中考数学提高测试17
中考数学模拟测试题 (17)
2017年河南省中考数学试卷一、选择题(每小题3分,共30分)1.(3分)下列各数中比1大的数是()A.2 B.0 C.﹣1 D.﹣32.(3分)2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示()A.74.4×1012B.7.44×1013C.74.4×1013D.7.44×10153.(3分)某几何体的左视图如图所示,则该几何体不可能是()A. B.C.D.4.(3分)解分式方程﹣2=,去分母得()A.1﹣2(x﹣1)=﹣3 B.1﹣2(x﹣1)=3 C.1﹣2x﹣2=﹣3 D.1﹣2x+2=35.(3分)八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分 B.95分,90分 C.90分,95分 D.95分,85分6.(3分)一元二次方程2x2﹣5x﹣2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根 D.没有实数根7.(3分)如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠28.(3分)如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A.B.C.D.9.(3分)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB 在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(,1) B.(2,1)C.(1,) D.(2,)10.(3分)如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是()A.B.2﹣C.2﹣D.4﹣二、填空题(每小题3分,共15分)11.(3分)计算:23﹣= .12.(3分)不等式组的解集是.13.(3分)已知点A(1,m),B(2,n)在反比例函数y=﹣的图象上,则m与n的大小关系为.14.(3分)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP 的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是.15.(3分)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别是边BC,AB上的动点,沿MN 所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM的长为.三、解答题(本题共8个小题,满分75分)16.(8分)先化简,再求值:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中x=+1,y=﹣1.17.(9分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A 0≤x<30 4B 30≤x<60 16C 60≤x<90 aD 90≤x<120 bE x≥120 2请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有人,a+b= ,m= ;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.18.(9分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C作CF∥AB,与过点B的切线交于点F,连接BD.(1)求证:BD=BF;(2)若AB=10,CD=4,求BC的长.19.(9分)如图所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C在其南偏东53°方向,已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41)20.(9分)如图,一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于点A(m,3)和B(3,1).(1)填空:一次函数的解析式为,反比例函数的解析式为;(2)点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD的面积为S,求S的取值范围.21.(10分)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.22.(10分)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.23.(11分)如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.2017年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)(2017•河南)下列各数中比1大的数是()A.2 B.0 C.﹣1 D.﹣3【分析】根据正数大于零、零大于负数,可得答案.【解答】解:2>0>﹣1>﹣3,故选:A.【点评】本题考查了有理数大小比较,利用正数大于零、零大于负数是解题关键.2.(3分)(2017•河南)2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示()A.74.4×1012B.7.44×1013C.74.4×1013D.7.44×1015【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:将74.4万亿用科学记数法表示为:7.44×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2017•河南)某几何体的左视图如图所示,则该几何体不可能是()A. B.C.D.【分析】左视图是从左边看到的,据此求解.【解答】解:从左视图可以发现:该几何体共有两列,正方体的个数分别为2,1,D不符合,故选D.