北师大版2016九年级下学期数学期中试题及答案
2015-2016学年度北师大九年级数学下期中检测题附答案解析
第 15 题图
的值使该抛物线 .
九年级数学(下)(北师大版)
期中检测题
2
第 16 题图
17.某涵洞是抛物线形,它的截面如图所示,现测得水面宽 =1.6 m,涵洞顶点 到水面的 距离为 2.4 m,在图中直角坐标系内,涵洞所在抛物线的函数表达式是___________. 18.(2015·山东潍坊中考)观光塔是潍坊市区的标志性建筑.为测量其高度,如图,一人先 在附近一楼房的底端A点处观测观光塔顶端 C 处的仰角是 60°,然后爬到该楼房顶端 B 点处观测观光塔底部 D 处的俯角是 30°,已知楼房高 AB 约是 45 m,根据以上观测数据 可求观光塔的高 CD 是______m.
)
5.(2015·贵州铜仁中考)河北省赵县的赵州桥的桥拱是近似的抛物线形,建立如图所示的 平面直角坐标系,其函数的关系式为 y=时水面宽度 AB 为( ) A.-20 m B.10 m ,当水面离桥拱顶的高度 DO 是 4 m 时,这
C.20 m
D.-10 m )
1 6.用配方法将函数 = 2 1 A. = ( -2)2-1 2 1 C. = ( -2)2-3 2
第 20 题图
第 21 题图
y D A O C 第 23 题图 第 22 题图 B x
23.(8 分)如图所示,一个运动员推铅球,铅球在点 A 处出手,出手时球离地面约 地点在 B 处,铅球运行中在运动员前 4 m 处(即 九年级数学(下)(北师大版) 期中检测题
.铅球落
m)达到最高点,最高点高为 3 m. 3
1 2
B.都扩大到原来的 2 倍 =6, = D.不能确定 =8,∠ = = ,则下列结论正确的是( D.tan = )
的对角线 B.cos
2016-2017学年北师大九年级数学下期中综合检测试卷有答案AwlPww
期中综合检测(时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.(2015·温州中考)如图所示,在△ABC中,∠C=90°,AB=5,BC=3,则cos A的值是()A. B.C. D.2.式子2cos 30°-tan 45°-的值是()A.2-2B.0C.2D.23.在Rt△ABC中,∠C=90°,若AB=4,sin A=,则斜边上的高等于()A. B. C. D.4.已知函数y=(m2+m)x2+mx+4为二次函数,则m的取值范围是()A.m≠0B.m≠-1C.m≠0且m≠-1D.m=-15.函数y=ax+b的图象经过第一、二、三象限,则二次函数y=ax2+bx的大致图象是下图中的()6.将抛物线y=2(x-1)2+1向右平移1个单位长度,再向下平移1个单位长度,所得的抛物线解析式为()A.y=2(x-2)2B.y=2(x-2)2+2C.y=2x2+1D.y=2x27.如图所示,在Rt△ABC中,∠C=90°,AM是BC边上的中线,sin∠CAM=,则tan B的值为()A. B. C. D.8.(2014·兰州中考)二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,则下列四个结论中错误的是()A.c>0B.2a+b=0C.b2-4ac>0D.a-b+c>09.如图所示,在两建筑物之间有一旗杆EG,高15米,从A点经过旗杆顶点恰好看到矮建筑物的墙角C点,且俯角α为60°,又从A点测得D点的俯角β为30°,若旗杆底点G为BC的中点,则矮建筑物的高CD为()A.20米B.10 米C.15 米D.5 米10.如图所示,Rt△OAB的顶点A(-2,4)在抛物线y=ax2上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为()A.(,)B.(2,2)C.(,2)D.(2,)二、填空题(每小题4分,共24分)11.如图所示,在菱形ABCD中,DE⊥AB,垂足是E,DE=6,sin A=,则菱形ABCD的周长是.12.二次函数y=-x2+bx+c的图象如图所示,则一次函数y=bx+c的图象不经过第象限.13.如图所示,小明为了测量河的宽度,在河岸同侧取了点C,B,A,在点C处测得对岸一棵树P在正北方向,经过测量得知∠PBC=45°,∠PAC=30°,AB=10米,由此小明计算出河的宽度为米(结果保留根号).14.如图所示,斜坡AC的坡度(坡高比水平距离)为1∶,AC=10米.坡顶有一竖直旗杆BC,旗杆顶端B点与A点由一条彩带AB相连,AB=14米.旗杆BC的高度是.15.如图所示,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0)和B(3,2),不等式x2+bx+c>x+m的解集为.16.如图所示,在△ABC中,∠B=90°,AB=12 mm,BC=24 mm,动点P从点A开始沿边AB向B以2 mm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以4 mm/s的速度移动(不与点C重合).如果P,Q分别从A,B同时出发,那么经过s四边形APQC的面积最小.三、解答题(共66分)17.(6分)计算.(1)6tan230°-sin 60°-2sin 45°;(2)×sin45°+-(-1)0.18.(6分)如图所示,在△ABC中,AD⊥BC于点D,AB=8,∠ABD=30°,∠CAD=45°,求BC的长.19.(8分)如图所示,抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.(1)求抛物线的解析式;(2)求△AOB的面积.20.(8分)如图所示,在平面直角坐标系内,O为原点,点A在x轴正半轴上,点B(4,3).(1)求sin∠BOA;(2)若tan∠BAO=sin∠BOA,求点A的坐标.21.(8分)已知一抛物线与x轴的交点是A(-2,0),B(1,0),且经过点C(2,8).(1)求该抛物线的解析式;(2)求该抛物线的对称轴及顶点坐标.22.(8分)如图所示,我国的一艘海监船在钓鱼岛A附近沿正东方向航行,船在B点时测得钓鱼岛A在船的北偏东60°方向,船以50海里/时的速度继续航行2小时后到达C点,此时钓鱼岛A在船的北偏东30°方向,那么船继续航行多少海里与钓鱼岛A 的距离最近?23.(10分)(2015·梅州中考).售价/(元/件)100 110 120 130 …月销量/件200 180 160 140 …已知该运动服的进价为每件60元,设售价为x元.(1)请用含x的式子表示:①销售该运动服每件的利润是元,②月销量是件;(直接写出结果)(2)设销售该运动服的月利润为y元,那么售价为多少时,当月的利润最大?最大利润是多少?24.(12分)已知二次函数y=x2-2mx+m2-1.(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如图所示,当m=2时,该抛物线与y轴交于点C,顶点为D,求C,D两点的坐标;(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由.【答案与解析】1.D(解析:∵AB=5,BC=3,∴AC=4,∴cos A==.故选D.)2.B(解析:原式=2×-1-(-1)=-1-+1=0.故选B.)3.B(解析:根据题意画出图形,如图所示,在Rt△ABC中,AB=4,sin A=,∴BC=AB sin A=2.4,根据勾股定理,得AC==3.2,∵S△AC·BC=AB·CD,∴CD==.)ABC=4.C(解析:由y=(m2+m)x2+mx+4为二次函数,得m2+m≠0,解得m≠0且m≠-1.故选C.)5.B(解析:∵函数y=ax+b的图象经过第一、二、三象限,∴a>0,b>0,∵a>0时,抛物线开口向上,排除D;∵a>0,b>0时,对称轴x=-<0,排除A,C.故选B.)6.A(解析:抛物线y=2(x-1)2+1的顶点坐标为(1,1),而点(1,1)向右平移1个单位长度,再向下平移1个单位长度,所得对应点的坐标为(2,0),所以所求抛物线的解析式为y=2(x-2)2.故选A.)7.B(解析:在Rt△ACM中,sin∠CAM==,设CM=3x,则AM=5x,根据勾股定理,得AC==4x,又M为BC的中点,∴BC=2CM=6x,在Rt△ABC 中,tan B===.故选B.)8.D(解析:A.因为二次函数的图象与y轴的交点在y轴的上方,所以c>0,正确;B.由已知抛物线的对称轴是直线x=1=-,得2a+b=0,正确;C.由图知二次函数图象与x轴有两个交点,故有b2-4ac>0,正确;D.直线x=-1与抛物线交于x轴的下方,即当x=-1时,y<0,即y=ax2+bx+c=a-b+c<0,错误.故选D.)9.A(解析:∵点G是BC中点,EG∥AB,∴EG是△ABC的中位线,∴AB=2EG=30米,在Rt△ABC中,∠CAB=30°,则BC=AB tan∠BAC=30× =10(米).如图所示,过点D作DF⊥AF于点F.在Rt△AFD中,AF=BC=10米,则FD=AF·tan β=10×=10(米).综上可得CD=AB-FD=30-10=20(米).)10.C(解析:∵Rt△OAB的顶点A(-2,4)在抛物线y=ax2上,∴4=a×(-2)2,解得a=1,∴解析式为y=x2,∵Rt△OAB的顶点A(-2,4),∴OB=OD=2,∵Rt△OAB绕点O顺时针旋转90°,得到△OCD,∴CD∥x轴,∴点D和点P的纵坐标均为2,∴令y=2,得2=x2,解得x=±,∵点P在第一象限,∴点P的坐标为(,2).故选C.)11.40 (解析:已知DE⊥AB,垂足是E,所以△AED为直角三角形,则得sin A=,即=,∴AD=10,∴菱形ABCD的周长为10×4=40.故填40.)12.四(解析:根据图象得b>0,c>0,故一次函数y=bx+c的图象不经过第四象限.)13.5+5 (解析:∵P在C的正北方向,∴PC⊥AC,∴∠PCA=90°,设PC=x,∵∠PBC=45°,∴∠CPB=45°,∴PC=BC=x,∵∠PAC=30°,∴∠CPA=60°,∴tan60°==,解得x=5+5,∴河的宽度为(5+5)米.)14.6米(解析:如图所示,延长BC交AD于E点,则CE⊥AD.在Rt△AEC中,AC=10,由坡度为1∶,可知∠CAE=30°,∴CE=AC·sin 30°=10×=5,AE=AC·cos 30°=10×=5.在Rt△ABE中,BE== =11.∵BE=BC+CE,∴BC=BE-CE=11-5=6(米).)15.x<1或x>3 (解析:∵直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0)和B(3,2),∴根据图象可知不等式x2+bx+c>x+m的解集为x<1或x>3.)16.3(解析:设P,Q同时出发后经过的时间为t s,四边形APQC的面积为S mm2,则有S=S△ABC-S△PBQ=×12×24-×4t×(12-2t)=4t2-24t+144=4(t-3)2+108.∵4>0,∴当t=3时,S取得最小值.)17.解:(1)原式=6×-×-2×=-.(2)原式=×+2-1=+2-1=2+2-1=3.18.解:∵AD⊥BC于点D,∴∠ADB=∠ADC=90°.在Rt△ABD中,∵AB=8,∠ABD=30°,∴AD=AB=4,BD=AD=4.在Rt△ADC中,∵∠CAD=45°,∠ADC=90°,∴DC=AD=4,∴BC=BD+DC=4+4.19.解:(1)设二次函数的解析式为y=a(x-2)2+1,将点O(0,0)的坐标代入,得4a+1=0,解得a=-.所以二次函数的解析式为y=-(x-2)2+1.(2)∵抛物线y=-(x-2)2+1的对称轴为直线x=2,且经过原点O(0,0),∴与x轴的另一个交点B的坐标为(4,0),∴△AOB的面积=×4×1=2.20.解:(1)作BC⊥OA于C,如图所示,∵B(4,3),∴OC=4,BC=3,∴BO==5,∴sin∠BOC==,即sin∠BOA=.(2)∵tan∠BAO=sin∠BOA=,∴在Rt△ABC中,tan∠BAC==,∴AC=BC=5,∴OA=OC+AC=9,∴点A的坐标为(9,0).21.解:(1)∵抛物线与x轴的交点是A(-2,0),B(1,0),∴根据题意设y=a(x+2)(x-1),把C(2,8)代入y=a(x+2)(x-1),得4a=8,∴a=2,∴y=2(x+2)(x-1),即y=2x2+2x-4.(2)由(1)可知y=2-,对称轴为直线x=-,顶点坐标为.22.解:如图所示,过点A作AD⊥BC于D,根据题意得∠ABC=30°,∠ACD=60°,∴∠BAC=∠ACD-∠ABC=30°,∴CA=CB.∵CB=50×2=100(海里),∴CA=100海里,在直角三角形ADC中,∠ACD=60°,∴CD=AC=×100=50(海里).故船继续航行50海里与钓鱼岛A的距离最近.23.解:(1)①x-60②-2x+400(2)由题意得y=(x-60)(-2x+400)=-2x2+520x-24000=-2(x-130)2+9800,∴售价为130元时,当月的利润最大,最大利润是9800元.24.解:(1)∵二次函数的图象经过坐标原点O(0,0),∴代入二次函数y=x2-2mx+m2-1中,得m2-1=0,解得m=±1,∴二次函数的解析式为y=x2-2x或y=x2+2x.(2)∵m=2,∴二次函数为y=x2-2mx+m2-1=x2-4x+3=(x-2)2-1,∴抛物线的顶点为D(2,-1),当x=0时,y=3,∴C点坐标为(0,3).(3)如图所示,当P,C,D共线时,PC+PD最短,过点D作DE⊥y轴于点E,∵PO∥DE,∴=,∴=,解得PO=,∴PC+PD最短时,P点的坐标为.。
北师大版九年级数学下期中检测卷(含答案)
期中检测卷时间:120分钟 满分:120分一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项) 1.抛物线y =-(x +2)2-3的顶点坐标是( )A .(2,-3)B .(-2,3)C .(2,3)D .(-2,-3) 2.已知α为锐角,sin(α-20°)=32,则α的度数为( ) A .20° B .40° C .60° D .80° 3.已知抛物线y =x 2-x -1与x 轴的一个交点为(m ,0),则代数m 2-m +100的值为( ) A .98 B .109 C .99 D .1014.如图,生活经验表明靠墙摆放的梯子当α=70°时(α为梯子与地面所成的角)能够使人安全攀爬.现在有一长为5.8米的梯子AB ,确保在能够使人安全攀爬的情况下,梯子的顶端能达到的高度AC 约为(结果精确到0.1米.参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)( )A .2.0米B .5.5米C .2.1米D .5.6米第4题图 第5题图5.如图,已知二次函数y =x 2+bx +c 图象的对称轴是直线x =1,过抛物线上两点的直线AB 平行于x 轴.若点A 的坐标为⎝⎛⎭⎫0,32,则点B 的坐标为( ) A.⎝⎛⎭⎫3,32 B.⎝⎛⎭⎫32,32 C.⎝⎛⎭⎫2,32 D.⎝⎛⎭⎫32,2 6.已知抛物线y =-x 2-2x +3与x 轴交于A ,B 两点,将这条抛物线的顶点记为C ,连接AC ,则tan ∠CAB 的值为( )A.12B.55C.255D .2 二、填空题(本大题共6小题,每小题3分,共18分) 7.二次函数y =2(x -3)2-4的最小值为________.8.在Rt △ABC 中,∠C =90°,若AB =6,cos A =23,则AC =________.9.已知点A (-3,m )在抛物线y =x 2+4x +10上,则点A 关于抛物线对称轴的对称点的坐标为________.10.将45°的∠AOB 按如图所示的方式放置在一把刻度尺上,顶点O 与刻度尺下边沿的端点重合,OA 与刻度尺下边沿重合,OB 与刻度尺上边沿的交点B 在刻度尺上的读数恰为2cm.若按相同的方式将37°的∠AOC 放置在该刻度尺上,则OC 与刻度尺上边沿的交点C 在刻度尺上的读数约为________cm(结果精确到0.1cm ,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75).第10题图 第11题图 第12题图11.如图,将矩形ABCD 沿CE 折叠,点B 恰好落在边AD 的F 处,如果AB BC =23,那么tan ∠DCF 的值是________.12.我们把一边和该边上的高相等的三角形称为“和谐三角形”.如图,已知抛物线y =ax 2经过A (-1,1),P 是y 轴正半轴上的动点,射线AP 与抛物线交于另一点B ,当△AOP 是“和谐三角形”时,点B 的坐标为______________.三、(本大题共5小题,每小题6分,共30分)13.计算:cos60°-2-1+(-2)2-(π-3)0.14.如图,在△ABC 中,∠C =90°,∠B =30°,AD 是△ABC 的角平分线.若AC =3,求线段BD 的长.15.如图是一个专用车位的指示牌,其侧面示意图可看成由一个半圆和一个等腰梯形ABCD 组成.已知等腰梯形ABCD 的上底AD =18cm ,腰AB =50cm ,∠B =70°,求这个指示牌的高(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75).16.已知二次函数y =ax 2+bx +c (a ≠0)的图象上部分点的横坐标x 与纵坐标y 的对应值如下表所示:(1)求这个二次函数的解析式;(2)求这个二次函数图象的顶点坐标及上表中m 的值.17.如图,已知锐角△ABC .(1)过点A 作BC 边的垂线MN ,交BC 于点D (用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,若BC =5,AD =4,tan ∠BAD =34,求DC 的长.四、(本大题共3小题,每小题8分,共24分) 18.已知抛物线y =x 2-4x +m -1.(1)若抛物线与x 轴只有一个交点,求m 的值;(2)若抛物线与直线y =2x -m 只有一个交点,求m 的值.19.如图,在△ABC 中,∠ABC =45°,AD 是BC 边的中线,过点D 作DE ⊥AB 于点E ,且sin ∠DAB =35,DB =3 2.求:(1)AB 的长;(2)∠CAB 的正切值.20.如图,已知二次函数y=a(x-h)2+3的图象经过原点O(0,0),A(2,0).(1)写出该函数图象的对称轴;(2)若将线段OA绕点O逆时针旋转60°到OA′,试判断点A′是否为该函数图象的顶点?五、(本大题共2小题,每小题9分,共18分)21.某课桌生产厂家研究发现,倾斜12°~24°的桌面有利于学生保持躯体自然姿势.根据这一研究,厂家决定将水平桌面做成可调节角度的桌面.新桌面的设计图如图①,AB可绕点A旋转,在点C处安装一根可旋转的支撑臂CD,AC=30cm.(1)如图②,当∠BAC=24°时,CD⊥AB,求支撑臂CD的长;(2)如图③,当∠BAC=12°时,求AD的长(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°≈0.45,sin12°≈0.21,cos12°≈0.98,310≈17.6).22.我们常见的炒菜锅和锅盖都是抛物线面(如图①),经过锅心和盖心的纵断面是两端抛物线组合而成的封闭图形,不妨简称为“锅线”.某锅的锅口直径为6dm,锅深3dm,锅盖高1dm(锅口直径与锅盖直径视为相同),建立直角坐标系如图②所示,如果把锅纵断面的抛物线记为C1,把锅盖纵断面的抛物线记为C2.(1)求C 1和C 2的解析式;(2)如果炒菜锅时的水位高度是1dm ,求此时水面的直径;(3)如果将一个底面直径为3dm ,高度为3dm 的圆柱形器皿放入炒菜锅内蒸食物,锅盖能否正常盖上?请说明理由.六、(本大题共12分)23.若抛物线L :y =ax 2+bx +c (a ,b ,c 是常数,abc ≠0)与直线l 都经过y 轴上的一点P ,且抛物线L 的顶点Q 在直线l 上,则称此直线l 与该抛物线L 具有“一带一路”关系,此时,直线l 叫作抛物线L 的“带线”,抛物线L 叫作直线l 的“路线”.(1)若直线y =mx +1与抛物线y =x 2-2x +n 具有“一带一路”关系,求m ,n 的值;(2)若某“路线”L 的顶点在反比例函数y =6x 的图象上,它的“带线”l 的解析式为y =2x -4,求此“路线”L 的解析式.参考答案与解析1.D 2.D 3.D 4.B 5.C 6.D 解析:令y =0,则-x 2-2x +3=0,解得x =-3或1,则A (-3,0),B (1,0).∵y =-x 2-2x +3=-(x +1)2+4,∴顶点C 的坐标为(-1,4).如图所示,过点C 作CD ⊥AB于点D .在Rt △ACD 中,tan ∠CAD =CD AD =42=2.故选D.7.-4 8.4 9.(-1,7) 10.2.7 11.5212.(2,4)或(1,1) 解析:把A (-1,1)代入y =ax 2得a =1,∴抛物线的解析式为y =x 2.∵A (-1,1),∴∠AOP =45°,OA = 2.∵△AOP 是“和谐三角形”,∴当点A 到OP 的距离等于OP 时,即OP =1,此时AP ⊥y 轴,点A 与点B 关于y 轴对称,则点B 的坐标为(1,1).当点P 到OA 的距离等于OA 时,即点P 到OA 的距离等于2,则OP =2,此时直线AP 的解析式为y =x +2.解方程x 2=x +2得x 1=-1,x 2=2,则点B 的坐标为(2,4).同理当点O 到AP 的距离等于AP 时,得到OP =1或OP =2.综上所述,点B 的坐标为(2,4)或(1,1).13.解:原式=12-12+2-1=1.(6分)14.解:∵△ABC 中,∠C =90°∠B =30°,∴∠BAC =60°.(1分)∵AD 是△ABC 的角平分线,∴∠CAD =∠BAD =30°,∴∠BAD =∠B ,∴AD =BD .(3分)在Rt △ADC 中,∵AD =AC cos30°=332=2,∴BD =2.(6分) 15.解:作AE ⊥BC 于点E ,∴∠AEB =90°.(1分)在Rt △ABE 中,AE =AB ·sin B ≈50×0.94=47(cm),(4分)47+182=56(cm).答:这个指示牌的高约是56cm.(6分)16.解:(1)将(-1,-5),(0,1),(2,1)代入y =ax 2+bx +c ,得⎩⎪⎨⎪⎧a -b +c =-5,c =1,4a +2b +c =1,解得⎩⎪⎨⎪⎧a =-2,b =4,c =1.∴这个二次函数的解析式为y =-2x 2+4x +1.(3分) (2)由y =-2x 2+4x +1=-2(x -1)2+3,故其顶点坐标为(1,3).(4分)当x =4时,m =-2×16+16+1=-15.(6分)17.解:(1)如图所示.(3分)(2)∵AD ⊥BC ,∴∠ADB =∠ADC =90°.(4分)在Rt △ABD 中,∵tan ∠BAD =BD AD =34,∴BD =34×4=3,∴CD =BC -BD =5-3=2.(6分)18.解:(1)∵抛物线y =x 2-4x +m -1与x 轴只有一个交点,∴Δ=b 2-4ac =(-4)2-4×1×(m -1)=20-4m =0,(2分)解得m =5.(4分)(2)联立抛物线与直线解析式消掉y ,得x 2-4x +m -1=2x -m ,整理得x 2-6x +2m -1=0.(6分)∵抛物线与直线只有一个交点,∴Δ=b 2-4ac =(-6)2-4×1×(2m -1)=0,解得m =5.(8分)19.解:(1)在Rt △BDE 中,∵DE ⊥AB ,BD =32,∠ABC =45°,∴BE =DE =3.在Rt △ADE 中,∵sin ∠DAB =35,DE =3,∴AD =DE sin ∠DAB =335=5,(2分)由勾股定理得AE=AD 2-DE 2=4,∴AB =AE +BE =4+3=7.(4分)(2)作CH ⊥AB 于点H .∵AD 是BC 边的中线,BD =32,∴BC =6 2.(6分)∵∠ABC =45°,∴BH =CH =6,∴AH =7-6=1.在Rt △CHA 中,tan ∠CAB =CHAH=6.(8分)20.解:(1)将O (0,0),A (2,0)代入二次函数的解析式y =a (x -h )2+3中得h =1,a =-3,∴抛物线的对称轴为直线x =1.(2分)(2)点A ′是该函数图象的顶点.(3分)理由如下:如图,作A ′B ⊥x 轴于点B ,∵线段OA 绕点O 逆时针旋转60°到OA ′,∴OA ′=OA =2,∠A ′OA =60°.(5分)在Rt △A ′OB 中,∵OB =OA ′·cos ∠A ′OA =12OA ′=1,A ′B =OA ′·sin ∠A ′OA =3,∴点A ′的坐标为(1,3),由(1)知该抛物线的解析式为y =-3(x -1)2+ 3.∴点A ′为抛物线y =-3(x -1)2+3的顶点.(8分)21.解:(1)∵∠BAC =24°,CD ⊥AB ,∴sin24°=CDAC,(2分)∴CD =AC ·sin24°≈30×0.41=12.3(cm),∴支撑臂CD 的长约为12.3cm.(4分)(2)如图,当∠BAC =12°时,支撑杆CD 的位置有两种情况.过点C 作CE ⊥AB 于点E .∵∠BAC =12°,∴sin12°=EC AC =EC 30, cos12°=AEAC,∴CE ≈30×0.21=6.3(cm),∴AE =30×0.98=29.4(cm).(7分)∵CD =12.3cm ,∴DE =CD 2-CE 2≈10.56(cm),∴AD =AE -DE ≈29.4-10.56=18.84(cm),AD ′=AE +D ′E ≈39.96(cm),AD 的长约为18.84cm 或39.96cm.(9分)22.解:(1)由于抛物线C 1,C 2都过点A (-3,0),B (3,0),可设它们的解析式为y =a (x -3)(x +3).∵抛物线C 1还经过D (0,-3),∴-3=a (0-3)(0+3),解得a =13,即抛物线C 1的解析式为y =13x 2-3(-3≤x ≤3).(2分)∵抛物线C 2还经过C (0,1),∴1=a (0-3)(0+3),解得a =-19,即抛物线C 2的解析式为y =-19x 2+1(-3≤x ≤3).(4分)(2)当炒菜锅里的水位高度为1dm 时,y =-2,即13x 2-3=-2,解得x =±3,∴此时水面的直径为23dm.(6分)(3)锅盖能正常盖上,理由如下:当x =32时,抛物线C 1为y =13×⎝⎛⎭⎫322-3=-94,抛物线C 2为y =-19×⎝⎛⎭⎫322+1=34,而34-⎝⎛⎭⎫-94=3,∴锅盖能正常盖上.(9分) 23.解:(1)令直线y =mx +1中x =0,则y =1,即该直线与y 轴的交点坐标为(0,1).(1分)将(0,1)代入抛物线y =x 2-2x +n 中,得n =1,(3分)∴抛物线的解析式为y =x 2-2x +1=(x -1)2,∴抛物线的顶点坐标为(1,0).将点(1,0)代入到直线y =mx +1中,得0=m +1,解得m =-1.(5分)(2)联立方程组⎩⎪⎨⎪⎧y =2x -4,y =6x ,解得⎩⎪⎨⎪⎧x 1=-1,y 2=-6,⎩⎪⎨⎪⎧x 2=3,y 2=2.∴该“路线”L 的顶点坐标为(-1,-6)或(3,2).(8分)令“带线”l :y =2x -4中x =0,则y =-4,∴“路线”L 的图象过点(0,-4).(9分)设该“路线”L 的解析式为y =m (x +1)2-6或y =n (x -3)2+2,将点(0,-4)代入得-4=m (0+1)2-6,-4=n (0-3)2+2,解得m =2,n =-23.∴此“路线”L 的解析式为y =2(x +1)2-6或y =-23(x -3)2+2.(12分)。
北师大版九年级下册数学期中测试卷
(2)当CD∥x轴时,求抛物线 函数表达式;
(3)连接BD,当BD最短时,请直接写出抛物线的函数表达式.
A. 10个B. 12个C. 15个D. 18个
10.二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图所示,图象与x轴交点都在点(﹣3,0)的右边,下列结论:①b2>4ac,②abc>0,③2a+b﹣c>0,④a+b+c<0,其中正确的是( )
A.①②B.①②④C.②③D.①②③④
又∵DF平分∠ADC,∠FDC=∠FDA=∠GDH,
∴∠G=∠GDH +∠CDH=∠CDG.
∴CD=CG
即CD=AF+BE.………………………………………………………………………..7分
(2)过D作DH⊥BC的延长线于H点,过D作DG⊥DF交BC的延长线于G点.…..9分
可证△ADF∽△HDG,∴.
14.三角形的两边长分别为3和6,第三边的长是方程 -6x+8=0的解,则此三角形的第三边长是_____
15.两个相似多边形 一组对应边分别为3cm和4.5cm.如果它们的面积和为78cm2,那么较大多边形的面积为_____cm2.
16.如图,在矩形ABCD中,AB=3,BC=5,点E在AD边上且不与点A和点D重合,点O是对角线BD的中点,当△OED是等腰三角形时,AE的长为_____.
设EC=x,则DE=BE=2EC=2x,DC=EC+DE=3x,
BC=BE2-EC2=3x.………………………………………………………4分
∵∠DAC=45°,∠DCA=90°,AB=60,
∴△ACD为等腰直角三角形,∴AC=DC.
