上海大学数学分析历年考研真题

合集下载

上海市考研数学三十复习资料数值分析(统考)核心知识点详解与考题解析

上海市考研数学三十复习资料数值分析(统考)核心知识点详解与考题解析

上海市考研数学三十复习资料数值分析(统考)核心知识点详解与考题解析数值分析作为考研数学中的一门重要科目,对于考研学子来说是必备的一部分。

在上海市考研中,数值分析也是一个较为重要的知识点。

本文将详细解析上海市考研数学三十中与数值分析相关的核心知识点,并提供相应的考题解析,帮助考生更好地备考。

以下是数值分析中几个核心知识点以及相应考题解析。

1. 插值与拟合在数值分析中,插值与拟合是一项基本而重要的技巧。

它们用于通过已知一些离散数据点,寻找一个合适的函数来表示这些数据的规律。

插值一般通过构造一个多项式函数来实现,拟合则可以通过多项式、指数函数等来实现。

考生在备考时需要熟悉插值与拟合的原理和常见的方法,例如拉格朗日插值、牛顿插值等,并能够灵活运用于解题中。

2. 数值微积分数值积分是数值分析中的重要内容之一。

在考研中,常见的数值积分方法有梯形公式、辛普森公式等。

考生需要理解数值积分的原理和方法,并能够根据题目的要求灵活运用。

此外,还需要掌握复合公式、误差估计等相关知识。

3. 数值方程数值方程是数值分析中的一个重要内容,在考研中也是经常出现的题型。

常见的数值方程有二分法、牛顿法等。

考生需要掌握各种数值方程的原理和应用条件,并能够根据给定的题目选择合适的方法解决问题。

4. 线性方程组的数值解法线性方程组的数值解法也是数值分析中的一个重要内容。

考生需要掌握高斯消元法、LU分解法等基本的解法,并能够根据题目的要求进行适当的变形和求解。

5. 数值特征值问题数值特征值问题是数值分析中的一个重点内容,也是上海市考研中的一个重要考点。

考生需要熟悉特征值和特征向量的定义和性质,掌握幂法、反幂法等常见的特征值求解方法,并能够灵活运用于解题。

针对上海市考研数学三十中的数值分析部分,我们来看两道典型的考题:【题目一】已知函数 f(x) = 2x^3 - 3x^2 + 2x - 1,求在 [0,1] 上的定积分。

【解析】由题目可知,我们需要求解函数 f(x) 在 [0,1] 区间上的定积分。

985院校数学系2019年考研数学分析高等代数试题及部分解答

985院校数学系2019年考研数学分析高等代数试题及部分解答

15 武汉大学
39
15.1 2019 年数学分析真题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
16 华中科大 2012 年数学分析试题解析
40
17 武汉大学 2018 年数学分析试题解析
44
18 中南大学 2010 年数学分析试题解析
6 浙江大学
16
6.1 2019 年数学分析真题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.2 2019 年高等代数真题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7 华中科技大学
18
7.1 2019 年数学分析真题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7.2 2019 年高等代数真题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
13 大连理工大学
35
13.1 2019 年数学分析真题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
14 电子科技大学
37
14.1 2019 年数学分析真题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5 天津大学
13
5.1 2019 年数学分析真题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

