3.6.3列方程解应用题
奥数:列方程解应用题.学生版[推荐]
1、会解一元一次方程2、根据题意寻找等量关系的方法来构建方程3、合理规划等量关系,设未知数、列方程知识点说明:一、 等式的基本性质 1、等式的两边同时加上或减去同一个数,结果还是等式.2、等式的两边同时乘以或除以同一个不为零的数,结果还是等式.二、解一元一次方程的基本步骤1、去括号;2、移项;3、未知数系数化为1,即求解。
三、列方程解应用题(一)、列方程解应用题是用字母来代替未知数,根据等量关系列出含有未知数的等式,然后解出未知数的值.这个含有未知数的等式就是方程.列方程解应用题的优点在于可以使未知数直接参加运算.解这类应用题的关键在于能够正确地设立未知数,找出等量关系从而建立方程.(二)、列方程解应用题的主要步骤是1、 审题找出题目中涉及到的各个量中的关键量,这个量最好能和题目中的其他量有着紧密的数量关系;2、 设这个量为x ,用含x 的代数式来表示题目中的其他量;3、 找到题目中的等量关系,建立方程;4、 运用加减法、乘除法的互逆关系解方程;5、通过求到的关键量求得题目答案.板块一、直接设未知数 【例 1】 长方形周长是64厘米,长比宽多3厘米,求长方形的长和宽各是多少厘米?例题精讲知识精讲教学目标列方程解应用题【巩固】(全国小学数学奥林匹克)一个半圆形区域的周长等于它的面积,这个半圆的半径是.(精确到0.01,π 3.14)【例 2】用边长相同的正六边形白色皮块、正五边形黑色皮块总计32块,缝制成一个足球,如图所示,每个黑色皮块邻接的都是白色皮块;每个白色皮块相间地与3个黑色皮块及3个白色皮块相邻接.问:这个足球上共有多少块白色皮块?【例 3】(全国小学数学奥林匹克)某八位数形如2abcdefg,它与3的乘积形如4abcdefg,则七位数abcdefg应是.【巩固】有一个六位数1abcde乘以3后变成1abcde,求这个六位数.【巩固】有一个五位数,在它后面写上一个7,得到一个六位数;在它前面写上一个7,也得到一个六位数.如果第二个六位数是第一个六位数的5倍,那么这个五位数是.【例 4】有三个连续的整数,已知最小的数加上中间的数的两倍再加上最大的数的三倍的和是68,求这三个连续整数.【巩固】已知三个连续奇数之和为75,求这三个数。
列方程解应用题
六年级数学列方程解应用题练习卷1 列方程解应用题的意义* 用方程式去解答应用题求得应用题的未知量的方法。
2 列方程解答应用题的步骤* 弄清题意,确定未知数并用x 表示; * 找出题中的数量之间的相等关系; * 列方程,解方程;* 检查或验算,写出答案。
3列方程解应用题的方法* 综合法:先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。
这是从部分到整体的一种思维过程,其思考方向是从已知到未知。
* 分析法:先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。
这是从整体到部分的一种思维过程,其思考方向是从未知到已知。
4列方程解应用题的范围小学范围内常用方程解的应用题: a 一般应用题; b 和倍、差倍问题;c 几何形体的周长、面积、体积计算;d 分数、百分数应用题;e 比和比例应用题。
1、新城中学今年绿化面积1800平方米,比去年的绿化面积的2倍还多40平方米,去年绿化面积是多少平方米?2、洗衣机厂今年每日生产洗衣机260台,比去年平均日产量的2.5倍少40台,去年平均日产洗衣机多少台?3、化肥厂用大、小两辆汽车运47吨化肥,大汽车运了8次,小汽车运了6次正好运完,大汽车每次运4吨,小汽车每次运多少吨?4、一匹布长36米,裁了10件大人衣服和8件儿童衣服,每件大人衣服用布2.4米,每件儿童衣服用布多少米?5、甲车每小时行48千米,乙车每小时行56千米,两车从相距12千米的两地同时背向而行,几小时后两车相距272千米?6、饲养场共养4800只鸡,母鸡只数比公鸡只数的1.5倍还多300只,公鸡、母鸡各养了多少只?7、哥哥和弟弟的年龄相加为35岁,哥哥比弟弟大3岁,哥哥和弟弟各多少岁?8、甲、乙两车同时从相距528千米的两地相向而行,6小时后相遇,甲车每小时比乙车快6千米,求甲、乙两车每小时各行多少千米?9、小李买苹果用去7.4元,比买2千克橘子多用0.6元,每千克橘子多少元?10、爱达小学图书室购买的文艺书比科技书多156本,文艺书的本数比科技书的3倍还多12本,文艺书和科技书各买了多少本?11、甲有书的本数是乙有书的本数的3倍,甲、乙两人平均每人有82本书,求甲、乙两人各有书多少本。
小学数学列方程解应用题-方程
小学数学列方程解应用题-方程1、用字母表示数。
(1)用任何一个字母,都可以表示我们所学过的自然数、分数、小数和百分数。
(2)用含有字母的式子,可以简明地表达数学概念、运算定律、计算公式、数量关系。
注意:(1)在含有字母的乘法里,乘号可以省略不写或用“?”表示。
如a×x可写成a?x或ax。
(2)数字和字母相乘时,可以简化,数字放在最前面。
如:a×4×b可以写成4ab。
(3) 1与字母相乘时,1省略不写。
如a×1可写成a。
2、简易方程及解法。
(1)等式:表示相等关系的式子叫等式。
(2)方程:含有未知数的等式叫方程。
(3)方程的解:使方程左右两边相等的未知数的值叫方程的解。
(4)求方程的解的过程叫解方程。
(5)解法步骤:?对于只有一步运算的方程,可用加法与减法、乘法与除法的互逆关系求;对于含有二、三步运算的方程,先根据方程确定运算顺序,再根据四则运算的互逆关系求出方程解。
?把求出的未知数的值分别代入原方程等号两边的式子中计算,如果等号两边的式子相等,则所求的未知数的值就是原方程的解。
3、列方程解决问题的步骤。
(1)设未知数。
(2)找等量关系,列方程。
(3)解方程并验算。
典例解析及同步练习1、用字母表示数典例1 中国常用的“摄氏度”表示温度,如小静的体温是36.6摄氏度;还有一些国家用“华氏度”表示温度,二者的关系是:华氏温度数比摄氏温度数的1.8倍还多32.:1: a摄氏度是多少华氏度, 用式子表示。
:2: 某人的体温是97.7华氏度,他在发烧吗,解析:此题贴近生活,以表示温度为情境,一方面要求学生能正确地用字母示数,另一方面感知字母表示数量关系的优点——简捷,同时要求同学们能利用关系式解决实际问题。
(1)“摄氏a度”,华氏温度就是比a的1.8倍多32,a的1.8倍是1.8a,比1.8a多32,用式子表示为:1.8a,32 。
(2)97.7华氏度,代入上式即:1.8a,32=97.7 a=36.5。
五年级(下册)列方程解应用题训练上课讲义
五年级(下册)列方程解应用题训练五年级下册列方程解应用题训练一、列方程解答几何图形应用题:主要根据()来列方程。
1、一块平行四边形菜地面积是600平方米.底边30米.求高是多少米?5、一个梯形的果园.面积是6公顷.梯形的上底是200米.下底是400米.求高是多少米?6、一个边长是15分米的正方形和一个底是25分米的三角形的面积相等.这个三角形的高是多少分米?2、一块长方形形地面积750平方米.宽20米.求长是多少米?7、一个长方形长30米.宽16米.与它面积相等的平行四边形的底是20米.高多少米? 3、一个三角形的地面积是300平方米.底边60米.求高是多少米?8、用面积9平方分米的方砖铺房间.480块正好铺满.如果用面积是是平方16分米的方石专.需要多少块?4、一个三角形的地面积是300平方米. 高60米.求底边是多少米?9、用边长3分米的方砖铺房间.480块正好铺满.如果用边长4分米的方砖.需要多少块?方米.上底200米.下底300米.求高是多少米?10、一个平行四边形底是25分米.相对应高是20分米。
它的另一条底是50分米.这条底所对应的高是多少分米?5、个梯形的果树林面积是4000平11、用一根绳子先围一个长 8.5米。
