聚乙烯的改性
聚乙烯的改性
聚⼄烯的改性
聚⼄烯的改性
聚⼄烯虽然具有优良的电性能、机械性能和加⼯性能,但是它也有⼀些缺点,如软化点低,强度不⾼,耐⼤⽓⽼化性差,易应⼒开裂,不易染⾊及印刷等。为了进⼀步拓宽聚⼄烯的应⽤领域,克腿这些缺点,可以采⽤聚⼄烯改性来达到。聚⼄烯的改牲主要分为化学改性和物理改性。化学改性⼜分为接枝共聚改性、嵌段共聚改性、化学及辐射交联改性等;物理改性分为共混改性、填充改性(包括增强改性等)。
聚⼄烯的化学交联主要是在聚⼄烯树脂中加⼈有机化合物(常⽤过氧化⼆异丙苯)作为交联剂,然后在压⼒和175~200℃的温度下交联。
接枝聚合是最常⽤的改性聚合⽅法。所谓接校共聚反应是在聚⼄烯的主链上将作为⽀链的不同种⾼分⼦结合上去的⼀种反应。当然也有采⽤过氧化物、放射辐照或其他有关⽅法进⾏反应。接枝⽅式的共聚合反应可以获得良好的混合状态,其分散界⾯是以化学⽅式结合在⼀起,具有良好的机械性能。同时⼜因为聚⼄烯本⾝是⽆极性材料,和其他材料亲和性不好,如将具有极性的单体以接枝共聚合反应结合⾄聚⼄烯分⼦主链上时则会增⼤这种亲和性,由此使可以改善其粘接性、印刷性、染⾊性等性能。例如,聚⼄烯接枝丙烯酸单体所得产品则会改善其在铝箔上的粘合性;加⼊丁⼆烯单体接枝共聚合反应的制品,可以提⾼耐热性、耐应⼒开裂性。
聚⼄烯的共混改性是聚⼄烯与其他⾼聚物等物质进⾏共混,⽤挤出机、辊炼机等设备⽽制成新材料。共混过程中往往包含化学接枝或交联反应,以提⾼共混的改性效果。
聚⼄烯的填充改性是在聚⼄烯的成型加⼯过程中加⼊⽆机或有机填料,不仅能使制品价格⼤⼤降低,⽽且能显着改善材料的机械强度、耐摩擦性能、热性能及耐⽼化性能等,并改善聚⼄烯的易膨胀性及易蠕变性等,所以填料既有增量作⽤,⼜有改性效果。常⽤的⽆机填料有碳酸钙(包括轻质碳酸钙和重质碳酸钙)、滑⽯粉、云母、⾼岭⼟、⼆氧化硅、硅藻⼟、硅灰⽯、炭⿊等。
聚乙烯共混改性
聚乙烯共混改性
一摘要:聚乙烯是最重要的通用塑料之一,产量居各种塑料首位。聚乙烯(PE)
是由乙烯聚合而得的高分子化合物。聚乙烯分子仅含有C、H两种元素,所以是非极性聚合物,具有优良的耐酸、碱以及耐极性化学物质腐蚀的性质。聚乙烯(PE)树脂是以乙烯单体聚合而成的聚合物。聚乙烯的分子是长链线形结构或支链结构,为典型的结晶聚合物。在固体状态下,结晶部分与无定形部分共存。结晶度视加工条件和原处理条件而异,一般情况下,密度越高结晶度就越大。LDPE 结晶度通常为 55%~65%,HDPE 结晶度为 80%~90%。PE 具有优良的机械加工性能,但其表面呈惰性和非极性,造成印刷性、染色性、亲水性、粘合性、抗静电性能及与其他极性聚合物和无机填料的相容性较差,而且其耐磨性、耐化学药品性、耐环境应力开裂性及耐热等性能不佳,限制了其应用范围。通过改性来提高其性能,扩大其应用领域。其来源丰富,价格便宜,电气性质和加工性质优良,广泛应用于日用品、包装、汽车、建筑以及家用电器等方面。也作为泡沫塑料广泛用于绝热保温、包装和民用等各领域。但是,这些材料都是一次性使用,且质轻、体积大、难降解,用后即弃于环境中,造成严重的环境污染。因此有效合理地回收利用废旧泡沫塑料就显得日益重要。
聚乙烯的改性目标聚乙烯的下述缺点影响它的使用,是改性的主要目标。
(1)软化点低。低压聚乙烯熔点约为Ig0'C。高压聚乙烯熔点仅高于 0℃,因此聚乙烯的使用温度常低于10 0℃。
(2)J强度不高。聚乙烯抗张强度一般小于30M Pa.大太低于尼龙6、尼龙66、聚甲醛等工程塑料。
聚乙烯改性研究进展
Gh s oh等_ 采 用接 枝共 聚 的方 法将 少 量 的丙 8
烯 酸单 体 共 聚 物 接 枝 到 P 上 , 原 始 的 P 相 E 与 E
比, 改性后 的 P E具有 较高 的熔体 粘 度 和较 低 的熔
程 为 庄 等l 以过 氧化 苯 甲酰 为 引发 剂 , 甲 _ 2 ] 二
0 引 言
聚 乙烯 ( E 质 优 、 廉 、 得 , 用 途 十分 广 P ) 价 易 且
苯 为溶 剂 , 行 了丙 烯 酸与 低 密度 聚 乙烯 ( D E 进 L P )
的溶 液 接枝 聚 合 . 乙烯 接 枝 了丙 烯 酸后 与铝 的 聚 粘 结强 度显著 增 大 , 当接 枝 率 为 7 2 时 , 离强 . 剥
聚 乙烯 改 性 研究 进 展
刘生 张 胡 林 婷 , 森 鹏 , 苗 , 昊泽 , 危
(_ 1 武汉 工程 大学绿 色化 工过 程 省部共 建教 育部 重点 实验 室 , 湖北 武 汉 4 0 7 ; 3 0 4 2 武 汉大 学化 学与分子 科 学学 院, . 湖北 武 汉 4 0 7 ) 3 0 2
鲁建 民等 研究 了粉末 态 高 密 度 聚 乙烯 的 辐 射 效应 、 多 种 单体 的 固态 辐 射 接 枝行 为 及其 表 与 征, 并将 其应 用于 聚 乙烯 粉末 涂 料 , 附着 力 和柔 其
韧 性得 到显著 改善. Ek o i 6 用光接枝 的方法 将 A 接枝 到 lh l 等_采 d A 聚 乙烯上 , 改性后 的 P E薄膜 具有 良好 的粘 结性.