上海大学高等代数历年考研真题

上海大学高等代数历年考研真题

2000上海大学 高等代数(一) 计算行列式:acccb ac cb b a cb b b a⋅⋅⋅⋅⋅⋅⋅⋅⋅ (二) 把二次型414332214321),,,(x x x x x x x x x x x x f +++=用非退化线性替换化成平方和.(三) B A ,分别为m n ⨯和m n ⨯矩阵, n I 表示n n ⨯单位矩阵.证明: m n ⨯阶矩阵n A I X B ⎛⎫=⎪⎝⎭可逆当且仅当B A 可逆,可逆时求出X 的逆. (四) 设12,n e e e ⋅⋅⋅是n 维线性空间n V 的一组基,对任意n 个向量12,n a a a ⋅⋅⋅n V ∈,证明:存在唯一的线性变换A ,使得(),1,2i i A e a i n ==⋅⋅(五) 设A 是n 维线性空间V 的线性变换,求证:1(0)V A V A -=⊕当且仅当若12,r a a a ⋅⋅⋅为A V 的一组基则12,r A a A a A a ⋅⋅⋅是2()A V 的一组基. (六) 设A 为2级实方阵,适合21001A -⎛⎫=⎪-⎝⎭,求证:A 相似于0110-⎛⎫⎪⎝⎭. (七) 已知,f g 均为线性空间V 上线性变换,满足22,f f gg ==试证:(1)f 与g 有相同的值域⇔,fg g g f f ==. (2)f 与g 有相同的核⇔,fg f g f g ==.2001上海大学 高等代数(一)计算行列式:231212123n n n x a a a a x a a a a x a a a a x(二)设A 为3阶非零方阵,且20A =.(1)求证:存在123,,a a a ,123,,b b b ,()121233a A a b b b a ⎛⎫ ⎪= ⎪ ⎪⎝⎭(2)求方程组0A X =的基础解系.(三)用正交的线性替换化二次行2221231231323(,,)3244f x x x x x x x x x x =++--为标准形(四)设A 为n m ⨯阶实矩阵,且()()r A m n m =≥.若'2'()A A a A A =,求证'm A A a E =.(五)设A 是n (n 为奇数)维线性空间V 上线性变换,若10,0n nAA-≠=求证:存在a V ∈,使2211,,,,n n n a A a A a A a Aa Aa Aa a ---++++ 为V 的一组基,并求A 在此组基下的矩阵.(六)设A 是欧式空间V 上的对称变换.求证:对任意0a ≠,都有()0,0a A a a ≠<⇔A 的所有特征值都小于0. (七)设A a B aβ-⎛⎫=⎪⎝⎭,其中A 为n 阶负定矩阵,a 为n 维列实向量,β为实数.求证B 正定的充分必要条件为'10a A a β-+>.(八)若A 是正交阵,且A -特征值为1的重数是S ,求证:(1)sA =-(A 为A 的行列式).2002 上海大学 高等代数(一)计算行列式:若1232nx a a a ax a aA B aa x a aaax ==,求AB A BA ⎛⎫=⎪⎝⎭. (二)设A 是n 阶可逆方阵,0A A B A ⎛⎫=⎪⎝⎭. (1)计算kB (K 是整数),(2)假设100110111A =,C 为6阶方阵,而且2BC C E =+,求C .(三)设(1)(1)(1)(1)p p p n p pp n p p A p n p p p n pppp--------=--------,A 是n 阶矩阵(0p ≠),求0A X =的基础解系.(四)构造一个3阶实对称方阵A ,使其特征值为1,1,-1.并且对应的特征值有特征向量(1,1,1),(2,2,1).(五)设向量组A :123,,n a a a a ⋅⋅的秩为r (r n <),则A 中任意r 个向量线性无关的充分必要条件为:对任意向量121,,r i i i a a a + ,若1211210r i i rika k a k a ++++= ,则121,r k k k +或全为0或全不为0.(六)设A 为n 阶正定矩阵,n m B ⨯为秩为m 的实矩阵,求证'B A B tE +(0t >,E 为单位矩阵)为正定矩阵.(七)设A 为欧式空间V 上的线性变换,且2A E =.(1)求证:A 是V 上的正交变换的充分必要条件为A 是V 上的对称变换. (2)设{}1,V a a V A a a =∈=,求证:12V V V =+是直和.(八)设A 为n 阶实正交矩阵,123,,n a a a a ⋅⋅为n 维列向量,且线性无关,若12,n A E a A E a A E a +++ 线性无关,则1A =.2003上海大学 高等代数(一)计算行列式:x a a a ax a aA a a x a aaax=(A 为n 阶矩阵),2AA B AA ⎛⎫= ⎪⎝⎭(1)求A (2)求B(二)设A 为21n k =+阶反对称矩阵,求A .(三)设,A B 为n 阶整数方阵(,A B 中元素为整数),若A B E A =- (1)求证:1A =±,(2)若200120232B -⎛⎫⎪=- ⎪ ⎪-⎝⎭,求A . (四)设12(,)n A a a a = 为n 阶方阵,()1r A n =-,且121n n a a a a -=++ 121n n a a a a β-=+++ ,求A X β=的解.(五)设A 是n 阶可逆方阵,且A 每行元素之和为a ,求证:k A -的每行元素之和为ka -(k 为正整数)(六)设A 为n 阶正交矩阵,若.证明:存在正交矩阵G 使1rs E GA G E -⎛⎫=⎪-⎝⎭. (七)设2A A =,且A 为n 阶方阵,()R A r =.(1)求证:2rE A += (2)求证:()()R A R A E n +-=(3)若1r =,求0A X =的解.(八)构造一个3阶实对称方阵A ,使其特征值为2,1,1,且有特征向量(1,1,1). (九)设二次型22221234121314232434()222222f X x x x x x x x x x x x x x x x x =++++++---(1)求()f X 对应的实对称矩阵A .(2)求正交变换X P Y =,将()f X 化为标准型.(十)设A 是n 维线性空间V 上的线性变换,12,k a a a 是对应的不同特征值12,k λλλ 的特征向量.若12k a a a W ++∈ ,而W 是A 的不变子空间,则有维(W )k ≥ (十一)设B 为欧式空间V 上的变换,A 为欧式空间V 上的线性变换且有:(,)(,),,A a a B a V βββ=∀∈.证明:(1)B 为欧式空间V 上的线性变换. (2)1(0)()A B V -⊥=2004 上海大学 高等代数(一)设n 阶可逆方阵()ij A a =中每一行元素之和为(0)a a ≠,证明:(1)11(1,2)nij j A aA i n -===∑ ,其中i j A 为ij a 的代数余子式.(2)如果ij a 都是整数(1,2)i n = ,则a 整除A . (二)设1212121n n nn n a a a a A b b b b -⨯-⎛⎫= ⎪⎝⎭为实矩阵,且()2r A =. (1)求行列式'E A A λ-.(2)求'0A A X =的解(X 是n 维列向量).(三)设,A B 为n 阶整数方阵,若2B E A B =-.(1)求证:21A B+=.(2)若100110231B -⎛⎫⎪=- ⎪ ⎪-⎝⎭,求1(2)A B -+. (四)若A 为非零的半正定矩阵,B 为正定矩阵,求证: (1)求证:存在实矩阵T ,使'T T B =. (2)1A E +>. (3)A B B +>.(五)设λ为A 的特征值的最小者.求证:对任意的n 维列向量a ,有''a A a a a λ≥. (六) 设123,,λλλ为3阶方阵A 的特征值,且()()()111,011,01分别为其对应的特征向量,求nA .(七) V 是n 维欧氏空间, σ是n 维空间V 上的线性变换,如果1231,,n a a a a - 是V 中1n -个线性无关的向量,且(),σββ分别与1231,,n a a a a - 正交(β不为0).求证: β为σ的特征向量.(八)设3223303060303A B ⨯⨯⎛⎫ ⎪= ⎪ ⎪⎝⎭,求证: (1)()()2r A r B == (2)题型与钱吉林书习题类示。

985院校数学系2019年考研数学分析高等代数试题及部分解答

985院校数学系2019年考研数学分析高等代数试题及部分解答
B 7 ! AB BA
, 2. 定义 Mn.C / 上的变
(1)求变换 T 的特征值. (2)若 A 可对角化,证明 T 也可对角化.
四.(20 分) A 为 n 阶实对称矩阵,令
S D fX jX T AX D 0, X 2 Rng
(1)求 S 为 Rn 中的一个子空间的充要条件并证明. (2)若 S 为 Rn 中的一个子空间,求 di mS .
C pn n
二.(15 分) 设 f .x/ 2 C Œa, b,f .a/ D f .b/,证明 9xn, yn 2 Œa, b, s.t . lim .xn yn/ D n!1 0,且 f .xn/ D f .yn/.
三.(15 分) 证明
Xn .
kD0
1/k
Cnk
k
C
1 m
C
1
D
X m .
kD0
1/k
Cmk
k
C
1 n
C
1
其中m, n是正整数
Y 1
X 1
四.(15 分) 无穷乘积 .1 C an/ 收敛,是否无穷级数 an 收敛?若是,证明这个
nD1
nD1
结论;若不是,请给出反例.
X 1
ż1
五.(15 分) 设 f .x/ D xn ln x,计算 f .x/dx.
0
nD1
六.(15 分) 设定义 .0, C1/ 上的函数 f .x/ 二阶可导,且 lim f .x/ 存在,f 00.x/ 有 x!C1 界,证明 lim f 0.x/ D 0. x!C1
(1)证明存在正交矩阵 P 使得
0
P T AP
D
BB@
a 0
0
1

上海大学高等数学

上海大学高等数学

F ( ) 0
(3 分)
(2)又 F ( x) 在 [0, ] 上连续, (0, ) 可导
F (0) 0 F ( ) 0 (0, ) (0,1) F ( ) 0
即: f ( ) 1 (3 分)
25.设 f ( x) ln x ln a