宽5.5米的长方形.后来又重新围成两 个正方形.求正方形的边长。
4、果园一共栽120棵树.梨树的棵数比苹果树的4倍多20棵。
果园里栽了多少棵苹果树?二、列方程解倍数应用题。
1、果园一共栽了 125棵树,梨树的棵 数是苹果树的4倍,果园里栽了多少棵 苹果树?2、果园里梨树比苹果树多栽了 100棵树.梨树的棵数是苹果树的4倍.果园6、一个果园里梨树比苹果树多栽了 75棵.分别栽了多少棵?3、果园一共栽120棵树.梨树的棵数比苹果树的4倍少20棵。
果园里栽了 多少棵苹果树?7、四年级分图书.四一班的图书是四二班的 3倍.四一班给四二班40本.四一班和四二 班就一样多.四一班和四二班就一样各有多 少本?里栽了多少棵苹果树?梨树的棵数是苹果树的4倍.苹果树和梨树 5、一个果园里苹果树和梨树一共 125棵.梨树的棵数是苹果树的4倍.苹果树和梨树分 别栽了多少棵?8、小明在写数时.不小心在这个数末尾多写了一个0.结果比原来的数多了450.求原来的数。
五年级下册列方程解应用题训练
五年级下册列方程解应用题训练一、列方程解答几何图形应用题二、1、一块平行四边形菜地面积是600平方米,底边30米,求高是多少米?2、一块长方形形地面积750平方米,宽20米,求长是多少米?3、一个三角形的地面积是300平方米。
底边60米,求高是多少米?4、一个三角形的地面积是300平方米。
高60米,求底边是多少米?5、一个梯形的果树林面积是4000平方米。
上底200米,下底300米,求高是多少米?5、一个梯形的果园,面积是6公顷,梯形的上底是200米,下底是400米,求高是多少米?6、一个边长是15分米的正方形和一个底是25分米的三角形的面积相等。
这个三角形的高是几何分米?7、一个长方形长30米,宽16米,与它面积相等的平行四边形的底是20米。
高几何米?8、用面积9平方分米的方砖铺房间。
480块正好铺满,如果用面积是是平方16分米的方砖,需要几何块?9、用边长3分米的XXX铺房间,480块正好铺满,如果用边长4分米的方砖,需要多少块?10、一个平行四边形底是25分米,相对应高是20分米。
它的另一条底是50分米,这条底所对应的高是多少分米?11、用一根绳索先围一个长8.5米。
宽5.5米的长方形,厥后又重新围两人一个正方形,求正方形的边长。
1二、列方程解倍数应用题。
1、果园一共栽了125棵树,梨树的棵数是苹果树的4倍,果园里栽了多少棵苹果树?2、果园里梨树比苹果树多栽了100棵树。
梨树的棵数是苹果树的4倍,果园里栽了多少棵苹果树?3、果园一共栽120棵树,梨树的棵数比苹果树的4倍少20棵。
果园里栽了多少棵苹果树?4、果园一共栽120棵树,梨树的棵数比苹果树的4倍多20棵。
果园里栽了几何棵苹果树?5、一个果园里苹果树和梨树一共125棵。
梨树的棵数是苹果树的4倍,苹果树和梨树分别栽了多少棵?6、一个果园里苹果树比梨树多栽了75 棵,梨树的棵数是苹果树的4倍,苹果树和梨树划分栽了几何棵?7、四年级分图书,四一班的图书是四二班的3倍,四一班给四二班40本。
列方程解应用题
列方程,解应用题:1、一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33,求这个数。
2、根据下列问题,设未知数并列出方程:(1)用一根长24㎝的铁丝围成一个正方形,正方形的边长是多少?(2)一台计算机已使用1700h,预计每月再使用150h,经过多少月这台计算机的使用时间达到规定的检修时间2450h?(3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?练习3、环形跑道一周长400m,沿跑道跑多少周,可以跑3000m?4、某校七年级1班共有学生48人,其中女生人数比男生人数的54多3人,这个班有男生多少人?5、一个梯形的下底比上底多2㎝,高是5㎝,面积是4c㎡,求上底。
6、一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的行驶速度是70km/h,卡车的行驶速度是60km/h,客车比卡车早1h经过B地。
A,B两地间的路程是多少?7、某工厂的产值连续增长,去年是前年的1.5倍,今年是去年的2倍,这三年的总产值为550万元。
前年的产值是多少?8、甲种铅笔每支0.3元,乙种铅笔每支0.6元,用9元钱买了两种铅笔共20支,两种铅笔各买了多少支?9、一个两位数个位上的数是1,十位上的数是x ,把1与x 对调,新两位数比原两位数小18,x 应是哪个方程的解?你能想出x是几吗?10用买10个大水杯的钱,可以买15个小水杯,大水杯比小水杯的单价多5元,两种水杯的单价各是多少元?11、把1400元奖学金按照两种奖项奖给22名学生,其中一等奖每人200元,二等奖每人50元,获得一等奖的学生有多少人?12、圆环形状如图所示,它的面积是200c㎡,外沿大圆半径是10cm,内沿小圆的半径是多少?13、今年上半年某镇居民人均可支配收入为5109元,比去年同期增长了8.3%,去年同期这项收入为多少元?14、某造纸厂为节约木材,大力扩大再生纸的生产,它去年10月生产再生纸2050t,这比它前年10月再生纸产量的2倍还多150t。
列方程解应用题行程问题
列方程解应用题——行程问题【知识要点】行程类应用题基本关系:路程=速度×时间相遇问题:甲、乙相向而行,则:甲走的路程+乙走的路程=总路程追及问题:甲、乙同向不同地,则:追者走的路程=前者走的路程+两地间的距离环形跑道问题:①甲、乙两人在环形跑道上同时同地同向出发:快的必须多跑一圈才能追上慢的。
②甲、乙两人在环形跑道上同时同地反向出发:两人第一次相遇时的总路程为环形跑道一圈的长度。
飞行问题,基本等量关系:顺风速度=无风速度+风速逆风速度=无风速度-风速∴ 顺风速度-逆风速度=2×风速航行问题,基本等量关系:顺水速度=静水速度+水速逆水速度=静水速度-水速∴ 顺水速度-逆水速度=2×水速【典型例题】例1、 某队伍长450m ,以s m 5.1的速度行进,一个通讯兵从排尾赶到排头,并立即返回排尾,他的速度是s m 3,那么往返需要多少时间?例2、在一直形的长河中有甲、乙船,现同时由A 城顺流而下,乙船到B 地时接到通知,需立即返回到C 地执行任务,甲船继续顺流航行。
已知甲、乙两船在静水中的速度都是h km 5.7,水流速度为每小时km 5.2,A 、C 两地间的距离为km 10。
如果乙船由A 地经B 地再到达C 地,共用了4h ,问乙船从B 地到C 地时甲船驶离B 地有多远?例3、甲、乙两人在400m长的环形跑道上练习百米赛跑,甲的速度是14m,乙的速度是16m。
(1)若两人同时同地相向而行,问经过多少秒后两人相遇?(2)若两人同时同地同向而行,问经过多少秒后两人相遇?例4、甲、乙两人从相距36千米的两地相向而行,若甲先出发2小时,则在乙动身2.5小时后两人相遇;若乙先出发2小时,则甲动身3小时后两人相遇.求甲、乙两人的速度.例5、甲、乙两个运动员分别从相距100米的直跑道两端同时相对出发,甲以每秒6.25米,乙以每秒3.75米的速度来回匀速跑步,他们共同跑了8分32秒,在这段时间内两个多次相遇(两人同时到达同一地点).他们最后一次相遇的地点离乙的起点有多少米?甲追上乙多少次?甲与乙迎面相距多少次?例6、两列火车分别行驶在两平行的轨道上,其中快车车长100米,慢车车长150米,当两车相向而行时,快车驶过慢车某个窗口(快车车头到达窗口某一点至车尾离开这一点)所用的时间为5秒。
五年级奥数专题 列方程解应用题(学生版)
列方程解应用题学生姓名授课日期教师姓名授课时长知识定位有些数量关系比较复杂的应用题,用算术方法求解比较困难。
此时,如果能恰当地假设一个未知量为x(或其它字母),并能用两种方式表示同一个量,其中至少有一种方式含有未知数x,那么就得到一个含有未知数x的等式,即方程。
