷高分
1.(2018河北衡水调研)某几何体的正视图与俯视图如图,则其侧视 图可以为( )
答案 B 解析 由俯视图与正视图可知该几何体可以是一个三棱柱挖去一 个圆柱,因此其侧视图为矩形内有一条虚线,虚线靠近矩形的左边 部分,只有选项B符合题意,故选B.
1 ×2 2 1 1

(2 2)2 -( 2)2 =2 3,
故此几何体的各面中最大面的面积为 2 3.选 B.
-18-
高考真题体验·对方向
Hale Waihona Puke 新题演练提能·刷高分5.(2018安徽合肥第二次质检)已知某三棱锥的三视图如图所示,则 该三棱锥的所有棱中,最短的棱长为 ( )
A.2
答案 C
B. 5
C.1
D.2 2
A.2 17
答案 B
B.2 5
C.3
D.2
-6-
高考真题体验·对方向
新题演练提能·刷高分
解析 如图所示,易知 N 为������������的中点,将圆柱的侧面沿母线 MC 剪开,
1 展平为矩形 MCC'M',易知 CN=4CC'=4,MC=2,从 M 到 N 的路程中最
短路径为 MN.
在 Rt△MCN 中,MN= ������������ 2 + ������������ 2 =2 5.
-9-
高考真题体验·对方向
新题演练提能·刷高分
4.(2014全国Ⅰ· 12)如图,网格纸上小正方形的边长为1,粗实线画出 的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度 为( )
A.6 2
答案 B
B.6
C.4 2
D.4
-10-
高考真题体验·对方向
新题演练提能·刷高分
解析
如图所示的正方体 ABCD-A1B1C1D1 的棱长为 4.取 B1B 的中点 G,即 三棱锥 G-CC1D1 为满足要求的几何体,其中最长棱为 D1G,D1G= (4 2)2 + 22 =6.
-19-
高考真题体验·对方向
新题演练提能·刷高分
解析 由三视图可知原几何体是图中的三棱锥P-ABC,其中C为棱 的中点.从图中可以看出棱AC最短,因为AC=1,所以最短的棱长为1, 故选C.
9
10
8
10
-4-
高考真题体验·对方向
新题演练提能·刷高分
空间几何体三视图的识别与画法 1.(2018全国Ⅲ· 3)中国古建筑借助榫卯将木构件连接起来,构件的 凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是 榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体, 则咬合时带卯眼的木构件的俯视图可以是( )
-7-
高考真题体验·对方向
新题演练提能·刷高分
3.(2017北京· 7)某四棱锥的三视图如图所示,则该四棱锥的最长棱 的长度为( )
A.3 2
答案 B
B.2 3
C.2 2
D.2
-8-
高考真题体验·对方向
新题演练提能·刷高分
解析
由题意可知,直观图为四棱锥 A-BCDE(如图所示),最长的棱
为正方体的体对角线 AE= 22 + 22 + 22 =2 3.故选 B.
答案 解析
A 根据三视图原则,从上往下看,看不见的线画虚线,则A正确.
-5-
高考真题体验·对方向
新题演练提能·刷高分
2.(2018全国Ⅰ· 7)某圆柱的高为2,底面周长为16,其三视图如右图. 圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左 视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路 径的长度为( )
空间几何体 命题 三视图的识 12 角度 1 别与画法 空间几何体 命题 的体积、表 角度 2 面积
6
16
16
2019 年高考必备 三视图还原 命题 与几何体的 角度 3 体积、表面 积 球与几何体 命题 的切、接问 角度 4 题
2014 年 2015 年 2016 年 2017 年 2018 年 Ⅰ ⅡⅠⅡⅢⅠⅡⅢⅠⅡⅢ Ⅱ卷 Ⅰ卷 卷 卷卷卷卷卷卷卷卷卷卷 6 11 6 6 6 9 7 4
-11-
高考真题体验·对方向
新题演练提能·刷高分
5.(2013全国Ⅰ· 7)一个四面体的顶点在空间直角坐标系O-xyz中的 坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正 视图时,以zOx平面为投影面,则得到的正视图可以为( )
答案
A
-12-
高考真题体验·对方向
-14-
高考真题体验·对方向
新题演练提能·刷高分
2.(2018河南濮阳一模)如图,O1,O2为棱长为a的正方体的上、下底 面中心,若正方体以O1O2为轴顺时针旋转,则该正方体的所有正视 图中最大面积是( )
A.a2 C. 3a2
答案 B
B. 2a2 D.2a2
解析 所有正视图中面积最大的是长为 2a,宽为 a 的矩形,面积为 2a2,故选 B.
-15-
高考真题体验·对方向
新题演练提能·刷高分
3.(2018河北保定模拟)已知一几何体的正视图、侧视图如图所示, 则该几何体的俯视图不可能是( )
答案 D 解析 由图可知,选项D对应的几何体为长方体与三棱柱的组合,其 侧视图中间的线不可视,应为虚线,故选D.
-16-
高考真题体验·对方向
新题演练提能·刷高分
5.1
三视图与几何体的体积、表面积
高考命题规律 1.高考必考考题,多数年份考查2道小题. 2.选择题或填空题,5分,中高档难度. 3.全国高考有4种命题角度,分布如下表.
2019 年高考必备
2014 年 2015 年 2016 年 2017 年 2018 年 Ⅰ ⅡⅠⅡⅢⅠⅡⅢⅠⅡⅢ Ⅱ卷 Ⅰ卷 卷 卷卷卷卷卷卷卷卷卷卷 7 3
4.(2018江西赣州十四县(市)期中)某几何体的三视图如图所示,则此 几何体的各面中最大面的面积为( )
A.2 2 C.3 2
答案 B
B.2 3 D.2
-17-
高考真题体验·对方向
新题演练提能·刷高分
解析
由三视图可得,该几何体为如图所示的三棱锥A1-BCD.
结合三视图中的数据可得 S△BCD=2×22=2,������△������1 ������������ = ������△������1 ������������ = 2×2 2×2=2 2, ������△������1 ������������ =
相关文档
最新文档