解析不等式恒成立问题_马继武
专题06 不等式恒成立问题(学生版) -2025年高考数学压轴大题必杀技系列导数
专题6 不等式恒成立问题函数与导数一直是高考中的热点与难点,利用导数研究不等式恒成立问题一直是高考命题的热点,此类问题一般会把函数、导数及不等式交汇考查,对能力要求比较高,难度也比较大,常见的题型是由不等式恒成立确定参数范围问题,常见处理方法有:①构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围.②分离变量,把问题转化为函数的最值问题.(一) 与不等式恒成立问题有关的结论①. ∀x ∈D ,均有f (x )>A 恒成立,则f (x )min >A ;②. ∀x ∈D ,均有f (x )﹤A 恒成立,则 f (x )ma x <A ;③. ∀x ∈D ,均有f (x ) >g (x )恒成立,则F (x )= f (x )- g (x ) >0,∴ F (x )min >0;④. ∀x ∈D ,均有f (x )﹤g (x )恒成立,则F (x )= f (x )- g (x ) <0,∴ F (x ) ma x <0;⑤. ∀x 1∈D , ∀x 2∈E ,均有f (x 1) >g (x 2)恒成立,则f (x )min > g (x )ma x ;⑥. ∀x 1∈D , ∀x 2∈E ,均有f (x 1) <g (x 2)恒成立,则f (x ) ma x < g (x ) min .【例1】(2024届天津市河西区高三下学期质量调查三)已知函数()22ln f x a x x =--,()()221ln g x ax a x x=-+-,其中a ÎR .(1)若()20f ¢=,求实数a 的值(2)当0a >时,求函数()g x 的单调区间;(3)若存在21,e e x éùÎêúëû使得不等式()()f x g x £成立,求实数a 的取值范围.【解析】(1)因为()22ln f x a x x =--,则()222a f x x x =-¢+,由()20f ¢=可得222022a -+=,解得12a =.(2)函数()()221ln g x ax a x x=-+-的定义域为()0,¥+,且()()()()222221212212ax a x ax x a g x a x x x x -++--+=-+=¢=,当0a >时,令()0g x ¢=,可得10x a=>或2x =,①当12a =,即12a =时,对任意的0x >,()0g x ¢>,()g x 的单调递增区间为()0,¥+.②当102a <<,即12a >时,()0g x ¢>,得10x a<<或2x >,()0g x ¢<,得12x a <<,()g x 的单调递增区间为10,a æöç÷èø和()2,¥+,单调递减区间为1,2a æöç÷èø③当12a >,即102a <<时()0g x ¢>,得02x <<或1a ;()0g x ¢<,得12x a <<,()g x 的单调递增区间为()0,2和1,a ¥æö+ç÷èø,单调递减区间为12,a æöç÷èø,综上所述,12a =时,函数()g x 的单调增区间为()0,¥+;12a >时,函数()g x 的单调增区间为10,a æöç÷èø和()2,¥+,单调减区间为1,2a æöç÷èø;102a <<时,函数()g x 的单调增区间为()0,2和1,a ¥æö+ç÷èø,单调减区间为12,a æöç÷èø.(3)由()()f x g x £,可得ln 0ax x -³,即ln x a x ³,其中21,e e x éùÎêúëû,令()ln x h x x =,21,e e x éùÎêúëû,若存在21,e e x éùÎêúëû,不等式()()f x g x £成立,则()min a h x ³,21,e e x éùÎêúëû,()21ln xh x x-¢=,令()0h x ¢=,得e x =,当1e e x £<时,()0h x ¢>,当2e e x <£时,()0h x ¢<,所以函数()h x 在1,e e éùêúëû上递增,在(2e,e ùû上递减,所以函数()h x 在端点1ex =或2e x =处取得最小值.因为1e e h æö=-ç÷èø,()222e e h =,所以()1e e h h æö<ç÷èø,所以()min 1e e h x h æö==-ç÷èø,所以e a -≥,因此,实数a 的取值范围是[)e,¥-+.【例2】(2024届重庆市九龙坡区高三下学期5月第三次质量抽测)已知函数()213ln 22f x x x ax =+-+,()0a >.(1)当[)1,x ¥Î+时,函数()0f x ³恒成立,求实数a 的最大值;(2)当2a =时,若()()120f x f x +=,且12x x ¹,求证:122x x +>;(3)求证:对任意*N n Î,都有()2112ln 1ni i n n i =-æö++>ç÷èøå.【解析】(1)当1x ³时,()213ln 022f x x x ax =+-+³恒成立,即ln 1322x a x x x £++恒成立,只需min ln 1322x a x xx æö£++ç÷èø即可,令()ln 1322x g x x x x =++,1x ³,则()22221ln 132ln 1222x x x g x x x x ---=-¢+=,令()22ln 1h x x x =--,1x ³,则()22222x h x x x x=¢-=-,当1x ³时,()0h x ¢³恒成立,()h x 在[)1,x ¥Î+单调递增,所以()()10h x h ³=,所以()0g x ¢³在[)1,x ¥Î+恒成立,()g x 在[)1,x ¥Î+单调递增,所以()()min 12g x g ==,所以2a £,即实数a 的最大值为2.(2)当2a =时,()213ln 222f x x x x =+-+,0x >,所以()()21120x f x x x x-=+=¢-³,()f x 在()0,x ¥Î+上单调递增,又()10f =,()()120f x f x +=且12x x ¹,不妨设1201x x <<<,要证122x x +>,即证明212x x >-,因为()f x 在()0,x ¥Î+上单调递增,即证()()212f x f x >-,因为()()120f x f x +=,即证()()1120f x f x +-<,设()()()()()()2213132ln 2ln 22222222F x f x f x x x x x x x =+-=+-++-+---+()()()2ln 221ln 221x x x x x x x x éùéù=-+-+=---+ëûëû,01x <<,令()2t x x =-,则01t <<,则()ln 1t t t j =-+,()111tt t t j -=-=¢,由01t <<可得()0t j ¢>,()t j 在()0,1单调递增,所以()()10t j j <=,即()()()20F x f x f x =+-<,所以()()1120f x f x +-<成立,所以122x x +>.(3)由(2)可知当2a =时,()f x 在()1,¥+单调递增,且()()10f x f >=,由213ln 2022x x x +-+>得22ln 430x x x +-+>,即()22ln 21x x +->,令1n x n +=,则2112ln 21n n n n ++æö+->ç÷èø,即2112ln 1n n n n +-æö+>ç÷èø,所以22112ln 111-æö+>ç÷èø,23122ln 122-æö+>ç÷èø,24132ln 133-æö+>ç÷èø,…,2112ln 1n n n n +-æö+>ç÷èø,相加得()2112ln 1ni i n n i =-æö++>ç÷èøå.(二)把函数单调性问题转化为不等式恒成立问题若给出函数单调性,求参数范围,可把问题转化为恒成立问题,若可导函数()f x 在(),a b 上是增(减)函数,则(),x a b Î时()0f x ¢³(或()0f x ¢£)恒成立.【例3】(2024届湖北省黄冈中学高三5月模拟)已知函数()()1ln 2f x x x ax =+-+.(1)当1a =时,求()f x 的图象在()()1,1f 处的切线方程;(2)若函数()f x 在()1,¥+上单调递增,求实数a 的取值范围.【解析】(1)当1a =时,()()1ln 2f x x x x =+-+,()0x >,()1ln f x x x=¢+,()11f ¢=,()11f =,所以()f x 的图象在1x =处的切线方程为:y x =.(2)()1ln 1f x x a x=++-¢,若函数()f x 在()1,¥+上单调递增,则()0f x ¢³对于()1,x ¥Î+恒成立,即1ln 1a x x£++对于()1,x ¥Î+恒成立,令()()1ln 1,1g x x x x =++>,当1x >时,()210x g x x-¢=>,则函数()g x 在()1,¥+上单调递增,所以()()12g x g >=,故2a £. (三)把二元不等式恒成立问题转化为函数单调性问题对于形如12x x >时不等式()()()()1221f x g x f x g x +>+恒成立问题,可构造增函数()()f x g x -来求解.基本结论:(1)“若任意210x x >>,()()1212f x f x kx kx ->-,或对任意12x x ¹,()()1212f x f x k x x ->-,则()y f x kx =-是增函数;(2) 对任意12x x ¹,()()1212121f x f x x x x x ->-,则()1y f x x=+是增函数;【例4】(2024届山西省吕梁市高三三模)已知函数()()22ln ,f x x x a x a =-+ÎR .(1)讨论函数的单调性;(2)若对任意的()1212,0,,x x x x Î+¥¹,使()()2112120x f x x f x x x ->-恒成立,则实数a 的取值范围.【解析】(1)()f x 的定义域为()()2220,,22a x x ax f x x x x¥-+Î+=-+=¢,令()222g x x x a =-+,又Δ48a =-Q ,1o ,当Δ0£,即12a ³时,()0g x ³,此时()()0,f x f x ¢>在()0,¥+上单调递增2o ,当Δ0>,即12a <时,令()0g x =,解得12x x =其中,当102a <<时()()()1212,0,0,,,0x x x x x g x ¥<ÎÈ+,()()12,0x x x g x Î<,,所以()f x 在()()120,,,x x ¥+单调递增,在()12,x x 单调递减;当0a <时,()()()()12220,0,,0,,,0x x x x g x x x g x ¥<<ÎÎ+,故()f x 在()20,x 单调递减,()2,x ¥+单调递增.综上:()1,2a f x ³在()0,¥+上单调递增;()10,2a f x <<在,¥æö+ç÷ç÷èø上单调递增;()0,a f x£在æççè上单调递减,在¥ö+÷÷ø上单调递增.(2)()()()()()()12122112121200f x f x x x x f x x f x x x x x éùéù-->Û-->êúëûëû.令()()ln 2f x a xg x x xx==-+,则只需()g x 在()0,¥+单调递增,即()0g x ¢³恒成立,()()221ln x a x g x x ¢+-=,令()()21ln h x x a x =+-,则()0h x ³恒成立;又()222a x ah x x x x=¢-=-,①当0a =时,()()2,h x x h x =在()0,¥+单调递增成立;②当0a <时,()()0,h x h x ¢>在()0,¥+单调递增,又()0,x h x ¥®®-,故()0h x ³不恒成立.不满足题意;③当0a >时,由()0h x ¢=得()x h x =在æççè单调递减,在¥ö+÷÷ø单调递增,因为()0h x ³恒成立,所以min 3()3ln 022a h x h æö==-³ç÷èø,解得302e a <£,综上,3[0,2e ]a Î.(四)形如“若x m ³,则()()f x f m ³”的恒成立问题求解此类问题的思路是:先确定是使()0f x ¢³的参数a 的取值范围A ,当a A Î,由()f x 为增函数及x m ³可得()()f x f m ³恒成立,当a A Ï时确定存在0x m >,使得()0,x m x Î,()0f x ¢<,()f x 递减,即()0,x m x Î时()()f x f m <,故原不等式不恒成立.【例5】函数()e sin x f x x a =+-的图像与直线20x y -=相切.(1)求实数a 的值;(2)当[0,)x Î+¥时,()sin 2f x m x ³,求实数m 的取值范围.【解析】 (1)()e sin ()e cos x x f x x a f x x ¢=+-Þ=+,设切点为00(,)x y ,所以有000()e cos x f x x ¢=+,因为20x y -=是切线,所以有0000e cos 220x x x y ì+=ïí-=ïî,设()e cos 2()e sin x x h x x h x x ¢=+-Þ=-,显然当0x >时,()0,()h x h x ¢>单调递增,所以有()(0)0h x h >=,当0x >时,e 1,cos 1x x <£,所以e cos 20x x +-=无实数根,因此当R x Î时,方程()e cos 20x h x x =+-=有唯一实数根,即0x =,于是有0000x y =Þ=,因此有0e sin 001a a +-=Þ=;(2)令()e sin sin 21x g x x m x =+--,则()0g x ³在[0,)+¥恒成立()e cos 2cos 2x g x x m x =+-¢.(0)22g m=-¢若220m -³,即1m £时,当π02x ££时,由cos cos 2x x ³得()0g x ¢³,所以()g x 在0,2p éö÷êëø单调递增,又(0)0g =,所以()0g x ³在π0,2éö÷êëø恒成立;当2x p >时,π2e e 3x >>所以()3sin sin 210g x x m x >---³.所以()0g x ³在π,2éö+¥÷êëø恒成立.若220m -<即1m >时,(0)220g m =¢-<,则存在00x >,使得()g x 在()00,x 单调递减,则当()00,x x Î时,()(0)0g x g <=矛盾,舍,综上所述,m 的取值范围时(,1]-¥.(五)根据不等式恒成立求整数参数的最值此类问题通常可分类参数,把问题转化为()m f x <(()m f x >),m ÎZ 的形式,()f x 有最小(大)值,但无法求出,只能引入导函数的隐零点0x ,估计()0f x 的范围,再确定整数m 的最大(小)值.【例6】(2024届辽宁省沈阳市第一二〇中学高三上学期第二次质量检测)已知函数32()23(1)6(R)f x x m x mx x =+++Î.(1)讨论函数()f x 的单调性;(2)若()11f -=,函数()2()()ln 10f x g x a x x =+-£在()1,+¥上恒成立,求整数a 的最大值.【解析】(1)根据题意可得()()2()66(1)661f x x m m x x m x ¢=+++=++,若1m =,()2()610f x x ¢=+³在x ÎR 上恒成立,此时函数()f x 在R 上单调递增;若1m >,此时1m -<-,当(),x m Î-¥-()1,¥È-+时,满足()0f x ¢>,此时函数()f x 在(),m -¥-,()1,-+¥上单调递增;当(),1x m Î--时,满足()0f x ¢<,此时函数()f x 在(),1m --单调递减;若1m <,此时1m ->-,当(),1x Î-¥-(),m ¥È-+时,满足()0f x ¢>,此时函数()f x 在(),1-¥-,(),m -+¥上单调递增,当()1,x m Î--时,满足()0f x ¢<,此时函数()f x 在()1,m --单调递减;综上可知,1m =时,()f x 在R 上单调递增;1m >时,()f x 在(),m -¥-和()1,-+¥上单调递增,在(),1m --单调递减;1m <时,()f x 在(),1-¥-和(),m -+¥上单调递增,在()1,m --单调递减;(2)由()11f -=可得23(1)61m m -++-=,解得0m =;所以32()23f x x x =+,则()()ln 123g x a x x =+--,易知()1,x Î+¥时,ln 10x +>,若函数()2()()ln 10f x g x a x x =+-£在()1,+¥上恒成立,等价成23ln 1x a x +£+在()1,x Î+¥上恒成立;令()()23,1ln 1x h x x x +=+>,则()()()()()22132ln 1232ln ln 1ln 1x x x x x h x x x +-+×-¢==++;令()()32ln 1x x x x j =->,则()2230x x xj ¢=+>在()1,x Î+¥上恒成立,即函数()x j 在()1,x Î+¥上单调递增,易知()33ln16ln e 22ln 222j -=-=,由于33e 2.719.683=>,所以()20j <,而3525ln ln e 55622ln 2255j æö-ç÷æöèø=-=ç÷èø,且55335232273e 2æö=ç÷èø>>=>,所以502j æöç÷èø>;因此()h x ¢在()1,x Î+¥有且仅有一个零点0x ,满足0032ln x x =,且052,2æöÎç÷èøx ;所以当()01,x x Î时,()0h x ¢<,当()0,x x Î+¥时,()0h x ¢>;因此函数()()23,1ln 1x h x x x +=+>在()01,x 上单调递减,在()0,x +¥上单调递增;所以()h x 的最小值为()000000232323ln 112x x h x x x x ++===++,显然()024,5x Î,因此()024,5a x £Î,又a 是整数,所以a 的最大值为4. (六)通过构造函数求最值解决不等式恒成立问题①该方法一般是根据不等式的结构构造一个新函数,利用导数研究该函数的单调性,由函数的单调性确定其最值,或把其最值用含有参数的式子来表示,再根据所给不等式列出关于参数的不等式,②注意如果所构造的函数,其导数结构比较复杂不易分析出单调性,则可把需要判断符号的式子拿出来构造一个新函数,再想办法解决其符号.③有时所构造的函数的最值不易求出,可以引入导数的隐零点,把函数最值用导数的隐零点表示.④在考虑函数最值时,除了依靠单调性,也可根据最值点的出处,即“只有边界点与极值点才是最值点的候选点”,所以有的讨论点就集中在“极值点”是否落在定义域内.【例7】设函数()1ln a xf x x+=,其中R a Î.(1)当0a ³时,求函数()f x 的单调区间;(2)若()2f x x £,求实数a 的取值范围.【解析】 (1)1ln ()(0)a x f x x x +=>,22(1ln )1ln ()a a x a a xf x x x -+--¢==.当0a =时,22(1ln )1()0a a x f x x x -+¢==-<恒成立,则()f x 在()0,¥+上为减函数,当0a >时,令()0f x ¢>,可得1ln 0a a x -->,则1ln a x a-<,解得10e a a x -<<,令()0f x ¢<,解得1ea ax ->,综上,当0a =时,()f x 的减区间为()0,¥+;当0a >时,()f x 的单调递增区间为10,e a a -æöç÷èø,单调递减区间为1e ,a a -æö+¥ç÷èø.(2)由2()f x x £,可得3ln 10x a x --³设3()ln 1(0)g x x a x x =-->,则323()3a x ag x x x x-¢=-=.①当0a £时,()0g x ¢>,()g x 单调递增,而117ln 1ln 20828g a a =--=-+<,所以不满足题意,②当0a >时,令33()0x ag x x -¢==,解得x =当x æÎççè时,()0g x ¢<,()g x 为减函数,当x öÎ+¥÷÷ø时,()0g x ¢>,()g x 为增函数,所以111()ln 3ln 1333g x g a a a æö³=+--ç÷èø.令111()ln 3ln 1(0)333h a a a a a æö=+-->ç÷èø,1111()ln 3(ln 1)(ln 3ln )3333h a a a ¢=+-+=-,当()0,3a Î时,()0h a ¢>,()h a 为增函数,当()3,a Î+¥时,()0h a ¢<,()g x 为减函数,所以()()30h a h £=,又()()0g x h a ³³.则()0h a =,解得3a =,所以实数a 的取值范围是{}3.(七) 通过分类参数把不等式恒成立问题转化为求不含参数的函数的最值①分类参数法就是在不等式中含有两个字母时(一个视为变量,另一个视为参数),可利用不等式的等价变形让两个字母分居不等号的两侧,即不等号的每一侧都是只含有一个字母的表达式.