利用列方程求解应用题,数量关系清晰、解法简洁,应当熟练掌握。
方程作为一种数学工具对于解题有相当大的帮助,并且在代数学中乃至整个数学中有重要的意义。
列方程与方程组解应用题关键注意以下几点:1、设未知数的主要技巧和手段:把与其他数量关系紧密的关键量设为“x”.2、用代数法来表示各个量:利用“x”表示出所有未知量或变量.3、找准等量关系,构建方程:明显的等量关系与隐含的等量关系的寻找知识梳理1、列一元一次方程解应用题方程是代数学最基本的模型,而一元一次方程是方程中最简单的种类.解一元一次方程的步骤:(1)、去分母(2)、去括号(3)、移项(4)、合并同类项(5)、系数化12、二元一次方程组列方程组解应用题的主要步骤与列方程解应用题基本没有区别,由于可以多设未知数,所以通过列方程组解应用题可以有更多的选择,但解方程组的过程更需要一些技巧方法,其中最关键的步骤是消元,“消元”顾名思义减少方程组中未知数的个数,解方程组的消元方法主要有①代入消元法.②加减消元法.加减消元法:将方程组中的某个未知数的系数调整为相等,将方程组中方程的相减达到消元目的.代入消元法:利用方程组中的某条方程得到某项未知数的代数表达式,然后将它代入方程组中的其他方程达到消元目的.消元后,把方程转化成一元一次方程求解。
3、重点难点解析重点:列方程及方程组解应用题的主要步骤:(1)仔细审题找出题目中涉及到的各个量中的关键量,这个量最好能和题目中的其他量有着紧密的数量关系.(2)设这个量为x,用含x的代数式来表示题目中的其他量.(3)找到题目中的等量关系,建立方程.(4)解方程.(5)通过求到的关键量求得题目答案.难点:(1)恰当的假设未知数(2)从已知条件中寻找等量关系,列出方程或方程组并求解。
六年级数学下册试题 一课一练《数与代数-列方程解三步应用题》-苏教版【含答案】
《数与代数-列方程解三步应用题》一、填空题1.甲乙两地相距972km,一列火车从甲地开出,每小时行驶162km,另一列从乙地开出,每小时行驶108km.这两列火车同时开出,经过几小时相遇?可设经过x小时相遇,列方程是,求得x的值是.2.根据题意把方程补充完整.甲、乙两辆汽车同时从相距270千米的两地相对开出3小时后相遇,甲车每小时行驶48千米,乙车每小时行驶多少千米?(1)根据甲车行驶的路程+乙车行驶的路程=总路程,设乙车每小时行驶x千米,列方程:=+270(2)根据(甲车每小时行驶的路程+乙车每小时行驶的路程)3⨯=总路程,设乙车每小时行驶x千米,列方程:⨯=(+)3270二、选择题1.两辆汽车同时从相距522千米的两地相向而行,甲车每小时行50千米,乙车每小时行40千米,行了几小时后两车________?设行了x小时后两车.根据方程选择合适的信息.++=;504072522x x+-=.x x504072522A.离中点72千米处相遇B.还相距72千米C.又相距72千米2.甲乙两地间的铁路长480千米,客车和货车同时从两地相对开出,经过4小时相遇.已知客车每小时行65千米,货车每小时行x千米.不正确的方程是()A.6544480+480+=÷D.654x=xx⨯+= B.4480654x=-⨯C.6548043.两地相距128千米,甲、乙两人骑自行车同时从两地出发,相对而行4小时后相遇,甲每小时行14.5千米,甲每小时比乙慢()A.32千米B.17.5千米C.5千米D.3千米4.两艘轮船分别从福建港口和中华台北港口同时出发,相向而行,已知两港口的距离是411km ,从中华台北港口出发的轮船每小时行驶73km ,从福建港口出发的轮船每小时行驶64km .经过多少小时两船相遇?解:设经过x 小时两船相遇,可列方程为( )A .(7364)411x +=B .(7364)411x -=C .7364411x +=5.货车和客车从A 、B 两地同时相向而行,货车每小时行60千米,客车每小时行80千米,问几小时后两车在离中点40千米处相遇?(解:设x 小时后两车在离中点40千米处相遇.)下面正确的算式或方程共有( )个.(1)604080x x += (2)8060402x x -=⨯ (3)806040x x -=(4)402(8060)⨯÷-(5)40(8060)÷-(6)80402÷⨯.A .1B .2C .3D .4三、解决问题1.A 、B 两船,分别从甲、乙两港同时向对方港口开出,经过6小时后,两船相遇,相遇后两船继续向前行驶,A 船又经4小时到达乙港,B 船又经几小时到达甲港?(用多种方法解)2.福州到厦门的距离是260千米,一辆动车和一辆快速列车同时从两地相对开出,经过0.8小时相遇,动车平均每小时行200千米,快速列车平均每小时行多少千米?(用方程解)3.两地间的距离是540千米.甲、乙两辆汽车同时从两地开出,相向而行,经过3小时相遇.甲车每小时行88千米,乙车每小时行多少千米?(用方程解)4.杭州到衢州的杭金衢高速全长290km ,甲、乙两辆汽车分别从杭州和衢州同时出发相向而行,甲车每小时行105km ,经过1.4小时两车还未相遇,此时两车相距17km ,乙车每小时行多少千米?(用方程解)5.甲、乙两地相距362.5千米,一辆客车和一辆货车同时从两地相对开出,经过2.5小时相遇.已知货车每小时行65千米,请你算一算客车每小时行多少千米?(列方程解答)6.列方程解答.A、B两地间的公路全长480千米.甲、乙两辆货车从A、B两地同时出发,相向而行,经过4小时两车相遇,甲货车的速度是64千米/时,乙货车的速度是多少千米/时?7.甲、乙两地之间的高速公路全长820千米.一辆客车和一辆货车同时从甲、乙两地出发,相向而行,经过4小时相遇.如果客车的速度是110千米/时,货车的速度是多少千米/时(列方程解)8.甲乙两地相距280千米,两车分别从两地相对开出,经过3.5小时相遇.已知客车每小时行42千米,货车每小时行多少千米?(列方程解)9.甲、乙两车从相距320千米的两地同时出发,相向而行,经过4小时两车相遇.甲每小时行30千米,乙车每小时行多少千米?(列方程解答)10.甲、乙两辆汽车同时从相距225千米的两地相对开出,经过2.5小时相遇,甲车每小时行48千米,乙车每小时行多少千米?(列方程解)11.两个码头之间相距100千米,甲、乙两艘轮船分别同时从两个码头出发向相反方向开出,甲船每小时行38千米,乙船每小时行32千米.经过几小时两船相距450千米?(列方程解)12.甲、乙两船由相距384千米的两个码头同时相向而行,甲船每小时行21千米,乙船每小时行27千米.几小时后两船相遇?(方程解)13.奇思和妙想家相距1120米,奇思要把一盒学习用具还给妙想,两人相约同时从各自家里出发,奇思每分钟走76米,妙想每分钟走84米,经过几分钟两人相遇?(列方程解答)14.甲乙两辆汽车从相距324千米的两地同时相对开出,经6小时后在途中相遇,甲车的速度是乙车的2倍.甲车每小时行多少千米?(用方程解)15.两列火车从相距570千米的两地同时相对开出.甲车每小时行110km,乙车每小时行80km.经过几小时两车相遇?(用方程解)16.甲、乙和丙同时由东、西两城出发,甲、乙两人由东城到西城,甲步行每小时走5千米,乙骑自行车每小时行15千米,丙也骑自行车每小时20千米,已知丙在途中遇到乙后,又经过1小时才遇到甲,求东、西城相距多少千米?17.成渝高速路长330千米,一辆大客车从重庆开往成都,一辆小轿车同时从成都开往重庆.2小时在途中相遇,已知小轿车的速度是大客车的1.2倍.两车每小时各行多少千米?18.淘气家和笑笑家相距1240m.一天,两人约定在两家之间的路上会合.淘气每分走80m,笑笑每分走75m.两人同时从家出发,多长时间后能相遇?(列方程解答)答案一、填空题1.(162108)972x +⨯=;3.6.2.(1)4833270x ⨯+=(2)(48)3270x +⨯=二、选择题1.B ;C .2.D .3.D .4.A .5.B .