∴3x+60=3x,
2016北师大版九年级数学下期中检测题含答案
2016北师大版九年级数学下期中检测题含答案期中检测题时间:120分钟满分:120分一、精心选一选(每小题3分,共30分)1.若α的补角是120°,则sin α的值是(B )A.12 B.32 C.22 D.332.直线y =x 与二次函数y =ax 2-2x -1的图象的一个交点M 的横坐标为1,则a 的值为(D )A .1B .2C .3D .43.如图,抛物线的顶点坐标是P(1,3),则函数y 随自变量x 的增大而减小的x 的取值范围是(C )A .x >3B .x <3C .x >1D .x <1,第3题图),第6题图),第7题图)4.在同一平面直角坐标系中,将函数y =2x 2+4x -1的图象向右平移2个单位,再向下平移1个单位长度,得到新图象的顶点坐标是(D )A .(-3,-4)B .(1,-3)C .(-1,-3)D .(1,-4)5.在△ABC 中,∠C =90°,tan A =13,则sin B =(D )A.1010 B.23 C.34 D.310106.如图,在Rt △ABC 中,∠C =90°,AM 是BC 边上的中线,sin ∠CAM =35,则tan B 的值为(B )A.32B.23C.56D.437.如图,△ABC 中,cos B =22,sin C =35,AC =5,则△ABC 的面积是(A )A.212B .12C .14D .218.关于二次函数y =ax 2+bx +c 的图象有下列命题:①当c =0时,函数的图象经过原点;②当c>0且函数图象开口向下时,方程ax 2+bx +c =0必有两个不相等的实数根;③函数图象的最高点的纵坐标是4ac -b 24a ;④当b =0时,函数的图象关于y 轴对称.其中正确命题的个数是(C )A .1个B .2个C .3个D .4个9.(2015·宁波)二次函数y =a(x -4)2-4(a ≠0)的图象在2<x <3这一段位于x 轴的下方,在6<x <7这一段位于x 轴的上方,则a 的值为(A )A .1B .-1C .2D .-210.如图,Rt △ABC 中,AC =BC =2,正方形CDEF 的顶点D ,F 分别在AC ,BC 边上,设CD 的长为x ,△ABC 与正方形CDEF 重叠部分的面积为y ,则下列图象中能表示y 与x 之间的函数关系的是(A )二、细心填一填(每小题3分,共24分)11.将二次函数y =x 2向右平移4个单位后,再向下平移2个单位,则此时抛物线的关系式为__y =x 2-8x +14或y =(x -4)2-2__.12.写出一个开口向下,且经过点(1,2)的抛物线表达式__y =-(x -1)2+2__.13.△ABC 中,∠A ,∠B 都是锐角,若cos A =32,tan B =1,则∠C =__105°__.14.(2015·黔东南州)如图,某渔船在海面上朝正东方向匀速航行,在A 处观测到灯塔M 在北偏东60°方向上,且AM =100海里.那么该船继续航行__503__海里可使渔船到达离灯塔距离最近的位置.,第14题图),第16题图),第17题图),第18题图)15.若二次函数y =ax 2-ax +3x +1的图象与x 轴有且只有一个交点,则a =__1或9__.16.(2015·临沂)如图,在▱ABCD 中,连接BD ,AD ⊥BD ,AB =4,sin A =34,则▱ABCD 的面积是__37__.17.如图,我市某中学课外活动小组的同学利用所学知识去测量某河流的宽度.小宇同学在A 处观测对岸C 点,测得∠CAD =45°,小英同学在距A 处50米远的B 处测得∠CBD =30°,请你根据这些数据算出河宽为__68.30米__.(精确到0.01米,参考数据2≈1.414,3≈1.732)18.如图,已知一次函数y =-2x +3的图象与x 轴交于A 点,与y 轴交于C 点,二次函数y =x 2+bx +c 的图象过点C ,且与一次函数在第二象限交于另一点B.若AC ∶CB =1∶2,那么这个抛物线的顶点坐标是__(-12,114)__.三、耐心做一做(共66分)19.(6分)计算:|-3|-2sin 45°+tan 60°-(-13)-1-12-(π-314)0.解:120.(9分)已知二次函数y =x 2-x -6.(1)求此二次函数图象与坐标轴的交点坐标;(2)画出函数图象;(3)观察图象,指出方程x 2-x -6=0的解及不等式x 2-x -6<0成立的x 的取值范围;(4)求此二次函数图象与坐标轴的交点所构成的三角形的面积.解:(1)(0,-6),(3,0),(-2,0)(2)图象略(3)x 1=3,x 2=-2;当-2<x<3时,x 2-x -6<0(4)1521.(9分)(2015·绍兴)如图,从地面上的点A 看一山坡上的电线杆PQ ,测得杆顶端点P 的仰角是45°,向前走6m 到达B 点,测得杆顶端点P 和杆底端点Q 的仰角分别是60°和30°.(1)求∠BPQ 的度数;(2)求该电线杆PQ 的高度.(结果精确到1m ;参考数据:3≈1.7,2≈1.4)解:(1)∠BPQ =90°-60°=30°(2)设PQ =x m ,则QB =QP =x m ,在Rt △BCQ 中,BC =x·cos30°=32x ,QC =12x.在Rt △ACP 中,CA =CP ,∴6+32x =12x +x ,解得x =23+6,∴PQ =23+6≈9,即该电线杆PQ 的高度约为9m22.(10分)某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w(千克)随销售单价x(元/千克)的变化而变化,具体关系式为:w =-2x +240.设这种绿茶在这段时间内的销售利润为y(元),解答下列问题:(1)求y 与x 的关系式;(2)如果物价部门规定这种绿茶的销售单价不得高于90元/千克,公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?解:(1)y =(x -50)·w =(x -50)·(-2x +240)=-2x 2+340x -12000,∴y 与x 的关系式为y =-2x 2+340x -12000(2)当y =2250时,可得方程-2x 2+340x -12000=2250,解得x 1=75,x 2=95,根据题意,x 2=95不合题意,应舍去,∴当销售单价为75元时,可获得销售利润2250元23.(10分)某小区要用篱笆围成一个四边形花坛,花坛的一边利用足够长的墙,另三边所用的篱笆之和恰好为18米,围成的花坛如图所示,其中∠ABC =∠BCD =90°,且BC =2AB.设AB 边的长为x 米,四边形ABCD 的面积为S 平方米.(1)求S 与x 之间的函数关系式;(不必写出x 的取值范围)(2)当x 是多少时,S 最大?最大值是多少?解:(1)因为AB =x ,所以BC =2x ,CD =18-3x ,所以S =12(x +18-3x )×2x =-2x 2+18x (2)因为S =-2x 2+18x =-2(x -92)2+812,所以当x =92时,S 最大,最大值为81224.(10分)(2015·义乌)如图1,某校规划在一个长18米,宽13米的长方形场地ABCD 上修建三条同样宽的通道,使其中两条与AB 平行,另一条与BC 平行,其余六块相同部分铺上草皮,每一块草坪的两边之比为8∶9(即AM ∶AN =8∶9).(1)问通道的宽应设计成多少米?(2)为了美观,要将原规划重新设计,设计两条通道,横向通道不变,纵向通道的宽度变为横向通道的宽度的2倍,如图2,并在四块相同的草坪上设计四个花坛.在草坪RPCQ 中,RE ⊥PQ 于点E ,CF ⊥PQ 于点F ,如图3,求花坛RECF 的面积.解:(1)设道路的宽应设计成x 米,由题意得18-2x 3∶13-x2=8∶9,解得x =1,则通道的宽应设计成1米(2)在图3中,RQ =(18-2)÷2=8(米),RP =(13-1)÷2=6(米),∴在Rt △PRQ 中,PQ =10米,∴sin ∠RQE =35,cos ∠RQE =45.在Rt △REQ 中,RE =RQ ·sin ∠RQE =8×35=4.8,EQ =RQ·cos ∠RQE =8×45=6.4.在Rt △QCF 中,FQ =QC ·cos ∠CQF =6×35=3.6,∴EF =EQ -FQ =6.4-3.6=2.8,∴花坛RECF 的面积=2S △REF =2×12×EF×RE =2×12×2.8×4.8=13.44(平方米)25.(12分)某乒乓球馆使用发球机进行辅助训练,出球口在桌面中线端点A 处的正上方,假设每次发出的乒乓球的运动路线固定不变,且落在中线上,在乒乓球运行时,设乒乓球与端点A 的水平距离为x(米),与桌面的高度为y(米),运行时间为t(秒),经多次测试后,得到如下部分数据:t(秒)00.160.20.40.60.640.8…x(米)00.40.51 1.5 1.62…y(米)0.250.3780.40.450.40.3780.25…(1)当t 为何值时,乒乓球达到最大高度?(2)乒乓球落在桌面时,与端点A 的水平距离是多少?(3)乒乓球落在桌面上弹起后,y 与x 满足y =a(x -3)2+k.①用含a 的代数式表示k ;②球网高度为0.14米,球桌长(1.4×2)米,若球弹起后,恰好有唯一的击球点,可以将球沿直线扣杀到点A ,求a 的值.解:以点A 为原点,以桌面中线为x 轴,乒乓球水平运动方向为正方向,建立平面直角坐标系.(1)由表格中数据,可得当t 为0.4秒时,乒乓球达到最大高度(2)由表格中数据,可判断y 是x 的二次函数,可设y =a (x -1)2+0.45.将(0,0.25)代入,可得a =-15,∴y =-15(x -1)2+0.45.当y =0时,x 1=52,x 2=-12(舍去),即乒乓球落在桌面时与端点A 的水平距离是52米(3)①由(2)得乒乓球落在桌面上时,对应的点为(52,0),代入y =a (x -3)2+k ,得(52-3)2a +k =0,化简整理,得k =-14a ②由题意知,扣杀路线在直线y =x 10上.令a (x -3)2-14a =110x ,整理得20ax 2-(120a +2)x +175a =0.当Δ=(120a +2)2-4×20a ×175a =0时符合题意,解方程,得a 1=-6+3510,a 2=-6-3510.当a 1=-6+3510时,求得x =-352,不合题意,舍去;当a 2=-6-3510时,求得x =352,符合题意.∴当a =-6-3510时,能恰好将球扣杀到点A。
北师大版九年级数学下册期中试卷及答案【各版本】
北师大版九年级数学下册期中试卷及答案【各版本】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列式子中,属于最简二次根式的是( )A B C D 2.将抛物线22y x =向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为( ).A .22(2)3y x =++;B .22(2)3y x =-+;C .22(2)3y x =--;D .22(2)3y x =+-.3.已知α、β是方程x 2﹣2x ﹣4=0的两个实数根,则α3+8β+6的值为( )A .﹣1B .2C .22D .304.下列选项中,矩形具有的性质是( )A .四边相等B .对角线互相垂直C .对角线相等D .每条对角线平分一组对角5.已知正多边形的一个外角为36°,则该正多边形的边数为( ).A .12B .10C .8D .66.已知1x =是一元二次方程22(2)40m x x m -+-=的一个根,则m 的值为( )A .-1或2B .-1C .2D .07.如图,正方形ABCD 的边长为2cm ,动点P 从点A 出发,在正方形的边上沿A →B →C 的方向运动到点C 停止,设点P 的运动路程为x(cm),在下列图象中,能表示△ADP 的面积y(cm 2)关于x(cm)的函数关系的图象是( )A .B .C .D .8.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是( )A .B .C .D .9.如图,CB =CA ,∠ACB =90°,点D 在边BC 上(与B ,C 不重合),四边形ADEF 为正方形,过点F 作FG ⊥CA ,交CA 的延长线于点G ,连接FB ,交DE 于点Q ,给出以下结论:①AC =FG ;②S △FAB ∶S 四边形CBFG =1∶2;③∠ABC =∠ABF ;④AD 2=FQ ·AC ,其中正确结论的个数是( )A .1个B .2个C .3个D .4个10.如图,在下列条件中,不能证明△ABD ≌△ACD 的是( ).A .BD =DC ,AB =ACB .∠ADB =∠ADC ,BD =DC C .∠B =∠C ,∠BAD =∠CAD D .∠B =∠C ,BD =DC二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是__________.2.分解因式:x 2﹣9x =________.3.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.4.如图,直线1y x =+与抛物线245y x x =-+交于A ,B 两点,点P 是y 轴上的一个动点,当PAB ∆的周长最小时,PAB S ∆=__________.5.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,若AB=8,CD=6,则BE=______.6.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同.从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是__________.三、解答题(本大题共6小题,共72分)1.解分式方程:12211x x x +=-+2.先化简,再求值:2211(1)m m m m+--÷,其中m=3+1.3.在Rt △ABC 中,∠BAC=90°,D 是BC 的中点,E 是AD 的中点.过点A 作AF ∥BC 交BE 的延长线于点F(1)求证:△AEF ≌△DEB ;(2)证明四边形ADCF 是菱形;(3)若AC=4,AB=5,求菱形ADCF 的面积.4.如图,在正方形ABCD 中,点E 是BC 的中点,连接DE ,过点A 作AG ED ⊥交DE 于点F ,交CD 于点G .(1)证明:ADG DCE ∆∆≌;(2)连接BF ,证明:AB FB =.5.为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n 名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:(1)求n 的值;(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、C5、B6、B7、B8、C9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、x(x-9)3、84、12 5.5、6、4 9三、解答题(本大题共6小题,共72分)1、3x23、(1)略;(2)略;(3)10.4、(1)略;(2)略.5、(1)50;(2)240;(3)1 2 .。
新北师大版九年级数学下册期中试卷及答案【完美版】
新北师大版九年级数学下册期中试卷及答案【完美版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-2的倒数是( )A .-2B .12-C .12D .22.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-3.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( )A .亏了10元钱B .赚了10钱C .赚了20元钱D .亏了20元钱4.关于x 的一元二次方程2(1)20x k x k ---+=有两个实数根12,x x ,()1212122(2)2x x x x x x -+--+3=-,则k 的值() A .0或2 B .-2或2 C .-2 D .25.如图,数轴上两点A,B 表示的数互为相反数,则点B 表示的( )A .-6B .6C .0D .无法确定6.若关于x 的一元一次方程x −m +2=0的解是负数,则m 的取值范围是( )A .m ≥2B .m >2C .m <2D .m ≤27.如图,直线y=kx+b (k ≠0)经过点A (﹣2,4),则不等式kx+b >4的解集为( )A .x >﹣2B .x <﹣2C .x >4D .x <48.二次函数y=ax 2+bx+c 的图象如图所示,对称轴是x=-1.有以下结论:①abc>0,②4ac<b2,③2a+b=0,④a-b+c>2,其中正确的结论的个数是()A.1 B.2 C.3 D.49.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()A.16 B.17C.18 D.1910.如图,在△ABC中,∠C=90°,AC=BC=3cm.动点P从点A出发,以2cm/s 的速度沿AB方向运动到点B.动点Q同时从点A出发,以1cm/s的速度沿折线AC CB方向运动到点B.设△APQ的面积为y(cm2).运动时间为x(s),则下列图象能反映y与x之间关系的是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)1.计算(31)(31)+-的结果等于___________.2.分解因式:2x3﹣6x2+4x=__________.3.正五边形的内角和等于__________度.4.如图,点A在双曲线1y=x上,点B在双曲线3y=x上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为__________.5.如图,△ABC内接于☉O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若☉O的半径为2,则CD的长为__________.6.如图,已知反比例函数y=(k为常数,k≠0)的图象经过点A,过A点作AB ⊥x轴,垂足为B,若△AOB的面积为1,则K=_______.三、解答题(本大题共6小题,共72分)1.解方程:21 133x xx x=+ ++2.已知关于x 的一元二次方程()22x 2k 1x k k 0-+++=(1)求证:方程有两个不相等的实数根;(2)若△ABC 的两边AB 、AC 的长是方程的两个实数根,第三边BC 的长为5.当△ABC 是等腰三角形时,求k 的值3.如图所示抛物线2y ax bx c =++过点()1,0A -,点()0,3C ,且OB OC =(1)求抛物线的解析式及其对称轴;(2)点,D E 在直线1x =上的两个动点,且1DE =,点D 在点E 的上方,求四边形ACDE 的周长的最小值;(3)点P 为抛物线上一点,连接CP ,直线CP 把四边形CBPA 的面积分为3∶5两部分,求点P 的坐标.4.周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A ,在他们所在的岸边选择了点B ,使得AB 与河岸垂直,并在B 点竖起标杆BC ,再在AB 的延长线上选择点D 竖起标杆DE ,使得点E 与点C 、A 共线.已知:CB ⊥AD ,ED ⊥AD ,测得BC =1m ,DE =1.5m ,BD =8.5m .测量示意图如图所示.请根据相关测量信息,求河宽AB .5.某商场服装部分为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组销售额的数据,绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)该商场服装营业员的人数为,图①中m的值为;(2)求统计的这组销售额数据的平均数、众数和中位数.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、A4、D5、B6、C7、A8、C9、B10、D二、填空题(本大题共6小题,每小题3分,共18分) 1、22、2x (x ﹣1)(x ﹣2).3、5404、256、-2三、解答题(本大题共6小题,共72分)1、32x =- 2、(1)详见解析(2)k 4=或k 5=3、(1)2y x 2x 3=-++,对称轴为直线1x =;(2)四边形ACDE 的周长最小1;(3)12(4,5),(8,45)P P --4、河宽为17米5、(1)25;28;(2)平均数:18.6;众数:21;中位数:18.。
北师大版九年级下册数学《期中》测试卷及答案【完整】
北师大版九年级下册数学《期中》测试卷及答案【完整】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是()A.2-B.2 C.12D.12-2.某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是()A.100 B.被抽取的100名学生家长C.被抽取的100名学生家长的意见 D.全校学生家长的意见3.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是()A.4B.5C.6D.74.如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是()A.﹣2 B.0 C.1 D.45.下列说法正确的是()A.负数没有倒数B.﹣1的倒数是﹣1C.任何有理数都有倒数D.正数的倒数比自身小6.正十边形的外角和为()A.180°B.360°C.720°D.1440°7.如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是()A .50°B .60°C .80°D .100°8.如图,一次函数y 1=x +b 与一次函数y 2=kx +4的图象交于点P (1,3),则关于x 的不等式x +b >kx +4的解集是( )A .x >﹣2B .x >0C .x >1D .x <19.如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A .75°B .80°C .85°D .90°10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)1368______________.2.分解因式:2x 3﹣6x 2+4x =__________.3.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m=_____.4.如图,直线1y x =+与抛物线245y x x =-+交于A ,B 两点,点P 是y 轴上的一个动点,当PAB ∆的周长最小时,PAB S ∆=__________.5.如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是__________.6.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为___________.三、解答题(本大题共6小题,共72分)1.解分式方程:2311x x x x +=--2.先化简,再求值:24211326x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中21x =+.3.如图,Rt △ABC 中,∠ABC=90°,以AB 为直径作⊙O ,点D 为⊙O 上一点,且CD=CB 、连接DO 并延长交CB 的延长线于点E(1)判断直线CD 与⊙O 的位置关系,并说明理由;(2)若BE=4,DE=8,求AC 的长.4.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.5.老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.(1)求条形图中被遮盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、C5、B6、B7、D8、C9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)12、2x(x﹣1)(x﹣2).3、24、12 5.5、40°6、2.5×10-6三、解答题(本大题共6小题,共72分)1、x=32.3、(1)相切,略;(2).4、(1)略;(2)4.95、(1)条形图中被遮盖的数为9,册数的中位数为5;(2)选中读书超过5册的学生的概率为512;(3)3。
【北师大版】九年级数学下期中试卷(及答案)
一、选择题1.如图,在△ABC 中,点D 在BC 边上,连接AD ,点E 在AC 边上,过点E 作//EF BC ,交AD 于点F ,过点E 作//EG AB ,交BC 于G ,则下列式子一定正确的是( )A .AE EF EC CD =B .BF EG CD AB =C .AF BC FD GC = D .CG AF BC AD = 2.如图,已知D 、E 分别为AB 、AC 上的两点,且DE ∥BC ,AE=2CE ,AB=12,则AD 的长为( )A .4B .6C .5D .83.如图,在ABC 中,//DE BC ,6AD =,3DB =,4AE =,则AC 的长为( )A .1B .2C .4D .64.如图,在平面直角坐标系中,ABC 的顶点坐标分别是()1,2A ,()1,1B ,()3,1C ,以原点为位似中心,在原点的同侧画DEF ,使DEF 与ABC 成位似图形,且相似比为2:1,则线段DF 的长度为( )A .25B .2C .4D .55.如图,直线l 1//l 2//l 3,分别交直线m 、n 于点A 、B 、C 、D 、E 、F .若AB ∶BC =5∶3,DE =15,则EF 的长为( )A .6B .9C .10D .25 6.已知两个三角形相似,其中一个三角形的两个内角分别为72,63︒︒,则另一个三角形的最小内角为( )A .72︒B .63︒C .45︒D .不能确定 7.下列函数是y 关于x 的反比例函数的是( )A .y =11x +B .y =21xC .y =﹣12xD .y =﹣2x 8.在平面直角坐标系xOy 中,对于横、纵坐标相等的点称为“好点”.下列函数的图象中不存在...“好点”的是( ) A .y x =-B .2y x =+C .2y x =D .22y x x =- 9.如图,函数k y x=-与1y kx =+(0k ≠)在同一平面直角坐标系中的图像大致( ) A . B .C .D .10.已知点()1,3M -在双曲线k y x =上,则下列各点一定在该双曲线上的是( ) A .()3,1- B .()1,3-- C .()1,3 D .()3,111.给出下列函数:①y =﹣3x +2:②y =3x ;③y =﹣5x:④y =3x ,上述函数中符合条件“当x >1时,函数值y 随自变量x 增大而增大”的是( )A .①③B .③④C .②④D .②③12.如图,点A 、C 为反比例函数y=(0)k x x<图象上的点,过点A 、C 分别作AB ⊥x 轴,CD ⊥x 轴,垂足分别为B 、D ,连接OA 、AC 、OC ,线段OC 交AB 于点E ,点E 恰好为OC 的中点,当△AEC 的面积为32时,k 的值为( )A .4B .6C .﹣4D .﹣6二、填空题13.如图,在矩形纸片ABCD 中,AB=6,BC=10,点E 在CD 上,将△BCE 沿BE 折 叠,点C 恰落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处,有下列结论:①∠EBG=45°;②△DEF ∽△ABG ;③S △ABG = 1.5 S △FGH ;④AG+DF=FG ;其中正确的是______________.(填写正确结论的序号)14.如图,在ABC 纸片中,13AB AC ==,24BC =,D 是BC 边上任意一点,将ABD △沿AD 折叠得到AED ,AE 交BC 于点F ,当DEF 是直角三角形时,则BD 的长为________.15.目前,某市正积极推进“五城联创”,其中扩充改造绿地是推进工作计划之一.现有一块直角三角形绿地,量得两直角边长分别为a=3米和b=4米,现要将此绿地扩充改造为等腰三角形,且扩充部分为含以b为直角边的直角三角形,则扩充后等腰三角形的周长为____________米16.如图,ABC是等边三角形,被一平行于BC的矩形所截,AB被截成三等分,则图中阴影部分的面积是ABC的面积的______.17.如图,一次函数y1=ax+b与反比例函数2kyx=的图像交于A(1,4)、B(4,1)两点,若使y1>y2,则x的取值范围是___________.18.如图,在平面直角坐标系中,菱形OABC的面积为20,点B在y轴上,点C在反比函数kyx=的图像上,则k的值为________.19.如图,已知双曲线(0)k y x x=>经过矩形OABC 边AB 的中点F ,交BC 于点E ,且四边形OEBF 的面积为2,则k =_______.20.如图,已知反比例函数y =k x (x >0)与正比例函数y =x (x ≥0)的图象,点A (1,4),点A '(4,b )与点B '均在反比例函数的图象上,点B 在直线y =x 上,四边形AA 'B 'B 是平行四边形,则B 点的坐标为______.三、解答题 21.如图,在ABC 中,点D 、E 分别在AB 、AC 上,//DE BC ,若4AE =,2DB =,2AD CE =,求AD 的长.22.如图,已知O 的半径长为1,AB 、AC 是O 的两条弦,且=AB AC ,BO 的延长线交AC 于点D ,联结OA 、OC .(1)求证:OAD ABD ∽△△.(2)当OCD 是直角三角形时,求B 、C 两点的距离.(3)记AOB 、AOD △、COD △的面积分别为1S 、2S 、3S ,如果2S 是1S 和3S 的比例中项,求OD 的长.23.如图, ABC 中,中线AD ,BE 交于点F ,//EG BC 交AD 于点G .(1)求AG GF 的值. (2)如果43BD =,4DF =,请找出与BDA 相似的三角形,并挑出一个进行证明. 24.如图,直线y =12x 与双曲线y =k x (k >0)交于A 、B 两点,且点A 的横坐标为4. (1)求k 的值;(2)若双曲线y =k x(k >0)上一点C 的纵坐标为8,求△AOC 的面积.25.如图,直线y=k 1x+b 与双曲线y=2k x相交于A (1,2)、B (m ,﹣1)两点.(1)求直线和双曲线的解析式;(2)若A 1(x 1,y 1),A 2(x 2,y 2),A 3(x 3,y 3)为双曲线上的三点,且x 1<x 2<0<x 3,请直接写出y 1,y 2,y 3的大小关系式;(3)观察图象,请直接写出不等式k 1x+b >2k x的解集. 26.如图,Rt △ABO 的顶点A 是反比例函数k y x=的图象与一次函数(1)y x k =--+的图象在第二象限的交点,AB ⊥x 轴于点B ,且S △ABO =32.(1)求反比例函数和一次函数的解析式;(2)求△AOC的面积;(3)当x为何值时,一次函数的值大于反比例函数的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据平行线分线段成比例性质进行解答便可.【详解】解:∵EF∥BC,∴AF AEFD EC=,∵EG∥AB,∴AE BGEC GC=,∴AF BCFD GC=,故选:C.【点睛】本题考查了平行线分线段成比例性质,关键是熟记定理,找准对应线段.2.D解析:D【分析】先根据平行线分线段成比例定理得出比例式,代入后得出AD=23AB,代入求出即可.【详解】解:∵DE∥BC,∴AD AE AB AC=, ∵AE=2CE , ∴2223AE CE AC EC EC ==+ 又AB=12, ∴AD=23AB=8, 故选:D .【点睛】 本题考查了平行线分线段成比例定理,能根据定理得出正确的比例式是解此题的关键. 3.D解析:D【分析】根据平行线分线段成比例求出EC ,即可解答.【详解】解:∵DE ∥BC , ∴AD AE DB EC =,即643EC=, 解得:EC=2,∴AC=AE+EC=4+2=6;故选:D .【点睛】 本题考查了平行线分线段成比例定理,解决本题的关键是熟记平行线分线段成比例定理. 4.A解析:A【分析】根据位似图形的性质可得DF =2AC ,然后根据两点间的距离公式求出AC 即可解决问题.【详解】解:∵DEF 与ABC 是位似图形,且相似比为2:1,∴DF =2AC ,∵AC ==∴DF =故选:A .【点睛】本题考查了位似图形的性质和两点间的距离,熟练掌握位似图形的性质是解题的关键. 5.B解析:B【分析】根据平行线分线段成比例定理列出比例式,代入计算得到答案.【详解】解:∵l 1∥l 2∥l 3,DE=15, ∴53DE AB EF BC ==,即1553EF =, 解得,EF=9,故选:B .【点睛】 本题考查了平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键. 6.C解析:C【分析】根据相似三角形的性质、三角形的内角和定理可得出另一个三角形的三个内角度数,由此即可得.【详解】由相似三角形的性质得:另一个三角形的两个内角分别为72,63︒︒,则另一个三角形的第三个内角为180726345︒-︒-︒=︒,因此,另一个三角形的最小内角为45︒,故选:C .【点睛】本题考查了相似三角形的性质、三角形的内角和定理,熟练掌握相似三角形的性质是解题关键.7.C解析:C【分析】直接利用反比例函数的定义分别判断得出答案.【详解】解:A 、y =11x +是y 与x+1成反比例,故此选项不合题意; B 、y =21x,是y 与x 2成反比例,不符合反比例函数的定义,故此选项不合题意; C 、y =﹣12x ,符合反比例函数的定义,故此选项符合题意; D 、y =﹣2x 是正比例函数,故此选项不合题意. 故选:C .【点睛】本题考查了反比例函数的定义,正确把握定义是解题的关键.8.B解析:B【分析】根据“好点”的定义判断出“好点”即是直线y=x 上的点,再各函数中令y=x ,对应方程无解即不存在“好点”.【详解】解:根据“好点”的定义,好点即为直线y=x 上的点,令各函数中y=x ,A 、x=-x ,解得:x=0,即“好点”为(0,0),故选项不符合;B 、2x x =+,无解,即该函数图像中不存在“好点”,故选项符合;C 、2x x=,解得:x =x =“好点”)和(,),故选项不符合;D 、22x x x =-,解得:x=0或3,即“好点”为(0,0)和(3,3),故选项不符合; 故选B.【点睛】本题考查了函数图像上的点的坐标,涉及到解分式方程,一元二次方程,以及一元一次方程,解题的关键是理解“好点”的定义.9.B解析:B【分析】分k >0和k <0两种情况分类讨论即可确定正确的选项.【详解】解:当k >0时,函数1y kx =+的图象经过一、二、三象限,反比例函数k y x =-的图象分布在二、四象限,没有选项符合题意;当0k <时,函数1y kx =+的图象经过一、二、四象限,反比例函数k y x =-的图象分布在一、三象限,B 选项正确,故选:B.【点睛】考查了反比例函数和一次函数的性质,解题的关键是能够分类讨论,难度不大. 10.A解析:A【分析】先求出k=-3,再依次判断各点的横纵坐标乘积,等于-3即是在该双曲线上,否则不在.【详解】∵点()1,3M -在双曲线k y x =上,∴133k =-⨯=-,∵3(1)3⨯-=-,∴点(3,-1)在该双曲线上,∵(1)(3)13313-⨯-=⨯=⨯=,∴点()1,3--、()1,3、()3,1均不在该双曲线上,故选:A.【点睛】此题考查反比例函数解析式,正确计算k 值是解题的关键.11.B解析:B【分析】分别利用一次函数、正比例函数、反比例函数的增减性分析得出答案.【详解】解:①y =﹣3x +2,当x >1时,函数值y 随自变量x 增大而减小,故此选项不符合题意; ②y =3x,当x >1时,函数值y 随自变量x 增大而减小,故此选项不符合题意; ③y =﹣5x,当x >1时,函数值y 随自变量x 增大而增大,故此选项符合题意; ④y =3x ,当x >1时,函数值y 随自变量x 增大而增大,故此选项符合题意;故选:B .【点睛】此题考查一次函数、正比例函数、反比例函数,正确把握相关性质是解题关键. 12.C解析:C【分析】设点C 的坐标为,k m m ⎛⎫ ⎪⎝⎭,则点E 1,22k m m ⎛⎫ ⎪⎝⎭,A 12,2k m m ⎛⎫ ⎪⎝⎭,根据三角形的面积公式求出k 即可.【详解】解:设点C 的坐标为,k m m ⎛⎫ ⎪⎝⎭,则点E 1,22k m m ⎛⎫ ⎪⎝⎭,A 12,2k m m ⎛⎫ ⎪⎝⎭, ∵S △AEC =111233222282k k BD AE m m k m m ⎛⎫⎛⎫⋅=-⋅-=-= ⎪ ⎪⎝⎭⎝⎭, 解得:k=-4,故选C.【点睛】本题考查了反比例函数图象上点的坐标特征,解题的关键是设出点C 的坐标,利用点C 的横坐标表示出A 、E 点的坐标.二、填空题13.①③④【分析】根据矩形的性质和折叠的性质可知DF 的长度利用勾股定理可求出AGGFGHHF 的长度结合题意逐个判断即可【详解】①:根据题意可知∴即故①正确;②:∴∴∴∵∴设AG=x 则GH=xGF=8-x解析:①③④【分析】根据矩形的性质和折叠的性质,可知45EBF GBH ∠+∠=︒,DF 的长度.利用勾股定理可求出AG 、GF 、GH 、HF 的长度,结合题意逐个判断即可.【详解】①:根据题意可知EBC EBF ∠=∠,GBA GBH ∠=∠,90EBC EBF GBA GBH ∠+∠+∠+∠=︒,∴45EBF GBH ∠+∠=︒,即45EBG ∠=︒.故①正确;②:90EFD AFB ∠+∠=︒,90ABF AFB ∠+∠=︒,∴EFD ABF ∠=∠,∴ABF DFE , ∴AB AF DF DE=,∵8AF ===, ∴8463DE AF DF AB ===. 设AG =x ,则GH =x ,GF =8-x ,HF =BF -BH =10-6=4.又∵在Rt GHF 中,222GH HF GF +=,∴2224(8)x x +=-解得x =3,即AG =3, ∴623AB AG ==. ∴AB DE AG DF≠ 故DEF 和△ABG 不相似.故②错误;③:由②得GH =3,1163922ABG S AB AG ==⨯⨯=,1134622GFH S GH HF ==⨯⨯=. ∴:9:6 1.5ABG GFH S S ==.故③正确.④:DF =10-8=2,由②可知AG +DF =3+2=5,GF =8-3=5.∴AG +DF =GF .故④正确.故答案为①③④.【点睛】本题考查折叠的性质、矩形的性质、三角形相似的判定和性质结合勾股定理来解题.本题利用勾股定理计算出AG 的长度是解题的关键.14.或7【分析】是直角三角形时有两种情况:∠EDF=90°或∠EFD=90°通过找相似三角形然后利用对应边成比例即可得到结果【详解】解:如图当∠EDF=90°时过A 作AG ⊥BC 于G 则DE ∥AG ∵AG ⊥B 解析:263或7. 【分析】 DEF 是直角三角形时,有两种情况:∠EDF=90°或∠EFD=90°,通过找相似三角形,然后利用对应边成比例即可得到结果. 【详解】解:如图,当∠EDF=90°时,过A 作AG ⊥BC 于G ,则DE ∥AG ,∵13AB AC ==,24BC =,AG ⊥BC ,∴1122BG BC ==, 在直角三角形ABG 中,2213125AG -=,由折叠可知∠B=∠E ,BD=ED ,AE=AB=13,∵DE ∥AG ,∴∠FAG=∠E=∠B ,∴Rt △AFG ∽Rt △BAG ,∴AB BG AF AG =,即13125AF =, ∴6512AF = ∴6591131212EF =-=, 由∠B=∠E ,∠EDF=∠ABG=90°,可知△ABG ∽△FED ,∴AB BG EF DE =,即13129112DE =, ∴7DE =,即7BD =;如图,当∠EFD=90°时,由折叠可知∠B=∠E ,BD=ED ,AE=AB=13,由于∠EFD=90°,因此AF ⊥BC ,在直角三角形ABF 中,2213125AF =-=,∴1358EF =-=,∵∠B=∠E ,∠AFB=∠EFD=90°, ∴△ABF ∽△DEF , ∴AB BF DE EF =,即13128DE =, ∴263DE =,即263BD =; 综上,263BD =或7BD =, 故答案为:263或7. 【点睛】 本题考查了相似三角形的性质和判定以及折叠问题,找到相似三角形是解题的关键,要注意分类讨论. 