然后可利用其中一个变量的范围求出另一变量的范围,转化为求函数的最值问题.②一般情况下,那个字母的范围已知,就将其视为变量,构造关于它的函数,另一个字母(一般为所求)视为参数.③要注意分类参数法不是万能的,已知不等式中两个字母是否便于进行分离,如果仅通过几步简单变换即可达到分离目的,则参变分离法可行.但有些不等式中由于两个字母的关系过于“紧密”,会出现无法分离的情形,此时要考虑其他方法.此外参数分离后,要注意变量的函数解析式是否便于求出最值(或临界值),若解析式过于复杂而无法求出最值(或临界值),则也无法用分离法解决问题.【例8】(2024届四川省绵阳市江油市高三下学期模拟)已知函数2()ln ()2m f x x x x m R =--Î.(1)当2m =时,求函数()f x 的单调区间;(2)若0x ">,不等式2()f x x >恒成立,求实数m 的取值范围.【解析】(1)函数2()ln 2m f x x x x =--的定义域为(0,)+¥,当2m =时,2()ln f x x x x =--,所以1(21)(1)()21x x f x x x x+-¢=--=,当(0,1)x Î时,()0f x ¢<,()f x 在(0,1)上为减函数,当(1,)x Î+¥时,()0f x ¢>,()f x 在(1,)+¥上为增函数,综上所述:()f x 在(0,1)上为减函数,在(1,)+¥上为增函数;(2)若0x ">,不等式2()f x x >恒成立,则21ln 12m x x x >++对0x >均成立,所以max 21ln (12m xx x>++令21ln ()1xg x x x=++,则22223312ln 112ln 12ln ()()x x x x x x g x x x x x x ----¢=-+=-+=,令()12ln h x x x =--,显然()12ln h x x x =--为(0,)+¥上的减函数,又(1)12ln110h =--=,所以(0,1)x Î,()0h x >,()0g x ¢>则()g x 在(0,1)上为增函数,当(1,)x Î+¥时,()0h x <,()0g x ¢<则()g x 在(1,)+¥上为减函数,所以max 1ln1()(1)1211g x g ==++=,所以22m>,所以4m >,所以实数m 的取值范围为(4,)+¥.(八) 先用特殊值确定或缩小参数范围,求解不等式恒成立问题此类问题通常是先在自变量允许值范围内取一个特殊值代入,缩小参数范围,然后在该范围内求解,减少讨论,也有可能该范围就是所求范围,此时只需证明在该范围内不等式恒成立即可.【例9】(2024届江苏省苏州市八校高三三模)已知函数()2()cos ,()2f x x g x a x ==-.(1)1a =时,求()()()F x f x g x =-的零点个数;(2)若()()f x g x ³恒成立a 的最大值;(3)求证:)21sin 2(R)3ni k n k k i p =æö->-Îç÷èøå.【解析】(1)当1a =时,2()2g x x =-,则2()()()cos 2F x f x g x x x =-=-+,所以()sin 2F x x x ¢=-+,令()sin 2h x x x =-+,则()cos 20h x x ¢=-+>,所以()sin 2h x x x =-+在R 上单调递增,即()sin 2F x x x ¢=-+在R 上单调递增,当0x >时,()0F x ¢>,所以()F x 在(0,)+¥上为增函数,当0x <时,()0F x ¢<,所以()F x 在(),0¥-上为减函数,又(0)1F =-,(2)(2)cos 220F F =-=+>,且x ®-¥时,()®+¥F x ,则存在()10x Î-¥,,()20,2x Î,使得12()0,()0F x F x ==,所以()F x 有两个零点.(2)令2()cos 2,m x x a ax =-+由(0)0m ³,得12a £,令2211()cos 1cos (2),22h x x x x x =-+=+-所以()sin h x x x ¢=-+,令()sin x x x j =-+,可得()cos 10x x j ¢=-+³,所以()sin x x x j =-+在(0,)+¥上为增函数,所以()sin sin 000x x x j =-+>+=,所以()0h x ¢>,所以2211()cos 1cos 010022h x x x =-+>-+´=,所以()h x 在[0,)+¥上单调递增,所以()(0)0h x h ³=,即211s 2co x x >-,所以()()f x g x ³恒成立,所以实数a 的最大值是实数12;(31cos 2sin 2cos 3233k k k k k i i i i i p p p p æöæöæöæö-+-+-=-=ç÷ç÷ç÷ç÷èøèøèøèø,由(2)可得211s 2co x x >-,所以21cos 1()2kk i i >-,所以21111]2(cos )2()3n n ni i i k k k n i i ip ===æö-+³>-ç÷èøååå,所以211()3nni i k k n i ip ==æö->-ç÷èøå,又22222221111111111((1)(11)22322331ni k k k k in n n ==++++<+-+-+++-<-åL L ,所以)21sin 2(R)3ni k n k k i p =æö->-Îç÷èøå.【例1】(2024届高考全国甲卷真题)已知函数()()()1ln 1f x ax x x =-+-.(1)当2a =-时,求()f x 的极值;(2)当0x ³时,()0f x ³,求a 的取值范围.【解析】(1)当2a =-时,()(12)ln(1)fx x x x =++-,故121()2ln(1)12ln(1)111x f x x x x x+¢=++-=+-+++,因为12ln(1),11y x y x=+=-++在()1,¥-+上为增函数,故()f x ¢在()1,¥-+上为增函数,而(0)0f ¢=,故当10x -<<时,()0f x ¢<,当0x >时,()0f x ¢>,故()f x 在0x =处取极小值且极小值为()00f =,无极大值.(2)()()()()11ln 11ln 1,011a x axf x a x a x x x x+-=-+¢+-=-+->++,设()()()1ln 1,01a x s x a x x x+=-+->+,则()()()()()()222111211111a a x a aax a s x x x x x ++++-++=-=-=-+++¢+,当12a £-时,()0s x ¢>,故()s x 在()0,¥+上为增函数,故()()00s x s >=,即()0f x ¢>,所以()f x 在[)0,¥+上为增函数,故()()00f x f ³=.当102a -<<时,当210a x a+<<-时,()0s x ¢<,故()s x 在210,a a +æö-ç÷èø上为减函数,故在210,a a +æö-ç÷èø上()()0s x s <,即在210,a a +æö-ç÷èø上()0f x ¢<即()f x 为减函数,故在210,a a +æö-ç÷èø上()()00f x f <=,不合题意,舍.当0a ³,此时()0s x ¢<在()0,¥+上恒成立,同理可得在()0,¥+上()()00f x f <=恒成立,不合题意,舍;综上,12a £-.【例2】(2024届天津高考数学真题)设函数()ln f x x x =.(1)求()f x 图象上点()()1,1f 处的切线方程;(2)若()(f x a x ³在()0,x Î+¥时恒成立,求a 的值;(3)若()12,0,1x x Î,证明()()121212f x f x x x -£-.【解析】(1)由于()ln f x x x =,故()ln 1f x x ¢=+.所以()10f =,()11f ¢=,所以所求的切线经过()1,0,且斜率为1,故其方程为1y x =-.(2)设()1ln h t t t =--,则()111t h t t t-¢=-=,从而当01t <<时()0h t ¢<,当1t >时()0h t ¢>.所以()h t 在(]0,1上递减,在[)1,+¥上递增,这就说明()()1h t h ³,即1ln t t -³,且等号成立当且仅当1t =.设()()12ln g t a t t =--,则()((ln 1f x a x x x a x x a x g æö-=-=--=×ç÷øè.当()0,x Î+¥时()0,¥+,所以命题等价于对任意()0,t Î+¥,都有()0g t ³.一方面,若对任意()0,t Î+¥,都有()0g t ³,则对()0,t Î+¥有()()()()112012ln 12ln 1212g t a t t a t a t at a t t t æö£=--=-+£-+-=+--ç÷èø,取2t =,得01a £-,故10a ³>.再取t =得2022a a a £-=--=-,所以2a =.另一方面,若2a =,则对任意()0,t Î+¥都有()()()212ln 20g t t t h t =--=³,满足条件.综合以上两个方面,知a 的值是2.(3)先证明一个结论:对0a b <<,有()()ln 1ln 1f b f a a b b a-+<<+-.证明:前面已经证明不等式1ln t t -³,故lnln ln ln ln ln ln 1ln 1bb b a a a b a aa b b b b b a b a a--=+=+<+---,且1lnln ln ln ln ln ln ln 1ln 11a ab b a a b b b a b b a a a a a a b a b a bbæö---ç÷--èø=+=+>+=+----,所以ln ln ln 1ln 1b b a a a b b a -+<<+-,即()()ln 1ln 1f b f a a b b a-+<<+-.由()ln 1f x x ¢=+,可知当10e x <<时()0f x ¢<,当1ex >时()0f x ¢>.所以()f x 在10,e æùçúèû上递减,在1,e ¥éö+÷êëø上递增.不妨设12x x £,下面分三种情况(其中有重合部分)证明本题结论.情况一:当1211e x x ££<时,有()()()()()()122122121ln 1f x f x f x f x x x x x x -=-<+-<-<结论成立;情况二:当1210ex x <££时,有()()()()12121122ln ln f x f x f x f x x x x x -=-=-.对任意的10,ecæùÎçúèû,设()ln lnx x x c cj=-则()ln1x xj¢=+由于()xj¢单调递增,且有11110j¢=<=-=,且当2124ln1x cc³-æö-ç÷èø,2cx>时,2ln1c³-可知()2ln1ln1ln102cx xcjæö=+>+=--³ç÷èø¢.所以()xj¢在()0,c上存在零点x,再结合()xj¢单调递增,即知0x x<<时()0xj¢<,x x c<<时()0xj¢>.故()xj在(]00,x上递减,在[],x c上递增.①当0x x c££时,有()()0x cj j£=;②当00x x<<时,112221e ef fcæö=-£-=<ç÷èø,故我们可以取1,1qcöÎ÷ø.从而当21cxq<<-时,>可得()1ln ln ln ln0x x x c c c c c c qcjö=-<-<--=-<÷ø.再根据()xj在(]00,x上递减,即知对0x x<<都有()0xj<;综合①②可知对任意0x c<£,都有()0xj£,即()ln ln0x x x c cj=-£.根据10,ecæùÎçúèû和0x c<£的任意性,取2c x=,1x x=,就得到1122ln ln0x x x x-£.所以()()()()12121122ln lnf x f x f x f x x x x x-=-=-情况三:当12101ex x<££<时,根据情况一和情况二的讨论,可得()1f x f-£(1ef fæö-£ç÷èø.而根据()f x的单调性,知()()()1211ef x f x f x fæö-£-ç÷èø或()()()1221ef x f xf f xæö-£-ç÷èø.故一定有()(1f x f-成立.综上,结论成立.【例3】(2024届湖南省岳阳市汨罗市高三下学期5月月考)函数()()2ln ,2f x x g x x x m ==--+.(1)若e m =,求函数()()()F x f x g x =-的最大值;(2)若()()()22e xf xg x x x +£--在2(]0,x Î恒成立,求实数m 的取值范围.【解析】(1)因为()2ln e 2F x x x x =-++-,可知()F x 的定义域为()0,¥+,且1(21)(1)()21x x F x x x x+-¢=-+=-,由()0F x ¢>,解得01x <<;由()0F x ¢<,解得1x >.可知()F x 在(0,1)内单调递增,在(1,)+¥内单调递减,所以函数()()()F x f x g x =-的最大值为()1e 2F =-.(2)因为2()()(2)e x f x g x x x +£--在2(]0,x Î恒成立,等价于(2)e ln 2x m x x x ³-+-+在2(]0,x Î恒成立.设()(2)e ln 2x h x x x x =-+-+,2(]0,x Î,则()11()(1)e 11e xx h x x x x x æö=-+-=--çè¢÷ø,当1x >时,则10x ->,且1e e,1xx><,可得1e e 10x x->->,所以()0h x ¢>;当01x <<时,则10x -<,设1()e ,01x u x x x=-<<,则21()e 0xu x x ¢=+>,可知()u x 在(0,1)递增,且120,(1)e 102u u æö==-ç÷èø.则01,12x æö$Îç÷èø,使得()00u x =.当()00,x x Î时,()0u x <;当()0,1x x Î时,()0u x >.当()00,x x Î时,()0h x ¢>;当()0,1x x Î时,()0h x ¢<.可知函数()h x 在()00,x 递增,在()0,1x 递减,在(1,2)递增.由()0001e 0x u x x =-=,得001e x x =,且00ln x x =-.可得()()()0000000000112e ln 222232xh x x x x x x x x x æö=-+-+=--+=-+ç÷èø,且01,12x æöÎç÷èø,则()00h x <,又因为(2)ln 20h =>,可知当2(]0,x Î时,()max ()2ln 2h x h ==,所以m 的取值范围是[ln 2,)+¥.【例4】(2024届河南省信阳市高三下学期高考考前押题)已知函数()ln f x x x =,())()10h x x x =->.(1)试比较()f x 与()h x 的大小;(2)若()()()11f x x ax a £--+恒成立,求a 的取值范围.【解析】(1)因为()())ln 1ln f x h x x x x x x æ-=-=çè,构建()ln 0F x x x =>,则()0F x ¢=£在()0,¥+内恒成立,可知()F x 在()0,¥+内单调递减,且()10F =,则有:若01x <<,则()0F x >,即()()f x h x >;若1x =,则()0F x =,即()()f x h x =;若1x >,则()0F x <,即()()f x h x <.(2)若()()()11f x x ax a £--+恒成立,则1ln 120a ax x a x--++-³,构建()1ln 12,0a g x ax x a x x-=-++->,原题意等价于()0g x ³在()0,¥+内恒成立,则()()()221111x ax a a g x a x x x -+--¢=--=,1.若0a £,则10ax a +-<,当01x <<时,()0g x ¢>;当1x >时,()0g x ¢<;可知()g x 在()0,1内单调递增,在()1,+¥内单调递减,则()()10g x g £=,不符合题意;2.若0a >,则有:(ⅰ)若1a ³,则10ax a +->,当01x <<时,()0g x ¢<;当1x >时,()0g x ¢>;可知()g x 在()0,1内单调递减,在()1,+¥内单调递增,则()()10g x g ³=,符合题意;(ⅱ)若01a <<时,令()0g x ¢=,解得1x =或110x a=->,①若111a ->,即102a <<时,当111x a<<-时,()0g x ¢<,可知()g x 在11,1a æö-ç÷èø内单调递减,此时()()10g x g <=,不合题意;②若111a -=,即12a =时,则()()22102x g x x -¢=³,可知()g x 在()0,¥+内单调递增,当()0,1x Î时,此时()()10g x g <=,不合题意;③若111a -<,即112a <<时,则()21011a a a-<-<<,由(1)可知:当01x <<时,ln x >=则()1112ln 12a a g x a x ax a ax x x --=--++<--++,可得()()()()()222211112112011a g a a a a a a a a a -æö-<----+-+=-<ç÷-èø-,不合题意;综上所述:a 的取值范围为[)1,+¥.【例5】(2024届河北省保定市九县一中三模)已知函数()()ln 1f x ax x =++.(1)若2a =-,求()f x 的单调区间;(2)若()0f x £恒成立,求a 的取值集合.【解析】(1)由2a =-,得()()2ln 1f x x x =-++,定义域为()1,¥-+,则()121211x f x x x --=¢-=+++,当11,2x æöÎ--ç÷èø时,()0f x ¢>,当1,2x ¥æöÎ-+ç÷èø时,()0f x ¢<,故()f x 的单调递增区间为11,2æö--ç÷èø,单调递减区间为1,2¥æö-+ç÷èø.(2)由()()ln 1f x ax x =++,()1,x ¥Î-+,得()11f x a x =++¢,若0a ³,则显然()22ln30f a =+>,不符合题意,若0<a ,令()0f x ¢=,解得11a x a+=->-,则当11,a x a +æöÎ--ç÷èø时,()0f x ¢>,()f x 单调递增,当1,a x a ¥+æöÎ-+ç÷èø时,()0f x ¢<,()f x 单调递减,()()max 11ln a f x f a a a +æö=-=----ç÷èø,则()1ln 0a a ----£,即()1ln 0a a ++-³,令()()1ln g a a a =++-,则()111a g a a a¢+=+=,当(),1x ¥Î--时,()0g a ¢>,()g a 单调递增,当()1,0x Î-时,()0g a ¢<,()g a 单调递减,所以()()max 10g a g =-=,当满足()0g a ³时,1a =-,所以a 的取值集合为{}1-.1.(2024届青海海西格尔木三校高三第三次联考)已知函数()32f x x x ax =-+.(1)讨论函数()f x 的单调性;(2)令()()ln 2ag x f x x x x=+--,若()0g x ³恒成立,求实数a 的取值范围.2.(2024届陕西省富平县高三第二次模拟)已知函数()ln f x x x =,2()1()f x g x x x x=-+.(1)求函数()g x 的单调区间;(2)若当0x >时,2()e x m x x mf -£恒成立,求实数m 的取值范围.3.(2024届重庆市高三第三次联合诊断)已知函数()e .x f x x a=+(1)当1a =时,求()f x 在点()()0,0f 处的切线方程;(2)若()f x 在区间()0,¥+上单调递增,求实数a 的取值范围.4.已知2()e ln ,()ln x f x a x g x x x a ==+(1)当1a =时,求()f x 在1x =处切线方程;(2)若()()f x g x <在(0,1)x Î恒成立,求a 的取值范围;(3)求证:411111322222123e e e e ln(1)234(1)n n n n +×+×+×++×<++L .5.(2024届青海省部分学校高三下学期协作考试)已知函数()21e 2axf x x ax =+-(R a Î).(1)当1a =时,求()f x 的最值;(2)当[]1,1a Î-时,证明:对任意的1x ,[]22,2x Î-,都有()()212e 1f x f x --≤.6.(2024届北京市十一学校高三下学期三模)已知函数()()()ln 11f x x k x =+++.(1)求()f x 的单调区间;(2)若()1f x £-恒成立,求实数k 的取值范围;(3)求证:()21ln 14ni n n i i =-<+å.(n ÎN 且2n ³)7.(2024届广东省茂名市高州市高三第一次模拟)设函数()e sin xf x a x =+,[)0,x Î+¥.(1)当1a =-时,()1f x bx ³+在[)0,¥+上恒成立,求实数b 的取值范围;(2)若()0,a f x >在[)0,¥+上存在零点,求实数a 的取值范围.8.(2024届四川省绵阳南山中学高三下学期高考仿真演练)已知函数()e cos x f x k x =-,其中k 为常数.(1)当1k =时,讨论函数()f x 在()0,¥+上的单调性;(2)若0,2πx æö"Îç÷èø,()1f x >,求实数k 的取值范围.。