三、解决问题1.解:(1)111()6664÷--+11615=÷-156=-9=(小时)答:B 船又经9小时到达甲港.(2)设B 船又经x 小时到达甲港, 则1116466x +=++ 1111110610610x +-=-+ 11615x =+615x +=66156x +-=-9x =答:B 船又经9小时到达甲港.2.解:设另一列火车平均每小时行x 少千米,(200)0.8260x +⨯=1600.8260x +=0.8100x=x=125答:快速列车平均每小时行125千米.3.解:设乙车每小时行x千米,可得方程:(88)3540+⨯=x+=2643540xx=3276x=92答:乙车每小时行92千米.4.解:设乙车每小时行x千米,则:x⨯++=105 1.4 1.417290x++=147 1.417290x+=1.4164290x=1.4126x=90答:乙车每小时行90千米.5.解:设客车每小时行x千米,由题意得,+⨯=(65) 2.5362.5x+=65145xx=80答:客车每小时行80千米.6.解:设乙车每小时行x千米,x⨯+=6444480x+=2564480+-=-x2564256480256x=422456x=答:乙车每小时行56千米.7.解:设货车的速度每小时x千米,可得方程:+⨯=x(110)4820110205+=xx=95答:货车每小时行95千米.8.解:设货车每小时行x千米,x+⨯=则(42) 3.5280x+⨯÷=÷(42) 3.5 3.5280 3.5x+=4280x+-=-42428042x=38答:货车每小时行38千米.9.解:设乙车每小时行x千米,4430320x+⨯=x+=4120320x=4200x=50答:乙车每小时行50千米.10.解:设乙车每小时行x千米+⨯=(48) 2.5225x+=120 2.5225xx=2.5105x=42答:乙车每小时行42千米.11.解:设经过x小时两船相距450千米,x+=-(3832)450100x=70350x=5答:经过5小时两船相距450千米.12.解:设x小时后两船x相遇,由题意得,+=,2127384x x48384x =,8x =;答:8小时后两船相遇.13.解:设两人同时从家出发,x 分钟相遇,则根据(7684)1120x +⨯=1601120x =1601601120160x ÷=÷7x =答:经过7分钟相遇.14.解:设乙车的速度为每小时x 千米,则甲车的速度是每小时2x 千米, (2)6324x x +⨯=354x =18x =21836⨯=(千米)答:甲车每小时行36千米.15.解:设经过x 小时两车相遇11080570x x +=190570x =3x =答:经过3小时两车相遇.16.解:乙丙经过x 小时相遇,根据总路程相等列出方程:(1520)(520)(1)x x +=++352525x x =+2.5x =总路程:(1520) 2.5+⨯35 2.5=⨯87.5=(千米)答:东、西城相距87.5千米.17.解:大客车每小时行x千米,则小轿车每小时行1.2x千米,x x+⨯=( 1.2)2330x=4.4330x=75⨯=(千米)75 1.290答:大客车每小时行75千米,小轿车每小时行90千米.18.解:设两人同时从家出发,x分钟后能相遇,x+=(8075)1240x=1551240x=8答:两人同时从家出发,8分钟后能相遇.。
第三单元作业单
1)2X+1.5 = 4×3.2 2)5(X-6)= X+24二、列方程解应用题(80%)1)已知长方形游泳池的面积是1250平方米,长是50米,宽是多少米?2)一块三角形草坪的面积是2137.5平方米,底是95米,它的高是多少米?3)梯形的面积是110平方米,上底是12米,下底是8米,则梯形的高是多少米?4)一个平行四边形面积与一个三角形面积相等,平行四边形长12分米,高8分米,三角形的底边是24分米,对应的高是多少分米?1)1.25X-2 = 2.5X÷10 2)(X+58-17)÷3 = 42二、列方程解应用题(80%)1)莲花小学共有学生426人,其中女生人数是男生人数的2倍,莲花小学的男女生各多少人?2)农夫果园共有梨树、苹果树共850棵,其中梨树的棵数是苹果树的4倍,果园里有苹果树多少棵?3)停车场共有车辆960辆,其中轿车是卡车的3倍,客车是卡车的2倍,停车场有轿车、卡车、客车各几辆?4)已知一块梯形的石料,它的面积是375平方分米,高是37.5分米,已知上底是下底的1.5倍,它的上底是多少分米?§3.1列方程解应用题(3)一、解方程(20%)姓名得分1)2.6X-17.94 = 39.26 2)18.4 = 3.5X+13.4-X二、列方程解应用题(80%)1)一个长方形菜地周长为12米,长比宽的2倍长1.5米,求这个长方形菜地的面积?2)小亚把自己收集的58张邮票分放在2个抽屉,第一抽屉比第二抽屉的2倍多1张,这两个抽屉里各有多少张邮票?3)图书馆新购故事书和科技书412本,故事书的本书比科技书的1.8倍少8本,两种书各买了多少本?4)学校合唱队共有男女队员79人,如果男队员增加2人,那么正好等于女队员人数的2倍,合唱队的男女队员各有多少人?一、解方程(20%)姓名得分1)8X÷(35.7-25.7)= 285.6 2)3.7X-6.9 = 3.6X+3.01二、列方程解应用题(80%)1)造纸长今年造纸量是去年的3倍,今年比去年多造纸800吨,造纸厂今年造纸多少吨?2)超市里统一冰红茶的数量是矿泉水的10倍,统一冰红茶比矿泉水多99瓶,矿泉水有多少瓶?3)有两条绳子,第一条绳子的长度是第二条的3倍,第一条绳子比第二条绳子长2.4米,两条绳子各长多少米?4)小巧妈妈比小巧大32岁,妈妈的年龄比小巧的3倍还多4岁。
小学生方程解应用题的意义、步骤、方法(附例题及练习题)
小学生列方程解应用题------意义、步骤、方法(附例题及练习题)1、列方程解应用题的意义★用方程式去解答应用题求得应用题的未知量的方法。
2、列方程解答应用题的步骤★弄清题意,确定未知数并用x表示;★找出题中的数量之间的相等关系;★列方程,解方程;★检查或验算,写出答案。
3、列方程解应用题的方法★综合法:先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。
这是从部分到整体的一种思维过程,其思考方向是从已知到未知。
★分析法:先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。
这是从整体到部分的一种思维过程,其思考方向是从未知到已知。
4、列方程解应用题的范围a一般应用题;b和倍、差倍问题;c几何形体的周长、面积、体积计算;d分数、百分数应用题;e比和比例应用题。
5、常见的一般应用题以总量为等量关系建立方程以相差数为等量关系建立方程以题中的等量为等量关系建立方程以较大的量或几倍数为等量关系建立方程根据题目中条件选择解题方法一、以总量为等量关系建立方程例1:两列火车同时从距离536千米的两地相向而行,4小时相遇,慢车每小时行60千米,快车每小时行多少小时?解:设快车小时行X千米解法一:快车4小时行程+慢车4小时行程=总路程4X+60×4=5364X+240=5364X=296X=74答:快车每小时行驶74千米。
解法二:快车的速度+慢车的速度)×4小时=总路程(X+60)×4=536X+60=536÷4X=134一60X=74练一练:①降落伞以每秒10米的速度从18000米高空下落,与此同时有一热汽球从地面升起,20分钟后伞球在空中相遇,热汽球每秒上升多少米?②甲、乙两个进水管往一个可装8吨水的池里注水,甲管每分钟注水400千克,要想在8分钟注满水池,乙管每分钟注水多少千克?③两城相距600千米,客货两车同时从两地相向而行,客车每小时行70千米,货车每小时行80千米,几小时两车相遇?④两地相距249千米,一列火车从甲地开往乙地,每小时行55。