聚烯烃改性研究
二、聚烯烃改性
1、聚乙烯改性
(1)国际上现用少量高密度聚乙烯掺入到低密度聚乙烯中以达到防止或减少封拈效果。(2)加入少量(0.05~0.1%)油酸胺化物,可大为减少薄膜封粘。如果加入0.5~2%的聚丙烯,可提高其透明度
(3)用二氧化硅、碳素、粘土、碳酸钙,甚至一些工业废渣作为填充剂,填充量可达1:1,虽增强刚性,但抗张强度、延伸率、抗裂强度却有所下降,然而脆性化温度有所提高。
(4)以交联剂交联改性,为目前欧美研完的一种聚乙烯聚联改性新方法。
交联工艺有下列几种:
A、有机过氧化物交联厂
B、叠氦化物交联
C、放射线交联
D、热交联
F、烷硅交联,
H、发泡交联。
(5)光氯化聚乙烯薄膜生产已经工业化,其可分为二种光氯化方法(
①日本采用光氯化照射室方法,即将聚乙烯薄膜在照射室内二面用氯气与之接触,并在一面用紫外线照射,这样氯原子不断扩散,紫外线也溅射到薄膜上,即使不直接接触光的面,同样得以光氯化。
②利用透过室方法,即将聚乙烯薄膜在透过室内,在绝对抽真空情况下一面用光照射,仅只有一面与氯气接触,并在同一面用紫外线进行光照。
除上述两种光氯化方法外,若二面同时用紫外线照射,效果更佳。经光氯化改性的聚乙烯薄膜,改变其表面不活泼而难于印刷的问题,不需进行表面处理即可印刷。
聚丙烯改性
聚丙烯(PP)是五大通用塑料之一,由于其原料来源丰富、价格便宜、易于成型加工、产品综合性能优良,用途非常广泛,已成为发展最快的塑料品种之一。但PP也存在一些不足,最大缺点是耐寒性差,低温易脆裂;其次是收缩率大,抗蠕变性差,容易产生翘曲变形。与传统工程塑料相比,PP还存在耐候性差,涂饰、着色和黏合等二次加工性能差,与其他极性聚合物和无机填料的相容性差等缺陷,从而限制了其应用范围。PP的高性能化、工程化、功能化是目前改性PP的主要研究方向。
超高分子量聚乙烯的改性研究
超高分子量聚乙烯的改性研究
1.改性研究
超高分子量聚乙烯通过改性,可以改变其缺陷,提高了其加工流动性,可以达到增韧、增强、提高耐热以及抗磨损的性能。现在改性都集中在以下几个方面。
1.1与中低分子量聚乙烯改性
1.1.1与HDPE共混改性
现在国内外都有比较多这方面的研究,也有不少有关这一方面的专利文献。国内的刘延华等就从加工设备方面进行研究,来提高UHMWPE/HDPE合金的可加工性。实验采用同向双螺杆挤出机,并设计了两套螺杆组合方案,一套装有7对捏合盘元件,另一套只装有2对,且在排气口都装有一对左螺旋纹元件,以利于排气。结果证明,装有2对捏合盘的挤出机可以连续挤出,随着螺杆转速成的提高,熔融效果变差且认为熔体在机头内为柱塞式流动,在挤出速率合适的条件下,可挤出光滑的棒材,否则会形成鲨鱼皮状裂纹。北京化工大学李跃进研究了UHMWPE/HDPE共混物的加工工艺,流变性能,结晶形态以及力学性能。发现体系粘度相对于超高分子量聚乙烯来说明显降低,成型工艺得到了显著的提高。实验结果表明,以双辊共混法制备的共混物的粘度最低,混合均匀性好,易于注射成型。并且UHMWPE与HDPE共混后能产生共晶。其加入的成核剂为白碳黑,白碳黑的加入对共混的结晶形态有明显的影响,生成大量细小而均匀的球晶,避免了过多过大的晶体缺陷,补尝了UHMWPE与HDPE共混后耐磨性及抗冲击性的降低。
德国的O·Jacobs发现在超高分子量聚乙烯纤维中加入HDPE,超高分子量聚乙烯的很多性能得到了改善。例如,其共混物的蠕变就比纯的超高分子量聚乙烯慢很多,其抗磨损性能也提高了许多。共混物所能承受的的静态载荷比超高分子量聚乙烯多了2倍,比HDPE多了1倍。UHMWPE的拉伸强度和杨氏模量分别为20MPa和708MPa,当加入50%HDPE时发现共混物的强度和模量分别增加了一个到两个数量级,共混物的拉伸强度和杨氏模量分别为850MPa和28000MPa。
聚乙烯(PE)简介
聚乙烯(PE)简介
1.1聚乙烯
化学名称:聚乙烯
英文名称:polyethylene,简称PE
结构式:
聚乙烯是乙烯经聚合制得的一种热塑性树脂,也包括乙烯与少量α-烯烃的共聚物。聚乙烯是五大合成树脂之一,是我国合成树脂中产能最大、进口量最多的品种。
1.1.1聚乙烯的性能
1.一般性能
聚乙烯为白色蜡状半透明材料,柔而韧,比水轻,无嗅、无味、无毒,常温下不溶于一般溶剂,吸水性小,但由于其为线性分子可缓慢溶于某些有机溶剂,且不发生溶胀。工业上为使用和贮存的方便通常在聚合后加入适量的塑料助剂进行造粒,制成半透明的颗粒状物料。PE易燃,燃烧时有蜡味,并伴有熔融滴落现象。聚乙烯的性质因品种而异,主要取决于分子结构和密度,也与聚合工艺及后期造粒过程中加入的塑料助剂有关。