【点评】考查了由三视图判断几何体的知识,解题的关键是了解该几何体的构成,难度不大.4.(3分)(2017•河南)解分式方程﹣2=,去分母得()A.1﹣2(x﹣1)=﹣3 B.1﹣2(x﹣1)=3 C.1﹣2x﹣2=﹣3 D.1﹣2x+2=3【分析】分式方程变形后,两边乘以最简公分母x﹣1得到结果,即可作出判断.【解答】解:分式方程整理得:﹣2=﹣,去分母得:1﹣2(x﹣1)=﹣3,故选A【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.5.(3分)(2017•河南)八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分 B.95分,90分 C.90分,95分 D.95分,85分【分析】将题目中的数据按照从小到大排列,从而可以得到这组数据的众数和中位数,本题得以解决.【解答】解:位于中间位置的两数分别是95分和95分,故中位数为95分,数据95出现了3次,最多,故这组数据的众数是95分,故选A.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会找一组数据的众数和中位数.6.(3分)(2017•河南)一元二次方程2x2﹣5x﹣2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根 D.没有实数根【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:∵△=(﹣5)2﹣4×2×(﹣2)=41>0,∴方程有两个不相等的实数根.故选B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.7.(3分)(2017•河南)如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠2【分析】根据平行四边形的性质.菱形的判定方法即可一一判断.【解答】解:A、正确.对角线垂直的平行四边形的菱形.B、正确.邻边相等的平行四边形是菱形.C、错误.对角线相等的平行四边形是矩形,不一定是菱形.D、正确.可以证明平行四边形ABCD的邻边相等,即可判定是菱形.故选C.【点评】本题考查平行四边形的性质、菱形的判定等知识,解题的关键是熟练掌握菱形的判定方法.8.(3分)(2017•河南)如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两个数字都是正数的情况数,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,两个数字都是正数的有4种情况,∴两个数字都是正数的概率是:=.故选:C.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件,解题时注意:概率=所求情况数与总情况数之比.9.(3分)(2017•河南)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(,1) B.(2,1)C.(1,) D.(2,)【分析】由已知条件得到AD′=AD=2,AO=AB=1,根据勾股定理得到OD′==,于是得到结论.【解答】解:∵AD′=AD=2,AO=AB=1,∴OD′==,∵C′D′=2,C′D′∥AB,∴C′(2,),故选D.【点评】本题考查了正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键.10.(3分)(2017•河南)如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是()A.B.2﹣C.2﹣D.4﹣【分析】连接OO′,BO′,根据旋转的性质得到∠OAO′=60°,推出△OAO′是等边三角形,得到∠AOO′=60°,推出△OO′B是等边三角形,得到∠AO′B=120°,得到∠O′B′B=∠O′BB′=30°,根据图形的面积公式即可得到结论.【解答】解:连接OO′,BO′,∵将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,∴∠OAO′=60°,∴△OAO′是等边三角形,∴∠AOO′=60°,∵∠AOB=120°,∴∠O′OB=60°,∴△OO′B是等边三角形,∴∠AO′B=120°,∵∠AO′B′=120°,∴∠B′O′B=120°,∴∠O′B′B=∠O′BB′=30°,∴图中阴影部分的面积=S△B′O′B﹣(S扇形O′OB﹣S△OO′B)=×1×2﹣(﹣×2×)=2﹣.故选C.【点评】本题考查了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.二、填空题(每小题3分,共15分)11.(3分)(2017•河南)计算:23﹣= 6 .【分析】明确表示4的算术平方根,值为2.【解答】解:23﹣=8﹣2=6,故答案为:6.【点评】本题主要考查了算术平方根和有理数的乘方的定义,是一个基础题目,比较简单.12.(3分)(2017•河南)不等式组的解集是﹣1<x≤2 .【分析】先求出不等式的解集,再求出不等式解集的公共部分.【解答】解:解不等式①得:x≤2,解不等式②得:x>﹣1,∴不等式组的解集是﹣1<x≤2,故答案为﹣1<x≤2.【点评】题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是求出不等式组的解集.13.(3分)(2017•河南)已知点A(1,m),B(2,n)在反比例函数y=﹣的图象上,则m与n的大小关系为m<n .【分析】由反比例函数y=﹣可知函数的图象在第二、第四象限内,可以知道在每个象限内,y随x的增大而增大,根据这个判定则可.【解答】解:∵反比例函数y=﹣中k=﹣2<0,∴此函数的图象在二、四象限内,在每个象限内,y随x的增大而增大,∵0<1<2,∴A、B两点均在第四象限,∴m<n.故答案为m<n.【点评】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出反比例函数图象所在的象限是解答此题的关键.14.