(A)平行 (B) 直线 L 在平面上
5.三角函数的正交性是指:在三角函数系中 (A) 任意一个函数在 [ , ] 上积分值为零
(B)任意两个不同函数乘积在 [ , ] 上积分值不为零 (C)任意一个函数自身平方在 [ , ] 上积分值为零 (D)任意两个不同函数乘积在 [ , ] 上积分值为零
3
tan x sin x
12.原式 lim
e x ex 2 e x ex e x ex (2分) lim lim 2 x 0 x 0 x0 1 cos x sin x cos x
1 x x (2 分) lim ( ) e x (2 分) x 0 1 x
We supply success!!!
TEL:
55971195 55971197
恩波—科兴
一、 选择题(每题 2 分,共 10 分)
上大高数试题
上海大学高等数学 A(一)
x 2 sin
1. lim
x 0
sin x
1 x 的值为
B:∞ C:不存在 D:0


A:1
2.当 x 0 时 f ( x) 1 sin x 1 sin x 与 x 是 A:等价无穷小 B:同阶无穷小
(1)

x 1 x 2x 3
2
dx

上海大学数学分析历年考研真题

上海大学数学分析历年考研真题

上海大学2000年度研究生入学考试试题数学分析1、 设122(1)n n x x nx y n n +++=+,若lim n n x a →∞=,证明:(1)当a 为有限数时,lim 2n n ay →∞=;(2)当a =+∞时,lim n n y →∞=+∞.2、设()f x 在[]0,1上有二阶导数(端点分别指左、右导数),(0)(1)0f f ==,且[]0,1min ()1f x =-证明:[]0,1max ()8f x ''≥3、 证明:黎曼函数[]1, x= (0,,)()0,10,p q p q q q R x ⎧>⎪=⎨⎪⎩当为互质整数在上可积当x 为无理数. 4、 证明:12210()lim (0),t tf x dx f t x π+-→=+⎰其中()f x 在[]1,1-上连续.5、 设()1ln 11n n p a n ⎛⎫=+- ⎪⎝⎭,讨论级数2n n a +∞=∑的收敛性.6、 设()f x dx +∞⎰收敛且()f x 在[]0,+∞上单调,证明:01lim ()()h n h f nh f x dx ++∞+∞→==∑⎰.7、 计算曲面2222x y z a ++=包含在曲面22221(0)x y b a a b+=<≤内的那部分的面积.8、 将函数()f x x =在[]0,2π上展成Fourier 级数,并计算级数1sin k kk +∞=∑的值. 上海大学2001年度研究生入学考试试题数学分析1、 计算下列极限、导数和积分:(1) 计算极限1lim();xx x +→ (2) 计算2()()x x f t dt ϕ=⎰的导数()x ϕ',其中()f x 2,(1).1,(1)t t t t ≤⎧=⎨+>⎩ (3) 已知)211sin x x '⎤=⎥+⎦,求积分2011sin I dx x π=+⎰. (4) 计算()()22222()0x y z t f t xyz dxdydz t ++≤=>⎰⎰⎰的导数()f t '(只需写出()f t '的积分表达式).2、 设()f x 在[],a b 上连续,在(),a b 上可导,若()()0f a f b >且()02a bf +=,试证明必存在(),a b ξ∈使得()0f ξ'=. 3、 令(),1y F x y y xe =+-(1)、证明:111311,0,,;,0,,.2121221212F x x F x x ⎛⎫⎛⎫⎛⎫⎡⎤<∈->∈- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦(2)、证明:对任意的11,1212x ⎛⎫∈- ⎪⎝⎭,方程(),0F x y >在13,22y ⎛⎫∈ ⎪⎝⎭中存在唯一的解()y x . (3)、计算(0)y '和(0)y ''. 4、一致连续和一致收敛性(1)、函数2()f x x =在[]0,1上是一致连续的,对210ε-=,试确定0δ>,使得当1201x x ≤<≤,且12x x δ-<时有3321210x x --<.(2)、设[]2231(),0,1,1,2,,2n n x f x x n n x+=∈=+证明: ()n f x 在[]0,1上是内闭一致收敛的,但不是一致收敛的.5、曲线积分、格林公式和原函数. (1)计算第二型曲线积分()221,2L xdy ydxI x y π-=+⎰其中L 是逐段光滑的简单闭曲线,原点属于L 围成的内部区域,(L)的定向是逆时针方向.(2) 设(),p x y ,(),q x y 除原点外是连续的,且有连续的偏导数,若<a>()(),,0,0p q x y y x∂∂=≠∂∂ <b>()0,L pdy qdx c +=≠⎰其中(L)的参数方程cos ,(02)sin x tt y tπ=⎧≤≤⎨=⎩ 证明:存在连续可微函数()()(),,,0,0F x y x y ≠,使得()()2222,,,22F c y F c xp x y q x y x x y y x yππ∂∂=+=-∂+∂+. 上海大学2002年度研究生入学考试题数学分析1、 求α和β使得当x →+∞等价于无穷小量x βα.2、 求椭圆2221Ax Bxy Cy ++=所围成的面积S ,其中20,0,,,A AC B A B C >->均为常数.3、 试给出三角级数01(cos sin )2n n n a a nx b nx ∞=++∑中系数的计算公式(不必求出具体值),使得该级数在[]0,1上一致收敛到2x ,并说明理论依据。

985院校数学系2019年考研数学分析高等代数试题及部分解答

985院校数学系2019年考研数学分析高等代数试题及部分解答
112019年数学分析真题122019年高等代数真题212019年数学分析真题222019年高等代数真题312019年数学分析真题322019年高等代数真题南开大学10412019年数学分析真题10422019年高等代数真题天津大学13512019年数学分析真题13522019年高等代数真题浙江大学16612019年数学分析真题16622019年高等代数真题华中科技大学18712019年数学分析真题18722019年高等代数真题兰州大学21812019年数学分析真题21822019年高等代数真题东南大学24912019年数学分析真题3101922019年高等代数真题2510上海交通大学271012019年数学分析真题271022019年高等代数真题2811同济大学301112019年数学分析真题301122019年高等代数真题3112华东师范大学321212019年数学分析真题321222019年高等代数真题3313大连理工大学351312019年数学分析真题3514电子科技大学371412019年数学分析真题3715武汉大学391512019年数学分析真题3916华中科大2012年数学分析试题解析4017武汉大学2018年数学分析试题解析4418中南大学2010年数学分析试题解析4819浙江大学2016年数学分析试题解析5420吉林大学2015年数学分析试题解析5821中国科大2015年数学分析试题解析6422中国科大2014年数学分析试题解析6823厦门大学2014年数学分析试题解析7024浙江大学2012年高等代数试题解析74410125历年数学竞赛真题与模拟赛题解析82251第十届全国大学生数学竞赛模拟赛题一解析82252第十届全国大学生数学竞赛模拟赛题二解析85253第十届全国大学生数学竞赛模拟赛题三解析87254第十届全国大学生数学竞赛非数类预赛参考答案90255第九届全国大学生数学竞赛非数类预赛参考答案95256第八届全国大学生数学竞赛数学类决赛试题99参考文献北京大学112019年数学分析真题一