2.力学性能
PE是典型的软而韧的聚合物。除冲击强度较高外,其他力学性能绝对值在塑料材料中都是较低的。PE密度增大,除韧性以外的力学性能都有所提高。LDPE由于支化度大,结晶度低,密度小,各项力学性能较低,但韧性良好,耐冲击。HDPE支化度小,结晶度高,密度大,拉伸强度、刚度和硬度较高,韧性较差些。相对分子质量增大,分子链间作用力相应增大,所有力学性能,包括韧性也都提高。几种PE的力学性能见表1-1。
表1-1 几种PE力学性能数据
性能LDPE LLDPE HDPE超高相对分子质量聚乙烯
邵氏硬度(D)
拉伸强度/MPa
拉伸弹性模量/MPa
压缩强度/MPa
缺口冲击强度/kJ·m-2弯曲强度/MPa 41~46
7~20
100~300
12.5
80~90
聚乙烯的改性分析
聚乙烯的改性分析
聚乙烯是一种常见的聚合物材料,具有良好的物理性能和化学稳定性。然而,由于其具有低表面能、低粘附性和低分子量的特点,其应用范围受
到一定限制。为了改善聚乙烯的性能,常常进行改性处理。聚乙烯的改性
分析包括改性方法、改性效果以及应用领域等方面。
物理改性是指利用外加能量或机械手段对聚乙烯进行改性,以改变其
结构和性能。常用的物理改性方法包括高温处理、辐射交联和填充剂增强等。高温处理可以通过在一定温度下对聚乙烯进行加热处理,使其分子发
生热运动,进而改变其结晶性能和热稳定性。辐射交联是指利用辐射源对
聚乙烯进行照射处理,使其分子发生交联反应,提高其力学性能和耐热性能。填充剂增强是指向聚乙烯中加入一定比例的填充剂,如纤维、颗粒或
片状物质,以改变其物理性能和力学性能。
化学改性是指通过在聚乙烯分子中引入新的基团或改变其分子链结构,从而改变其性能。常见的化学改性方法包括共聚改性、交联改性和接枝改
性等。共聚改性是指将聚乙烯与其他单体进行共聚反应,形成共聚物,以
改变聚乙烯的性能。交联改性是通过在聚乙烯分子链上引入交联结构,提
高其热稳定性、力学性能和耐化学性能。接枝改性是指将聚乙烯表面进行
化学处理,引入新的基团,以提高其润湿性和粘附性。
改性后的聚乙烯具有改善的性能,广泛应用于各个领域。改性后的高
温处理聚乙烯常用于制备高温管道、电缆绝缘材料和汽车部件等。辐射交
联聚乙烯常用于制备电线电缆、电力设备和电子元件等。填充剂增强聚乙
烯常用于制备复合材料、塑料制品和建筑材料等。共聚改性聚乙烯常用于
制备聚乙烯共聚物、包装材料和纺织品等。交联改性聚乙烯常用于制备高
超高分子量聚乙烯改性
超高分子量聚乙烯(HUMWPE)是一种线性结构的具有优异综合性能的热塑性工程塑料,具有其它工程塑料所无法比拟的抗冲击性、耐磨损性、耐化学腐蚀性、耐低温性、耐应力开裂、抗粘附能力、优良的电绝缘性、安全卫生及自身润滑性等性能,可以代替碳钢、不锈钢、青铜等材料,在纺织、采矿、化工、包装、机械、建筑、电气、医疗、体育等领域具有广泛的应用。虽然UHMWPE具有许多优异的特性,但也有许多不足,如其熔融指数(接近于零)极低,熔点高(90-210°C)、粘度大、流动性差而极难加工成型,另外与其他工程塑料相比,具有表面,硬度低和热变形温度低、弯曲强度和蠕变性能较差,抗磨粒磨损能力差、强度低等缺点,影响了其使用效果和应用范围。为了克服UHMWPE的这些缺点,弥补这些不足,使其在条件要求较高的某些场所得到应用,需要对其进行改性。目前,常用的改性方法有物理改性、化学改性、聚合物填充改性、UHMWPE自增强改性等。改性的目的是在不影响UHMWPE主要性能的基础上提高其熔体流动性、或针对UHMWPE自身性能的缺陷进行复合改性,如改进熔体流动性、耐热性、抗静电性、阻燃性及表面硬度等,使其能在专用设备上或通用设备上成型加工。
1 物理改性所谓物理改性是指把树脂与其它一种或多种物料通过机械方式进行共混,以达到某种特殊要求,如降低UHMWPE的熔体粘度、缩短加工时间等,它不改变分子构型,但可以赋予材料新的性能。目前常用的物理改性方法主要有用低熔点、低粘度树脂共混改性、流动剂改性、液晶高分子原位复合材料改性以及填料共混复合改性等。它是改善UHMWPE熔体流动性最有效、最简便以及最实用的途径。
聚乙烯的交联改性
影响硅垸接枝交联PE的因素
基础树脂
引发剂
交联剂
抗氧剂
交联催化剂
阻聚剂
接枝/交联工艺
基础树脂
