轴对称讲义全

合集下载

轴对称(讲义)

轴对称(讲义)

(A) (B) (C)(D) 12.1 轴对称考点:一、轴对称图形与图像关于直线对称的区别①如果一个图形沿一条直线折叠,之前两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴。

②把一个图形沿着某一条直线折叠,如果它能够与另外一个图形重合,那么就说这两个图形关于直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。

这两个概念最只要的区别在于:第一个说的是一个图形是轴对称图形,自身折叠可以重合;而第二个概念说的是两个图形关于一条直线,说的是两个图形。

⑴轴对称图形:如果_____个图形沿某条直线折叠后,直线两旁的部分能够________,那么这个图形叫轴对称图形,这条直线叫做____________。

⑵轴对称:对于____个图形,如果沿着一条直线对折后,它们能完全重合,那么称这两个图形成________,这条直线就是对称轴。

两个图形中的对应点叫做__________例1.下列几何图形中,①线段 ②角 ③直角三角形 ④半圆,其中一定是轴对称图形的有( )A .1个B .2个C .3个D .4个解析:线段的对称轴是过该线段中点的且垂直该线段的直线。

角的对称轴是它的角平分线。

半圆的对称轴是过该弧线半径所在的直线。

而直角三角形不一定是轴对称图形。

所以该题选C 。

变式:仔细观察下列图案,并按规律在横线上画出合适的图形.----------下列平面图形中,不是轴对称图形的是 ( )二、垂直平分线经过线段的中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

直线l 是五角星的对称轴l 垂直平分线段AA ’ l 垂直平分线段BB ’垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等.定理的数学表示:如图1,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若点C 在直线m 上, 则AC =BC.定理的作用:证明两条线段相等 线段关于它的垂直平分线对称.线段垂直平分线的逆定理:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.定理的数学表示:如图2,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若AC =BC ,则点C 在直线m 上.定理的作用:证明一个点在某线段的垂直平分线上. 例2、下列命题中正确的命题有( A )①线段垂直平分线上任一点到线段两端距离相等;②线段上任一点到垂直 平分线两端距离相等;③经过线段中点的直线只有一条;④点P 在线段AB 外且PA =PB ,过P作直线MN ,则MN 是线段AB 的垂直平分线;⑤过线段上 任一点可以作这条线段的中垂线. A.1个B.2个C.3个D.4个解析:根据垂直平分线的性质,①对②错,经过线段中点的直线有无数条,所以③是错的。

轴对称课件(60张PPT)

轴对称课件(60张PPT)

轴对称在解直角三角形中应用
在解直角三角形时,可以利用轴对称的 性质来构造全等或相似的直角三角形,
从而简化计算过程。
例如,如果一个直角三角形关于某条直 线对称,那么它的两个锐角相等,同时 它的两条直角边也相等。这样我们就可 以通过已知的一边和一角来求解其他未
知量。
另外,如果两个直角三角形关于某条直 线对称,那么它们一定是相似的。这样 我们就可以通过已知的相似比来求解未
知量。
05
绘制和分析轴对称图形方 法技巧
使用直尺和圆规绘制轴对称图形
确定对称轴
在平面上选择一条直线作为对 称轴。
找到对称点
使用直尺和圆规,按照轴对称 的定义,找到该点关于对称轴 的对称点。
选择一个点
在对称轴的一侧选择一个点。
绘制图形
连接原点和对称点,即可得到轴对 称图形的一部分。重复以上步骤,
可以得到完整的轴对称图形。
动物
一些动物的身体结构也具 有轴对称性,如蝴蝶的翅 膀、蜻蜓的复眼等。
晶体
晶体结构中的原子排列往 往呈现出轴对称性,如雪 花、钻石等。
科技产品中的轴对称设计
电子产品
手机、平板电脑等电子产品的外观设 计中,常采用轴对称元素,实现简洁、 时尚的视觉效果。
汽车设计
航空航天
飞机、火箭等航空航天器的设计中也 广泛应用轴对称性,以确保飞行稳定 性和安全性。
典型例题解析
解析
根据轴对称性质,我们知道 △ABC≌△A'B'C',所以 ∠BAC=∠B'A'C'。
例题2
已知点P(2,3)关于x轴对称的点为P', 求点P'的坐标。
解析
由于点P关于x轴对称,所以点P'的 横坐标不变,纵坐标取反。因此, 点P'的坐标为(2,-3)。

《轴对称完整》课件

《轴对称完整》课件

对轴对称的未来展望
轴对称作为数学中的一个基础概念,仍有很大的研究和发展空间。随着数学和其 他学科的发展,轴对称的应用范围也将不断扩大。我们鼓励学生们在未来的学习 和研究中继续关注轴对称,探索它的更多应用和价值。
在《轴对称完整》ppt课件的最后,我们总结了轴对称的基本原理、方法和应用 ,并提出了进一步探索的问题和方向。我们希望学生们能够带着这些问题和思考 ,继续深入探索轴对称的奥秘,为未来的研究和应用打下坚实的基础。
轴对称是数学中的一个重要概念,它描述了一个图形通过某个直线折叠后与自身重合的性质。在《轴对称完整 》ppt课件中,我们深入探讨了轴对称的定义、性质和分类,帮助学生们更好地理解这一概念。
轴对称在几何学中有着广泛的应用,它不仅在平面几何中出现,还涉及到立体几何、解析几何等多个领域。通 过对轴对称的深入理解,学生们可以更好地掌握几何学的基本原理和方法。
05
轴对称的实践应用
在设计中的应用
对称美学的运用
设计作品中,轴对称的运用可以创造出平衡、和谐的感觉。例如,在服装设计中,设计师可以通过轴对称的裁 剪方式,使服装看起来更加优雅、庄重。
产品设计的指导
在产品设计中,轴对称的原理可以帮助设计师更好地布局产品的各个部分,使其更加符合人机工程学,提高使 用体验。
04
轴对称的意义
美学的意义
美学欣赏
轴对称的形状、图案和结 构常常被视为具有美感, 可以给人带来视觉上的享 受和满足感。
艺术创作
艺术家们经常利用轴对称 的原理来创作美丽的艺术 品,如建筑设计、绘画和 雕塑等。
平衡与和谐
轴对称能够给人带来平衡 和和谐的感觉,使整体效 果更加协调和完整。
科学的意义
自然界中的轴对称