15.16或10+2或【分析】分三种情形讨论即可①AB=BE1②AB=AE3③E2A=E2B 分别计算即可【详解】解:如图在Rt △ABC 中∵∠ACB=BC=3AC=4∴①当BA=BE1=5时CE1=2∴∴△解析:16或5或403【分析】分三种情形讨论即可,①AB=BE 1,②AB=AE 3,③E 2A=E 2B ,分别计算即可.【详解】解:如图在Rt △ABC 中,∵∠ACB=90,BC=3,AC=4 ∴225AB BC AC =+=①当BA=BE 1=5时,CE 1=2, ∴221125AE AC CE =+=∴△ABE 1周长为(5②当AB=AE 3=5时,CE 3=BC=3,BE 3=6,∴△ABE 3周长为16米.③当E 2A=E 2B 时,作E 2H ⊥AB ,则BH=AH=2.5,∵∠B=∠B ,∠ACB=∠BHE 2=90∘,∴△BAC ∽△BE 2H , ∴2BE BH BC AB= ∴BE 2=256, ∴△ABE 2周长为25402563⨯+=米. 综上所述扩充后等腰三角形的周长为16或5403米 故答案为:16或5403【点睛】 本题考查等腰三角形的定义、勾股定理、相似三角形的性质与判定、三角形周长等知识,正确理解题意是解题的关键,运用了分类讨论的数学思想,注意漏解.16.【分析】根据题意易证△AEH ∽△AFG ∽△ABC 利用相似三角形的性质解决问题即可【详解】解:∵AB 被截成三等分∴△AEH ∽△AFG ∽△ABC ∴∴S △AFG :S △ABC=4:9S △AEH :S △ABC= 解析:13【分析】根据题意,易证△AEH ∽△AFG ∽△ABC ,利用相似三角形的性质解决问题即可.【详解】解:∵AB 被截成三等分,∴△AEH ∽△AFG ∽△ABC , ∴11,,23AE AE AF AB ==, ∴S △AFG :S △ABC =4:9,S △AEH :S △ABC =1:9, ∴S 阴影部分的面积=49S △ABC -19S △ABC =13S △ABC , ∴图中阴影部分的面积是ABC 的面积的13. 故答案为:13. 【点睛】 本题主要考查了利用三等分点求得各相似三角形的相似比,从而求出面积比计算阴影部分的面积,难度适中.17.x <0或1<x <4【分析】根据图形找出一次函数图象在反比例函数图象上方的x 的取值范围即可【详解】解:根据图形当x <0或1<x <4时一次函数图象在反比例函数图象上方y1>y2故答案为:x <0或1<x <解析:x <0或1<x <4【分析】根据图形,找出一次函数图象在反比例函数图象上方的x 的取值范围即可.【详解】解:根据图形,当x <0或1<x <4时,一次函数图象在反比例函数图象上方,y 1>y 2. 故答案为:x <0或1<x <4.【点睛】本题考查了反比例函数一次函数的交点问题,要注意y 轴左边的部分,一次函数图象在第二象限,反比例函数图象在第三象限,这也是本题容易忽视而导致出错的地方. 18.-10【分析】连接AC 交OB 于点D 根据菱形的性质可得出SOCD =×20=5再根据反比例函数系数k 的几何意义即可求出k 值由点C 在第二象限即可确定k 的值【详解】连接AC 交OB 于点D 如图所示∵四边形OAB解析:-10【分析】连接AC 交OB 于点D ,根据菱形的性质可得出S OCD =14×20=5,再根据反比例函数系数k 的几何意义即可求出k 值,由点C 在第二象限,即可确定k 的值.【详解】连接AC 交OB 于点D ,如图所示.∵四边形OABC 为菱形,∴AC ⊥OB ,∵菱形OABC 的面积为20, ∴S OCD =14×20=5. ∵点C 在反比例函数k y x=的图象上,CD ⊥y 轴, ∴S OCD =12|k|=5, 解得:k =±10. ∵点C 在第二象限,∴k =−10.故答案为:-10.【点睛】本题考查了反比例函数系数k 的几何以及菱形的性质,根据菱形的性质找出S OCD =14×20=5是解题的关键. 19.2【分析】如果设F (xy )表示点B 坐标再根据四边形OEBF 的面积为2列出方程从而求出k 的值【详解】解:∵双曲线经过矩形边的中点设F (xy )E (ab )那么B (x2y )∵点E 在反比例函数解析式上∴S △C解析:2【分析】如果设F (x ,y ),表示点B 坐标,再根据四边形OEBF 的面积为2,列出方程,从而求出k 的值.【详解】解:∵双曲线(0)k y x x=>经过矩形OABC 边AB 的中点F设F(x,y),E(a,b),那么B(x,2y),∵点E在反比例函数解析式上,∴S△COE=12ab=12k,∵点F在反比例函数解析式上,∴S△AOF=12xy=12k,即xy=k∵S四边形OEBF=S矩形ABCO-S△COE-S△AOF,且S四边形OEBF=2,∴2xy-12k-12xy=2,∴2k-12k-12k=2,∴k=2.故答案为:2.【点睛】本题的难点是根据点F的坐标得到其他点的坐标.在反比例函数上的点的横纵坐标的积等于反比例函数的比例系数.20.【分析】先根据点A的坐标求出反比例函数的解析式然后求出点的坐标由点B在直线上设出点B的坐标为(aa)从而利用平行四边形的性质可得到的坐标因为在反比例函数图象上将点代入反比例函数解析式中即可求出a的值解析:13,13)【分析】先根据点A的坐标求出反比例函数的解析式,然后求出点A'的坐标,由点B在直线上,设出点B的坐标为(a,a),从而利用平行四边形的性质可得到B'的坐标,因为B'在反比例函数图象上,将点B'代入反比例函数解析式中即可求出a的值,从而可确定点B的坐标.【详解】∵反比例函数y=kx(x>0)过点A(1,4),∴k=1×4=4,∴反比例函数解析式为:y=4x.∵点A'(4,b)在反比例函数的图象上,∴4b=4,解得:b=1,∴A'(4,1).∵点B在直线y=x上,∴设B点坐标为:(a,a).∵点A(1,4),A'(4,1),∴A点向下平移3个单位,再向右平移3个单位,即可得到A'点.∵四边形AA'B'B是平行四边形,∴B点向下平移3个单位,再向右平移3个单位,即可得到B'点(a+3,a﹣3).∵点B'在反比例函数的图象上,∴(a+3)(a﹣3)=4,解得:a=或a=舍去),故B点坐标为:.故答案为:.【点睛】本题主要考查反比例函数与几何综合,掌握待定系数法,平行四边形的性质,点的平移规律和一元二次方程的解法是解题的关键.三、解答题21.AD=4【分析】设AD=x,则12CE x=,根据平行线分线段成比例定理可得关于x的方程,解方程即可求出答案.【详解】解:∵DE∥BC,∴AD AEDB EC=,设AD=x,则12 CE x=,∴4122xx =,解得:x=4或﹣4(舍去),即AD=4.【点睛】本题考查了平行线分线段成比例定理和简单的一元二次方程的解法,熟练掌握上述知识、灵活应用方程思想是解题的关键.22.(1)见解析;(2)3BC =或2;(3)51OD -=. 【分析】 (1)由△AOB ≌△AOC ,推出∠C=∠B ,由OA=OC ,推出∠OAC=∠C=∠B ,由∠ADO=∠ADB ,即可证明△OAD ∽△ABD ;(2)如图2中,当△OCD 是直角三角形时,需要分类讨论解决问题;(3)如图3中,作OH ⊥AC 于H ,设OD=x .想办法用x 表示AD 、AB 、CD ,再证明AD 2=AC•CD ,列出方程即可解决问题;【详解】解:(1)在AOB 和AOC △中,OA OA AB AC OB OC =⎧⎪=⎨⎪=⎩,∴AOB AOC △≌△,C B ∴∠=∠,又∵OA OC =,OAC C B ∴∠=∠=∠,而ADO ADB ∠=∠,OAD ABD ∴∽△△.(2)如图:①当90ODC ∠=︒时,BD AC ⊥,OA OC =,AD DC ∴=,BA BC AC ∴==,ABC ∴是等边三角形,在Rt OAD 中,1OA =,30OAD ∠=︒,1122OD OA ∴==, 223AD OA OD ∴=-=, 23BC AC AD ∴===②90COD ∠=︒,90BOC ∠=°,22112BC =+=.③OCD ∠显然90≠︒,不需要讨论. 综上所述,3BC =或2.(3)如图:作OH AC ⊥于H ,设OD x =,DAO DBA ∽△△,AD OD OA DB AD AB∴==. 11AD x x AD AB∴==+. (1)AD x x ∴=+,(1)x x AB +=. 又2S 是1S 和3S 的比例中项,2213S S S ∴=⋅,而212S AD OH =⋅,112OAC S S AC OH ==⋅△,312S CD OH =⋅⨯, 2111222AD OH AC OH CD OH ⎛⎫⎛⎫∴⋅=⋅⋅⋅ ⎪ ⎪⎝⎭⎝⎭, 即2AD AC CD =⋅,又AC AB =,(1)(1)x x CD AC AD x x +=-=+, 代入上式可得:210x x +-=, 求得512x =,或512-,经检验,12x =是分式方程的根且符合题意,OD ∴=. 【点睛】 本题属于圆的综合题、全等三角形的判定和性质、相似三角形的判定和性质、比例中项等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题.23.(1)3;(2)BDA FGE ∽△△,证明见解析【分析】(1)先证明AGE ADC △∽△,再证明GEF DBF ∽△△,得到2DF GF =,则问题可解; (2)根据题意分别证明BDA FDB ∽△△,BDA FGE ∽△△问题可证.【详解】解:(1)D 是BC 的中点,E 是AC 的中点,BD CD ∴=,AE CE =,//GE BC ,AGE ADC ∴∽△△,12AG GE AE AD CD AC ∴===, AG GD ∴=,2GE CD BD ==,//GE BC ,GEF DBF ∴∽△△,12GE GF BD DF ∴==, 2DF GF ∴=,3AG DG GF ∴==,3AG GF ∴=.(2)当BD =4DF =时,由(1)可得122GF DF ==,36AG DG GF ===,212AD AG ==, 12GE BD ==,4BD DF ==AD BD ==, AD BD BD DF ∴=, 又BDG ADB ∠=∠,BDA FDB ∴∽△△,3GEGF =AD BD == AD GE BD GF∴=, //GE BC ,ADB EGF ∴∠=∠,BDA FGE ∴∽△△.【点睛】本题考查了相似三角形的性质和判定,解答关键是根据题意选择适当方法证明三角形相似.24.(1)8;(2)15.【详解】解:(1)∵点A 的横坐标为4,点A 在直线y =12x 上, ∴点A 的纵坐标为y =12×4=2,即A(4,2). 又∵点A(4,2)在双曲线y =k x 上, ∴k =2×4=8;(2)∵点C 在双曲线y =8x上,且点C 纵坐标为8, ∴C(1,8). 如图,过点C 作CM ⊥x 轴于M ,过点A 作AN ⊥x 轴于N.∵S △COM =S △AON =82=4, ∴S △AOC =S 四边形CMNA =12×(|y A |+|y C |)×(|x A |-|x c |)=15. 【点睛】主要考查了待定系数法求反比例函数的解析式和反比例函数y =k x 中k 的几何意义.这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义.25.(1)双曲线的解析式为:y=2x 直线的解析式为:y=x+1(2)y 2<y 1<y 3(3),x >1或﹣2<x <0【分析】(1)将点A (1,2)代入双曲线y=2k x,求出k 2的值,将B (m ,﹣1)代入所得解析式求出m 的值,再用待定系数法求出k 1x 和b 的值,可得两函数解析式.(2)根据反比例函数的增减性在不同分支上进行研究.(3)根据A 、B 点的横坐标结合图象找出直线在双曲线上方时x 的取值即可.【详解】解:(1)∵双曲线y=2k x 经过点A (1,2),∴k 2=2,∴双曲线的解析式为:y=2x. ∵点B (m ,﹣1)在双曲线y=2x上,∴m=﹣2,则B (﹣2,﹣1). 由点A (1,2),B (﹣2,﹣1)在直线y=k 1x+b 上,得 11k +b=2{2k +b=1--,解得1k =1{b=1. ∴直线的解析式为:y=x+1.(2)∵双曲线y=2x在第三象限内y 随x 的增大而减小,且x 1<x 2<0,∴y 2<y 1<0, 又∵x 3>0,∴y 3>0.∴y 2<y 1<y 3.(3)由图可知,x >1或﹣2<x <0. 26.(1)反比例函数解析式:3y x=-,一次函数解析式:2y x +=-;(2)4;(3)1x <-或03x <<【分析】(1)根据S △AOB =12|k|,可求k 的值,再求出一次函数解析式; (2)两个解析式构成方程组可求点A ,点C 坐标,即可△AOC 的面积;(3)由图象可得当一次函数图象在反比例函数图象上面的x 的取值范围.【详解】解:(1)∵AB ⊥x 轴于点B ,且S △ABO =32, ∴12|k|=32,∴k =±3. ∵反比例函数图象在第二、四象限,∴k<0,∴k =-3.∴反比例函数的解析式为3y x=-,一次函数的解析式为y =-x +2. (2)设一次函数y =-x +2的图象与x 轴的交点为D.令y =0,得x =2.∴点D 的坐标为(2,0). 由23y x y x =-+⎧⎪⎨=-⎪⎩解得13x y =-⎧⎨=⎩或31x y =⎧⎨=-⎩ ∴A(-1,3),C(3,-1),∴S△AOC=S△AOD+S△ODC=12×2×3+12×2×1=4.(3) 由图象可得:当x<−1或0<x<3时,一次函数的值大于反比例函数的值.【点睛】本题考查了反比例函数与一次函数交点问题,反比例函数系数k的几何意义,利用方程组求交点坐标是本题的关键.。
北师大版九年级下册数学期中测试卷(一)
北师大版九年级下册数学期中测试卷(一)一、填空题1.在等腰三角形ABC中,底边上的高是,这条高与一腰的夹角为60°,则这个三角形的面积是()A.B.C.2 D.32.如图所示,下列说法:①B在A的东北方向,A在B的西南方向;②C在A 的北偏东75°方向;③C在B的南偏东30°方向;④B在C的北偏西30°方向,其中正确的有()A.1个 B.2个 C.3个 D.4个3.如图所示,在△ABC中,已知c=,∠A=45°,∠B=60°,则a的值是()A.3﹣B.3﹣3 C.﹣1 D.5﹣4.二次函数y=x2+2x﹣5有()A.最大值﹣5 B.最小值﹣5 C.最大值﹣6 D.最小值﹣65.若二次函数y=﹣x2+bx+c的图象的最高点是(﹣1,﹣3),则b、c的值分别是()A.b=2,c=4 B.b=﹣2,c=﹣4 C.b=2,c=﹣4 D.b=﹣2,c=46.下列函数中,图象开口最大的是()A.y=5x2B.y=﹣3x2C.y=﹣x2D.y=x27.二次函数y=ax2+bx+c与一次函数y=ax+c,它们在同一直角坐标系中的图象大致是()A.B.C.D.8.已知二次函数y=ax2+bx+c(a≠0),当x=1时,函数y有最大值,设(x1,y1),(x2,y2)是这个函数图象上的两点,且1<x1<x2,那么()A.a>0,y1>y2B.a>0,y1<y2C.a<0,y1>y2D.a<0,y1<y2二、填空题9.在△ABC中,∠C=90°,a=9,c=15,则sinB=,b=.10.在锐角三角形ABC中,∠B=60°,AD⊥BC于D,AD=3,AC=5,则AB=.11.已知a<﹣1,点(a﹣1,y1),(a,y2),(a+1,y3)都在函数y=x2的图象上,则y1,y2,y3的大小关系是.12.(1)若cosα=,α为锐角,则sinα=;(2)若tanα=2,则= .13.如图所示,某水库大坝的横断面是梯形ABCD,坝顶宽CD=3m,斜坡AD=8m,斜坡BC的坡度i=1:3,B,C间的水平距离为12m,则斜坡AD的坡角∠A=,坝底宽AB=m.14.已知抛物线甲:y=﹣2x2﹣1和抛物线乙的形状相同,且两条抛物线的对称轴均为y轴,两点距离5个单位长度,它们的图象如图所示,则抛物线乙的解析式为.15.已知二次函数y=x2﹣6x+n的最小值为1,那么n的值是.16.将抛物线y=x2﹣2向右平移一个单位后,得到一条新抛物线,则新的抛物线的顶点坐标是.三、解答题17.如图,在Rt△ABC中,∠C=90°,AC=8,∠A的平分线AD=,求∠B的度数及边BC、AB的长.18.如图所示,已知两山脚B,C相距1 500m,在距山脚B 500m的A处测得山BD,CE的山顶D,E的仰角分别为45°,30°,求两山的高.(精确到1m)19.如图,在亚丁湾一海域执行护航任务的我海军某军舰由东向西行驶.在航行到B处时,发现灯塔A在我军舰的正北方向500米处;当该军舰从B处向正西方向行驶至达C处时,发现灯塔A在我军舰的北偏东60°的方向.求该军舰行驶的路程.(计算过程和结果均不取近似值)20.已知,二次函数y=ax2﹣5x+c的图象如图.(1)求这个二次函数的解析式和它的图象的顶点坐标;(2)观察图象,回答:何时y随x的增大而增大;何时y随x的增大而减小.21.已知抛物线的顶点坐标是(﹣3,﹣2),它与直线y=2x+m的交点是(1,6),求抛物线和直线所对应的函数关系式.22.已知一个二次函数的图象经过点A(﹣1,0)、B(3,0)和C(0,﹣3)三点;(1)求此二次函数的解析式;(2)对于实数m,点M(m,﹣5)是否在这个二次函数的图象上?说明理由.23.某工艺厂为迎接建厂60周年,设计了一款成本为20元/件的工艺品投放市场进行试销.经过调查,其中工艺品的销售单价x(元/件)与每天销售量y(件)之间满足关系式y=﹣10x+800,若物价部门规定,该工艺品销售单价最高不能超过45元/件,那么,销售单价定为多少元时,工艺厂试销该工艺品获得的利润最大?最大利润是多少?24.改革开放后,不少农村用上了自动喷灌设备.如图所示,AB表示水管,在B处有一个自动旋转的喷水头,一瞬间喷出的水是抛物线状,建立如图所示的直角坐标系后,抛物线的表达式为y=﹣x2+2x+.(1)当x=1时,喷出的水离地面多高?(2)你能求出水的落地点距水管底部A的最远距离吗?(3)水管有多高?25.如图,自来水厂A和村庄B在小河l的两侧,现要在A,B间铺设一条输水管道.为了搞好工程预算,需测算出A,B间的距离.一小船在点P处测得A在正北方向,B位于南偏东24.5°方向,前行1200m,到达点Q处,测得A位于北偏西49°方向,B位于南偏西41°方向.(1)线段BQ与PQ是否相等?请说明理由;(2)求A,B间的距离.(参考数据cos41°≈0.75)参考答案与试题解析1.在等腰三角形ABC中,底边上的高是,这条高与一腰的夹角为60°,则这个三角形的面积是()A.B.C.2 D.3【考点】T7:解直角三角形;KH:等腰三角形的性质.【专题】选择题【分析】画出图形,求出∠B=30°,求出AB、BD,根据等腰三角形性质或同理求出CD,得出BC的长,根据三角形面积求出即可.【解答】解:∵AD⊥BC,∴∠ADB=90°,∵∠BAD=60°,∴∠B=30°,∴AB=2AD=2,在Rt△BDA中,由勾股定理得:BD=3,同理可求CD=3,∴BC=6,∴△ABC的面积是×BC×AD=×6×=3,故选D.【点评】本题考查了等腰三角形性质,直角三角形性质,三角形的面积的应用,关键是求出BC的长.2.如图所示,下列说法:①B在A的东北方向,A在B的西南方向;②C在A 的北偏东75°方向;③C在B的南偏东30°方向;④B在C的北偏西30°方向,其中正确的有()A.1个 B.2个 C.3个 D.4个【考点】IH:方向角.【专题】选择题【分析】根据方向角的定义对每一个选项进行逐一的判断,找出正确的选项即可.【解答】解:①B在A的东北方向,A在B的西南方向,此说法正确;②C在A的北偏东75°方向,此说法正确;③C在B的南偏东30°方向,此说法正确;④B在C的北偏西30°方向,此说法正确;正确的有①②③④,故选D.【点评】本题主要考查方向角的知识点,熟知方向角的描述方法是解答此题的关键,此题基础题,比较简单.3.如图所示,在△ABC中,已知c=,∠A=45°,∠B=60°,则a的值是()A.3﹣B.3﹣3 C.﹣1 D.5﹣【考点】T7:解直角三角形【专题】选择题.【分析】过C作CD⊥AB于D,求出∠BCD=30°,AD=DC,设BD=x,则AD=DC=x,BC=2x,得出方程x+x=,求出即可.【解答】解:过C作CD⊥AB于D,∵∠A=45°,∴∠ACD=∠A=45°,∴CD=AD,设BD=x,∵∠CDB=90°,∠B=60°,∴∠BCD=30°,∴BC=a=2x,由勾股定理得:CD=x=AD,∵AB=c=,∴BD=,即x+x=,x=∴a=2x=3﹣,故选A.【点评】本题考查了解直角三角形,含30度角的直角三角形性质,等腰三角形的性质和判定,勾股定理的应用,解此题的关键是得出关于x的方程.4.二次函数y=x2+2x﹣5有()A.最大值﹣5 B.最小值﹣5 C.最大值﹣6 D.最小值﹣6【考点】H7:二次函数的最值.【专题】选择题【分析】先根据二次函数的解析式判断出函数的开口方向,再由其顶点式求出其最值即可.【解答】解:∵二次函数y=x2+2x﹣5中a=1>0,∴此函数有最小值,∴y===﹣6.最小故选:D.【点评】本题考查的是二次函数的最值问题,即二次函数y=ax2+bx+c(a≠0)中,当a>0时,函数有最小值最低点,所以函数有最小值,当x=时,y=.5.若二次函数y=﹣x2+bx+c的图象的最高点是(﹣1,﹣3),则b、c的值分别是()A.b=2,c=4 B.b=﹣2,c=﹣4 C.b=2,c=﹣4 D.b=﹣2,c=4【考点】H7:二次函数的最值.【专题】选择题【分析】根据二次函数y=﹣x2+bx+c的二次项系数﹣1来确定该函数的图象的开口方向,由二次函数y=﹣x2+bx+c的图象的最高点是(﹣1,﹣3)确定该函数的顶点坐标,然后根据顶点坐标公式解答b、c的值.【解答】解:∵二次函数y=﹣x2+bx+c的二次项系数﹣1<0,∴该函数的图象的开口方向向下,∴二次函数y=﹣x2+bx+c的图象的最高点坐标(﹣1,﹣3)就是该函数的顶点坐标,∴﹣1=﹣,即b=﹣2;①﹣3=,即b2+4c﹣12=0;②由①②解得,b=﹣2,c=﹣4;故选B.【点评】本题考查了二次函数的最值.解答此题时,弄清楚“二次函数y=﹣x2+bx+c 的图象的最高点坐标(﹣1,﹣3)就是该函数的顶点坐标”是解题的关键.6.下列函数中,图象开口最大的是()A.y=5x2B.y=﹣3x2C.y=﹣x2D.y=x2【考点】H3:二次函数的性质.【专题】选择题【分析】根据二次函数中二次项系数的绝对值越小,开口越大可以得到答案.【解答】解:四个选项中C选项中的二次函数的二次项系数的绝对值最小,其开口最大,故选C.【点评】本题考查了二次函数的性质,解题的关键是记住二次项系数的绝对值越小,开口越大.7.二次函数y=ax2+bx+c与一次函数y=ax+c,它们在同一直角坐标系中的图象大致是()A.B.C.D.【考点】H2:二次函数的图象;F4:正比例函数的图象.【专题】选择题【分析】根据二次函数的开口方向,与y轴的交点;一次函数经过的象限,与y 轴的交点可得相关图象.【解答】解:∵一次函数和二次函数都经过y轴上的(0,c),∴两个函数图象交于y轴上的同一点,排除B、C;当a>0时,二次函数开口向上,一次函数经过一、三象限,排除D;当a<0时,二次函数开口向下,一次函数经过二、四象限,A正确;故选A.【点评】考查二次函数及一次函数的图象的性质;用到的知识点为:二次函数和一次函数的常数项是图象与y轴交点的纵坐标;一次函数的一次项系数大于0,图象经过一、三象限;小于0,经过二、四象限;二次函数的二次项系数大于0,图象开口向上;二次项系数小于0,图象开口向下.8.已知二次函数y=ax2+bx+c(a≠0),当x=1时,函数y有最大值,设(x1,y1),(x2,y2)是这个函数图象上的两点,且1<x1<x2,那么()A.a>0,y1>y2B.a>0,y1<y2C.a<0,y1>y2D.a<0,y1<y2【考点】H5:二次函数图象上点的坐标特征.【专题】选择题【分析】由当x=1时,函数y有最大值,根据抛物线的性质得a<0,抛物线的对称轴为直线x=1,当x>1时,y随x的增大而减小,所以由1<x1<x2得到y1>y2.【解答】解:∵当x=1时,函数y有最大值,∴a<0,抛物线的对称轴为直线x=1,∵1<x1<x2,∴y1>y2.故选C.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上的点满足其解析式.也考查了二次函数的性质.9.在△ABC中,∠C=90°,a=9,c=15,则sinB=,b=12.【考点】T1:锐角三角函数的定义;KQ:勾股定理.【专题】填空题【分析】根据题意作出图形,利用勾股定理求出b的值,然后根据锐角三角函数的定义求出sinB即可.【解答】解:根据题意作出图形,在Rt△ABC中,b==12,∴sinB===.故答案为:,12.【点评】本题考查了锐角三角函数的定义,关键是利用勾股定理求出b的长度,难度一般.10.在锐角三角形ABC中,∠B=60°,AD⊥BC于D,AD=3,AC=5,则AB=2.【考点】T7:解直角三角形;KQ:勾股定理.【专题】填空题【分析】求出∠ADB=90°,通过解直角三角形得出sin∠ABD=,推出AB=,代入求出即可.【解答】解:∵AD⊥BC,∴∠ADB=90°,∵sin∠ABD=,AD=3,∴AB==2,故答案为:2.【点评】本题考查了解直角三角形的应用,注意:在△ADB中,Rtsin∠ABD=.11.已知a<﹣1,点(a﹣1,y1),(a,y2),(a+1,y3)都在函数y=x2的图象上,则y1,y2,y3的大小关系是y1>y2>y3.【考点】H5:二次函数图象上点的坐标特征.【专题】填空题【分析】抛物线y=x2的对称轴为y轴,即直线x=0,图象开口向上,当a<﹣1时,a﹣1<a<a+1<0,在对称轴左边,y随x的增大而减小,由此可判断y1,y2,y3的大小关系.【解答】解:∵当a<﹣1时,a﹣1<a<a+1<0,而抛物线y=x2的对称轴为直线x=0,开口向上,∴三点都在对称轴的左边,y随x的增大而减小,∴y1>y2>y3.故本题答案为:y1>y2>y3.【点评】本题考查了二次函数的增减性.当二次项系数a>0时,在对称轴的左边,y随x的增大而减小,在对称轴的右边,y随x的增大而增大;a<0时,在对称轴的左边,y随x的增大而增大,在对称轴的右边,y随x的增大而减小.12.(1)若cosα=,α为锐角,则sinα=;(2)若tanα=2,则=.【考点】T3:同角三角函数的关系.【专题】填空题【分析】(1)根据sin2α+cos2α=1,可求出cosα的值.(2)化简可得=,代入即可得出答案.【解答】解:(1)∵sin2α+cos2α=1,cosα=,∴sin2α=,又∵α为锐角,∴sinα=.(2)==()2=.故答案为:、.【点评】本题考查了同角三角函数的关系,注意掌握据sin2α+cos2α=1,tanα=.13.如图所示,某水库大坝的横断面是梯形ABCD,坝顶宽CD=3m,斜坡AD=8m,斜坡BC的坡度i=1:3,B,C间的水平距离为12m,则斜坡AD的坡角∠A=30°,坝底宽AB=15+4m.【考点】T9:解直角三角形的应用﹣坡度坡角问题.【专题】填空题【分析】过D点作DE⊥AB于点E,过C点作CF⊥AB于点F,得到两个直角三角形和一个矩形,在Rt△BCF、Rt△AED中已知坡度和一边,或两边的比,满足解直角三角形的条件,可求出CF的长度和,继而根据AD=8m,可求得∠A的度数,然后解直角三角形可求得AE的长,继而也可求得AB的长度.【解答】解:过D点作DE⊥AB于点E,过C点作CF⊥AB于点F,则四边形CDEF是矩形,∴CD=FE=3m,DE=CF,∵斜坡BC的坡度i=1:3,BF=12m,∴CF:BF=1:3,则CF=×12=4m,∵AD=8m,∴sinA=DE:AD=4:8=1:2,∴∠A=30°,AE=ADcos30°=4(m),∴AB=AE+EF+FB=4+3+12=15+4.故答案为:30°、(15+4).【点评】本题考查坡度、坡角的知识,解答本题的关键是理解掌握坡度、坡角的定义,能正确解直角三角形.14.已知抛物线甲:y=﹣2x2﹣1和抛物线乙的形状相同,且两条抛物线的对称轴均为y轴,两点距离5个单位长度,它们的图象如图所示,则抛物线乙的解析式为y=﹣2x2+4.【考点】H6:二次函数图象与几何变换.【专题】填空题【分析】设抛物线乙的解析式为y=ax2+bx+c,先抛物线甲:y=﹣2x2﹣1和抛物线乙的形状相同,且两条抛物线的对称轴均为y轴,得出a=﹣2,b=0,再由两点距离5个单位长度,结合图形得出c﹣(﹣1)=5,求出c=4.从而确定抛物线乙的解析式.【解答】解:设抛物线乙的解析式为y=ax2+bx+c.∵抛物线甲:y=﹣2x2﹣1和抛物线乙的形状相同,且两条抛物线的对称轴均为y 轴,∴a=﹣2,b=0,又∵两点距离5个单位长度,∴c﹣(﹣1)=5,∴c=4.即y=﹣2x2+4.故答案为y=﹣2x2+4.【点评】本题考查二次函数图象与几何变换,难度中等.用到的知识点:两条抛物线的形状相同,则|a|相同,当a>0时,开口向上;a<0时,开口向下;抛物线y=ax2+bx+c的对称轴为直线x=﹣.15.已知二次函数y=x2﹣6x+n的最小值为1,那么n的值是10.【考点】H7:二次函数的最值.【专题】填空题【分析】将二次函数化为顶点式,即可建立关于m的等式,解方程求出m的值即可.【解答】解:原式可化为:y=(x﹣3)2﹣9+n,∵函数的最小值是1,∴﹣9+n=1,n=10.故答案为:10.【点评】本题考查了二次函数的最值,会用配方法将原式化为顶点式是解题的关键.16.将抛物线y=x2﹣2向右平移一个单位后,得到一条新抛物线,则新的抛物线的顶点坐标是(1,﹣2).【考点】H6:二次函数图象与几何变换.【专题】填空题【分析】先得到原抛物线的顶点坐标,让横坐标加1,纵坐标不变即为新抛物线的顶点坐标.【解答】解:∵抛物线y=x2﹣2的顶点坐标为(0,﹣2),向右平移1个单位得到新抛物线的解析式,∴所得抛物线的顶点坐标是(1,﹣2).故答案为:(1,﹣2).【点评】本题考查二次函数图象与几何变换的知识,讨论两个二次函数的图象的平移问题,只需看顶点坐标的平移即可.17.如图,在Rt△ABC中,∠C=90°,AC=8,∠A的平分线AD=,求∠B的度数及边BC、AB的长.【考点】T7:解直角三角形.【专题】解答题【分析】在三角形ACD中,斜边以及直角边已告知,根据锐角三角函数的概念解直角三角形即可得∠CAD以及∠B,从而解直角三角形求出其余结果.【解答】解:在Rt△ACD中∵cos∠CAD===,∠CAD为锐角.∴∠CAD=30°,∠BAD=∠CAD=30°,即∠CAB=60°.∴∠B=90°﹣∠CAB=30°.∵sinB=,∴AB===16.又∵cosB=,∴BC=AB•cosB=16•=8.【点评】考查综合应用解直角三角形、直角三角形性质,进行逻辑推理能力和运算能力.18.如图所示,已知两山脚B,C相距1 500m,在距山脚B 500m的A处测得山BD,CE的山顶D,E的仰角分别为45°,30°,求两山的高.(精确到1m)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【专题】解答题【分析】由在Rt△ABD中,BD=AB•tan45°,即可求得BD的长,继而求得AC的长,然后由在Rt△ACE中,EC=AC•tan30°,求得两山的高.【解答】解:∵在Rt△ABD中,BD=AB•tan45°=500×1=500(m),∴AC=BC﹣AB=1500﹣500=1000(m),∴在Rt△ACE中,EC=AC•tan30°=1000×≈577(m).答:两山的高为:577m.【点评】此题考查了仰角的定义.注意能借助仰角构造直角三角形并解直角三角形是解此题的关键.19.如图,在亚丁湾一海域执行护航任务的我海军某军舰由东向西行驶.在航行到B处时,发现灯塔A在我军舰的正北方向500米处;当该军舰从B处向正西方向行驶至达C处时,发现灯塔A在我军舰的北偏东60°的方向.求该军舰行驶的路程.(计算过程和结果均不取近似值)【考点】TB:解直角三角形的应用﹣方向角问题.【专题】解答题【分析】易得∠A的度数为60°,利用60°正切值可得BC的值.【解答】解:∵CE∥AB,∴∠ECB=90°∴∠A=∠ECA=60°,∴BC=AB×tan60°=500×=500m.答:该军舰行驶的路程为500m.【点评】考查解直角三角形的应用;用∠A的正切值表示出所求线段长是解决本题的关键.20.已知,二次函数y=ax2﹣5x+c的图象如图.(1)求这个二次函数的解析式和它的图象的顶点坐标;(2)观察图象,回答:何时y随x的增大而增大;何时y随x的增大而减小.【考点】H8:待定系数法求二次函数解析式;H2:二次函数的图象;H3:二次函数的性质.【专题】解答题【分析】(1)由图知,该二次函数经过(1,0)、(4,0),可将这两点坐标代入抛物线的解析式中,即可求出待定系数的值;然后将所得函数解析式化为顶点式,从而求出其顶点坐标;(2)根据(1)得出的抛物线的对称轴及开口方向,分段讨论抛物线的增减性.【解答】解:(1)根据二次函数y=ax2﹣5x+c的图象可得(2分)解得a=1,c=4;(4分)所以这个二次函数的解析式是y=x2﹣5x+4;(5分)y=x2﹣5x+4=﹣=,(7分)它的图象的顶点坐标();(8分)(2)当x>,y随x的增大而增大;(10分)当x<,y随x的增大而减小.(12分)注:①顶点坐标如用公式得出同样给分;②对第(2)小题,如回答,函数y=x2﹣5x+4的图象在对称轴右侧部分,y随x 的增大而增大;在对称轴的左侧部分,y随x的增大而减小;也视为正确,同样给分.【点评】此题考查了用待定系数法确定二次函数解析式的方法及二次函数的图象与性质;在讨论二次函数的增减性时要考虑到两点:①抛物线的开口方向,②抛物线的对称轴.21.已知抛物线的顶点坐标是(﹣3,﹣2),它与直线y=2x+m的交点是(1,6),求抛物线和直线所对应的函数关系式.【考点】H8:待定系数法求二次函数解析式;FA:待定系数法求一次函数解析式.【专题】解答题【分析】根据题意可设二次函数的解析式为y=a(x+3)2﹣2,将点(1,6)代入得a=,求得抛物线的解析式;将点(1,6)代入直线y=2x+m得m=4,求得直线所对应的函数关系式.【解答】解:设二次函数的解析式为y=a(x+3)2﹣2将点(1,6)代入得a=∴抛物线的解析式为y=(x+3)2﹣2将点(1,6)代入直线y=2x+m得m=4∴直线所对应的函数关系式为y=2x+4.【点评】本题考查了用待定系数法求函数解析式的方法,注意当二次函数的顶点坐标已知时,可设顶点式.22.已知一个二次函数的图象经过点A(﹣1,0)、B(3,0)和C(0,﹣3)三点;(1)求此二次函数的解析式;(2)对于实数m,点M(m,﹣5)是否在这个二次函数的图象上?说明理由.【考点】H8:待定系数法求二次函数解析式;H5:二次函数图象上点的坐标特征.【专题】解答题【分析】(1)本题可直接用待定系数法求出二次函数的解析式;(2)根据(1)得出的二次函数解析式,可将M点坐标代入抛物线的解析式中,即可判断出M是否在二次函数的图象上.(由于本题中,M点的纵坐标小于抛物线的最小值,可据此判断M点不在二次函数的图象上).【解答】解:(1)设二次函数的解析式为y=a(x+1)(x﹣3),由于抛物线的图象经过C(0,﹣3),则有:﹣3=a(0+1)(0﹣3),解得a=1.∴二次函数的解析式为y=(x+1)(x﹣3)=x2﹣2x﹣3;(2)由(1)可知:y=x2﹣2x﹣3=(x﹣1)2﹣4.因此抛物线的最小值为﹣4>﹣5.因此无论m取何值,点M都不在这个二次函数的图象上.【点评】本题主要考查了用待定系数法求二次函数解析式的方法以及二次函数图象上点的坐标特征等知识点.23.某工艺厂为迎接建厂60周年,设计了一款成本为20元/件的工艺品投放市场进行试销.经过调查,其中工艺品的销售单价x(元/件)与每天销售量y(件)之间满足关系式y=﹣10x+800,若物价部门规定,该工艺品销售单价最高不能超过45元/件,那么,销售单价定为多少元时,工艺厂试销该工艺品获得的利润最大?最大利润是多少?【考点】HE:二次函数的应用.【专题】解答题【分析】设销售单价定为x,则此时的销量为:﹣1Ox+800,根据利润=销量×单件利润,即可得出利润表达式,利用配方法求最值即可.【解答】解:设工艺厂试销该工艺品每天获得的利润是W元,由题意得:W=(x﹣2)•y=(x﹣20)(﹣10x+800)=﹣10(x﹣50)2+9000,∵﹣10<0,∴函数图象开口向下,对称轴为x=50,又∵20<x≤45,在对称轴的左侧,W的值随着x值的增大而增大,∴当x=45时,W取最大值,W max=﹣10(45﹣50)2+9000=8750.答:销售单价定为45元时,工艺厂试销该工艺品获得的利润最大为8750元.【点评】本题考查了二次函数的应用,解答本题的关键是仔细审题,得出利润表达式,同学们注意配方法求二次函数最值的应用.24.改革开放后,不少农村用上了自动喷灌设备.如图所示,AB表示水管,在B处有一个自动旋转的喷水头,一瞬间喷出的水是抛物线状,建立如图所示的直角坐标系后,抛物线的表达式为y=﹣x2+2x+.(1)当x=1时,喷出的水离地面多高?(2)你能求出水的落地点距水管底部A的最远距离吗?(3)水管有多高?【考点】HE:二次函数的应用.【专题】解答题【分析】(1)把x=1代入解析式求得y的值即可;(2)当y=0时,水的落地点距水管底部A的最远距离,求出此时x的值即可;(3)当x=0时,求出y的值即是水管的高度.【解答】解:(1)当x=1时,y=﹣×12+2×1+=3,故当x=1时,喷出的水离地面的高度为3;(2)当y=0时,﹣x2+2x+=0,解得x1=2+,x2=2﹣<0(舍去),因此水的落地点距A的最远距离为2+;(3)当x=0时,y=1.5,因此水管的高度为1.5.【点评】本题考查了二次函数的应用,解答本题的关键是读懂题意,理解点的横、纵坐标代表的实际含义.25.如图,自来水厂A和村庄B在小河l的两侧,现要在A,B间铺设一条输水管道.为了搞好工程预算,需测算出A,B间的距离.一小船在点P处测得A在正北方向,B位于南偏东24.5°方向,前行1200m,到达点Q处,测得A位于北偏西49°方向,B位于南偏西41°方向.(1)线段BQ与PQ是否相等?请说明理由;(2)求A,B间的距离.(参考数据cos41°≈0.75)【考点】TB:解直角三角形的应用﹣方向角问题.【专题】解答题【分析】(1)首先由已知求出∠PBQ和∠BPQ的度数进行比较得出线段BQ与PQ 是否相等;(2)先由已知求出∠PQA,再由直角三角形PQA求出AQ,由(1)得出BQ=PQ=1200,又由已知得∠AQB=90°,所以根据勾股定理求出A,B间的距离.【解答】解:(1)线段BQ与PQ相等.证明:∵∠PQB=90°﹣41°=49°,∠BPQ=90°﹣24.5°=65.5°,∴∠PBQ=180°﹣49°﹣65.5°=65.5°,∴∠BPQ=∠PBQ,∴BQ=PQ;(2)∠AQB=180°﹣49°﹣41°=90°,∠PQA=90°﹣49°=41°,∴AQ===1600,BQ=PQ=1200,∴AB2=AQ2+BQ2=16002+12002,∴AB=2000,答:A、B的距离为2000m.【点评】此题考查的知识点是解直角三角形的应用,解题的关键是通过角的计算得出BQ=PQ,再由直角三角形先求出AQ,根据勾股定理求出AB.。
【北师大版】九年级数学下期中试卷带答案