烯烃的均聚物和共聚物都可被不饱和硅垸接枝交联。不同PE因其结构 不同,接枝前后熔体流动速率下降的程度是不同的。具体生产中,单独的一种 树脂很难满足综合性能要求,通常采用几种树脂共混的办法来调节树脂的基本 特性,以希望达到预期的PE 交联制品。另外,硅烷接枝对聚合物的含水量有严 格要求。硅垸遇到聚合物中的水分会发生水解并产生预交联,将严重影响产品 的质量。所以聚合物在使用前要进行干燥处理。
PE的过氧化物交联过程
当交联剂是单纯过氧化物时,其反应过程如下:过氧化 物受热分解生成自由基,自由基进攻PE大分子链,夺取分子 链上的氢原子,生成PE大分子链自由基; PE大分子链自由 基具有高度反应活性,当两个PE分子链自由基相遇时,便相 互结合,形成高分子链间的化学键而交联。
过氧化物交联所用的交联剂为有机过氧化物,常用的品种 主要有DCP,BPO等。用过氧化物交联PE时,挤出温度必须保
因此,PE的紫外光交联技术越来越受到人们的重视, 特别在发展交联电线以及各种低压交联电缆方面具有较大 的市场竞争力,为PE交联技术开辟出一条新路。
交联聚乙烯的应用领域
交联聚乙烯因其优异的机械加工性能使其被广泛应用 于管材制造工业,并逐步取代诸如聚丙烯、聚氯乙烯及各 种热塑性聚乙烯等非交联塑料管材。 在要求更高的应用领域中,例如汽车制造业,交联聚乙 烯材料可以用来替代成本更高的工程塑料。 交联聚乙烯泡沫在汽车领域的应用,主要用途包括汽车 内顶饰,行李箱、地垫、侧围板、隔热垫、门内护板、防 水帘、遮阳板、打蜡盘、空调系统等。
聚烯烃改性研究
二、聚烯烃改性
1、聚乙烯改性
(1)国际上现用少量高密度聚乙烯掺入到低密度聚乙烯中以达到防止或减少封拈效果。
(2)加入少量(0.05~0.1% )油酸胺化物,可大为减少薄膜封粘。如果加入0.5~2%的聚丙烯,可提高其透明度
(3)用二氧化硅、碳素、粘土、碳酸钙,甚至一些工业废渣作为填充剂,填充量可达1:1,
虽增强刚性,但抗张强度、延伸率、抗裂强度却有所下降,然而脆性化温度有所提高。
(4)以交联剂交联改性,为目前欧美研完的一种聚乙烯聚联改性新方法。
交联工艺有下列几种:
A、有机过氧化物交联厂
B、叠氦化物交联
C、放射线交联
D、热交联
F、烷硅交联,
H 、发泡交联。
(5)光氯化聚乙烯薄膜生产已经工业化,其可分为二种光氯化方法(
①日本采用光氯化照射室方法,即将聚乙烯薄膜在照射室内二面用氯气与之接触,并在一面用紫外线照射,这样氯原子不断扩散,紫外线也溅射到薄膜上,即使不直接接触光的面,同样得以光氯化。
②利用透过室方法,即将聚乙烯薄膜在透过室内,在绝对抽真空情况下一面用光照射,仅只有一面与氯气接触,并在同一面用紫外线进行光照。
除上述两种光氯化方法外,若二面同时用紫外线照射,效果更佳。经光氯化改性的聚乙烯薄膜,改变其表面不活泼而难于印刷的问题,不需进行表面处理即可印刷。
聚丙烯改性
聚丙烯(PP)是五大通用塑料之一,由于其原料来源丰富、价格便宜、易于成型加工、产品综合性能优良,用途非常广泛,已成为发展最快的塑料品种之一。但PP 也存在一些不足,最大缺点是耐寒性差,低温易脆裂;其次是收缩率大,抗蠕变性差,容易产生翘曲变形。与传统工程塑料相比,PP 还存在耐候性差,涂饰、着色和黏合等二次加工性能差,与其他极性聚合物和无机填料的相容性差等缺陷,从而限制了其应用范围。PP 的高性能化、工程化、功能化是目前改性PP 的主要研究方向。
超高分子量聚乙烯纤维表面改性技术研究现状
超高分子量聚乙烯纤维表面改性技术研究现状超高分子量聚乙烯(Ultra High Molecular Weight Polyethylene,简称UHMWPE)纤维是一种具有优异力学性能和化学稳定性的合成纤维材料。在工业领域中,UHMWPE纤维被广泛应用于防弹衣、绳索、导热材料等领域。为了进一步提高其性能和应用范围,需要对UHMWPE纤维进行表面改性。本文将探讨目前UHMWPE纤维表面改性技术的研究现状。
目前,UHMWPE纤维的表面改性技术主要包括物理方法和化学方法两大类。
物理方法主要采用机械方法对纤维表面进行改性,常见的方法包括高能电子辐照、等离子体处理和机械磨削。高能电子辐照是将纤维暴露于高能电子束下,通过辐射损伤使表面产生断裂和氧化,从而使纤维的表面粗糙化。等离子体处理是在高能等离子体气体环境中将纤维暴露于电离辐射下,通过化学反应和能量转移使纤维表面产生化学修饰基团。机械磨削是使用机械研磨方法对纤维表面进行刮磨,以去除表面的污染物和氧化层,增加表面粗糙度。这些物理方法可以改变纤维表面形态结构和化学成分,提高纤维的附着力和润湿性。