轴对称讲义

轴对称讲义

知识回顾
1.角的平分线:
4.圆有________条对称轴,对称轴是_________________________________________.
5.等边三角形有________条对称轴,对称轴是___________________________________.
知识点三:关于某条直线成轴对称的图形的性质特征
、成轴对称的两个图形全等.如果把一个轴对称图形沿对称轴分成两个图形,这两个图形全等,并且也是成轴对称的.
、轴对称图形和关于直线成轴对称有什么区别和联系?
于是有PA=,∠
(2)对于其他的对应点,如点′也有类似的情况吗?
.事实上,由于l是
l⊥AB,垂足为C,1.如图,在△ABC中,AC
2.如图,AC⊥BC,BD=DC,点C CE的长度有什么关系?AB+BD 与DE有什么关系?
反过来,如图,如果
1.如图,AB=AC,MB=MC
2.如图,已知E是∠AOB的平分线上的一点,,垂足分别是C,D.求证:OE垂直平分CD.
例1:如图,已知:ΔABC
2、已知直线MN与MN异侧两点,使线段(PA-PB)最大.
能发现什么规律?你可以在上找几个点试一试,
1个 B、2个 C、3个 D、4个

.左手往右梳
9、如图:DE是∆ABC中AC边的垂直平分线,若厘米,
则∆EBC的周长为()厘米
.
D A
18、如图(1)和图(2),已知△关于直线l对称的图形。

轴对称--完整版课件

轴对称--完整版课件

BC=10cm,那么△BCD的周长是
_______cm.
26cm
A
E D
B
C
一,本章知识结构图
等腰三角形
等边三角形
生 活
轴对称
作图形的对称轴
中 的
用坐标表示轴对称

作轴对称图形

轴对称变换
轴对称的性质
•对应点所连的线段的中垂线就是 对称轴 •对应线段相等,对应角相等
轴对称变换
准确做图形对称轴的方法
因为对称轴垂直平分每对对应点所连接 的线段,所以只要找一对对应点,用圆规 作出对应点所连线段的垂直平分线即可。
8、已知,如图: AB=AC AD=DC=BC
则∠A=
Байду номын сангаас
360
A
D
B
C
9.在△ABC中,AB=AC,DE 为AB的垂直 A 平分线,D为垂足,交AC与E,若AB=8cm, △ABC的周长为21cm,求△BCE的周长.
D E
10.如图∠ ABC=70°, ∠ A=50°
B
C
AB的垂直平分线交AC于D,则∠DBC=___.
A
E
B
D
C
11 如图, ∠ABC、∠ACB的平分线相 交于F,过F作DE//BC交AB于D,交AC于E, 若AB=9cm, AC=8cm,则△ADE的周长是 多少? A
AB=AD+DB=AD+DF D F E AC=AE+EC=AE+EF
B
C
13、如图,在△ABC中,AB=AC=16cm,
AB的垂直平分线交AC于D,如果
利用轴对称变换作图1
作出三角形关于直线L对称的图形

八年级数学上册《轴对称》讲义

八年级数学上册《轴对称》讲义

轴对称知识点一、轴对称图形轴对称图形的定义:一个图形沿着某直线折叠,直线两旁的部分能完全重合,这个图形就叫做轴对称图形,该直线就是它的对称轴.要点诠释:轴对称图形是指一个图形,图形被对称轴分成的两部分能够互相重合.一个轴对称图形的对称轴不一定只有一条,也可能有两条或多条,因图形而定.知识点二、轴对称1.轴对称定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称(或说这两个图形成轴对称),这条直线叫做对称轴.折叠后重合的点是对应点,也叫做对称点要点诠释:轴对称指的是两个图形的位置关系,两个图形沿着某条直线对折后能够完全重合.成轴对称的两个图形一定全等.2.轴对称图形与轴对称的区别:轴对称是指两个图形,而轴对称图形是一个图形.知识点三、轴对称与轴对称图形的性质轴对称的性质:若两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;轴对称图形的性质:轴对称图形的对称轴也是任何一对对应点所连线段的垂直平分线.知识点四、线段的垂直平分线定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线.性质:性质1:线段垂直平分线上的点到线段两端点的距离相等;性质2:与一条线段两个端点距离相等的点在这条线段的垂直平分线上.要点诠释:三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心——外心.类型一、轴对称变换1.如图,在平面直角坐标系中,ABC ∆三个顶点坐标分别为(1,6)A -,(5,3)B -,(3,1)C -.(1)ABC ∆关于y 轴对称的图形△111A B C (其中1A ,1B ,1C 分别是A ,B ,C 的对称点),请写出点1A ,1B ,1C 的坐标;(2)若直线l 过点(1,0),且直线//l y 轴,请在图中画出ABC ∆关于直线l 对称的图形△222A B C (其中2A ,2B ,2C 分别是A ,B ,C 的对称点,不写画法),并写出点2A ,2B ,2C 的坐标.类型二、线段垂直平分线知识点① 线段垂直平分线的性质2. 如图,已知ABC ∆,AB 、AC 的垂直平分线的交点D 恰好落在BC 边上.(1)判断ABC ∆的形状;(2)若点A 在线段DC 的垂直平分线上,求AC BC的值.知识点② 线段垂直平分线的判定3. 如图所示,在ABC ∆中,AB AC =,BE CD =,且BD 与CE 相交于点O ,求证:点O 在线段BC 的垂直平分线上.类型三、利用轴对称的性质求图形的面积4. 在ABC ∆中,90BAC ∠=︒,点A 关于BC 边的对称点为A ',点B 关于AC 边的对称点为B ',点C 关于AB 边的对称点为C ',若1ABC S ∆=,求A B C S '''.类型四、“将军饮马”问题5. 如图,点P、Q为MON内两点,分别在OM与ON上找点A、B,使四边形PABQ的周长最小.类型五、角平分线与线段垂直平分线的综合6. 如图,在△ABC中,AD是∠BAC平分线,线段AD的垂直平分线分别交AB于点F,交BC的延长线于E(1)在图①中,连接DF,证明DF//AC(2)在图①中,连接AE,证明∠EAC=∠B(3)如图②,若线段CD上存在一点M,使∠MPD=∠ACD,AM与EF交于点P,连接DP 并延长与AC交于点N,求证:AN=DM.①②【复习巩固】一.选择题(共7小题)1.如图,ABC ∆中,D 点在BC 上,将D 点分别以AB 、AC 为对称轴,画出对称点E 、F ,并连接AE 、AF .根据图中标示的角度,求EAF ∠的度数为何?( )A .113︒B .124︒C .129︒D .134︒2.如图所示,在四边纸片ABCD 中,//AD BC ,//AB CD ,将纸片沿EF 折叠,点A ,D 分别落在A ',D '处,且A D ''经过点B ,FD '交BC 于点G ,连接EG ,若EG 平分FEB ∠,//EG A D '',80D FC '∠=︒,则A ∠的度数是( )A .65︒B .70︒C .75︒D .80︒3.如图,直线MN 是四边形AMBN 的对称轴,点P 是直线MN 上的点,下列判断错误的是( )A .AM BM =B .AP BN =C .M AP M BP ∠=∠D .ANM BNM ∠=∠4.如图,在ABC ∆中,AB 边的中垂线DE ,分别与AB 边和AC 边交于点D 和点E ,BC 边的中垂线FG ,分别与BC 边和AC 边交于点F 和点G ,又BEG ∆周长为16,且1GE =,则AC 的长为( )A .13B .14C .15D .165.如图,50∠的平分线BE交AD于点E,连接∠=︒,AD垂直平分线段BC于点D,ABCABC∠的度数是()EC,则AECA.115︒B.75︒C.105︒D.50︒6.如图,四边形ABCD中,AB AD=,点B关于AC的对称点B'恰好落在CD上,若110∠=︒,BAD则ACB∠的度数为()A.40︒B.35︒C.60︒D.70︒7.如图,P是AOB∠两边上的点,点P关于OA的对称点Q恰∠外的一点,M,N分别是AOB好落在线段MN上,点P关于OB的对称点R恰好落在MN的延长线上.若 2.5PN=,PM=,3 MR=,则线段QN的长为()7A.1 B.1.5 C.2 D.2.5二.解答题(共3小题)8如图,点A、B在直线l同侧,请你在直线l上画出一点P,使得PA PB+的值最小,画出图形并证明.9.如图,OBC ∆中,BC 的垂直平分线DP 交BOC ∠的平分线于D ,垂足为P .(1)若60BOC ∠=︒,求BDC ∠的度数;(2)若BOC α∠=,则BDC ∠= (直接写出结果).10.如图,ABC ∆中,BD 平分ABC ∠,BC 的中垂线交BC 于点E ,交BD 于点F ,连接CF .(1)若60A ∠=︒,24ABD ∠=︒,求ACF ∠的度数;(2)若5BC =,:5:3BF FD =,10BCF S ∆=,求点D 到AB 的距离.。