上海师范大学2022年研究生入学考试高等代数与数学分析试题

上海师范大学2022年研究生入学考试高等代数与数学分析试题

上海师范大学2022年研究生入学考试高等代数与数学分析试题上海师范大学2022年研究生入学考试高等代数试题(1) 已知阶矩阵可写成列分块的形式,且有个不同的特征值,且, ,求线性方程组的通解.(2) 已知阶可逆矩阵,将的第二列和第三列互换可得矩阵,再将的第一列乘以得到矩阵,若有矩阵满足,求矩阵.(3) 已知矩阵的特征多项式有一个二重根,判断是否相似于一个对角阵,并说明理由.(4) 已知向量组不能由向量组线性表示,求的值.(5) 已知证明: 与合同的充要条件是.(6) 已知二次型可通过正交变换化为标准型其中,求的值与正交矩阵.(7) 已知为半正定实对称阵,证明:满足的向量构成的解.(8) 已知是数域上的多项式,若且,证明: .(9) 设是维欧氏空间的维子空间,存在,证明: 中存在唯一向量,使得与的任意向量正交.(10) 设是维复线性空间上的可对角化的线性变换,证明限制在任意一个不变子空间上仍是一个可对角化的线性变换.(11) 设是数域上的阶矩阵,且特征值全在中,证明:存在可逆矩阵,使得是上三角矩阵.(12) 设分别是复数域上的阶和阶复矩阵,证明: 只有零解的充要条件是的特征多项式与的特征多项式互素.上海师范大学2022年研究生入学考试数学分析试题(一) (1) 叙述""的语言.(2) 问:"存在任意小的,使得在上连续"与"在上连续是否等价",简述理由.(3) 已知在上连续,对任意的,有,且有收敛到,叙述一致收敛于到严格定义.(4) 函数列在上收敛于,叙述不一致收敛于的严格定义.(5) 设是非负连续函数,且收敛,那么是否有界?若有界则说明理由,若不然请举反例(可画图示意).(二) (1) 求极限.(2) 用Cauchy收敛准则证明闭区间套定理.(3) 证明:函数在上不一致连续.(4) 已知数列, ,求和.(三) (1) 研究的连续性与可微性,其中是Dirichlet函数.(2) 已知,研究二元函数在原点的连续性和可微性.(3) 求极限.(四) (1) 已知是上的非负连续函数,且,证明: 在上恒为0.(2) 求幂级数的值.(3) 已知椭圆,求曲线积分.。