一、选择题1.如图,D 是△ABC 的边BC 上一点,AC =4,AD =2,∠DAB =∠C .如果△ACD 的面积为15,那么△ABD 的面积为( )A .15B .10C .152D .52.如图,在平行四边形ABCD 中,:2:1AE BE =,F 是AD 的中点,射线EF 与AC 交于点G ,与CD 的延长线交于点P ,则AG GC的值为( ).A .5:8B .3:8C .3:5D .2:53.如图,正方形ABCD 中,ABC ∆绕点A 逆时针旋转到AB C ''∆,AB '、AC '分别交对角线BD 于点E 、F ,若4AE =则EF ED ⋅的值为( )A .4B .6C .8D .164.如图,D 、E 分别是△ABC 的边AB 、BC 上的点,且DE ∥AC ,AE 、CD 相交于点O ,若S △DOE :S △COA =1:9,则S △BDE :S △CDE 的值是( ).A .1:2B .1:3C .1:4D .2:55.如图,ABC 是等边三角形,被一平行于BC 的矩形所截(即:FG ∥BC),若AB 被截成三等分,则图中阴影部分的面积是ABC 的面积的( )A .19B .29C .13D .496.如图,△ABC 、△FGH 中,D 、E 两点分别在AB 、AC 上,F 点在DE 上,G 、H 两点在BC 上,且DE ∥BC ,FG ∥AB ,FH ∥AC ,若BG :GH :HC=4:6:5,则△ADE 与△FGH 的面积比为何?( )A .2:1B .3:2C .5:2D .9:4第II 卷(非选择题) 请点击修改第II 卷的文字说明参考答案7.一次函数y kx b =+和反比例函数xb y k =的部分图象在同一坐标系中可能为( ) A . B . C . D . 8.函数y a x a =+与(0)a y a x=≠在同一直角坐标系中的图像可能是( )A .B .C .D .9.如图,反比例函数k y x=的图像经过平行四边形ABCD 的顶点C ,D ,若点A 、点B 、点C 的坐标分别为()3,0,()0,4,(),a b ,且7.5a b +=,则k 的值是( )A .7.5B .9C .10D .12 10.在函数()0k y k x=<的图象上有()11,A y ,()21,B y -,()32,B y -三个点,则下列各式中正确的是( )A .123y y y <<B .132y y y <<C .321y y y <<D .231y y y << 11.已知点()1,3M -在双曲线k y x =上,则下列各点一定在该双曲线上的是( ) A .()3,1- B .()1,3-- C .()1,3 D .()3,112.已知1(3A -,1)y 、1(2B -,2)y 、3(1,)C y 是一次函数3y x b =-+的图象上三点,则1y ,2y ,3y 的大小关系是( )A .123y y y <<B .213y y y <<C .312y y y <<D .321y y y <<二、填空题13.如图,D E 、分别是ABC 的边AB BC 、上的点,且//,DE AC AE CD 、相交于点O ,若:1:25DOE COA S S =△△,则BE CE的值是________.14.如图,////AB GH CD ,点H 在BC 上,AC 与BD 交于点G ,2AB =,3CD =,则GH 的长为 .15.在四边形ABCD 中,//AB DC ,90B ∠=︒,3AB =,11BC =,6DC =,点P 在BC 上,连接AP ,DP ,若ABP △与PCD 相似,则BP 的长为___________. 16.如图,点A 在反比例函数k y x =(k≠0)的图像上,点B 在x 轴的负半轴上,直线AB 交y 轴与点C ,若12AC BC =,△AOB 的面积为12,则k 的值为_______.17.有5张正面分别有数字-1,14-,0,1,3的卡片,它们除数字不同外全部相同,将它们背面朝上,洗匀后从中随机的抽取一张.记卡片上的数字为a ,则使以x 为自变量的反比例函数37a y x-=经过二、四象限,且关于x 的一元二次方程2230ax x -+=有实数解的概率是__________. 18.若点A (﹣4,y 1),B (﹣2,y 2)都在反比例函数1y x=-的图象上,则y 1,y 2的大小关系是y 1_____y 2.19.反比例函数16y x =与2k y x=()0k <的图像如图所示,点P 是x 正半轴上一点,过点P 作x 轴的垂线,分别交反比例函数16y x =与2k y x =()0k <的图像于点A ,B ,若4AB PB =,则k 的值为_______.20.如图,点A 是反比例函数y =k x(k >0,x >0)图象上一点,B 、C 在x 轴上,且AC ⊥BC ,D 为AB 的中点,DC 的延长线交y 轴于E ,连接BE ,若△BCE 的面积为8,则k 的值为_____.三、解答题21.如图,在ABC 和ADE 中,BAD CAE ∠=∠,ABC ADE ∠=∠.求证:ABD ACE .22.如图,在ABC 中,AD BC ⊥于点D ,4=AD ,3BD =,8DC =,点P 是BC 边上一点(不与点B 、D 、C 重合),过点P 作PQ BC ⊥交AB 或AC 于点Q ,作点Q 关于直线AD 的对称点M ,连结QM ,过点M 作MN BC ⊥交直线BC 于点N .设BP x =,矩形PQMN 与ABC 重叠部分图形的周长为y .(1)直接写出PQ 的长(用含x 的代数式表示).(2)求矩形PQMN 成为正方形时x 的值.(3)求y 与x 的函数关系式.(4)当过点C 和点M 的直线平分ADC 的面积时,直接写出x 的值.23.如图,在平面直角坐标系中,四边形OABC 是边长为2的正方形,顶点A ,C 分别在x ,y 轴的正半轴上.点Q 在对角线OB 上,且QO OC =,连接CQ 并延长CQ 交边AB 于点P .求点P 的坐标.24.在同一平面直角坐标系中,设一次函数1y mx n =+(m ,n 为常数,且0,m m n ≠≠-)与反比例函数2m n y x+=. (1)若1y 与2y 的图象有交点()1,5,且4n m =,①求:m 、n 的值;②当15y ≥时,2y 的取值范围;(2)若1y 与2y 的图象有且只有一个交点,求m n的值. 25.已知y 是x 的反比例函数,并且当x=2时,y=4,(1)求y 关于x 的函数解析式;(2)当x=6时,求y 的值. 26.如图,已知()()4,2,4A B n --、是一次函数y kx b =+的图象与反比例函数m y x=的图象的两个交点.(1)求此反比例函数和一次函数的解析式;(2)连接,OA OB ,求AOB ∆的面积;(3)根据图象直接写出使不等式m kx b x+>成立的x 的取值范围______________________.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】首先证明△ABD ∽△CBA ,由相似三角形的性质可得:△ABD 的面积:△ACB 的面积为1:4,因为△ACD 的面积为15,进而求出△ABD 的面积.【详解】∵∠DAB =∠C ,∠B =∠B ,∴△ABD ∽△CBA ,∵AC =4,AD =2,∴△ABD 的面积:△ACB 的面积=(AD AC)2=1:4, ∴△ABD 的面积:△ACD 的面积=1:3,∵△ACD 的面积为15,∴△ABD 的面积=5.故选:D .【点睛】 本题考查了相似三角形的判定和性质:相似三角形的面积比等于相似比的平方,是中考常见题型.2.D解析:D【分析】证明AFE △≌△()DFP AAS ,推出=AE DP ,由:2:1AE BE =,设BE k =,2AE k =,推出3AB CD k ==,5PC k =,由//AE BC ,可得AG AE GC CP=的值. 【详解】∵四边形ABCD 是平行四边形,∴//AB PC ,AB CD =,∴AEF P ∠=∠,∵AFE DFP ∠=∠,AF DF =,∴AFE △≌△()DFP AAS ,∴=AE DP ,∵:2:1AE BE =,设BE k =,2AE k =,∴3AB CD k ==,5PC k =,∵//AE BC , ∴2255AG AE k GC CP k ===, 故选:D .【点睛】 本题考查了平行四边形的性质,全等三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是学会利用已知条件证明三角形全等、利用参数解决问题,属于中考常考题型.3.D解析:D【分析】根据正方形的性质得到∠BAC=∠ADB=45°,根据旋转的性质得到∠EAF=∠BAC=45°,根据相似三角形的性质即可得到结论.【详解】解:∵四边形ABCD 是正方形,∴∠BAC=∠ADB=45°,∵把△ABC 绕点A 逆时针旋转到△AB'C',∴∠EAF=∠BAC=45°,∵∠AEF=∠DEA ,∴△AEF ∽△DEA , ∴AE EF DE AE=, ∴EF•ED=AE 2,∵AE=4, ∴EF•ED 的值为16,故选:D .【点睛】本题考查了旋转的性质,正方形的性质,相似三角形的判定和性质,找出相关的相似三角形是解题的关键.4.A解析:A【分析】根据DE ∥AC 可得到△DOE ∽△COA 和△DBE ∽△ABC ,再根据相似三角形的性质即可得出12BE EC =,再根据同高三角形的面积比等于底之比即可求出. 【详解】∵DE ∥AC∴△DOE ∽△COA ,△DBE ∽△ABC∵S △DOE :S △COA =1:9 ∴13DE AC = ∴13DE BE AC BC == ∴12BE EC = ∴S △BDE :S △CDE =1:2故答案选A .【点睛】本题主要考察了相似三角形的性质,准确记住面积比等于相似比平方是解题关键. 5.C解析:C【分析】AB 被截成三等分,可得AB=3AE ,AF=2AE ,由EH ∥FG ∥BC ,可得△AEH ∽△AFG ∽△ABC ,则S △AEH :S △AFG :S △ABC =AE 2:AF 2:AB 2,S 阴影= S △AFG - S △AEH =13S △ABC . 【详解】∵AB 被截成三等分,∴AB=3AE ,AF=2AE ,∵EH ∥FG ∥BC ,∴△AEH ∽△AFG ∽△ABC ,∴S △AEH :S △AFG :S △ABC =AE 2:AF 2:AB 2=AE 2:(2AE )2:(3AE )2=1:4:9,∴S △AEH =19S △ABC , S △AFG =4 S △AEH , S 阴影= S △AFG - S △AEH =3 S △AEH =3×19 S △ABC =13S △ABC . 故选择:C .【点睛】本题考查阴影部分面积问题,关键是利用相似三角形的面积比等于相似比的平方,找到阴影面积与△AEH的关系,由△AEH与△ABC的关系来转化解决问题.6.D解析:D【解析】分析:只要证明△ADE∽△FGH,可得2⎛⎫= ⎪⎝⎭△△FGHADES DES GH,由此即可解决问题.详解:∵BG:GH:HC=4:6:5,可以假设BG=4k,GH=6k,HC=5k,∵DE∥BC,FG∥AB,FH∥AC,∴四边形BGFD是平行四边形,四边形EFHC是平行四边形,∴DF=BG=4k,EF=HC=5k,DE=DF+EF=9k,∠FGH=∠B=∠ADE,∠FHG=∠C=∠AED,∴△ADE∽△FGH,∴2299=64 ADEFGHS DE kS GH k⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭.故选D.点睛:本题考查相似三角形的判定和性质,平行四边形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.7.C解析:C【分析】运用一次函数和反比例函数的图象性质逐项分析即可.先观察反比函数看k、b是同号还是异号,再由一次函数图象判断k、b是同号还是异号,如果两者相一致就是正确选项,否则是错误选项.【详解】【点睛】此题考查反比例函数和一次函数的图象特点.其关键是要弄清图象特点与关系式中k 、b 同号还是异号.8.B解析:B【分析】分a >0与a <0两种情况,根据一次函数和反比例函数的图象与性质解答即可.【详解】解:当a >0时,y =|a |x +a =ax +a 的图象在第一、二、三象限,a y x =的图象在第一、三象限,此时选项B 正确;当a <0时,y =|a |x +a =﹣ax +a 的图象在第一、三、四象限,a y x=的图象在第二、四象限,此时没有正确选项;故选:B .【点睛】本题考查了一次函数与反比例函数的图象与性质,属于常考题型,熟练掌握上述知识是解题关键. 9.B解析:B【分析】根据平移和平行四边形的性质将点D 也用a 、b 表示,再根据反比例函数图象上的点的横纵坐标的乘积相等列式算出a 、b ,再由点坐标求出k 的值.【详解】解:∵()3,0A ,()0,4B ,∴A 可以看作由B 向右平移3个单位,向下平移4个单位得到的,根据平行四边形的性质,D 也可以看作由C 向右平移3个单位,向下平移4个单位得到的,∵(),C a b ,∴()3,4D a b +-,∵7.5a b +=,∴(),7.5C a a -,()3,3.5D a a +-,∵C 、D 都在反比例函数图象上,∴它们横纵坐标的乘积相等,即()()()7.53 3.5a a a a -=+-,解得 1.5a =, ∴()1.57.5 1.59k =⨯-=.故选:B .【点睛】本题考查反比例函数与几何图形的结合,解题的关键是根据题目条件,用同一个未知数设出反比例函数图象上的点,然后用反比例函数图象上点的性质列式求解.10.B【分析】根据反比例函数图象上点的坐标特征得到11y k ⨯=,21y k -⨯=,32y k -⨯=,然后计算出1y 、2y 、3y 的值再比较大小即可.【详解】 解:(0)k y k x=<的图象上有1(1,)A y 、2(1,)B y -、3(2,)C y -三个点, 11y k ∴⨯=,21y k -⨯=,32y k -⨯=,1y k ∴=,2y k =-,312y k =-, 而k 0<,132y y y ∴<<.故选:B .【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数k y x=(k 为常数,且0k ≠)的图象是双曲线,图象上的点(),x y 的横纵坐标的积是定值k ,即xy k =.11.A解析:A【分析】先求出k=-3,再依次判断各点的横纵坐标乘积,等于-3即是在该双曲线上,否则不在.【详解】∵点()1,3M -在双曲线k y x=上, ∴133k =-⨯=-,∵3(1)3⨯-=-,∴点(3,-1)在该双曲线上,∵(1)(3)13313-⨯-=⨯=⨯=,∴点()1,3--、()1,3、()3,1均不在该双曲线上,故选:A.【点睛】此题考查反比例函数解析式,正确计算k 值是解题的关键. 12.C解析:C 【分析】分别计算自变量为13-,12-和1时的函数值,然后比较函数值的大小即可.1(3A -,1)y 、1(2B -,2)y 、3(1,)C y 是一次函数3y x b =-+的图象上三点, 11y b ∴=+,232y b =+,33y b =-+. 3312b b b -+<+<+, 312y y y ∴<<.故选:C .【点睛】本题考查了一次函数图象上点的坐标特征:一次函数图象上点的坐标满足其解析式.也考查了一次函数的性质.二、填空题13.【分析】先证明然后根据相似三角形的面积比等于相似比的平方求出的值继而可求的值最后可求的值【详解】解:又故答案是:【点睛】本题考查了相似三角形的判定和性质掌握相似三角形的面积比等于相似比的平方是解题关键解析:14【分析】先证明DOE COA ∽,然后根据相似三角形的面积比等于相似比的平方求出DE AC 的值,继而可求BE BC 的值,最后可求BE EC的值. 【详解】 解://DE AC ,DOE COA ∴∽, 又:1:25DOE COA S S =△△,15DE AC ∴=, //DE AC ,BDE BAC ∴∽△△,15BE DE BC AC ∴==, 14BE EC ∴=. 故答案是:14. 【点睛】本题考查了相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题关键.14.【分析】根据平行线分线段成比例定理由AB ∥GH 得出由GH ∥CD 得出将两个式子相加即可求出GH 的长【详解】解:即①即②①②得解得故答案为:【点睛】本题考查了平行线分线段成比例定理熟练运用等式的性质进行 解析:65【分析】根据平行线分线段成比例定理,由AB ∥GH ,得出GH CH AB BC=,由GH ∥CD ,得出3GH BH BC=,将两个式子相加,即可求出GH 的长. 【详解】解://AB GH ,GH CH AB BC∴=, 即2GH CH BC=①, //GH CD ,GH BH CD BC∴=, 即3GH BH BC=②, ①+②, 得23GH GH CH BH BC BC+=+, CH BH BC +=,123GH GH ∴+=, 解得65GH =. 故答案为:65【点睛】本题考查了平行线分线段成比例定理,熟练运用等式的性质进行计算.本题难度适中. 15.或2或9【分析】先根据平行线的性质可得再分和两种情况然后分别利用相似三角形的性质即可得【详解】设则如图因此分以下两种情况:(1)若则即解得或经检验或均是所列方程的根则此时或;(2)若则即解得经检验是解析:113或2或9 【分析】 先根据平行线的性质可得90C B ∠=∠=︒,再分ABPPCD △△和ABP DCP △△两种情况,然后分别利用相似三角形的性质即可得.【详解】设BP x =,则11CP BC BP x =-=-,如图,//,90AB DC B =︒∠,90C B ∴∠=∠=︒,因此,分以下两种情况:(1)若ABP PCD △△,则AB BP PC CD=,即3116x x =-, 解得2x =或9x =,经检验,2x =或9x =均是所列方程的根,则此时2BP =或9BP =;(2)若ABP DCP △△,则AB BP DC CP =,即3611x x=-, 解得113x =, 经检验,113x =是所列方程的根, 则此时113BP =; 综上,BP 的长为113或2或9, 故答案为:113或2或9.【点睛】本题考查了相似三角形的性质、平行线的性质、分式方程的几何应用,依据题意,正确分两种情况讨论是解题关键.16.12【分析】过点A 作AD ⊥y 轴于D 则△ADC ∽△BOC 由线段的比例关系求得△AOC 和△ACD 的面积再根据反比例函数的k 的几何意义得结果【详解】过点A 作AD ⊥y 轴于D 则△ADC ∽△BOC ∴∵△AOB 的解析:12【分析】过点A 作AD ⊥y 轴于D ,则△ADC ∽△BOC ,由线段的比例关系求得△AOC 和△ACD 的面积,再根据反比例函数的k 的几何意义得结果.【详解】过点A 作AD ⊥y 轴于D ,则△ADC ∽△BOC ,∴12DC AC OC BC , ∵12AC BC ,△AOB 的面积为12, ∴S △AOC =13S △AOB =4, ∴S △ACD =12S △AOC =2, ∴△AOD 的面积=6,根据反比例函数k 的几何意义得,12|k|=6, ∴|k|=12,∵k >0,∴k =12.故答案为:12.【点睛】本题主要考查了反比例函数的k 的几何意义的应用,考查了相似三角形的性质与判定,关键是构造相似三角形. 17.【分析】根据反比例函数图象经过第二四象限关于x 的一元二次方程ax2-2x+3=0有实数解列出不等式求出a 的取值范围从而确定出a 的值再根据概率公式计算即可【详解】解:∵反比例函数图象经过第二四象限∴3解析:25【分析】根据反比例函数图象经过第二、四象限,关于x 的一元二次方程ax 2-2x+3=0有实数解,列出不等式求出a 的取值范围,从而确定出a 的值,再根据概率公式计算即可.【详解】解:∵反比例函数图象经过第二、四象限,∴3a-7<0,解得73a < 关于x 的一元二次方程ax 2-2x+3=0有实数解,则△=4-12a≥0,且a≠0,解得:,a≤13,且(a≠0),综上,a≤13,且(a≠0), ∴ a 可取-1,-14, ∴使以x 为自变量的反比例函数37a y x -=经过二、四象限,且关于x 的一元二次方程ax 2-2x+3=0有实数解的概率是25. 故答案为:25. 【点睛】 本题考查了概率公式,用到的知识点是反比例函数图象的性质、根的判别式、概率公式,熟记性质以及判别式求出a 的值是解题的关键.18.<【分析】直接利用反比例函数的增减性分析得出答案【详解】∵反比例函数中k =﹣1<0∴在每个象限内y 随x 的增大而增大∵点A (﹣4y1)B (﹣2y2)都在反比例函数的图象上且﹣2>﹣4∴y1<y2故答案解析:<【分析】直接利用反比例函数的增减性分析得出答案.【详解】∵反比例函数1y x=-中,k =﹣1<0, ∴在每个象限内,y 随x 的增大而增大, ∵点A (﹣4,y 1),B (﹣2,y 2)都在反比例函数1y x =-的图象上,且﹣2>﹣4, ∴y 1<y 2,故答案为:<.【点睛】此题主要考查了反比例函数图象上点的坐标特征,正确把握反比例函数的性质是解题关键.19.-2【分析】设点A 横坐标为m 分别表示出ABPB 根据得到关于k 的方程解方程即可【详解】解:设点A 横坐标为m 则点A 纵坐标为∵AB ⊥x 轴∴点B 纵坐标为∴AB=PB=∵∴∴∴故答案为:-2【点睛】本题考查了解析:-2【分析】设点A 横坐标为m ,分别表示出AB 、PB ,根据4AB PB =,得到关于k 的方程,解方程即可.【详解】解:设点A 横坐标为m ,则点A 纵坐标为6m , ∵ AB ⊥x 轴,∴点B 纵坐标为k m , ∴AB =66k k m m m--= ,PB =k k m m =-, ∵4AB PB =, ∴64k k m m-=- , ∴64k k -=- ,∴2k =-.故答案为:-2【点睛】本题考查了反比例函数图象上点的表示,解题的关键是根据4AB PB =列出方程,注意表示PB 时,注意式子符号问题.20.16【分析】设A (nm )B (t0)即可得到C 点坐标为(n0)D 点坐标为()利用待定系数法求出CD 的解析式可得E 点坐标为(0)然后利用三角形的面积公式可得到mn=16即得到k 的值【详解】解:设A (nm解析:16【分析】设A (n ,m ),B (t ,0),即可得到C 点坐标为(n ,0),D 点坐标为(2n t +,2m ),利用待定系数法求出CD 的解析式,可得E 点坐标为(0,mn t n --),然后利用三角形的面积公式可得到mn=16,即得到k 的值.【详解】解:设A (n ,m ),B (t ,0),∵AC ⊥BC ,D 为AB 的中点,∴C 点坐标为(n ,0),D 点坐标为(2n t +,2m ),设直线CD 的解析式为y=ax+b ,把C (n ,0),D (2n t +,2m ),代入得:na+b=0,22n t m a b ++=, 解得a=m t n-,b=mn t n --, ∴直线CD 的解析式为y=m mn x t n t n ---, ∴E 点坐标为(0,mn t n --), 由S △BCE =12•OE•BC=8, 可得,1()82mn t n t n-=-, ∴mn=16,∴k=mn=16;故答案为:16.【点睛】本题考查了反比例函数的综合题的解法,熟练掌握并灵活运用是解题的关键.三、解答题21.证明见解析【分析】根据相似三角形的判定和性质定理即可得到结论.【详解】证明:∵∠BAD =∠CAE ,∴∠BAD +∠DAC =∠CAE +∠DAC ,即∠BAC =∠DAE ,又∵∠ABC =∠ADE ,∴△ABC ∽△ADE ,∴AB AC AD AE=. 又∵∠BAD =∠CAE ,∴△ABD ∽△ACE .【点睛】 本题考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键. 22.(1)PQ=43x ;PQ=11-x 2;(2)x=95;x=235;(3)y=12-43x ;(4)1513x =; 【分析】(1)根据x 的取值范围不同,分两种情况进行讨论;(2)根据正方形的性质,分0<x<3,3<x<11进行讨论即可; (3)由y=PQ+MN+QM+PN 代入值求解即可;(4)连接CM 交AD 于O ,证明△△OME OCD ,即可得解;【详解】(1)①当PQ 交AB 于点Q 时,0<x<3,∵AD ⊥BC ,AD=4,BD=3, ∴tan ∠B=43, ∵PQ ⊥BC , ∴43PQ BP =, ∴当0<x<3时,PQ=43x ; ②当PQ 交AC 于点Q 时,3<x<11,∵AD ⊥BC ,AD=4,CD=8,∴tan ∠C=12, ∵PQ ⊥BC , ∴12PQ PC =,PC=11-x , ∴当3<x<11时,PQ=11-x 2; (2)①当PQ 交AB 于点Q 时,0<x<3,∵四边形PQMN 为正方形,∴PQ=QM=MN=NP ,∵QM=2(3-x ), ∴43x=2(3-x ), 解得x=95; ②当PQ 交AC 于点Q 时,3<x<11,∵四边形PQMN 为正方形,∴PQ=QM=MN=NP ,∵QM=2(x-3),∴()11-x 2=2(x-3), 解得x=235; (3)y=PQ+MN+QM+PN ,=2×43x+2×2(3-x ), =12-43x ; (4)如图,连接CM 交AD 于O , 由题可知:122AE DE AD ===, ∵43QP ED x ==, ∴423OE OD DE x =-=-,3EM QE PD x ===-, ∵QM ∥BC ,∴△△OMEOCD , ∴EO EM DO DC=, ∴423328x x --=, 化简得:44233x x ⎛⎫-=- ⎪⎝⎭, ∴1513x =.【点睛】本题主要考查了相似三角形的判定与性质,结合正方形的性质计算是解题的关键. 23.(2,422P -【分析】根据正方形的性质求出BO 和BQ 的长,再由COQPBQ ,利用对应边成比例列式求出BP 的长,从而算出AP 的长,就可以得到点P 的坐标.【详解】解:∵正方形OABC 的边长是2,∴2OC BC QO ===,根据勾股定理,BO =,∴2BQ BO OQ =-=,∵//CO BP ,∴COQ PBQ , ∴CO OQPB BQ =,即2PB =,解得2PB =,∴224AP AB BP =-=-=-∴(2,4P -.【点睛】本题考查平面直角坐标系和图象,正方形的性质,相似三角形的性质和判定,解题的关键是利用相似三角形对应边成比例列式求线段长.24.(1)①1,4m n ==;②205y <≤;(2)12m n =- 【分析】(1)①将点()1,5代入一次函数解析式得5m n +=,结合4n m =,即可求出m 、n 的值;②由①已经得到一次函数和反比例函数的解析式,根据15y ≥求出x 的取值范围,再根据反比例函数的性质求出2y 的取值范围;(2)根据题意,1y 与2y 的图象有且只有一个交点,即方程m n mx n x +=+有且只有一解,根据根的判别式即可求出结果.【详解】(1)①把()1,5代入1y mx n =+,得5m n +=,∵4n m =,∴1,4m n ==;②由①得:1254,y x y x =+=, ∴当15y ≥时,45x +≥,∴1≥x ,∵反比例函数25y x=在第一象限内y 随着x 的增大而减小, ∴当1≥x 时,2y 的取值范围是205y <≤;(2)令m n mx n x +=+, 得2()0mx nx m n +-+=,由题意得,22Δ4()(2)0n m m n m n +=+=+=即20m n +=, ∴12m n =-. 【点睛】 本题考查一次函数和反比例函数,以及一元一次方程根的判别式,解题的关键是掌握函数解析式的求解方法,理解函数图象的交点对应方程的解.25.(1)8y x =;(2)43. 【分析】(1)利用待定系数法即可得;(2)将6x =代入(1)的结论即可得.【详解】(1)∵y 是x 的反比例函数, ∴设(0)k y k x=≠, ∵当2x =时,4y =, ∴42k =, 解得8k ,故y 关于x 的函数解析式为8y x =; (2)将6x =代入8y x =得:8463y ==, 即y 的值为43. 【点睛】 本题考查了利用待定系数法求反比例函数的解析式、已知自变量的值求函数值,熟练掌握待定系数法是解题关键.26.(1)一次函数的解析式是2y x =--;(2)6AOB S ∆=;(3)x 的取值范围是4x <-或02x <<.【分析】(1)把A 的坐标代入反比例函数解析式求得m 的值,从而求得反比例函数解析式,然后把B 的坐标代入n 的值,再利用待定系数法求得一次函数的解析式;(2)求得AB 与x 轴的交点,然后根据三角形的面积公式求解;(3)一次函数的值大于反比例函数的值的x 的取值范围就是一次函数的图象在反比例函数图象上方的自变量的取值范围.【详解】解:(1)把()4,2-代入m y x =得24m =-,则8m =-,则反比例函数的解析式是8y x =-; 把(),4n -代入8y x=-得824n =-=-, 则B 的坐标是()2,4-,根据题意得:2442k b k b =-+⎧⎨-=+⎩,解得12k b =-⎧⎨=-⎩, 则一次函数的解析式是2y x =--;(2)设AB 与x 轴的交点是C ,则C 的坐标是()2,0-,则2OC =,11222,24422AOC BOC S S ∆∆=⨯⨯==⨯⨯=, 则6AOB S ∆=;(3)由函数图象可知x 的取值范围是4x <-或02x <<.【点睛】本题考待定系数法求函数的解析式以及函数与不等式的关系,理解求一次函数的值大于反比例函数的值的x 的取值范围就是一次函数的图象在反比例函数图象上方的自变量的取值范围是关键.。
【北师大版】九年级数学下期中试卷(带答案)
一、选择题1.关于二次函数22y x x =-+的最值,下列叙述正确的是( )A .当2x =时,y 有最小值0.B .当2x =时,y 有最大值0.C .当1x =时,y 有最小值1D .当1x =时,y 有最大值12.二次函数2y ax bx c =++的图象如图所示,那么一次函数y ax bc =+的图象大致是( )A .B .C .D .3.已知二次函数y=(m+2)23mx -,当x<0时,y 随x 的增大而增大,则m 的值为( ) A .5B 5C .5D .2 4.将进货价为35元的商品按单价40元售出时,能卖出200个,已知该商品单价每上涨1元,其销售量就减少5个,设这种商品的售价为x 元时,获得的利润为y 元,则下列关系式正确的是( )A .()()352005y x x =--B .()()354005y x x =--C .()()402005y x x =--D .()()403755y x x =--5.已知二次函数2y ax bx c =++的部分图象如图所示,下列关于此函数图象的描述中,正确的个数是( )①对称轴是直线1x =;②当0x <时,函数值y 随x 的增大而增大;③方程20ax bx c ++=的解为11x =-,23x =;④当1x <-或3x >时,20ax bx c ++<.A .1B .2C .3D .46.已知抛物线()()()12121y x x x x x x =--+<,抛物线与x 轴交于(,0)m ,(,0)n 两点()m n <,则m ,n ,1x ,2x 的大小关系是( )A .12x m n x <<<B .12m x x n <<<C .12m x n x <<<D .12x m x n <<< 7.如图,Rt ABC △中,90ACB ∠=︒,CD AB ⊥,4tan 3B =,若10BC =,则AD 的长为( )A .6B .323C .7.5D .108.如图,边长为23的等边三角形AOB 的顶点B 在x 轴的正半轴上,点C 为AOB 的中心,将AOB 绕点O 以每秒60︒的速度逆时针旋转,则第2021秒,AOB 的中心C 的对应点2021C 的坐标为( )A .()0,2-B .)3,1-C .(3D .(3- 9.△ABC 中,∠C=90°,∠A ,∠B ,∠C 的对边分别是a ,b ,c ,且22440c ac a -+=,则sinA+cosA 的值为( ) A 13+ B .122 C 23+ D 210.如图,直线123////l l l ,ABC 的三个顶点分别落在123,,l l l 上,AC 交2l 于点D ,设1l 与2l 的距离为12,h l 与3l 的距离为2h .若12,:1:2AB BC h h ==,则下列说法正确的是( )A .:2:3ABD ABC S S =B .:1:2ABD ABC S S =△△C .sin :sin 2:3ABD DBC ∠∠=D .sin :sin 1:2ABD DBC ∠∠= 11.如图,在等腰Rt △ABC 中,∠ACB=90°,AC=14,点E 在边CB 上,CE=2EB ,点D 在边AB 上,CD 垂直AE ,垂足为F ,则AD 的长为( )A .92B .4225C .35D .1512.如图,推动个小球沿倾斜角为α的斜坡向上行驶,若5sin 13α=,小球移动的水平距离12AC =米,那么小球上升的高度BC 是( )A .5米B .6米C .6.5米D .7米二、填空题13.如图,直线334y x =-+与x 轴交于点C ,与y 轴交于点B ,抛物线233384y x x =-++经过B ,C 两点,点E 是直线BC 上方抛物线上的一动点,过点E 作y 轴的平行线交直线BC 于点M ,则EM 的最大值为_____.14.已知:二次函数y =ax 2+bx +c (a≠0)中的x 和y 满足如表:x … 0 1 2 3 4 5 …y … 3 0 -1 0 m 8 …(1)可求得m 的值为_____;(2)求出这个二次函数的解析式_____;(3)当0<x <3时,则y 的取值范围为_____.15.二次函数y=ax 2+c 的图象与y=3x 2的图象形状相同,开口方向相反,且经过点(1,1),则该二次函数的解析式为________________ .16.将抛物线243y x x =-+沿x 轴向左平移2个单位,则平移后抛物线的解析式是__. 17.如图,有一个三角形的钢架ABC ,∠A=30°,∠C=45°,AC=2(3+1)m .工人师傅搬运此钢架_______(填“能”或“不能”)通过一个直径为2.1m 的圆形门?18.在ABC 中,若213sin tan 023A B ⎛⎫-+-= ⎪ ⎪⎝⎭,则C ∠的度数为__________. 19.如图,在△ABC 中,∠BAC =90°,AB =AC =5,将△ABC 折叠,使点B 落在AC 边上的点D 处,EF 为折痕,若sin ∠CFD 的值为23,则BE =_____.20.如图,已知90ACB ∠=︒,90BAD ∠=︒,AB AD =,若5CD =,1tan 4BAC ∠=,则四边形ABCD 的面积为______.三、解答题21.平安路上,多“盔”有你.在“交通安全宣传月”期间,某商店销售一批头盔,进价为每顶40元,售价为每顶68元,平均每周可售出100顶.商店计划将头盔降价销售,每顶售价不高于58元,经调查发现:每降价1元,平均每周可多售出20顶.(1)若该商店希望平均每周获利4000元,则每顶头盔应降价多少?(2)商店降价销售后,决定每销售1顶头盔,就向某慈善机构捐赠m元(m为整数,且15m <),帮助做“交通安全”宣传.捐赠后发现,该商店每周销售这种商品的利润仍随售价的增大而增大,求m的值.22.如图,在直角坐标系中,已知直线142y x=-+与y轴交于A点,与x轴交于B点,C点的坐标为()2,0-.(1)求经过A,B,C三点的抛物线的表达式;(2)如果M为抛物线的顶点,连接AM,BM,求ABM∆的面积.(3)抛物线上是否存在一点P,使12OBP ACOS S∆∆=?若存在,请求出点P的坐标;若不存在,请说明理由.23.2020年是国家实施精准扶贫、实现贫困人口全面脱贫的决胜之年.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售,在销售的30天中,第一天卖出20千克,为了扩大销售,采取降价措施,以后每天比前一天多卖出4千克,第x天的售价为y元/千克,y关于x的函数解析式为()()76120,2030,mx m x xyn x x⎧-≤<⎪=⎨≤≤⎪⎩为正整数为正整数且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售蓝莓的成本是18元/千克,每天的利润是W元(利润=销售收入-成本).(1)m=______,n=______;(2)求销售蓝莓第几天时,当天的利润最大?最大利润是多少?24.如图,△ABC中,BD平分∠ABC,E为BC上一点,∠BDE=∠BAD=90°.(1)求证:BD2=BA•BE;(2)求证:△CDE∽△CBD;(3)若AB=6,BE=8,求CD的长.25.计算:02sin 45(︒-26.先化简,再求值:21111a a a ⎛⎫ ⎪⎝--+⎭÷,其中45260a tan =︒+︒.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】先将二次函数配方成()211y x =--+,即可求解.【详解】解:()()2221221y x x x x x =-+=----+=, 二次函数的图象开口向下,当1x =时,y 有最大值1,故选:D .【点睛】本题考查二次函数的图象与性质,将二次函数解析式化为顶点式是解题的关键. 2.B解析:B【分析】根据二次函数的图像,确定a ,b ,c 的符号,后根据一次函数k,b 的符号性质确定图像的分布即可.【详解】∵抛物线的开口向下,∴a <0;∵抛物线与y 轴交于正半轴,∴c >0,∵抛物线的对称轴在原点的左边, ∴2b a-<0,且a <0, ∴b <0,∴bc <0;∴y ax bc =+的图像分布在第二,第三,第四象限, 故选B .【点睛】本题考查了二次函数的图像,一次函数的图像,熟练掌握二次函数的图像与各系数之间的关系,一次函数中k,b与图像分布之间的关系是解题的关键.3.A解析:A【分析】根据次数为2可列方程,再根据函数增减性确定m值.【详解】m-=,解:根据题意可知,232解得,m=∵二次函数y=(m+2)23mx-,当x<0时,y随x的增大而增大,∴m+2<0,解得m<-2,综上,m=故选:A.【点睛】本题考查了二次函数的定义和增减性,解题关键是根据二次函数的定义列方程,依据增减性确定二次项系数的符号.4.B解析:B【分析】根据售价减去进价表示出实际的利润.【详解】解:设这种商品的售价为x元时,获得的利润为y元,根据题意可得:[]=---即y=(x-35)(400-5x),(35)2005(40)y x x故选:B.【点睛】本题考查了二次函数的应用,解题的关键是理解“商品每上涨1元,其销售量就减少5个”.5.D解析:D【分析】利用拋物线的顶点的横坐标为1可对①进行判断;根据二次函数的性质对②进行判断;利用对称性得到拋物线与x轴的另一个交点坐标为(3、0),则可对③进行判断;观察函数图象,当抛物线在x轴下方时,得出其x的取值范围,则可对④进行判断.【详解】x=,故①的说法正确;根据函数图像可知,抛物线的对称轴为直线1x<时,函数y随x的增大而增大,故②的说法正确;当1点(1-、0)关于1x =的对称点为(3、0),则抛物线与x 轴的另一个交点坐标为(3、0),所以方程20ax bx c ++=的解为121,3x x =-=,故③说法正确; 由函数图像可知,当1x <-或3x >时,抛物线在x 的下方,即20ax bx c ++<,所以④的说法正确综上所述①②③④的说法都正确故选:D .【点睛】本题考查了拋物线与x 轴的交点:把求二次函数y=ax2+bx+c(a,b,c 是常数,a≠0)与x 轴的交点坐标问题转化解关于x 的一元二次方程即可求得交点横坐标.也考查了二次函数的性质. 6.A解析:A【分析】根据题意画出草图,结合图象解答即可.【详解】解:当x=x 1时,y=1;当x=x 2时,y=1;又∵m<n ,()()()12121y x x x x x x =--+<的二次项系数大于0,∴函数图象大致如图所示,∴12x m n x <<<,故选A .【点睛】本题考查了二次函数的图象与性质,根据题意画出函数的大致图象是解答本题的关键. 7.B解析:B【分析】设DC=4x ,BD=3x ,根据勾股定理求CD ,再根据∠ACD=∠B ,用三角函数求AD .【详解】解:∵CD AB ⊥,4tan 3DB B DC==,设DC=4x ,BD=3x , (3x )2+(4x )2=102,∵x>0,解得x=2,∴BD=6,CD=8 ∵∠ACD+∠BCD=90°,∠B+∠BCD=90°,∴∠ACD=∠B , ∴4tan 3ACD ∠=, ∴43AD CD =,CD=8, ∴323AD =, 故选:B .【点睛】 本题考查了三角函数,勾股定理等知识,解题关键是根据已知的正切值求出线段长. 8.B解析:B【分析】通过计算画出第2021秒,AOB 的位置,过C′作C′D ⊥x 轴于点D ,连接OC′,BC′,求出DC′的长,即可求解.【详解】∵360°÷60°=6,∴AOB 的位置6秒一循环,而2021=6×336+5,∴第2021秒,AOB 的位置如图所示, 设点C 的对应点C′,过C′作C′D ⊥x 轴于点D ,连接OC′,BC′,则∠DOC′=30°,,∴DC′=OD∙tan ∠,∴C′)1-. 故选B .【点睛】本题主要考查图形于=与坐标,等边三角形的性质,锐角三角函数,找到图形的变化规律,画出图形,是解题的关键.9.A解析:A【分析】由22440c ac a -+=得2c a =,则1sin 2a A c ==,即可得到30A ∠=︒,利用特殊角的三角函数值就可以求出结果.【详解】解:∵22440c ac a -+=,∴()220c a -=,即2c a =, ∵90C ∠=︒, ∴1sin 2a A c ==, ∴30A ∠=︒, ∴3cos A =, ∴31sin cos 2A A +=. 故选:A .【点睛】 本题考查锐角三角函数,解题的关键是掌握特殊角的三角函数值.10.D解析:D【分析】作2⊥AE l ,2⊥CF l ,如图,则1AE h =,2CF h =,利用三角形面积公式可得到12::1:2ABD BCD S S h h ∆∆==,则可对A 、B 进行判断;利用正弦的定义得到1sin h ABD AB ∠=,2sin h DBC BC ∠=,利用AB CB =可对C 、D 进行判断.【详解】解:作2⊥AE l ,2⊥CF l ,如图,则1AE h =,2CF h =,11122ABD S BD AE BD h ∆==,21122BCE S BD CF BD h ∆==, 12::1:2ABD BCD S S h h ∆∆∴==,:1:3ABD ABC S S ∆∆∴=,所以A 、B 选项错误;在Rt ABE ∆中,1sin h AE ABD AB AB ∠==, 在Rt BCF ∆中,2sin h CF DBC BC BC∠==, 而AB CB =,12sin :sin :1:2ABD DBC h h ∴∠∠==,所以C 选项错误,D 选项正确. 