八年级轴对称专题课讲义(精)

八年级轴对称专题课讲义(精)

轴对称【知识梳理】一、轴对称与轴对称图形的区别与联系:二、轴对称的性质:1. 关于某条直线对称的两个图形是 _________。

(全等图形一定轴对称吗?2. 如果两个图形关于某直线对称,那么对称轴是对应点连线的 __________。

3. 两个图形关于某直线对称, 如果它们的对应线段或延长线相交, 那么交点在________上。

【典型题型】轴对称、中心对称题型的识别:例 1、(2010• 兰州观察下列银行标志,从图案看既是轴对称图形也是中心对称图形的有 (个.A . 1个B . 2个C . 3个D . 4个练习 1、写出以下轴对称图形的对称轴条数: (1直线 _______ (2线段 _______ (3角 _______ (4圆 _______(5等腰三角形 _______ (6等边三角形 _______作已知图形的轴对称图形例 2、 (2009 四川眉山, 19 在 33 的正方形格点图中, 有格点△ ABC 和△ DEF , 且△ ABC 和△ DEF 关于某直线成轴对称,请在右面的备用图中画出所有这样的△DEF 。

练习 2、画出以下图形的轴对称图形 :轴对称的概念和性质应用例 3、下列命题中 , 说法正确的是 (A 两个全等三角形是关于某直线对称的轴对称图形B 两个全等的等腰三角形是关于某直线对称的轴对称图形C 关于某直线对称的两个三角形全等D 关于某直线对称的两个三角形不一定全等练习 3、 1、下列说法中 , 正确的有( (1 . 两个关于某直线对称的图形是全等形 ;(2两个图形关于某直线对称 , 对称点一定在直线两旁 ;(3两个对称图形对应点连线的垂直平分线就是它们的对称轴 ; (4平面上两个完全相同的图形一定关于某直线对称 . A 0个 B 1个 C 2个 D 3个图形的“折叠”问题例 4、 (2009 江苏, 26将矩形纸片 ABCD 沿过点 B 的直线折叠,使点 A 落在 BC 边上的点 F 处,折痕为 BE (如图③ ;再沿过点 E 的直线折叠,使点 D 落在 BE 上的点D '处,折痕为 E G (如图④ ;再展平纸片(如图⑤ .求图⑤中α∠的大小.练习 4、矩形纸片 ABCD 的边长 AB =4, AD =2.将矩形纸片沿 EF 折叠,使点 A 与点 C 重合, 折叠后在其一面着色 (如图 ,则着色部分的面积为( B(A 8 (B112(C 4 (D52E D CF B A图③ D C A B F 'A D E C 图④图⑤ AE(第 11题利用对称轴解决几何最值问题例 5、在一平直河岸 l 同侧有 A , B 两个村庄, A , B 到 l 的距离分别是 3 km和2 km, AB= a km(a >1 .现计划在河岸 l 上建一抽水站 P ,用输水管向两个村庄供水.方案设计某班数学兴趣小组设计了两种铺设管道方案:图 13-1是方案一的示意图,设该方案中管道长度为 d1,且 d1=PB+BA(km (其中 BP ⊥ l于点 P ;图 13-2是方案二的示意图,设该方案中管道长度为 d2 ,且 d2=PA+PB(km (其中点与点 A 关于 l 对称, B 与l 交于点 P .观察计算(1在方案一中, d1= ___________km(用含 a 的式子表示 ;(2在方案二中,组长小宇为了计算 d2的长,作了如图 13-3所示的辅助线,请你按小宇同学的思路计算, d2=__________________km(用含 a 的式子表示 .练习 5、如图 , 正方形 ABCD 的边长为 8, M 在 DC 上,且 DM=2, N 是 AC 上的一动点, DN+MN的最小值为 __________________。

轴对称图形讲义

轴对称图形讲义

一、知识梳理1、轴对称与轴对称图形(1)如果一个图形沿着一条直线对折,直线两侧的图形能够完全重合,这个图形就是轴对称图形.这条直线叫做对称轴.(2)关于某条直线对称的两个图形是全等图形.(3)关于一条直线成轴对称的两个图形中,对应点的连线被对称轴垂直平分.2、轴对称的性质及应用(1)性质:对称轴是对称点连线段的垂直平分线.对应线段相等,对应角相等. 对称轴即是垂直平分线.线段垂直平分线(即对称轴)上的点到线段两端点的距离相等.(2)应用:找对称轴;创造轴对称图案.可应用线段垂直平分线的性质证明:线段相等和垂直;作图找点.3、线段、角的轴对称性(1)线段的垂直平分线:线段是轴对称图形,•它的一条对称轴垂直于这条线段并且平分它,这样的直线叫做这条线段的垂直平分线(简称中垂线).线段的垂直平分线是到线段两端距离相等的点的集合.它有两条对称轴,分别为:线段的中垂线,线段本身所在的直线.M PA BN (2)角是轴对称图形,角平分线所在直线是它的对称轴.角平分线上的点到角的两边距离相等;角的内部到角的两边距离相等的点,在这个角的平分线上.4、等腰三角形的轴对称性(1)等腰三角形是轴对称图形,顶角平分线所在直线是它的对称轴. (2)等腰三角形的两个底角相等(简称“等边对等角”).等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称“三线合一”). (3)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称“等角对等边”).符号语言:点P 在线段AB 的垂直平分线MN上 PA=PBB C (4)直角三角形斜边上的中线等于斜边的一半(如上图). (5)直角三角形中30°角所对的直角边是斜边的一半。