(3分)(2017•河南)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是12 .【分析】根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变大,从而可求出BC与AC的长度.【解答】解:根据图象可知点P在BC上运动时,此时BP不断增大,由图象可知:点P从B向C运动时,BP的最大值为5,即BC=5,由于M是曲线部分的最低点,∴此时BP最小,即BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,∴△ABC的面积为:×4×6=12故答案为:12【点评】本题考查动点问题的函数图象,解题的关键是注意结合图象求出BC与AC的长度,本题属于中等题型.15.(3分)(2017•河南)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM 的长为+或1 .【分析】①如图1,当∠B′MC=90°,B′与A重合,M是BC的中点,于是得到结论;②如图2,当∠MB′C=90°,推出△CMB′是等腰直角三角形,得到CM=MB′,列方程即可得到结论.【解答】解:①如图1,当∠B′MC=90°,B′与A重合,M是BC的中点,∴BM=BC=+;②如图2,当∠MB′C=90°,∵∠A=90°,AB=AC,∴∠C=45°,∴△CMB′是等腰直角三角形,∴CM=MB′,∵沿MN所在的直线折叠∠B,使点B的对应点B′,∴BM=B′M,∴CM=BM,∵BC=+1,∴CM+BM=BM+BM=+1,∴BM=1,综上所述,若△MB′C为直角三角形,则BM的长为+或1,故答案为:+或1.【点评】本题考查了翻折变换﹣折叠问题,等腰直角三角形的性质,正确的作出图形是解题的关键.三、解答题(本题共8个小题,满分75分)16.(8分)(2017•河南)先化简,再求值:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中x=+1,y=﹣1.【分析】首先化简(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),然后把x=+1,y=﹣1代入化简后的算式,求出算式的值是多少即可.【解答】解:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y)=4x2+4xy+y2+x2﹣y2﹣5x2+5xy=9xy当x=+1,y=﹣1时,原式=9(+1)(﹣1)=9×(2﹣1)=9×1=9【点评】此题主要考查了整式的混合运算﹣化简求值问题,要熟练掌握,解答此题的关键是要明确:先按运算顺序把整式化简,再把对应字母的值代入求整式的值.17.(9分)(2017•河南)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A 0≤x<30 4B 30≤x<60 16C 60≤x<90 aD 90≤x<120 bE x≥120 2请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有50 人,a+b= 28 ,m= 8 ;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.【分析】(1)根据B组的频数是16,对应的百分比是32%,据此求得调查的总人数,利用百分比的意义求得b,然后求得a的值,m的值;(2)利用360°乘以对应的比例即可求解;(3)利用总人数1000乘以对应的比例即可求解.【解答】解:(1)调查的总人数是16÷32%=50(人),则b=50×16%=8,a=50﹣4﹣16﹣8﹣2=20,A组所占的百分比是=8%,则m=8.a+b=8+20=28.故答案是:50,28,8;(2)扇形统计图中扇形C的圆心角度数是360°×=144°;(3)每月零花钱的数额x在60≤x<120范围的人数是1000×=560(人).【点评】本题考查了扇形统计图,观察统计表、扇形统计图获得有效信息是解题关键,扇形统计图直接反映部分占总体的百分比大小.18.(9分)(2017•河南)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C作CF∥AB,与过点B的切线交于点F,连接BD.(1)求证:BD=BF;(2)若AB=10,CD=4,求BC的长.【分析】(1)根据圆周角定理求出BD⊥AC,∠BDC=90°,根据切线的性质得出AB⊥BF,求出∠ACB=∠FCB,根据角平分线性质得出即可;(2)求出AC=10,AD=6,根据勾股定理求出BD,再根据勾股定理求出BC即可.【解答】(1)证明:∵AB是⊙O的直径,∴∠BDA=90°,∴BD⊥AC,∠BDC=90°,∵BF切⊙O于B,∴AB⊥BF,∵CF∥AB,∴CF⊥BF,∠FCB=∠ABC,∵AB=AC,∴∠ACB=∠ABC,∴∠ACB=∠FCB,∵BD⊥AC,BF⊥CF,∴BD=BF;(2)解:∵AB=10,AB=AC,∴AC=10,∵CD=4,∴AD=10﹣4=6,在Rt△ADB中,由勾股定理得:BD==8,在Rt△BDC中,由勾股定理得:BC==4.【点评】本题考查了切线的性质,勾股定理,角平分线性质,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键.19.(9分)(2017•河南)如图所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C在其南偏东53°方向,已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41)【分析】如图作CE⊥AB于E.设AE=EC=x,则BE=x﹣5,在Rt△BCE中,根据tan53°=,可得=,求出x,再求出BC、AC,分别求出A、B两船到C的时间,即可解决问题.【解答】解:如图作CE⊥AB于E.在Rt△ACE中,∵∠A=45°,∴AE=EC,设AE=EC=x,则BE=x﹣5,在Rt△BCE中,∵tan53°=,∴=,解得x=20,∴AE=EC=20,∴AC=20=28.2,BC==25,∴A船到C的时间≈=0.94小时,B船到C的时间==1小时,∴C船至少要等待0.94小时才能得到救援.