化学方法主要采用表面活性剂和化学修饰剂对纤维表面进行改性,常见的方法包括化学气相沉积、溶液浸渍和电沉积等。化学气相沉积是在高温和高真空环境中将有机气体分解成气相自由基或阳离子,使其与纤维表面反应生成化学修饰层。溶液浸渍是将纤维浸泡在含有表面活性剂或修饰剂的溶液中,使其通过吸附和化学反应与纤维表面相互作用,形成化学修饰层。电沉积是将纤维作为阳极或阴极,通过电解液中的金属离子或有机分子的氧化还原反应,使纤维表面生成金属膜或有机膜。这些化学方法可
聚烯烃改性的配方
聚烯烃改性的配方
配方一:羧酸改性聚乙烯的配方
在210℃下挤出涂覆钢板上,有良好的黏结力,剥离强度达215N/cm。配方二:PP/HDPE共混改性物的配方
混合后挤出造粒,有良好的撕裂强度,挤出片材可用于真空吸塑成型。配方三:交联橡胶的配方
1, 1-双过氧化叔丁基-3,3,5-三甲基己垸交联剂0.8份重
以上组分混合,熟化24h、在150℃下交联5min得到撕裂强度达205. 8N/cm的透明产品。
配方四:乙丙嵌段共聚物的改性配方
混合,挤出造粒,注射或挤出制品,冲击强度为1.03~ 1.2MPa,透明度为75%~98%。
配方五:涂覆钢管的PE材料配方
上述成分混合挤出涂覆在砂磨后的钢板上,剥离强度为186N/m,耐应力开裂性为600h
配方六:耐热耐应力开裂的HDPE材料配方
上述组分混合,捏合造粒,挤出涂布,经紫外光辐射后,成为具有良好耐应力开裂性的电线护套材料。
配方七:耐汽油抗冲的PE材料配方
上述组分混合挤出或注射成型,有良好的冲击强度。
配方八:CPE改性的LDPE管材配方
(1)
上述组分混合,在180℃下挤出管材,有良好的加工性。
(2)
上述组分混合挤出,管材有良好的拉伸强度和热稳定性。
(3)
配方九:热稳定性良好的PP配方
在210℃捏合,模塑成1mm厚的板材,有良好的热稳定性。
配方十:用于薄壁制品和电线外层材料的PP配方
混合后挤出,包覆电线,发泡度为78%
配方十一:洗衣桶用的改性PP配方
此料有良好&冲击强度和延伸性,M=15g/10min,冲击强度≥4kJ/m2。
聚乙烯废旧塑料改性方法
聚乙烯废旧塑料改性方法
1.共混改性
在回收再生的过程中,可将几种聚合物在相容剂的作用下混合,使其结构和分子间作用力发生变化,即合金化。此种方法可使再生材料兼有很多优良的性能。在加工过程中有目的地加人某种有特性的再生材料,可达到预期的力学效果。如用25%质量分数的LLDPE与LDPE共混,经吹塑成地膜,厚度会比一般的地膜减少33%,其拉伸强度会增大45%以上,直角撕裂强度也会提高50%以上。这样可大大延长农膜的使用寿命,减少使用量,降低成本。
聚乙烯的共混改性主要可分为聚乙烯族内共混改性和聚烯烃族内共混改性两大类。
(1)聚乙烯族内共混改性由于聚乙烯族内组分间相容性好,改性效果显著。如LLDPE的各项物理性能均接近于HDPE,但其环境应力开裂性能却十分突出,在两者熔体流动速率相同的情况下,LLDPE的环境应力开裂性能约为HDPE的100倍以上。LLDPE与HDPE能以任何比例共混,不仅可以改善HDPE的韧性,降低结晶度,还可提高HDPE的耐温性。
在回收的聚乙烯塑料中,可能有的是LDPE,有的是HDPE或LLDPE。一般情况下,硬质PE管材大都为HDPE的制品;农用PE膜基本是LLDPE/LDPE或LDPE/HDPE的混合料吹塑膜;食品包装用膜基本为LDPE或HDPE与少量LLDPE合金吹塑膜。按其品种迸行分拣既困难又耗费人力,若从不同品种PE可以实施共混改性的原理出发,则没有必要将PE回收品迸行分拣。在制备PE再生合金时,要根据回收料的不同情况迸行分别处理。首先通过小型试验测定所收
集的PE型回收料的基本力学性能,如拉伸强度、拉断伸长率、冲击强度等。然后根据再生制品对性能的要求迸行共混改性,如需要强度值高些,就混人一定量HDPE再生料或原HDPE树脂;如需冲击性能高些,就混人一定量的LDPE再生料或原树脂,一直调整到所需性能。
聚乙烯交联改性研究进展研究
聚乙烯交联改性研究进展研究
吉林化工学院03级高分子材料与工程专业怀韬聚乙烯(PE D是五大通用塑料之一,具有优良的电绝缘性~
耐低温性~易加工成型和足够的力学性能,以及优异的化学稳定
性和介电性能,已被广泛应用于制作薄膜~泡沫制品~管材~电线
电缆绝缘料等,其产量和用量居各合成树脂之首,但是聚乙烯的
熔点较低,机械强度低,且环境应力开裂性能较差,大大限制了
它的应用范围,因此对其进行改性处理一直是PE应用和理论
研究的重点,而交联则是PE改性较为理想的方法之一,聚乙烯