不等式恒成立问题的十种解法
一、判别式法若能把所给不等式转化为某个一元二次不等式,并且该一元二次不等式是对于一切实数x都恒成立,则可优先考虑判别式法.例l 设不等式,对于一切实数x都恒成立,求实数m的取值范围.解:因为所以原不等式可变为:因为该不等式对一切实数x都成立,必有整理得说明:若所给的区间并非一切实数时,切记不能使用判别式法.二、三角换元法通过适当的三角换元,把所给问题转化为含有的形式,再利用正弦函数的有界性来求出它的最值,从而使问题得到解决.例2 已知实数x、y满足时恒成立,则实数d的取值范围是( ))],则y的最大值为,要使x+y+d≥O恒成立,必须有d大于等于y的最大值,即d≥,故选择答案(A).三、分离参数对于含有参数的不等式,若能把所求的参数分离出来,应优先考虑实行参数分离,然后再在不等式的另一边进行其它变换,如使用均值不等式,或通过函数的单调性来求出它的最值,最后再通过参数与这个最值的关系来使问题得到解决.例3 对于任意恒成立,求实数m的取值范围.四、图象法如果所给不等式能够化为一边是我们熟悉的函数,那么我们可以通过它的图象,结合函数的单调性来求出它在所给区间上的最值,从而使问题得到解决.例4 若关于x的不等式对任意x∈[0,1]恒成立,则m的取值范围是( )(A)m≤一3 (B)m≥一3 (C)一3≤m≤0 (D)m≥一4解:考察函数的图象,当x∈[0,1]时,其函数的值域为y∈[一3,0],若使不等式对任意x∈[0,1]恒成立,则m必须小于等于它的最小值3,即m≤一3,故选择答案(A).五、变更主元法主元的选择要因题而异,在有些问题中一旦克服心理定势,标新立异地另选主元,那么问题的解决就会有峰回路转、柳暗花明的效果.例5 对于任意a∈[一l,1],函数的函数值恒为正数,则实数x的取值范围是( ) (A) (B) (C)分析:由a的取值范围恒成立,可采用分类讨论去寻找 x 的的取值范围,但是这是比较麻烦的,再看a 的取值范围已经知道了,变a为主元,x为参数,反其道而行之.六、几何法含有绝对值的不等式,可利用绝对值的几何意义这一直观使问题加以解决.例6 若不等式恒成立,求实数d的取值范围.解:设由绝对值的几何意义可知,d表示数轴上的点到实数l、4所对应两点距离的和,所以d≥3,要使恒成立,必须有a于等于d的最小值,即a≤3.七、均值不等式法运用均值不等式求出所给代数式的最值,然后再用所给的值与这个最值进行比较.例7 (第l1届希望杯试题)设a>b>c,恒成立,则自然数n的最大值为( ) (A)2 (B)3 (C)4 (D)5八、数学归纳法当不等式中含有自然数凡时,应优先考虑用数学归纳法来探求.由上可得:存在最大的自然数m=13.使不意大于等于2的自然数n都恒成立.九、放缩法把所给不等式进行适当的放缩,从而使问题得到解决.对所有的正整数恒成立.十、二项式定理展开法当不等式中含有所给数的凡次方时,可试着考虑使用二项式定理,通过二项式定理的展开式有选择地选取几项进行放缩,从而使问题得到解决.例l0 求证.对于任意大于等于2的自然数不等式恒成立.。
不等式恒成立、能成立、恰成立问题分析
不等式恒成立、能成立、恰成立问题分析一、不等式恒成立问题问题引入:已知不等式0122>+-ax x 对]2,1[∈x 恒成立,其中0>a ,求实数a 的取值范围。
分析:思路(1)通过化归最值,直接求函数12)(2+-=ax x x f 的最小值解决,即0)(min >x f 。
思路(2)通过分离变量,转化到)1(21212x x x x a +=+<解决,即min 2)21(xx a +<。
思路(3)通过数形结合,化归到ax x 212>+作图解决,即12+=x y 图像在ax y 2=的上方。
小结:不等式恒成立问题的处理方法 1、转换求函数的最值:(1)若不等式()A f x <在区间D 上恒成立,则等价于在区间D 上()()min A f x f x <⇔的下界大于A ; (2)若不等式()B f x >在区间D 上恒成立,则等价于在区间D 上()()max B f x f x >⇔的上界小于B 。
例 已知()22x x af x x++=对任意[)()1,,0x f x ∈+∞≥恒成立,试求实数a 的取值范围。
解:等价于()220x x x a ϕ=++≥对任意[)1,x ∈+∞恒 成立,又等价于1x ≥时,()min0x ϕ≥成立.由于()()211x x a ϕ=++-在[)1,+∞上为增函数,则()()min 13x a ϕϕ==+,所以303a a +≥⇒≥-2、分离参数法(1)将参数与变量分离,即化为()()g f x λ≥(或()()g f x λ≤)恒成立的形式; (2)求()f x 在x D ∈上的最大(或最小)值; (3)解不等式()()maxg f x λ≥ (或()()ming f x λ≤) ,得λ的取值范围。
例 已知函数]4,0(,4)(2∈--=x x x ax x f 时0)(<x f 恒成立,求实数a 的取值范围。
不等式的恒成立问题基本解法9种解法
不等式的恒成立问题基本解法9种解法不等式的恒成立问题基本解法:9种解法导语:在数学中,我们经常会遇到不等式的问题,而不等式的恒成立问题则更加耐人寻味。
不等式的恒成立问题是指对于某个特定的不等式,是否存在一组解使得不等式始终成立。
解决这种问题需要灵活运用数学知识和技巧。
本文将介绍不等式的恒成立问题的基本解法,共包括9种方法。
一、置换法。
这是最简单的一种方法,即将不等式中的变量互相置换,然后观察不等式是否成立。
如果成立,则不等式恒成立。
对于x^2 +y^2 ≥ 0这个不等式,我们可以将x和y置换一下,得到y^2 + x^2 ≥ 0。
由于平方数是非负数,所以不等式始终成立。
二、加法法则。
这种方法是通过在不等式的两边同时加上相同的数来改变不等式的符号。
对于不等式2x + 3 ≥ x + 4,我们可以在两边同时加上-3,得到2x + 3 - 3 ≥ x + 4 - 3,即2x ≥ x + 1。
由于x的取值范围不限制,所以不等式恒成立。
三、减法法则。
与加法法则相似,减法法则是通过在不等式的两边同时减去相同的数来改变不等式的符号。
对于不等式2x + 3 ≥ x + 4,我们可以在两边同时减去x,得到x + 3 ≥ 4。
由于x的取值范围不限制,所以不等式恒成立。
四、乘法法则。
这种方法是通过在不等式的两边同时乘以相同的正数来改变不等式的符号。
对于不等式2x + 3 ≥ x + 4,我们可以在两边同时乘以2,得到4x + 6 ≥ 2x + 8。
由于x的取值范围不限制,所以不等式恒成立。
五、除法法则。
与乘法法则相似,除法法则是通过在不等式的两边同时除以相同的正数来改变不等式的符号。
对于不等式2x + 3 ≥ x + 4,我们可以在两边同时除以2,得到x + 3/2 ≥ 1 + x/2。
由于x的取值范围不限制,所以不等式恒成立。
六、平方法则。
这种方法是通过平方运算来改变不等式的符号。
对于不等式x^2 ≥ 0,我们可以将x^2展开为(x + 0)^2,得到x^2 + 0 ≥ 0。
不等式恒成立、能成立、恰成立问题分析及应用
不等式恒成立、能成立、恰成立问题分析及应用问题引入:例1 :已知不等式0122>+-ax x 对]2,1[∈x 恒成立,其中0>a .求实数a 的取值范围. 分析:思路1、通过化归最值,直接求函数12)(2+-=ax x x f 的最小值解决,即0)(min >x f 。
思路 2、通过分离变量,转化到)1(21212x x x x a +=+<解决,即min 2)21(xx a +<。
思路3、通过数形结合,化归到ax x 212>+作图解决,即12+=x y 图像在ax y 2=的上方.小结:不等式恒成立问题的处理方法 1、转换求函数的最值:⑴若不等式()A f x <在区间D 上恒成立,则等价于在区间D 上()()min A f x f x <⇔的下界大于A⑵若不等式()B f x >在区间D 上恒成立,则等价于在区间D 上()()max B f x f x >⇔的上界小于B 。
2、分离参数法(1) 将参数与变量分离,即化为()()g f x λ≥(或()()g f x λ≤)恒成立的形式; (2) 求()f x 在x D ∈上的最大(或最小)值; (3) 解不等式()()maxg f x λ≥ (或()()ming f x λ≤) ,得λ的取值范围。
3.转换成函数图象问题⑴若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方;⑵若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方;【变式练习:】 对]2,1[∈x ,0122>+-ax x →0123>+-ax x 012ln >+-→ax x 均恒成立,该如何处理?例2:已知函数12)(2+-=ax x x f ,xax g =)(,其中0>a ,0≠x . 1)对任意]2,1[∈x ,都有)()(x g x f >恒成立,求实数a 的取值范围;2)对任意]4,2[],2,1[21∈∈x x ,都有)()(21x g x f >恒成立,求实数a 的取值范围;【分析:】1)思路、等价转化为函数0)()(>-x g x f 恒成立,在通过分离变量,创设新函数求最值解决.2)思路、对在不同区间内的两个函数)(x f 和)(x g 分别求最值,即只需满足)()(max min x g x f >即可.简解:(1)由12012232++<⇒>-+-x x x a x a ax x 成立,只需满足12)(23++=x xx x ϕ的最小值大于a 即可.对12)(23++=x x x x ϕ求导,0)12(12)(2224>+++='x x x x ϕ,故)(x ϕ在]2,1[∈x 是增函数,32)1()(min ==ϕϕx ,所以a 的取值范围是320<<a .例3 设函数b x x a x h ++=)(,对任意]2,21[∈a ,都有10)(≤x h 在]1,41[∈x 恒成立,求实数b 的取值范围.分析:思路、解决双参数问题一般是先解决一个参数,再处理另一个参数.以本题为例,实质还是通过函数求最值解决.方法1:化归最值,10)(10)(max ≤⇔≤x h x h ;方法2:变量分离,)(10x x ab +-≤或x b x a )10(2-+-≤; 方法3:变更主元,0101)(≤-++⋅=b x a x a ϕ,]2,21[∈a简解:方法1:对b x xab x x g x h ++=++=)()(求导,22))((1)(x a x a x x a x h +-=-=',由此可知,)(x h 在]1,41[上的最大值为)41(h 与)1(h 中的较大者.⎪⎩⎪⎨⎧-≤-≤⇒⎪⎩⎪⎨⎧≤++≤++⇒⎪⎩⎪⎨⎧≤≤∴a b a b b a b a h h 944391011041410)1(10)41(,对于任意]2,21[∈a ,得b 的取值范围是47≤b . 练习题1、设()222f x x ax =-+,当x ∈[-1,+∞]时,都有()f x a ≥恒成立,求a 的取值范围。
不等式的恒成立问题
不等式的恒成立问题枣阳二中 侯丽在高中阶段,不等式的恒成立问题是考题中常见的重要题型,但学生尽管训练了一遍又一遍,一到考试又会遇到这样那样的问题。
现对这个问题,由例析浅谈一下自己的观点。
例1.已知函数()[]1)1(1lg 22+++-=x a x a y 的定义域R ,求实数a 的取值范围。
解:要使函数有意义,则01)1()1(22>+++-x a x a ①∵定义域为R∴①恒成立。
01. 当012=-a 即1±=a1=a 时 012>+x 21->x 不满足题意 1-=a 时 01>恒成立 02.{010)1(4)1(222>-<--+=∆a a a35>a 或1-<a 03.当012<-a 时,二次函数不可能恒大于0由000321可知:35>a 或1-≤a 结论:Ⅰ.形如①02>++C Bx Ax )0(≥或原式对任意R x ∈恒成立可讨论两种情况:0)1(=A{0)0(0)2(>≤∆<∆A 或Ⅱ.形如②02<++C Bx Ax 0) (≤原式或对任意R x ∈恒成立可讨论两种情况:0)1(=A{00)((0)2(<≤∆<∆A 或只要是形如二次函数的不等式在R 上的恒成立问题,都可引用此种方法(判别式法)。
例2.已知函数xa x x x f ++=2)(2对任意[)+∞∈,1x ,0)(≥x f 恒成立,求实数a 的取值范围。
解:[)2,1020)(22≥++∴+∞∈≥++∴≥a x x x xa x x x f ΘΘ 法一:分离变量法要使022≥++a x x 恒成立只需x x a 22+≤- 恒成立min 2)2(x x a +≤-∴ [)+∞∈,1x 3≤-∴a即3-≥a法二:应用函数法令a x x x g ++=2)(2要使0)(≥x g 恒成立只需a x x x g ++=2)(2在[)+∞∈,1x 的最小值大于或等于0。
高考数学一元二次不等式恒成立与能成立问题5大题型(解析版)
一元二次不等式恒成立与能成立问题5大题型命题趋势不等式是高考数学的重要内容。
其中,“含参不等式恒成立与能成立问题”把不等式、函数、三角、几何等内容有机地结合起来,其以覆盖知识点多、综合性强、解法灵活等特点备受高考命题者的青睐。
另一方面,在解决这类数学问题的过程中涉及的“函数与方程”、“化归与转化”、“数形结合”、“分类讨论”等数学思想对锻炼学生的综合解题能力,培养其思维灵活性、创造性都有这独到的作用。
一元二次不等式应用广泛,考察灵活,高考复习过程要注重知识与方法的灵活运用。
满分技巧一、一元二次不等式在实数集上的恒成立1.不等式ax2+bx+c>0对任意实数x恒成立⇔a=b=0c>0或a>0△<02.不等式ax2+bx+c<0对任意实数x恒成立⇔a=b=0c<0或a<0△<0【注意】对于二次不等式恒成立问题,恒大于0就是相应的二次函数的图像在给定的区间上全部在x轴上方;恒小于0就是相应的二次函数的图像在给定的区间上全部在x轴下方.二、一元二次不等式在给定区间上的恒成立问题求解方法方法一:若f x >0在集合A中恒成立,即集合A是不等式f x >0的解集的子集,可以先求解集,再由子集的含义求解参数的值(或范围);方法二:转化为函数值域问题,即已知函数f x 的值域为m,n,则f x ≥a恒成立⇒f x min≥a,即m ≥a;f x ≤a恒成立⇒f x min≤a,即n≤a.三、给定参数范围的一元二次不等式恒成立问题解决恒成立问题一定要清楚选谁为主元,谁是参数;一般情况下,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数.即把变元与参数交换位置,构造以参数为变量的函数,根据原变量的取值范围列式求解。
四、常见不等式恒成立及有解问题的函数处理方法不等式恒成立问题常常转化为函数的最值来处理,具体如下:1.对任意的x∈m,n,a>f x 恒成立⇒a>f x max;若存在x∈m,n,a>f x 有解⇒a>f x min;公众号:高中数学最新试题若对任意x∈m,n,a>f x 无解⇒a≤f x min.2.对任意的x∈m,n,a<f x 恒成立⇒a<f x min;若存在x∈m,n,a<f x 有解⇒a<f x max;若对任意x∈m,n,a<f x 无解⇒a≥f x max.热点题型解读【题型1一元二次不等式在实数集上的恒成立问题】【例1】(2022·重庆沙坪坝·重庆八中校考模拟预测)使得不等式x2-ax+1>0对∀x∈R恒成立的一个充分不必要条件是()A.0<a<2B.0<a≤2C.a<2D.a>-2【答案】A【解析】由不等式x2-ax+1>0对∀x∈R恒成立,得Δ<0,即-a2-4<0,解得-2<a<2, 从选项可知0<a<2是-2<a<2的充分不必要条件,故选:A.【变式1-1】(2022秋·山东·高三山东省实验中学校考阶段练习)已知命题“∃x∈R,使4x2+a-1x+ 1≤0”是假命题,则实数a的取值范围是()A.(-∞,-3)B.(-5,3)C.(5,+∞)D.(-3,5)【答案】D【解析】因为命题“∃x∈R,使4x2+a-1x+1≤0”是假命题,所以,命题“∀x∈R,4x2+a-1x+1>0”是真命题,所以,Δ=(a-1)2-16<0,解得-3<a<5,故实数a的取值范围是(-3,5).故选:D.【变式1-2】(2023·全国·高三专题练习)若命题“关于x 的不等式2mx 2+4mx +m -1<0对一切实数x 恒成立”是假命题,则实数m 的取值范围是____________.【答案】m ≤-1或m >0【解析】若命题是真命题:当m =0时,2mx 2+4mx +m -1<0,可化为-1<0,成立;当m ≠0时,m <0Δ=16m 2-8m m -1 <0 ,解得-1<m <0综合得当-1<m ≤0时,关于x 的不等式2mx 2+4mx +m -1<0对一切实数x 恒成立是真命题,若命题“关于x 的不等式2mx 2+4mx +m -1<0对一切实数x 恒成立”是假命题则m ≤-1或m >0【变式1-3】(2022秋·广西钦州·高三校考阶段练习)已知关于x 的不等式x +kx-k >0恒成立,则实数k 的取值范围是_____________.【答案】[0,4)【解析】x +kx -k >0,即x -k x +k >0(x >0),令t =x >0,则t 2-kt +k >0(t >0)恒成立.所以k 2≤002-k ×0+k ≥0或k 2>0Δ=-k 2-4k <0,解得0≤k <4,故实数k 的取值范围是[0,4).【变式1-4】(2022秋·山东聊城·高三山东聊城一中校考期末)关于x 的不等式a 2-16 x 2-(a -4)x -1≥0的解集为∅,则实数a 的取值范围为_________.【答案】a ∣-125<a ≤4 【解析】当a =4时,不等式可化为-1≥0,无解,满足题意;当a =-4时,不等式化为8x -1≥0,解得x ≥18,不符合题意,舍去;当a ≠±4时,要使得不等式a 2-16 x 2-(a -4)x -1≥0的解集为∅,则a 2-16<0,Δ=a -4 2+4a 2-16 <0, 解得-125<a <4.综上,实数a 的取值范围是a ∣-125<a ≤4 .【题型2一元二次不等式在某区间上的恒成立问题】公众号:高中数学最新试题【例2】(2022秋·辽宁沈阳·高三沈阳市第三十一中学校考开学考试)已知不等式-2x 2+bx +c >0的解集x -1<x <3 ,若对任意-1≤x ≤0,不等式-2x 2+bx +c +t ≤4恒成立.则t 的取值范围是__________.【答案】t ≤-2【解析】由题设,b 2=2且-c 2=-3,可得b =4,c =6,所以-2x 2+4x +2+t ≤0在-1≤x ≤0上恒成立,而f (x )=-2x 2+4x +2+t 在(-∞,1)上递增,故只需f (0)=2+t ≤0即可,所以t ≤-2.【变式2-1】(2022秋·山东青岛·高三统考期中)已知关于x 的不等式ax 2+(1-3a )x +2≥0的解集为A ,设B ={-1,1},B ⊆A ,则实数a 的取值范围为()A.-32≤a ≤14B.-14≤a ≤32C.a ≤-14D.a ≥32【答案】B【解析】由题意,a (x 2-3x )+x +2≥0在B ={-1,1}上恒成立,所以4a +1≥03-2a ≥0,可得-14≤a ≤32.故选:B【变式2-2】(2022秋·河南·高三期末)已知a >0,b ∈R ,若x >0时,关于x 的不等式ax -2 x2+bx -5 ≥0恒成立,则b +4a的最小值为()A.2B.25C.43D.32【答案】B【解析】设y =ax -2(x >0),y =x 2+bx -5(x >0),因为a >0,所以当0<x <2a时,y =ax -2<0;当x =2a时,y =ax -2=0;当x >2a时,y =ax -2>0;由不等式(ax -2)x 2+bx -5 ≥0恒成立,得:ax -2≤0x 2+bx -5≤0 或ax -2≥0x 2+bx -5≥0 ,即当0<x ≤2a时,x 2+bx -5≤0恒成立,当x ≥2a时,x 2+bx -5≥0恒成立,所以当x =2a 时,y =x 2+bx -5=0,则4a2+2b a -5=0,即b =5a 2-2a ,则当a>0时,b+4a=5a2-2a+4a=5a2+2a≥25a2×2a=25,当且仅当5a2=2a,即a=255时等号成立,所以b+4a的最小值为2 5.故选:B.【变式2-3】(2022秋·广西钦州·高三校考阶段练习)已知函数f x =ax2+x+a,不等式f x <5的解集为-3 2,1.(1)求a的值;(2)若f x >mx在x∈0,5上恒成立,求m的取值范围.【答案】(1)a=2;(2){m|m<5}.