【点评】本题考查解直角三角形的应用﹣方向角问题、锐角三角函数、速度、时间、路程之间的关系等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.20.(9分)(2017•河南)如图,一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于点A(m,3)和B (3,1).(1)填空:一次函数的解析式为y=﹣x+4 ,反比例函数的解析式为y=;(2)点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD的面积为S,求S的取值范围.【分析】(1)先将B(3,1)代入反比例函数即可求出k的值,然后将A代入反比例函数即可求出m的,再根据B两点的坐标即可求出一次函数的解析式.(2)设P的坐标为(x,y),由于点P在直线AB上,从而可知PD=y,OD=x,由题意可知:1≤x≤3,从而可求出S的范围【解答】解:(1)将B(3,1)代入y=,∴k=3,将A(m,3)代入y=,∴m=1,∴A(1,3),将A(1,3)代入代入y=﹣x+b,∴b=4,∴y=﹣x+4(2)设P(x,y),由(1)可知:1≤x≤3,∴PD=y=﹣x+4,OD=x,∴S=x(﹣x+4),∴由二次函数的图象可知:S的取值范围为:≤S≤2故答案为:(1)y=﹣x+4;y=.【点评】本题考查反比例函数与一次函数的综合问题,解题的关键是求出一次函数与反比例函数的解析式,本题属于中等题型.21.(10分)(2017•河南)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B 种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.【分析】(按买3个A种魔方和买4个B种魔方钱数相同解答)(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据“购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据两种活动方案即可得出w活动一、w活动二关于m的函数关系式,再分别令w活动一<w活动二、w活动一=w活动二和w活动一>w活动二,解出m的取值范围,此题得解.(按购买3个A种魔方和4个B种魔方需要130元解答)(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据“购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据两种活动方案即可得出w活动一、w活动二关于m的函数关系式,再分别令w活动一<w活动二、w活动一=w活动二和w活动一>w活动二,解出m的取值范围,此题得解.【解答】(按买3个A种魔方和买4个B种魔方钱数相同解答)解:(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据题意得:,解得:.答:A种魔方的单价为20元/个,B种魔方的单价为15元/个.(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据题意得:w活动一=20m×0.8+15(100﹣m)×0.4=10m+600;w活动二=20m+15(100﹣m﹣m)=﹣10m+1500.当w活动一<w活动二时,有10m+600<﹣10m+1500,解得:m<45;当w活动一=w活动二时,有10m+600=﹣10m+1500,解得:m=45;当w活动一>w活动二时,有10m+600>﹣10m+1500,解得:45<m≤50.综上所述:当m<45时,选择活动一购买魔方更实惠;当m=45时,选择两种活动费用相同;当m>45时,选择活动二购买魔方更实惠.(按购买3个A种魔方和4个B种魔方需要130元解答)解:(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据题意得:,解得:.答:A种魔方的单价为26元/个,B种魔方的单价为13元/个.(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据题意得:w活动一=26m×0.8+13(100﹣m)×0.4=15.6m+520;w活动二=26m+13(100﹣m﹣m)=1300.当w活动一<w活动二时,有15.6m+520<1300,解得:m<50;当w活动一=w活动二时,有15.6m+520=1300,解得:m=50;当w活动一>w活动二时,有15.6m+520>1300,不等式无解.综上所述:当0<m<50时,选择活动一购买魔方更实惠;当m=50时,选择两种活动费用相同.【点评】本题考查了二元一次方程组的应用、一次函数的应用、解一元一次不等式以及解一元一次方程,解题的关键是:(1)找准等量关系,列出关于x、y的二元一次方程组;(2)根据两种活动方案找出w活动一、w活m的函数关系式.动二关于22.(10分)(2017•河南)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是PM=PN ,位置关系是PM⊥PN ;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.【分析】(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论,再利用三角形的中位线得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出结论;(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)方法1、先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论.方法2、先判断出BD最大时,△PMN的面积最大,而BD最大是AB+AD=14,即可.