比较常用的交联方法有辐射交联~过氧化物交联和硅烷交联,此
外还有光交联~盐交联等其他交联方法,其中辐射交联~光交联
属于物理改性方法,过氧化物交联~硅烷交联和盐交联属于化学
改性方法,交联改性与共聚及共混等改性方法相比,工艺简单,
并可以边成型边实施交联,对PE进行交联改性可明显提高PE
的拉伸强度~冲击强度~抗蠕变及耐热性能等,而又几乎不损坏
原有的其他性能,因此对PE交联技术的研究具有特别重要的
意义,是目前聚乙烯改性研究的热门课题,
1~辐射交联
辐射交联不用交联剂可在室温下进行,因而可在制品成型
后进行交联并可保证制品不发生变形,辐射交联的高能辐射源
主要有高能电子束~X射线~中子及Y射线等,PE的辐射交联反
应为自由基链式反应[1],反应过程可分为3步,(1D PE高分子
链在辐照作用下生成初级自由基和活泼氢原子;(2D活泼氢原
子可继续攻击PE,再生成自由基;(3D大分子链自由基之间反
应形成交联键,聚乙烯是一种典型的可辐射交联聚合物,在过去
的近50年中,人们对它的辐射效应作了大量深入细致的研究工
改性超高分子量聚乙烯的摩擦磨损性能研究
改性超高分子量聚乙烯的摩擦磨损性能研究摩擦磨损是工程材料抗磨损能力最重要的性能指标之一,因此,研究聚乙烯等各种材料的摩擦磨损性能极具重要的意义。聚乙烯(PE)是一种重要的热塑性材料,广泛应用于各个领域。然而,聚乙烯的摩擦磨损和耐磨性仍然较低,控制其摩擦磨损性能,提高其抗磨损性能,是实现其应用的关键。
为了改善聚乙烯的摩擦磨损性能,人们试图采用不同的方法来改性,包括:增高分子量、合成高分子复合材料和改性表面等。超高分子量聚乙烯(UHMWPE)通过合成物理等方法制备而成,具有更大的分子量和更大的粒度,具有更高的抗拉强度和抗撞击性能,因此可以改善材料的摩擦磨损性能。
为了研究超高分子量聚乙烯的摩擦磨损性能,必须准确测定摩擦系数,并研究参数对其摩擦磨损性能的影响。其中,常用的摩擦系数测定方法有动态滑动试验和静态滑动试验。动态滑动试验是模拟实际工程应用条件,适用于大部分摩擦材料;而静态滑动试验则可以更准确地测量摩擦系数,但只适用于极低摩擦环境。
在动态滑动试验中,可以通过改变温度、速度和负载来研究超高分子量聚乙烯的摩擦磨损性能。温度对摩擦磨损性能有显著影响,温度升高会导致摩擦磨损性能的降低。此外,加载速度也会对摩擦磨损性能产生影响。加载速度越大,摩擦磨损性能越好。最后,负载也会影响超高分子量聚乙烯的摩擦磨损性能。随着负载的增加,摩擦磨损性能也会相应增加。
此外,可以通过改变附着物结构和润滑油类型来改善超高分子量聚乙烯的摩擦磨损性能。不同结构的附着物可以抵消作用于摩擦面的温度和摩擦力,改善摩擦磨损性能。此外,不同类型的润滑油也可以改善超高分子量聚乙烯的摩擦磨损性能。润滑油可以提高摩擦磨损的温度,使聚乙烯的摩擦磨损性能达到更好的状态。
聚乙烯(PE)简介
聚乙烯(PE)简介
1.1聚乙烯
化学名称:聚乙烯
英文名称:polyethylene,简称PE
结构式:
聚乙烯是乙烯经聚合制得的一种热塑性树脂,也包括乙烯与少量α-烯烃的共聚物。聚乙烯是五大合成树脂之一,是我国合成树脂中产能最大、进口量最多的品种。
1.1.1聚乙烯的性能
1.一般性能
聚乙烯为白色蜡状半透明材料,柔而韧,比水轻,无嗅、无味、无毒,常温下不溶于一般溶剂,吸水性小,但由于其为线性分子可缓慢溶于某些有机溶剂,且不发生溶胀。工业上为使用和贮存的方便通常在聚合后加入适量的塑料助剂进行造粒,制成半透明的颗粒状物料。PE易燃,燃烧时有蜡味,并伴有熔融滴落现象。聚乙烯的性质因品种而异,主要取决于分子结构和密度,也与聚合工艺及后期造粒过程中加入的塑料助剂有关。
2.力学性能
PE是典型的软而韧的聚合物。除冲击强度较高外,其他力学性能绝对值在塑料材料中都是较低的。PE密度增大,除韧性以外的力学性能都有所提高。LDPE 由于支化度大,结晶度低,密度小,各项力学性能较低,但韧性良好,耐冲击。HDPE支化度小,结晶度高,密度大,拉伸强度、刚度和硬度较高,韧性较差些。相对分子质量增大,分子链间作用力相应增大,所有力学性能,包括韧性也都提高。几种PE的力学性能见表1-1。
表1-1 几种PE力学性能数据
3.热性能
PE受热后,随温度的升高,结晶部分逐渐熔化,无定形部分逐渐增多。其熔点与结晶度和结晶形态有关。HDPE的熔点约为125~137℃,MDPE的熔点约为126~134℃,LDPE的熔点约为105~115℃。相对分子质量对PE的熔融温度基本上无影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