上海大学高等代数历年考研真题

上海大学高等代数历年考研真题

2000上海大学 高等代数(一) 计算行列式:ac ccb ac cb b a cbb b a ⋅⋅⋅⋅⋅⋅⋅⋅⋅ (二) 把二次型414332214321),,,(x x x x x x x x x x x x f +++=用非退化线性替换化成平方和.(三) B A ,分别为m n ⨯和m n ⨯矩阵, n I 表示n n ⨯单位矩阵.证明: m n⨯阶矩阵0nA I XB ⎛⎫= ⎪⎝⎭可逆当且仅当BA 可逆,可逆时求出X 的逆.(四) 设12,n e e e ⋅⋅⋅是n 维线性空间n V 的一组基,对任意n 个向量12,n a a a ⋅⋅⋅n V ∈,证明:存在唯一的线性变换A ,使得(),1,2i i A e a i n ==⋅⋅ (五) 设A 是n 维线性空间V 的线性变换,求证:1(0)V AV A -=⊕当且仅当若12,r a a a ⋅⋅⋅为AV 的一组基则12,r Aa Aa Aa ⋅⋅⋅是2()A V 的一组基. (六) 设A 为2级实方阵,适合21001A -⎛⎫=⎪-⎝⎭,求证:A 相似于0110-⎛⎫⎪⎝⎭.(七) 已知,f g 均为线性空间V 上线性变换,满足22,f f g g ==试证: (1)f 与g 有相同的值域⇔,fg g gf f ==. (2)f 与g 有相同的核⇔,fg f gf g ==.2001上海大学 高等代数(一)计算行列式:231212123n n nx a a a a xa a a a x a a a a x(二)设A 为3阶非零方阵,且20A =.(1)求证:存在123,,a a a ,123,,b b b ,()121233a A a b b b a ⎛⎫⎪= ⎪ ⎪⎝⎭(2)求方程组0AX =的基础解系.(三)用正交的线性替换化二次行2221231231323(,,)3244f x x x x x x x x x x =++--为标准形(四)设A 为n m ⨯阶实矩阵,且()()r A m n m =≥.若'2'()AA aAA =,求证'm AA aE =.(五)设A 是n (n 为奇数)维线性空间V 上线性变换,若10,0n n A A -≠=求证:存在a V ∈,使2211,,,,n n n a A a A a Aa A a A a A a a ---++++为V 的一组基,并求A 在此组基下的矩阵.(六)设A 是欧式空间V 上的对称变换.求证:对任意0a ≠,都有()0,0a Aa a ≠<⇔A 的所有特征值都小于0.(七)设A a B a β-⎛⎫= ⎪⎝⎭,其中A 为n 阶负定矩阵,a 为n 维列实向量,β为实数.求证B 正定的充分必要条件为'10a A a β-+>.(八)若A 是正交阵,且A -特征值为1的重数是S ,求证:(1)s A =-(A 为A 的行列式).2002 上海大学 高等代数(一)计算行列式:若1232nx a a a ax a aA B aa x a aaax ==,求A B A B A ⎛⎫= ⎪⎝⎭. (二)设A 是n 阶可逆方阵,0A A B A ⎛⎫= ⎪⎝⎭. (1)计算k B (K 是整数),(2)假设100110111A =,C 为6阶方阵,而且2BC C E =+,求C .(三)设(1)(1)(1)(1)p p p n p ppn p pA p n p p pn p ppp--------=--------,A 是n 阶矩阵(0p ≠),求0AX =的基础解系.(四)构造一个3阶实对称方阵A ,使其特征值为1,1,-1.并且对应的特征值有特征向量(1,1,1),(2,2,1).(五)设向量组A :123,,n a a a a ⋅⋅的秩为r (r n <),则A 中任意r 个向量线性无关的充分必要条件为:对任意向量121,,r i i i a a a +,若1211210r i i r i k a k a k a ++++=,则121,r k k k +或全为0或全不为0.(六)设A 为n 阶正定矩阵,n m B ⨯为秩为m 的实矩阵,求证'B AB tE +(0t >,E 为单位矩阵)为正定矩阵.(七)设A 为欧式空间V 上的线性变换,且2A E =.(1)求证:A 是V 上的正交变换的充分必要条件为A 是V 上的对称变换.(2)设{}1,V a a V Aa a =∈=,求证:12V V V =+是直和.(八)设A 为n 阶实正交矩阵,123,,n a a a a ⋅⋅为n 维列向量,且线性无关,若12,n A Ea A Ea A Ea +++线性无关,则1A =.2003上海大学 高等代数(一)计算行列式:x a a a ax a aA a a x a aaax=(A 为n 阶矩阵),2A A B A A ⎛⎫= ⎪⎝⎭(1)求A (2)求B(二)设A 为21n k =+阶反对称矩阵,求A .(三)设,A B 为n 阶整数方阵(,A B 中元素为整数),若AB E A =- (1)求证:1A =±,(2)若200120232B -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,求A . (四)设12(,)n A a a a =为n 阶方阵,()1r A n =-,且121n n a a a a -=++121n n a a a a β-=+++,求AX β=的解.(五)设A 是n 阶可逆方阵,且A 每行元素之和为a ,求证:k A -的每行元素之和为k a -(k 为正整数)(六)设A 为n 阶正交矩阵,若.证明:存在正交矩阵G 使1rs E G AG E -⎛⎫=⎪-⎝⎭. (七)设2A A =,且A 为n 阶方阵,()R A r =.(1)求证:2r E A += (2)求证:()()R A R A E n +-=(3)若1r =,求0AX =的解.(八)构造一个3阶实对称方阵A ,使其特征值为2,1,1,且有特征向量(1,1,1). (九)设二次型22221234121314232434()222222f X x x x x x x x x x x x x x x x x =++++++---(1)求()f X 对应的实对称矩阵A .(2)求正交变换X PY =,将()f X 化为标准型. (十)设A 是n 维线性空间V 上的线性变换,12,k a a a 是对应的不同特征值12,k λλλ的特征向量.若12k a a a W ++∈,而W 是A 的不变子空间,则有维(W )k ≥(十一)设B 为欧式空间V 上的变换,A 为欧式空间V 上的线性变换且有:(,)(,),,Aa a B a V βββ=∀∈.证明:(1)B 为欧式空间V 上的线性变换. (2)1(0)()A B V -⊥=2004 上海大学 高等代数(一)设n 阶可逆方阵()ij A a =中每一行元素之和为(0)a a ≠,证明: (1)11(1,2)nij j A a A i n -===∑,其中ij A 为ij a 的代数余子式.(2)如果ij a 都是整数(1,2)i n =,则a 整除A . (二)设1212121n n n n n a a a a A b b b b -⨯-⎛⎫=⎪⎝⎭为实矩阵,且()2r A =. (1)求行列式'E A A λ-.(2)求'0A AX =的解(X 是n 维列向量). (三)设,A B 为n 阶整数方阵,若2B E AB =-. (1)求证:21A B +=.(2)若100110231B -⎛⎫⎪=- ⎪ ⎪-⎝⎭,求1(2)A B -+. (四)若A 为非零的半正定矩阵,B 为正定矩阵,求证: (1)求证:存在实矩阵T ,使'T T B =. (2)1A E +>. (3)A B B +>.(五)设λ为A 的特征值的最小者.求证:对任意的n 维列向量a ,有''a Aa a a λ≥.(六) 设123,,λλλ为3阶方阵A 的特征值,且()()()111,011,001分别为其对应的特征向量,求n A .(七) V 是n 维欧氏空间, σ是n 维空间V 上的线性变换,如果1231,,n a a a a -是V 中1n -个线性无关的向量,且(),σββ分别与1231,,n a a a a -正交(β不为0).求证: β为σ的特征向量.(八)设3223303060303A B ⨯⨯⎛⎫ ⎪= ⎪ ⎪⎝⎭,求证: (1)()()2r A r B == (2)题型与钱吉林书习题类示。

上海大学历年考研真题及期末考试真题

上海大学历年考研真题及期末考试真题

上海大学2009~2010学年冬季学期试卷B
课程名:模拟电子技术 课程号: 07275003学分: 5 应试人声明:
我保证遵守《上海大学学生手册》中的《上海大学考场规则》,如有考试违纪、作弊行为,愿意接受《上海大学学生考试违纪、作弊行为界定及处分规定》的纪律处分。

应试人 应试人学号 应试人所在院系 成

上海大学2010~2011学年冬季学期试卷B
课程名:模拟电子技术 课程号:07275003学分: 5 应试人声明:
我保证遵守《上海大学学生手册》中的《上海大学考场规则》
,如有考试违纪、作弊行为,愿意接受《上海大学学生考试违纪、作弊行为界定及处分规定》的纪律处分。