【解答】解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN,(2)由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,同(1)的方法,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形,(3)如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,∴MN最大=2+5=7,∴S△PMN最大=PM2=×MN2=×(7)2=.方法2、由(2)知,△PMN是等腰直角三角形,PM=PN=BD,∴PM最大时,△PMN面积最大,∴点D在AB的延长线上,∴BD=AB+AD=14,∴PM=7,∴S△PMN最大=PM2=×72=【点评】此题是几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质,解(1)的关键是判断出PM=CE,PN=BD,解(2)的关键是判断出△ABD≌△ACE,解(3)的关键是判断出MN最大时,△PMN的面积最大,是一道中考常考题.23.(11分)(2017•河南)如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.【分析】(1)把A点坐标代入直线解析式可求得c,则可求得B点坐标,由A、B的坐标,利用待定系数法可求得抛物线解析式;(2)①由M点坐标可表示P、N的坐标,从而可表示出MA、MP、PN、PB的长,分∠NBP=90°和∠BNP=90°两种情况,分别利用相似三角形的性质可得到关于m的方程,可求得m的值;②用m可表示出M、P、N的坐标,由题意可知有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,可分别得到关于m的方程,可求得m的值.【解答】解:(1)∵y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,∴0=﹣2+c,解得c=2,∴B(0,2),∵抛物线y=﹣x2+bx+c经过点A,B,∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)①由(1)可知直线解析式为y=﹣x+2,∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴P(m,﹣m+2),N(m,﹣m2+m+2),∴PM=﹣m+2,AM=3﹣m,PN=﹣m2+m+2﹣(﹣m+2)=﹣m2+4m,∵△BPN和△APM相似,且∠BPN=∠APM,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,当∠BNP=90°时,则有BN⊥MN,∴BN=OM=m,∴=,即=,解得m=0(舍去)或m=2.5,∴M(2.5,0);当∠NBP=90°时,则有=,∵A(3,0),B(0,2),P(m,﹣m+2),∴BP==m,AP==(3﹣m),∴=,解得m=0(舍去)或m=,∴M(,0);。
最新重庆中考数学第17题专题训练
重庆中考数学第17题专题训练1、A、B两地之间的路程为2480米,甲、乙两人分别从A、B两地出发,相向而行,已知甲先出发4分钟后,乙才出发,他们两人在A、B之间的C地相遇,相遇后,甲立即返回A地,乙继续向A地前行,甲到达A地时停止行走,乙到达A地时也停止行走,在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、C 两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,则乙到达A地时,甲与A地相距的路程是米.2、甲、乙两人在1800米长的直线道路上跑步,甲、乙两人同起点、同方向出发,并分别以不同的速度匀速前进已知,甲出发30秒后,乙出发,乙到终点后立即返回,井以原来的速度前进,最后与甲相遇,此时跑步结束,如图,y(米)表示甲、乙两人之间的距离,t(秒)表示甲出发的时间,图中折线及数据表示整个跑步过程中y 与t函数关系,那么,乙到终点后秒与甲相遇.3、A、B两地相距240千米,甲、乙两车沿同一线路从A地出发到B地,,分别以一定的速度匀速行驶,,甲先出发40分钟,乙车才出发,途中乙车发生故阵,整车耗时20分钟,随后乙车车速比发生故障时减少了a 千米/小时(仍保持匀速行驶),甲、乙两年同时到达B地,甲,乙两车相距的路程y(千米)与甲车行驶时间x(小时)之间的关系如图所示,则a的值为4、甲、乙两人沿相同路线同时从A地出发去往B地,分别以一定的速度匀速步行,出发5分钟,甲发现自己有物品落在A地,于是立即以之前速度的2倍跑回A地,在到达A地并停留了8分钟后骑车以更快的速度匀速驶往B地,乙在途中某地停留了5分钟,之后以原速继续前进,最终两人同时到达B地,甲、乙两人的距离y(米)与甲行进时间x(分)之间的关系如图所示,则A、B两地之间的距离为5.春天的某个周末,阳光明媚,适合户外运动.下午,住在同一小区的小懿、小静两人不约而同的都准备从小区出发,沿相同的路线步行去同一公园赏花!小懿出发5分钟后小静才出发,同时小懿发现当天的光线很适合摄影,所以决定按原速度回家拿相机,小懿拿了相机后,担心错过最佳拍照时间,所以速度提高了20%,结果还是比小静晚2分钟到达公园.小懿取相机的时间忽略不计,在整个过程中,小静保持匀速运动,小懿提速前后也分别保持匀速运动.如图所示是小懿、小静之间的距离y (米)与小懿离开小区的时间x (分钟)之间的函数图象.则小区到公园的距离为 米.A 地到B 地在A 、B 之间的C 地乙追上甲,甲立即返回A 地,乙继续向B 地前行。
中考数学 专题17 四川中考填空题压轴专题(解析版)