列方程解应用题
列方程解应用题列方程解应用题的关键在于由题目中隐含的相等关系列出相应的方程,找相等关系基本可有如下几种方法:一、根据数量关系找相等关系。
好多应用题都有体现数量关系的语句,即“…比…多…”、“…比…少…”、“…是…的几倍”、“…和…共…”等字眼,解题时只要找出这种关键语句,正确理解关键语句的含义,就能确定相等关系。
例1:某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?例2合唱队有80人,合唱队的人数比舞蹈队的3倍多15人,则舞蹈队有多少人?例3:在甲处劳动的有27人,在乙处劳动的有19人,现在另调20人去支援,使在甲处人数为在乙处的人数的2倍,应调往甲、乙两处各多少人?解:设调x人到甲处,则调(20-x)人到乙处,由题意得:27+x=2(19+20-x),解得x=17所以 20-x=20-17=3(人)答:应调往甲处17人,乙处3人。
二、根据熟悉的公式找相等关系。
单价×数量=总价,单产量×数量=总产量,路程=速度×时间,工作总量=工作效率×工作时间,售价=基本价×打折的百分数,利润=售价-进价,利润=进价×利润率,几何形体周长、面积和体积公式,都是解答相关方程应用题的工具。
例1:一件商品按成本价提高100元后标价,再打8折销售,售价为240元。
求这件商品的成本价为多少元?例2:用一根长20cm的铁丝围成一个正方形,正方形的边长是多少?例3:一个梯形的下底比上底多2厘米,高是5厘米,面积是40c平方厘米,求上底。
例4:商品进价1800元,原价2250元,要求以利润率为5%的售价打折出售,则此商品应打几折出售?相等关系:售价-进价=进价×利润率解:设最低可打x折。
据题意有:2250x-1800=1800×5%解得x=0.84答:此商品应打8.4折。
三、根据总量等于各分量的和找相等关系。
即根据总量等于各分量之和来列出方程,用此法要注意分量不可有所遗漏。
名师讲解小学列方程解应用题
【重点难点提要】重点:1.理解并掌握列方程解应用题的一般步骤,学会按步骤设未知数列方程求解;2.初步学会分析应用题中数量间相等关系的方法,知道常见的数量关系式(如路程=速度⨯时间等)和计算公式(如:三角形的面积=底⨯高÷2等)都可以作等量关系式列方程求解。
难点:1.学会寻找应用题中数量间相等关系的方法,能正确地找出应用题中的等量关系列方程求解;2.初步学会恰当地设未知数列方程;3.初步学会根据应用题中数量关系的具体情况,灵活选用算术解法或方程解法解答应用题。
【知识方法归纳】1.列方程解比较容易的两步应用题(1)列方程解应用题的步骤①弄清题意,找出未知数并用x表示;②找出应用题中数量间的相等关系,列方程;③解方程;④检查,写出答案。
(2)列方程解应用题的关键弄清题意后,找出应用题中数量间的相等关系,恰当地设未知数,列出方程。
(3)运用一般的数量关系列方程解应用题①列方程解加、减法应用题。
如:甲乙两人年龄的和为29岁,已知甲比乙小3岁,甲、乙两人各多少岁?数量间的等量关系:甲的年龄 + 乙的年龄 = 甲乙二人的年龄和解:设甲的年龄是x岁,则乙的年龄为:(x+3)岁。
x+(x+3)=29x+x+3=292x=29-3x=26÷2x=13……甲的年龄13+3=16(岁)……乙的年龄答:甲的年龄是13岁,乙的年龄是16岁。
②列方程解乘、除法应用题。
如:学校图书馆买来故事书240本,相当于科技书的3倍,买来科技书多少本?科技书的本数⨯ 3 = 故事书的本数解:设买来科技书x本3x=240x=80答:买来科技书80本。
(4)用计算公式、性质、数位及计数单位等做数量间的等量关系,列方程解应用题①一长方形的周长是240米,长是宽的1.4倍,求长方形的面积。
( 长 + 宽 )⨯2=周长解:设宽是x米,则长是(1.4x)米。
(1.4x+x)⨯2=2402.4x=240÷2x=120÷2.4x=50……长方形的宽50⨯1.4=70(米) ……长方形的长70⨯50=3500(平方米)答:长方形的面积是3500平方米。
六年级奥数列方程解应用题含答案
列方程解应用题知识框架方程,是一种顺向的“程序”,即设出未知数之后,完全可以根据题目叙述,把各个量翻译出来,找出等量关系划等号即可.一、列方程解应用题的要点(1)设出用哪个未知量表示题目中提到的其他量比较方便,就选择哪个未知量作为未知数.如果只设一个不能进行有效的表达,就再设一两个.(2)翻译用设出的未知数,逐个对应地翻译题目中提到的其他各个量.(3)等量按照题目所述,找出并构建等量关系.等量中很容易忽视的是“不变量”和“相同量”,一定要敏感.【提示】有时虽然设出未知数之后等式列出来了,但方程不好解. 此时,可考虑重设未知数、重列方程或采取其他方法,甚至可以考虑先把问题的目标表达式找出来,“设而不求”——不占而屈人之兵.二、列方程解应用题的优势和局限性关系比较复杂的问题,使用方程,通常可以达到事半功倍的效果.但需要注意的是,方程“单飞”有时无力,需要结合线段图、列表法等,能够发挥更加明显的作用.重难点(1)重点:未知数的选设,其他量的表达,等量关系的寻找(2)难点:未知数的选设,等量关系的寻找,不定方程和不定方程组解的讨论例题精讲一、列一般方程解应用题【例 1】已知足球、篮球、排球三种球平均每个35元.篮球比排球每个贵10元,足球比排球每个贵8元.问:每个篮球多少元?【考点】列方程解应用题【难度】1星【题型】解答【解析】设每个排球x元,则每个篮球为x+10元,每个足球x+8元,由已知列方程:15x+x+8+x+10=35×3, 解得x=29.所以每个篮球x+10=29+10=39元.【答案】29【巩固】 有一些糖,每人分5块多10块;如果现有的人数增加到原人数的1.5倍,那么每人4块就少2块.问这些糖共有多少块?【考点】列方程解应用题 【难度】2星 【题型】解答 【解析】 设开始共有x 人,5x+10=4×1.5x-2, 解得x=12,所以这些糖共有12×5+10=70块.【答案】70【例 2】 一个分数 ,分子与分母的和是122,如果分子、分母郡减去19,得到的分数约简后是 .那么原来的分数是多少?【考点】列方程解应用题 【难度】2星 【题型】解答 【解析】 方法一:设这个分数为122aa-,则分子、分母都减去19为19191==(122)191035a a a a -----,即5-95=103-a a ,解得33a =,则122-33=89.所以原来的分数是3389方法二:设这个分数为变化后为5a a ,那么原来这个分数为19519a a ++,并且有(19)(519)a a +++=122, ,解得.=14.所以原来的分数是3389. 【答案】3389【巩固】 如下左图中的短除式所示,一个自然数被8除余1,所得的商被8除余1,再把第二次所得的商被8除后余7,最后得到的一个商是a .如下右图中的短除式表明:这个自然数被17除余4,所得的商被17除余15,最后得到的一个商是a 的2倍.求这个自然数.【考点】列方程解应用题 【难度】2星 【题型】解答【解析】 由题意知()()878181172174,a a +⨯+⨯+=+++⎡⎤⎣⎦整理得512a+457=578a+259,即66a=198,a=3.于是,[(80+1)×8+1]× 8+1=1993.【答案】1993【例 3】 一条船往返于甲、乙两港之间,由甲至乙是顺水行驶,由乙至甲是逆水行驶.已知船在静水中的速度为8千米/时,平时逆行与顺行所用的时间比为2∶1.某天恰逢暴雨,水流速度为原来的2倍,这条船往返共用9时.问:甲、乙两港相距多少千米?