应试人
应试人学号 应试人所在院系 题号
一 二 三 四 五 六 七 得分

绩。

985院校数学系2019年考研数学分析高等代数试题及部分解答

985院校数学系2019年考研数学分析高等代数试题及部分解答
目录
1 北京大学
1
1.1 2019 年数学分析真题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 2019 年高等代数真题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
kD0
1/k
Cmk
k
C
1 n
C
1
其中m, n是正整数
Y 1
X 1
四.(15 分) 无穷乘积 .1 C an/ 收敛,是否无穷级数 an 收敛?若是,证明这个
nD1
nD1
结论;若不是,请给出反例.
X 1
ż1
五.(15 分) 设 f .x/ D xn ln x,计算 f .x/dx.
0
nD1
六.(15 分) 设定义 .0, C1/ 上的函数 f .x/ 二阶可导,且 lim f .x/ 存在,f 00.x/ 有 x!C1 界,证明 lim f 0.x/ D 0. x!C1
12 华东师范大学
32
12.1 2019 年数学分析真题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
12.2 2019 年高等代数真题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
112019年数学分析真题122019年高等代数真题212019年数学分析真题222019年高等代数真题312019年数学分析真题322019年高等代数真题南开大学10412019年数学分析真题10422019年高等代数真题天津大学13512019年数学分析真题13522019年高等代数真题浙江大学16612019年数学分析真题16622019年高等代数真题华中科技大学18712019年数学分析真题18722019年高等代数真题兰州大学21812019年数学分析真题21822019年高等代数真题东南大学24912019年数学分析真题3101922019年高等代数真题2510上海交通大学271012019年数学分析真题271022019年高等代数真题2811同济大学301112019年数学分析真题301122019年高等代数真题3112华东师范大学321212019年数学分析真题321222019年高等代数真题3313大连理工大学351312019年数学分析真题3514电子科技大学371412019年数学分析真题3715武汉大学391512019年数学分析真题3916华中科大2012年数学分析试题解析4017武汉大学2018年数学分析试题解析4418中南大学2010年数学分析试题解析4819浙江大学2016年数学分析试题解析5420吉林大学2015年数学分析试题解析5821中国科大2015年数学分析试题解析6422中国科大2014年数学分析试题解析6823厦门大学2014年数学分析试题解析7024浙江大学2012年高等代数试题解析74410125历年数学竞赛真题与模拟赛题解析82251第十届全国大学生数学竞赛模拟赛题一解析82252第十届全国大学生数学竞赛模拟赛题二解析85253第十届全国大学生数学竞赛模拟赛题三解析87254第十届全国大学生数学竞赛非数类预赛参考答案90255第九届全国大学生数学竞赛非数类预赛参考答案95256第八届全国大学生数学竞赛数学类决赛试题99参考文献北京大学112019年数学分析真题一

【实用文档】上海大学数学分析[1]21.doc

【实用文档】上海大学数学分析[1]21.doc

每年的题目基本上都是15题,每题十分,总150分。

祝你们考研成功!!!上海大学2000年度研究生入学考试试题数学分析 1、 设122(1)n n x x nx y n n +++=+,若lim n n x a →∞=,证明:(1)当a 为有限数时,lim 2n n ay →∞=;(2)当a =+∞时,lim n n y →∞=+∞.2、设()f x 在[]0,1上有二阶导数(端点分别指左、右导数),(0)(1)0f f ==,且[]0,1min ()1f x =-证明:[]0,1max ()8f x ''≥3、 证明:黎曼函数[]1, x= (0,,)()0,10,p q p q q q R x ⎧>⎪=⎨⎪⎩当为互质整数在上可积当x 为无理数.4、 证明:12210()lim (0),t tf x dx f t x π+-→=+⎰其中()f x 在[]1,1-上连续.5、 设()1ln 11n n p a n ⎛⎫=+- ⎪⎝⎭,讨论级数2n n a +∞=∑的收敛性.6、 设()f x dx +∞⎰收敛且()f x 在[]0,+∞上单调,证明:01lim ()()h n h f nh f x dx ++∞+∞→==∑⎰.7、 计算曲面2222x y z a ++=包含在曲面22221(0)x y b a a b+=<≤内的那部分的面积.8、 将函数()f x x =在[]0,2π上展成Fourier 级数,并计算级数1sin k kk +∞=∑的值. 上海大学2001年度研究生入学考试试题数学分析1、 计算下列极限、导数和积分:(1) 计算极限1lim ();xx x +→ (2) 计算2()()x x f t dt ϕ=⎰的导数()x ϕ',其中()f x 2,(1).1,(1)t t t t ≤⎧=⎨+>⎩(3) 已知)211sin x x'⎤=⎥+⎦,求积分2011sin I dx x π=+⎰.(4) 计算()()22222()0x y z t f t xyz dxdydz t ++≤=>⎰⎰⎰的导数()f t '(只需写出()f t '的积分表达式).2、 设()f x 在[],a b 上连续,在(),a b 上可导,若()()0f a f b >且()02a bf +=,试证明必存在(),a b ξ∈使得()0f ξ'=. 3、 令(),1y F x y y xe =+-(1)、证明:111311,0,,;,0,,.2121221212F x x F x x ⎛⎫⎛⎫⎛⎫⎡⎤<∈->∈- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦(2)、证明:对任意的11,1212x ⎛⎫∈- ⎪⎝⎭,方程(),0F x y >在13,22y ⎛⎫∈ ⎪⎝⎭中存在唯一的解()y x . (3)、计算(0)y '和(0)y ''. 4、一致连续和一致收敛性(1)、函数2()f x x =在[]0,1上是一致连续的,对210ε-=,试确定0δ>,使得当1201x x ≤<≤,且12x x δ-<时有3321210x x --<.(2)、设[]2231(),0,1,1,2,,2n n x f x x n n x+=∈=+证明: ()n f x 在[]0,1上是内闭一致收敛的,但不是一致收敛的.5、曲线积分、格林公式和原函数. (1)计算第二型曲线积分()221,2L xdy ydxI x y π-=+⎰其中L 是逐段光滑的简单闭曲线,原点属于L 围成的内部区域,(L)的定向是逆时针方向.(2) 设(),p x y ,(),q x y 除原点外是连续的,且有连续的偏导数,若<a>()(),,0,0p qx y y x∂∂=≠∂∂ <b>()0,L pdy qdx c +=≠⎰其中(L)的参数方程cos ,(02)sin x tt y t π=⎧≤≤⎨=⎩证明:存在连续可微函数()()(),,,0,0F x y x y ≠,使得()()2222,,,22F c y F c xp x y q x y x x y y x y ππ∂∂=+=-∂+∂+.上海大学2002年度研究生入学考试题数学分析1、 求α和β使得当x →+∞等价于无穷小量x βα.2、 求椭圆2221Ax Bxy Cy ++=所围成的面积S ,其中20,0,,,A AC B A B C >->均为常数.3、 试给出三角级数01(cos sin )2n n n a a nx b nx ∞=++∑中系数的计算公式(不必求出具体值),使得该级数在[]0,1上一致收敛到2x ,并说明理论依据。