专题17 四川中考填空题压轴专题【典例1】(2019•眉山)如图,反比例函数y =kx (x >0)的图象经过矩形OABC 对角线的交点M ,分别交AB ,BC 于点D 、E .若四边形ODBE 的面积为12,则k 的值为 4 .【点拨】本题可从反比例函数图象上的点E 、M 、D 入手,分别找出△OCE 、△OAD 、▱OABC 的面积与|k |的关系,列出等式求出k 值.【解答】解:由题意得:E 、M 、D 位于反比例函数图象上,则S △OCE =12|k |,S △OAD =12|k |, 过点M 作MG ⊥y 轴于点G ,作MN ⊥x 轴于点N ,则S ▱ONMG =|k |, 又∵M 为矩形ABCO 对角线的交点,则S 矩形ABCO =4S ▱ONMG =4|k |, 由于函数图象在第一象限, ∴k >0,则k2+k 2+12=4k ,∴k =4.【点睛】本题考查了反比例函数系数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k |.本知识点是中考的重要考点,同学们应高度关注.【典例2】(2019•凉山州)如图,正方形ABCD 中,AB =12,AE =14AB ,点P 在BC 上运动(不与B 、C 重合),过点P 作PQ ⊥EP ,交CD 于点Q ,则CQ 的最大值为 4 .【点拨】先证明△BPE ∽△CQP ,得到与CQ 有关的比例式,设CQ =y ,BP =x ,则CP =12﹣x ,代入解析式,得到y 与x 的二次函数式,根据二次函数的性质可求最值. 【解答】解:∵∠BEP +∠BPE =90°,∠QPC +∠BPE =90°, ∴∠BEP =∠CPQ . 又∠B =∠C =90°, ∴△BPE ∽△CQP . ∴BE PC=BP CQ.设CQ =y ,BP =x ,则CP =12﹣x . ∴912−x=xy ,化简得y =−19(x 2﹣12x ),整理得y =−19(x ﹣6)2+4, 所以当x =6时,y 有最大值为4. 故答案为4.【点睛】本题主要考查了正方形的性质、相似三角形的判定和性质,以及二次函数最值问题,几何最值用二次函数最值求解考查了树形结合思想.【典例3】(2019•自贡)如图,在由10个完全相同的正三角形构成的网格图中,∠α、∠β如图所示,则cos (α+β)=√217.【点拨】给图中相关点标上字母,连接DE ,利用等腰三角形的性质及三角形内角和定理可得出∠α=30°,同理,可得出:∠CDE =∠CED =30°=∠α,由∠AEC =60°结合∠AED =∠AEC +∠CED 可得出∠AED =90°,设等边三角形的边长为a ,则AE =2a ,DE =√3a ,利用勾股定理可得出AD 的长,再结合余弦的定义即可求出cos (α+β)的值.【解答】解:给图中相关点标上字母,连接DE ,如图所示. 在△ABC 中,∠ABC =120°,BA =BC , ∴∠α=30°.同理,可得出:∠CDE =∠CED =30°=∠α. 又∵∠AEC =60°,∴∠AED =∠AEC +∠CED =90°.设等边三角形的边长为a ,则AE =2a ,DE =2×sin60°•a =√3a , ∴AD =√AE 2+DE 2=√7a , ∴cos (α+β)=DE AD =√217. 故答案为:√217.【点睛】本题考查了解直角三角形、等边三角形的性质以及规律型:图形的变化类,构造出含一个锐角等于∠α+∠β的直角三角形是解题的关键.【典例4】(2019•雅安)已知函数y ={−x 2+2x(x >0)−x(x ≤0)的图象如图所示,若直线y =x +m 与该图象恰有三个不同的交点,则m 的取值范围为 0<m <14 .【点拨】直线与y =﹣x 有一个交点,与y =﹣x 2+2x 有两个交点,则有m >0,x +m =﹣x 2+2x 时,△=1﹣4m >0,即可求解.【解答】解:直线y =x +m 与该图象恰有三个不同的交点, 则直线与y =﹣x 有一个交点, ∴m >0,∵与y=﹣x2+2x有两个交点,∴x+m=﹣x2+2x,△=1﹣4m>0,∴m<1 4,∴0<m<1 4;故答案为0<m<1 4.【点睛】本题考查二次函数与一次函数的图象及性质;能够根据条件,数形结合的进行分析,可以确定m的范围.【典例5】(2019•广元)如图,抛物线y=ax2+bx+c(a≠0)过点(﹣1,0),(0,2),且顶点在第一象限,设M=4a+2b+c,则M的取值范围是﹣6<M<6.【点拨】将(﹣1,0)与(0,2)代入y=ax2+bx+c,可知b=a+2,利用对称轴可知:a>﹣2,从而可知M的取值范围.【解答】解:将(﹣1,0)与(0,2)代入y=ax2+bx+c,∴0=a﹣b+c,2=c,∴b=a+2,∵−b2a>0,a<0,∴b>0,∴a>﹣2,∴﹣2<a<0,∴M=4a+2(a+2)+2 =6a+6=6(a+1)∴﹣6<M<6,故答案为:﹣6<M<6;【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.【典例6】(2019•巴中)如图,等边三角形ABC内有一点P,分別连结AP、BP、CP,若AP=6,BP=8,CP=10.则S△ABP+S△BPC=24+16√3.【点拨】将△BPC绕点B逆时针旋转60°后得△AP'B,根据旋转的性质可得∠PBP′=∠CAB=60°,BP=BP′,可得△BPP′为等边三角形,可得BP′=BP=8=PP',由勾股定理的逆定理可得,△APP′是直角三角形,由三角形的面积公式可求解.【解答】解:如图,将△BPC绕点B逆时针旋转60°后得△AP'B,连接PP′,根据旋转的性质可知,旋转角∠PBP′=∠CAB=60°,BP=BP′,∴△BPP′为等边三角形,∴BP′=BP=8=PP';由旋转的性质可知,AP′=PC=10,在△BPP′中,PP′=8,AP=6,由勾股定理的逆定理得,△APP′是直角三角形,∴S△ABP+S△BPC=S四边形AP'BP=S△BP'B+S△AP'P=√34BP2+12×PP'×AP=24+16√3故答案为:24+16√3【点评】本题考查了旋转的性质,等边三角形的性质,勾股定理,作辅助线构造出等边三角形和直角三角形是解题的关键,也是本题的难点.【典例7】(2019•内江)如图,在平行四边形ABCD中,AB<AD,∠A=150°,CD=4,以CD为直径的⊙O交AD于点E,则图中阴影部分的面积为2π3+√3.【点拨】连接OE ,作OF ⊥DE ,先求出∠COE =2∠D =60°、OF =12OD =1,DF =OD cos ∠ODF =√3,DE =2DF =2√3,再根据阴影部分面积是扇形与三角形的面积和求解可得. 