故选:D .【点睛】本题考查了考查了解直角三角形,也考查了平行线之间的距离和等腰直角三角形的性质,难度一般.11.B解析:B【分析】过D 作DH ⊥AC 于H ,根据等腰三角形的性质得到AC=BC=14,∠CAD=45°,求得AH=DH ,得到14CH DH =-,再证明△ACE ∽△DHC ,可得AC CE DH CH=,再列方程,解方程即可得到答案.【详解】解:过D 作DH ⊥AC 于H ,∵在等腰Rt △ABC 中,∠C=90°,AC=14,∴AC=BC=14, ∠CAD=45°,∴AH=DH ,∴14CH DH =-,∵CF ⊥AE ,∴∠DHA=∠DFA=90°,90,DCH HDC DCH CAF ∴∠+∠=︒=∠+∠∴∠HAF=∠HDF ,∴△ACE ∽△DHC ,∴ AC CE DH CH =, ∵CE=2EB , ∴283CE =, ∴ 28143,14DH DH =- ∴425DH = 经检验:425DH =符合题意, ∴42422sin 45552DH AD ==⨯=︒, 故选.B【点睛】本题考查了相似三角形的判定和性质,等腰直角三角形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键. 12.A解析:A【分析】在Rt △ABC 中,先根据三角函数求出5tan 12α=,再通过解直角三角形求出BC 即可. 【详解】解:如图,在Rt △ABC 中,∵5sin 13α=, ∴5tan 12α=, ∴5tan 12BC AC α==,∵12AC =米, ∴55×12=51212BC AC ==米. 故选:A .【点睛】 此题主要考查解直角三角形,锐角三角函数等知识,解题的关键是学会构造直角三角形解决问题,属于中考常考题型.二、填空题13.【分析】设出E 的坐标表示出M 坐标进而表示出EM 化成顶点式即可求得EM 的最大值【详解】解:∵点E 是直线BC 上方抛物线上的一动点∴点E 的坐标是(m )点M 的坐标是(m )∴EM =﹣()==(m2﹣4m )=( 解析:32【分析】设出E 的坐标,表示出M 坐标,进而表示出EM ,化成顶点式即可求得EM 的最大值.【详解】解:∵点E 是直线BC 上方抛物线上的一动点,∴点E 的坐标是(m ,233384m m -++),点M 的坐标是(m ,334m -+), ∴EM =233384m m -++﹣(334m -+)=23382m m -+=38-(m 2﹣4m )=38-(m ﹣2)2+32, ∴当m =2时,EM 有最大值为32, 故答案为32. 【点睛】 本题考查了二次函数图象上点的坐标特征,一次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键.14.【分析】(1)先求得对称轴然后根据抛物线的对称性即可求得;(2)把点(03)(10)(30)代入设抛物线解析式利用待定系数法求函数解析式;(3)利用图表和抛物线的性质即可得出答案【详解】解:(1)∵解析:243y xx =-+13y -≤<【分析】(1)先求得对称轴,然后根据抛物线的对称性即可求得;(2)把点(0,3)、(1,0)、(3,0)代入设抛物线解析式,利用待定系数法求函数解析式;(3)利用图表和抛物线的性质即可得出答案.【详解】解:(1)∵抛物线y =ax 2+bx +c (a ≠0)过点(1,0),(3,0),∴抛物线对称轴为直线x 132+==2, ∴点(0,3)关于对称轴的对称点是(4,3),∴m =3,故答案为3;(2)把点(0,3)、(1,0)、(3,0)代入设抛物线解析式y =ax 2+bx +c 得30930c a b c a b c =⎧⎪++=⎨⎪++=⎩,解得413a c b =⎧==-⎪⎨⎪⎩,∴抛物线的解析式为y =x 2﹣4x +3,故答案为y =x 2﹣4x +3;(3)由抛物线的性质得当x=2时,y 有最小值-1,由图表可知抛物线y =ax 2+bx +c 过点(0,3),(3,0),因此当0<x <3时,则y 的取值范围为是﹣1≤y <3.【点睛】此题考查待定系数法求函数解析式,二次函数的性质,掌握待定系数法求函数解析式的方法与步骤是解决问题的关键.15.y=-3x2+4【分析】根据二次函数的性质利用待定系数法求解【详解】解:由题意可设所求函数为:∵所求函数经过点(11)∴∴c=4∴所求函数为:故答案为【点睛】本题考查二次函数的应用熟练掌握利用待定系解析:y=-3x 2+4【分析】根据二次函数的性质,利用待定系数法求解.【详解】解:由题意可设所求函数为:23y x c =-+,∵所求函数经过点(1,1),∴2131c =-⨯+,∴c=4,∴所求函数为:234y x =-+,故答案为234y x =-+.【点睛】本题考查二次函数的应用,熟练掌握利用待定系数法求二次函数解析式是解题关键. 16.y=x2-1【分析】先把抛物线写成顶点式再写出平移后的顶点根据顶点式可求平移后抛物线的解析式【详解】解:∴原抛物线顶点坐标为(2-1)向左平移2个单位平移后抛物线顶点坐标为(0-1)∴平移后抛物线解解析:y=x 2-1【分析】先把抛物线写成顶点式,再写出平移后的顶点,根据顶点式可求平移后抛物线的解析式.【详解】解:()22-4+3-2-1y x x x ==,∴原抛物线顶点坐标为(2,-1),向左平移2个单位,平移后抛物线顶点坐标为(0,-1), ∴平移后抛物线解析式为:21y x =-,故答案为:21y x =-.【点睛】本题考查了抛物线的平移与抛物线解析式的关系,关键是把抛物线的平移转化为顶点的平移,运用顶点式求抛物线的解析式. 17.能【分析】过B 作BD ⊥AC 于D 解直角三角形求出AD=xmCD=BD=xm 得出方程求出方程的解即可【详解】解:工人师傅搬运此钢架能通过一个直径为21m 的圆形门理由是:过B 作BD ⊥AC 于D ∵AB >BDB解析:能【分析】过B 作BD ⊥AC 于D ,解直角三角形求出AD=3xm ,CD=BD=xm ,得出方程,求出方程的解即可.【详解】解:工人师傅搬运此钢架能通过一个直径为2.1m 的圆形门,理由是:过B 作BD ⊥AC 于D ,∵AB >BD ,BC >BD ,AC >AB ,∴求出DB 长和2.1m 比较即可,设BD=xm ,∵∠A=30°,∠C=45°,∴DC=BD=xm ,33,∵AC=23)m ,∴),∴x=2,即BD=2m <2.1m ,∴工人师傅搬运此钢架能通过一个直径为2.1m 的圆形门.【点睛】本题考查了解直角三角形的应用,解一元一次方程等知识点,能正确求出BD 的长是解此题的关键.18.120º【分析】根据绝对值和平方的非负数性质可得sinA=tanB=根据特殊角的三角函数值可得出∠A ∠B 的度数根据三角形内角和定理即可得答案【详解】∵∴sinA-=0-tanB=0∴sinA=tan解析:120º【分析】根据绝对值和平方的非负数性质可得sinA=12,出∠A 、∠B 的度数,根据三角形内角和定理即可得答案.【详解】∵21sin tan 02A B ⎫-+=⎪⎪⎝⎭,∴sinA-12=0,3-tanB=0,∴sinA=12,tanB=3, ∴∠A=30°,∠B=30°,∠C=180°-30°-30°=120°,故答案为:120°【点睛】本题考查了特殊角的三角函数值、非负数的性质及三角形内角和定理,根据非负数性质得出sinA=12,tanB=3,并熟记特殊角的三角函数值是解题关键. 19.3【分析】由题意得△BEF ≌△DEF 故∠EDF=∠B ;由三角形的外角性质即可解决【详解】解:∵在△ABC 中∠BAC=90°AB=AC=5∴∠B=∠C 设BE=x ∵AB=5∴AE=AB-BE=5-x ∵将解析:3【分析】由题意得△BEF ≌△DEF ,故∠EDF=∠B ;由三角形的外角性质,即可解决.【详解】解:∵在△ABC 中,∠BAC=90°,AB=AC=5,∴∠B=∠C ,设BE=x ,∵AB=5∴AE=AB-BE=5-x ,∵将△ABC 折叠,使点B 落在AC 边上的点D 处,∴△BEF ≌△DEF∴BE=DE=5-x ,∠B=∠EDF=∠C∵∠ADE+∠EDF=∠C+∠DFC∴∠ADE=∠DFC∴sin ∠CFD=sin ∠ADE=523AE x DE x -==, 解得,x=3,即,BE=3故答案为:3【点睛】主要考查了翻折变换的性质及其应用问题;解题的关键是灵活运用全等三角形的性质、三角形外角性质等知识来解决问题. 20.10【分析】过点D 作DE ⊥AC 于E 利用AAS 证出ABC ≌DAE 从而得出BC=AEAC=DE ∠BAC=∠ADE 根据锐角三角函数可得设BC=AE=x 则AC=DE=4x 从而求出CE 利用勾股定理列出方程即可解析:10【分析】过点D 作DE ⊥AC 于E ,利用AAS 证出ABC ≌DAE ,从而得出BC=AE ,AC=DE ,∠BAC=∠ADE ,根据锐角三角函数可得14BC AE AC DE ==,设BC=AE=x ,则AC=DE=4x ,从而求出CE ,利用勾股定理列出方程即可求出x 的值,从而求出BC 、AC 和DE ,再根据四边形ABCD 的面积=ABC ACD SS +即可求出结论.【详解】 解:过点D 作DE ⊥AC 于E∴∠EAD +∠ADE=90°∵90BAD ∠=︒∴∠BAC +∠EAD=90°∴∠BAC=∠ADE∵∠BCA=∠AED=90°,AB AD =∴ABC ≌DAE∴BC=AE ,AC=DE ,∠BAC=∠ADE ∴1tan tan 4BAC ADE ∠=∠=∴14BC AE AC DE == 设BC=AE=x ,则AC=DE=4x∴EC=AC -AE=3x在Rt CDE 中,CE 2+DE 2=CD 2即(3x )2+(4x )2=52解得:x=1或-1(不符合题意舍去)∴BC=1,AC=DE=4∴四边形ABCD 的面积=ABC ACD SS + =12BC·AC +12AC·DE =12×1×4+12×4×4 =10故答案为:10.【点睛】此题考查的是全等三角形的判定及性质、锐角三角函数和勾股定理,掌握全等三角形的判定及性质、锐角三角函数和勾股定理是解题关键.三、解答题21.(1)20元;(2)3或4【分析】(1)设每顶头盔应降价x 元,根据题意列出方程求解即可;(2)设每周扣除捐赠后可获得利润为w 元,每顶头盔售价a 元,根据题意列出函数求解即可;【详解】解:(1)设每顶头盔应降价x 元.根据题意,得(10020)(6840)4000x x +--=.解得123,20x x ==.当3x =时,68365-=;当20x 时,682048-=;每顶售价不高于58元,∴每顶头盔应降价20元.(2)设每周扣除捐赠后可获得利润为w 元,每顶头盔售价a 元,根据题意,得 [10020(68)](40)w a a m =+---220(202260)1460(40)a m a m =-++-+ 抛物线对称轴为直线1132m a +=,开口向下, 当58a 时,利润仍随售价的增大而增大,113582m +∴,解得3m . 15,35m m <∴<. m 为整数,3m ∴=或4. 【点睛】本题主要考查了二次函数的应用,结合一元二次方程的求解是解题的关键.22.(1)213442y x x =-++;(2)5;(3)存在,点P 的坐标为:()1或()1或()1或()1 【分析】(1)先利用一次函数解析式确定A (0,4),B (8,0),再设交点式y=a (x+2)(x-8),然后把A 点坐标代入求出a 即可得到抛物线解析式;(2)作MD ⊥x 轴于D ,交AB 于E ,再根据ABM ∆的面积=AEM ∆的面积+BEM ∆的面积得出结论;(3)根据12OBP ACO S S ∆∆=得出2∆=OBP S ,再根据点P 在抛物线上,得出y 1=±P ,从而得出点P 的坐标;【详解】解:(1)当x=0时,142y x =-+=4,则A (0,4), 当y=0时,142x -+=0,解得x=8,则B (8,0), 设抛物线解析式为y=a (x+2)(x-8),把A (0,4)代入得a•2•(-8)=4,解得14a =-, ∴抛物线解析式为1(2)(8)4=-+-y x x ∴213442y x x =-++ (2)∵213442y x x =-++ ∴2125(3)44y x =--+∴25(3,)4M 作MD ⊥x 轴于D ,交AB 于E ,如图,把x=3代入142y x =-+得出52y =; ∴25515424EM =-=, ∴ABM ∆的面积=AEM ∆的面积+BEM ∆的面积=1115815224EM OB ⨯⨯=⨯⨯=; (3)存在理由如下:∵1142422∆=⨯⨯=⨯⨯=ACO S OA OC , ∵12OBP ACO S S ∆∆=, ∴11y 8y 422P P OB ⨯⨯=⨯⨯=, ∴y 1=P ;∴y 1=±P ;∵点P 在抛物线上,∴2134=142-++x x 或2134=-142-++x x 解得:121x ,2=3-21x 3=3+29x 4=3+29x ∴点P 的坐标为:()3+21,1或()3-21,1或()3+29,1或()3-29,1 【点睛】本题考查了二次函数综合题,涉及待定系数法求二次函数的解析式,三角形的面积公式等知识,根据题意作出图形,利用数形结合求解是解答此题的关键.23.(1)12m =-,25n =;(2)当18x =时,968W =最大. 【分析】(1)根据题意将第12天的售价、第26天的售价代入即可得;(2)在(1)的基础上分段表示利润,讨论最值.【详解】解:(1)第12天的售价为32元/件,代入76y mx m =-得321276m m =-,解得12m =-, 当地26天的售价为25元/千克时,代入y n =,则25n =, 故答案为:12m =-,25n =. (2)由(1)第x 天的销售量为()2041x +-即416x +.当120x ≤<时,()()22141638182723202189682W x x x x x ⎛⎫=+-+-=-++=--+ ⎪⎝⎭, ∴当18x =时,968W =最大.当2030x ≤≤时,()()416251828112W x x =+-=+,∵280>,∴W 随x 的增大而增大,∴当30x =时,952W =最大.∵968952>,∴当18x =时,968W =最大.【点睛】本题考查了一次函数的应用,二次函数的应用,弄清题意,找准题中的数量关系,运用分类讨论思想是解题的关键.24.(1)见解析;(2)见解析;(3)CD =【分析】(1)直接利用两角对应相等两三角形相似进而得出答案;(2)直接利用相似三角形的性质结合互余两角的关系得出∠DBE=∠EDC ,即可得出答案; (3)利用锐角三角函数关系得出∠ABD=∠DBE=30°,进而得出答案.【详解】解:(1)证明:∵BD 平分∠ABC ,∴∠BAD =∠DBE ,又∵∠A =∠BDE ,∴△BAD ∽△BDE , ∴BA BD =BD BE, ∴BD 2=BA •BE ; (2)证明:∵△BAD ∽△BDE ,∴∠ADB =∠DEB ,∵∠BDE =90°,∴∠DBE+∠BED=90°,∠ADB+∠EDC=90°,∴∠DBE=∠EDC,又∵∠C=∠C,∴△CDE∽△CBD;(3)解:由(1)得:BD2=BA•BE,∵AB=6,BE=8,∴BD2=6×8=48,∴BD=43,∴cos∠ABD=ABBD=43=3,∴∠ABD=30°,∴∠ABD=∠DBC=30°,∴∠C=30°,∴∠C=∠DBE,∴BD=CD=43.【点睛】此题主要考查了相似三角形的判定与性质以及锐角三角函数关系,正确应用相似三角形的判定与性质是解题关键.25.2【分析】根据特殊角三角函数,二次根式化简,0指数幂知识化简,再计算即可求解.【详解】解:原式223(21)21 =--+-2323221=+-2=.【点睛】本题考查了特殊角的三角函数、二次根式运算、0指数幂等知识,熟知相关知识点是解题关键.26.11a-3【分析】直接将括号里面的进行通分运算进而利用分式的加减法则进行运算,再结合分式的除法法则进行计算即可,然后根据特殊的三角函数值求出a 的值带入计算即可;【详解】原式()()11111aa a a a +-=÷+-+ ()()111a a a a a+=⨯+- 11a =-45+2tan6012a =︒︒+=+,原式6; 【点睛】本题主要考查了分式的化简求值以及特殊的三角函数值,正确掌握分式的混合运算和三角函数是解题的关键;。
【北师大版】九年级数学下期中试卷附答案
一、选择题1.下列四个选项中的三角形,与图中的三角形相似的是( )A .B .C .D .2.若点C 为线段AB 的黄金分割点,且AC BC >,则下列各式中不正确的是( ). A .::AB AC AC BC =B .35BC AB -= C .51AC AB +=D .0.618AC AB ≈3.有下列四种说法:其中说法正确的有( )①两个菱形相似;②两个矩形相似;③两个平行四边形相似;④两个正方形相似. A .4个 B .3个 C .2个 D .1个4.如图,在□ABCD 中,AC 与BD 相交于点O ,E 为OD 的中点,连接AE 并延长交DC 于点F ,则△DEF 与四边形EFCO 的面积比为( )A .1: 4B .1:5C .1:6D .1: 75.如图,地面上点A 处有一只兔子,距它10米的B 处有一根高1.6米的木桩,大树、木桩和兔子刚好在一条直线上.一只老鹰在9.6米高的树顶上刚好看见兔子,则大树C 离木桩B( )米.A .60B .50C .40D .456.如图在ABC 中,其中D 、E 两点分别在AB 、AC 上,且31AD =,29DB =,30AE =,32EC =.若50A ∠=︒,则图中1∠、2∠、3∠、4∠的大小关系正确的是( ).A .13∠=∠B .24∠∠=C .23∠∠=D .14∠<∠ 7.下列函数中,y 随x 的增大而减少的是( )A .1y x =-B .2y x =-C .()30y x x =->D .4y x=()0x < 8.下列式子中表示y 是x 的反比例函数的是( ) A .24y x =- B .y=5x 2 C .y=21x D .y=13x 9.在同一坐标系中,y kx k =-与()0k y k x=≠的图象大致是( ) A . B .C .D .10.对于反比例函数21k y x+=,下列说法错误的是( ) A .函数图象位于第一、三象限B .函数值y 随x 的增大而减小C .若A (-1,y 1)、B (1,y 2)、C (2,y 3)是图象上三个点,则y 1<y 3<y 2D .P 为图象上任意一点,过P 作PQ ⊥y 轴于Q ,则△OPQ 的面积是定值11.反比例函数y=kb x 的图象如图所示,则一次函数y=kx+b (k≠0)的图象的图象大致是( )A .B .C .D .12.若函数5y x =与1y x =+的图像交于点(),A a b ,则11a b -的值为 ( ) A .15- B .15 C .5- D .5二、填空题13.如图,D E 、分别是ABC 的边AB BC 、上的点,且//,DE AC AE CD 、相交于点O ,若:1:25DOE COA S S =△△,则BE CE的值是________.14.如图,矩形ABCD 中,2AB =,E 为CD 的中点,连接AE 、BD 交于点P ,过点P 作PQ BC ⊥于点Q ,则PQ =________.15.如图,直线////a b c ,直线m ,n 分别与a ,b ,c 相交于点A ,B ,C ,D ,E ,F ,若2AB =,3BC =,3DE =,则EF =_______.16.如图,P 为△ABC 的重心,连结AB 并延长BC 于点D ,过点P 作EF ∥BC 分别交AB ,AB 于点E ,F .若△ABC 的面积为36,则△AEF 的面积为____.17.如图,点P ,Q 在反比例函数y=k x(k>0)的图像上,过点P 作PA ⊥x 轴于点A ,过点Q 作QB ⊥y 轴于点B .若△POA 与△QOB 的面积之和为4,则k 的值为_________.18.如图,B(2,﹣2),C(3,0),以OC ,CB 为边作平行四边形OABC ,则经过点A 的反比例函数的解析式为_____.19.过原点直线l 与反比例函数k y x =的图像交于点(2,)A a -,(,3)B b -,则k 的值为____.20.如图,点A 是反比例函数y =k x(k >0,x >0)图象上一点,B 、C 在x 轴上,且AC ⊥BC ,D 为AB 的中点,DC 的延长线交y 轴于E ,连接BE ,若△BCE 的面积为8,则k 的值为_____.三、解答题21.如图, ABC 中,中线AD ,BE 交于点F ,//EG BC 交AD 于点G .(1)求AG GF的值. (2)如果43BD =,4DF =,请找出与BDA 相似的三角形,并挑出一个进行证明. 22.如图,在平面直角坐标系中,正方形OABC 的顶点O 与坐标原点重合,点C 的坐标为()0,3,点A 在x 轴的负半轴上,点M 、D 分别在OA 、AB 上,且2AD AM ==;一次函数y kx b =+的图象过点D 和M ,反比例函数m y x=的图像经过点D ,与BC 交点为N .(1)求反比例函数和一次函数的表达式;(2)直接写出使一次函数值大于反比例函数值的x 的取值范围;(3)若点P 在y 轴上,且使四边形OMDP 的面积与四边形OMNC 的面积相等,求点P 的坐标.23.如图,一次函数y kx b =+的图象交反比例函数()0a y x x=>的图象于()()2,4,,1A B m --两点,交x 轴于点C .(1)求反比例函数与一次函数的关系式.(2)求ABO ∆的面积.(3)根据图象回答:当x 为何值时,一次函数的值大于反比例函数的值?24.如图,已知一次函数y=x+b 的图像与反比例函数k y x=(x <0)的图像相交于点A (-1,2)和点B ,点P 在y 轴上.(1)求b 和k 的值;(2)当PA+PB 的值最小时,点P 的坐标为______;(3)当x+b <k x时,请直接写出x 的取值范围. 25.如图①,四边形ABCD 中,对角线AC 和BD 交于O 点,且AD ⊥BD ,过C 点作CF ∥AD 交BD 于F 点,E 为AC 的中点,连接ED ,EF .(1)求证:DE =EF ;(2)如图②,若BA =BC ,连接BE 交CF 于M 点.①求证:△EFM ∽△CBM ;②求证:△DEF ∽△ABC .26.如图,已知矩形ABCD 的顶点A ,D 分别落在x 轴、y 轴上,OD =2OA =6,AD :AB =3:1,CE 垂直y 轴于点E .(1)求证:CDE DAO ∽△△;(2)直接写出点B 和点C 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】由于已知三角形和选择项的三角形都放在小正方形的网格中,设正方形的边长为1,所以每一个三角形的边长都是可以表示出,然后根据三角形的对应边成比例即可判定选择项.【详解】解:设小正方形的边长为1,那么已知三角形的三边长分别为2,210,所以三边之比为1:25A 、三角形的三边分别为210,2,三边之比为253,故本选项错误;B 、三角形的三边分别为2,4,51:25C 、三角形的三边分别为2,3132:313D 44,故本选项错误. 故选:B .【点睛】此题主要考查了相似三角形的判定,属于基础题,掌握三边对应成比例的两个三角形相似是解答本题的关键,难度一般.2.C解析:C【分析】根据黄金分割点的定义逐项排除即可.【详解】解:∵点C 为线段AB 的黄金分割点,且AC BC >,∴2AC BC AB =⋅,∴::AB AC AC BC =,则选项A 正确;∵点C 为线段AB 的黄金分割点,且AC BC >,∴0.618AC AB =≈,则选项C 错误;选项D 正确;1322BC AB AC AB AB AB =-=-=,则选项B 正确. 故选:C .【点睛】 本题考查了成比例线段,熟练掌握黄金分割的定义成为解答本题关键.3.D解析:D【分析】直接利用相似图形的判定方法分别判断得出答案.【详解】解:①两个菱形不一定相似,因为对应角不一定相等;②两个矩形不一定相似,因为对应边不一定成比例;③两个平行四边形不一定相似,因为形状不一定相同;④两个正方形相似,正确.故选:D .【点睛】本题考查了相似多边形的判定,正确掌握判定方法是解题的关键.4.B解析:B【分析】设△DEF 的面积为S ,分别用S 表示出△AEB ,△AOB ,△DOC 的面积,即可解决问题.【详解】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,AB=CD,AD=BC,设△DEF的面积为S,∵DF∥AB,DE:EB=1:3,∴△ABE的面积为9S,∵EO:BO=1:2,∴△AOB的面积=△DOC的面积=6S,∴四边形FEOC的面积为6S-S=5S,∴15DEFSS EFOC=四边形=1:5,故选:B.【点睛】本题考查了相似三角形的性质、平行四边形的性质等知识,解题的关键是熟练掌握相似三角形的性质.5.B解析:B【分析】如图,证明△ABE∽△ACD,根据相似三角形的性质列式求解即可.【详解】解:如图,根据题意得,△ABE∽△ACD,∴AB BEAC CD=∵AB=10m,BE=1.6m,CD=9.6m∴10 1.6=9.6AC∴AC=60m∴BC=AC-AB=60-10=50m故选:B.【点睛】此题主要考查了相似三角形的应用,善于观察题目的信息是解题以及学好数学的关键. 6.C解析:C【分析】根据31AD =,30AE =,可得21∠<∠;根据题意,通过计算AB 和CD ,可得12AD AEAC AB,即证明ADE ACB ∽,即可得到各个角度的大小关系. 【详解】∵31AD =,30AE =∴21∠<∠ ∵31AD =,29DB =,30AE =,32EC =∴60AB AD BD =+=,62AC AE EC =+= ∴12AD AE AC AB ∵50A ∠=︒∴ADE ACB ∽∴14∠=∠,23∠∠= ∴13∠>∠,24∠<∠故选:C .【点睛】本题考查了相似三角形的知识;解题的关键是熟练掌握相似三角形的性质,从而完成求解.7.D解析:D【分析】根据反比例函数k y x=中k>0, 在每个象限内,y 随着x 的增大而减小;k<0,在每个象限内,y 随着x 的增大而增大求解.【详解】-1<0,在每个象限内,y 随着x 的增大而增大,故A 选项错误;-2<0,在每个象限内,y 随着x 的增大而增大,故B 选项错误;-3<0且x >0,y 随着x 的增大而增大,故C 选项错误;4>0且x <0,y 随着x 的增大而减小,故D 选项正确;故选D .【点睛】本题考查反比例函数的性质,解题的关键是掌握反比例函数的性质. 8.D解析:D【分析】根据反比例函数的定义逐项分析即可.【详解】A. 24y x =-,y 是x 的一次函数,故不符合题意;B. y=5x 2,y 是x 的正比例函数,故不符合题意; C. 21y x =,y 是x²的反比例函数,故不符合题意; D. y=13x,y 是x 的反比例函数,符合题意; 故选:D .【点睛】 本题考查了反比例函数的定义,一般地,形如k y x=(k 为常数,k ≠0)的函数叫做反比例函数. 9.D解析:D【分析】根据一次函数和反比例函数的图象与性质即可得.【详解】对于一次函数y kx k =-,当1x =时,0y k k =-=,则直线y kx k =-经过定点(1,0),A 、由一次函数的图象得:0k <,由反比例函数的图象得:0k >,两者不一致,此项不符题意;B 、由一次函数的图象得:0k >,由反比例函数的图象得:0k <,两者不一致,此项不符题意;C 、一次函数的图象不经过定点(1,0),此项不符题意;D 、由一次函数的图象得:0k <,且经过定点(1,0),由反比例函数的图象得:0k <,两者一致,此项符合题意;故选:D .【点睛】本题考查了反比例函数与一次函数的综合,熟练掌握一次函数和反比例函数的图象与性质是解题关键.10.B解析:B【分析】先判断出k 2 +1的符号,再根据反比例函数的性质即可得出结论.【详解】A、∵k2+1>0,∴它的图象分布在第一、三象限,故本选项正确;B、∵它的图象分布在第一、三象限,∴在每一象限内y随x的增大而减小,故本选项错误;C、∵它的图象分布在第一、三象限,在每一象限内y随x的增大而减小,∵x1=-1<0,∴y1<0,∵x2=1>0,x3=2>0,∴y2>y3,∴y1<y3<y2故本选项正确;D、∵P为图象上任意一点,过P作PQ⊥y轴于Q,∴△OPQ的面积=12(k2+1)是定值,故本选项正确.故选B.【点睛】本题考查的是反比例函数的性质,熟知反比例函数y=kx(k≠0)中,当k>0时函数图象的两个分支分别位于一三象限是解答此题的关键.11.D解析:D【分析】先由反比例函数的图象得到k,b同号,然后分析各选项一次函数的图象即可.【详解】∵y=kbx的图象经过第一、三象限,∴kb>0,∴k,b同号,选项A图象过二、四象限,则k<0,图象经过y轴正半轴,则b>0,此时,k,b异号,故此选项不合题意;选项B图象过二、四象限,则k<0,图象经过原点,则b=0,此时,k,b不同号,故此选项不合题意;选项C图象过一、三象限,则k>0,图象经过y轴负半轴,则b<0,此时,k,b异号,故此选项不合题意;选项D图象过一、三象限,则k>0,图象经过y轴正半轴,则b>0,此时,k,b同号,故此选项符合题意;故选D.考点:反比例函数的图象;一次函数的图象.12.B解析:B【分析】先把A(a,b)分别代入两个解析式得到5ba=,b=a+1,则ab=5,b-a=1,再变形11a b-得到b a ab-,然后利用整体思想进行计算即可. 【详解】解:把A (a ,b )代入5y x=与y =x +1, 得5b a=,b =a +1, 即ab =5,b -a =1, 所以11a b -=b a ab -=15. 故选:B.【点睛】 本题考查了反比例函数与一次函数的交点问题:反比例函数图象与一次函数图象的交点坐标满足两函数的解析式.二、填空题13.【分析】先证明然后根据相似三角形的面积比等于相似比的平方求出的值继而可求的值最后可求的值【详解】解:又故答案是:【点睛】本题考查了相似三角形的判定和性质掌握相似三角形的面积比等于相似比的平方是解题关键 解析:14【分析】先证明DOE COA ∽,然后根据相似三角形的面积比等于相似比的平方求出DE AC 的值,继而可求BE BC 的值,最后可求BE EC的值. 【详解】 解://DE AC ,DOE COA ∴∽, 又:1:25DOE COA S S =△△,15DE AC ∴=, //DE AC ,BDE BAC ∴∽△△,15BE DE BC AC ∴==, 14BE EC ∴=.故答案是:14. 【点睛】 本题考查了相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题关键.14.【分析】根据矩形的性质得到AB ∥CDAB=CDAD=BC ∠BAD=90°根据线段中点的定义得到DE=CD=AB 根据相似三角形的性质即可得到结论【详解】解:∵四边形ABCD 是矩形∴AB ∥CDAB=CD 解析:43【分析】根据矩形的性质得到AB ∥CD ,AB=CD ,AD=BC ,∠BAD=90°,根据线段中点的定义得到DE=12CD=12AB ,根据相似三角形的性质即可得到结论. 【详解】解:∵四边形ABCD 是矩形,∴AB ∥CD ,AB=CD ,AD=BC ,∠BAD=90°,∵E 为CD 的中点,∴DE=12CD=12AB , ∴△ABP ∽△EDP , ∴AB PB DE PD =, ∴21PB PD = , ∴23PB BD = , ∵PQ ⊥BC ,∴PQ ∥CD ,∴△BPQ ∽△DBC , ∴23PQ BP CD BD ==, ∵CD=2, ∴PQ=43, 故答案为:43.【点睛】本题考查了相似三角形的判定和性质,矩形的性质,正确的识别图形是解题的关键. 15.【分析】根据平行线分线段成比例定理得到然后根据比例的性质求EF 的长【详解】解:∵直线a ∥b ∥c ∴即∴EF=故答案为:【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线所得的对应线段成比例 解析:92【分析】 根据平行线分线段成比例定理得到AB DE BC EF =,然后根据比例的性质求EF 的长. 【详解】解:∵直线a ∥b ∥c , ∴AB DE BC EF=,即23=3EF , ∴EF=92. 故答案为:92. 【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例. 16.16【分析】先根据重心性质得再证明最后根据相似三角形的性质求解即可【详解】解:∵P 为△ABC 重心∴∵∴∴∴故答案为16【点睛】本题考查了三角形的重心的性质和相似三角形的判定与性质重心到顶点的距离与重 解析:16【分析】 先根据重心性质得223AP AP PD AD ==,,再证明AEF ABC ∽,最后根据相似三角形的性质求解即可.【详解】解:∵P 为△ABC 重心, ∴223AP AP PD AD ==,∵//EF BC∴AEF ABC ∽ ∴23AE AF AB AC == ∴22()163AEF ABC S S ==△△ 故答案为16.【点睛】 本题考查了三角形的重心的性质和相似三角形的判定与性质,重心到顶点的距离与重心到对边中点的距离之比为2:1是解答本题的关键.17.4【分析】根据反比例函数的性质确定△POA 与△QOB 的面积均为2然后根据反比例函数的比例系数的几何意义确定其值即可【详解】根据题意得:点P 和点Q 关于原点对称所以△POA 与△QOB 的面积相等∵△POA解析:4【分析】根据反比例函数的性质确定△POA 与△QOB 的面积均为2,然后根据反比例函数的比例系数的几何意义确定其值即可.【详解】根据题意得:点P 和点Q 关于原点对称,所以△POA 与△QOB 的面积相等,∵△POA 与△QOB 的面积之和为4,∴△POA 与△QOB 的面积均为2, ∴2k=2,∴|k|=4,∵反比例函数的图象位于一、三象限,∴k=4,故答案为4.【点睛】此题考查了反比例函数的比例系数的几何意义及反比例函数的图象上点的坐标特征的知识,解题的关键是求得△POA 与△QOB 的面积,难度不大.18.y =【分析】设A 坐标为(xy )根据四边形OABC 为平行四边形利用平移性质确定出A 的坐标利用待定系数法确定出解析式即可【详解】解:设A 坐标为(xy )∵B (2﹣2)C (30)以OCCB 为边作平行四边形O解析:y =2x【分析】设A 坐标为(x ,y ),根据四边形OABC 为平行四边形,利用平移性质确定出A 的坐标,利用待定系数法确定出解析式即可.【详解】解:设A坐标为(x,y),∵B(2,﹣2),C(3,0),以OC,CB为边作平行四边形OABC,∴x+3=0+2,y+0=0﹣2,解得:x=﹣1,y=﹣2,即A(﹣1,﹣2),设过点A的反比例解析式为y=kx,把A(﹣1,﹣2)代入得:k=2,则过点A的反比例函数解析式为y=2x,故答案为:y=2x.【点睛】此题考查了待定系数法求反比例函数解析式,以及平行四边形的性质,熟练掌握待定系数法是解本题的关键.19.-6【分析】由AB在过原点的直线l上且在反比例函数的图像上可得AB关于原点对称根据关于原点对称的点的坐标特征可求出ab的值把a值代入反比例函数解析式即可得答案【详解】∵过原点的直线l与反比例函数y=解析:-6【分析】由A、B在过原点的直线l上且在反比例函数的图像上可得A、B关于原点对称,根据关于原点对称的点的坐标特征可求出a、b的值,把a值代入反比例函数解析式即可得答案.【详解】∵过原点的直线l与反比例函数y=kx的图象交于点A(−2,a),B(b,−3),∴A、B两点关于原点对称,∵关于原点对称的点的横坐标和纵坐标都互为相反数,A(−2,a),B(b,−3),∴a=3,b=2,把A(-2,3)代入y=kx得3=k−2,解得k=-6,故答案为:-6【点睛】本题考查反比例函数图象的性质,反比例函数的图象关于原点对称,熟练掌握图象性质是解题关键.20.16【分析】设A(nm)B(t0)即可得到C点坐标为(n0)D点坐标为()利用待定系数法求出CD的解析式可得E点坐标为(0)然后利用三角形的面积公式可得到mn=16即得到k 的值【详解】解:设A (nm解析:16【分析】设A (n ,m ),B (t ,0),即可得到C 点坐标为(n ,0),D 点坐标为(2n t +,2m ),利用待定系数法求出CD 的解析式,可得E 点坐标为(0,mn t n --),然后利用三角形的面积公式可得到mn=16,即得到k 的值.【详解】解:设A (n ,m ),B (t ,0),∵AC ⊥BC ,D 为AB 的中点,∴C 点坐标为(n ,0),D 点坐标为(2n t +,2m ), 设直线CD 的解析式为y=ax+b ,把C (n ,0),D (2n t +,2m ),代入得:na+b=0,22n t m a b ++=, 解得a=m t n-,b=mn t n --, ∴直线CD 的解析式为y=m mn x t n t n ---, ∴E 点坐标为(0,mn t n --), 由S △BCE =12•OE•BC=8, 可得,1()82mn t n t n-=-, ∴mn=16,∴k=mn=16;故答案为:16.【点睛】本题考查了反比例函数的综合题的解法,熟练掌握并灵活运用是解题的关键.三、解答题21.(1)3;(2)BDA FGE ∽△△,证明见解析【分析】(1)先证明AGE ADC △∽△,再证明GEF DBF ∽△△,得到2DF GF =,则问题可解; (2)根据题意分别证明BDA FDB ∽△△,BDA FGE ∽△△问题可证.【详解】解:(1)D 是BC 的中点,E 是AC 的中点,BD CD ∴=,AE CE =,//GE BC ,AGE ADC ∴∽△△,12AG GE AE AD CD AC ∴===, AG GD ∴=,2GE CD BD ==,//GE BC ,GEF DBF ∴∽△△,12GE GF BD DF ∴==, 2DF GF ∴=,3AG DG GF ∴==,3AG GF∴=.(2)当BD =4DF =时,由(1)可得122GF DF ==,36AG DG GF ===,212AD AG ==, 12GE BD ==, 4BD DF ==AD BD ==, AD BD BD DF ∴=, 又BDG ADB ∠=∠,BDA FDB ∴∽△△,3GEGF =AD BD == AD GE BD GF∴=, //GE BC ,ADB EGF ∴∠=∠,BDA FGE ∴∽△△.【点睛】本题考查了相似三角形的性质和判定,解答关键是根据题意选择适当方法证明三角形相似.22.(1)反比例函数的解析式为6y x=-,一次函数的解析式为1y x =--;(2)x <-3或0<x <2;(3)703⎛⎫ ⎪⎝⎭,【分析】(1)由正方形OABC 的顶点C 坐标,确定出边长,及四个角为直角,根据2AD AM ==,求出AD 的长,确定出D 坐标,代入反比例解析式求出m 的值,再由2AD AM ==,确定出MO 的长,即M 坐标,将M 与D 坐标代入一次函数解析式求出k 与b 的值,即可确定出一次函数解析式;(2)联立方程组求得一次函数与反比例函数的交点坐标,然后结合函数图像确定使一次函数值大于反比例函数值的x 的取值范围;(3)设P (0,y ),根据四边形OMDP 的面积与四边形OMNC 的面积相等,列方程求出y 的值,确定出P 坐标即可.【详解】解:(1)∵正方形OABC 的顶点C (0,3),∴OA=AB=BC=OC=3,∠OAB=∠B=∠BCO=90°,∵2AD AM ==∴D (-3,2),M (-1,0)把D (-3,2)代入反比例函数m y x =中,23m =-,解得m=-6 把D (-3,2),M (-1,0)代入一次函数y kx b =+中320k b k b -+=⎧⎨-+=⎩,解得11k b =-⎧⎨=-⎩∴反比例函数的解析式为6y x=-,一次函数的解析式为1y x =-- (2)联立方程组61y x y x ⎧=-⎪⎨⎪=--⎩,解得1132x y =-⎧⎨=⎩,222-3x y =⎧⎨=⎩ ∴使一次函数值大于反比例函数值的x 的取值范围为x <-3或0<x <2(3)连接MN ,DP ,OD由题意可得N (-2,3) ∴119()(12)3222OMNC S OM NC OC =+=+⨯=四边形 1131231222OMD OPD OMDP S S S y y =+=⨯⨯+⨯=+△△四边形 由题意,391=22y +,解得7=3y ∴P 点坐标为703⎛⎫ ⎪⎝⎭,【点睛】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:待定系数法确定一次函数、反比例函数解析式,坐标与图形性质,正方形的性质,以及三角形面积计算,熟练掌握待定系数法是解本题的关键.23.(1)81;52y y x x =-=-;(2)15;(3)02x <<或8x > 【分析】(1)根据点A 坐标求出反比例函数的系数,再利用反比例函数解析式求出点B 坐标,再用待定系数法求出一次函数解析式;(2)分别过A 点,B 点作x 轴的垂线,垂足为,E F ,可知三角形ABO 的面积等于梯形ABFE 的面积,就可以算出结果;(3)根据图象找出一次函数在反比例函数上面时x 的取值范围,就可以得到结果.【详解】(1)∵()2,4A -在反比例函数()0a y x x =>上, ∴代入得24k -=, ∴8k =-,∴反比例函数的关系数8y x =-, ∵(),1B m 在8y m =-上, ∴代入得81m -=-, ∴8m =,∴()8,1B -,又∵()()2,4,8,1A B --在一次函数y kx b =+上,∴代入得4218k bk b-=+⎧⎨-=+⎩,解得125kb⎧=⎪⎨⎪=-⎩,∴一次函数的解析式为152y x=-;(2)如图,分别过A点,B点作x轴的垂线,垂足为,E F,∵()()2,4,8,1A B--,∴ABO EABFS S∆=梯()()141822=⨯+⨯-1562=⨯⨯15=,∴ABOS∆的面积是15;(3)一次函数的值大于反比例函数的值,即一次函数的图象在上方,∴由图知02x<<或8x>.【点睛】本题考查反比例函数和一次函数综合,解题的关键是掌握反比例函数的图象和性质,特殊三角形的面积求法,利用函数图象解不等式的方法.24.(1)b=3,k=-2;(2)5()3P0,;(3)x<-2或-1<x<0【分析】(1)根据待定系数法即可求得;(2)联立两函数解析式成方程组,解方程组即可求出点A、B的坐标,再根据点A′与点A 关于y轴对称,求出点A′的坐标,设出直线A′B的解析式为y=mx+n,结合点的坐标利用待定系数法即可求出直线A′B的解析式,令直线A′B解析式中x为0,求出y的值,即可得出结论;(3)根据两函数图象的上下关系结合点A、B的坐标,即可得出不等式的解集.【详解】解:(1)∵一次函数y=x+b的图象与反比例函数kyx=(x<0)的图象交于点A(−1,2),把A(−1,2)代入两个解析式得:2=(−1)+b,2=−k,解得:b=3,k=−2;(2)作点A关于y轴的对称点A′,连接A′B交y轴于点P,此时点P即是所求,如图所示.联立一次函数解析式与反比例函数解析式成方程组:3 {2y xyx+-==,解得:2xy⎧⎨⎩=-=1或12xy⎧⎨⎩=-=,∴点A的坐标为(−1,2)、点B的坐标为(−2,1).∵点A′与点A关于y轴对称,∴点A′的坐标为(1,2),设直线A′B的解析式为y=mx+n,则有2{21m nm n+-+==,解得:1353mn⎧⎪⎪⎨⎪⎪⎩==,∴直线A′B的解析式为y=13x+53.令x=0,则y=53,∴点P的坐标为(0,53);(2)观察函数图象,发现:当x<−2或−1<x<0时,一次函数图象在反比例函数图象下方,∴当x+b<kx时,x的取值范围为x<−2或−1<x<0.【点睛】本题考查了反比例函数与一次函数的交点问题、轴对称中的最短线路问题、利用待定系数法求函数解析式以及反比例函数图象上点的坐标特征,解题的关键是:(2)求出直线A′B的解析式;(3)找出交点坐标.本题属于中档题,难度不大,但解题过程稍显繁琐,解决该题型题目时,找出点的坐标,利用待定系数法求出函数解析式是关键.25.(1)见解析;(2)①见解析;②见解析.【分析】(1)延长DE交CF于点G,根据直角三角形的性质解答即可;(2)①根据题意可先证明△EMC∽△FMB,利用其结论DE AEEG CE=结合∠EMF=∠BMC,即可证得结论;②由①可得结论∠EFC=∠EBC,且由题意可推出∠EFD=∠EDF,∠ECB=∠EAB,从而证明结论即可.【详解】(1)延长DE交CF于G点,如图①:∵AD∥CF,且点E为AC中点,∴DE AEEG CE=,∴DE=EG,∵AD⊥BD,∴CF⊥BD,∴∠CFD=90°,∴EF=12DG=DE;(2)①如图②,∵AB=BC,E为AC中点,∴∠BEC=90°,∴∠CEM=∠BFM,∵∠EMC=∠FMB,∴△EMC∽△FMB,∴EM CMFM BM,∵∠EMF=∠BMC,∴△EFM∽△CBM,②∵△EFM∽△CBM,∴∠EFC=∠EBC,∵∠ECB+∠EBC=∠EFC+∠DFE=90°,∴∠EFD=∠ECB,由(1)可知ED=EF,∴∠EFD=∠EDF,∵BA=BC,∴∠ECB=∠EAB,∴△DEF∽△ABC.【点睛】本题考查相似三角形的综合问题,熟练掌握相似三角形的判定并性质以及直角三角形的性质是解题关键.26.(1)见解析;(2)B(5,1),C(2,7)【分析】(1)由题意易得∠DCE=∠ADO,根据判定定理可得结论(2)利用相似三角形的性质求得DE、CE可得C点坐标,从而可得B点的坐标【详解】解:(1)证明:∵四边形ABCD是矩形,∴CD=AB,∠ADC=90°,∴∠ADO+∠CDE=∠CDE+∠DCE=90°,∴∠DCE=∠ADO,∴△CDE∽△ADO.(2)解:∵△CDE∽△DAO,∴CEOD=DEOA=CDAD,∵OD=2OA=6,AD:AB=3:1,∴OA=3,CD:AD=13,∴CE=13OD=2,DE=13OA=1,∴OE=7,∴C(2,7),利用平移的性质可得B(5,1)..【点睛】本题主要考查相似三角形的判定及性质,熟练掌握三角形相似的判定定理及性质是解决本题的关键。