聚乙烯的改性
聚乙烯虽然具有优良的电性能、机械性能和加工性能,但是它也有一些缺点,如软化点低,强度不高,耐大气老化性差,易应力开裂,不易染色及印刷等。为了进一步拓宽聚乙烯的应用领域,克腿这些缺点,可以采用聚乙烯改性来达到。
聚乙烯的改牲主要分为化学改性和物理改性。化学改性又分为接枝共聚改性、嵌段共聚改性、化学及辐射交联改性等;物理改性分为共混改性、填充改性(包括增强改性等)。
聚乙烯的化学交联主要是在聚乙烯树脂中加人有机化合物(常用过氧化二异丙苯)作为交联剂,然后在压力和175~200℃的温度下交联。
接枝聚合是最常用的改性聚合方法。所谓接校共聚反应是在聚乙烯的主链上将作为支链的不同种高分子结合上去的一种反应。当然也有采用过氧化物、放射辐照或其他有关方法进行反应。接枝方式的共聚合反应可以获得良好的混合状态,其分散界面是以化学方式结合在一起,具有良好的机械性能。同时又因为聚乙烯本身是无极性材料,和其他材料亲和性不好,如将具有极性的单体以接枝共聚合反应结合至聚乙烯分子主链上时则会增大这种亲和性,由此使可以改善其粘接性、印刷性、染色性等性能。例如,聚乙烯接枝丙烯酸单体所得产品则会改善其在铝箔上的粘合性;加入丁二烯单体接枝共聚合反应的制品,可以提高耐热性、耐应力开裂性。
聚乙烯的共混改性是聚乙烯与其他高聚物等物质进行共混,用挤出机、辊炼机等设备而制成新材料。共混过程中往往包含化学接枝或交联反应,以提高共混的改性效果。
聚乙烯的填充改性是在聚乙烯的成型加工过程中加入无机或有机填料,不仅能使制品价格大大降低,而且能显著改善材料的机械强度、耐摩擦性能、热性能及耐老化性能等,并改善聚乙烯的易膨胀性及易蠕变性等,所以填料既有增量作用,又有改性效果。常用的无机填料有碳酸钙(包括轻质碳酸钙和重质碳酸钙)、滑石粉、云母、高岭土、二氧化硅、硅藻土、硅灰石、炭黑等。
此外,聚乙烯可加人脂肪酸酰胺作表面润滑剂,以减少薄膜的粘附性;加入0.5%~2%的聚丙烯可提高其透明性;表面用电子冲击(使其表面氧化)处理,可改善其印刷性能。
1.交联聚乙烯
交联聚乙烯分为有机过氧化物交联聚乙烯、有机硅交联和辐照交联聚乙烯。
(1)有机过氧化物交联聚乙烯
结构式:
制法有机过氧化物交联聚乙烯是聚乙烯以有机过氧化物作为交联剂,在热的作用下分解而生成高度活泼的游离基。这些游离基使聚合物碳链上生成活性点,并产生碳-碳交联,形成交联聚乙烯。所用的有机过氧化物有过氧化二异丙苯、过氧化二叔丁基和2,5-二叔丁基-2,5-二甲基过氧化己烷等。根据被交联的聚乙烯品种和交联工艺设备的不同而选用不同的过氧化物。通常交联低密度聚乙烯时,采用在132℃时能起反应的过氧化二异丙苯;在交联高度填充的低密度聚乙烯和高密度聚乙烯时,可采用能在144℃下加工的2,5-二叔丁基-2,5-二甲基过氧化己烷作交联剂。将聚乙烯与合适的有机过氧化物、炭黑及其他无机填料等添加剂混合在一起,经混炼造粒后,用适宜的成型工艺将它加工成制品。然后再将制品经过一段时间的加热处理,使之发生交联,即可制得交联聚乙烯制品。此外,当采用压缩成型时,交联和成型可一步完成。
物化性质有机过氧化物交联聚乙烯结构上与热塑性塑料、热固性树脂和硫化橡胶都不同,它有体型结构却不是完全交联,交联区域很小,不像硫化橡胶那样有很大的交联网,因此在性能上它兼有三者的特点,即同时具有热可塑性、硬度、良好的耐溶剂性,高弹性和优良的耐低温性。无论是高密度聚乙烯还是低密度聚乙烯,通过交联后,其拉伸强度、耐热性、防老化性和耐候性、尺寸稳定性、耐应力开裂性,耐磨性和耐溶剂性均有提高,且耐蠕变性
能优良。交联聚乙锈的软化点可达200℃,耐热性可达140℃。此外,还具有卓越的电绝缘性、耐低温性和耐辐射性能,表2-36为交联聚乙烯的性能。
工。混炼温度应保持在110~149℃的范围内。当使用低密度聚乙烯时,通常在116~121℃成型。
在电线电缆生产中,由于导线本身可作为支承物,使包覆在其表面的交联聚乙烯可通过连续流化器用直接蒸汽进行交联。
用途主要用作电线电缆的包覆层,也用于制造电机、变压器等耐高电压、高频率的耐热绝缘材料、热收缩簿膜和套管,各种管材(如热水管)、化工生产装置的耐腐蚀部件、容器以及泡沫塑料等。
(2)有机硅交联聚乙烯
结构式
制法将普通聚乙烯在有机过氧化物存在下,经过一定的温度和机械力作用,使含有不饱和乙烯基和易于水解的烷氧基多官团的硅烷接枝到聚乙烯的主链上,然后将此接枝物在水及硅醇缩合催化剂作用下发生水解并缩合形成~Si一O一Si~交联键,即得硅烷交联聚乙烯。