【解答】解:如图,连接OE ,作OF ⊥DE 于点F ,∵四边形ABCD 是平行四边形,且∠A =150°, ∴∠D =30°,则∠COE =2∠D =60°, ∵CD =4, ∴CO =DO =2,∴OF =12OD =1,DF =OD cos ∠ODF =2×√32=√3, ∴DE =2DF =2√3, ∴图中阴影部分的面积为60⋅π⋅22360+12×2√3×1=2π3+√3, 故答案为:2π3+√3.【点睛】本题考查的是扇形面积计算、平行四边形的性质,掌握扇形面积公式:S =nπr 2360是解题的关键.【典例8】(2019•泸州)如图,在等腰Rt △ABC 中,∠C =90°,AC =15,点E 在边CB 上,CE =2EB ,点D 在边AB 上,CD ⊥AE ,垂足为F ,则AD 的长为 9√2 .【点拨】过D 作DH ⊥AC 于H ,根据等腰三角形的性质得到AC =BC =15,∠CAD =45°,求得AH =DH ,得到CH =15﹣DH ,根据相似三角形的性质即可得到结论.【解答】解:过D 作DH ⊥AC 于H , ∵在等腰Rt △ABC 中,∠C =90°,AC =15, ∴AC =BC =15, ∴∠CAD =45°, ∴AH =DH , ∴CH =15﹣DH , ∵CF ⊥AE ,∴∠DHA =∠DF A =90°, ∴∠HAF =∠HDF , ∴△ACE ∽△DHC , ∴DH AC=CH CE,∵CE =2EB , ∴CE =10, ∴DH 15=15−DH 10,∴DH =9, ∴AD =9√2, 故答案为:9√2.【点睛】本题考查了相似三角形的判定和性质,等腰直角三角形的判定和性质,正确的作出辅助线是解题的关键.【典例9】(2019•乐山)如图1,在四边形ABCD 中,AD ∥BC ,∠B =30°,直线l ⊥AB .当直线l 沿射线BC 方向,从点B 开始向右平移时,直线l 与四边形ABCD 的边分别相交于点E 、F .设直线l 向右平移的距离为x ,线段EF 的长为y ,且y 与x 的函数关系如图2所示,则四边形ABCD 的周长是 .【点拨】根据题意和函数图象中的数据,可以得到AB、BC、AD的长,再根据平行线的性质和图形中的数据可以得到CD的长,从而可以求得四边形ABCD的周长.【解答】解:∵∠B=30°,直线l⊥AB,∴BE=2EF,由图可得,AB=4cos30°=4×√32=2√3,BC=5,AD=7﹣4=3,由图象可得,AN=5﹣4=1,ND=CM=7﹣5=2,DM=2,∵∠B=30°,EF⊥AB,∴∠M=60°,又∵DM=MC=2,∴△DMC是等边三角形,∴DC=DM=2,∴四边形ABCD的周长是:AB+BC+AD+CD=2√3+5+3+2=10+2√3,故答案为:10+2√3.【点睛】本题考查动点问题的函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.【典例10】(2019•攀枝花)正方形A1B1C1A2,A2B2C2A3,A3B3C3A4,…按如图所示的方式放置,点A1,A2,A3,…和点B1,B2,B3,…分别在直线y=kx+b(k>0)和x轴上.已知点A1(0,1),点B1(1,0),则C5的坐标是(47,16),.【点拨】由题意可知A1纵坐标为1,A2的纵坐标为2,A3的纵坐标为4,A4的纵坐标为8,…,即可得到C1,C2,C3,C4,C5的纵坐标,根据图象得出C1(2,1),C2(5,2),C3(11,4),即可得到C1,C2,C3,C4,C5…在一条直线上,直线的解析式为y=13x+13,把C5的纵坐标代入即可求得横坐标.【解答】解:由题意可知A1纵坐标为1,A2的纵坐标为2,A3的纵坐标为4,A4的纵坐标为8,…,∵A1和C1,A2和C2,A3和C3,A4和C4的纵坐标相同,∴C1,C2,C3,C4,C5的纵坐标分别为1,2,4,8,16,…∴根据图象得出C1(2,1),C2(5,2),C3(11,4),∴直线C1C2的解析式为y=13x+13,∵A5的纵坐标为16,∴C5的纵坐标为16,把y=16代入y=13x+13,解得x=47,∴C5的坐标是(47,16),故答案为(47,16).【点睛】此题考查了待定系数法求一次函数的解析式、等腰直角三角形和正方形的性质.此题难度适中,属于规律型题目,注意掌握数形结合思想的应用.【典例11】(2019•广安)如图,在平面直角坐标系中,点A1的坐标为(1,0),以OA1为直角边作Rt△OA1A2,并使∠A1OA2=60°,再以OA2为直角边作Rt△OA2A3,并使∠A2OA3=60°,再以OA3为直角边作Rt △OA3A4,并使∠A3OA4=60°…按此规律进行下去,则点A2019的坐标为(﹣22017,22017√3).【点拨】通过解直角三角形,依次求A1,A2,A3,A4,…各点的坐标,再从其中找出规律,便可得结论.【解答】解:由题意得,A1的坐标为(1,0),A2的坐标为(1,√3),A3的坐标为(﹣2,2√3),A4的坐标为(﹣8,0),A5的坐标为(﹣8,﹣8√3),A6的坐标为(16,﹣16√3),A7的坐标为(64,0),…由上可知,A点的方位是每6个循环,与第一点方位相同的点在x正半轴上,其横坐标为2n﹣1,其纵坐标为0,与第二点方位相同的点在第一象限内,其横坐标为2n﹣2,纵坐标为2n﹣2√3,与第三点方位相同的点在第二象限内,其横坐标为﹣2n﹣2,纵坐标为2n﹣2√3,与第四点方位相同的点在x负半轴上,其横坐标为﹣2n﹣1,纵坐标为0,与第五点方位相同的点在第三象限内,其横坐标为﹣2n﹣2,纵坐标为﹣2n﹣2√3,与第六点方位相同的点在第四象限内,其横坐标为2n﹣2,纵坐标为﹣2n﹣2√3,∵2019÷6=336…3,∴点A2019的方位与点A3的方位相同,在第二象限内,其横坐标为﹣2n﹣2=﹣22017,纵坐标为22017√3,故答案为:(﹣22017,22017√3).【点睛】本题主点的坐标的规律题,主要考查了解直角三角形的知识,关键是求出前面7个点的坐标,找出其存在的规律.【典例12】(2019•南充)如图,矩形硬纸片ABCD 的顶点A 在y 轴的正半轴及原点上滑动,顶点B 在x 轴的正半轴及原点上滑动,点E 为AB 的中点,AB =24,BC =5.