【解析】(1)f x =ax2+x+a<5的解集为-3 2,1,即ax2+x+a-5<0的解集为-3 2,1,∴a>0-32+1=-1a-32×1=a-5a,解得a=2;(2)由(Ⅰ)可得f x =2x2+x+2,∵f x >mx在x∈0,5上恒成立,即2x2+1-mx+2>0恒成立,令h x =2x2+1-mx+2,则h x >0在0,5上恒成立,有m-14≤0h0 =2>0或0<m-14≤5m-12-2×2×4<0或m-14>5h5 =52+51-m>0,解得m≤1或1<m<5或m∈∅,综上可得m的范围为{m|m<5}.【变式2-4】(2021秋·陕西西安·高三校考阶段练习)已知二次函数f x 满足f2 =-1,f-1=-1,且f x 的最大值是8.(1)试确定该二次函数的解析式;(2)f x >2x+k在区间-3,1上恒成立,试求k的取值范围.【答案】(1)f x =-4x2+4x+7;(2)k的取值范围为-∞,-35.【解析】(1)由f(2)=f(-1),得x=2-12=12为二次函数的对称轴,因函数f(x)的最大值为8,所以可设f x =a x-1 22+8 ,公众号:高中数学最新试题又因f (2)=94a +8=-1,所以a =-4,因此f x =-4x 2+4x +7.(2)由(1)不等式f x >2x +k ,可化为-4x 2+4x +7>2x +k ,所以k <-4x 2+2x +7,因为f x >2x +k 在区间-3,1 上恒成立,所以k <-4x 2+2x +7在区间-3,1 上恒成立,故k <-4x 2+2x +7 min ,其中x ∈-3,1 ,又函数y =-4x 2+2x +7=-4x -142+294,又当x =-3时,y =-35,当x =1时,y =5,所以函数y =-4x 2+2x +7在-3,1 上的最小值为-35,所以k <-35,所以k 的取值范围为-∞,-35 .【题型3给定参数范围的一元二次不等式恒成立问题】【例3】(2021·吉林松原·校考三模)若不等式x 2-ax ≥16-3x -4a 对任意a ∈-2,4 成立,则x 的取值范围为()A.-∞,-8 ∪3,+∞B.-∞,0 ∪1,+∞C.-8,6D.0,3【答案】A【解析】由题得不等式(x -4)a -x 2-3x +16≤0对任意a ∈-2,4 成立,所以(x -4)(-2)-x 2-3x +16≤0(x -4)4-x 2-3x +16≤0 ,即-x 2-5x +24≤0-x 2+x ≤0,解之得x ≥3或x ≤-8.故选:A【变式3-1】(2022秋·湖北襄阳·高三校考阶段练习)若命题“∃a ∈-1,3 ,ax 2-2a -1 x +3-a <0”为假命题,则实数x 的取值范围为()A.-1,4B.0,53C.-1,0 ∪53,4D.-1,0 ∪53,4【答案】C【解析】命题“∃a ∈-1,3 ,ax 2-2a -1 x +3-a <0”为假命题,其否定为真命题,即“∀a ∈-1,3 ,ax 2-2a -1 x +3-a ≥0”为真命题.令g (a )=ax 2-2ax +x +3-a =(x 2-2x -1)a +x +3≥0,则g (-1)≥0g (3)≥0 ,即-x 2+3x +4≥03x 2-5x ≥0 ,解得-1≤x ≤4x ≥53或x ≤0 ,所以实数x 的取值范围为-1,0 ∪53,4.故选:C 【变式3-2】(2022秋·广东深圳·高三深圳中学校考阶段练习)已知当-1≤a ≤1时,x 2+a -4 x +4-2a >0恒成立,则实数x 的取值范围是()A.-∞,3B.-∞,1∪ 3,+∞C.-∞,1D.-∞,1 ∪3,+∞【答案】D【解析】x 2+a -4 x +4-2a >0恒成立,即x -2 a +x 2-4x +4>0,对任意得a ∈-1,1 恒成立,令f a =x -2 a +x 2-4x +4,a ∈-1,1 ,当x =2时,f a =0,不符题意,故x ≠2,当x >2时,函数f a 在a ∈-1,1 上递增,则f a min =f -1 =-x +2+x 2-4x +4>0,解得x >3或x <2(舍去),当x <2时,函数f a 在a ∈-1,1 上递减,则f a min =f 1 =x -2+x 2-4x +4>0,解得x <1或x >2(舍去),综上所述,实数x 的取值范围是-∞,1 ∪3,+∞ .故选:D .【变式3-3】(2023·全国·高三专题练习)当a ∈2,3 时,不等式ax 2-x +1-a ≤0恒成立,求x 的取值范围.【答案】-12,1 .【解析】由题意不等式ax 2-x +1-a ≤0对a ∈2,3 恒成立,可设f (a )=(x 2-1)a +(-x +1),a ∈2,3 ,则f (a )是关于a 的一次函数,要使题意成立只需f (2)≤0f (3)≤0,即2x 2-x -1≤03x 2-x -2≤0 ,解2x 2-x -1≤0,即2x +1 x -1 ≤0得-12≤x ≤1,解3x 2-x -2≤0,即3x +2 x -1 ≤0得-23≤x ≤1,所以原不等式的解集为-12,1 ,所以x 的取值范围是-12,1.【变式3-4】(2021·辽宁沈阳·高三沈阳二中校考开学考试)设函数f x =mx 2-mx -1.(1)若对于x ∈-2,2 ,f x <-m +5恒成立,求m 的取值范围;(2)若对于m ∈-2,2 ,f x <-m +5恒成立,求x 的取值范围.【答案】(1)-∞,67;(2)-1,2 【解析】(1)若对于x ∈-2,2 ,f x <-m +5恒成立,即mx 2-mx +m -6<0对于x ∈-2,2 恒成立,即m <6x 2-x +1对于x ∈-2,2 恒成立.公众号:高中数学最新试题令h x =6x 2-x +1=6x -12 2+34,x ∈-2,2 ,则h x min =h (-2)=6254+34=67,故m <67,所以m 的取值范围为-∞,67.(2)对于m ∈-2,2 ,f x <-m +5恒成立,即mx 2-mx -1<-m +5恒成立,故m x 2-x +1 -6<0恒成立,令g m =m x 2-x +1 -6,则g -2 =-2x 2-x +1 -6<0g 2 =2x 2-x +1 -6<0 ,解得-1<x <2,所以x 的取值范围为-1,2 .【题型4一元二次不等式在实数集上的有解问题】【例4】(2023·全国·高三专题练习)若存在实数x ,使得mx 2-m -2 x +m <0成立,则实数m 的取值范围为()A.-∞,2B.-∞,0 ∪13,32C.-∞,23D.-∞,1 【答案】C【解析】①当m =0时,不等式化为2x <0,解得:x <0,符合题意;②当m >0时,y =mx 2-m -2 x +m 为开口方向向上的二次函数,只需Δ=m -2 2-4m 2=-3m 2-4m +4>0,即0<m <23;③当m <0时,y =mx 2-m -2 x +m 为开口方向向下的二次函数,则必存在实数x ,使得mx 2-m -2 x +m <0成立;综上所述:实数m 的取值范围为-∞,23.故选:C .【变式4-1】(2022秋·广西钦州·高三校考阶段练习)若关于x 的不等式a 2-4 x 2+a +2 x -1≥0的解集不为空集,则实数a 的取值范围为()A.-2,65B.-2,65C.(-∞,-2)∪65,+∞ D.(-∞,-2]∪65,+∞【答案】C【解析】根据题意,分两种情况讨论:①当a 2-4=0时,即a =±2,若a=2时,原不等式为4x-1≥0,解可得:x≥1 4,则不等式的解集为x x≥1 4,不是空集;若a=-2时,原不等式为-1≥0,无解,不符合题意;②当a2-4≠0时,即a≠±2,若(a2-4)x2+(a+2)x-1≥0的解集是空集,则有a2-4<0Δ=(a+2)2+4(a2-4)<0,解得-2<a<65,则当不等式(a2-4)x2+(a+2)x-1≥0的解集不为空集时,有a<-2或a≥65且a≠2,综合可得:实数a的取值范围为(-∞,-2)∪65,+∞;故选:C.【变式4-2】(2023·全国·高三专题练习)若关于x的不等式ax2-(a+2)x+94<0有解,则实数a的取值范围是____.【答案】(-∞,1)∪(4,+∞)【解答】当a=0时,不等式为-2x+94<0有解,故a=0,满足题意;当a>0时,若不等式ax2-(a+2)x+94<0有解,则满足Δ=(a+2)2-4a⋅94>0,解得a<1或a>4;当a<0时,此时对应的函数的图象开口向下,此时不等式ax2-(a+2)x+94<0总是有解,所以a<0,综上可得,实数a的取值范围是(-∞,1)∪(4,+∞).【变式4-3】(2022·全国·高三专题练习)若关于x的不等式ax2+2x+1<0有实数解,则a的取值范围是_____.【答案】-∞,1【解析】当a=0时,不等式为2x+1<0有实数解,所以a=0符合题意;当a<0时,不等式对应的二次函数开口向下,所以不等式ax2+2x+1<0有实数解,符合题意;当a>0时,要使不等式ax2+2x+1<0有实数解,则需满足Δ=4-4a>0,可得a<1,所以0<a<1,综上所述:a的取值范围是-∞,1,公众号:高中数学最新试题【题型5一元二次不等式在某区间上的有解问题】【例5】(2022·甘肃张掖·高台县第一中学校考模拟预测)若关于x 的不等式x 2-6x +2-a >0在区间0,5 内有解,则实数a 的取值范围是().A.2,+∞B.-∞,5C.-∞,-3D.-∞,2【答案】D【解析】不等式x 2-6x +2-a >0在区间0,5 内有解,仅需(x 2-6x +2)max >a 即可,令f (x )=x 2-6x +2,因为f (x )的对称轴为x =--62×1=3,f (0)=2,f (5)=-3,所以由一元二次函数的图像和性质的得(x 2-6x +2)max =2,所以a <2,故选:D【变式5-1】(2023·全国·高三专题练习)已知关于x 的不等式mx 2-6x +3m <0在0,2 上有解,则实数m 的取值范围是()A.-∞,3B.-∞,127C.3,+∞D.127,+∞ 【答案】A【解析】由题意得,mx 2-6x +3m <0,x ∈0,2 ,即m <6xx 2+3,故问题转化为m <6xx 2+3在0,2 上有解,设g (x )=6x x 2+3,则g (x )=6x x 2+3=6x +3x ,x ∈0,2 ,对于x +3x≥23,当且仅当x =3∈(0,2]时取等号,则g (x )max =623=3,故m <3,故选:A【变式5-2】(2022·全国·高三专题练习)命题p :∃x ∈{x |1≤x ≤9},x 2-ax +36≤0,若p 是真命题,则实数a 的取值范围为()A.a ≥37 B.a ≥13C.a ≥12D.a ≤13【答案】C【解析】∵命题p :∃x ∈{x |1≤x ≤9},使x 2-ax +36≤0为真命题,即∃x ∈{x |1≤x ≤9},使x 2-ax +36≤0成立,即a ≥x +36x能成立设f (x )=x +36x ,则f (x )=x +36x≥2x ⋅36x =12,当且仅当x =36x,即x =6时,取等号,即f (x )min =12,∴a ≥12,故a的取值范围是a≥12.故选:C.【变式5-3】(2022秋·北京·高三统考阶段练习)若存在x∈[0,1],有x2+(1-a)x+3-a>0成立,则实数a的取值范围是__________.【答案】-∞,3【解析】将原不等式参数分离可得a<x2+x+3x+1,设f x =x2+x+3x+1,已知存在x∈[0,1],有x2+(1-a)x+3-a>0成立,则a<f x max,令t=x+1,则f x =t-12+t-1+3t=t2-t+3t=t+3t-1,t∈1,2,由对勾函数知f x 在1,3上单调递减,在3,2上单调递增,f1 =1+31-1=3,f2 =2+32-1=52,所以f x max=f1 =3,即a<3.【变式5-4】(2023·全国·高三专题练习)已知命题“∃x∈[-1,1],-x02+3x0+a>0”为真命题,则实数a 的取值范围是______.【答案】-2,+∞【解析】因为命题“∃x∈[-1,1],-x02+3x0+a>0”为真命题则∃x∈[-1,1],a>x2-3x有解,设f(x)=x2-3x,则f(x)=x2-3x=x-3 22-94,当x∈[-1,1]时,f(x)单调递减,所以-2≤f(x)≤4,所以a>-2.【变式5-5】(2022·全国·高三专题练习)设f x 为奇函数,g x 为偶函数,对于任意x∈R均有f x + 2g x =mx-4.若f x -x2+2g x ≥0在x∈0,+∞上有解,则实数m的取值范围是_____ _.【答案】m≥4【解析】由题设,f x -x2+2g x =mx-4-x2≥0,即x2-mx+4≤0在x∈0,+∞上有解,对于y=x2-mx+4,开口向上且对称轴为x=m2,Δ=m2-16,y|x=0=4,∴Δ≥0m2>0,可得m≥4.公众号:高中数学最新试题限时检测(建议用时:60分钟)1.(2022·甘肃张掖·高台县第一中学校考模拟预测)已知命题P:∀x∈R,x2-2x+m>0,则满足命题P为真命题的一个充分条件是()A.m>2B.m<0C.m<1D.m≥1【答案】A【解析】∵命题P为真命题,∴不等式x2-2x+m>0在R上恒成立,∴△=4-4m<0,解得m>1,对于A,m>2⇒m>1,∴m>2 是m>1的充分条件,∴m>2 是命题P为真命题的充分条件,选项A正确;对于B,m<0推不出m>1,∴m<0不是m>1的充分条件,∴m<0不是命题P为真命题的充分条件,选项B不正确;对于C,m<1推不出m>1,∴m<1不是m>1的充分条件,∴m<1不是命题P为真命题的充分条件,选项C不正确对于D,m≥1推不出m>1,∴m≥1不是m>1的充分条件,∴m≥1不是命题P为真命题的充分条件,选项D不正确.故选:A.2.(2022秋·北京大兴·高三统考期中)若命题“∃x∈R,x2+2x+m≤0”是真命题,则实数m的取值范围是()A.m<1B.m≤1C.m>1D.m≥1【答案】B【解析】由题可知,不等式x2+2x+m≤0在实数范围内有解,等价于方程x2+2x+m=0有实数解,即△=4-4m≥0,解得m≤1.故选:B.3.(2022秋·全国·高三校联考阶段练习)设m∈R,则“m>-34”是“不等式x2-x+m+1≥0在R上恒成立”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】由不等式x2-x+m+1≥0在R上恒成立,得△=-1 2-4m +1 ≤0,解得m ≥-34.所以“m >-34”是“不等式x 2-x +m +1≥0在R 上恒成立”的充分不必要条件.故选:A 4.(2022秋·宁夏银川·高三校考期中)已知命题P :∀x ∈R ,x 2-x +a >0,若-P 是假命题,则实数a 的取值范围是()A.-∞,14B.14,12C.14,+∞D.12,+∞【答案】C【解析】已知命题P :∀x ∈R ,x 2-x +a >0,若-P 是假命题,则不等式x 2-x +a >0在R 上恒成立,∴△=1-4m <0,解得a >14.因此,实数a 的取值范围是14,+∞.故选:C .5.(2022秋·河南·高三校联考阶段练习)设函数f x =2ax 2-ax ,命题“∃x ∈0,1 ,f x ≤-a +3”是假命题,则实数a 的取值范围为()A.-∞,3B.3,+∞C.247,+∞D.32,+∞【答案】C【解析】因为命题“∃x ∈0,1 ,f x ≤-a +3”是假命题,所以∃x ∈0,1 ,f x >-a +3是真命题,又f x >-a +3可化为2ax 2-ax >-a +3,即a 2x 2-x +1 >3,当x ∈0,1 时,2x 2-x +1∈78,2,所以m >32x 2-x +1在x ∈0,1 上恒成立,所以m >32x 2-x +1 max其中,x ∈0,1 ,当x =14时2x 2-x +1有最小值为78,此时32x 2-x +1有最大值为247,所以m >247,故实数m 的取值范围是247,+∞ ,故选:C 6.(2023·全国·高三专题练习)若对任意的x ∈-1,0 ,-2x 2+4x +2+m ≥0恒成立,则m 的取值范围是()A.4,+∞B.2,+∞C.-∞,4D.-∞,2【答案】A【解析】因为对任意的x ∈-1,0 ,-2x 2+4x +2+m ≥0恒成立,所以对任意的x ∈-1,0 ,m ≥2x 2-4x -2恒成立,公众号:高中数学最新试题因为当x ∈-1,0 ,y =2x -1 2-4∈-2,4 ,所以m ≥2x 2-4x -2 max =4,x ∈-1,0 ,即m 的取值范围是4,+∞ ,故选:A7.(2021秋·河南南阳·高三南阳中学校考阶段练习)设函数f x =mx 2-mx -1,若对于任意的x ∈x |1≤x ≤3 ,f x <-m +4恒成立,则实数m 的取值范围为()A.m <57B.0≤m <57C.m <0或0<m <57D.m ≤0【答案】A【解析】若对于任意的x ∈x |1≤x ≤3 ,f x <-m +4恒成立,即可知:mx 2-mx +m -5<0在x ∈x |1≤x ≤3 上恒成立,令g x =mx 2-mx +m -5,对称轴为x =12.当m =0时,-5<0恒成立,当m <0时,有g x 开口向下且在1,3 上单调递减,在1,3 上g x max =g 1 =m -5<0,得m <5,故有m <0.当m >0时,有g x 开口向上且在1,3 上单调递增在1,3 上g x max =g 3 =7m -5<0,∴0<m <57综上,实数m 的取值范围为m <57,故选:A .8.(2022秋·湖南邵阳·高三统考期中)设函数f x =x 2+2ax +a 2-2a +3,若对于任意的x ∈R ,不等式f f x ≥0恒成立,则实数a 的取值范围是()A.a ≥32B.a ≤2C.32<a ≤2 D.a ≤32【答案】B【解析】∵f x =x 2+2ax +a 2-2a +3=x +a 2-2a +3,即开口向上且f x ∈-2a +3,+∞ ,由f f x ≥0恒成立,即f x ≥0在-2a +3,+∞ 上恒成立,∴当-2a +3≥0时,即a ≤32,由二次函数的性质,f x ≥0显然成立;当a >32时,y =f x 有两个零点,则只需满足-a ≤-2a +3f -2a +3 ≥0,解得a ≤2,故32<a ≤2;综上,a 的取值范围是a ≤2.故选:B9.(2022秋·辽宁鞍山·高三校联考期中)设a ∈R ,,若关于x 的不等式x 2-ax +1≥0在1≤x ≤2上有解,则()A.a ≤2B.a ≥2C.a ≤52D.a ≥52【答案】C【解析】由x 2-ax +1≥0在1≤x ≤2上有解,得x 2+1x≥a 在1≤x ≤2上有解,则a ≤x 2+1x max ,由于x 2+1x =x +1x ,而x +1x 在1≤x ≤2单调递增,故当x =2时,x +1x 取最大值为52,故a ≤52,故选:C 10.(2023·全国·高三专题练习)已知命题“∃x 0∈R ,4x 02+a -2 x 0+14≤0”是真命题,则实数a 的取值范围()A.-∞,0B.0,4C.4,+∞D.-∞,0 ⋃4,+∞【答案】D【解析】由题意,命题∃x 0∈R ,4x 02+a -2 x 0+14≤”是真命题故△=a -2 2-4×4×14=a 2-4a ≥0,解得a ≥4或a ≤0.则实数a 的取值范围是-∞,0 ⋃4,+∞ 故选:D .11.(2022·全国·高三专题练习)已知关于x 的不等式-x 2+4x ≥a 2-3a 在R 上有解,则实数a 的取值范围是()A.a |-1≤a ≤4B.a |-1<a <4C.a |a ≥4或a ≤-1D.a |-4≤a ≤1【答案】A【解析】因为关于x 的不等式-x 2+4x ≥a 2-3a 在R 上有解,即x 2-4x +a 2-3a ≤0在R 上有解,只需y =x 2-4x +a 2-3a 的图象与x 轴有公共点,所以△=-4 2-4×a 2-3a ≥0,即a 2-3a -4≤0,所以a -4 a +1 ≤0,解得:-1≤a ≤4,所以实数a 的取值范围是a |-1≤a ≤4 ,故选:A .12.(2022·全国·高三专题练习)若关于x 的不等式x 2+ax -2>0在区间1,5 上有解,则实数a 的取值范围为()A.-235,+∞ B.-235,1C.1,+∞D.-∞,-235公众号:高中数学最新试题【答案】A【解析】关于x的不等式x2+ax-2>0在区间1,5上有解,ax>2-x2在x∈1,5上有解,即a>2x-x在x∈1,5上成立;设函数f x =2x-x,x∈1,5,∴f x 在x∈1,5上是单调减函数,又f1 =2-1=1,f5 =25-5=-235所以f x 的值域为-23 5,1,要a>2x-x在x∈1,5上有解,则a>-235,即实数a的取值范围为-235,+∞.故选:A.13.(2021秋·江苏徐州·高三统考阶段练习)若存在实数x,使得关于x的不等式ax2-4x+a-3<0成立,则实数a的取值范围是______.【答案】a<4【解析】a<3时,若x=0,则不等式为a-3<0,不等式成立,满足题意,a≥3时,在在x使得不等式ax2-4x+a-3<0成立,则△=16-4a a-3>0,∴3≤a<4.综上,a<4.14.(2021·全国·高三专题练习)已知函数x2-x,x≤02x,x>0.若存在x∈R使得关于x的不等式f x ≤ax-1成立,则实数a的取值范围是________.