符号语言:(6)三边相等的三角形叫做等边三角形或正三角形。

等边三角形是轴对称图形,并且有3条对称轴。

等边三角形的每个角都等于60°。

(7)等边三角形的判定依据:三条边都相等的三角形是等边三角形。

轴对称讲义

轴对称讲义

轴对称一、基本概念1.轴对称图形如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就叫做对称轴.折叠后重合的点是对应点,叫做对称点.(拓展:还有两个图形关于某一直线的对称)2.线段的垂直平分线经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.3.轴对称变换由一个平面图形得到它的轴对称图形叫做轴对称变换.二、主要性质1.轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.2.线段垂直平分钱的性质:线段垂直平分线上的点与这条线段两个端点的距离相等.3.⑴.点P(x,y)关于x轴对称的点的坐标为P′(x,-y).⑵.点P(x, y)关于y轴对称的点的坐标为P′(-x,y).⑶.点P(x,y)关于直线x=m对称的点的坐标为P′(2m- x,y)⑷.点P(x,y)关于直线y=n对称的点的坐标为P′(x,2n- y)三、有关判定与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.四、尺规作图:线段垂直平分钱练习巩固一、选择题1、下列图形中对称轴最多的是( A)A、圆B、正方形C、等腰三角形D、线段2、如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED等于(A )A.50° B.55°C.60° D.65°3、下列说法中错误的是(C )A成轴对称的两个图形的对应点连线的垂直平分线是它们的对称轴B关于某条直线对称的两个图形全等C全等的三角形一定关于某条直线对称D若两个图形沿某条直线对折后能够完全重合,我们称两个图形成轴对称4、如图,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD边落在AB边上,折痕为AE,再将△AED以DE为折痕向右折叠,AE与BC交于点F,则△CEF的面积为( C )A.2 B.4 C.8 D.105、如图,正方形硬纸片ABCD 的边长是4,点E 、F 分别是AB 、BC 的中点,若沿左图中的虚线剪开,拼成如下右图的一座“小别墅”,则图中阴影部分的面积是( B )A .2B .4C .8D .106、点(3,-2)关于x 轴的对称点是( B )(A)(-3,-2) (B)(3,2) (C)(-3,2) (D)(3,-2)7、如图,先将正方形纸片对折,折痕为MN,再把B 点折叠在折痕MN 上,折痕为AE,点B 在MN 上的对应点为H,沿AH 和DH 剪下,这样剪得的三角形中 ( B ) (A)AD DH AH ≠= (B)AD DH AH == (C)DH AD AH ≠= (D)AD DH AH ≠≠8、如图2把一个正方形三次对折后沿虚线剪下, 则所得图形大致是( C )9、如图:∠EAF=15°,AB=BC=CD=DE=EF ,则∠DEF 等于( D )A :90°B : 75°C :70°D : 60°10、下面四组图形中,右边与左边成轴对称的是( C )A.B. C. D.11、如图,Rt △ABC 中,∠ACB=90°,∠A=50°,将其折叠,使点A 落在 边CB 上A′处,折痕为CD ,则∠A′DB=( D ) A .40° B .30° C .20° D .10°A B CDM N HECA FE12、小强拿了张正方形的纸如图(1),沿虚线对折一次如图(2),再对折一次得图(3),然后用剪刀沿图(3)中的虚线(虚线与底边平行)剪去一个角,再打开后的形状应是( D )13、如图,已知△ABC ,求作一点P ,使P 到∠A 的两边的距离相等,且PA=PB , 下列确定P 点的方法正确的是( B ) A .P 是∠A 与∠B 两角平分线的交点 B .P 为∠A 的角平分线与AB 的垂直平分线的交点C .P 为AC 、AB 两边上的高的交点D .P 为AC 、AB 两边的垂直平分线的交点14、如图,AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F .S △ABC =7,DE=2,AB=4,则AC 长是( B )A.4B.3C.6D.5二、填空题1、写出下列各点关于已知直线的对称点:(1)(3,2)关于直线x=1的对称点为 (-1,2),关于直线y= -1的对称点为 (3, -4) (2)(5,-3)关于直线x=6的对称点为 (7, -3),关于直线y=-4的对称点为 (5, -5). 2、设P (2m-3,3-m )关于y 轴的对称点在第二象限, 整数m 的值为 2 3、已知点P (x+y ,x-y )与点Q (5,-1)关于y 轴对称,则x= -3,y= -2 4、若点P 关于x 轴的对称点为P 1(2a+b ,,-a+1),关于y 轴的对称点为P 2(4-b ,,b+2) 则P 点坐标为 a=-2;b=-5 P 点坐标为 P(-9, -3)三、解答题1、如图,点P 在∠AOB 的内部,点M 、N 分别是点P 关于直线OA 、OB •的对称点,线段MN 交OA 、OB 于点E、F ,若△PEF 的周长是20cm ,求线段MN 的长。