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设甲、乙两港相距x 千米,原来水流速度为a 千米/时根据题意可知,逆水速度与顺水速度的比为2∶1,即(8-a )∶(8+a )=1∶2,于是有8+a=2(8-a),解得a=38再根据暴雨天水流速度变为2a 千米/时,则有92828=-++axa x把a=38代入,得938283828=⨯-+⨯+x x解得x=20.【答案】20【巩固】 如图,沿着边长为90米的正方形,按逆时针方向,甲从A 出发,每分钟走65米,乙从B 出发,每分钟走72米.当乙第一次追上甲时在 正方形的哪一条边上?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设追上甲时乙走了x 分.依题意,甲在乙前方3×90=270(米),故有72x =65x+270.解得7270=x .在这段时间内乙走了712777727072=⨯(米).由于正方形边长为90米,共四条边,故由,可以推算出这时甲和乙应在正方形的DA 边上. 【答案】DA 边上二、 列一般方程组解应用题【例 4】 用白铁皮做罐头盒,每张铁皮可制盒身16个,或制盒底43个,一个盒身和两个盒底配成一个罐头盒,现有150张铁皮,用多少张制盒身,多少张制盒底,才能使盒身与盒底正好配套?【考点】列方程解应用题 【难度】3星 【题型】解答 【解析】 设用x 张铁皮制盒身,y 张铁皮制盒底.⎩⎨⎧=⨯=+y x y x 43216150解得x y ==⎧⎨⎩8664 所以86张铁皮制盒身,64张铁皮制盒底.【答案】86;64【巩固】 运来三车苹果,甲车比乙车多4箱,乙车比丙车多4箱,甲车比乙车每箱少3个苹果,乙车比丙车每箱少5个苹果,甲车比乙车总共多3个苹果,乙车比丙车总共多5个苹果,这三车苹果共有多少个?【考点】列方程解应用题 【难度】3星 【题型】解答 【解析】 设乙车运x 箱,每箱装y 个苹果,列表如下:车别 甲 乙 丙 箱数 x +4 x x -4 每箱苹果数y -3yy +5(x+4)(y-3)-xy=3 xy-(x-4)(y+5)=5化简为: 4y-3x=15, ①5x-4y=15,②①+②,得:2x=30,于是x=15. 将x=15代人①或②,可得:y=15.所以甲车运19箱,每箱12个;乙车运15箱,每箱15个;丙车运11箱,每箱20个. 三车苹果的总数是:12×19+15×15+20×11=673(个).【答案】673【例 5】 有甲、乙、丙、丁4人,每3个人的平均年龄加上余下一人的年龄分别为29,23,2l 和17.这4人中最大年龄与最小年龄的差是多少?【考点】列方程解应用题 【难度】4星 【题型】解答 【解析】 设这些人中的年龄从大到小依次为x 、y 、z 、w ,⎧⎨⎩①+②+③十④得:2(x +y+z+w )=90, 则3x y z w+++=15…………………………………………⑤①-⑤得:2143x = , x =21; ④-⑤得:223z =, z=3; 所以最大年龄与最小年龄的差为x w - =21—3=18(岁) 【答案】18三、 列不定方程或不定方程组解应用题【例 6】 新发行的一套邮票共3枚,面值分别为20分、40分和50分,小明花5.00元买了15张.问:其中三种面值的邮票各多少张?【考点】列方程解应用题 【难度】2星 【题型】解答【解析】 根据题意,设面值20分的x 张,面值40分的y 张,面值50分的z 张,可列方程得152********x y z x y z ++=⎧⎨++=⎩解得672x y z =⎧⎪=⎨⎪=⎩所以20分的6张,40分的7张,50分的2张【答案】6;7;2【巩固】 某次数学竞赛准备了22支铅笔作为奖品发给获得一、二、三等奖的学生,原计划一等奖每人发6支,二等奖每人发3支,三等奖每人发2支.后来又改为一等奖每人发9支,二等奖每人发4支,三等奖每人发1支.问:获一、二、三等奖的学生各几人?【考点】列方程解应用题 【难度】3星 【题型】解答 【解析】 根据题意,设一等奖x 人,二等奖y 人,三等奖z 人,可列方程得632229422x y z x y z ++=⎧⎨++=⎩解得125x y z =⎧⎪=⎨⎪=⎩所以,一等奖1人,二等奖2人,三等奖5人.【答案】1;2;5【例 7】 工程队要铺设78米长的地下排水管道,仓库中有3米和5米长的两种管子.问:可以有多少种不同取法?【考点】列方程解应用题 【难度】2星 【题型】解答 【解析】 根据题意,设3米管子x 根,5米管子y 根,可列方程得3578x y +=解得260x y =⎧⎨=⎩或213x y =⎧⎨=⎩或166x y =⎧⎨=⎩或119x y =⎧⎨=⎩或612x y =⎧⎨=⎩或115x y =⎧⎨=⎩所以共有6种取法.【答案】6【巩固】 用1分、2分和5分硬币凑成1元钱,共有多少种不同的凑法? 【考点】列方程解应用题 【难度】4星 【题型】解答 【解析】 根据题意,设5分有x 个,2分有y 个,1分有z 个,可列方程得52100x y z ++=5分取20个,有1种.5分取19个,2分有3种取法(2个、1个、0个),共3种. 5分取18个,共6种.(同上) 5分取17个,共8种. 5分取16个,共11种. ......根据规律不难求出共有1+3+6+8+11+13+16+18+21+23+26+28+31+33+36+38+41+43+46+48+51 =18+58+98+138+178+51 =490+51 =541【答案】541【例 8】 某单位的职工到郊外植树,其中有男职工,也有女职工,并且有寺的职工各带一个孩子参加.男职工每人种13棵树,女职工每人种10棵树,每个孩子种6棵树,他们一共种了216棵树.那么其中有多少名男职工?【考点】列方程解应用题 【难度】4星 【题型】解答【解析】 设男职工x 人,孩子y 人,则女职工3y -x 人(注意,为何设孩子数为y 人,而不是设女工为y 人),那么有()131036x y x y +-+=216,化简为336x y +=216,即12x y +=72.有122436486054321x x x x x y y y y y ⎧=⎧====⎧⎧⎧⎪⎨⎨⎨⎨⎨=====⎩⎩⎩⎪⎩⎩.但是,女职工人数为3y x -必须是自然数,所以只有125x y =⎧⎨=⎩时,33y x -=满足.那么男职工数只能为12名.【答案】12【巩固】 一居民要装修房屋,买来长0.7米和O.8米的两种木条各若干根.如果从这些木条中取出一些接起来,可以得到许多种长度的木条,例如:O.7+O.7=1.4米,0.7+0.8=1.5米.那么在3.6米、3.8米、3.4米、3.9米、3.7米这5种长度中,哪种是不可能通过这些木条的恰当拼接而实现的?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设0.7米,0.8米两种木条分别x ,y 根,则0.7x +0.8y =3.4,3.6……,即7x +8y =34,36,37,38,39. 将系数,常数对7取模,有y ≡6,l ,2,3,4(mod 7),于是y 最小分别取6,1,2,3,4.但是当y 取6时,8×6=48超过34,x 无法取值.所以3.4米是不可能通过这些木条的恰当拼接而实现的.【答案】3.4【例 9】 某人在公路上行走,往返公共汽车每隔4分就有一辆与此人迎面相遇,每隔6分就有一辆从背后超过此人.如果人与汽车均为匀速运动,那么汽车站每隔几分发一班车?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设汽车站每隔x 分发一班车,某人的速度是v1,汽车的速度为v2,依题意得由①、②,得将③代入①,得x =4.8所以汽车站每隔4.8分钟发一班车 【答案】4.8【巩固】 某地收取电费的标准是:若每月用电不超过50千瓦时,则每千瓦时收5角;若超过50千瓦时,则超出部分按每千瓦时8角收费.