【答案】-∞,-3⋃-1,+∞【解析】由题意,当x=0时,不等式f x ≤ax-1可化为0≤-1显然不成立;当x<0时,不等式f x ≤ax-1可化为x2-x+1≤ax,所以a≤x+1x-1,又当x<0时,x+1x=--x+-1x≤-2,当且仅当-x=-1x,即x=-1时,等号成立;当x>0时,不等式f x ≤ax-1可化为2x+1≤ax,即a≥1x+2x=1x+12-1≥-1;因为存在x∈R使得关于x的不等式f x ≤ax-1成立,所以,只需a≤-2-1=-3或a≥-1.15.(2020·上海杨浦·复旦附中校考模拟预测)若命题:“存在整数x使不等式kx-k2-4x-4<0成立”是假命题,则实数k 的取值范围是____________.【答案】1,4【解析】设不等式kx -k 2-4 x -4 <0的解集为A,当k =0时,不等式kx -k 2-4 x -4 <0化为x >4,存在整数x 使不等式成立,所以此时不满足题意,所以k ≠0;当k >0时,原不等式化为x -k +4kx -4 <0,因为k +4k ≥2k ⋅4k =4,当且仅当k =4k即k =2时取等号,所以A =x |4<x <k +4k ,要使命题:“存在整数x 使不等式kx -k 2-4 x -4 <0成立”是假命题,则需4≤k +4k≤5,解得1≤k ≤4;当k <0时,原不等式化为x -k +4kx -4 >0,而k +4k =--k +4-k ≤-2-k ⋅4-k =-4,当且仅当-k =4-k即k =-2时取等号,所以A =-∞,k +4k∪4,+∞ ,所以存在整数x 使不等式kx -k 2-4 x -4 <0成立,所以k <0不合题意.综上可知,实数k 的取值范围是1,4 .16.(2022秋·江苏连云港·高三校考开学考试)ax 2-2x +1≥0,∀x >0恒成立,则实数a 的取值范围是_________ .【答案】1,+∞【解析】由ax 2-2x +1≥0,∀x >0恒成立,可得,a ≥2x -1x2对∀x >0恒成立,令y =2x -1x2,则y =1-1x -1 2,1x >0 当1x=1时,y max =1,所以a ≥y max =1.17.(2021·全国·高三专题练习)若不等式x 2-2>mx 对满足m ≤1的一切实数m 都成立,则x 的取值范围是___________【答案】x <-2或x >2【解析】因为x 2-2>mx ,所以mx -x 2+2<0令f m =mx -x 2+2,即f m <0在m ≤1恒成立,即-1≤m ≤1时f m <0恒成立,公众号:高中数学最新试题所以f1 <0f-1<0,即x-x2+2<0-x-x2+2<0,解x-x2+2<0得x>2或x<-1;解-x-x2+2<0得x>1或x<-2,所以原不等式组的解集为x∈-∞,-2∪2,+∞18.(2023·全国·高三专题练习)若不等式-x2+t2-2at+1≥0对任意x∈-1,1及a∈-1,1恒成立,则实数t的取值范围是__________.【答案】-∞,-2∪0 ∪2,+∞【解析】由题意得t2-2at+1≥x2对任意x∈-1,1及a∈-1,1恒成立,所以t2-2at+1≥1对任意a∈-1,1恒成立,即t2-2at≥0对a∈-1,1恒成立,令g a =t2-2at=-2at+t2,则g a 是关于a的一次函数,所以只需g1 ≥0g-1≥0,即t2-2t≥0t2+2t≥0,解得t≥2或t≤-2或t=0,所以实数t的取值范围是-∞,-2∪0 ∪2,+∞。
浅谈不等式恒成立问题
) ; 若o ) 恒成立, 只需求出 ) , 则o ≤ ) 血,
转化 为函数求最值 。
在给出的不等式 中 ,如果两变量不能通过恒等
变形分别置于不等式的两 边 ,则可利用分类讨论 的
思想来解决 。 例 1 若 ∈[ 一 2 , 2 ] 时, 不等式 + 似+ 3 ≥0 恒成 立, 求n 的取值范围。
例3 当 ∈[ 1 , 3 ]时 ,不等式 一 a x + 4  ̄0 恒成
立, 求n 的范围 。
解:
) + 僦+ 3 一 Ⅱ , 则 问题转 化为 当 ∈[ 一
解: 因为 2 一 似+ 4 ≤0 , 所以似≥X 2 + 4 , Ⅱ ≥∞ + n 因
,
2 , 2 ] 时, ) 的最小值非负 。 ( 1 ) 当一 < 一 2 即n > 4 时
Ⅱ≤ /
,
)
一 2 ) = 7 — 3 0 10 > ,
2 7 . . a > 4 , Nt 2a :  ̄存在 ;
为( 斛 ) = 5 , 所 以o ≥5 。
总结 : 本题 突 出代数 的方法 , 求。 的范围 , 就把n ( 2 )当一 2≤ ≤2即一 4 ≤。≤4 时, , ( ) =
0
考点 聚 焦
浅 谈不 等 式恒成 立 问题
一 ■ 武洪伟
一
不等式恒成立问题是高中数学 中比较重要 的一
类题型 , 综合性较强 , 涉及 的知 识点较多 , 如 函数 的
函数 , 在本 题 中令Y z + 唧+ 1 , 则要求 函数值 恒大 于
0 , 则 函数图像 应在 轴上方 ,  ̄ L a < o 。
( 3 ) 当一 > 2 即0 < 一 4 1  ̄, f( )
不等式的恒成立问题基本解法9种解法
不等式的恒成立问题基本解法9种解法在解决不等式的恒成立问题时,有多种基本解法可以选择,每种解法都有其独特的特点和适用场景。
在本文中,我们将深入探讨不等式的恒成立问题,并从不同的角度提出9种基本解法,帮助读者更全面、深入地理解这一主题。
1. 直接法直接法是解决不等式的恒成立问题最直接的方法。
通过对不等式的特定性质和条件进行分析,直接得出不等式恒成立的结论。
这种方法通常适用于简单的不等式,能够快速得到结果。
2. 间接法间接法是一种通过反证法或对立法解决不等式的恒成立问题的方法。
当直接法无法直接得出结论时,可以尝试使用间接法来推导不等式的恒成立条件。
这种方法通常适用于较为复杂的不等式,可以通过推翻假设得到结论。
3. 分类讨论法分类讨论法是一种将不等式的条件分为多种情况进行分析的方法。
通过将不同情况进行分类讨论,找出每种情况下不等式的恒成立条件,从而得出综合结论。
这种方法适用于不等式条件较为复杂的情况,能够全面考虑不同情况下的特殊性。
4. 代入法代入法是一种通过代入特定的数值进行验证的方法。
通过选择合适的数值代入不等式中,可以验证不等式在特定条件下是否恒成立。
这种方法通常适用于验证不等式的特定性质或条件。
5. 齐次化法齐次化法是一种将不等式中的不定因子统一化的方法。
通过将不等式中的不定因子进行统一化,可以简化不等式的表达形式,从而更容易得出不等式的恒成立条件。
这种方法通常适用于不等式较为复杂的情况,能够简化问题的复杂度。
6. 几何法几何法是一种通过几何形象进行分析的方法。
通过将不等式转化为几何图形,可以直观地理解不等式的恒成立条件。
这种方法通常适用于具有几何意义的不等式问题,能够通过几何图形进行直观分析。
7. 递推法递推法是一种通过递归关系进行推导的方法。
通过建立递推关系,可以得出不等式的递推解,从而得出恒成立条件。
这种方法通常适用于递推关系较为明显的不等式问题,能够通过递推求解不等式问题。
8. 极限法极限法是一种通过极限的性质进行分析的方法。
巧思妙法,破解不等式“恒成立”问题
㊀㊀㊀巧思妙法,破解不等式 恒成立 问题◉甘肃省天水市张家川回族自治县第三高级中学㊀范㊀烯㊀㊀摘要:不等式 恒成立 问题综合考查函数㊁不等式等相关知识,以及相应的数学思想方法,一直备受命题者青睐,是各级各类考试中的热点问题之一.解决不等式 恒成立 问题,有技可循,有法可依,合理构造,巧妙转化,总结规律,引领并指导数学教学与复习备考.关键词:不等式;恒成立;判别式;数形结合;分离参数㊀㊀涉及不等式恒成立 的问题,是高中数学函数与不等式的一个重点与难点,往往以含参不等式的形式出现,是一类极具交汇性㊁综合性与创新性的复杂应用问题,难度较大,形式多样.不等式 恒成立 问题知识融合性强,解决时有一定的经验规律与技巧方法可循,能有效考查学生各方面的数学基础知识㊁数学思想方法与数学能力等,具有较好的选拔性与区分度,倍受各方关注.1利用判别式法解决不等式恒成立 问题判别式法是通过引入参数进行待定系数法转化,利用二次方程有根来合理构建判别式,进而结合不等式的求解来分析与解决.例1㊀对于任意的正数a ,b ,不等式(2a b +a 2)k ɤ4b 2+4a b +3a 2恒成立,则实数k 的最大值为.分析:根据题目条件等价转化对应的 恒成立 不等式,构建涉及分式不等式的恒成立问题,转化为关于b 的二次方程,利用方程有根并结合判别式构建对应的不等式,通过不等式的求解来确定参数的最值,进而得以确定实数k 的最大值.解析:由不等式(2a b +a 2)k ɤ4b 2+4a b +3a 2恒成立,可得不等式k ɤ4b 2+4a b +3a 22a b +a2恒成立,即k ɤ4b 2+4a b +3a 22a b +a 2æèçöø÷m i n.设4b 2+4a b +3a 22a b +a2=λ(λ>0).整理可得4b 2+(4-2λ)a b +(3-λ)a 2=0,将其看作关于实数b 的二次方程.由判别式Δ=(4-2λ)2a 2-16a 2(3-λ)ȡ0,整理可得λ2ȡ8.又λ>0,解得λȡ2㊀2.所以k ɤ4b 2+4a b +3a 22a b +a 2æèçöø÷m i n=2㊀2,即k 的最大值为2㊀2,故填答案:2㊀2.点评:利用判别式法解决不等式 恒成立 问题,关键是通过不等式的恒等变换等进行处理,巧妙引入参数转化为涉及某一变元的一元二次方程,利用方程有实根所对应的判别式非负来构建不等式,进而确定参数的取值范围,从而得以解决相应的不等式 恒成立 问题.2利用数形结合法解决不等式恒成立 问题数形结合法的关键就是将 恒成立 不等式合理转化为一个常规函数或一个含参函数的问题,通过函数图象的 形 来直观分析与处理.例2㊀已知函数f (x )=e x-m x ,当x >0时,(x -2)f (x )+m x 2+2>0恒成立,则实数m 的取值范围为.分析:据题目条件对相应的不等式进行等价化归与转化,结合参变分离法进行处理,并通过构造两个函数,把对应的函数的 数 转化为两个函数图象的 形 的问题,进而数形结合,考察含有参数的动直线与定曲线的位置关系,从而建立相应的关系式来确定对应的参数值.解析:由(x -2)f (x )+m x 2+2>0,得(x -2) e x>-2m x -2,则问题等价于 当x >0时,(x -2)e x >-2m x -2恒成立 .图1构造g (x )=(x -2)e x ,h (x )=-2m x -2.如图1所示,根据条件,只要考察当x >0时,曲线g (x )=(x -2)e x 的图象恒在直线h (x )=-2m x -2的上方即可.对g (x )求导,可得g ᶄ(x )=(x -1)e x.当x ɪ(0,1)时,g ᶄ(x )<0,g (x )单调递减;当x ɪ(1,+ɕ)时,g ᶄ(x )>0,g (x )单调递增.又当x ɪ(0,+ɕ)时,g ᵡ(x)=x e x>0,所以g (x )在(0,+ɕ)上是凹函数.952022年10月上半月㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀学习交流复习备考Copyright ©博看网. All Rights Reserved.㊀㊀㊀而g(0)=h(0)=-2,所以只要满足直线h(x)=-2m x-2的斜率不大于曲线g(x)=(x-2)e x在x=0处的切线的斜率即可.所以有-2mɤgᶄ(0)=-1,解得mȡ12.即实数m的取值范围为12,+ɕéëêêöø÷.故填答案:12,+ɕéëêêöø÷.点评:利用数形结合法解决不等式 恒成立 问题,关键是结合 恒成立 的不等式进行恒等变形与转化,构建与之对应的两个函数,通过一条定曲线与一动直线的位置关系,利用图形直观确定临界位置,这是数形结合处理此类问题的关键所在.3利用分离参数法解决不等式 恒成立 问题分离参数法是解决含参不等式 恒成立 问题最常用的一类技巧方法,结合不等式进行恒等变形,分离出相应的参数,再从另一边所对应的函数来切入与处理.例3㊀(清华大学2020年1月份中学生标准学术能力诊断性测试数学试卷文科 12)已知不等式x+a l n x+1e xȡx a对xɪ(1,+ɕ)恒成立,则实数a的最小值为(㊀㊀).A.-㊀e㊀㊀B.-e2㊀㊀C.-e㊀㊀D.-2e分析:合理结合题目条件中不等式的等价变形与转化,再结合不等号两边的函数结构特征,利用函数的同构处理,通过函数求导确定函数的单调性,进而巧妙分离参数,最后利用函数的构建以及其单调性,进而确定相关参数的取值范围.解析:由x+a l n x+1e xȡx a,变形可得x+e-xȡx a-a l n x,则有x+e-xȡx a+l n x-a.设函数f(x)=x+e-x(x>1),可知f(l n x-a)=l n x-a+e-l n x=l n x-a+x a.那么x+e-xȡx a+l n x-aÛf(x)ȡf(l n x-a).又当xɪ(1,+ɕ)时fᶄ(x)=1-e-x>0,则由f(x)单调递增,可得xȡl n x-a=-a l n x,即aȡ-x l n x.设g(x)=-x l n x(x>1).求导有gᶄ(x)=-l n x-1l n2x.由gᶄ(x)=0,可得x=e.所以函数g(x)在(1,e)上单调递增,在(e,+ɕ)上单调递减.故g(x)ɤg(e)=-e,从而aȡ-e.故选择:C.点评:利用分离参数法解决不等式 恒成立 问题,关键是对含参不等式进行合理恒等变形与转化,巧妙分离出参数,进而构建对应的函数,通过基本初等函数的单调性或借助函数求导处理来确定对应函数的单调性,进而确定对应函数的极值或最值,从而得以确定参数的取值范围.4利用主参变换法解决不等式 恒成立 问题主参变换法就是改变常规的主元与参数之间的关系与性质,转换思维角度,从 旁观者 的视角来切入,实现问题的化归与转化.例4㊀已知函数y=m x2-m x-6+m,若对于1ɤmɤ3,y<0恒成立,则实数x的取值范围为.分析:根据题目条件,构建不等式恒成立所对应的不等式,借助主参变换处理,转化为涉及参数m的一次不等式,利用题目条件以及参数m的限制条件构建涉及参数x的不等式,进而利用题目条件转化相应的一元二次不等式,通过求解不等式来确定对应实数x的取值范围.解析:由y<0,得m x2-m x-6+m<0.借助主参变换处理,整理可得(x2-x+1)m-6<0.又由1ɤmɤ3,可知不等式x2-x+1<6m恒成立,则x2-x+1<63,即x2-x-1<0,解得1-㊀52<x<1+㊀52.所以,实数x的取值范围为(1-㊀52,1+㊀52).故填答案:(1-㊀52,1+㊀52).点评:利用主参变换法解决不等式 恒成立 问题,关键是利用题目中的不等式进行恒等变形与巧妙转化,合理转化主元与参数之间的关系,进行主参变换处理,结合不等式恒成立加以巧妙化归,进而转化为不等式㊁函数等其他相关问题加以分析与处理.涉及不等式 恒成立 的问题,解决的基本策略就是 含参 转化与 分参 处理两个基本思维角度.具体解决时,或通过 数 的视角,利用判别式法㊁分离参数法㊁主参变换法等处理;或通过 形 的视角,数形结合法等处理.综合不等式的性质以及函数的基本性质等,合理构造,巧妙转化为较为熟悉的数学模型,从而得以破解不等式 恒成立 问题,提升学生数学品质㊁数学能力,培养数学核心素养.Z06复习备考学习交流㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2022年10月上半月Copyright©博看网. All Rights Reserved.。
不等式恒成立、能成立问题【七大题型】(举一反三)(新高考专用)(解析版)—2025年高考数学一轮复习
不等式恒成立、能成立问题【七大题型】【题型1 一元二次不等式在实数集上恒成立问题】 (2)【题型2 一元二次不等式在某区间上的恒成立问题】 (3)【题型3 给定参数范围的一元二次不等式恒成立问题】 (5)【题型4 基本不等式求解恒成立问题】 (7)【题型5 一元二次不等式在实数集上有解问题】 (10)【题型6 一元二次不等式在某区间上有解问题】 (11)【题型7 一元二次不等式恒成立、有解问题综合】 (13)1、不等式恒成立、能成立问题一元二次不等式是高考数学的重要内容.从近几年的高考情况来看,“含参不等式恒成立与能成立问题”是常考的热点内容,这类问题把不等式、函数、三角、几何等知识有机地结合起来,其以覆盖知识点多、综合性强、解法灵活等特点备受高考命题者的青睐.另一方面,在解决这类数学问题的过程中涉及的“函数与方程”、“化归与转化”、“数形结合”、“分类讨论”等数学思想对锻炼学生的综合解题能力,培养其思维能力都起到很好的作用.【知识点1 不等式恒成立、能成立问题】1.一元二次不等式恒成立、能成立问题不等式对任意实数x恒成立,就是不等式的解集为R,对于一元二次不等式ax2+bx+c>0,它的解集为R的条件为{a>0,Δ=b2-4ac<0;一元二次不等式ax2+bx+c≥0,它的解集为R的条件为{a>0,Δ=b2-4ac≤0;一元二次不等式ax2+bx+c>0的解集为∅的条件为{a<0,Δ≤0.2.一元二次不等式恒成立问题的求解方法(1)对于二次不等式恒成立问题常见的类型有两种,一是在全集R上恒成立,二是在某给定区间上恒成立.(2)解决恒成立问题一定要搞清谁是自变量,谁是参数,一般地,知道谁的范围,谁就是变量,求谁的范围,谁就是参数.①若ax2+bx+c>0恒成立,则有a>0,且△<0;若ax2+bx+c<0恒成立,则有a<0,且△<0.②对第二种情况,要充分结合函数图象利用函数的最值求解(也可采用分离参数的方法).3.给定参数范围的一元二次不等式恒成立问题的解题策略解决恒成立问题一定要清楚选谁为主元,谁是参数;一般情况下,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数;即把变元与参数交换位置,构造以参数为变量的函数,根据原变量的取值范围列式求解.4.常见不等式恒成立及有解问题的函数处理策略不等式恒成立问题常常转化为函数的最值来处理,具体如下:(1)对任意的x∈[m,n],a>f(x)恒成立a>f(x)max;若存在x∈[m,n],a>f(x)有解a>f(x)min;若对任意x∈[m,n],a>f(x)无解a≤f(x)min.(2)对任意的x∈[m,n],a<f(x)恒成立a<f(x)min;若存在x∈[m,n],a<f(x)有解a<f(x)max;若对任意x∈[m,n],a<f(x)无解a≥f(x)max.【例1】(2023·福建厦门·二模)“b∈(0,4)”是“∀x∈R,bx2―bx+1>0成立”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解题思路】由∀x∈R,bx2―bx+1>0成立求出b的范围,再利用充分条件、必要条件的定义判断作答.【解答过程】由∀x∈R,bx2―bx+1>0成立,则当b=0时,1>0恒成立,即b=0,当b≠0时,b>0b2―4b<0,解得0<b<4,因此∀x∈R,bx2―bx+1>0成立时,0≤b<4,因为(0,4)[0,4),所以“b∈(0,4)”是“∀x∈R,bx2―bx+1>0成立”的充分不必要条件.故选:A.【变式1-1】(2023·江西九江·模拟预测)无论x取何值时,不等式x2―2kx+4>0恒成立,则k的取值范围是()A.(―∞,―2)B.(―∞,―4)C.(―4,4)D.(―2,2)【解题思路】由题知4k2―16<0,再解不等式即可得答案.【解答过程】解:因为无论x取何值时,不等式x2―2kx+4>0恒成立,所以,4k2―16<0,解得―2<k<2,所以,k的取值范围是(―2,2)故选:D.【变式1-2】(2023·福建厦门·二模)不等式ax2―2x+1>0(a∈R)恒成立的一个充分不必要条件是()A.a>2B.a≥1C.a>1D.0<a<12【解题思路】分a=0和a≠0两种情况讨论求出a的范围,再根据充分条件和必要条件的定义即可得解.【解答过程】当a=0时,―2x+1>0,得x<12,与题意矛盾,当a≠0时,则a>0Δ=4―4a<0,解得a>1,综上所述,a>1,所以不等式ax2―2x+1>0(a∈R)恒成立的一个充分不必要条件是A选项.故选:A.【变式1-3】(2023·四川德阳·模拟预测)已知p:0≤a≤2,q:任意x∈R,ax2―ax+1≥0,则p是q成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解题思路】根据一元二次不等式恒成立解得q:0≤a≤4,结合充分、必要条件的概念即可求解.【解答过程】命题q:一元二次不等式ax2―ax+1≥0对一切实数x都成立,当a=0时,1>0,符合题意;当a≠0时,有a>0Δ≤0,即a>0a2―4a≤0,解为a∈(0,4],∴q:0≤a≤4.又p:0≤a≤2,设A=[0,2],B=[0,4],则A是B的真子集,所以p是q成立的充分非必要条件,故选:A.【题型2 一元二次不等式在某区间上的恒成立问题】【例2】(2023·辽宁鞍山·二模)已知当x >0时,不等式:x 2―mx +16>0恒成立,则实数m 的取值范围是( )A .(―8,8)B .(―∞,8]C .(―∞,8)D .(8,+∞)【解题思路】先由x 2―mx +16>0得m <x +16x,由基本不等式得x +16x≥8,故m <8.【解答过程】当x >0时,由x 2―mx +16>0得m <x +16x,因x >0,故x +16x≥=8,当且仅当x =16x即x =4时等号成立,因当x >0时,m <x +16x恒成立,得m <8,故选:C.