【北师大版】初三数学下期中试题附答案
一、选择题1.若234a b c ==,则a b b c +-的值为( ) A .5 B .15 C .-5 D .-152.如图,矩形ABCD 中,AD m =,AB n =,要使BC 边上至少存在一点P ,使ABP △、APD △、CDP 两两相似,则m 、n 间的关系式一定满足( )A .12m n ≥B .m n ≥C .32m ≥D .2m n ≥ 3.如图△BCD 中,BE ⊥CD ,AE =CE=3,BE =DE=4.BC=5,DA 的延长线交BC 于F ,则AF=( )A .1B .0.6C .1.2D .0.8 4.已知两个相似三角形一组对应高分别是15和5,面积之差为80,则较大三角形的面积为( )A .90B .180C .270D .36005.如图,在平行四边形ABCD 中,点E 在边DC 上,DE :EC=5:2,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为( )A .5:7B .10:4C .25:4D .25:49 6.已知P ,Q 是线段AB 的两个黄金分割点,且AB=10,则PQ 长为( ) A .5B .5+1) C .5D .5 7.已知()()()112233,,,,,A x y B x y C x y 是反比例函数2y x=上的三点,若123x x x <<,213y y y <<,则下列关系式不正确的是 ( )A .120x x <B .130x x <C .230x x <D .120x x +< 8.若点A (a ,b )在反比例函数2y x =的图像上,则代数式ab-4的值为( ) A .0 B .-2C .2D .-6 9.若反比例函数()2221my m x -=-的图象在第二、四象限,则m 的值是( ) A .-1或1B .小于12的任意实数C .-1D .不能确定10.如图,函数k y x=-与1y kx =+(0k ≠)在同一平面直角坐标系中的图像大致( ) A . B .C .D .11.如图,菱形ABCD 的边AD y ⊥轴,垂足为点E ,顶点A 在第二象限,顶点B 在y轴的正半轴上,反比例函数k y x=(0k ≠,0x >)的图像同时经过顶点C 、D ,若点D 的横坐标为1,3BE DE =.则k 的值为( )A .52B .3C .154D .512.如图,点A 是反比例函数2(0)y x x =>的图象上任意一点,AB x 轴交反比例函数3y x=-的图象于点B ,以AB 为边作ABCD ,其中C 、D 在x 轴上,则ABCD S 为( )A .2.5B .3.5C .4D .5二、填空题13.如图,在正方形ABCD 中,4AB =,P 是BC 边上一动点(不与B ,C 重合),DE AP ⊥于E .若PA x =,DE y =,则y 关于x 的函数解析式为_____.14.如图,身高1.6m 的小华站在距路灯5m 的C 点处,测得她在灯光下的影长CD 为2.5m ,则路灯的高度AE 为________.15.如图,EF 是ABC 纸片的中位线,将AEF 沿EF 所在的直线折叠,点A 落在BC 边上的点D 处,已知AEF 的面积为7,则图中阴影部分的面积为______.16.如图,在△ABC 中,AE AF EB FC =,动点P 在射线EF 上,BP 交CE 于点D ,∠CBP 的平分线交CE 于点Q ,当CQ =13CE 时,EP +BP =20,则BC 的长为________.17.如果反比例函数2y x =的图象经过点11(,)A x y ,22(,)B x y ,33(,)C x y 且1230x x x <<<,请比较1y 、2y 、3y 的大小为__________.18.在平面直角坐标系中,点A (﹣2,1),B (3,2),C (﹣6,m )分别在三个不同的象限.若反比例函数y =k x(k ≠0)的图象经过其中两点,则m 的值为_____. 19.如图,点A 在反比例函数k y x=(x>0)图象上,AB ⊥x 轴于点B ,点C 在x 轴负半轴上,且BO=2CO ,若△ABC 的面积为18,则k 的值为_______.20.已知点A (-1,2)在反比例函数1m y x-=的图象上,则m =_____________. 三、解答题21.如图,矩形OABC 的顶点A 、C 分别在x 轴和y 轴的正半轴上.双曲线(0)k y x x=>经过BC 边的中点(2,4)D ,与AB 交于点E ,连结DE ,CE .(1)求k 的值及CDE ∠的度数.(2)在直线AB 上找点F ,使得以点A 、D 、F 为顶点的三角形与CDE △相似,求F 点的坐标.22.如图,点F 是ABC 中AC 边的中点,//AD BC ,DF 交AB 于点E ,交BC 延长线于点G .(1)若:3:1BE AE =,8BC =,求BG 的长;(2)若12∠=∠,求证:2FC EF FD =⋅.23.在ABC 与DEF 中,若34AB BC CA DE EF FD ===,且ABC 的周长为18cm ,求DEF 的周长.24.如图,在平面直角坐标系中,正方形OABC 的顶点O 与坐标原点重合,点C 的坐标为()0,3,点A 在x 轴的负半轴上,点M 、D 分别在OA 、AB 上,且2AD AM ==;一次函数y kx b =+的图象过点D 和M ,反比例函数m y x=的图像经过点D ,与BC 交点为N .(1)求反比例函数和一次函数的表达式;(2)直接写出使一次函数值大于反比例函数值的x 的取值范围;(3)若点P 在y 轴上,且使四边形OMDP 的面积与四边形OMNC 的面积相等,求点P 的坐标.25.如图,在平面直角坐标系中,直线l 与x 轴相交于点M ,与y 轴相交于点N ,Rt △MON 的外心为点A (32,﹣2),反比例函数y=k x(x >0)的图象过点A . (1)求直线l 的解析式; (2)在函数y=k x(x >0)的图象上取异于点A 的一点B ,作BC ⊥x 轴于点C ,连接OB 交直线l 于点P .若△ONP 的面积是△OBC 面积的3倍,求点P 的坐标.26.如图,在平面直角坐标系中,Rt △ABC 的边AB ⊥x 轴,垂足为A,C 的坐标为(1,0),反比例函数y=k x(x>0)的图象经过BC 的中点D,交AB 于点E.已知AB=4,BC=5.求k 的值【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】 设234a b c k ===,则2a k =,3b k =,4c k =,然后代入求值即可. 【详解】 解:设234a b c k ===,则2a k =,3b k =,4c k =, ∴a b b c +-=2334k k k k +-=5-k k=﹣5, 故选:C .【点睛】本题考查了比例的性质、分式的求值,设参数求解是解答的关键.2.D解析:D【分析】由于△MNP 和△DCP 相似,可得出关于MN 、PC 、NP 、CD 的比例关系式.设PC=x ,那么NP=m-x ,根据比例关系式可得出关于x 的一元二次方程,由于NC 边上至少有一点符合条件的P 点,因此方程的△≥0,由此可求出m 、n 的大小关系.【详解】解:若设PC=x ,则NP=m-x ,∵△ABP ∽△PCD ,AB BP PC CD ∴=即,n m x x n-= 即x 2-mx+n 2=0方程有解的条件是:∴(m+2n )(m-2n )≥0,则m-2n≥0,∴m≥2n .故选:D .【点睛】本题是存在性问题,可以转化为方程问题,利用判断方程的解的问题来解决.3.B解析:B【分析】根据条件和判断Rt △CEB ≌Rt △AED ,然后得到角相等,证明△BEC ∽△BFA ,利用比例关系计算.【详解】解:∵AE=3,BE=4∴BA=BE-AE=1∴在Rt △CEB 与Rt △AED 中AE CE AD CB =⎧⎨=⎩∴Rt △CEB ≌Rt △AED∴∠EBC=∠BAF∵∠ADE+∠EAD=90°,∠BAF=∠EAD∴∠EBC+∠BAF=90°∵∠BEC=∠BFA=90°∴△BEC ∽△BFA ∴AF BA CE BC =即135AF = ∴AF=0.6故选:B【点睛】本题考查相似和全等的结合,通过全等得到角关系,然后证相似得到比例关系计算边长即可..4.A解析:A【分析】由两个三角形的高之比可得出两个三角形的相似比,进而得出两个三角形的面积之比,根据两个三角形的面积之比设未知数,列方程,求出较大三角形的面积即可.【详解】由题意得,两个三角形的相似比为:15∶5=3∶1,故面积比为:9∶1,设两个三角形的面积分别为9x ,x ,解得:x =10,故较大三角形的面积为:9x =90.故选:A .【点睛】本题主要考查相似三角形的性质,熟记相似三角形的高之比等于相似比,面积之比等于相似比的平方是解题关键.5.D解析:D【分析】 根据题意证明DEFBAF ,再利用相似比得到面积比. 【详解】解:∵四边形ABCD 是平行四边形,∴//CD AB ,CD AB =,∵:5:2DE EC =,∴:5:7DE DC =,∴:5:7DE AB =, ∵DEF BAF , ∴22::25:49DEF BAF S S DE AB ==.故选:D .【点睛】本题考查相似三角形的性质,解题的关键是掌握相似三角形相似比和面积比的关系. 6.C解析:C【分析】画出图像,根据黄金分割的概念写出对应线段的比值,求出AQ 、PB 的长度,再根据PQ =AQ +PB -AB 即可求出PQ 的长度.【详解】解:如图,根据黄金分割点的概念,可知51PB AQ AB AB -== ∴AQ =PB ,AB =10,∴AQ =PB 5110555-=, ∴PQ =AQ +PB -AB =555555101052010(52)+-==.故选:C .【点睛】本题主要考查黄金分割的概念,熟记黄金分割的概念并根据黄金分割的比值列式是解题关键.7.A解析:A【分析】 根据反比例函数2y x=和x 1<x 2<x 3,y 2<y 1<y 3,可得点A ,B 在第三象限,点C 在第一象限,得出x 1<x 2<0<x 3,再选择即可.【详解】 解:∵反比例函数2y x=中,2>0, ∴在每一象限内,y 随x 的增大而减小,∵x 1<x 2<x 3,y 2<y 1<y 3,∴点A ,B 在第三象限,点C 在第一象限,∴x 1<x 2<0<x 3,∴x 1•x 2>0,x 1•x 3<0,x 2•x 3<0,x 1+x 2<0,故选:A .【点睛】本题考查了反比例函数图象上点的坐标特征,解答此题的关键是熟知反比例函数的增减性,本题是逆用,难度有点大.8.B解析:B【解析】试题∵点(a ,b )反比例函数2y x=上, ∴b=2a,即ab=2, ∴原式=2-4=-2.故选B . 考点:反比例函数图象上点的坐标特征.9.C解析:C【分析】根据反比例函数的定义列出方程221m -=-且210m -<求解即可.【详解】解:22(21)m y m x -=-是反比例函数, ∴221m -=-,210m -≠,解之得1m =±.又因为图象在第二,四象限,所以210m -<, 解得12m <,即m 的值是1-. 故选:C .【点睛】 对于反比例函数()0k y k x=≠.(1)0k >,反比例函数图像分布在一、三象限;(2)k 0< ,反比例函数图像分布在第二、四象限内.10.B解析:B【分析】分k >0和k <0两种情况分类讨论即可确定正确的选项.【详解】解:当k >0时,函数1y kx =+的图象经过一、二、三象限,反比例函数k y x =-的图象分布在二、四象限,没有选项符合题意;当0k <时,函数1y kx =+的图象经过一、二、四象限,反比例函数k y x =-的图象分布在一、三象限,B 选项正确,故选:B.【点睛】考查了反比例函数和一次函数的性质,解题的关键是能够分类讨论,难度不大. 11.C解析:C【分析】过点D 作DF ⊥BC 于点F ,设BC =x ,在Rt △DFC 中利用勾股定理列方程即可求出x ,然后设OB =a ,即可表示出C ,D 的坐标,再代入k y x =可求出a ,k 的值. 【详解】解:过点D 作DF ⊥BC 于点F ,∵点D 的横坐标为1,∴BF =DE =1,∴DF =BE =3DE =3,设BC =x ,则CD =x ,CF =x -1,在Rt △DFC 中,由勾股定理得:222DF CF CD +=,∴2223(1)x x +-=,解得:x =5.设OB =a ,则点D 坐标为(1,a +3),点C 坐标为(5,a ),∵点D 、C 在双曲线上∴1×(a +3)=5a∴a =34, ∴点C 坐标为(5,34), ∴k =154. 故选:C.【点睛】本题考查了反比例函数图象点的坐标特征,菱形的性质,勾股定理,根据勾股定理列出方程求出BC 的长度是本题的关键.12.D解析:D【分析】过点B 作BH ⊥x 轴于H ,根据坐标特征可得点A 和点B 的纵坐标相同,由题意可设点A 的坐标为(2a,a ),点B 的坐标为(3a -,a ),即可求出BH 和AB ,最后根据平行四边形的面积公式即可求出结论.【详解】解:过点B 作BH ⊥x 轴于H∵四边形ABCD 为平行四边形∴//AB x 轴,CD=AB∴点A 和点B 的纵坐标相同由题意可设点A 的坐标为(2a ,a ),点B 的坐标为(3a -,a ) ∴BH=a ,CD=AB=2a -(3a -)=5a ∴ABCD S =BH·CD=5故选D .【点睛】此题考查的是反比例函数与几何图形的综合题,掌握利用反比例函数求几何图形的面积是解决此题的关键.二、填空题13.【分析】根据正方形的性质以及DE ⊥AP 即可判定△ADE ∽△PAB 根据相似三角形的性质即可列出y 与x 之间的关系式需要注意的是x 的范围【详解】解:∵四边形ABCD 为正方形∴∠BAD =∠ABC =90°∴∠解析:(164y x x =<< 【分析】根据正方形的性质以及DE ⊥AP 即可判定△ADE ∽△PAB ,根据相似三角形的性质即可列出y 与x 之间的关系式,需要注意的是x 的范围.【详解】解:∵四边形ABCD 为正方形,∴∠BAD =∠ABC =90°,∴∠EAD +∠BAP =90°,∠BAP +∠APB =90°,∴∠EAD =∠APB ,又∵DE ⊥AP ,∠AED =∠B =90°,∴△ADE ∽△PAB . ∴=AD DE AP AB ,即4=4y x∴(164y x x=<<.故答案为:(164y x x =<<本题考查相似三角形,解题关键是熟练运用相似三角形的判定与性质,本题属于中等题型.14.【分析】由于人和地面是垂直的即和路灯平行构成相似三角形根据对应边成比例列方程解答即可【详解】即解得:即路灯的高度为48米【点睛】本题考查了相似三角形的应用把实际问题抽象到相似三角形中利用相似三角形的解析:4.8m【分析】由于人和地面是垂直的,即和路灯平行,构成相似三角形.根据对应边成比例,列方程解答即可.【详解】//CE AB,ADB EDC∴∽,::AB CE BD CD∴=,即:1.67.5:2.5AB=,解得: 4.8mAB=.即路灯的高度为4.8米.【点睛】本题考查了相似三角形的应用.把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求出路灯的高度,体现了转化的思想.15.14【分析】根据三角形的中位线定理结合相似三角形的性质可以求得△ABC的面积再根据折叠的性质得到△DEF的面积从而求解【详解】∵EF是△ABC的中位线∴EF∥BCEF=BC∴△AEF∽△ACB∴∵△解析:14【分析】根据三角形的中位线定理,结合相似三角形的性质可以求得△ABC的面积,再根据折叠的性质得到△DEF的面积,从而求解.【详解】∵EF是△ABC的中位线,∴EF∥BC,EF=12BC,∴△AEF∽△ACB,∴22AEFACB1124 S EFS BC⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭,∵△AEF的面积为7,∴△ABC的面积=28,由折叠的性质得△DEF的面积为7,∴图中阴影部分的面积为28-7-7=14.故答案为:14.本题综合考查了折叠问题,三角形的中位线定理和相似三角形的判定和性质.关键是掌握三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.16.10【分析】延长BQ 交射线EF 于点M 先证明△BCQ ∽△MEQ 然后可得=根据EM=20即可得出答案【详解】解:如图延长BQ 交射线EF 于点M ∵EF 是ABAC 的中点∴EF 是△ABC 的中位线∴EF ∥BC ∴∠解析:10【分析】延长BQ 交射线EF 于点M ,先证明△BCQ ∽△MEQ ,然后可得EM BC =2EQ CQ=,根据EM=20,即可得出答案.【详解】解:如图,延长BQ 交射线EF 于点M ,∵E ,F 是AB ,AC 的中点,∴EF 是△ABC 的中位线,∴EF ∥BC ,∴∠BME=∠MBC ,∵BQ 平分∠CBP ,∴∠PBM=∠MBC ,∴∠BME=∠PBM ,∴BP=PM ,∴EP+BP=EM=20,∵CQ =13CE , ∴2EQ CQ=, ∵EF ∥BC ,∴△BCQ ∽△MEQ ,∴EM BC =2EQ CQ=, ∵EM=20,∴202BC=,即BC=10, 故答案为:10.【点睛】 本题考查了相似三角形的判定和性质,三角形中位线定理,判定△BCQ ∽△MEQ 是解题关键.17.【分析】根据题意和反比例函数的性质可以得到y1y2y3的大小关系从而可以解答本题【详解】解:∵反比例函数∴在每个象限内y 随x 的增大而减小当x <0时y <0当x >0时y >0∵反比例函数的图象经过点A (x解析:213y y y <<【分析】根据题意和反比例函数的性质,可以得到y 1,y 2,y 3的大小关系,从而可以解答本题.【详解】解:∵反比例函数2y x= ∴在每个象限内,y 随x 的增大而减小,当x <0时,y <0,当x >0时,y >0, ∵反比例函数2y x=的图象经过点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),且1230x x x <<<,∴213y y y <<,故答案为:213y y y <<.【点睛】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.18.-1【分析】根据已知条件得到点在第二象限求得点一定在第三象限由于反比例函数的图象经过其中两点于是得到反比例函数的图象经过于是得到结论【详解】解:点分别在三个不同的象限点在第二象限点一定在第三象限在第 解析:-1.【分析】根据已知条件得到点(2,1)A -在第二象限,求得点(6,)C m -一定在第三象限,由于反比例函数(0)k y k x =≠的图象经过其中两点,于是得到反比例函数(0)k y k x=≠的图象经过(3,2)B ,(6,)C m -,于是得到结论.【详解】 解:点(2,1)A -,(3,2)B ,(6,)C m -分别在三个不同的象限,点(2,1)A -在第二象限, ∴点(6,)C m -一定在第三象限,(3,2)B 在第一象限,反比例函数(0)k y k x =≠的图象经过其中两点, ∴反比例函数(0)k y k x=≠的图象经过(3,2)B ,(6,)C m -, 326m ∴⨯=-, 1m ∴=-,故答案为:1-.【点睛】本题考查了反比例函数图象上点的坐标特征,正确的理解题意是解题的关键. 19.24【分析】根据BO=2CO 可得出△AOB 的面积然后根据k 的几何意义得出k 的值【详解】如下图连接AO ∵BO=2CO △ABC 的面积为18∴△AOB 的面积=18×18×=12∴k=12×2=24故答案为解析:24【分析】根据BO=2CO ,可得出△AOB 的面积,然后根据k 的几何意义,得出k 的值.【详解】如下图,连接AO∵BO=2CO ,△ABC 的面积为18∴△AOB 的面积=18×OB CB =18×23=12 ∴k=12×2=24故答案为:24.【点睛】本题考查反比例函数k 的几何意义,将△AOB 的面积与k 联系上,是解题的关键. 20.-1【分析】将点A (-12)代入反比例函数即可求出m 的值【详解】将点A (-12)代入反比例函数得解得m=-1;故答案为:-1【点睛】本题考查了反比例函数图象上点的坐标特征所有在反比例函数上的点的横纵解析:-1【分析】将点A (-1,2)代入反比例函数1m y x-=即可求出m 的值. 【详解】将点A (-1,2)代入反比例函数1m y x-=,得 121m -=-, 解得,m=-1;故答案为:-1.【点睛】本题考查了反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.三、解答题21.(1)8k,135CDE ∠=︒;(2)点F 的坐标为:(4,10)或(4,2).【分析】(1)把D 点的坐标代入反比例函数可求得k 的值,然后得出B 、E 的坐标,求得BD=BE ,得出BDE 为等腰直角三角形,并用补交的定义求得CDE ∠的度数. (2)连接AD ,得出()SAS BCE BAD ≌△△,进而得出BCE BAD ∠=∠,设(4,)F t ,则AF t =,所以分两种情况讨论①CDE ADF △∽△,②CDE AFD ∽△△,根据相似三角形的性质得出比例式建立方程求解即可.【详解】(1)∵点D 为BC 的中点,(2,4)D ,(0,4)C ∴,(4,4)B ,将点(2,4)D 代入k y x=得:8k , 8y x∴=, ∴四边形OABC 是矩形,(4,0)A ∴,点E 的横坐标为:4,∴当4x =时,2y =,(4,2)E ∴,2BD BE ∴==,又90B ∠=︒BDE ∴为等腰直角三角形,则45BDE ∠=︒,180135CDE BDE ∴∠=︒-∠=︒.(2)如图,连接AD ,(4,4)B ,(4,0)A ,(0,4)C ,4AB BC ∴==,在BCE 和BAD 中,BC BA CBE ABD BD BE =⎧⎪∠=∠⎨⎪=⎩,()SAS BCE BAD ∴≌△△,BCE BAD ∴∠=∠,(0,4)C ,(2,4)D ,(4,2)E ,(4,0)A ,2CD ∴=,224(24)25CE =+-=22(42)425AD =-+=设(4,)F t ,则AF t =,①CDE ADF △∽△,CD CE AD AF ∴=2525t=, 解得:110t =,(4,10)F ∴,②CDE AFD ∽△△,CD CE AF AD ∴=,22525t = 解得:22t =,(4,2)F ∴,综上所述,点F 的坐标为:(4,10)或(4,2).【点睛】此题是反比例函数综合题,主要考查了待定系数法,矩形的性质,等腰直角三角形的性质,相似三角形的判定和性质,解题时注意点的坐标与线段长的转化.22.(1)BG=12,;(2)证明见解析【分析】(1)根据AD ∥BC ,点F 是AC 边上的中点,可证△ADF ≌△CGF ,得AD=CG ,再由BE :AE=3:1及AD ∥BC ,得BG=3AD ,BC=2AD=8,得AD=4,可求BG ;(2)由∠1=∠2,根据邻补角的性质得∠AEF=∠FCG ,又对顶角∠AFE=∠GFC ,可证△AFE ∽△GFC ,利用相似比证题.【详解】(1)解:∵AD ∥BC ,∴∠D=∠G ,又∠AFD=∠CFG ,AF=FC ,在△ADF 和△CGF 中D G AFD CFG AF FC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△CGF(AAS),∴AD=CG ,FG=FD ,又∵AD ∥BC∴△ADE ∽△BGE ∴BE BG AE DA =又BE :AE=3:1,∴BG=3AD ,又AD=CG∴BC=2AD=8,解得AD=4,∴BG=3AD=12;(2)证明:∵∠1=∠2,∴180°-∠1=180°-∠2,即∠AEF=∠FCG ,又∵∠AFE=∠GFC ,∴△AFE ∽△GFC ,EF AF FC FG=, 又AF=CF ,DF=GF ,即EF CF CF FD=, ∴FC 2=FE•FD .【点睛】本题考查了相似三角形的判断与性质,全等三角形的判定与性质.关键是利用平行线,中点,等角的补角相等,推出全等和相似三角形.23.24cm【分析】根据相似三角形的判定与性质即可得.【详解】34AB BC CA DE EF FD ===, D F ABC E ~∴,ABC ∴的周长与DEF 的周长之比为3:4, ABC 的周长等于18cm ,DEF ∴的周长为318=244÷cm , 故答案为:24cm . 【点睛】本题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题关键. 24.(1)反比例函数的解析式为6y x =-,一次函数的解析式为1y x =--;(2)x <-3或0<x <2;(3)703⎛⎫ ⎪⎝⎭,【分析】(1)由正方形OABC 的顶点C 坐标,确定出边长,及四个角为直角,根据2AD AM ==,求出AD 的长,确定出D 坐标,代入反比例解析式求出m 的值,再由2AD AM ==,确定出MO 的长,即M 坐标,将M 与D 坐标代入一次函数解析式求出k 与b 的值,即可确定出一次函数解析式;(2)联立方程组求得一次函数与反比例函数的交点坐标,然后结合函数图像确定使一次函数值大于反比例函数值的x 的取值范围;(3)设P (0,y ),根据四边形OMDP 的面积与四边形OMNC 的面积相等,列方程求出y 的值,确定出P 坐标即可.【详解】解:(1)∵正方形OABC 的顶点C (0,3),∴OA=AB=BC=OC=3,∠OAB=∠B=∠BCO=90°,∵2AD AM ==∴D (-3,2),M (-1,0)把D (-3,2)代入反比例函数m y x =中,23m =-,解得m=-6 把D (-3,2),M (-1,0)代入一次函数y kx b =+中320k b k b -+=⎧⎨-+=⎩,解得11k b =-⎧⎨=-⎩∴反比例函数的解析式为6y x =-,一次函数的解析式为1y x =--(2)联立方程组61y x y x ⎧=-⎪⎨⎪=--⎩,解得1132x y =-⎧⎨=⎩,222-3x y =⎧⎨=⎩ ∴使一次函数值大于反比例函数值的x 的取值范围为x <-3或0<x <2(3)连接MN ,DP ,OD由题意可得N (-2,3)∴119()(12)3222OMNC S OM NC OC =+=+⨯=四边形 1131231222OMD OPD OMDP S S S y y =+=⨯⨯+⨯=+△△四边形 由题意,391=22y +,解得7=3y ∴P 点坐标为703⎛⎫ ⎪⎝⎭,【点睛】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:待定系数法确定一次函数、反比例函数解析式,坐标与图形性质,正方形的性质,以及三角形面积计算,熟练掌握待定系数法是解本题的关键.25.(1)y=43x ﹣4;(2)(94,﹣1). 【分析】(1)由A 为直角三角形外心,得到A 为斜边MN 中点,根据A 坐标确定出M 与N 坐标,设直线l 解析式为y=mx+n ,将M 与N 坐标代入求出m 与n 的值,即可确定出直线l 解析式;(2)将A 坐标代入反比例函数的解析式求出k 的值,确定出反比例函数的解析式,利用反比例函数k 的意义求出△OBC 的面积,由△ONP 的面积是△OBC 面积的3倍求出△ONP 的面积,确定出P 的横坐标,即可得出P 坐标.【详解】(1)∵Rt△MON的外心为点A(32,﹣2),∴A为MN中点,即M(3,0),N(0,﹣4),设直线l解析式为y=mx+n,将M与N代入得:30 {4m nn+==-,解得:m=43,n=﹣4,则直线l解析式为y=43x﹣4;(2)将A(32,﹣2)代入反比例解析式得:k=﹣3,∴反比例解析式为y=﹣3x,∵B为反比例函数图象上的点,且BC⊥x轴,∴S△OBC=32,∵S△ONP=3S△OBC,∴S△ONP=92,设P横坐标为a(a>0),∴12ON•a=3×32,即a=94,则P坐标为(94,﹣1).26.k=5【分析】先由勾股定理求出AC的长度,得到点C坐标,再确定出点B的坐标,由中点坐标公式得出点D的坐标,最后把点D坐标代入反比例函数解析式中即可求得k的值.【详解】∵在Rt△ABC中,AB=4,BC=5,∴,∵点C坐标(1,0),∴OC=1,∴OA=OC+AC=4,∴点A坐标(4,0),∴点B(4,4),∵点C(1,0),点B(4,4),∴BC的中点D(5,2),2∵反比例函数y=k(x>0)的图象经过BC的中点D,x∴k=xy=52=52【点睛】本题考查了反比例函数图象上点的坐标特征,勾股定理,中点坐标公式,熟练运用反比例函数图象性质是解决问题的关键.。
【北师大版】初三数学下期中试卷附答案
一、选择题1.下列各组线段的长度成比例的是( )A .2cm ,4cm ,6cm ,8cmB .10cm ,20cm ,30cm ,40cmC .2.2cm ,3.3cm ,5cm ,8cmD .20cm ,30cm ,60cm ,40cm 2.下列判断正确的是( )A .对角线相等的四边形是矩形B .将一个矩形风景画的四周镶上宽度相等的金边后得到的新矩形与原矩形相似C .如果两个相似多边形的面积比为16:9,那么这两个相似多边形的周长比可能是4:3D .若点C 是AB 的黄金分割点,且AB =6cm ,则BC 的长约为3.7cm3.如图,直线////a b c ,直线m 分别交直线a ,b ,c 于点A ,B ,C ,直线n 分别交直线a ,b ,c 于点D ,E ,F ,若23=AB BC ,则DE DF 的值为( )A .13B .23C .25D .354.下列每个选项的两个图形,不是相似图形的是( )A .B .C .D .5.如图在ABC 中,其中D 、E 两点分别在AB 、AC 上,且31AD =,29DB =,30AE =,32EC =.若50A ∠=︒,则图中1∠、2∠、3∠、4∠的大小关系正确的是( ).A .13∠=∠B .24∠∠=C .23∠∠=D .14∠<∠ 6.如图,四边形ABCD 是正方形,E 是BC 的中点,连接AE 与对角线BD 相交于点G ,连接CG 并延长,交AB 于点F ,连接DE 交CF 于点H .以下结论:①CDE BAE ∠=∠;②CF DE ⊥;③AF BF =;④22CE CH CF =⋅.其中正确结论的个数有( )A .1B .2C .3D .47.下列式子中表示y 是x 的反比例函数的是( )A .24y x =-B .y=5x 2C .y=21xD .y=13x8.如图,在平面直角坐标系中,正方形ABCD 的顶点A 的坐标为(﹣1,1),点B 在x 轴正半轴上,点D 在第三象限的双曲线y =8x上,过点C 作CE ∥x 轴交双曲线于点E ,则CE 的长为( )A .85B .235C .3.5D .59.规定:如果关于x 的一元二次方程ax 2+bx+c =0(a≠0)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”现有下列结论①方程x 2+2x ﹣8=0是倍根方程;②若关于x 的方程x 2+ax+2=0是倍根方程,则a =±3;③若(x ﹣3)(mx ﹣n )=0是倍根方程,则n =6m 或3n =2m ;④若点(m ,n )在反比例函数y =2x 的图象上,则关于x 的方程mx 2﹣3x+n =0是倍根方程.上述结论中正确的有( )A .①②B .③④C .②③D .②④ 10.反比例函数k y x =经过点(2,1),则下列说法错误..的是( ) A .2k =B .函数图象分布在第一、三象限C .当0x >时,y 随x 的增大而增大D .当0x >时,y 随x 的增大而减小 11.如图,函数k y x=与2(0)y kx k =-+≠在同一平面直角坐标系中的图像大致( ) A . B .C .D .12.如图,已知点A ,B 分别在反比例函数12y x =-和2k y x=的图象上,若点A 是线段OB 的中点,则k 的值为( ).A .8-B .8C .2-D .4-二、填空题13.△ABC 的三边长分别为7、6、2,△DEF 的两边分别为1、3,要使△ABC ∽△DEF ,则△DEF 的第三边长为______.14.如图,在ABC 中,点D 是线段BC 的黄金分割点(DC BD >),若ABD △的面积是252-,则ABC 的面积是_______.15.如图,在平行四边形ABCD 中,点E 在边BC 上,EC =2BE ,连接AE 交BD 于点F ,若△BFE 的面积为2,则△AFD 的面积为_____.16.如图,在矩形ABCD 中,AB =2,BC =a ,点E 在边BC 上,且BE =35a .连接AE ,将△ABE 沿AE 折叠,若点B 的对应点B′落在矩形ABCD 的边上,则a 的值为______.17.如图,菱形ABCD 的边AD 与x 轴平行,A 、B 两点的横坐标分别为1和3,反比例函数y =3x的图象经过A 、B 两点,则菱形ABCD 的面积是_____;18.如图,B(2,﹣2),C(3,0),以OC ,CB 为边作平行四边形OABC ,则经过点A 的反比例函数的解析式为_____.19.点A(a ,b)是一次函数y=2x-3与反比例函数9y x =的交点,则2a 2b-ab 2=_____. 20.如图,直线3y x =-+与y 轴交于点A ,与反比例函数()0k y x x =<的图象交于点C ,过点C 作CB x ⊥轴于点B ,若3AO BO =,则k 的值为________.三、解答题21.如图,在平面直角坐标系xoy 中,直线2y x b =+经过点()2,0A -,与y 轴交于点B ,与反比例函数()0k y x x =>的图象交于点C(m ,6),过B 作BD y ⊥轴,交反比例函数()0k y x x=>的图象于点D ,连接AD ,CD . (1)求b ,k 的值;(2)求△ACD 的面积;(3)在坐标轴上是否存在点E(除点O 外),使得△ABE 与△AOB 相似,若存在,请求出点E 的坐标;若不存在,请说明理由.22.△ABC 在边长为1的正方形网格中如图所示.(1)以点C 为位似中心,作出△ABC 的位似图形△A 1B 1C 1,使其位似比为1:2.且△A 1B 1C 1位于点C 的异侧,并表示出A 1的坐标.(2)作出△ABC 绕点C 顺时针旋转90°后的图形△A 2B 2C 2.23.如图,在平面直角坐标系xOy 中,一次函数y =ax+b (a≠0)的图象与反比例函数k y x =(k≠0,x >0)的图象相交于A (1,5),B (m ,1)两点,与x 轴,y 轴分别交于点C ,D ,连接OA ,OB .(1)求反比例函数k y x=(k≠0,x >0)和一次函数y =ax+b (a≠0)的表达式; (2)求△AOB 的面积.24.如图,在平面直角坐标系中,O 为坐标原点,点A ,B 在函数y =k x (x >0)的图象上(点B 的横坐标大于点A 的横坐标),点A 的坐标为(2,4),过点A 作AD ⊥x 轴于点D ,过点B 作BC ⊥x 轴于点C ,连接OA ,AB .(1)求k 的值.(2)若点D 为OC 中点,求四边形OABC 的面积.25.如图,在平面直角坐标系中,一次函数()1y kx b k 0=+≠的图象与反比例函数()2m y m 0x=≠ 的图象相交于第一、三象限内的()()A 3,5,B a,3-两点,与x 轴交于点C .⑴求该反比例函数和一次函数的解析式;⑵在y 轴上找一点P 使PB PC -最大,求PB PC -的最大值及点P 的坐标; ⑶直接写出当12y y >时,x 的取值范围.26.如图,点P 是菱形ABCD 的对角线BD 上一点,连接CP 并延长,交AD 于E ,交BA 的延长线于点F .(1)求证:PA =PC ;(2)求证:PC 2=PE •PF .【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段,对每一项进行分析即可.【详解】解:A 、2×8≠4×6,故本选项错误;B 、10×40≠20×30,故选项错误;C 、2.2×8≠3.3×5,故选项错误;D 、20×60=30×40,故本选项正确.