数学类考研上海交大陈纪修《数学分析》配套考研真题

数学类考研上海交大陈纪修《数学分析》配套考研真题

数学类考研上海交大陈纪修《数学分析》配套考研真题第一部分名校考研真题第1章集合与映射本章暂未编选名校考研真题,若有最新真题会及时更新。

第2章数列极限一、判断题1.对任意的p为正整数,如果,则存在。

()[重庆大学研]【答案】错查看答案【解析】根据数列收敛的Cauchy收敛准则,可举出反例:,虽然对任意的但(也可说明)。

2.对数列和若是有界数列,则是有界数列。

()[北京大学研]【答案】对查看答案【解析】设|S n|<M,则3.数列存在极限的充分必要条件是:对任一自然数p,都有()[北京大学研]【答案】错查看答案【解析】反例:,但不存在.二、解答题1.[暨南大学2013研]解:利用定积分的定义求解.2.设数列满足条件:,且,证明数列无界.[华东师范大学2009研]证明:用反证法.假若数列有界,即存在,使得,则由条件知.由得,对,存在正整数,当时,有,,令,则,且,,(1)对(1)式两边取上确界,有,所以,这与矛盾,所以数列无界.3.求极限.[华中科技大学2008研]解:一方面显然,另一方面,且由迫敛性可知.注:可用如下两种方式证明.(1)令,则,所以,从而.(2)由,得.4.证明不存在.[兰州大学2009研]证明:取,则由于,所以不存在.5.(1)设数列为正的单调递减数列,且收敛,证明:.(2)设数列为正的单调递减数列,且收敛,证明:.[南开大学2011研]证明:(1)因为为正的单调递减数列,由单调有界定理得存在,由收敛,可知必有(p为任意正整数),对任意存在正整数,使得对任意正整数,成立在上式中,令,取极限,则得由的任意性,则得显然故有.(2)因为为正的单调递减数列,由单调有界定理知存在,由收敛,可知必有;对任意存在正整数,使得对任意正整数,成立在上式中,令,取极限,则得由的任意性,则得显然故有.6.设证明收敛,并求极限。

[华中科技大学2007研]证明:很明显,假设则又因为所以单调递增有上界,故极限存在。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海大学2000年度研究生入学考试试题数学分析1、 设122(1)n n x x nx y n n +++=+,若lim n n x a →∞=,证明:(1)当a 为有限数时,lim 2n n ay →∞=;(2)当a =+∞时,lim n n y →∞=+∞.2、设()f x 在[]0,1上有二阶导数(端点分别指左、右导数),(0)(1)0f f ==,且[],1mi n ()1f x =- 证明:[]0,1max ()8f x ''≥3、 证明:黎曼函数[]1, x= (0,,)()0,10,p q p q q q R x ⎧>⎪=⎨⎪⎩当为互质整数在上可积当x 为无理数. 4、 证明:12210()lim (0),t tf x dx f t x π+-→=+⎰其中()f x 在[]1,1-上连续.5、 设()1ln 11n n p a n ⎛⎫=+- ⎪⎝⎭,讨论级数2n n a +∞=∑的收敛性.6、 设()f x dx +∞⎰收敛且()f x 在[]0,+∞上单调,证明:01lim ()()h n h f nh f x dx ++∞+∞→==∑⎰.7、 计算曲面2222x y z a ++=包含在曲面22221(0)x y b a a b+=<≤内的那部分的面积.8、 将函数()f x x =在[]0,2π上展成Fourier 级数,并计算级数1sin k kk +∞=∑的值. 上海大学2001年度研究生入学考试试题数学分析1、 计算下列极限、导数和积分:(1) 计算极限1lim();xx x +→ (2) 计算2()()x x f t dt ϕ=⎰的导数()x ϕ',其中()f x 2,(1).1,(1)t t t t ≤⎧=⎨+>⎩ (3) 已知()211arctan 2tan 1sin 2x x '⎡⎤=⎢⎥+⎣⎦,求积分2011sin I dx x π=+⎰. (4) 计算()()22222()0x y z t f t xyz dxdydz t ++≤=>⎰⎰⎰的导数()f t '(只需写出()f t '的积分表达式).2、 设()f x 在[],a b 上连续,在(),a b 上可导,若()()0f a f b >且()02a bf +=,试证明必存在(),a b ξ∈使得()0f ξ'=. 3、 令(),1y F x y y xe =+-(1)、证明:111311,0,,;,0,,.2121221212F x x F x x ⎛⎫⎛⎫⎛⎫⎡⎤<∈->∈- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦(2)、证明:对任意的11,1212x ⎛⎫∈- ⎪⎝⎭,方程(),0F x y >在13,22y ⎛⎫∈ ⎪⎝⎭中存在唯一的解()y x . (3)、计算(0)y '和(0)y ''. 4、一致连续和一致收敛性(1)、函数2()f x x =在[]0,1上是一致连续的,对210ε-=,试确定0δ>,使得当1201x x ≤<≤,且12x x δ-<时有3321210x x --<.(2)、设[]2231(),0,1,1,2,,2n n x f x x n n x+=∈=+证明: ()n f x 在[]0,1上是内闭一致收敛的,但不是一致收敛的.5、曲线积分、格林公式和原函数. (1)计算第二型曲线积分()221,2L xdy ydxI x y π-=+⎰其中L 是逐段光滑的简单闭曲线,原点属于L 围成的内部区域,(L)的定向是逆时针方向.(2) 设(),p x y ,(),q x y 除原点外是连续的,且有连续的偏导数,若<a>()(),,0,0p q x y y x∂∂=≠∂∂ <b>()0,L pdy qdx c +=≠⎰其中(L)的参数方程cos ,(02)sin x tt y tπ=⎧≤≤⎨=⎩ 证明:存在连续可微函数()()(),,,0,0F x y x y ≠,使得()()2222,,,22F c y F c xp x y q x y x x y y x yππ∂∂=+=-∂+∂+. 上海大学2002年度研究生入学考试题数学分析1、 求α和β使得当x →+∞时,无穷小量112x x x ++--等价于无穷小量x βα.2、 求椭圆2221Ax Bxy Cy ++=所围成的面积S ,其中20,0,,,A AC B A B C >->均为常数.3、 试给出三角级数01(cos sin )2n n n a a nx b nx ∞=++∑中系数的计算公式(不必求出具体值),使得该级数在[]0,1上一致收敛到2x ,并说明理论依据。