某月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少千瓦时电?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 根据题意可知,因为3元3角既不是5角的整数倍,也不是8角的整数倍.所以甲用的电超过50千瓦时,乙用的电没有超过50千瓦时,设甲用的电超过50千瓦时的部分为x 千瓦时电,乙用的电与50千瓦时相差y 千瓦时电,可列方程得8533x y +=解得15x y =⎧⎨=⎩所以甲用了50+1=51(千瓦时)的电,乙用了50-5=45(千万时)的电.【答案】51;45【例 10】 某校师生为贫困地区捐款1995元.这个学校共有35名教师,14个教学班.各班学生人数相同且多于30人不超过45人.如果平均每人捐款的钱数是整数,那么平均每人捐款多少元?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设每班有a(30<a≤45)名学生,每人平均捐款x 元(x 是整数),依题意有:x(14a+35)=1995.于是14a+35|1995.又3l <a≤45,所以469<14a+35≤665,而1995=3×5×7×19,在469与665之间它的约数仅有665,故14a+35=665,x=3,平均每人捐款3元.【答案】3【巩固】 一次数学竞赛中共有A 、B 、C 三道题,25名参赛者每人至少答对了一题.在所有没有答对A 的学生中,答对B 的人数是答对C 的人数的两倍,只答对问题A 的人数比既答对A 又至少答对其他一题的人数多1.又已知在所有恰好答对一题的参赛者中,有一半没有答对A .请问有多少学生只答对B?【考点】列方程解应用题 【难度】4星 【题型】解答【解析】 设不只答对A 的为x 人,仅答对B 的为y 人,没有答对A 但答对B 与C 的为z 人.解得:253233x y z x-⎧=⎪⎨⎪=-⎩,,6,y z x ≥≥x =7时,y 、z 都是正整数,所以7,6,2x y z ===. 故只答对B 的有6人. 【答案】6课堂检测【随练1】 有一队伍以1.4米/秒的速度行军,末尾有一通讯员因事要通知排头,于是以2.6米/秒的速度从末尾赶到排头并立即返回排尾,共用了10分50秒.问:队伍有多长?【考点】经济问题 【难度】2星 【题型】解答 【解析】 设通讯员从末尾赶到排头用了x 秒,依题意得2.6x-1.4x=2.6(650-x )+1.4(650-x )解得x =500所以队伍长为(2.6-1.4)×500=600(米)【答案】600【随练2】 六(1)班举行一次数学测验,采用5级计分制(5分最高,4分次之,以此类推).男生的平均成绩为4分,女生的平均成绩为3.25分,而全班的平均成绩为3.6分.如果该班的人数多于30人,少于50人,那么有多少男生和多少女生参加了测验?【考点】列方程解应用题 【难度】3星 【题型】解答 【解析】 设该班有x 个男生和y 个女生,于是有4x+3.25y=3.6(x+y ),化简后得8x=7y.从而全班共有学生在大于30小于50的自然数中,只有45可被15整除,所以推知x =21,y=24. 【答案】21;24【随练3】 (1)将50分拆成10个质数之和,要求其中最大的质数尽可能大,则这个最大质数是多少?(2)将60分拆成10个质数之和,要求其中最大的质数尽可能小,则这个最大的质数是多少?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 (1)首先确定这10个质数或其中的几个质数可以相等,不然10个互不相等的质数和最小为2+3+5+7+11+13+17+19+23+29,显然大于50. 所以,其中一定可以有某几个质数相等. 欲使最大的质数尽可能大,那么应使最小的质数尽可能小,最小的质数为2,且最多可有9个2,那么最大质数不超过50—2×9=32,而不超过32的最大质数为31. 又有82502222331=++++++个,所以满足条件的最大质数为31.(2)最大的质数必大于5,否则10个质数的之和将不大于50. 所以最大的质数最小为7,为使和为60,所以尽可能的含有多个7. 60÷7=8……4,8760=7+7+7++7+4个,而4=2+2,恰好有8760=7+7+7++7+2+2个.即8个7与2个2的和为60,显然其中最大的质数最小为7.【答案】31;7【随练4】在同一路线上有4个人:第一个人坐汽车,第二个人开摩托车,第三个人乘助力车,第四个人骑自行车,各种车的速度是固定的,坐汽车的12时追上乘助力车的,14时遇到骑自行车的,而开摩托车的相遇是16时.开摩托车的遇到乘助力车的是17时,并在18时追上了骑自行车的,问骑自行车的几时遇见乘助车的?【考点】经济问题【难度】4星【题型】解答【解析】设汽车、摩托车、助力车、自行车的速度分别为a,b,c,d,设在12时骑自行车的与坐汽车的距离为x,骑自行车的与开摩托车的之间的距离为y.有(①+③)×2一(②+④),得310()x c d=+,即10()3x c d =+设骑自行车的在t时遇见骑助力车的,则(12)(), x t c d=-⨯+即10123t-=,所以1153t=.所以骑自行车的在15时20分遇见骑助力车的.【答案】15时20分家庭作业【作业1】甲、乙、丙、丁四人今年分别是16、12、11、9岁.问:多少年前,甲、乙的年龄和是丙、丁年龄和的2倍?【考点】列方程解应用题【难度】2星【题型】解答【解析】设x年前,甲乙的年龄和是丙、丁年龄和的2倍.16+12-2x=2×(11+9-2x),解得x=6.所以,6年前,甲、乙的年龄和是丙、丁年龄和的2倍.【答案】6【作业2】铁路旁的一条与铁路平行的小路上,有一行人与骑车人同时向南行进,行人速度为3.6千米/时,骑车人速度为10.8千米/时,这时有一列火车从他们背后开过来,火车通过行人用22秒,通过骑车人用26秒,这列火车的车身总长是多少?【考点】列方程解应用题【难度】2星【题型】解答【解析】设这列火车的速度是x米/秒,依题意列方程,得(x-1)×22=(x-3)×26.解得x=14.所以火车的车身长为(14-1)×22=286(米).【答案】286【作业3】 小明玩套圈游戏,套中小鸡一次得9分,套中小猴得5分,套中小狗得2分.小明共套了10次,每次都套中了,每个小玩具都至少被套中一次,小明套10次共得61分.问:小明至多套中小鸡几次?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设套中小鸡x 次,套中小猴y 次,则套中小狗(10-x-y )次.根据得61分可列方程9x+5y+2(10-x-y )=61,化简后得7x=41-3y.显然y 越小,x 越大.将y=1代入得7x=38,无整数解;若y=2,7x=35,解得x=5.【答案】5【作业4】 袋子里有三种球,分别标有数字2,3和5,小明从中摸出几个球,它们的数字之和是43.问:小明最多摸出几个标有数字2的球?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 根据题意,设摸出标有数字2的x 个,摸出标有数字3的y 个,摸出标有数字5的z 个,可列方程得23543x y z ++=,x 最大为所求.解得2010x y z =⎧⎪=⎨⎪=⎩所以,摸出标有数字2的最多为20个.【答案】20【作业5】 小花狗和波斯猫是一对好朋友,它们在早晚见面时总要叫上几声表示问候.若是早晨见面,小花狗叫两声,波斯猫叫一声;若是晚上见面,小花狗叫两声,波斯猫叫三声.细心的小娟对它们的叫声统计了15天,发现它们并不是每天早晚都见面,在这15天内它们共叫了61声.问:波斯猫至少叫了多少声?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 根据题意,设白天见面的次数为x ,晚上见面的次数为y ,可列方程得3561x y +=白天见面最多时,波斯猫叫声最少.即x 最大为所求.解得125x y =⎧⎨=⎩所以,波斯猫至少叫125327+⨯=(声). 【答案】27【作业6】 小明买红、蓝两支笔,共用了17元.两种笔的单价都是整数元,并且红笔比蓝笔贵.小强打算用35元来买这两种笔(也允许只买其中一种),可是他无论怎么买,都不能把35元恰好用完.那么红笔的单价是多少元?【考点】列方程解应用题【难度】3星【题型】解答【解析】如下表先枚举出所有可能的单价如表1.再依次考虑:首先,不能出现35的约数.否则只买这种笔就可以刚好用完35元,所以含有7,5,1的组合不可能.然后,也不能出现35—17=18的约数.否则先各买一支需17元,那么再买这种笔就可以花去18元,一共花35元.所以含有9,6,3,2的组合也不可能.所以,只有13+4的组合可能,经检验13x+4y=35这个不定方程确实无自然数解.所以红笔的单价为13元.【答案】13。