故选:D .【点睛】此题考查了比例线段,用到的知识点是成比例线段的概念,注意在相乘的时候,最小的和最大的相乘,另外两个相乘,看它们的积是否相等.2.C解析:C【分析】A .利用矩形的判定定理对角线相等的平行四边形可判断;B .一个矩形风景画的四周镶上宽度相等的金边后得到的新矩形与原矩形相似应满足长与宽相等时可以,而矩形的长与宽一般不等;C.利用相似图形的性质即可;D .利用黄金分割法可求出BC 有两个值即可.【详解】解:A 、对角线相等的平行四边形是矩形,故此选项错误;B 、将一个矩形风景画的四周镶上宽度相等的金边后得到的新矩形与原矩形不一定相似,故此选项错误;C 、如果两个相似多边形的面积比为16:9,则两个相似多边形的相似比为4:3,那么这两个相似多边形的周长比等于相似比是4:3,故此选项正确;D 、若点C 是AB 的黄金分割点,且AB =6cm ,则BC 的长约为3.7cm 或2.3cm ,故此选项错误;故选择:C .【点睛】本题综合性考查矩形,矩形相似,相似多边形的性质,黄金分割问题,掌握矩形的判定方法,矩形相似的判定方法,相似多边形的性质,会求黄金分割中线段的长是解题关键. 3.C解析:C【分析】 先由23AB BC =得出25AB AC =,再根据平行线分线段成比例定理即可得到结论. 【详解】 ∵23AB BC =, ∴25AB AC =, ∵a ∥b ∥c , ∴25DE AB DF AC ==, 故选:C .【点睛】 本题考查了平行线分线段成比例定理,掌握三条平行线截两条直线,所得的对应线段成比例是解题的关键.4.D解析:D【分析】根据相似图形的定义,对选项进行一一分析,排除错误答案.【详解】解:A 、形状相同,但大小不同,符合相似形的定义,故不符合题意;B 、形状相同,但大小不同,符合相似形的定义,故不符合题意;C 、形状相同,但大小不同,符合相似形的定义,故不符合题意;D 、形状不相同,不符合相似形的定义,故符合题意;故选:D .【点睛】本题考查的是相似形的定义,是基础题.5.C解析:C【分析】根据31AD =,30AE =,可得21∠<∠;根据题意,通过计算AB 和CD ,可得12AD AEAC AB,即证明ADE ACB ∽,即可得到各个角度的大小关系. 【详解】∵31AD =,30AE =∴21∠<∠ ∵31AD =,29DB =,30AE =,32EC =∴60AB AD BD =+=,62AC AE EC =+= ∴12AD AE AC AB ∵50A ∠=︒∴ADE ACB ∽ ∴14∠=∠,23∠∠=∴13∠>∠,24∠<∠故选:C .【点睛】本题考查了相似三角形的知识;解题的关键是熟练掌握相似三角形的性质,从而完成求解.6.D解析:D【分析】证明△ABE ≌△DCE ,可得结论①正确;由正方形的性质可得AB=AD=BC=CD ,BE=CE ,∠DCE=∠ABE=90°,∠ABD=∠CBD=45°,可证△ABE ≌△DCE ,△ABG ≌△CBG ,可得∠BCF=∠CDE ,由余角的性质可得结论②;证明△DCE ≌△CBF 可得结论③,证明△CHF ∽△CBF 即可得结论④正确.【详解】解:∵四边形ABCD 是正方形,点E 是BC 的中点,∴AB=AD=BC=CD ,BE=CE ,∠DCE=∠ABE=90°,∠ABD=∠CBD=45°,∴△ABE ≌△DCE (SAS )∴∠DEC=∠AEB ,∠BAE=∠CDE ,DE=AE ,故①正确,∵AB=BC ,∠ABG=∠CBG ,BG=BG ,∴△ABG ≌△CBG (SAS )∴∠BAE=∠BCF ,∴∠BCF=∠CDE ,且∠CDE+∠CED=90°,∴∠BCF+∠CED=90°,∴∠CHE=90°,∴CF ⊥DE ,故②正确,∵∠CDE=∠BCF ,DC=BC ,∠DCE=∠CBF=90°,∴△DCE ≌△CBF (ASA ),∴CE=BF ,∵CE=12BC=12AB , ∴BF=12AB , ∴AF=BF ,故③正确,∵∠BCF+∠BFC=90°,∠DEC=∠BFC∴∠BCF+∠DECC=90°,∴∠CHE=90°∴∠CHE=∠FBC又∠DEC=∠BFC∴△CHF ∽△CBF ∴CH CE BC CF= ∵BC=2CE , ∴2BC CE CE CE CH CF CF == ∴22CE CH CF =⋅故选:D .【点睛】本题考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,直角三角形的性质,勾股定理等知识,熟练运用这些性质进行推理是本题的关键.7.D解析:D【分析】根据反比例函数的定义逐项分析即可.【详解】A. 24y x =-,y 是x 的一次函数,故不符合题意;B. y=5x 2,y 是x 的正比例函数,故不符合题意;C. 21y x =,y 是x²的反比例函数,故不符合题意; D. y=13x,y 是x 的反比例函数,符合题意; 故选:D .【点睛】本题考查了反比例函数的定义,一般地,形如k y x=(k 为常数,k ≠0)的函数叫做反比例函数. 8.B解析:B【分析】设点D (m ,8m),过点D 作x 轴的垂线交CE 于点G ,过点A 过x 轴的平行线交DG 于点H ,过点A 作AN ⊥x 轴于点N ,根据AAS 先证明△DHA ≌△CGD 、△ANB ≌△DGC 可得AN =DG =1=AH ,据此可得关于m 的方程,求出m 的值后,进一步即可求得答案.【详解】解:设点D (m ,8m),过点D 作x 轴的垂线交CE 于点G ,过点A 过x 轴的平行线交DG 于点H ,过点A 作AN ⊥x 轴于点N ,如图所示:∵∠GDC +∠DCG =90°,∠GDC +∠HDA =90°,∴∠HDA =∠GCD ,又AD =CD ,∠DHA =∠CGD =90°,∴△DHA ≌△CGD (AAS),∴HA =DG ,DH =CG ,同理△ANB ≌△DGC (AAS),∴AN =DG =1=AH ,则点G (m ,8m﹣1),CG =DH , AH =﹣1﹣m =1,解得:m =﹣2,故点G (﹣2,﹣5),D (﹣2,﹣4),H (﹣2,1),则点E (﹣85,﹣5),GE =25, CE =CG ﹣GE =DH ﹣GE =5﹣25=235, 故选B .【点睛】 本题考查了正方形的性质、反比例函数图象上点的坐标特点和全等三角形的判定与性质,构造全等、充分运用正方形的性质是解题的关键.9.D解析:D【分析】】①通过解方程得到该方程的根,结合“倍根方程”的定义进行判断;②设x 2=2x 1,得到x 1•x 2=2x 12=2,得到当x 1=1时,x 2=2,当x 1=-1时,x 2=-2,于是得到结论;③根据“倍根方程”的定义即可得到结论;④若点(m ,n )在反比例函数y =2x 的图象上,得到mn=2,然后解方程mx 2-3x+n=0即可得到正确的结论;【详解】解:①∵方程x 2+2x-8=0的两个根是x 1=-4,x 2=2,则2×2≠-4,∴方程x 2+2x-8=0不是倍根方程,故①错误;②若关于x 的方程x 2+ax+2=0是倍根方程,则2x 1=x 2,∵x 1+x 2=-a ,x 1•x 2=2,∴2x 12=2,解得x 1=±1,∴x 2=±2,∴a=±3,故②正确;③解方程(x-3)(mx-n )=0得,123,n x x m ==, 若(x-3)(mx-n )=0是倍根方程,则6n m =或23n m⨯=, ∴n=6m 或3m=2n ,故③错误;④∵点(m ,n )在反比例函数y =2x 的图象上, ∴mn=2,即2n m=, ∴关于x 的方程为2230mx x m -+=, 解方程得1212,x x m m==, ∴x 2=2x 1, ∴关于x 的方程mx 2-3x+n=0是倍根方程,故④正确;故选D .【点睛】本题考查了反比例函数图象上点的坐标特征,根与系数的关系,正确的理解倍根方程的定义是解题的关键.10.C解析:C【分析】将点(2,1)代入k y x=中求出k 值,再根据反比例函数的性质对四个选项逐一分析即可. 【详解】 将点(2,1)代入k y x=中,解得:k=2, A .k=2,此说法正确,不符合题意; B .k=2﹥0,反比例函数图象分布在第一、三象限,此书说法正确,不符合题意; C .k=2﹥0且x ﹥0,函数图象位于第一象限,且y 随x 的增大而减小,此说法错误,符合题意;D .k=2﹥0且x ﹥0,函数图象位于第一象限,且y 随x 的增大而减小,此说法正确,不符合题意;故选:C .【点睛】本题考查了反比例函数的性质,熟练掌握反比例函数的性质,理解函数图象上的点与解析式的关系是解答的关键.11.B解析:B【分析】先根据反比例函数的图像,判断k 的符号,然后再判断一次函数的图像.【详解】A 中,反比例函数经过一、三象限,故k >0,则一次函数应经过一、二、四象限,错误;B 中,反比例函数经过一、三象限,故k >0,则一次函数应经过一、二、四象限,正确;C中,反比例函数经过二、四象限,故k<0,则一次函数应经过一、二、三象限,错误;D中,反比例函数经过二、四象限,故k<0,则一次函数应经过一、二、三象限,错误;故选:B.【点睛】本题考查一次函数与反比例函数图像的性质,解题关键是通过函数的系数符号,判断函数图象经过的象限.12.A解析:A【分析】设A(a,b),则B(2a,2b),将点A、B分别代入所在的双曲线解析式进行解答即可.【详解】解:设A(a,b),则B(2a,2b),∵点A在反比例函数12yx=-的图象上,∴ab=−2;∵B点在反比例函数2kyx=的图象上,∴k=2a•2b=4ab=−8.故选:A.【点睛】本题考查了反比例函数图象上点的坐标特征,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.二、填空题13.35【分析】根据△ABC∽△DEF得到结合△ABC的三边长分别为762△DEF 的两边分别为13可以得到△DEF的两边13分别与△ABC的两边26是对应边得到两三角形相似比为可以求出△DEF的第三边【解析:3.5【分析】根据△ABC∽△DEF,得到AB AC BCDE DF EF==,结合△ABC的三边长分别为7、6、2,△DEF的两边分别为1、3,可以得到△DEF的两边1、3分别与△ABC的两边2,6是对应边,得到两三角形相似比为12,可以求出△DEF的第三边.【详解】解:∵要使△ABC∽△DEF,需AB AC BC DE DF EF==,∵△ABC的三边长分别为7、6、2,△DEF的两边分别为1、3,∴△DEF的两边1、3分别与△ABC的两边2,6是对应边,∴两三角形相似比为12, ∴△DEF 的第三边长为:7×12=3.5. 故答案为:3.5.【点睛】本题考查了相似三角形的性质,根据两三角形相似,结合两三角形的线段长求出相似比是解题的关键.14.【分析】根据黄金分割的定义以及等高的两个三角形面积之比等于底之比即可求出的面积【详解】解:∵在中点是线段的黄金分割点()∴∵的面积是∴的面积故答案为:【点睛】本题考查了黄金分割的概念也考查了三角形的解析:2【分析】根据黄金分割的定义,以及等高的两个三角形面积之比等于底之比,即可求出ABC 的面积.【详解】解:∵在ABC 中,点D 是线段BC 的黄金分割点(DC BD >),∴13BD BC 122=-=: ∵ABD △的面积是2∴ABC 的面积()22==故答案为:2.【点睛】本题考查了黄金分割的概念,也考查了三角形的面积公式,解题的关键是正确理解黄金分割的概念.15.18【分析】根据平行四边形的性质可得BC ∥AD 进而可判定△ADF ∽△EBF 然后用相似三角形面积的比等于相似比的平方即可求出△AFD 的面积【详解】解:∵ABCD 是平行四边形∴AD ∥BCAD =BC ∴△A解析:18【分析】根据平行四边形的性质可得BC ∥AD ,进而可判定△ADF ∽△EBF ,然后用相似三角形面积的比等于相似比的平方即可求出△AFD 的面积.【详解】解:∵ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,∴△ADF ∽△EBF ,∵EC =2BE ,∴BC =3BE ,即AD =3BE ,∴S △AFD =9S △EFB =18.故答案为:18.【点睛】本题考查了平行四边形的性质和相似三角形的判定和性质,属于常考题型,熟练掌握上述知识是解题的关键.16.或【分析】分两种情况:①点落在AD 边上根据矩形与折叠的性质易得即可求出a 的值;②点落在CD 边上证明根据相似三角形对应边成比例即可求出a 的值【详解】解:分两种情况:①当点落在AD 边上时如图1四边形AB 解析:103或25. 【分析】分两种情况:①点'B 落在AD 边上,根据矩形与折叠的性质易得=AB BE ,即可求出a 的值;②点'B 落在CD 边上,证明''ADB B CE ∆∆,根据相似三角形对应边成比例即可求出a 的值.【详解】解:分两种情况:①当点B '落在AD 边上时,如图1.四边形ABCD 是矩形,90BAD B ∴∠=∠=︒,将ABE ∆沿AE 折叠,点B 的对应点B '落在AD 边上,'1452BAE B AE BAD ∴∠=∠=∠=︒, AB BE ∴=,325a ∴=, 103a ∴=;②当点'B 落在CD 边上时,如图2.∵四边形ABCD 是矩形,90BAD B C D ∴∠=∠=∠=∠=︒,AD BC a ==.将ABE ∆沿AE 折叠,点B 的对应点'B 落在CD 边上,'90B AB E ∴∠=∠=︒,'2AB AB ==,'35BE B E a ==, 2224DB B A AD a ''∴-=-3255EC BC BE a a a =-=-=. 在ADB '∆与B CE '∆中,9090B AD EB C AB D D C ∠=∠=︒-∠''⎧⎨∠=∠=︒'⎩, ''ADB B CE ∴∆∆, '''DB AB CE B E ∴=,即2422355a a a -=, 解得125a =,225a = 综上,所求a 的值为10325. 故答案为103或53. 【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质,勾股定理,相似三角形的判定与性质.进行分类讨论与数形结合是解题的关键.17.【分析】作AH ⊥BC 交CB 的延长线于H 根据反比例函数解析式求出A 的坐标点B 的坐标求出AHBH 根据勾股定理求出AB 根据菱形的面积公式计算即可【详解】作AH ⊥BC 交CB 的延长线于H ∵反比例函数y =的图象 解析:2【分析】作AH ⊥BC 交CB 的延长线于H ,根据反比例函数解析式求出A 的坐标、点B 的坐标,求出AH、BH,根据勾股定理求出AB,根据菱形的面积公式计算即可.【详解】作AH⊥BC交CB的延长线于H,∵反比例函数y=3x的图象经过A、B两点,A、B两点的横坐标分别为1和3,∴A、B两点的纵坐标分别为3和1,即点A的坐标为(1,3),点B的坐标为(3,1),∴AH=3﹣1=2,BH=3﹣1=2,由勾股定理得,AB2222=2,∵四边形ABCD是菱形,∴BC=AB=2∴菱形ABCD的面积=BC×AH=2故答案为2【点睛】本题考查的是反比例函数的系数k的几何意义、菱形的性质,根据反比例函数解析式求出A的坐标、点B的坐标是解题的关键.18.y=【分析】设A坐标为(xy)根据四边形OABC为平行四边形利用平移性质确定出A的坐标利用待定系数法确定出解析式即可【详解】解:设A坐标为(xy)∵B(2﹣2)C(30)以OCCB为边作平行四边形O解析:y=2 x【分析】设A坐标为(x,y),根据四边形OABC为平行四边形,利用平移性质确定出A的坐标,利用待定系数法确定出解析式即可.【详解】解:设A坐标为(x,y),∵B(2,﹣2),C(3,0),以OC,CB为边作平行四边形OABC,∴x+3=0+2,y+0=0﹣2,解得:x=﹣1,y=﹣2,即A(﹣1,﹣2),设过点A的反比例解析式为y=kx,把A(﹣1,﹣2)代入得:k=2,则过点A 的反比例函数解析式为y =2x , 故答案为:y =2x. 【点睛】 此题考查了待定系数法求反比例函数解析式,以及平行四边形的性质,熟练掌握待定系数法是解本题的关键.19.27【分析】根据点A(ab)是一次函数y=2x-3与反比例函数的交点将点代入函数解析式得出等量关系再将因式分解即可求算答案【详解】∵点A(ab)是一次函数y=2x-3与反比例函数的交点将点代入解析式解析:27【分析】根据点A(a ,b)是一次函数y=2x-3与反比例函数9y x=的交点,将点代入函数解析式得出等量关系,再将222a b ab -因式分解即可求算答案.【详解】∵点A(a ,b)是一次函数y=2x-3与反比例函数9y x=的交点,将点代入解析式得: 23,9b a ab =-=又∵()222=2a b ab ab a b -- ∴()2=93=27ab a b -故答案为:27【点睛】本题考查函数交点的意义,将所求式子因式分解再利用整体思想求算是解题关键. 20.-4【分析】先求出点A 的坐标然后表示出AOBO 的长度根据AO=3BO 求出点C 的横坐标代入直线解析式求出纵坐标用待定系数法求出反比例函数解析式【详解】解:∵直线与y 轴的交点A 的坐标为∴∵∴轴∴点C 的横解析:-4【分析】先求出点A 的坐标,然后表示出AO 、BO 的长度,根据AO=3BO ,求出点C 的横坐标,代入直线解析式求出纵坐标,用待定系数法求出反比例函数解析式.【详解】解:∵直线3y x =-+与y 轴的交点A 的坐标为()0,3,∴3AO =.∵3AO BO =,∴1BO =,CB x ⊥轴∴点C 的横坐标为1-.把1x =-代入3y x =-+,得()134y =--+=,∴点C 的坐标为()1,4-,把()1,4C -代入k y x=,得4k =-. 故答案是:-4.【点睛】本题考查的是反比例函数与一次函数的交点问题,根据题意确定点C 的横坐标并求出纵坐标是解题的关键. 三、解答题21.(1)4,6;(2)4.5;(3)存在,理由见解析.【分析】(1)把A(-2,0),代入y =2x +b 得到b 的值,再把C(m ,6)代入y =2x +b ,求出m 的值,进而即可得到答案;(2)先求出B 的坐标,再求出点 D 的纵坐标,根据S △ACD =S △ABD +S △BCD ,进而即可求解;(3)分两种情况①△AOB ∽△EAB ,②△AOB ∽△ABE ,分别列出比例式,进而即可求解【详解】(1)∵直线y =2x +b 经过点A(-2,0),∴-4+b =0,∴b =4,∴直线y =2x +4.把C(m ,6)代入y =2x +4中,得6=2m +4,解得m =1,∴C(1,6).把C(1,6)代入反比例函数()0k y x x=>中,得k =6. (2)令x =0,得y =2x +4=4,∴B(0,4).∵BD ⊥y 轴于B ,∴D 点的纵坐标为4,把y =4代入反比例函数y =6x 中,得x =32, ∴D (32,4), ∴BD =32, ∴S △ACD =S △ABD +S △BCD =4.5;(3)存在.当∠BAE =90°时,如图①,∵∠BAE =∠BOA =90°,∠ABE =∠OBA ,∴△AOB ∽△EAB , ∴AB BO EB BA =, ∵AB=222425+=,∴BE =5,∴OE =1,∴E(0,-1);当∠ABE =90°时,如图②,∵∠ABE =∠AOB =90°,∠OAB =∠BAE ,∴△AOB ∽△ABE ,∴AB AO AE BA= ∴AE =2AB AO=10, ∴OE =AE -AO =10-2=8,∴E(8,0).∴存在点E(除点O 外),使得△ABE 与△AOB 相似,其坐标为(8,0)或(0,-1).① ②【点睛】本题主要考查一次函数与反比例函数的综合以及相似三角形的判定和性质,掌握待定系数法以及相似三角形的性质,是解题的关键.22.(1)图见解析;(3,﹣3);(2)图见解析.【分析】(1)首先找到A 、B 、C 点对应点A 1、B 1、C 1,然后连接即可;(2)利用网格特点和旋转的性质画出A 、B 的对应点A 2、B 2即可【详解】解:(1)如图,△A 1B 1C 1所作,点A 1的坐标为(3,﹣3);(2)如图,△A 2B 2C 2为所作.【点睛】本题考查了作图-位似变换:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;接着根据位似比,确定能代表所作的位似图形的关键点;然后顺次连接上述各点,得到放大或缩小的图形.也考查了旋转变换.23.(1)5y x =,6y x =-+;(2)12 【分析】(1)将点A (1,5)代入k y x=(k≠0,x >0),得到k 的值及反比例函数解析式;再将将点B (m ,1)代入反比例函数,得点B 坐标;将点A (1,5),B (5,1)代入y =ax+b ,通过求解二元一次方程组,即可得到答案;(2)结合一次函数6y x =-+,得点D 坐标;再由△AOB 的面积=△BOD 的面积-△AOD 的面积,经计算即可得到答案.【详解】(1)将点A (1,5)代入k y x=(k≠0,x >0) 得:51k =解得:k =5 ∴反比例函数的表达式为:5y x =将点B (m ,1)代入5y x=得:m =5∴点B (5,1)将点A (1,5),B (5,1)代入y =ax+b 得551a b a b +=⎧⎨+=⎩解得:16a b =-⎧⎨=⎩∴一次函数表达式为:6y x =-+;(2)由一次函数6y x =-+可知:D (0,6)∴△AOB 的面积=△BOD 的面积-△AOD 的面积1165611222=⨯⨯-⨯⨯=. 【点睛】本题考查了反比例函数、一次函数、二元一次方程组的知识;解题的关键是熟练掌握反比例函数、一次函数、二元一次方程组的性质,从而完成求解.24.(1)8;(2)10【分析】(1)将点A 的坐标为(2,4)代入y=kx (x >0),可得结果;(2)利用反比例函数的解析式可得点B 的坐标,利用三角形的面积公式和梯形的面积公式可得结果.【详解】解:(1)将点A 的坐标为(2,4)代入y =k x (x >0), 可得k =xy =2×4=8,∴k 的值为8;(2)∵k 的值为8,∴函数y =k x 的解析式为y =8x. ∵D 为OC 中点,OD =2,∴OC =4.∴点B 的横坐标为4.将x =4代入y =8x . 可得y =2.∴点B 的坐标为(4,2).∴S 四边形OABC =S △AOD +S 四边形ABCD =1124(24)222⨯⨯+⨯+⨯=10.【点睛】本题主要考查了反比例函数图象上点的特征和四边形的面积,运用数形结合思想是解答此题的关键.25.⑴15y x =,2y x =+;⑵PB PC -的最大值为32,()P 0,2 ;⑶5x 0-<<或3x >.【分析】(1)利用待定系数法,即可得到反比例函数和一次函数的解析式;(2)根据一次函数y 1=x+2,求得与y 轴的交点P ,此交点即为所求;(3)根据AB 两点的横坐标及直线与双曲线的位置关系求x 的取值范围.【详解】⑴.∵()A 3,5在反比例函数()2m y m 0x =≠上 ∴m 3515=⨯=∴反比例函数的解析式为15y x =把()B a,3-代入15y x=可求得()a 1535=÷-=- ∴()B 5,3--. 把()()A 3,5,B 5,3--代入y kx b =+为3553k b k b +=⎧⎨-+=-⎩ 解得12k b =⎧⎨=⎩. ∴一次函数的解析式为2y x =+.⑵PB PC -的最大值就是直线AB 与两坐标轴交点间的距离.设直线2y x =+与y 轴的交点为P .令0y =,则20x +=,解得2x =- ,∴()C 2,0-令0x =,则y 022=+=,,∴()P 0,2∴22PB 5552=+=,22PB 2222=+=∴PB PC -的最大值为522232-= .⑶根据图象的位置和图象交点的坐标可知:当12y y >时x 的取值范围为;5x 0-<<或3x >.【点睛】本题考查了反比例函数与一次函数的交点问题,待定系数法求反比例函数和一次函数的解析式,根据点的坐标求线段长,正确掌握反比例函数的性质是解题的关键.26.(1)见解析;(2)见解析.【分析】(1)根据菱形的对角线平分一组对角可得∠CDB =∠ADB ,然后利用“边角边”证明△APD 和△CPD 全等,然后根据全等三角形对应角相等证明即可(2)利用两组角对应相等则两三角形相似,证明△APE 与△FPA 相似;根据相似三角形的对应边成比例及全等三角形的对应边相等即可得到结论.【详解】(1)∵四边形ABCD 为菱形,∴DA =DC ,∠CDB =∠ADB ,在△ADP 和△CDP 中,AD CD BDC CBD DP DP =⎧⎪∠=∠⎨⎪=⎩,∴△ADP ≌△CDP (SAS ),∴PA =PC ;(2)∵△ADP ≌△CDP ,∴∠PAD =∠PCD ,∵四边形ABCD 为菱形,∴DC ∥AB ,∴∠PCD =∠PFA ,∴∠PAE =∠PFA ,而∠APE =∠FPA ,∴△PAE ∽△PFA ,∴PA :PF =PE :PA ,∴PA 2=PE •PF ,∵PA =PC ,∴PC 2=PE •PF .【点睛】本题考查了相似三角形的判定,全等三角形的判定,菱形的性质等知识点,本题中依据三角形的全等或相似得出线段的相等或比例关系是解题的关键.。
北师大版九年级下册数学《期中》测试卷及参考答案
北师大版九年级下册数学《期中》测试卷及参考答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.比较2,5,37的大小,正确的是()A.3257<<B.3275<<C.3725<<D.3752<<2.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为( )A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣53.已知m=4+3,则以下对m的估算正确的()A.2<m<3 B.3<m<4 C.4<m<5 D.5<m<64.如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是()A.﹣2 B.0 C.1 D.45.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210 B.x(x﹣1)=210C.2x(x﹣1)=210 D.12x(x﹣1)=2106.对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1、x2,且x1<1<x2,则c的取值范围是( )A.c<﹣3 B.c<﹣2 C.c<14D.c<17.下面四个手机应用图标中是轴对称图形的是()A.B.C.D.8.如图,A,B是反比例函数y=4x在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是()A.4 B.3 C.2 D.19.如图,已知⊙O的直径AE=10cm,∠B=∠EAC,则AC的长为()A.5cm B.52cm C.53cm D.6cm10.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)1.计算618136的结果是_____________.2.因式分解:x3﹣4x=_______.3.若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是_____.4.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD 的周长为_____________.5.如图所示,一次函数y=ax+b 的图象与x 轴相交于点(2,0),与y 轴相交于点(0,4),结合图象可知,关于x 的方程ax+b=0的解是__________.6.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为___________.三、解答题(本大题共6小题,共72分)1.解方程:12133x x x -+=--2.先化简,再求值:233()111a a a a a -+÷--+,其中a=2+1.3.如图,在四边形ABCD 中,∠ABC=90°,AC=AD ,M ,N 分别为AC ,CD 的中点,连接BM ,MN ,BN .(1)求证:BM=MN ;(2)∠BAD=60°,AC 平分∠BAD ,AC=2,求BN 的长.4.周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D 竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.5.某商场服装部分为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组销售额的数据,绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)该商场服装营业员的人数为,图①中m的值为;(2)求统计的这组销售额数据的平均数、众数和中位数.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、B4、C5、B6、B7、D8、B9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)12、x(x+2)(x﹣2)3、0或14、10.5、x=26、2.5×10-6三、解答题(本大题共6小题,共72分)x=1、12、3、(1)略;(24、河宽为17米5、(1)25;28;(2)平均数:18.6;众数:21;中位数:18.。
新北师大版九年级数学下册期中考试(参考答案)
新北师大版九年级数学下册期中考试(参考答案)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.3-的倒数是( )A .3B .13C .13-D .3-2.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-3.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( )A B .C .6,7,8 D .2,3,44.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有( )A .9天B .11天C .13天D .22天5.已知关于x 的一元二次方程22(1)210a x x a --+-=有一个根为0x =,则a 的值为( )A .0B .±1C .1D .1-6.用配方法解方程2x 2x 10--=时,配方后所得的方程为( )A .2x 10+=()B .2x 10-=()C .2x 12+=()D .2x 12-=()7.如图,将▱ABCD 沿对角线AC 折叠,使点B 落在B ′处,若∠1=∠2=44°,则∠B 为( )A.66°B.104°C.114°D.124°8.如图,直线a∥b,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为()A.30°B.32°C.42°D.58°9.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△=15,则CD的长为()ABDA.3 B.4 C.5 D.610.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10 B.12 C.16 D.18二、填空题(本大题共6小题,每小题3分,共18分)1.计算31)(31)的结果等于___________.2.因式分解:x3﹣4x=_______.3.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________.4.如图,点A 在双曲线1y=x 上,点B 在双曲线3y=x上,且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为__________.5.如图所示,一次函数y=ax+b 的图象与x 轴相交于点(2,0),与y 轴相交于点(0,4),结合图象可知,关于x 的方程ax+b=0的解是__________.6.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则AEF 的周长=__________cm .三、解答题(本大题共6小题,共72分)1.解方程:15102x x x x-+--=22.已知关于x 的一元二次方程x 2﹣(2k ﹣1)x+k 2+k ﹣1=0有实数根.(1)求k 的取值范围;(2)若此方程的两实数根x 1,x 2满足x 12+x 22=11,求k 的值.3.已知:如图,平行四边形ABCD ,对角线AC 与BD 相交于点E ,点G 为AD 的中点,连接CG ,CG 的延长线交BA 的延长线于点F ,连接FD .(1)求证:AB=AF ;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.4.如图,已知⊙O为Rt△ABC的内切圆,切点分别为D,E,F,且∠C=90°,AB=13,BC=12.(1)求BF的长;(2)求⊙O的半径r.5.为了了解居民的环保意识,社区工作人员在光明小区随机抽取了若干名居民开展主题为“打赢蓝天保卫战”的环保知识有奖问答活动,并用得到的数据绘制了如图条形统计图:请根据图中信息,解答下列问题:(1)本次调查一共抽取了名居民;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)社区决定对该小区500名居民开展这项有奖问答活动,得10分者设为“一等奖”,请你根据调查结果,帮社区工作人员估计需准备多少份“一等奖”奖品.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、B4、B5、D6、D7、C8、B9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、22、x(x+2)(x﹣2)3、7或-14、25、x=26、9三、解答题(本大题共6小题,共72分)1、x=7.2、(1)k≤58;(2)k=﹣1.3、(1)略;(2)结论:四边形ACDF是矩形.理由略.4、(1)BF=10;(2)r=2.5、(1)50;(2)平均数是8.26;众数为8;中位数为8;(3)需要一等奖奖品100份.。
【北师大版】九年级数学下期中试题带答案
一、选择题1.下列判断正确的是( )A .对角线相等的四边形是矩形B .将一个矩形风景画的四周镶上宽度相等的金边后得到的新矩形与原矩形相似C .如果两个相似多边形的面积比为16:9,那么这两个相似多边形的周长比可能是4:3D .若点C 是AB 的黄金分割点,且AB =6cm ,则BC 的长约为3.7cm2.下列各组线段能成比例的是( )A .1.5cm ,2.5cm , 3.5cm ,4.5cmB .1cm ,2cm ,3cm ,4cmC .3cm , 6cm , 4cm , 8cmD .2cm ,10cm ,5cm ,15cm 3.如果两个相似三角形的对应高之比是1:2,那么它们的周长比是( )A .1:2B .1:4C .1:2D .2:1 4.如图,在平行四边形ABCD 中,点E 在边DC 上,DE :EC=5:2,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为( )A .5:7B .10:4C .25:4D .25:49 5.如图在ABC 中,其中D 、E 两点分别在AB 、AC 上,且31AD =,29DB =,30AE =,32EC =.若50A ∠=︒,则图中1∠、2∠、3∠、4∠的大小关系正确的是( ).A .13∠=∠B .24∠∠=C .23∠∠=D .14∠<∠ 6.如图,四边形ABCD 是正方形,E 是BC 的中点,连接AE 与对角线BD 相交于点G ,连接CG 并延长,交AB 于点F ,连接DE 交CF 于点H .以下结论:①CDE BAE ∠=∠;②CF DE ⊥;③AF BF =;④22CE CH CF =⋅.其中正确结论的个数有( )A .1B .2C .3D .47.已知()()()112233,,,,,A x y B x y C x y 是反比例函数2y x =上的三点,若123x x x <<,213y y y <<,则下列关系式不正确的是 ( ) A .120x x < B .130x x < C .230x x <D .120x x +< 8.已知点A (x 1,y 1)、B (x 2,y 2)、C (x 3,y 3)是函数y =﹣2x 图象上的点,且x 1<0<x 2<x 3,则y 1,y 2,y 3的大小关系是( )A .y 1>y 2>y 3B .y 1<y 2<y 3C .y 1>y 3>y 2D .无法确定 9.在平面直角坐标系xOy 中,对于横、纵坐标相等的点称为“好点”.下列函数的图象中不存在...“好点”的是( ) A .y x =- B .2y x =+ C .2y x = D .22y x x =- 10.已知11(,)x y ,22(,)x y , 33(,)x y 是反比例函数2y x=-的图象上的三个点,且120x x <<,30x >,则123,,y y y 的大小关系是( ) A .213y y y <<B .312y y y <<C .123y y y <<D .321y y y << 11.如图,函数k y x=-与1y kx =+(0k ≠)在同一平面直角坐标系中的图像大致( ) A . B .C .D .12.如图,直线y =x +2与y 轴交于点A ,与直线y =﹣3x +10交于点B ,P 是线段AB 的中点,已知反比例函数y =k x的图象经过点P ,则k 的值为( )A .1B .3C .6D .8二、填空题13.如图,已知点M 是△ABC 的重心,AB =123,MN ∥AB ,则MN =__________14.如图,在Rt ABC ∆中,90ACB ∠=︒,//CD AB ,ABC ∠的平分线BD 交AC 于点E ,若10AB =,6BC =,则AE =_______.15.如图,线段CD 两个端点的坐标分别为C (1,2)、D (2,0),以原点为位似中心,将线段CD 放大得到线段AB ,若点B 坐标为(5,0),则点A 的坐标为__________.16.如图,P 为△ABC 的重心,连结AB 并延长BC 于点D ,过点P 作EF ∥BC 分别交AB ,AB 于点E ,F .若△ABC 的面积为36,则△AEF 的面积为____.17.已知()12,y -,()21,y -,()33,y 是反比例函数6y x =-的图象上的三个点,则1y ,2y ,3y 的大小关系是______.18.函数25(1)n y n x -=+是反比例函数,且图象位于第二、四象限内,则n =____.19.如图,Rt △AOB 的一条直角边OB 在x 轴上,双曲线()0k y x x =>经过斜边OA 的中点C ,与另一直角边交于点D ,若3ABO S =,则k 的值为______.20.以正方形ABCD 两条对角线的交点O 为坐标原点,建立如图所示的平面直角坐标系,双曲线y=3x经过点D ,则正方形ABCD 的面积是_____.三、解答题21.如图,在ABC 中,BA BC =,以AB 为直径的O 分别交AC 、BC 于点D 、E ,BC 的延长线与O 的切线AF 交于点F .(1)求证:2ABC CAF ∠=∠;(2)若210AC =:1:4CE EB =,求AF 的长.22.如图,已知平行四边形ABCD ,过点A 的直线交BC 的延长线于E ,交BD 、CD 于F 、G .(1)若3AB =,4BC =,2CE =,求CG 的长;(2)证明:2AF FG FE =⋅.23.综合与实践将矩形ABCD 和Rt CEF △按如图1的方式放置,已知点D 在CF 上(2CF CD >),90FCE ∠=︒,连接BF ,DE .特例研究(1)如图1,当AD CD =,CE CF =时,线段BF 与DE 之间的数量关系是_______;直线BF 与直线DE 之间的位置关系是_______;(2)在(1)条件下中,将矩形ABCD 绕点C 旋转到如图2的位置,试判断(1)中结论是否仍然成立,并说明理由;探究发现(3)如图3,当2CF CE =,2CB CD =时,试判断线段BF 与DE 之间的数量关系和直线BF 与直线DE 之间的位置关系,并说明理由;知识应用(4)如图4,在(3)的条件下,连接BE ,FD ,若22CE CD ==,请直接写出22BE FD +的值.24.如图,在矩形OABC 中,OA=3,OC=2,F 是AB 上的一个动点(F 不与A ,B 重合),过点F 的反比例函数k y x=(k >0)的图象与BC 边交于点E . (1)写出B 的坐标;(2)当F 为AB 的中点时,求反比例函数的解析式;(3)求当k 为何值时,△EFA 的面积最大,最大面积是多少?25.如图,一次函数y kx b =+的图象交反比例函数()0a y x x=>的图象于()()2,4,,1A B m --两点,交x 轴于点C .