【变式2-1】(23-24高一上·贵州铜仁·期末)当x ∈(―1,1)时,不等式2kx 2―kx ―38<0恒成立,则k 的取值范围是( )A .(―3,0)B .[―3,0)C .―D .―【解题思路】对二项式系数进行分类,结合二次函数定义的性质,列出关系式求解.【解答过程】当x ∈(―1,1)时,不等式2kx 2―kx ―38<0恒成立,当k =0时,满足不等式恒成立;当k ≠0时,令f (x )=2kx 2―kx ―38,则f (x )<0在(―1,1)上恒成立,函数f (x )的图像抛物线对称轴为x =14,k >0时,f (x )在―,1上单调递增,则有f (―1)=2k +k ―38≤0f (1)=2k ―k ―38≤0,解得0<k ≤18;k <0时,f (x )在―,1上单调递减,则有=2k 16―k 4―38<0,解得―3<k <0.综上可知,k的取值范围是―故选:D.【变式2-2】(23-24高一上·江苏徐州·阶段练习)若对于任意x ∈[m,m +1],都有x 2+mx ―1<0成立,则实数m 的取值范围是( )A .―23,0B .―,0C .―23,0D .,0【解题思路】利用一元二次函数的图象与性质分析运算即可得解.【解答过程】由题意,对于∀x ∈[m,m +1]都有f(x)=x 2+mx ―1<0成立,∴f (m )=m 2+m 2―1<0f (m +1)=(m +1)2+m (m +1)―1<0,解得:―<m <0,即实数m 的取值范围是―,0.故选:B.【变式2-3】(22-23高一上·安徽马鞍山·期末)已知对一切x ∈[2,3],y ∈[3,6],不等式mx 2―xy +y 2≥0恒成立,则实数m 的取值范围是( )A .m ≤6B .―6≤m ≤0C .m ≥0D .0≤m ≤6【解题思路】令t =yx ,分析可得原题意等价于对一切t ∈[1,3],m ≥t ―t 2恒成立,根据恒成立问题结合二次函数的性质分析运算.【解答过程】∵x ∈[2,3],y ∈[3,6],则1x ∈[13,12],∴yx ∈[1,3],又∵mx 2―xy +y 2≥0,且x ∈[2,3],x 2>0,可得m ≥y x―,令t =yx ∈[1,3],则原题意等价于对一切t ∈[1,3],m ≥t ―t 2恒成立,∵y =t ―t 2的开口向下,对称轴t =12,则当t =1时,y =t ―t 2取到最大值y max =1―12=0,故实数m 的取值范围是m ≥0.故选:C.【题型3 给定参数范围的一元二次不等式恒成立问题】【例3】(23-24高一上·山东淄博·阶段练习)若命题“∃―1≤a ≤3,ax 2―(2a ―1)x +3―a <0”为假命题,则实数x 的取值范围为( )A .{x |―1≤x ≤4 }B .x |0≤xC .x |―1≤x ≤0或53≤x ≤4D .x |―1≤x <0或53<x ≤4【解题思路】由题意可得:命题“∀―1≤a ≤3,ax 2―(2a ―1)x +3―a ≥0”为真命题,根据恒成立问题结合一次函数运算求解.【解答过程】由题意可得:命题“∀―1≤a ≤3,ax 2―(2a ―1)x +3―a ≥0”为真命题,即ax 2―(2a ―1)x +3―a =(x 2―2x ―1)a +x +3≥0对a ∈[―1,3]恒成立,则―(x 2―2x ―1)+x +3≥03(x 2―2x ―1)+x +3≥0,解得―1≤x ≤0或53≤x ≤4,即实数x 的取值范围为x |―1≤x ≤0或53≤x ≤4.故选:C.【变式3-1】(23-24高一上·广东深圳·阶段练习)当1≤m ≤2时,mx 2―mx ―1<0恒成立,则实数x 的取值范围是( )A<x <B<x <C <x<D <x <【解题思路】将不等式整理成关于m 的一次函数,利用一次函数性质解不等式即可求得结果.【解答过程】根据题意可将不等式整理成关于m 的一次函数(x 2―x )m ―1<0,由一次函数性质可知(x 2―x )×1―1<0(x 2―x )×2―1<0 ,即x 2―x ―1<02x 2―2x ―1<0;<x <<x <<x <故选:B.【变式3-2】(23-24高一下·河南濮阳·期中)已知当―1≤a ≤1时,x 2+(a ―4)x +4―2a >0恒成立,则实数x 的取值范围是( )A .(―∞,3)B .(―∞,1]∪[3,+∞)C .(―∞,1)D .(―∞,1)∪(3,+∞)【解题思路】将x2+(a―4)x+4―2a>0化为(x―2)a+x2―4x+4>0,将a看成主元,令f(a)=(x―2) a+x2―4x+4,分x=2,x>2和x<2三种情况讨论,从而可得出答案.【解答过程】解:x2+(a―4)x+4―2a>0恒成立,即(x―2)a+x2―4x+4>0,对任意得a∈[―1,1]恒成立,令f(a)=(x―2)a+x2―4x+4,a∈[―1,1],当x=2时,f(a)=0,不符题意,故x≠2,当x>2时,函数f(a)在a∈[―1,1]上递增,则f(a)min=f(―1)=―x+2+x2―4x+4>0,解得x>3或x<2(舍去),当x<2时,函数f(a)在a∈[―1,1]上递减,则f(a)min=f(1)=x―2+x2―4x+4>0,解得x<1或x>2(舍去),综上所述,实数x的取值范围是(―∞,1)∪(3,+∞).故选:D.【变式3-3】(2008·宁夏·高考真题)已知a1>a2>a3>0,则使得(1―a i x)2<1(i=1,2,3)都成立的x取值范围是( )A.B.0,C.D.(a i>0),【解题思路】由(1―a i x)2<1可求得0<x<2a i【解答过程】由(1―a i x)2<1,得:1―2a i x+a2i x2<1,(a i>0),即x(a2i x―2a i)<0,解之得0<x<2a i因为a1>a2>a3>0,使得(1―a i x)2<1(i=1,2,3)都成立,;所以0<x<2a1故选:B.【题型4 基本不等式求解恒成立问题】【例4】(23-24高一下·贵州贵阳·期中)对任意的x∈(0,+∞),x2―2mx+1>0恒成立,则m的取值范围为()A.[1,+∞)B.(―1,1)C.(―∞,1]D.(―∞,1)【解题思路】参变分离可得2m <x +1x 对任意的x ∈(0,+∞)恒成立,利用基本不等式求出x +1x 的最小值,即可求出参数的取值范围.【解答过程】因为对任意的x ∈(0,+∞),x 2―2mx +1>0恒成立,所以对任意的x ∈(0,+∞),2m <x 2+1x=x +1x 恒成立,又x +1x ≥=2,当且仅当x =1x ,即x =1时取等号,所以2m <2,解得m <1,即m 的取值范围为(―∞,1).故选:D.【变式4-1】(22-23高三上·河南·期末)已知a >0,b ∈R ,若x >0时,关于x 的不等式(ax ―2)(x 2+bx ―5)≥0恒成立,则b +4a 的最小值为( )A .2B .C .D .【解题思路】根据题意设y =ax ―2,y =x 2+bx ―5,由一次函数以及不等式(ax ―2)(x 2+bx ―5)≥0分析得x =2a 时,y =x 2+bx ―5=0,变形后代入b +4a ,然后利用基本不等式求解.【解答过程】设y =ax ―2(x >0),y =x 2+bx ―5(x >0),因为a >0,所以当0<x <2a 时,y =ax ―2<0;当x =2a 时,y =ax ―2=0;当x >2a 时,y =ax ―2>0;由不等式(ax ―2)(x 2+bx ―5)≥0恒成立,得:ax ―2≤0x 2+bx ―5≤0 或ax ―2≥0x 2+bx ―5≥0 ,即当0<x ≤2a 时,x 2+bx ―5≤0恒成立,当x ≥2a 时,x 2+bx ―5≥0恒成立,所以当x =2a 时,y =x 2+bx ―5=0,则4a 2+2b a―5=0,即b =5a 2―2a ,则当a >0时,b +4a =5a 2―2a +4a =5a 2+2a ≥=当且仅当5a2=2a ,即a =所以b +4a 的最小值为故选:B.【变式4-2】(23-24高三上·山东威海·期中)关于x 的不等式ax 2―|x|+2a ≥0的解集是(―∞,+∞),则实数a 的取值范围为( )A +∞B .―∞C .―D .―∞,∪+∞【解题思路】不等式ax 2―|x|+2a ≥0的解集是(―∞,+∞),即对于∀x ∈R ,ax 2―|x|+2a ≥0恒成立,即a ≥|x |x 2+2,分x =0和a ≠0两种情况讨论,结合基本不等式即可得出答案.【解答过程】解:不等式ax 2―|x|+2a ≥0的解集是(―∞,+∞),即对于∀x ∈R ,ax 2―|x|+2a ≥0恒成立,即a ≥|x |x 2+2,当x =0时,a ≥0,当a ≠0时,a ≥|x |x 2+2=1|x |+2|x |,因为1|x |+2|x |≤=所以a ≥综上所述a ∈+∞.故选:A.【变式4-3】(23-24高一上·湖北·阶段练习)已知x >0,y >0,且1x+2+1y =27,若x +2+y >m 2+5m 恒成立,则实数m 的取值范围是( )A .(―4,7)B .(―2,7)C .(―4,2)D .(―7,2)【解题思路】利用基本不等式“1”的代换求不等式左侧最小值,结合x +2+y >m 2+5m 恒成立得到不等式,解一元二次不等式求参数范围【解答过程】因为x >0,y >0,且1x+2+1y =27,所以x +2+y =72×(x +2+y =72×1+1+y x+2+≥72×2+=14,当且仅当y =x +2=7时取等号,又因为x +2+y >m 2+5m 恒成立,所以14>m 2+5m ,解得―7<m <2.所以实数m的取值范围是(―7,2).故选:D.【题型5 一元二次不等式在实数集上有解问题】【例5】(2024·陕西宝鸡·模拟预测)若存在实数x,使得mx2―(m―2)x+m<0成立,则实数m的取值范围为()A.(―∞,2)B.(―∞,0]∪C.―∞D.(―∞,1)【解题思路】分别在m=0、m>0和m<0的情况下,结合二次函数的性质讨论得到结果.【解答过程】①当m=0时,不等式化为2x<0,解得:x<0,符合题意;②当m>0时,y=mx2―(m―2)x+m为开口方向向上的二次函数,;只需Δ=(m―2)2―4m2=―3m2―4m+4>0,即0<m<23③当m<0时,y=mx2―(m―2)x+m为开口方向向下的二次函数,则必存在实数x,使得mx2―(m―2)x+m<0成立;综上所述:实数m的取值范围为―∞故选:C.【变式5-1】(22-23高一上··阶段练习)若关于x的不等式x2―4x―2―a≤0有解,则实数a 的取值范围是()A.{a|a≥―2 }B.{a|a≤―2 }C.{a|a≥―6 }D.{a|a≤―6 }【解题思路】直接利用判别式即可研究不等式的解的情况.【解答过程】若关于x的不等式x2―4x―2―a≤0有解,则Δ=16+4(2+a)≥0,解得a≥―6.故选:C.【变式5-2】(23-24高一上·山东临沂·阶段练习)若不等式―x2+ax―1>0有解,则实数a的取值范围为()A.a<―2或a>2B.―2<a<2C.a≠±2D.1<a<3【解题思路】根据一元二次不等式有实数解的充要条件列式求解作答.【解答过程】不等式―x2+ax―1>0有解,即不等式x2―ax+1<0有解,因此Δ=a2―4>0,解得a<―2或a>2,所以实数a的取值范围为a<―2或a>2.故选:A.【变式5-3】(23-24高一上·江苏徐州·期中)已知关于x的不等式―x2+4x≥a2―3a在R上有解,则实数a 的取值范围是()A.{a|―1≤a≤4 }B.{a|―1<a<4 }C.{a|a≥4 或a≤―1}D.{a|―4≤a≤1 }【解题思路】由题意知x2―4x+a2―3a≤0在R上有解,等价于Δ≥0,解不等式即可求实数a的取值范围.【解答过程】因为关于x的不等式―x2+4x≥a2―3a在R上有解,即x2―4x+a2―3a≤0在R上有解,只需y=x2―4x+a2―3a的图象与x轴有公共点,所以Δ=(―4)2―4×(a2―3a)≥0,即a2―3a―4≤0,所以(a―4)(a+1)≤0,解得:―1≤a≤4,所以实数a的取值范围是{a|―1≤a≤4 },故选:A.【题型6 一元二次不等式在某区间上有解问题】【例6】(2023·福建宁德·模拟预测)命题“∃x∈[1,2],x2≤a”为真命题的一个充分不必要条件是()A.a≥1B.a≥4C.a≥―2D.a≤4【解题思路】根据能成立问题求a的取值范围,结合充分不必要条件理解判断.【解答过程】∵∃x∈[1,2],x2≤a,则(x2)min≤a,即a≥1,∴a的取值范围[1,+∞)由题意可得:选项中的取值范围对应的集合应为[1,+∞)的真子集,结合选项可知B对应的集合为[4,+∞)为[1,+∞)的真子集,其它都不符合,∴符合的只有B,故选:B.【变式6-1】(22-23高二上·河南·开学考试)设a为实数,若关于x的不等式x2―ax+7≥0在区间(2,7)上有实数解,则a的取值范围是()A.(―∞,8)B.(―∞,8]C.(―∞D.―∞【解题思路】参变分离,再根据对勾函数的性质,结合能成立问题求最值即可.【解答过程】由题意,因为x ∈(2,7),故a ≤x +7x 在区间(2,7)上有实数解,则a <x +,又g (x )=x +7x在上单调递减,在上单调递增,且g (2)=2+72=112,g (7)=7+77=8>g (2),故x +<8.故a ≤x +7x 在区间(2,7)上有实数解则a <8.故选:A.【变式6-2】(23-24高一上·福建·期中)若至少存在一个x <0,使得关于x 的不等式3―|3x ―a |>x 2+2x 成立,则实数a 的取值范围是( )A .―374,3B .―C .―374D .(―3,3)【解题思路】化简不等式3―|3x ―a |>x 2+2x ,根据二次函数的图象、含有绝对值函数的图象进行分析,从而求得a 的取值范围.【解答过程】依题意,至少存在一个x <0,使得关于x 的不等式3―|3x ―a |>x 2+2x 成立,即至少存在一个x <0,使得关于x 的不等式―x 2―2x +3>|3x ―a |成立,画出y =―x 2―2x +3(x <0)以及y =|3x ―a |的图象如下图所示,其中―x 2―2x +3>0.当y =3x ―a 与y =―x 2―2x +3(x <0)相切时,由y =3x ―ay =―x 2―2x +3消去y 并化简得x 2+5x ―a ―3=0,Δ=25+4a +12=0,a =―374.当y =―3x +a 与y =―x 2―2x +3(x <0)相切时,由y =―3x +ay =―x 2―2x +3消去y 并化简得x 2―x +a ―3=0①,由Δ=1―4a +12=0解得a =134,代入①得x 2―x +14=x=0,解得x =12,不符合题意.当y =―3x +a 过(0,3)时,a =3.结合图象可知a 的取值范围是―374,3.故选:A.【变式6-3】(22-23高一上·江苏宿迁·期末)若命题“∀x 0∈(0,+∞),使得x 20+ax 0+a +3≥0”为假命题,则实数a 的取值范围是( )A .(―∞,―2),(6,+∞)B .(―∞,―2)C .[―2,6]D .[2+【解题思路】根据题意可知“∃x 0∈(0,+∞),使得x 20+ax 0+a +3<0”为真命题,然后参变分离,将问题转化为最值问题,利用基本不等式可解.【解答过程】因为“∀x 0∈(0,+∞),使得x 20+ax 0+a +3≥0”为假命题,所以“∃x 0∈(0,+∞),使得x 20+ax 0+a +3<0”为真命题,即a <―x 20+3x 0+1在(0,+∞)内有解,即a <―.因为―x 20+3x 0+1=―(x 0+1)2―2(x 0+1)+4x 0+1=―x 0+1―2≤―2,当且仅当x 0=1时等号成立,所以=―2,所以实数a 的取值范围为(―∞,―2).故选:B.【题型7 一元二次不等式恒成立、有解问题综合】【例7】(23-24高一上·山东潍坊·阶段练习)已知关于x 的不等式2x ―1>m(x 2―1).(1)是否存在实数m ,使不等式对任意x ∈R 恒成立,并说明理由;(2)若不等式对于m ∈[―2,2]恒成立,求实数x 的取值范围;(3)若不等式对x ∈[2,+∞)有解,求m 的取值范围.【解题思路】将2x ―1>m(x 2―1)转化为mx 2―2x +(1―m)<0,(1)讨论m =0和m ≠0时的情况;(2)f(m)=(x 2―1)m ―(2x ―1),显然该函数单调,所以只需f(2)<0f(―2)<0即可.(3)讨论当m =0时,当m <0时,当m >0时,如何对x ∈[2,+∞)有解,其中m <0,m >0,均为一元二次不等式,结合一元二次函数图象求解即可.【解答过程】(1)原不等式等价于mx2―2x+(1―m)<0,当m=0时,―2x+1<0,即x>12,不恒成立;当m≠0时,若不等式对于任意实数x恒成立,则m<0且Δ=4―4m(1―m)<0,无解;综上,不存在实数m,使不等式恒成立.(2)设f(m)=(x2―1)m―(2x―1),当m∈[―2,2]时,f(m)<0恒成立,当且仅当f(2)<0f(―2)<0,即2x2―2x―1<0―2x2―2x+3<0,解得<x<x<x><x<所以x的取值范围是.(3)若不等式对x∈[2,+∞)有解,等价于x∈[2,+∞)时,mx2―2x―m)<0有解.令g(x)=mx2―2x+(1―m),当m=0时,―2x+1<0即x>12,此时显然在x∈[2,+∞)有解;当m<0时,x∈[2,+∞)时,结合一元二次函数图象,mx2―2x+(1―m)<0显然有解;当m>0时,y=g(x)对称轴为x=1m,Δ=4―4m(1―m)=4m2―4m+4=(2m―1)2+3>0,∵x∈[2,+∞)时,mx2―2x+(1―m)<0有解,∴结合一元二次函数图象,易得:g(2)<0或g(2)≥01m>2,解得m<1或m≥1m<12(无解),又∵m>0,∴0<m<1;综上所述,m的取值范围为(―∞,1).【变式7-1】(23-24高一上·江苏扬州·阶段练习)设函数y=ax2―(2a+3)x+6,a∈R.(1)若y+2>0恒成立,求实数a的取值范围:(2)当a=1时,∀t>―2,关于x的不等式y≤―3x+3+m在[―2,t]有解,求实数m的取值范围.【解题思路】(1)利用一元二次不等式恒成立的条件即可求解;(2)根据已知条件及二次函数的性质即可求解.【解答过程】(1)y+2>0恒成立,即ax2―(2a+3)x+8>0恒成立,当a=0时,―3x+8>0,解得x<83,舍去;当a≠0时,a>04a2―20a+9<0,解得12<a<92所以实数a(2)当a=1时,∀t>―2,关于x的不等式y≤―3x+3+m在[―2,t]有解,则―2是x2―2x+3―m≤0的解,因为抛物线y=x2―2x+3开口向上,对称轴x=1,所以11―m≤0,解得m≥11,所以m的取值范围为[11,+∞).【变式7-2】(23-24高一上·浙江台州·期中)已知函数f(x)=2x2―ax+a2―4,g(x)=x2―x+a2―314,(a∈R)(1)当a=1时,解不等式f(x)>g(x);(2)若任意x>0,都有f(x)>g(x)成立,求实数a的取值范围;(3)若∀x1∈[0,1],∃x2∈[0,1],使得不等式f(x1)>g(x2)成立,求实数a的取值范围.【解题思路】(1)作差后解一元二次不等式即可.(2)解法一:构造函数,分类讨论求解二次函数最小值,然后列不等式求解即可;解法二:分离参数,构造函数k=x+154x,利用基本不等式求解最值即可求解;(3)把问题转化为f(x)min>g(x)min,利用动轴定区间分类讨论即可求解.【解答过程】(1)当a=1时,f(x)=2x2―x―3,g(x)=x2―x―274所以f(x)―g(x)=x2+154>0,所以f(x)>g(x),所以f(x)>g(x)的解集为R.(2)若对任意x>0,都有f(x)>g(x)成立,即x2+(1―a)x+154>0在x>0恒成立,解法一:设ℎ(x )=x 2+(1―a )x +154,x >0,对称轴x =a―12,由题意,只须ℎ(x )min >0,①当a―12≤0,即a ≤1时,ℎ(x )在0,+∞上单调递增,所以ℎ(x )>ℎ(0)=154,符合题意,所以a ≤1;②当a―12>0,即a >1时,ℎ(x )在+∞单调递增,所以ℎ(x )>=―(a―1)24+154>0,解得1<a <1+a >1,所以1<a <1+综上,a <1+解法二:不等式可化为(a ―1)x <x 2+154,即a ―1<x +154x ,设k =x +154x ,x >0,由题意,只须a ―1<k (x )min ,k =x +154x ≥=当且仅当x =154x 即x =k min =所以a ―1<a <1+(3)若对任意x 1∈[0,1],存在x 2∈[0,1],使得不等式f (x 1)>g (x 2)成立,即只需满足f (x )min >g (x )min ,x ∈[0,1],g (x )=x 2―x +a 2―314,对称轴x =12,g (x )在0,递增,g (x )min ==a 2―8,f (x )=2x 2―ax +a 2―4,x ∈[0,1],对称轴x =a4,①a4≤0即a ≤0时,f (x )在[0,1]递增,f (x )min =f (0)=a 2―4>g (x )min =a 2―8恒成立;②0<a4<1即0<a <4时,f (x )在0,,1递增,f (x )min ==78a 2―4,g (x )min =a 2―8,所以78a 2―4>a 2―8,故0<a <4;③a4≥1即a ≥4时,f (x )在[0,1]递减,f (x )min =f (1)=a 2―a ―2,g (x )min =a 2―8,所以a 2―a ―2>a 2―8,解得4≤a <6,综上:a ∈(―∞,6).