轴对称期末复习讲义

轴对称期末复习讲义

轴对称图形复习【知识点回顾】一、线段的轴对称性: ①线段是轴对称图形。

②线段的垂直平分线上的点到 相等。

③到 的点,在这条线段的 上。

二、角的轴对称性: ①角是 图形,对称轴是 。

②角平分线上的点到 相等。

③在角的内部,到 的点,在 上。

三、等腰三角形的轴对称性:①等腰三角形:等腰三角形是 图形,对称轴是 。

等腰三角形 相等(简称 );等腰三角形的 互相重合。

(三线合一) ②如果一个三角形是直角三角形,那么其斜边上的中线 ;③等边三角形是特殊的 ,具备 的一切性质。

除此之外,等边三角形有性质: , , 。

④等边三角形的判定: 是等边三角形; 的三角形是等边三角形; 的等腰三角形是等边三角形。

【典型例题】1.已知△ABC 与△A 1B 1C 1关于直线MN 对称,且BC 与B 1C 1交与直线MN 上一点O ,则 ( ) A .点O 是BC 的中点 B .点O 是B 1C 1的中点 C .线段OA 与OA 1关于直线MN 对称 D .以上都不对 2.如图:已知∠AOP=∠BOP=15°,PC ∥OA , PD ⊥OA ,若PC=4,则PD= ( )A .4B .3C .2D .13.∠AOB 的平分线上一点P 到OA 的距离 为5,Q 是OB 上任一点,则 ( ) A .PQ >5 B .PQ≥5 C.PQ <5 D .PQ≤54.等腰三角形的周长为15cm ,其中一边长为3cm .则该等腰三角形的底长为 ( ) A .3cm 或5cm B .3cm 或7cm C .3cm D .5cm5.已知∠AOB =45°,点P 在∠AOB 的内部,P 1与P 关于OA 对称,P 2与P 关于OB 对称,则△P 1OP 2是( ) A .含30°角的直角三角形;B .顶角是30的等腰三角形;C .等边三角形D .等腰直角三角形.6.如图,在Rt △ABC 中,AB=AC ,AD=AE ,∠BAD=30°,∠EDC 是( ) A 、10° B 、12.5° C 、15° D 、20° 7.(1)如图,在ABC ∆中,AB=AC ,D 是BC 的中点,AC 的 垂直平分线分别交AC 、AD 、AB 与点E 、F 、G ..点F 到 ABC ∆的边 、 距离相等,点F 到ABC ∆的 顶点 、 的距离相等.(2)在等腰三角形ABC 中,80=∠A ,则B ∠=(3)等腰三角形ABC 的周长为8cm,AB=3cm,则BC= cm. 8. 已知△ABC 中,AB=BC≠AC ,作与△ABC 只有一条公共边,且与△ABC 全等的三角形,A第6题图A CE B D GFEDCBAA CEDN M这样的三角形一共能作出 个。

轴对称图形 基础知识复习讲义

轴对称图形 基础知识复习讲义
·北师大版
【知识点 11】 实数概念: 】 实数概念:
有理数
正有理数
实数的分类: 实数的分类:
实数 正无理数 负无理数
〖基础回顾〗 基础回顾〗 1.与数轴上的点一一对应的数是 . 。 的点到原点的距离是_________ _________。 2. 数轴上表示 − 6 的点到原点的距离是_________。 点M在数轴上与原点相距 5 个单位,则点 表示的实数为 在数轴上与原点相距 个单位,则点M表示的实数为 3. −7.2 5
·北师大版
4、在△ABC中, AB=15,AD=12,BD=9,AC=13,求 、 中 , , 求 的周长和面积。 △ABC的周长和面积。 的周长和面积
·北师大版
【知识点 4】 勾股定理与方程的综合运用 】 〖基础回顾〗 基础回顾〗 1.AC=6cm,BC=8cm,现将直角边AC沿直线 折叠,使它落 , ,现将直角边 沿直线AD折叠, 沿直线 折叠 在斜边AB上 且与AE重合 你能求出CD的长吗 重合, 的长吗? 在斜边 上,且与 重合,你能求出 的长吗?
. M N
【知识点 7】等腰三角性是
等腰三角形的性质: 等腰三角形的性质 等腰三角形的判定: 等腰三角形的判定
图形,它的对称轴是 图形 它的对称轴是
〖基础回顾〗 基础回顾〗
1.等腰三角形ABC中,AB=AC,AD是角平分线,则“①AD⊥BC,②BD=DC, .等腰三角形 是角平分线, 中 , 是角平分线 ⊥ , , ③∠B=∠C,④∠BAD=∠CAD”中,结论正确的个数是( ) ∠ , ∠ 中 结论正确的个数是( A、4 B、3 C、2 D、1 、 、 、 、 2.如果等腰三角形的一个底角为 °,那么其余两个角为 .如果等腰三角形的一个底角为50° 那么其余两个角为______和___ __ 和 如果等腰三角形的一个角为80° 那么它的一个底角为__________ 如果等腰三角形的一个角为 °,那么它的一个底角为 已知等腰三角形的一个角是110° 已知等腰三角形的一个角是 °,则其余两角为 3.一个等腰三角形的两边分别为8cm和6cm,则它的周长为 .一个等腰三角形的两边分别为8 4.已知:如图1.5-20,点D、E在△ABC的边 上,AD=AE,BD=EC. 1.5的边BC上 .已知:如图1.5 20, 、 在 的边 = = 求证: = 求证:AB=AC

轴对称总复习复习讲义

轴对称总复习复习讲义

第十三章轴对称总复习学习过程:一、基本概念1.轴对称图形:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个2.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这二、主要性质说轴对称图形的对称轴,是任何一对对应点所连线段3.通过画出坐标系上的两点观察得出:(1)点P(x,y)关于x轴对称的点的坐标为P′(,).(2)点P(x,y)关于y轴对称的点的坐标为P″(,)4.等腰三角形的性质(3)等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是5.等边三角形的性质(3)等边三角形每边上的、和该边所对内角的互相重合.6.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的.三、有关判定1.与一条线段两个端点距离的点,在这条线段的垂直平分线上.2.如果一个三角形有两个角,那么这两个角所对的边也。

(简写成“等角对等边”).3.三个角都相等的是等边三角形.4.有一个角是60°的是等边三角形。

四、练习(一)选择题A B C D2.下列“数字”图形中,有且仅有一条对称轴的是()3.如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为A.7cm B.10cm C.12cm D.22cmA.A B=AD B.A C平分∠BCD C.A B=BD D.△BEC≌△DEC第3题图第4题图第5题图5.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB 于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()A.B.C.D.A.4cm B.3cm C.2cm D.1cm(二)填空题1.已知等腰三角形的一个内角是80°,则它的另外两个内角是。

2.已知等腰三角形的一个内角是100°,则它的另外两个内角是。

轴对称辅导讲义(Word完整版)

轴对称辅导讲义(Word完整版)

轴对称【知识框架】【知识点&例题】知识点一:线段垂直平分线线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线. 如图,直线l经过线段AB的中点O,并且垂直于线段AB,则直线l就是线段AB的垂直平分线.性质:线段垂直平分线上的点与这条线段两个端点的距离相等. 如图,点P 是线段AB 垂直平分线上的点,则PA PB =.判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.知识点二:坐标变换图形的平移(纵坐标“上加下减”;横坐标“左加右减”)(1)当图形上各点的横坐标不变,纵坐标加上|m|,图形将纵向平移m 个单位。