40道列方程解应用题
1.做一个容织是60平方分米的长方体铁皮箱,底面的长是4分米,宽是3分米,高是多少?2.师傅加工零件80个,比徒弟加工的2陪少10个.徒弟加工多少个?3.徒弟加工零件45个,比师傅的二分之一多5个.师傅加工多少个?4.学校买来一批桃,分给大班的学生,如果每人分5个桃,那么还剩32个,如果每人分8个,那么还有5个人分不到,这批桃共有多少个?5.王老师买回45千克苹果和20千克梨,共付人民币54.20元,后来退还10千克梨换回15千克苹果又付了7.40元,问每千克苹果比梨贵多少元?6.某连锁店十一月份营业额34.5万元,比十月份增加了4.5万元。
十一月份营业额十月份增加了百分之几?7.一项工程,单独完成甲队要15天,乙队要10天.现由甲、乙两队合做3天后,余下的由乙队单独做,还要几天完成?8.一个水地装有进水管和出水管,单开进水管40分可以将空池注满;单开出水管1小时可把满油水放完.现同时打开两管,多少小时可将它池注满?9.. 两城相距930千米,客货两车同时从两城相向开出,经过6小时两车相遇.客车平均每小时行80千米,货车平均每小时行多少千米?10.电影院原有座位32排,平均每排坐38人,扩建后增加到40排,可以多坐704人,扩建后平均每排坐多少人?\11.新星希望小学购买桌椅共20件,一共用去480元,桌子每张30元,椅子每张20元,问买了多少张桌子?12.运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运。
还要运几次才能运完?13.一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米?14.某车间计划四月份生产零件5480个。
已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个?15.甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米。
甲每小时行45千米,乙每小时行多少千米?16.某校六年级有两个班,上学期级数学平均成绩是85分。
小升初衔接之解方程及列方程解应用题
解方程:
3x﹢7 = 28
解: 3x﹢7 = 28
3x﹢7﹣7 = 28﹣7 3x = 21 x=7
检验:略
4x﹢5﹢3 = 24
解: 4x﹢5﹢3 = 24 4x﹢8 = 24 4x﹢8﹣8 = 24﹣8 4x = 16 4x÷4 = 16÷4 x=4
检验:略
解方程: 5(4﹢x)= 40
0.6(x﹢1.2)= 3.6
21 = 13﹢x
13﹢x = 21
13﹢x﹣13 = 21﹣13
x=8 方程左边 = 21﹣x = 21﹣8
= 13 = 方程右边 所以,x = 8 是方程的解。
例题 4 看图列方程,并求出方程的解。
x支 x支 x支 x支
35支
例题 4 看图列方程,并求出方程的解。
x支 x支 x支 x支
4x﹢3 = 35 解:
1、在含有字母的式子里,字母中间的乘号可以记作“·”,也可以省略 不写。 注意:加号、减号、除号以及数与数之间的乘号不能省略。 例如: a×b → a ·b 或 ab
2、a×a 可以写作 a ·a 或 a²(读作 a 的平方)。 注意: 2a 表示 a + a ;a²表示 a×a 。
3、数字与字母相乘时,省略乘号后要将数字写在字母的前面。 注意:当 1 与字母相乘时,1 省略不写。 例如: 2×a → 2a
或: 爸爸年龄﹣年龄差 = 小明年龄 x﹣26 = 12 x﹣26﹢26 = 12﹢26 x = 38
答:爸爸今年 38 岁。
发现关键字“比”, 就设“比”字后面的量为 x 。
检验:略
错误答案: 12﹢26 = x x = 38
以上计算并无错误,但不符合利用方 程求解的意义和要求。这种解法虽然 也含有未知数,但实际上是一种算术 方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利润=进价×利润率
3.若设每个书包进价为x元,则实际售价、利润应表示为多少元?利用上述相等关系,如何布列方程?
解:设每个书包进价为x元,则实际售价(1+50%)80%x、利润应为8元
跟据题意
学生选代表回答。
学生讨论回答。解题过程做在练习本上找一名学生板演
学生分组讨论完成例,2
教学过程
2.已知量与未知量之间存在着怎样的相等关系?
利润=实际售价-进价
实际售价=标价×打折率
利润=进价×利润率
3.若设用原价为x元,则实际售价、利润应表示为多少元?利用上述相等关系,如何布列方程?
解:设原价为x元,则实际售价为80%x、利润应为10%×1600
跟据题意
80%x-1600=10%×1600
x=2200
1、列方程解应用题的一般步骤是什么?
2、请同学们把所调查的商品销售中存在的量将给大家听
总结:利润=实际售价-进价实际售价=标价×打折率
利润=进价×利润率
二、探索新知,讲授新课
例1、商店对某种,商品的原价是多少?
1.本题中给出的已知量和未知量各是什么?
答:商品的原价为22000元
例2、某商场把一个双肩背的书包按进价提高50%标价,然后再按8折(标价的80%)出售,这样商场每卖一个书包可盈利8元.这种书包的进价是多少元?如果按6折出售,商场还盈利吗?为什么?
1.本题中给出的已知量和未知量各是什么?
2.已知量与未知量之间存在着怎样的相等关系?
利润=实际售价-进价
学生活动
(1+50%)80%x-x =8
X=40
提问若按6折出售每个书包多少元?商场还盈利吗?
(1+50%)60%×40=36<40
商场不盈利
三、课堂练习
练习.某商品的进价为200元,原价为300元,折价销售后的利润率为5%,此商品是按几折销售的?
四、师生共同小结
首先,如下问题:
1.本节课学习了哪些内容?
2.列一元一次方程解销售问题的几个基本量之间的关系是什么?
五、作业
作业:P128习题3-3 B组2、3
学生讨论回答
学生分组讨论互相拟补
1.列一元一次方程解应用题的步骤
2.有关销售问题中的数量关系
课后小结
通过两个例题的讨论探究使学生感受到用一元一次方程解应用题的在实际问题中应用很广,从而进一步激发学生学好列方程解应用题的积极性。通过后两个例题的讨论和探究使学生进一步理解销售问题几个基本量之间的关系。
教学过程
学生活动
一、创设情境,复习导入
课时授课计划
章节题目
3.6列方程解应用题(3)
授课日期
年月日
教学目标
1.能列出一元一次方程有关销售的应用题;
2.通过列一元一次方程解应用题,培养学生分析问题、解决问题的能力.
教学重点
一元一次方程解有关销售的应用题
教学难点
有关销售问题中的数量关系
课型
新课
教法
讨论、练习法
教具
电脑
板书设计
3.6列方程解应用题例例1例2