【变式7-3】(23-24高一上·山东威海·期中)已知函数f(x)=x 2―(a +3)x +6(a ∈R)(1)解关于x 的不等式f(x)≤6―3a ;(2)若对任意的x ∈[1,4],f(x)+a +5≥0恒成立,求实数a 的取值范围(3)已知g(x)=mx +7―3m ,当a =1时,若对任意的x 1∈[1,4],总存在x 2∈[1,4],使f (x 1)=g (x 2)成立,求实数m 的取值范围.【解题思路】(1)由不等式f(x)≤6―3a 转化为(x ―3)(x ―a)≤0,分a <3,a =3,a >3讨论求解;(2)将对任意的x ∈[1,4],f(x)+a +5≥0恒成立,转化为对任意的x ∈[1,4],a(x ―1)≤x 2―3x +11恒成立,当x =1,恒成立,当x ∈(1,4]时,a ≤(x ―1)+9x―1―1恒成立,利用基本不等式求解;(3)分析可知函数f (x )在区间[1,4]上的值域是函数g (x )在区间[1,4]上的值域的子集,分m =0、m <0、m >0三种情况讨论,求出两个函数的值域,可得出关于实数m 的不等式组,综合可得出实数m 的取值范围.【解答过程】(1)因为函数f(x)=x 2―(a +3)x +6(a ∈R),所以f(x)≤6―3a ,即为x 2―(a +3)x +3a ≤0,所以(x ―3)(x ―a)≤0,当a <3时,解得a ≤x ≤3,当a =3时,解得x =3,当a >3时,解得3≤x ≤a , 综上,当a <3时,不等式的解集为{x |a ≤x ≤3},当a ≥3时,不等式的解集为{x |3≤x ≤a }(2)因为对任意的x ∈[1,4],f(x)+a +5≥0恒成立,所以对任意的x ∈[1,4],a(x ―1)≤x 2―3x +11恒成立,当x =1时,0≤9恒成立,所以对任意的x ∈(1,4]时,a ≤(x ―1)+9x―1―1恒成立, 令(x ―1)+9x―1―1≥1=5,当且仅当x ―1=9x―1,即x =4时取等号,所以a ≤5,所以实数a 的取值范围是(―∞,5](3)当a =1时,f(x)=x 2―4x +6,因为x ∈[1,4],所以函数f(x)的值域是[2,6],因为对任意的x 1∈[1,4],总存在x 2[1,4],使f (x 1)=g (x 2)成立,所以f(x)的值域是g(x)的值域的子集,当m >0时,g(x)∈[7―2m,m +7],则m >07―2m ≤2m +7≥6,解得m ≥52当m <0时,g(x)∈[m +7,7―2m],则m <07―2m ≥6m +7≤2,解得m ≤―5,当m =0时,g(x)∈{7},不成立;综上,实数m 的取值范围(―∞,―5]∪+∞.一、单选题1.(2023·河南·模拟预测)已知命题“∃x 0∈[―1,1],―x 20+3x0+a >0”为真命题,则实数a 的取值范围是( )A .(―∞,―2)B .(―∞,4)C .(―2,+∞)D .(4,+∞)【解题思路】由题知x 0∈[―1,1]时,a >x 20―3x 0min ,再根据二次函数求最值即可得答案.【解答过程】解:因为命题“∃x 0∈[―1,1],―x 20+3x 0+a >0”为真命题,所以,命题“∃x 0∈[―1,1],a >x 20―3x 0”为真命题,所以,x 0∈[―1,1]时,a >x 20―3x 0min ,因为,y =x 2―3x =x―94,所以,当x ∈[―1,1]时,y min =―2,当且仅当x =1时取得等号.所以,x 0∈[―1,1]时,a >x 20―3x 0min=―2,即实数a 的取值范围是(―2,+∞)故选:C.2.(2024·浙江·模拟预测)若不等式kx 2+(k ―6)x +2>0的解为全体实数,则实数k 的取值范围是( )A .2≤k ≤18B .―18<k <―2C .2<k <18D .0<k <2【解题思路】分类讨论k =0与k ≠0两种情况,结合二次不等式恒成立问题的解决方法即可得解.【解答过程】当k =0时,不等式kx 2+(k ―6)x +2>0可化为―6x +2>0,显然不合题意;当k ≠0时,因为kx 2+(k ―6)x +2>0的解为全体实数,所以k >0Δ=(k ―6)2―4k ×2<0,解得2<k <18;综上:2<k <18.故选:C.3.(2023·辽宁鞍山·二模)若对任意的x ∈(0,+∞),x 2―mx +1>0恒成立,则m 的取值范围是( )A .(―2,2)B .(2,+∞)C .(―∞,2)D .(―∞,2]【解题思路】变形给定不等式,分离参数,利用均值不等式求出最小值作答.【解答过程】∀x ∈(0,+∞),x 2―mx +1>0⇔m <x +1x ,而当x >0时,x +1x ≥=2,当且仅当x =1x ,即x =1时取等号,则m <2,所以m 的取值范围是(―∞,2).故选:C.4.(2023·宁夏中卫·二模)已知点A(1,4)在直线x +y=1(a >0,b >0)上,若关于t 的不等式a +b ≥t 2+5t +3恒成立,则实数t 的取值范围为( )A .[―6,1]B .[―1,6]C .(―∞,―1]∪[6,+∞)D .(―∞,―6]∪[1,+∞)【解题思路】将点代入直线方程,再利用基本不等式求得a +b 的最小值,从而将问题转化9≥t 2+5t +3,解之即可.【解答过程】因为点A(1,4)在直线xa +yb =1(a >0,b >0)上,所以1a +4b =1,故a +b =(a +b +=ba +4a b+5≥=9,当且仅当ba =4a b且1a +4b =1,即a =3,b =6时等号成立,因为关于t 的不等式a +b ≥t 2+5t +3恒成立,所以9≥t 2+5t +3,解得―6≤t ≤1,所以t ∈[―6,1].故选:A.5.(23-24高二上·山东潍坊·阶段练习)若两个正实数x ,y 满足1x +4y =2,且不等式x +y4<m 2―m 有解,则实数m 的取值范围是( )A .(―1,2)B .(―∞,―2)∪(1,+∞)C .(―2,1)D .(―∞,―1)∪(2,+∞)【解题思路】利用均值不等式求出最小值,根据题意列不等式求解即可.【解答过程】x +y4=+=+1+y 4x≥12(1+1+2)=2,要使得不等式x +y4<m 2―m 有解,只需m 2―m >2有解即可,解得m >2或者m <―1,故选:D.6.(23-24高一上·全国·单元测试)不等式2x 2―axy +y 2≥0,对于任意1≤x ≤2及1≤y ≤3恒成立,则实数a 的取值范围是( )A .a|a ≤B .a|a ≥C .a|a ≤D .a|a【解题思路】由于在不等式2x 2―axy +y 2≥0中出现两个变量,对其进行变形令t =xy 则转化为含参数t 的不等式2t 2―at +1≥0,在t ∈,2上恒成立的问题,然后进行分离参数求最值即可.【解答过程】由y ∈[1,3],则不等式2x 2―axy +y 2≥0两边同时乘以1y 2不等式可化为:+1≥0,令t =xy ,则不等式转化为:2t 2―at +1≥0,在t ∈,2上恒成立,由2t 2―at +1≥0可得a ≤2t 2+1t即a ≤2t +,又2t +1t ≥=t =t =2t +1t 取得最小值故可得a ≤故选:A .7.(2023·江西九江·二模)已知命题p :∃x ∈R ,x 2+2x +2―a <0,若p 为假命题,则实数a 的取值范围为( )A .(1,+∞)B .[1,+∞)C .(―∞,1)D .(―∞,1]【解题思路】首先由p 为假命题,得出¬p 为真命题,即∀x ∈R ,x 2+2x +2―a ≥0恒成立,由Δ≤0,即可求出实数a 的取值范围.【解答过程】因为命题p :∃x ∈R ,x 2+2x +2―a <0,所以¬p :∀x ∈R ,x 2+2x +2―a ≥0,又因为p 为假命题,所以¬p 即∀x ∈R ,x 2+2x +2―a ≥0恒成立,所以Δ≤0,即22―4(2―a)≤0,解得a ≤1,故选:D .8.(2024·上海黄浦·模拟预测)已知不等式ρ:ax 2+bx +c <0(a ≠0)有实数解.结论(1):设x 1,x 2是ρ的两个解,则对于任意的x 1,x 2,不等式x 1+x 2<―ba 和x 1⋅x 2<ca 恒成立;结论(2):设x 0是ρ的一个解,若总存在x 0,使得ax 02―bx 0+c <0,则c <0,下列说法正确的是( )A .结论①、②都成立B .结论①、②都不成立C .结论①成立,结论②不成立D .结论①不成立,结论②成立【解题思路】根据一元二次不等式与二次方程以及二次函数之间的关系,以及考虑特殊情况通过排除法确定选项.【解答过程】当a<0且Δ=b2―4ac<0时,ρ:ax2+bx+c<0(a≠0)的解为全体实数,故对任意的x1,x2,x1+x2与―ba的关系不确定,例如:ρ:―x2+2x―2<0,取x1=1,x2=4,而―ba =2,所以x1⋅x2=4>ca=2,故结论①不成立.当a<0且Δ=b2―4ac>0时,ρ:ax2+bx+c<0的解为x|x<p或x>q,其中p,q是ax2+bx+c=0的两个根.当x0<p,―x0>q此时ax02―bx0+c<0,但c值不确定,比如:ρ:―x2+x+2<0,取x0 =―3,则―x02―x0+2<0,但c>0,故结论②不成立.故选:B.二、多选题9.(2023·江苏连云港·模拟预测)若对于任意实数x,不等式(a―1)x2―2(a―1)x―4<0恒成立,则实数a可能是()A.―2B.0C.―4D.1【解题思路】首先当a=1,不等式为―4<0恒成立,故满足题意;其次a≠1,问题变为了一元二次不等式恒成立问题,则当且仅当a―1<0Δ<0,解不等式组即可.【解答过程】当a=1时,不等式为―4<0恒成立,故满足题意;当a≠1时,要满足a―1<0Δ<0,而Δ=4(a―1)2+16(a―1)=4(―1)(a+3),所以解得―3<a<1;综上,实数a的取值范围是(―3,1];所以对比选项得,实数a可能是―2,0,1.故选:ABD.10.(2024·广东深圳·模拟预测)下列说法正确的是()A.不等式4x2―5x+1>0的解集是x|x>14或x<1B.不等式2x2―x―6≤0的解集是x|x≤―32或x≥2C.若不等式ax2+8ax+21<0恒成立,则a的取值范围是∅D.若关于x的不等式2x2+px―3<0的解集是(q,1),则p+q的值为―12【解题思路】对于AB ,直接解一元二次不等式即可判断;对于C ,对a 分类讨论即可判断;对于D ,由一元二次不等式的解集与一元二次方程的根的关系,先求得p,q ,然后即可判断.【解答过程】对于A ,4x 2―5x +1>0⇔(x ―1)(4x ―1)>0⇔x <14或x >1,故A 错误;对于B ,2x 2―x ―6≤0⇔(x ―2)(2x +3)≤0⇔―32≤x ≤2,故B 错误;若不等式ax 2+8ax +21<0恒成立,当a =0时,21<0是不可能成立的,所以只能a <0Δ=64a 2―84a <0 ,而该不等式组无解,综上,故C 正确;对于D ,由题意得q,1是一元二次方程2x 2+px ―3=0的两根,从而q ×1=―322+p ―3=0,解得p =1,q =―32,而当p =1,q =―32时,一元二次不等式2x 2+x ―3<0⇔(x ―1)(2x +3)<0⇔―32<x <1满足题意,所以p +q 的值为―12,故D 正确.故选:CD.11.(22-23高三上·河北唐山·阶段练习)若(ax -4)(x 2+b )≥0对任意x∈(-∞,0]恒成立,其中a ,b 是整数,则a +b 的可能取值为( )A .-7B .-5C .-6D .-17【解题思路】对b 分类讨论,当b≥0由(ax -4)(x 2+b )≥0可得ax -4≥0,由一次函数的图象知不存在;当b <0时,由(ax -4)(x 2+b )≥0,利用数形结合的思想可得出a ,b 的整数解.【解答过程】当b≥0时,由(ax -4)(x 2+b )≥0可得ax -4≥0对任意x∈(-∞,0]恒成立,即a≤4x 对任意x∈(-∞,0]恒成立,此时a 不存在;当b <0时,由(ax -4)(x 2+b )≥0对任意x∈(-∞,0]恒成立,可设f (x )=ax -4,g (x )=x 2+b ,作出f (x ),g (x )的图象如下,aa,b是整数可得a=-1b=-16或a=-4b=-1或a=-2b=-4所以a+b的可能取值为-17或-5或-6故选:BCD.三、填空题12.(2024·陕西渭南·模拟预测)若∀x∈R,a<x2+1,则实数a的取值范围是(―∞,1).(用区间表示)【解题思路】利用二次函数的性质计算即可.【解答过程】由题得a<(x2+1)min=1,即实数a的取值范围为(―∞,1).故答案为:(―∞,1).13.(2024·辽宁·三模)若“∃x∈(0,+∞),使x2―ax+4<0”是假命题,则实数a的取值范围为(―∞,4].【解题思路】将问题转化为“a≤x+4x在(0,+∞)上恒成立”,再利用对勾函数的单调性求得最值,从而得解.【解答过程】因为“∃x∈(0,+∞),使x2―ax+4<0”是假命题,所以“∀x∈(0,+∞),x2―ax+4≥0”为真命题,其等价于a≤x+4x在(0,+∞)上恒成立,又因为对勾函数f(x)=x+4x在(0,2]上单调递减,在[2,+∞)上单调递增,所以f(x)min=f(2)=4,所以a≤4,即实数a∞,4].故答案为:(―∞,4].14.(2023·河北·模拟预测)若∃x∈R,ax2+ax+a―3<0,则a的一个可取的正整数值为1(或2,3).【解题思路】由判别式大于0求解.【解答过程】由题意Δ=a2―4a(a―3)>0,解得0<a<4,a的正整数值为1或2或3,故答案为:1(也可取2,3).四、解答题15.(2024·全国·模拟预测)已知函数f(x)=|2x―a|,且f(x)≤b的解集为[―1,3].(1)求a和b的值;(2)若f(x)≤|x―t|在[―1,0]上恒成立,求实数t的取值范围.【解题思路】(1)根据绝对值不等式的性质即可求解,(2)将问题转化为3x2+(2t―8)x+4―t2≤0在[―1,0]上恒成立,即可利用二次函数零点分布求解.【解答过程】(1)由f(x)≤b得|2x―a|≤b,易知b≥0,则―b≤2x―a≤b,解得a―b2≤x≤b+a2,由于f(x)≤b的解集为[―1,3],则b+a2=3,a―b2=―1,解得a=2,b=4.(2)由(1)知f(x)=|2x―2|,由f(x)≤|x―t|得|2x―2|≤|x―t|,得3x2+(2t―8)x+4―t2≤0在[―1,0]上恒成立,Δ=(2t―8)2―4×3×(4―t2)=16(t―1)2>0,故t≠1.令g(x)=3x2+(2t―8)x+4―t2,若g(x)≤0在[―1,0]上恒成立,则g(―1)≤0g(0)≤0,即―t2―2t+15≤04―t2≤0,解得t≤―5或t≥3,故实数t的取值范围为(―∞,―5]∪[3,+∞).16.(2024·新疆乌鲁木齐·一模)已知函数f(x)=|x―1|+|x+2|.(1)求不等式f(x)≤5的解集;(2)若不等式f(x)≥x2―ax+1的解集包含[―1,1],求实数a的取值范围.【解题思路】(1)分类讨论,求解不等式即可;(2)将问题转化为二次函数在区间上恒成立的问题,列出不等式组即可求得.【解答过程】(1)当x≤―2时,f(x)≤5等价于―2x―1≤5,解得x∈[―3,―2];当―2<x<1时,f(x)≤5≤5,恒成立,解得x∈(―2,1);当x≥1时,f(x)≤5等价于2x+1≤5,解得x∈[1,2];综上所述,不等式的解集为[―3,2].(2)不等式f(x)≥x2―ax+1的解集包含[―1,1],等价于f(x)≥x2―ax+1在区间[―1,1]上恒成立,也等价于x2―ax―2≤0在区间[―1,1]恒成立.则只需g(x)=x2―ax―2满足:g(―1)≤0且g(1)≤0即可.即1+a―2≤0,1―a―2≤0,解得a∈[―1,1].。
不等式恒成立问题总结
不等式恒成立问题总结不等式是数学中常见的一种数学表达式,它描述了数值之间的大小关系。
在研究不等式时,我们经常需要判断一个不等式在何种条件下是恒成立的。
在这篇文章中,我将总结一些关于不等式恒成立问题的重要内容。
首先,对于一元一次不等式,例如 "ax + b > 0",我们可以通过解方程 "ax + b = 0",找出它的零点。
然后,我们根据零点将数轴分成几个区间,并通过测试区间内的某一个数值来确定不等式的成立情况。
具体来说,我们选择一个零点相邻区间的中点,将其代入不等式进行判断,如果不等式成立,则可以得出不等式在整个区间上都成立的结论。
其次,对于二次函数的不等式,例如 "ax^2 + bx + c > 0",我们可以通过求解二次方程 "ax^2 + bx + c = 0" 的根来确定不等式的成立范围。
具体来说,当二次方程的解为实数时,可根据方程的根与零点分布来判断不等式在不同区间上的成立情况。
另外,对于一般的多元不等式,如 "f(x, y) > g(x, y)",我们通常需要求解不等式系统的解集。
这可以通过利用代数方法或图形方法来实现。
代数方法包括消元、代入等,来逐步化简并推导出不等式的解集。
图形方法则是将不等式转化为图形,通过观察图形的位置和交点来推导不等式的解集。
总结起来,要判断不等式是否恒成立,我们可以通过解方程、求解二次方程、代数方法或图形方法等方式来找到不等式的解集,并对应不同区间或解集进行测试。
通过这些方法,我们能够准确地判断不等式在何种条件下是恒成立的。
这篇总结介绍了处理不等式恒成立问题的一些常用方法和原则。
通过运用这些方法,我们可以更好地理解和解决不等式相关的问题。
专题二 不等式恒成立、能成立问题(解析版)
强化专题2 不等式恒成立、能成立问题在解决不等式恒成立、能成立的问题时,常常使用不等式解集法、分离参数法、主参换位法和数形结合法解决,方法灵活,能提升学生的逻辑推理,数学运算等素养.【技巧目录】一、“Δ”法解决恒成立问题二、数形结合法解决恒成立问题三、分离参数法解决恒成立问题四、主参换位法解决恒成立问题五、利用图象解决能成立问题六、转化为函数的最值解决能成立问题【例题详解】一、“Δ”法解决恒成立问题例1 若关于x 的不等式2220ax ax --<恒成立,则实数a 的取值范围为( )A .[]2,0-B .(]2,0-C .()2,0-D .()(),20,-∞-⋃+∞ 【答案】B【分析】讨论0a =和0a <两种情况,即可求解.【详解】当0a =时,不等式成立;当0a ≠时,不等式2220ax ax --<恒成立,等价于()()20,2420,a a a <⎧⎪⎨∆=--⨯-<⎪⎩20a ∴-<<. 综上,实数a 的取值范围为(]2,0-.故选:B .【小结】(1)如图①一元二次不等式ax 2+bx +c >0(a ≠0)在R 上恒成立⇔一元二次不等式ax 2+bx +c >0(a ≠0)的解集为R ⇔二次函数y =ax 2+bx +c (a ≠0)的图象恒在x 轴上方⇔y min >0⇔⎩⎪⎨⎪⎧a >0,Δ<0.(2)如图②一元二次不等式ax 2+bx +c <0(a ≠0)在R 上恒成立⇔一元二次不等式ax 2+bx +c <0(a ≠0)的解集为R ⇔二次函数y =ax 2+bx +c (a ≠0)的图象恒在x 轴下方⇔y max <0⇔⎩⎪⎨⎪⎧a <0,Δ<0.二、数形结合法解决恒成立问题例2 当1≤x ≤2时,不等式x 2+mx +4<0恒成立,求m 的取值范围.【详解】令y =x 2+mx +4.∵y <0在[1,2]上恒成立.∴x 2+mx +4=0的根一个小于1上,另一个大于2.如图,得⎩⎪⎨⎪⎧ 1+m +4<0,4+2m +4<0, ∴⎩⎪⎨⎪⎧m +5<0,2m +8<0. ∴m 的取值范围是{m |m <-5}.【小结】结合函数的图象将问题转化为函数图象的对称轴,区间端点的函数值或函数图象的位置(相对于x 轴)关系求解.可结合相应一元二次方程根的分布解决问题.三、分离参数法解决恒成立问题例3 若不等式x 2+ax +1≥0在x ∈[-2,0)时恒成立,则实数a 的最大值为( )A .0B .2C .52D .3 【答案】B【分析】用分离参数法分离参数,然后用基本不等式求最值后可得结论.【详解】不等式x 2+ax +1≥0在[2,0)x ∈-时恒成立,即不等式x x x x a 112--=+-≤在[2,0)x ∈-时恒成立.()()()2121-=-⋅-≥-+x x x x ,当且仅当1x x -=-,即x =-1时,等号成立,所以a ≤2,所以实数a 的最大值为2. 故选:B .【小结】通过分离参数将不等式恒成立问题转化为求函数最值问题.四、主参换位法解决恒成立问题例4 已知[]1,1a ∈-,不等式()24420x a x a +-+->恒成立,则x 的取值范围为___________. 【答案】(,1)(3,)-∞+∞【分析】设()()2244f a x a x x =-+-+,即当[]1,1a ∈-时,()0f a >,则满足()()1010f f ⎧->⎪⎨>⎪⎩解不等式组可得x 的取值范围.