(1)求反比例函数与一次函数的关系式.(2)求ABO ∆的面积.(3)根据图象回答:当x 为何值时,一次函数的值大于反比例函数的值?26.已知一次函数y 1 = yy − (2y + 1)的图象与 x 轴和 y 轴分别交于 A 、B 两点,A (3,0),一次函数与反比例函数21k y x+=-的图象分别交于 C 、D 两点.(1)求一次函数与反比例函数解析;(2)求△OCD 的面积;(3)直接写出 y 1> y 2时,y 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】A.利用矩形的判定定理对角线相等的平行四边形可判断;B.一个矩形风景画的四周镶上宽度相等的金边后得到的新矩形与原矩形相似应满足长与宽相等时可以,而矩形的长与宽一般不等;C.利用相似图形的性质即可;D.利用黄金分割法可求出BC有两个值即可.【详解】解:A、对角线相等的平行四边形是矩形,故此选项错误;B、将一个矩形风景画的四周镶上宽度相等的金边后得到的新矩形与原矩形不一定相似,故此选项错误;C、如果两个相似多边形的面积比为16:9,则两个相似多边形的相似比为4:3,那么这两个相似多边形的周长比等于相似比是4:3,故此选项正确;D、若点C是AB的黄金分割点,且AB=6cm,则BC的长约为3.7cm或2.3cm,故此选项错误;故选择:C.【点睛】本题综合性考查矩形,矩形相似,相似多边形的性质,黄金分割问题,掌握矩形的判定方法,矩形相似的判定方法,相似多边形的性质,会求黄金分割中线段的长是解题关键.2.C解析:C【分析】根据比例线段的概念:如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.【详解】解:A、1.5×4.5≠2.5×3.5,故本选项错误;B、1×4≠2×3,故本选项错误;C、3×8=4×6,故本选项正确;D≠,故本选项错误.故选:C.【点睛】此题考查了比例线段的概念.注意在相乘的时候,最小的和最大的相乘,另外两个相乘,看它们的积是否相等.3.A解析:A【分析】根据相似三角形对应高的比等于相似比,周长的比等于相似比解答.【详解】解:∵对应高之比是1:2,∴相似比=1:2,∴对应周长之比是1:2.故选:A .【点睛】本题主要考查相似三角形的性质,周长的比等于相似比.4.D解析:D【分析】 根据题意证明DEFBAF ,再利用相似比得到面积比. 【详解】解:∵四边形ABCD 是平行四边形,∴//CD AB ,CD AB =,∵:5:2DE EC =,∴:5:7DE DC =,∴:5:7DE AB =, ∵DEF BAF , ∴22::25:49DEF BAF S S DE AB ==.故选:D .【点睛】本题考查相似三角形的性质,解题的关键是掌握相似三角形相似比和面积比的关系. 5.C解析:C【分析】根据31AD =,30AE =,可得21∠<∠;根据题意,通过计算AB 和CD ,可得12AD AE AC AB ,即证明ADE ACB ∽,即可得到各个角度的大小关系. 【详解】∵31AD =,30AE =∴21∠<∠∵31AD =,29DB =,30AE =,32EC =∴60AB AD BD =+=,62AC AE EC =+= ∴12ADAE AC AB∵50A ∠=︒∴ADE ACB ∽∴14∠=∠,23∠∠=∴13∠>∠,24∠<∠故选:C .【点睛】 本题考查了相似三角形的知识;解题的关键是熟练掌握相似三角形的性质,从而完成求解.6.D解析:D【分析】证明△ABE ≌△DCE ,可得结论①正确;由正方形的性质可得AB=AD=BC=CD ,BE=CE ,∠DCE=∠ABE=90°,∠ABD=∠CBD=45°,可证△ABE ≌△DCE ,△ABG ≌△CBG ,可得∠BCF=∠CDE ,由余角的性质可得结论②;证明△DCE ≌△CBF 可得结论③,证明△CHF ∽△CBF 即可得结论④正确.【详解】解:∵四边形ABCD 是正方形,点E 是BC 的中点,∴AB=AD=BC=CD ,BE=CE ,∠DCE=∠ABE=90°,∠ABD=∠CBD=45°,∴△ABE ≌△DCE (SAS )∴∠DEC=∠AEB ,∠BAE=∠CDE ,DE=AE ,故①正确,∵AB=BC ,∠ABG=∠CBG ,BG=BG ,∴△ABG ≌△CBG (SAS )∴∠BAE=∠BCF ,∴∠BCF=∠CDE ,且∠CDE+∠CED=90°,∴∠BCF+∠CED=90°,∴∠CHE=90°,∴CF ⊥DE ,故②正确,∵∠CDE=∠BCF ,DC=BC ,∠DCE=∠CBF=90°,∴△DCE ≌△CBF (ASA ),∴CE=BF ,∵CE=12BC=12AB , ∴BF=12AB , ∴AF=BF ,故③正确,∵∠BCF+∠BFC=90°,∠DEC=∠BFC∴∠BCF+∠DECC=90°,∴∠CHE=90°∴∠CHE=∠FBC又∠DEC=∠BFC∴△CHF ∽△CBF ∴CH CE BC CF= ∵BC=2CE , ∴2BC CE CE CE CH CF CF== ∴22CE CH CF =⋅故选:D .【点睛】本题考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,直角三角形的性质,勾股定理等知识,熟练运用这些性质进行推理是本题的关键.7.A解析:A【分析】根据反比例函数2y x=和x 1<x 2<x 3,y 2<y 1<y 3,可得点A ,B 在第三象限,点C 在第一象限,得出x 1<x 2<0<x 3,再选择即可.【详解】 解:∵反比例函数2y x=中,2>0, ∴在每一象限内,y 随x 的增大而减小,∵x 1<x 2<x 3,y 2<y 1<y 3,∴点A ,B 在第三象限,点C 在第一象限,∴x 1<x 2<0<x 3,∴x 1•x 2>0,x 1•x 3<0,x 2•x 3<0,x 1+x 2<0,故选:A .【点睛】本题考查了反比例函数图象上点的坐标特征,解答此题的关键是熟知反比例函数的增减性,本题是逆用,难度有点大.8.C解析:C【分析】根据反比例函数图象上点的坐标特征得到y 1=12x -,y 2=22x -,y 3=32x -,然后根据x 1<0<x 2<x 3比较y 1,y 2,y 3的大小.【详解】点(x 1,y 1),(x 2,y 2),(x 3,y 3)都是2y x =-的图象上的点,∴y 1=12x -,y 2=22x -,y 3=32x -, 而x 1<0<x 2<x 3,∴y 1>y 3>y 2.故选:C .【点睛】本题考查了反比例函数图象上点的坐标特征:熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.9.B解析:B【分析】根据“好点”的定义判断出“好点”即是直线y=x 上的点,再各函数中令y=x ,对应方程无解即不存在“好点”.【详解】解:根据“好点”的定义,好点即为直线y=x 上的点,令各函数中y=x ,A 、x=-x ,解得:x=0,即“好点”为(0,0),故选项不符合;B 、2x x =+,无解,即该函数图像中不存在“好点”,故选项符合;C 、2x x=,解得:x =x =“好点”)和(,),故选项不符合;D 、22x x x =-,解得:x=0或3,即“好点”为(0,0)和(3,3),故选项不符合; 故选B.【点睛】本题考查了函数图像上的点的坐标,涉及到解分式方程,一元二次方程,以及一元一次方程,解题的关键是理解“好点”的定义.10.B解析:B【分析】 先根据反比例函数2y x=-的系数20-<判断出函数图象在二、四象限,在每个象限内,y 随x 的增大而增大,再根据120x x <<,30x >,判断出1y 、2y 、3y 的大小.【详解】 解:反比例函数2y x=-中,20k =-<, ∴此函数的图象在二、四象限,在每一象限内y 随x 的增大而增大,∵120x x <<,30x >30y ,210y y >>,∴312y y y <<,故选:B .【点睛】本题考查了二次函数图象上点的坐标特征.用到的知识点为:k 0<时,反比例函数k y x=图象的分支在二、四象限,在第四象限的函数值总小于在第二象限的函数值;在同一象限内,y 随x 的增大而增大. 11.B解析:B【分析】分k >0和k <0两种情况分类讨论即可确定正确的选项.【详解】解:当k >0时,函数1y kx =+的图象经过一、二、三象限,反比例函数k y x =-的图象分布在二、四象限,没有选项符合题意;当0k <时,函数1y kx =+的图象经过一、二、四象限,反比例函数k y x =-的图象分布在一、三象限,B 选项正确,故选:B.【点睛】考查了反比例函数和一次函数的性质,解题的关键是能够分类讨论,难度不大. 12.B解析:B【分析】先求出直线y =x +2与坐标轴的交点A 坐标,再由两条直线解析式构成方程组,解方程组求得B 点坐标,进而求得中点P 的坐标,问题就迎刃而解了.【详解】解:直线y =x +2中,令x =0,得y =2,∴A (0,2),解2310y x y x =+⎧⎨=-+⎩得24x y =⎧⎨=⎩, ∴B (2,4),∵P 是线段AB 的中点,∴P (1,3),把(1,3)P 代入k y x=中,得3k =, 故选:B .【点睛】本题主要考查了两条直线的相交问题,反比例函数图象上点的坐标特征,待定系数法.本题的关键是求出P 点坐标.二、填空题13.【分析】根据三角形重心的性质可得AD=BD=CM :CD=2:3由MN ∥AB 可得△CMN ∽△CDB 再根据相似三角形的性质求解即可【详解】解:∵点M 是△ABC 的重心∴AD=BD=CM :CD=2:3∵MN解析:【分析】根据三角形重心的性质可得AD=BD=12AB =CM :CD=2:3,由MN ∥AB 可得△CMN ∽△CDB ,再根据相似三角形的性质求解即可.【详解】解:∵点M 是△ABC 的重心,∴AD=BD=12AB =CM :CD=2:3, ∵MN ∥AB ,∴△CMN ∽△CDB , ∴23MN CM DB CD ==,23=,解得MN =.故答案为:【点睛】本题考查了三角形的重心和相似三角形的性质,熟练掌握上述知识是解题的关键. 14.5【分析】首先由勾股定理求出AC 再证明得到进而列方程求解即可【详解】解析:5【分析】首先由勾股定理求出AC ,再证明~ABE CDE ∆∆,得到AB AE CD CE=,进而列方程求解即可.【详解】 90ACB ∠=︒,10AB =,6BC =,8AC ∴==,∴设AE x =,则8CE x =-, BD 平分ABC ∠,ABD DBC ∴∠=∠,又//AB CD ,ABD BDC ∴∠=∠,DBC BDC ∴∠=∠,6BC CD ∴==,//AB CD ,∴~ABE CDE ∆∆,AB AE CD CE ∴= 1068x x∴=- 解得5x =,5AE ∴=故答案为:5.【点睛】此题主要考查了相似三角形和判定与性质,熟练掌握并能灵活运用相似三角形和判定与性质定理是解答此题的关键.15.(255)【分析】利用位似图形的性质结合对应点坐标与位似比的关系得出A 点坐标【详解】解:∵以原点O 为位似中心在第一象限内将线段CD 放大得到线段AB ∴B 点与D 点是对应点则位似比为:5:2∵C (12)∴解析:(2.5,5).【分析】利用位似图形的性质结合对应点坐标与位似比的关系得出A 点坐标.【详解】解:∵以原点O 为位似中心,在第一象限内,将线段CD 放大得到线段AB ,∴B 点与D 点是对应点,则位似比为:5:2,∵C (1,2),∴点A 的坐标为:(2.5,5)故答案为(2.5,5).【点睛】本题考查位似图形的应用,熟练掌握位似图形的相似比和两点间的距离公式是解题关键. 16.16【分析】先根据重心性质得再证明最后根据相似三角形的性质求解即可【详解】解:∵P 为△ABC 重心∴∵∴∴∴故答案为16【点睛】本题考查了三角形的重心的性质和相似三角形的判定与性质重心到顶点的距离与重 解析:16【分析】 先根据重心性质得223AP AP PD AD ==,,再证明AEF ABC ∽,最后根据相似三角形的性质求解即可.【详解】解:∵P 为△ABC 重心, ∴223AP AP PD AD ==, ∵//EF BC∴AEF ABC ∽ ∴23AE AF AB AC == ∴22()163AEF ABC S S ==△△ 故答案为16.【点睛】 本题考查了三角形的重心的性质和相似三角形的判定与性质,重心到顶点的距离与重心到对边中点的距离之比为2:1是解答本题的关键.17.【分析】根据反比例函数图象的性质可得其图象位于二四象限且在每个象限内y 随x 的增大而增大即可求解【详解】解:反比例函数的图象位于二四象限且在每个象限内y 随x 的增大而增大∴故答案为:【点睛】本题考查反比 解析:312y y y <<【分析】根据反比例函数图象的性质可得其图象位于二、四象限,且在每个象限内,y 随x 的增大而增大,即可求解.【详解】 解:反比例函数6y x=-的图象位于二、四象限,且在每个象限内,y 随x 的增大而增大, ∴312y y y <<,故答案为:312y y y <<.【点睛】本题考查反比例函数图象的性质,掌握反比例函数图象的性质是解题的关键. 18.-2【分析】根据反比例函数的定义与性质解答即可【详解】根据反比函数的解析式y=(k≠0)故可知n+1≠0即n≠-1且n2-5=-1解得n=±2然后根据函数的图像在第二四三象限可知n+1<0解得n<-解析:-2.【分析】根据反比例函数的定义与性质解答即可.【详解】根据反比函数的解析式y=k x(k≠0),故可知n+1≠0,即n≠-1,且n 2-5=-1,解得n =±2,然后根据函数的图像在第二、四三象限,可知n+1<0,解得n<-1,所以可求得n=-2.故答案为:-2【点睛】本题考查反比例函数的定义与性质,熟记定义与性质是解题的关键.19.【分析】设点B 的坐标为先根据三角形的面积公式可得从而可得点A 的坐标为再根据线段中点的定义可得点C 的坐标为然后将点C 的坐标代入双曲线的解析式即可得【详解】设点B 的坐标为则解得点C 是OA 的中点即又点在双 解析:32【分析】设点B 的坐标为(,0)(0)a a >,先根据三角形的面积公式可得6AB a=,从而可得点A 的坐标为6(,)A a a ,再根据线段中点的定义可得点C 的坐标为3(,)2a C a,然后将点C 的坐标代入双曲线的解析式即可得.【详解】设点B 的坐标为(,0)(0)a a >,则OB a =, 132ABC S OB AB =⋅=, 32a AB ∴⋅=,解得6AB a=, 6(,)A a a∴, 点C 是OA 的中点,600(,)22a a C ++∴,即3(,)2a C a , 又点3(,)2a C a在双曲线上, 3322a k a ∴=⋅=, 故答案为:32. 【点睛】本题考查了反比例函数的几何应用,熟练掌握反比例函数的图象与性质是解题关键. 20.12【解析】设D (aa )∵双曲线y=经过点D ∴a2=3解得a=∴AD=2∴正方形ABCD 的面积=AD2=(2)2=12故答案为12解析:12【解析】设D (a ,a ),∵双曲线y=3x经过点D , ∴a2=3,解得,∴∴正方形ABCD 的面积=AD 2=(2=12.故答案为12.三、解答题21.(1)见解析;(2)152【分析】(1)根据切线性质可知90CAB CAF ∠+∠=︒,所得等式两边同乘2可得22180CAB CAF ∠+∠=︒,在等腰三角形ABC 中,2180CAB ABC ∠+∠=︒,联立两个等式即可证明.(2)连接AE ,设CE x =,根据等腰三角形性质及勾股定理可得3AE x =,在Rt AEC 中运用勾股定理得出CE 、AE 的值,再根据AEF BEA ∽△△计算得出AF 的值.【详解】(1)证明:∵AB 为O 的直径,AF 是O 的切线,∴AF AB ⊥,90CAB CAF ∠+∠=︒,等式两边同乘2可得:22180CAB CAF ∠+∠=︒①;∵BA=BC ,∴CAB ACB ∠=∠,∴在ABC 中,2180CAB ABC ∠+∠=︒②,联立①和②可得:222CAB CAF CAB ABC ∠+∠=∠+∠,∴2ABC CAF ∠=∠.(2)解:连接AE ,如图:∵:1:4CE EB =,BA=BC ,设CE x =,90AEB =︒∠(直径所对圆周角是直角), ∴在Rt AEB 中,45AB CE EB x x x =+=+=,4BE x =,22=(5)(4)3AE x x x -=,∵在Rt AEC 中,222AE CE AC +=,即()(222321040x x +==,∴解得:2x =,AE=6,AB=10,∵AE ⊥BF ,FAE ABE ∠=∠(弦切角度数等于它所夹弧度所对圆周角度数),∴FAE ABE ∽, ∴FA AB AE BE =,即1068FA =, 解得:152FA =. 【点睛】本题考查切线性质的综合运用,用勾股定理解三角形,灵活运用切线性质和勾股定理是解题关键.22.(1)CG=1;(2)见解析【分析】(1)根据平行四边形的性质得到AB ∥CD ,证明△EGC ∽△EAB ,根据相似三角形的性质列出比例式,代入计算即可;(2)分别证明△DFG ∽△BFA ,△AFD ∽△EFB ,根据相似三角形的性质证明即可.【详解】(1)解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴△EGC ∽△EAB , ∴CG EC AB EB =,即2324CG =+, 解得,CG=1;(2)证明:∴AB ∥CD ,∴△DFG ∽△BFA , ∴FG DF FA FB=,∴AD ∥CB ,∴△AFD ∽△EFB , ∴AF DF FE FB =, ∴FG AF FA FE=, 即2AF FG FE =⋅.【点睛】本题考查了平行四边形的性质,相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.23.(1)BF DE =,BF DE ⊥;(2)(1)中结论仍然成立,理由见解析;(3)2BF DE =,BF DE ⊥,理由见解析;(4)22BE FD +的值为25.【分析】(1)先证FBC EDC ∆∆≌,便可证得BF=DE ,∠BFC=∠CED ,再根据直角三角形两锐角互余及直角三角形判定不难证得BF ⊥DE ;(2)方法同(1),问题易证;(3)利用CED ∆∽CFB ∆证得∠BFC=∠CED ,再根据直角三角形两锐角互余及、对顶角相等及直三角形的判定即可证得结论成立;(4)延长ED 交BF 于点G ,根据勾股定理求出EB 2,FD 2,FE 2,不难求出结果.【详解】解:(1)在矩形ABCD 中,∠BCD =90︒ ,BC=CD ,在Rt CEF △,∠FCE=90︒,FC=CE ,∴∠BCD=∠FCE ,∴FBC EDC ∆∆≌,∴BF DE =,∠BFC=∠DEC∵∠BFC+∠FBC=90︒,∴∠FBC+∠DEC=90︒,∴BF DE ⊥故答案为:BF=DE ,BF DE ⊥(2)(1)中结论仍然成立.理由如下:如图,延长ED 交FB 于点G ,交FC 于点H ,四边形ABCD 是矩形,90BCD ∴∠=︒,AD BC =,90BCF FCD ∴∠+∠=︒,90FCE ∠=︒,90DCE FCD ∴∠+∠=︒,BCF DCE ∴∠=∠.AD CD =,BC CD ∴=,在FBC ∆和EDC ∆中,BC DC =,BCF DCE ∠=∠,CF CE =, ()FBC EDC SAS ∴∆≅∆.BF DE ∴=,BFC DEC ∠=∠.90FCE ∠=︒,90DEC CHD ∴∠+∠=︒,FHG CHD ∠=∠,90BFC FHG ∴∠+∠=︒,90FGE ∴∠=︒, BF DE ∴⊥.∴(1)中结论仍然成立.(3)2BF DE =,BF DE ⊥.如图,延长ED 交CF 于M ,交FB 于N .四边形ABCD 是矩形,90BCD ∴∠=︒,90BCF FCD ∴∠+∠=︒, 90FCE ∠=︒,90DCE FCD ∴∠+∠=︒,BCF DCE ∴∠=∠.2CF CE =,2CB CD =,12CE CD CF CB ∴==. CED CFB ∴∠=∠,12DE BF =. 2BF DE ∴=.90CME CED ∠+∠=︒,90CME CFB ∴∠+∠=︒.CME FMN ∠=∠,90FMN CFB ∴∠+∠=︒.90FNE ∴∠=︒.BF DE ∴⊥.(4)如图,延长ED 交BF 于点G ,则EG ⊥BF 于G ,∵22CE CD ==,2CF CE =,2CB CD =∴CD=1,CF=4,BC=2,∵在RtFGD 中,GF 2+GD 2=FD 2,在RtGBE 中,GE 2+GB 2=BE 2,∴BE 2+FD 2=(GF 2+GE 2)+(GB 2+GD 2)=22EF BD +连接BD ,则BD 2=225BC CD += ,∵在Rt △FCE 中,EF 2=22222420CF CE +=+=∴BE 2+FD 2=20+5=25.【点睛】本题考查了正方形的性质,直角三角形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质及旋转变换等知识,侧重考查了对知识的综合应用.24.(1)B 的坐标为(3,2);(2)函数的解析式为3y x =;(3)当3k =时,S 有最大值,最大值为34. 【分析】(1)根据矩形的性质即可写出B 的坐标;(2)当F 为AB 的中点时,点F 的坐标为(3,1),代入求得函数解析式即可;(3)根据图中的点的坐标表示出三角形的面积,得到关于k 的二次函数,利用二次函数求出最值即可.【详解】(1)∵在矩形OABC 中,OA=3,OC=2,∴B (3,2);(2)∵F 为AB 的中点,∴F (3,1),∵点F 在反比例函数k y x=的图象上, ∴k=3,∴该函数的解析式为3y x=; (3)由题意知E ,F 两点坐标分别为E(2k ,2),F(3,3k ), ∴EFA 12S =AF•BE 13232k k ⎛⎫=⨯- ⎪⎝⎭ 211212k k =- ()2169912k k =--+- 213(3)124k =--+, 当3k =时,S 有最大值,34S =最大值. 【点睛】 本题属于反比例函数综合题,涉及的知识有:坐标与图形性质,待定系数法确定反比例解析式,以及二次函数的性质,熟练掌握待定系数法是解本题的关键.25.(1)81;52y y x x =-=-;(2)15;(3)02x <<或8x > 【分析】(1)根据点A 坐标求出反比例函数的系数,再利用反比例函数解析式求出点B 坐标,再用待定系数法求出一次函数解析式;(2)分别过A 点,B 点作x 轴的垂线,垂足为,E F ,可知三角形ABO 的面积等于梯形ABFE 的面积,就可以算出结果;(3)根据图象找出一次函数在反比例函数上面时x 的取值范围,就可以得到结果.【详解】(1)∵()2,4A -在反比例函数()0a y x x =>上, ∴代入得24k -=, ∴8k =-,∴反比例函数的关系数8y x =-, ∵(),1B m 在8y m =-上, ∴代入得81m-=-, ∴8m =,∴()8,1B -,又∵()()2,4,8,1A B --在一次函数y kx b =+上,∴代入得4218k b k b -=+⎧⎨-=+⎩,解得125k b ⎧=⎪⎨⎪=-⎩, ∴一次函数的解析式为152y x =-; (2)如图,分别过A 点,B 点作x 轴的垂线,垂足为,E F ,∵()()2,4,8,1A B --,∴ABO EABF S S ∆=梯 ()()141822=⨯+⨯- 1562=⨯⨯ 15=,∴ABO S ∆的面积是15;(3)一次函数的值大于反比例函数的值,即一次函数的图象在上方,∴由图知02x <<或8x >.【点睛】本题考查反比例函数和一次函数综合,解题的关键是掌握反比例函数的图象和性质,特殊三角形的面积求法,利用函数图象解不等式的方法.26.(1)13y x =-,22y x =-;(2)32;(3)1x <或2x > 【分析】(1)将点A (3,0)代入y 1 = yy − (2y + 1)即可求一次函数解析式,将k 代入21k y x+=-即可求反比例函数解析式;(2)如图所示作出辅助线,通过一次函数和反比例函数的解析式求出C 、D 的坐标,再由COD COE FOD CHD S S S S S =---矩形OEFH 计算即可;(3)结合图象以及C 、D 的坐标即可得出.【详解】解:(1)将点A (3,0)代入y 1 = yy − (2y + 1)得:3(21)0k k -+=,解得k=1,∴13y x =-,22y x =- (2)如图,连接OC ,OD ,作CE ⊥y 轴于点E ,作DF ⊥x 轴于点F ,CE,DF 交于点H , ∴212COE FOD S S ===,四边形OEFH 为矩形, 由23x x-=-,解得:121,2x x ==, ∴(1,2),(2,1)C D --, ∴CE=1,OE=2,OF=2,DF=1,CH=DH=1,∴COD COE FOD CHD S S S S S =---矩形OEFH=1322111122⨯-⨯⨯--= ∴△OCD 的面积为32;(3)由(2)可知(1,2),(2,1)C D --,通过图象可知:若y 1> y 2,则1x <或2x >.【点睛】本题考查了反比例函数与一次函数综合问题,以及反比例函数与几何问题,解题的关键是熟练掌握反比例函数的图象和性质.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三2016届2015-2016学年(下)期中考试数学试题(本试题共五个大题,26个小题,满分150分,时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答. 2.作答前认真阅读答题卡上的注意事项.参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标为24(,)24b ac b a a --一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号在答题卡中对应的方框涂黑. 1.-15的相反数是( ▲ )A .15B .-15 C .5 D .-52.计算623x x ÷的结果是( ▲ ) A .42xB .32xC .43xD .33x3.如图,已知//AD BC ,30B ∠=︒,E 为BC 上一点,DB 平分ADE ∠,则CED ∠的度数为( ▲ )A .30︒B .60︒C .90︒D .120︒ 4.观察下列图案,既是中心对称图形又是轴对称图形的是( ▲ )第3题图ABECDA .B .C .D .5.下列调查中,最适合采用抽样调查的是( ▲ ) A .对旅客上飞机前的安检B .了解全班同学每周体育锻炼的时间C .调查奥运会金牌获得者的兴奋剂使用情况D .调查我国居民对汽车废气污染环境的看法6.如图,AB 是⊙O 的直径,C 、D 是圆上两点,110AOC ∠=︒,则D ∠的度数为( ▲ )A .25︒B .35︒C .55︒D .70︒ 7.已知方程组24ax by bx ay +=⎧⎨+=⎩的解为21x y =⎧⎨=⎩,则a b +的值为( ▲ )A .1B .2C .3D .48.如图,在边长为2的菱形ABCD 中,45B ∠=︒,AE 为BC 边上的高,将ABE △沿AE 所在直线翻折得'AB E △,'AB 与CD 边交于点F ,则'B F 的长度为( ▲ )A .1 BC.2 D.29.如图,点G 、D 、C 在直线a 上,点E 、F 、A 、B 在直线b 上,若a b //,Rt GEF △从如图所示的位置出发,沿直线b 向右匀速运动,直到EG 与BC 重合时停止运动.在运动过程中,GEF △与矩形ABCD (AB EF >)重合部分....的面积S 随时间t 变化的图象大致是( ▲ )第6题图B第8题图BDFB'E A10.如图,每个图形都由同样大小的“△”按照一定的规律组成,其中第1个图形有4个“△”,第2个图形有7个“△”,第3个图形有11个“△”,…,则第8个图形中“△”的个数为( ▲ )A .46B .48C .5011.右图是二次函数2y ax bx c =++132x -<<-,对称轴为直线1x =-②20a b +=;③24b ac >;④ 320b c +>( ▲ )A .1个B .2个C .3个D .12.如图,直线12y x m =-+(0m >)与x 轴交于点C 轴交于点D ,以CD 为边作矩形ABCD ,点A 在x 双曲线6y x=-经过点B ,与直线CD 交于点E ,则点E 的坐标为( ▲ ) A .(154,85-) B .(4,32-) C .(92,43-) D .(6,1-) D .A .B .C .G D CE F AB ba第9题图第1个第2个第3个第4个……二、填空题:(本题共6小题,每小题4分,共24分)请把下列各题的正确答案填写在答题卡中对应的横线上13.正六边形的每个外角的度数为 ▲ ︒. 14.计算:021(3)()2π---+= ▲ .15.如图,AB 、CD 、EF 都与BD 垂直,垂足分别是B 、D 、F ,且1AB =,3CD =,则EF ︰CD 的值为 ▲ .16.有两组卡片,第一组的三张卡片上分别写有数字3,4,5,第二组的三张卡片上分别写有数字1,3,5,现从每组卡片中各随机抽出一张,用抽取的第一组卡片上的数字减去抽取的第二组卡片上的数字,差为正数的概率为 ▲ .17.如图,在矩形ABCD 中,1AB =,分别以点B 、C 为圆心,1为半径画弧,与BC 边分别交于点M 、N ,且与对角线AC 交于同一点P ,则图中阴影部分的面积为 ▲ .18.如图,在正方形ABCD 中,E 为CD 边上一点,以CE 为对角线构造正方形CMEN ,点N在正方形ABCD 内部,连接AM ,与CD 边交于点F .若3CF =,2DF =,连接BN ,则BN 的长为 ▲ .三、解答题:(本大题共2个小题,每小题7分,共14分)请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤.第17题图第18题图BCD EMNFA19.如图,四边形ABCD是平行四边形,点E在BA的延长线上,点F在AD边上,且AE DF=,AF CD=.求证:FE FC=.20.网瘾低龄化问题已经引起社会各界的高度关注,有关部门在全国范围内对12﹣35岁的网瘾人群进行了简单的随机抽样调查,绘制出以下两幅不完整的统计图.请根据图中的信息,回答下列问题:(1)这次抽样调查中共调查了▲人;(2)请补全条形统计图;(3)扇形统计图中18﹣23岁部分的圆心角的度数是▲︒;第19题图BD EFA全国12-35岁的网瘾人群分布条形统计图人数全国12-35岁的网瘾人群分布扇形统计图(4)据报道,目前我国12﹣35岁网瘾人数约为2000万,请估计其中12﹣23岁网瘾人群的人数.四、解答题:(本大题共4个小题,每小题10分,共40分)请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤. 21.化简:(1)22()(3)(2)+5x y x y x y y ---- (2)135(+2)22y y y y y --÷--- 22.某公司保安部计划从商店购买同一品牌的应急灯和手电筒,已知购买一个应急灯比购买一个手电筒多用20元,若用400元购买应急灯和用160元购买手电筒,则购买应急灯的个数是购买手电筒个数的一半.(1)分别求出该品牌应急灯、手电筒的定价;(2)经商谈,商店给予该公司购买一个该品牌应急灯赠送一个该品牌手电筒的优惠,如果该公司需要手电筒的个数是应急灯个数的2倍还多8个,且该公司购买应急灯和手电筒的总费用不超过670元,那么该公司最多可购买多少个该品牌应急灯?23.如图,斜坡AB 长130米,坡度1i =︰2.4,BC AC ⊥,现计划在斜坡中点D 处挖去部分坡体修建一个平行于水平线CA 的平台DE 和一条新的斜坡BE .(1)若修建的斜坡BE 的坡角为30︒,求平台DE 的长;(结果保留根号)(2)斜坡AB 正前方一座建筑物QM 上悬挂了一幅巨型广告MN ,小明在D 点测得广告顶部M 的仰角为26.5︒,他沿坡面DA 走到坡脚A 处,然后向大楼方向继续行走10米来到P 处,测得广告底部N 的仰角为53︒,此时小明距大楼底端Q 处30米.已知B 、C 、A 、M 、Q 在同一平面内,C 、A 、P 、Q 在同一条直线上,求广告MN 的长度.(参考数据:sin 26.50.45︒≈,cos 26.50.89︒≈,tan 26.50.50︒≈,sin 530.80︒≈,cos530.60︒≈,tan 53 1.33︒≈)24.若一个正整数,它的各位数字是左右对称的,则称这个数是对称数,如22,797,12321都是对称数.最小的对称数是11,没有最大的对称数,因为数位是无穷的.第23题图53°26.5°BDPMQECNA(1)有一种产生对称数的方式是:将某些自然数与它的逆序数相加,得出的和再与和的逆序数相加,连续进行下去,便可得到一个对称数.如:17的逆序数为71,17+71=88,88是一个对称数;39的逆序数为93,39+93=132,132的逆序数为231,132+231=363,363是一个对称数.请你根据以上材料,求以687产生的第一个对称数;(2)若将任意一个四位对称数分解为前两位数所表示的数,和后两位数所表示的数,请你证明这两个数的差一定能被9整除;(3)若将一个三位对称数减去其各位数字之和,所得的结果能被11整除,则满足条件的三位对称数共有多少个?五、解答题:(本大题共2个小题,每小题12分,共24分)请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤.25.在ABC △中,AB AC =,D 为射线BC 上一点,DB DA =,E 为射线AD 上一点,且AE CD =,连接BE .(1)如图1,若120ADB ∠=︒,AC =,求DE 的长;(2)如图2,若2BE CD =,连接CE 并延长,交AB 于点F ,求证:2CE EF =;(3)如图3,若BE AD ⊥,垂足为点E ,求证:2221144AE BE AD +=.BCEA图3图2BCEFA图1BCDEA(1)直接写出点A 和点D 的坐标,并求出点B 的坐标;(2)若点M 是抛物线第一象限内的一个动点,连接DM ,交直线2l 于点N ,连接AM 和AN .设A M N △的面积为S ,当S 取得最大值时,求出此时点M 的坐标及S 的最大值;(3)如图2,动点P 以每秒1个单位长度的速度从点O 出发,沿射线OB 运动;同时,动点Q 以C 出发,沿射线CB 运动,设运动时间为t (0t >).过P 点作PH x ⊥轴,交抛物线于点H ,当点P 、Q 、H 所组成的三角形是直角三角形时,直接写出t 的值.2016级初三(下)半期考试数学答案一、选择题(每题4分,共12题,合计48分)4二、填空题(每题4分,共6题,合计24分)13. 60 °14. 5-315. 1416.5917.p3-3218.257三、解答题:(19、20各7分;21、22、23、24各10分;25、26各12分)19.(7分)证明:∵四边形ABCD是平行四边形∴AD ∥BC ,∠B =∠D ∴∠EAF =∠B∴∠EAF =∠D ……3分 又∵AE =DF ,AF =CD∴△AEF ≌△DFC ……6分 ∴EF =FC ……7分20.(7分)(1) 1500 ; ……1分 (2)如图;……2分(3) 108 °; ……4分 (4)解:(300+450)1500´2000=1000(万人)答:估计其中12-23岁网瘾人群大约有1000万人. ……7分21.(10分)化简下列各式: (1) 22()(3)(2)+5x y x y x y y ----解:原式=2222233(44)5x xy xy y x xy y y --+--++ ……3分=222+2x y……5分(2)135(+2)22y y y y y --÷--- 全国12-35岁的网瘾人群分布条形统计图人数解:原式=1y -y -3y -2¸(y 2-4y -2-5y -2)=1y -y -3y -2´y -2(y -3)(y +3) ……8分=1y -1y +3=233y y ……10分22.(10分)解:(1)设该品牌手电筒的定价为x 元,则应急灯的定价为(x +20)元. 由题意得:400x +20=160x ×12……3分解得:x =5经检验,x =5是原方程得解. ∴应急灯的定价x +20=25(元)答:设该品牌手电筒的定价为5元,则应急灯的定价为25元. ……5分 (2)设该公司可以购买y 个该品牌应急灯.由题意得:25y +5(2y +8-y )≤670 ……8分解得:y ≤21答:该公司最多可购买 21个该品牌应急灯. ……10分23.(10分)第23题图HGF53°26.5°BDPMQECN A解:(1)过D 作DF BC ⊥,垂足为F∵AC BC ⊥ ∴//DF AC∵D 为AB 中点 ∴F 为BC 中点 在Rt ABC △,1tan 2.4BC i BAC AC =∠== 设5BC x =,12AC x =,则13130AB x ===∴10x = 即 50BC =,120AC = ∴1602DF AC ==,1252BF BC == ∵在Rt BEF △中,30BEF ∠=︒∴tan BFEF BEF==∠∴60DE DF EF =-=-∴平台DE 的长为(60- ……5分(2)过D 作DG CQ ⊥、DH MQ ⊥,垂足分别为G 、H ∴四边形DGQH 为矩形 ∴1252DG HQ CF BC ==== ∵AC BC ⊥,DG CQ ⊥ ∴//DG BC ∵D 为AB 中点 ∴G 为AC 中点即60AG = ∴100DH GQ AG AP PQ ==++=∵在Rt DHM △中,tan 26.550MH DH =⋅︒≈ 在Rt NPQ △中,tan 5339.9NQ PQ =⋅︒≈ ∴502539.935.1MN MH HQ NQ =+-=+-= ∴广告MN 的长度约为35.1米 ……10分 24.(10分)解: (1)678+876=1473则1473+3741=5214则5214+4125=9339∴以687产生的第一个对称数是:9339 ……2分 (2)设这个四位数的前两位所表示的数为:10a b + 这个四位数的后两位所表示的数为:10b a +由题意:(10a +b )-(10b +a )=9a -9b =9(a -b )∵a 、b 为整数,∴(a -b )为整数.∴9(a -b )一定能被9整除.∴这两个数的差一定能被9整除; ……6分 (3)设这个三位对称数为: 10010a b a ++由题意: 10010(2)a b a a b ++-+99+9a b =9=119+11b a () ∵这个三位对称数能被11整除,∴99+11ba 为整数 ∵a 、b 为整数,且09b ≤≤, ∴911b为整数即0b =,∴这样的三位对称数共有9个. ……10分 25.(12分)解:(1)∵AB AC =,且120BAC ∠=︒ ∴30ABC C ∠=∠=︒ ∵AD BD = ∴30ABC BAD ∠=∠=︒∴90CAD ∠=︒ ∴tan 301AD AC =⋅︒= 22AE CD AD ===∴1DE AE AD =-= ……4分(2)过点A 作//AG BC 交CF 延长线于点G (如图2)∵DB DA =,AB AC =∴1ABC ∠=∠,ABC ACB ∠=∠ ∴1ACB ∠=∠图1BCDA又∵AE CD =∴ABE △≌CAD △ ∴BE AD = ∵2BE CD =∴22AD CD AE == 即 AE DE = ∵//AG BC∴G DCE ∠=∠,GAE CDE ∠=∠ ∴AGE △≌DCE △∴GE CE =,AG CD AE ==即AGE △为等腰三角形 又∵21ABC ∠=∠=∠ ∴F 为GE 的中点∴2CE GE EF == ……8分(3)取BE 中点M ,延长AM 至点N ,使MN AM =,连接BN 、EN (如图3)∴四边形ABNE 为平行四边形 ∴//AE BN ∴1D ∠=∠∵AB AC =,DB DA = ∴ABC ACB BAD ∠=∠=∠ ∴1BAC D ∠=∠=∠ ∵1BAN ABC ∠=∠+∠ACD BAC ABC ∠=∠+∠∴BAN ACD ∠=∠图31AECB MN∵BN AE CD ==,AB AC = ∴ABN △≌ACD △ ∴2AD AN AM == ∵BE AD ⊥∴222AE ME AM += 即 2221122AE BE AN +=()() ∴2221144AE BE AD += ……12分 26.(12分)解:(1)A (-1,-52)、D (-6,0)∵C (0,2) ∴直线l 2:y =-12x +2令y =0时,x =4, ∴B (4,0) ……4分(点B 坐标也可以由二次函数的解析式求得)(2)连接AB .∵过点M作MH⊥x轴交直线1l于点H设M(m,-m2+72m+2),则H(m,-12m-3)(0<m<4)∴MH=-m2+4m+5∴=12(-m2+4m+5)´5-252=-52m2+10m=-52(m-2)2+10∵a=-52<0,∴m=2时S有最大值,Smax=10此时,M(2,5)……8分(3)t=2,92,32,6.……12分。