4、 证明:sin () x e x x f x x x πππ⎧≤⎪=⎨>-⎪⎩当时,当时函数在()-∞+∞,上一致连续5、 设()f x 在[]0,1上有连续的导函数()f x ',(0)0f =,证明:11221()()2f x dx f x dx '≤⎰⎰.6、 证明:当x y ≤≤1,1时,有不等式22222()2.x y y x -≤+-7、 设()f x 在(),a b 上连续,并且一对一,(即当()12,,,x x a b ∈且12x x ≠时有12()()f x f x ≠),证明: ()f x 在(),a b 上严格单调.上海大学2003年度研究生入学考试题数学分析1、 证明与计算:(1)对于任意的0a >,证明:lim n n a →∞存在,并求之.(2)设()111,0,1,2,...,n n a k x k n n αα+==>=∑,证明: lim n n x →∞存在并求之.2、 判断下列结论是否正确,正确的请证明,错误的请举出反例. (3)存在级数1nn u∞=∑,使得当n →+∞时, n u 不趋于0,但1nn u∞=∑收敛.(4)20sin xdx +∞⎰是收敛的.(5) 211lim sin 0x x enxdx --→∞=⎰(此题只需指明理论依据)3、 计算(6)32222,()Sxdydz ydzdx zdxdy x y z ++++⎰⎰其中S 为曲面: ()221,0z x y z -=+≥的上侧.(7)将把()f x x =在[],ππ-上展成Fourier 级数,并由此计算211nk k=∑.4、 证明:(8)设函数(,),f x y xy =证明:它在()0,0上连续且有偏导数()()0,0,0,0,x y f f 但是(,)f x y 在()0,0不可微.(9)设函数()f x 在[]0,1上黎曼可积,证明: 2()f x 在[]0,1上也是黎曼可积.(10)当0x >时,证明: ()1ln 11xx +<.(11)设()f x '在[]0,a 上连续,其中0a >,证明: 001(0)()()aa f f x dx f x dx a'≤+⎰⎰ (12)设函数(),,F u v w 有连续的偏导数,证明:曲面,,0y z x F x y z ⎛⎫= ⎪⎝⎭上各点的切平面都交于一点,并求出交点坐标(13)设闭曲线L: 2221Ax Bxy Cy ++=,其中20,0,,,A AC B A B C >->均为常数.记()11,x y 和()22,x y 分别表示曲线的最高点和最低点,证明: 120y y <. (14)如果函数列(),1,2,...,n f x n =在[]0,1上一致收敛,证明:{}()n f x 在[]0,1上一致有界,即:存在0,M >使得(),n f x M ≤对[]0,1,x n ∀∈∀成立.(此题好象缺少条件) 进一步问,如果函数列在[]0,1上点点收敛,结论是否成立,请证明你的结论. (15) 设函数()f x 在[0,)+∞上连续,()g x dx +∞⎰绝对收敛,证明:200lim ()()(0)()nn xf g x dx f g x dx n+∞→∞=⎰⎰上海大学2004年度研究生入学考试题数学分析1、 判断数列{}n S 是否收敛,其中111,231nn k S k k =⎛⎫=+ ⎪+⎝⎭∑证明你的结论. 2、 在[]0,1区间上随机地选取无穷多个数构成一个数列{}n a ,请运用区间套定理或有限覆盖定理证明该数列{}n a 必有收敛子列.3、 设函数在[]0,1上连续, (0)(1)f f =,证明方程1()()3f x f x =+在[]0,1上一定有根. 4、 证明:达布定理:设()f x 在(),a b 上可微, ()12,,x x a b ∈,如果12()()0,f x f x ''<则在12,x x 之间存在一点ξ,使得()0f ξ'=.5、 给出有界函数()f x 在闭区间[],a b 上黎曼可积的定义,并举出一个[],a b 有界但是不可积的函数的例子,并证明你给的函数不是黎曼可积的.6、 闭区间[],a b 上的连续函数()f x ,如果积分()()0baf x x dx ϕ=⎰对于所有具有连续一 阶导数并且()()0a b ϕϕ==的函数)(x ϕ都成立,证明:()f x 0=.7、判别广义积分dx xx⎰+∞sin 的收敛性和绝对收敛性,证明你的结论. 8、证明:2cos 1220lim π=+⎰+→dt t x t x x 9、计算:∑+∞=++-01121n n n )(.10、试将函数x x f =)(在],0[π上展开成余弦级数,并由此计算:++++++222)12(151311k 11、函数列 ,2,1)(=n x f n ,,在]1,0[上连续,且对任意的),()(],1,0[x f x f x n n −−→−∈∞→,问)(x f 是否也在]1,0[上连续,证明你的结论.12、设函数,3),(33xy y x y x f -+=请在平面上每一点指出函数增加最快的方向,并计算出函数在该方向的方向导数.13、求解viviani 问题,计算球体2222a z y x ≤++被柱面ax y x =+22所截出的那部分体积. 14、曲线积分⎰++L y x ydyxdx 22是否与路径无关,其中曲线L 不过原点,证明你的结论.15、设函数)(x f 可微,若0)(2)(−−→−'++∞→x x f x f ,证明:0)(lim =+∞→x f x .上海大学2005年度研究生入学考试题数学分析1、设函数)(x f 在),(∞+0内连续,,0)(lim ='+∞→x f x 求.)(lim xx f x +∞→ 2、设函数)(x f 在[]20,有二阶导数,在[]20,上,,1)(1)(≤''≤x f x f 求证:2)(≤'x f .3、若dx x f ⎰+∞)(收敛,0)(lim =+∞→x f x 一定成立吗?举例并说明理由.4、求证:⎰=⎥⎦⎤⎢⎣⎡∏=+∞→2005)(ln 20051)2005(lim odx x f nnk x en f . 5、证明:dx xe ax ⎰+∞-0在+∞<≤<a a 00上一致收敛,但+∞<<a 0上不一致收敛.6、给出在I 上一直连续的定义,并证明)1()(-=x x x g 在),∞+0[上一致连续. 7、,01lim2=--+++∞→b ax x x x 求b a ,的值.8、把[](]ππ,,00 01)(-∈⎩⎨⎧=x x f 展成fourier 级数,并证明:.12)1s i n (233s i n 1s i n4⎥⎦⎤⎢⎣⎡++++++= n n π9、求2222222)()()(:,R c z b y a x dxdy z dzdx y dydz x =-+-+-++∑⎰⎰外侧. 10、02222=++Cz By Ax 是椭圆方程,求证:椭圆的长半轴kl 1=.其中k 是方程022=++Bk CC A k 的最小根.11、,)(lim 21a a a a n n =++++∞→ 证明:nna a a nn ++++∞→ 212lim存在,并求之.12、,00 01sin)(=≠⎪⎩⎪⎨⎧=x x x x x f a问a 在什么范围内,)(x f 在0=x 可导:在什么范围内)(x f 在 0=x 连续.13、,)(ln )(1⎰+=edx x f x x f 求.)(1⎰edx x f14、已知)(x f ,)(x g 在[]b a ,上连续,)(,0)(x g x f >不变号,求.)()(lim dx x g x f bann ⎰+∞→15、)(x f 在I 上连续,)1( )()(),()(111≥==⎰+n dt t F x F x f x F xn n 求证:{})(x F n 在I 上一致连续.上海大学2006年度研究生入学考试题数学分析计算1、 求极限41sin 2lim x e x x x x -+-→ 2、 求级数...)13()23(1...1071741411++⨯-++⨯+⨯+⨯n n 的和。

相关文档
最新文档