物化性质有机硅交联聚乙烯的分子结构与通常有机过氧化物交联法形成的分子间碳-碳交联的结构不同。其主链可以与2个或2个以上的等价键起反应。形成网状交联(立体网状交联)。因此,它的热机械性能一般要比具有碳-碳键平面结合的有机过氧化物交联法聚乙烯好。即使有机硅交联聚乙烯的凝胶率比过氧化物交联聚乙烯低15%~20%,两者热变形仍相当。
成型加工有机硅交联聚乙烯成型工艺简单,可用普通的成型加工设备,如挤出机、注射机、压机、压延机等进行成型加工。成型制品置于100℃以下的热水中即可交联成最终产品。
用途主要用于制作各种电线电缆的绝缘包覆层、耐热管材、软管及薄膜等。
(3)辐照交联聚乙烯是将包覆在导线上的聚乙烯、聚乙烯薄膜或其它聚乙烯制品,经γ-射线、高能射线辐照后,可成为交联聚乙烯,交联度受辐射剂量及温度的影响。交联点随辐射剂量的增加而增加,直至辐射剂量达105Gy才达到饱和状态,此时分子交联度可达60%~70%。辐射时温度对交联度影响更大,在辐射剂量为1273.4C/kg(106R)下,0℃时的交联度为10%;当温度升至100℃,则交联度达65%左右。因此,通过控制一定的辐照条件,可以获得具有一定交联度的交联聚乙烯制品。
2.氯化聚乙烯
结构式:
制法氯化聚乙烯(CPE)是高密度聚乙烯经氯化反应后的产物,其生产方法大致有溶液法、悬浮法、悬浮溶剂法和流化床法等。
①溶液法先将具有一定特性的高密度聚乙烯粉末加热溶于四氯化碳、氯苯、四氯乙烯或氯仿等极性溶剂中,在游离基引发剂(如偶氮二异丁腈等)的作用下,在无氧条件下,于90~110℃,常压至0.686MPa的压力下通氯进行氯化,待产物含氯量合格以后,经水析回收溶剂,再经脱水干燥,即得非结晶性、具有弹性的成品。该法反应容易控制,可以制得稳定的纯氯化氯乙烯。但溶剂易造成环境污染,回收工序复杂,能量消耗大,工业上很少采用。
②悬浮法将分子量为10万~15万,粒度过60目筛的高密度聚乙烯粉末加入含有一定量乳化剂、分散剂和引发剂(如过氧化苯甲酰或偶氮二异丁睛)的水介质中,在搅拌下升温至115~120℃,在常压至0.98MPa和无氧条件下,通氯进行氯化,控制氮气通入量和氮化时间,即制得一定含氯量的树脂。反应产物经中和、水洗、过滤,离心脱水和干燥等工序,即制得具有一定结晶度和弹性的粉状产物。
③悬浮溶剂法在悬浮介质中,加入一定量的溶剂,氯化操作与上述方法相同。
④流化床法采用高分散的聚乙烯粉末,在γ-射线或紫外光照射下,在流化床中通氯进行氯化,故亦称气相法。该法工艺过程较难控制。
物化性能高密度聚乙烯是结晶性高聚物,随着分子链上的氢原子被氯所取代,其结晶性下降、变软、玻玻璃化温度降低。但在氯化聚乙烯中氯含量超过一定值时,玻璃化温度随之增高,因此,氯化聚乙烯的玻璃化温度和熔点可比原来的聚乙烯高或低。氯化聚乙烯的分子结构中含有乙烯-氯乙烯-1,2-二氯乙烯的共聚合体,普通氯化聚乙烯的含氯量为25%~45%(质量),随树脂的分子量、含氯量、分子结构及氯化工艺的不同,可呈现硬性塑料到弹性体的不同性能。氯化聚乙烯具有优良的耐侯性住、耐寒性、耐冲击性、耐化学药品性、耐油性和电气性能等,同时具有塑料和橡胶的双重性能。并与其他塑料和填料有良好的相容性,因此,它可以填充大量的填料,例如100份树脂中可填充400份钛白粉或300份皂土(或炭黑),含氯量超过25%的氯化聚乙烯还具有自熄性。它还可以用有机过氧化物等进行交联制得硫化型聚合物。
成型加工氯化聚乙烯可用一般的挤出和注射设备进行成型加工。它和聚氯乙烯掺混后,即可用普通的聚氯乙烯加工设备进行各种成型加工,所得制品耐冲击性得到提高。
用途①氯化聚乙烯作主体材料的应用以氯化聚乙烯为主体,采用PVC、HDPE、MBS改性,可用挤塑成型法制造耐油管、耐酸管、防永卷材、异型材、薄膜和收缩膜等,也可涂覆、注塑、模压、层合、焊接、粘合和机加工。
CPE/PVC共混阻燃材料见表2-39。
CPE弹性体在防水卷材和薄膜等软质PVC制品方面,在绝缘电线电缆护套料方面都取得较好的应用效果。
中国氯化聚乙烯主要用作硬质PVC的增韧改性剂,它可以提高硬质PVC的弹性、韧性和低温性能,CPE改性的PVC脆化温度可降至一40℃,而耐热性、耐候性和化学稳定性远优于其他橡胶改性剂,因而广泛应用于建筑材料等领域。
②氯化聚乙烯改性PE的应用聚乙烯中加入CPE可改善其印刷性、阻燃性和柔韧性。在HDPE中加入5%的CPE的共混物与油墨的粘接力可提高3倍,在矿用PE软管配方中加