若m>0, 则向上平移,若m<0,则向下平移。

当图形上各点的纵坐标不变,横坐标加上m,图形将横向平移|m|个单位。

若m>0,则向左平移,若m<0, 则向右平移。

例1:A (-3,2)关于原点的对称点是B ,B 关于x 轴的对称点是C ,则点C 的坐标是( ).A .(3,2)B .(-3,2)C .(3,-2)D .(-2,3)【变式一】已知点M (2a-b,5+a),N(2b-1,-a+b). (1)若M 、N 关于x 轴对称,试求a 、b 的值 (2)若M 、N 关于y 轴对称,试求(b+2a)2015的值例2:如图,在平面直角坐标系中,直线l 是第一、三象限的角平分线.实验与探究:①由图观察易知A ()2,0关于直线l 的对称点'A 的坐标为()0,2,请在图中分别标明()5,3B ,()2,5C -关于直线l 的对称点'B 、'C 的位置,并写出他们的坐标: 'B ,'C ;归纳与发现:②结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点(),P a b 关于第一、三象限的角平分线l 的对称点'P 的坐标为 (不必证明);③点(),A a b 在直线l 的下方,则a ,b 的大小关系为 ;若在直线l 的上方,则 .古希腊亚里山大里亚城有一位久负盛名的学者,名叫海伦.有一天,有位将军不远千里专程前来向海伦求教一个百思不得其解的问题:如图,将军从A 出发到河边饮马,然后再到B 地军营视察,显然有许多走法.问怎样走路线最短呢?精通数理的海伦稍加思索,便作了完善的回答.这个问题后来被人们称作“将军饮马”问题.下面我们来看看数学家是怎样解决的.海伦发现这是一个求折线和最短的数学问题.根据公理:连接两点的所有线中,线段最短.若A B 、在河流的异侧,直接连接AB ,AB 与l 的交点即为所求. 若A B 、在河流的同侧,根据两点间线段最短,那么显然要把折线变成直线再解.海伦解决本问题时,是利用作对称点把折线问题转化成直线现在人们把凡是用对称点来实现解题的思想方法叫对称原理,即轴对称思想构建“对称模型”实现转化PA PB BC +…常见模型:(1)PA PB +最小(2)①PA PB -最小②PA PB -最大CBBA同侧图1A'BlAB图2异侧图4同侧异侧图5AA图6异侧【变形】异侧时,也可以问:在直线l 上是否存在一点P 使的直线l 为APB 的角平分线(3)周长最短类型一 类型二 类型三(4)“过河”最短距离类型一 类型二(5)线段和最小(6)在直角坐标系里的运用Al同侧异侧lBA'A'lNMl 2l 2例3:如图,在公路a 的同旁有两个仓库A 、B ,现需要建一货物中转站,要求到A 、B 两仓库的距离和最短,这个中转站M 应建在公路旁的哪个位置比较合理?【变式一】如图,在等腰Rt ABC ∆中,3CA CB ==,E 的BC 上一点,满足2BE =,在斜边AB 上求作一点P 使得PC PE +长度之和最小。

轴对称讲义

轴对称讲义

一、【问题】观察、讨论、交流,尝试用自己的语言描述这些实物、图片的共同特征小结:对称现象无处不在,从自然景观到分子结构,从建筑物到艺术作品,甚至日常生活用品,人们都可以找到对称的例子.现在同学们就从我们生活周围的事物中来找一些具有对称特征的例子.我们的黑板、课桌、椅子等.我们的身体,还有飞机、汽车、枫叶等都是对称的.二、(1)轴对称图形1、做一做把一张纸对折,剪出一个图案(折痕处不要完全剪断),想一想,展开后会是一个什么样的图形?位于折痕两侧图案有什么关系?2、想一想日常生活中常见的动物图片如:蝴蝶、蜻蜓、对称简笔画等,能发现它们有什么共同特征?3、轴对称图形定义:如果一个图形沿一条折叠,直线两旁的部分能够完全重合,这个图形就叫做轴对称图形.就是它的对称轴.(2)轴对称1、想一想:下面的每对图形有什么不同?2、轴对称定义把一个图形沿着某一条直线折叠,如果它能够与()重合,那么就说这两个图形关于这条直线成轴对称.这条直线就是,两个图形中的对应点(即两个图形重合时互相重叠的点)叫做.(3)关于某条直线成轴对称的图形的性质特征1、想一想:成轴对称的两个图形全等吗?如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形全等吗?这两个图形对称吗?结论:2、轴对称与轴对称图形的联系与区别.轴对称图形轴对称区别联系如果把轴对称图形沿对称轴分成两部分,那么这两个图形就关于这条直线成轴对称;反过来,如果把两个成轴对称的图形看成一个整体,那么它就是一个轴对称图形.三、观察图形思考性质【思考】观察下图思考,想想图形中的几何性质如图,△ABC和△A′B′C′关于直线MN对称,点A′,B′,C′分别是点A,B,C的对称点,1、△ABC和△A′B′C′全等吗?它们的面积有何关系?2、线段AA′,BB′,CC′与直线MN有什么关系?(1)轴对称的性质1、线段垂直平分线的定义:经过线段并且这条线段的直线,叫做这条线段的垂直平分线.2、对称轴与线段垂直平分线的关系:如果两个图形关于某条直线对称,那么是任何一对对应点所连线段的类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.(2)线段垂直平分线的性质1、想一想:如图,木条l与AB钉在一起,l垂直平分AB,点P是l上的点,当点P在l上移动时,分别量出点P到A、B的距离,你有什么发现?你能证明你的结论吗?2、品一品:线段垂直平分线的性质:线段垂直平分线上的点与这条线段的距离.请写出证明过程思考:反过来,如果PA=PB,那么点P是否在线段AB的垂直平分线上?3、再想一想:如图.用一根木棒和一根弹性均匀的橡皮筋,做一个简易的“弓”,“箭”通过木棒中央的孔射出去,怎么才能保持出箭的方向与木棒垂直呢?为什么?4、归纳:与一条线段两个端点距离相等的点,在这条线段的 上.如果两个图形成轴对称,其中对称轴就是任何一对对应点连线的垂直平分线,因此只要找到一对对应点,作出连接它们的线段的垂直平分线,就可以得到这两个图形的对称轴;对于轴对称图形也是类似.四、画图探究 动手做题【问题】如图(1),点A 和点B 关于某条直线成轴对称,你能作出这条直线吗?已知:线段AB 如图(1).求作:线段AB 的垂直平分线.作法:如图(2)1.分别以点A 、B 为圆心,以大于12AB 的长为半径作弧,两弧相交于C 和D 两点; 2.作直线CD .直线CD 就是线段AB 的垂直平分线. 【思考】在上述作法中,为什么要以“大于12AB 的长”为半径作弧? 分等于或小于以12AB 长为半径作弧两种情况考虑. 【思考】根据上面作法中的步骤,请你说明CD 为什么是AB 的垂直平分线,请与同伴进行交流.【问题】下图中的五角星有几条对称轴?作出这些对称轴作法:1.找出五角星的一对对应点A 和A ′,连结AA ′.2.作出线段AA ′的垂直平分线L . 则L 就是这个五角星的一条对称轴.用同样的方法,可以找出五条对称轴,所以五角星有五条对称轴.五、典型例题找出方法【例1】观察下列各种图形,判断是不是轴对称图形,若是,请画出对称轴.【例2】将一张正方形纸片经两次对折,并剪出一个菱形小洞后展开铺平,得到的图形是【例3】如下图小河边有两个村庄,要在河对岸建一自来水厂向A村与B村供水,要符合条件:(1)若要使厂部到A、B的距离相等,则应选在哪儿?(2)若要使厂部到A村、B村的水管最省料,应建在什么地方?方法总结:“垂线段最短”“两点之间线段最短”是线段最值问题中两个重要方法.作业:1、在26个英文字母中,请你说出几个成轴对称图形的字母,并且指出有几条对称轴2、如图,将一块正方形纸片沿对角线折叠一次,然后在得到的三角形的三个角上各挖去一个圆洞,最后将正方形纸片展开,得到的图案是右图中的()3、下列说法中,正确的有【】A、0个B、1个C、2个D、3个(1)两个关于某直线对称的图形是全等形;(2)两个图形关于某直线对称,对称点一定在直线两旁;(3)两个对称图形对应点连线的垂直平分线就是它们的对称轴;(4)平面上两个完全相同的图形一定关于某直线对称.4、画出下图甲中的各图的对称轴.5、下列命题中,假命题是()A、两个三角形关于某直线对称,那么这两个三角形全等B、两个图形关于某直线对称,且对应线段相交,则交点必在对称轴上C、两个图形关于某直线对称,对应点的连线不一定垂直对称轴D、若直线L同时垂直平分AA‘、BB’,那么线段AB=A'B'6、电信部门要修建一个电视信号发射塔.如图所示,按照要求,发射塔到两个城镇A、B的距离必须相等,到两条高速公路m和n的距离也必须相等.发射塔应修建在什么位置?在图上标出它的位置.8、如下图,已知直线L和两点A、B,在直线L上求作一点P,使PA=PB.。