【详解】[]1,1a ∈-,不等式()24420x a x a +-+->恒成立即[]1,1a ∈-,不等式()22440x a x x -+-+>恒成立设()()2244f a x a x x =-+-+,即当[]1,1a ∈-时,()0f a >所以()()1010f f ⎧->⎪⎨>⎪⎩,即22320560x x x x ⎧-+>⎨-+>⎩,解得3x >或1x < 故答案为:(,1)(3,)-∞+∞【小结】转换思维角度,即把变元与参数变换位置,构造以参数为变量的函数,根据原变量的取值范围求解.五、利用图象解决能成立问题例5 当1<x <2时,关于x 的不等式x 2+mx +4>0有解,则实数m 的取值范围为________.【答案】{m |m >-5}【详解】记y =x 2+mx +4,则由二次函数的图象知,不等式x 2+mx +4>0(1<x <2)一定有解,即m +5>0或2m +8>0,解得m >-5.【小结】结合二次函数的图象,将问题转化为端点值的问题解决.六、转化为函数的最值解决能成立问题例6 若存在x ∈R ,使得4x +m x 2-2x +3≥2成立,求实数m 的取值范围. 【详解】∵x 2-2x +3=(x -1)2+2>0,∴4x +m ≥2(x 2-2x +3)能成立,∴m ≥2x 2-8x +6能成立,令y =2x 2-8x +6=2(x -2)2-2≥-2,∴m ≥-2,∴m 的取值范围为{m |m ≥-2}.【小结】能成立问题可以转化为m >y min 或m <y max 的形式,从而求y 的最大值与最小值,从而求得参数的取值范围.【过关训练】1.若关于x 的不等式220mx x m ++>的解集是R ,则m 的取值范围是( )A .(1,+∞)B .(0,1)C .(-1,1)D .[1,+∞) 【答案】A【分析】分0m =和0m ≠两种情况求解【详解】当0m =时,20x >,得0x >,不合题意,当0m ≠时,因为关于x 的不等式220mx x m ++>的解集是R , 所以20Δ440m m >⎧⎨=-<⎩,解得1m , 综上,m 的取值范围是(1,+∞),故选:A2.若集合2{|10}A x ax ax =-+≤=∅,则实数a 的取值集合为( )A .{|04}a a <<B .{|04}a a ≤<C .{|04}a a <≤D .{|04}a a ≤≤【答案】B【分析】分00a a =≠,,两种情况求解即可【详解】当0a =时,不等式等价于10<,此时不等式无解; 当0a ≠时,要使原不等式无解,应满足20Δ40a a a >⎧⎨=-<⎩,解得04a <<; 综上,a 的取值范围是[)0,4.故选:B .3.若R x ∈,210ax ax ,则实数a 的取值范围是( )A .()4,0-B .(]4,0-C .[)4,0-D .[]4,0-【答案】B【分析】分两种情况讨论:0a =和0Δ0a <⎧⎨<⎩,解出实数a 的取值范围,即得. 【详解】对R x ∈,210ax ax ,当0a =时,则有10-<恒成立;当0a <时,则20Δ40a a a <⎧⎨=+<⎩,解得40a . 综上所述,实数a 的取值范围是(]4,0-.故选:B.4.“x ∀∈R ,2230x ax a -+>”的充要条件是( )A .12a -<<B .0<<3aC .13a <<D .35a << 【答案】B【分析】“x ∀∈R ,2230x ax a -+>”等价于24120a a ∆=-<,解不等式求得答案.【详解】“x ∀∈R ,2230x ax a -+>”等价于24120a a ∆=-< ,即0<<3a ,故“x ∀∈R ,2230x ax a -+>”的充要条件是0<<3a ,故选:B5.已知关于x 的不等式2680kx kx k -++≥对任意x ∈R 恒成立,则k 的取值范围是( )A .[]0,1B .(]0,1C .()(),01,-∞⋃+∞D .(][),01,-∞+∞ 【答案】A【分析】当0k =时,该不等式成立,当0k ≠时,根据二次函数开口方向及判别式列不等式解决二次不等式恒成立问题.【详解】当0k =时,该不等式为80≥,成立;当0k ≠时,要满足关于x 的不等式2680kx kx k -++≥对任意x ∈R 恒成立,只需()2036480k k k k >⎧⎨-+≤⎩,解得01k <≤,综上所述,k 的取值范围是[]0,1,故选:A.6.已知关于x 的不等式²4x x m -≥对任意(]0,3x ∈恒成立,则有( )A .4m ≤-B .3m ≥-C .30m -≤<D .40m -≤< 【答案】A【分析】由题意可得2min (4)m x x ≤-,由二次函数的性质求出24y x x =-在(]0,3上的最小值即可 【详解】因为关于x 的不等式²4x x m -≥对任意(]0,3x ∈恒成立, 所以2min (4)m x x ≤-,令224(2)4y x x x =-=--,(]0,3x ∈,所以当2x =时,24y x x =-取得最小值4-,所以4m ≤-故选:A7.若对任意的2[1,0],2420x x x m ∈--+++≥恒成立,则m 的取值范围是( )A .[4,)+∞B .[2,)+∞C .(,4]-∞D .(,2]-∞ 【答案】A【分析】由题知对任意的2[1,0],242x m x x ≥-∈--恒成立,进而求[1,0]x ∈-,()2214y x =--最值即可得答案.【详解】解:因为对任意的2[1,0],2420x x x m ∈--+++≥恒成立,所以对任意的2[1,0],242x m x x ≥-∈--恒成立,因为当[1,0]x ∈-,()[]22142,4y x =--∈-,所以()2max 2424m x x --≥=,[1,0]x ∈-, 即m 的取值范围是[4,)+∞故选:A8.若两个正实数,x y 满足12+1=x y ,且不等式2+32+<y x m m 有解,则实数m 的取值范围是( ) A .(4,1)- B .(1,4)-C .()(),41,-∞-+∞ D .()(),14,-∞-⋃+∞ )()1,+∞.9.已知命题p :“15x ∃≤≤,250x ax -->”为真命题,则实数a 的取值范围是( )A .4a <B .4aC .4a >D .4a >-【答案】A【分析】依据题意可将题目转换为非p 命题为真的补集,即“15x ∀≤≤,250x ax --≤恒成立”对应a 取值集合的补集,进一步只需限制端点小于等于0即可求解【详解】由题意,当15x ≤≤时,不等式250x ax -->有解,等价于“15x ∀≤≤,250x ax --≤恒成立”为真时对应a 取值集合的补集若15x ∀≤≤,250x ax --≤恒成立为真命题,需满足, 25550a --≤且150a --≤,解得4a ≥.因此p 命题成立时a 的范围时4a <故选:A .10.若关于x 的不等式2420x x a --->在区间(1,4)内有解,则实数a 的取值范围是( )A .(,2)-∞B .(,2)-∞-C .(6,)-+∞D .(,6)-∞-【答案】B【分析】构造函数2()42f x x x a =---,若不等式2420x x a --->在区间(1,4)内有解,可得函数2()42f x x x a =---在区间(1,4)内的最大值大于0即可,根据二次函数的图象和性质可得答案.【详解】令2()42f x x x a =---,则函数的图象为开口朝上且以直线2x =为对称轴的抛物线,故在区间(1,4)上,()f x f <(4)2a =--,若不等式2420x x a --->在区间(1,4)内有解,则20a -->,解得2a <-,即实数a 的取值范围是(,2)-∞-.故选:B .11.已知关于x 的不等式2240ax x a -+<在(0,2]上有解,则实数a 的取值范围是( )A .1,2⎛⎫-∞ ⎪⎝⎭B .1,2⎛⎫+∞ ⎪⎝⎭C .(,2)-∞D .(2,)+∞12.设函数2()2f x ax ax =--,若对任意的[1,3]x ∈,()22f x x a >--恒成立,则实数a 的取值范围为_____________.13.已知关于x 的不等式244x mx x m +>+-.(1)若对任意实数x ,不等式恒成立,求实数m 的取值范围;(2)若对于04m ≤≤,不等式恒成立,求实数x 的取值范围.【详解】(1)若对任意实数x ,不等式恒成立,即2440x mx x m +--+>恒成立则关于x 的方程2440x mx x m +--+=的判别式()()24440m m ∆=---+<,即240m m -<,解得04m <<,所以实数m 的取值范围为(0,4).(2)不等式244x mx x m +>+-,可看成关于m 的一次不等式()21440m x x x -+-+>,又04m ≤≤, 所以224404(1)440x x x x x ⎧-+>⎨-+-+>⎩,解得2x ≠且0x ≠,所以实数x 的取值范围是()()(),00,22,-∞⋃⋃+∞.14.设2(1)2y ax a x a =+-+-, 若不等式2y ≥-对一切实数x 恒成立,求实数a 的取值范围;19.设函数()21f x mx mx =--.(1)若对于2,2x ,()5f x m <-+恒成立,求m 的取值范围;(2)若对于[]2,2m ∈-,()5f x m <-+恒成立,求x 的取值范围. 2,2x,f 2,2x 恒成立,对于2,2x 恒成立.261324x ⎫-+⎪⎭2,2x ,则1,2.20.已知函数y =mx 2-mx -6+m ,若对于1≤m ≤3,y <0恒成立,求实数x 的取值范围.【详解】y <0⇔mx 2-mx -6+m <0⇔(x 2-x +1)m -6<0.∵1≤m ≤3,∴x 2-x +1<6m恒成立, ∴x 2-x +1<63⇔x 2-x -1<0⇔1-52<x <1+52. ∴x 的取值范围为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1-52<x <1+52.。
解析不等式恒成立问题
解析不等式恒成立问题
一、更换主元法
在解决不等式恒成立问题时,一种最重要的思想方法就是构造适当的函数,利用函数的图象和性质解决问题,同时注意在一个含多个变量的数学问题中,需要确定合适的变量和参数,从而揭示函数关系,使问题更加明朗化,一般地,已知存在范围的量为变量,而待求范围的量为参数.
二、分离参数法
当不等式中的参数(或关于参数的代数式)能够与其它变量完全
分离出来,且分离后不等式另一边的函数(或代数式)的最值可求时,常用分离参数法.
三、数形结合
如果不等式中涉及的函数、代数式对应的图象、图形较易画出时,可通过图象、图形的位置关系建立不等式求得参数范围.
四、最值法
当不等式一边的函数(或代数式)的最值较易求出时,可直接求出这个最值(最值可能含有参数),然后建立关于参数的不等式求解.
策划:刘彦永编辑:刘志勇。
高中数学不等式恒成立问题解题思路探究
高中数学不等式恒成立问题解题思路探究摘要:随着我国教育事业的不断开展,对高中生的数学素质要求进一步的提升,不等式的恒成立问题在高中数学的学习中占据重要的地位,也是实际学习的重难点,不仅是对学生“不等式计算〞思维的一种培养,还能将其运用到实际生活当中。
教师要充分研究解题思路,使学生掌握的解题方法,让学生能够又准又快的解决实际问题。
关键词:高中数学;不等式恒成立;解题思路;探究一、前言不等式的恒成立问题是高中数学学习的重要内容,也是高考的重要考点,它不仅可以对学生进行单独的知识点考查,还可与函数、方程等局部重点内容进行综合的考查,学生在学习过程中存在难度。
因此在解题思路上教师和学生要善于总结,将之前学习过的知识与本节课的学习进行充分的联系,从而找出适合自己的解题方式。
不等式的解题具有一定的规律和技巧,只要学生扎实地掌握不等式恒成立的相关知识和概念,并且将与之有关系的数学知识灵活地运用,就能够有效地提升学生的解题速度和准确率。
二、不等式恒成立问题教学的意义〔一〕能够利用不等式恒成立问题求解函数的最值问题运用不等式的恒成立问题来求解函数的最值问题,是高中生普遍愿意采用的一种方式,在实际的解题过程当中,不仅能够帮助学生理清解题的思路,还可以提高学生的解题技巧和能力,让学生的正确率有所提高。
【例1】函数f〔x〕=12ax2+〔1-a〕x-lnx,a∈R,〔1〕讨论f〔x〕的单调性〔2〕假设a∈〔-∞,-1〕,设g〔x〕=xex-x-lnx+a,证明:x1∈〔0,2]。
存在x2∈〔0,+∞〕,使f〔x1〕-g〔x2〕>2-ln2,第一问答案略,第二问解题步骤如下:由题意得f〔x〕min-g〔x〕min>2-ln2由〔1〕可知,当af〔-1/a〕-f〔2〕=-ln〔-1/a〕-1/2a-1+ln2令h〔x〕=-lnx+12x-1+ln2,x∈〔0,1〕,h′〔x〕=x-22xh〔1〕=ln2-1/2=ln4/e>0,所以f〔-1/a〕>f 〔2〕,从而f〔x〕min=2-ln2。
解析不等式恒成立问题
解析不等式恒成立问题
马继武
【期刊名称】《中国校外教育(基教版)》
【年(卷),期】2011(000)008
【摘要】纵观近年来各地高考数学试题,有关不等式恒成立问题屡见不鲜,这类问题既含参数又含变量,往往与函数、数列、方程、几何有机结合起来,具有形式灵活、思维性强、知识交汇点多等特点.考题通常有两种设计方式:一是证明某个不等式恒成立,二是已知某个不等式恒成立,求其中的参数的值或取值范围.解决这类问题的关键是转化,通过等价转化能使问题起到“柳暗花明”的功效.而等价转化过程往往渗透着换元、化归、数形结合、分类讨论、函数与方程等数学思想方法,其常用方法主要有:更换主元法、分离参数法、数形结合法、最值法等,笔者试图通过本文能对学生突破这一难点有所启迪.
【总页数】1页(P46)
【作者】马继武
【作者单位】山东胶南市第三中学
【正文语种】中文
【相关文献】
1.一道高考题的多角度解析——不等式恒成立问题的解决策略
2.不等式恒成立问题中参数范围的求解策略
3.浅议不等式恒成立问题的几种解题策略
4.浅议不等式恒成立问题的几种解题策略
5.简单的不等式恒成立问题
因版权原因,仅展示原文概要,查看原文内容请购买。
不等式恒成立存在性问题的解题方法
不等式恒成立、存在性问题的解题方法一、常见不等式恒成立问题解法1、用一次函数的性质对于一次函数],[,)(n m x b kx x f ∈+=有:例1:若不等式)1(122->-x m x 对满足22≤≤-m 的所有m 都成立,求x 的范围; 解析:我们可以用变换主元的方法,将m 看作主变元,即将原不等式化为:0)12()1(2<---x x m ,;令)12()1()(2---=x x m m f ,则22≤≤-m 时,0)(<m f 恒成立,所以只需⎩⎨⎧<<-0)2(0)2(f f 即⎪⎩⎪⎨⎧<---<----0)12()1(20)12()1(222x x x x 所以x 的范围是231,271(++-∈x ; 2、利用一元二次函数判别式对于一元二次函数),0(0)(2R x a c bx ax x f ∈≠>++=有:1R x x f ∈>在0)(上恒成立00<∆>⇔且a ;2R x x f ∈<在0)(上恒成立00<∆<⇔且a 例2:若不等式02)1()1(2>+-+-x m x m 的解集是R,求m 的范围;解析:要想应用上面的结论,就得保证是二次的,才有判别式,但二次项系数含有参数m,所以要讨论m-1是否是0;1当m-1=0时,元不等式化为2>0恒成立,满足题意;201≠-m 时,只需⎩⎨⎧<---=∆>-0)1(8)1(012m m m ,所以,)9,1[∈m ; 3、分离变量法若所给的不等式能通过恒等变换使参数与主元分别位于不等式两端,从而问题转化为求主元函数的最值,进而求出参数范围;这种方法本质也还是求最值,但它思路更清晰,操作性更强;一般地有:1为参数)a a g x f )(()(<恒成立max )()(x f a g >⇔2为参数)a a g x f )(()(>恒成立max )()(x f a g <⇔例3已知不等式022>++a x x 在),1[+∞∈x 时恒成立,求a 的取值范围;解:022>++a x x 在),1[+∞∈x 时恒成立,只要x x a 22-->在),1[+∞∈x 时恒成立;而易求得二次函数x x x h 2)(2--=在),1[+∞上的最大值为3-,所以3->a ; 例4.已知函数]4,0(,4)(2∈--=x x x ax x f 时0)(<x f 恒成立,求实数a 的取值范围;解: 将问题转化为xx x a 24-<对]4,0(∈x 恒成立; 令xx x x g 24)(-=,则min )(x g a < 由144)(2-=-=xx x x x g 可知)(x g 在]4,0(上为减函数,故0)4()(min ==g x g ∴0<a 即a 的取值范围为)0,(-∞;注:分离参数后,思路清晰,方向明确,从而能使问题得到顺利解决;4、变换主元法处理含参不等式恒成立的某些问题时,若能适时的把主元变量和参数变量进行“换位”思考,往往会使问题降次、简化;例5.对任意]1,1[-∈a ,不等式024)4(2>-+-+a x a x 恒成立,求x 的取值范围;分析:题中的不等式是关于x 的一元二次不等式,但若把a 看成主元,则问题可转化为一次不等式044)2(2>+-+-x x a x 在]1,1[-∈a 上恒成立的问题;解:令44)2()(2+-+-=x x a x a f ,则原问题转化为0)(>a f 恒成立]1,1[-∈a ; 当2=x 时,可得0)(=a f ,不合题意;当2≠x 时,应有⎩⎨⎧>->0)1(0)1(f f 解之得31><x x 或;故x 的取值范围为),3()1,(+∞-∞ ;练习:1.已知a ax x x f -++=3)(2,若0)(],2,2[≤-∈x f x 恒成立,求a 的取值范围. 2.对于不等式1-mx 2+m-1x+3>01当| x | ≤2,上式恒成立,求实数m的取值范围;2当| m | ≤2,上式恒成立,求实数x的取值范围 .3;若不等式ax2-2x+2>0 对x∈1,4恒成立,求实数a的取值范围;二、存在性问题存在 x∈D,使得函数fx>a⇔fx max>a存在 x∈D,使得函数fx≤a⇔fx min≤a例6::已知函数fx=x2-ax+a,若存在x∈-1,2使得fx>0,试求实数a的取值范围; 解:法一:f1=1>0,所以对a∈R,均存在x∈-1,2使得fx>0.>0,即: f-1>0或f2>0法二:原题同解于:当x∈-1,2时,fxmax代入可得:1+2a>0或4-a>0得a>或a<4 ∴a∈R练习:1;已知3=ax-f,若存在(],2,1∈x使得()0xx(2+22)x成立,求a的取值范围.f<2.存在x∈R,使得不等式22->成立, 则a的取值范围是 .x x a三、有解问题不等式fx>a, x∈D有解解集非空⇔ fx max>a不等式fx<a, x∈D解集为空集⇔ fx min≧a方程fx=a, x∈D有解解集非空⇔ a∈{fx| x∈D}即)x时∈的值域;D(xf例7:方程x2-2x+2-a=0在区间0,3内有解,则实数a的取值范围是 ;解:原题同解于:a=x2-2x+2,x∈0,3的值域;a=x-12 +1∴a∈f1,f3即a∈1,5练习:1;22-≤解集不空, 则a的取值范围是 .x x a2.不等式22-≤解集为空集, 则a的取值范围是 .x x a。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析不等式恒成立问题
◆马继武
(山东胶南市第三中学
)
不等式恒成立问题等价转化
纵观近年来各地高考数学试题,有关不等式恒成立问题屡见不鲜,这类问题既含参数又含变量,往往与函数、数列、方程、几何有机结合起来,具有形式灵活、思维性强、知识交汇点多等特点。
考题通常有两种设计方式:一是证明某个不等式恒成立,二是已知某个不等式恒成立,求其中的参数的值或取值范围。
解决这类问题的关键是转化,通过等价转化能使问题起到“柳暗花明”的功效。
而等价转化过程往往渗透着换元、化归、数形结合、分类讨论、函数与方程等数学思想方法,其常用方法主要有:更换主元法、分离参数法、数形结合法、最值法等,笔者试图通过本文能对学生突破这一难点有所启迪。
一、更换主元法
在解决不等式恒成立问题时,一种最重要的思想方法就是构造适当的函数,利用函数的图象和性质解决问题,同时注意在一个含多个变量的数学问题中,需要确定合适的变量和参数,从而揭示函数关系,使问题更加明朗化,一般地,已知存在范围的量为变量,而待求范围的量为参数。
二、分离参数法
当不等式中的参数(或关于参数的代数式)能够与其它变量完全分离出来,且分离后不等式另一边的函数(或代数式)的最值可求时,常用分离参数法。
三、数形结合法
如果不等式中涉及的函数、代数式对应的图象、图形较易画出时,可通过图象、图形的位置关系建立不等式求得参数范围。
四、最值法
当不等式一边的函数(或代数式)的最值较易求出时,可直接求出这个最值(最值可能含有参数),然后建立关于参数的不等式求解。
注:恒成立问题多与参数的取值范围问题联系在一起,是近几年高考的一个热门题型,它以“参数处理”为主要特征,以“导数”为主要解题工具.往往与函数的单调性、极值、最值等有关,所以解题时要善于将这类问题与函数最值联系起来,通过函数最值求解相关问题。
不等式恒成立问题,因题目涉及知识面广,解题方法灵活多样,技巧性强,难度大等特点,要求有较强的思维灵活性和创造性、较高的解题能力,上述方法是比较常用的,但因为问题形式千变万化,考题亦常考常新。
因此,在备考的各个阶段都应渗透恒成立问题的教与学,在平时的训练中不断领悟和总结,教师也要介入心理辅导和思想方法指导,从而促使学生在解决此类问题的能力上得到改善和提高。
64。