轴对称讲义全

轴对称讲义全

轴对称【知识要点】1、轴对称图形:如果沿某条直线对折,对折的两部分是完全重合的,这样的图形为轴对称图形。

这条直线叫做这个图形的对称轴。

2、轴对称:把一个图形沿着某一条直线翻折过去,如果它能够与另一个图形重合,说这两个图形为轴对称。

这条直线叫做这个图形的对称轴。

3、对称点:翻折后(图形重合时)能够互相重合的点。

4、垂直平分线(中垂线):垂直并且平分一条线段的直线。

结论1:线段垂直平分线上的点到这条线段两个端点的距离相等。

结论2:如果一个图形关于某一条直线对称,那么连接对称点的线段的垂直平分线就是该图形的对称轴。

【典型例题】例1. 在下列十个汉字中,哪几个是轴对称图形他们各有几条对称轴上下目天田土吕林显王例2. 如图,下列图案是我国几家银行的标志,其中轴对称图形有()A.1个B.2个C.3个D.4个例3. 下列图形中是轴对称图形的有()①矩形;②菱形;③平行四边形;④四边形;⑤等腰梯形;⑥直角梯形;⑦三角形;⑧等边三角形;⑨等腰三角形;⑩正六边形A. 5个个个个例3. 判断题①两个关于某直线对称的图形是一模一样的。

()②两个图形关于某直线对称,对称点一定在直线的两旁。

()③两个对称图形对应点连线的垂直平分线,就是他们的对称轴()④平面上两个完全相同的图形一定关于某直线对称()例4. 如图,l1、l2交于A点,P、Q的位置如图所示,试确定M点,使它到l1、l2的距离相等,且到P、Q两点的距离也相等。

例5. 已知如图1,MN垂直平分线段AB,CD AC=BD,∠l2ACD=∠BDC.例6. 已知:在△ABC中,AB=AC,D是AB的中点,且DE⊥AB, △BCE周长为8,且AC-BC=2,求AB,BC的长。

例7. 如图,将一张长方形纸片ABCD沿EF折叠后,D′E与BC的交点为G,点D、C分别落在点D′、C′的位置上,若∠EFG=55°,求∠1,∠2的度数.画图形的对称轴【知识要点】1. 任意两点总关于某一条直线对称,故画这两点的对称轴的方法是_____________2. 对于复杂图形的对称轴的画法:可先找出轴对称图形或成轴对称的两个图形的任意一组对称点;再连结对称点;然后画出_________则这条________画轴对称图形【知识要点】1、对于某些图形,先画出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形;2、平面直角坐标系中关于X轴和Y轴对称的图形的做法:先找出一些特殊点的对称点坐标,连接对称点,即可得到;3、角平分线和垂直平分线的做法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轴对称
【知识要点】
1、轴对称图形:如果沿某条直线对折,对折的两部分是完全重合的,这样的图形为轴对称图形。

这条直线叫做这个图形的对称轴。

2、轴对称:把一个图形沿着某一条直线翻折过去,如果它能够与另一个图形重合,说这两个图形为轴对称。

这条直线叫做这个图形的对称轴。

3、对称点:翻折后(图形重合时)能够互相重合的点。

4、垂直平分线(中垂线):垂直并且平分一条线段的直线。

结论1:线段垂直平分线上的点到这条线段两个端点的距离相等。

结论2:如果一个图形关于某一条直线对称,那么连接对称点的线段的垂直平分线就是该图形的对称轴。

【典型例题】
例1. 在下列十个汉字中,哪几个是轴对称图形?他们各有几条对称轴?
上下目天田土吕林显王
例2. 如图,下列图案是我国几家银行的标志,其中轴对称图形有()
A.1个B.2个C.3个D.4个
例3. 下列图形中是轴对称图形的有()
①矩形;②菱形;③平行四边形;④四边形;⑤等腰梯形;⑥直角梯形;⑦三角形;⑧等边三角形;⑨等腰三角形;⑩正六边形
A. 5个
B.6个
C.7个
D.8个
例3. 判断题
①两个关于某直线对称的图形是一模一样的。

()
②两个图形关于某直线对称,对称点一定在直线的两旁。

()
③两个对称图形对应点连线的垂直平分线,就是他们的对称轴()
④平面上两个完全相同的图形一定关于某直线对称()
例4. 如图,l1、l2交于A点,P、Q的位置如图所示,试确定M点,使它到l1、l2的距离相等,且到P、Q两点的距离也相等。

例5. 已知如图1,MN垂直平分线段AB,CD AC=BD,∠
l2
ACD=∠BDC.
例6. 已知:在△ABC中,AB=AC,D是AB的中点,且DE⊥AB, △BCE周长为8,且AC-BC=2,求AB,BC的长。

例7. 如图,将一张长方形纸片ABCD沿EF折叠后,D′E与BC的交点为G,
点D、C分别落在点D′、C′的位置上,若∠EFG=55°,求∠1,∠2的
度数.
画图形的对称轴
【知识要点】
1. 任意两点总关于某一条直线对称,故画这两点的对称轴的方法是_____________
2. 对于复杂图形的对称轴的画法:可先找出轴对称图形或成轴对称的两个图形的任意一组对称点;再连结对称点;然后画出_________则这条________
画轴对称图形
【知识要点】
1、对于某些图形,先画出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形;
2、平面直角坐标系中关于X轴和Y轴对称的图形的做法:先找出一些特殊点的对称点坐标,连接对称点,即可得到;
3、角平分线和垂直平分线的做法。

【典型例题】
例1. 找出下列轴对称图形的所有对称轴,并把它画出来.
例2. 下图中的各个图形是不是轴对称图形?如果是,画出它的一条对称轴.
例3. 看以下两个图形是否是轴对称图形?你能否画出它的对称轴?
例4.如图,连结B、B′的线段的垂直平分线是否还是你在上图中画的对称轴?
例5. 印制一本书,为了使装订成书后页码恰好为连续的自然数,可按如下方法操作:先将一张整版的纸,对折一次为4页,再对折一次为8页,连续对折三次为16页,……;然后再排页码.如果想设计一本16页码的毕业纪念册,请你按图1,图2,图3(图中的1,16表示页码)的方法折叠,在图中填上按这种折叠方法得到的各页在该面相应位置上的页码.例6. 如图,∠AOB内一点P,试分别画出点P关于OA和OB的对称点P1和P2
例7. 画出下列图形关于直线L 的对称图形.
例8. 下图中,直线L 是一个轴对称图形的对称轴,画出这个图形关于直线L 对称的另一半. 例9. 如图是台球桌面矩形网格示意图,图中的四个角各有一个入球孔,如果一个球按图中所示的方向被击出(球可以多次反射),那么该球最后将落入的球袋是()
A .1号袋
B .2号袋
C .3号袋
D .4号袋
等腰三角形
【知识要点】
1、等腰三角形的两个底角相等;
2、等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(简称“三线合一”);
3、等腰三角形的判定方法:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”)。

4、等边三角形:
①等边三角形的三个内角都相等,并且每一个角都等于60°;
②三个角都相等的三角形是等边三角形;
③有一个角是60°的等腰三角形是等边三角形。

5、在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

【典型例题】
例1. 若等腰三角形的底边长为10cm ,则腰长x 的取值范围是 . 例2. 若等腰三角形的一个角为40°,则另两个角为__________________。

例3. 等腰三角形一腰上的高与底边的夹角为45°,则这个三角形是( )
A.锐角三角形
B.钝角三角形
C.等边三角形
D.等腰直角三角形
例4. 设α是等腰三角形的一个底角,则α的取值范围是( )
A. 0<α<90°??
B. α<90°??
C. 0<α≤90°??
D. 0≤α<90°
例5. 若等腰三角形的一个外角为120°,一边长为2cm ,则另外两边长为 例6. △ABC 中,∠ACB=90°,∠B=60°,AB+BC=6cm ,则BC=
例7. 如图所示,△ABC 中,AB=AC ,∠BAC=120°,AD 是BC 边上的中线,点E 在AB 上,DE ⊥AB ,AD=8cm ,则AE= cm ,AC= cm
例8. 如图,△ABC 中,ABC ∠、ACB ∠的平分线交于点

B
A D ,EF 过点D ,分别交A
B 、A
C 于点E 、点F ,且EF//BC.
(1)求证:ED=EB;
(2)若△ABC 是边长为3的正三角形,求EF 。

例9. 如图,在△ABC 中,AB=AC ,BC=BD=ED=EA ,求∠A 的度数.
例10. 已知△ABC 是等腰直角三角形,AB=AC ,若AD=AB ,∠CAD=36°,求∠DBC 的度数。

例11. 如图所示,在四边形ABCD 中,AB=AD ,CD=23,∠A=60°,∠D=150°。

已知四边形的周长为32,求四边形ABCD 的面积.
例12. 如图所示,P 是等边三角形ABC 内一点,连结PA 、PB 、PC ,•以BP 为边作∠PBQ=60°,且BQ=BP ,连结CQ .
(1)观察并猜想AP 与CQ 之间的大小关系?并证明; (2)若PA :PB :PC=3:4:5,连PQ .试判断△PQC 的形状并说明理由.
课题学习 最短路径问题
【典型例题】
例1. 如图,草原上两个居民点A,B 在河流L 的同旁,一汽车从A 出发到B ,途中需到河边加水,汽车在哪一点加水,可使行驶的路程最短?在途中画出该点。

例2. 图中A ,B 为公路L 同旁的两个村庄,在L 上找一点P .
(1)当P 到A ,B 等距离时,P 在何处?
(2)当P 到两村距离之和最小时,P 在何处?
例3. 如图所示,一牧人带马群从A 点出发,先到草地边缘MN 放牧,
再带马群到河边缘PQ 去给马饮水,试问:牧人应走哪条路线才能使总路程最短?
例4. 草原上有两个居民点A ,B 在河流的同旁,如图所示,•暑假里小颖和父母去旅游恰好路过此地,他们的汽车从居民点A 到B ,途中需要到河边加水,•为了使行驶的路程最短,小颖设计出了汽车应在河边的某一特定位置加水,你能找出这个特定位置在河边的什么地方吗?说明理由.
例5. 如图所示,E 、F 分别是△ABC 的边AB 、AC 上求
一点M ,使△MEF 的周长最短。

【思考题】 例6. 如图,已知:A 、B 两点在直线MN 的同侧,且AB//MN ,在
MN 上求一点P ,使: B E D
C
A
A B C E F
(1)|PA-PB|最小
(2)|PA-PB|最大
(3)PA+PB最小
例7. 当A、B两点在直线MN的两则,点A、点B到MN的距离不相等,在MN上求一点P,使:
(1)|PA-PB|最小
(2)|PB-PA|最大
(3)PA-PB最小。

相关文档
最新文档