给出下列结论:①点A 从点O 出发,到点B 运动至点O 为止,点E 经过的路径长为12π;②△OAB 的面积最大值为144;③当OD 最大时,点D 的坐标为(25√2626,125√2626).其中正确的结论是 ②③ .(填写序号)【点拨】①由条件可知AB =24,则AB 的中点E 的运动轨迹是圆弧,最后根据弧长公式即可计算出点E 所经过的路径长;②当△OAB 的面积最大时,因为AB =24,所以△OAB 为等腰直角三角形,即OA =OB ,可求出最大面积为144;③当O 、E 、D 三点共线时,OD 最大,过点D 作DF ⊥y 轴于点F ,可求出OD =25,证明△DF A ∽△AOB 和△DFO ∽△BOA ,可求出DF 长,则D 点坐标可求出. 【解答】解:∵点E 为AB 的中点,AB =24, ∴OE =12AB =12,∴AB 的中点E 的运动轨迹是以点O 为圆心,12为半径的一段圆弧, ∵∠AOB =90°, ∴点E 经过的路径长为90×12×π180=6π,故①错误;当△OAB 的面积最大时,因为AB =24,所以△OAB 为等腰直角三角形,即OA =OB , ∵E 为AB 的中点,∴OE ⊥AB ,OE =12AB =12,∴S △AOB =12×24×12=144,故②正确;如图,当O 、E 、D 三点共线时,OD 最大,过点D 作DF ⊥y 轴于点F ,∵AD =BC =5,AE =12AB =12, ∴DE =√AD 2+AE 2=√52+122=13, ∴OD =DE +OE =13+12=25, 设DF =x ,∴OF =√OD 2−DF 2=√252−x 2, ∵四边形ABCD 是矩形, ∴∠DAB =90°, ∴∠DF A =∠AOB , ∴∠DAF =∠ABO , ∴△DF A ∽△AOB ∴DF OA =DA AB ,∴x OA=524,∴OA =24x5, ∵E 为AB 的中点,∠AOB =90°, ∴AE =OE , ∴∠AOE =∠OAE , ∴△DFO ∽△BOA , ∴OD AB =OF OA,∴2524=√252−x 224x 5,解得x =25√2626,x =−25√2626舍去,∴OF=125√26 26,∴D(25√2626,125√2626).故③正确.故答案为:②③.【点睛】本题考查四边形综合题、直角形的性质、矩形的性质、相似三角形的判定和性质等知识.解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.【典例13】(2019•绵阳)如图,△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=2√2.将△BDE绕点B逆时针方向旋转后得△BD′E′,当点E′恰好落在线段AD′上时,则CE′=√2+√6.【点拨】如图,连接CE′,根据等腰三角形的性质得到AB=BC=2√2,BD=BE=2,根据性质的性质得到D′B=BE′=BD=2,∠D′BE′=90′,∠D′BD=∠ABE′,由全等三角形的性质得到∠D′=∠CE′B=45°,过B作BH⊥CE′于H,解直角三角形即可得到结论.【解答】解:如图,连接CE′,∵△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=2√2,∴AB=BC=2√2,BD=BE=2,∵将△BDE绕点B逆时针方向旋转后得△BD′E′,∴D′B=BE′=BD=2,∠D′BE′=90°,∠D′BD=∠ABE′,∴∠ABD′=∠CBE′,∴△ABD′≌△CBE′(SAS),∴∠D′=∠CE′B=45°,过B作BH⊥CE′于H,在Rt△BHE′中,BH=E′H=√22BE′=√2,在Rt△BCH中,CH=√BC2−BH2=√6,∴CE′=√2+√6,故答案为:√2+√6.【点睛】本题考查了旋转的性质,全等三角形的判定和性质,等腰直角三角形的性质,解直角三角形,正确的作出辅助线是解题的关键.【典例14】(2019•宜宾)如图,△ABC 和△CDE 都是等边三角形,且点A 、C 、E 在同一直线上,AD 与BE 、BC 分别交于点F 、M ,BE 与CD 交于点N .下列结论正确的是 ①③④ (写出所有正确结论的序号).①AM =BN ;②△ABF ≌△DNF ;③∠FMC +∠FNC =180°;④1MN=1AC+1CE【点拨】①根据等边三角形性质得出AC =BC ,CE =CD ,∠ACB =∠ECD =60°,求出∠BCE =∠ACD ,根据SAS 推出两三角形全等即可;②根据∠ABC =60°=∠BCD ,求出AB ∥CD ,可推出△ABF ∽△DNF ,找不出全等的条件; ③根据角的关系可以求得∠AFB =60°,可求得MFN =120°,根据∠BCD =60°可解题; ④根据CM =CN ,∠MCN =60°,可求得∠CNM =60°,可判定MN ∥AE ,可求得MN AC=DN CD=CD−CN CD,可解题.【解答】证明:①∵△ABC 和△CDE 都是等边三角形, ∴AC =BC ,CE =CD ,∠ACB =∠ECD =60°, ∴∠ACB +∠ACE =∠ECD +∠ACE , 即∠BCE =∠ACD , 在△BCE 和△ACD 中, {BC =AC∠BCE =∠ACD CE =CD,∴△BCE ≌△ACD (SAS ),∴AD =BE ,∠ADC =∠BEC ,∠CAD =∠CBE , 在△DMC 和△ENC 中, {∠MDC =∠NEC DC =BC ∠MCD =∠NCE =60°, ∴△DMC ≌△ENC (ASA ), ∴DM =EN ,CM =CN ,∴AD ﹣DM =BE ﹣EN ,即AM =BN ; ②∵∠ABC =60°=∠BCD , ∴AB ∥CD , ∴∠BAF =∠CDF , ∵∠AFB =∠DFN ,∴△ABF ∽△DNF ,找不出全等的条件;③∵∠AFB +∠ABF +∠BAF =180°,∠FBC =∠CAF , ∴∠AFB +∠ABC +∠BAC =180°, ∴∠AFB =60°, ∴∠MFN =120°, ∵∠MCN =60°, ∴∠FMC +∠FNC =180°; ④∵CM =CN ,∠MCN =60°, ∴△MCN 是等边三角形, ∴∠MNC =60°, ∵∠DCE =60°, ∴MN ∥AE , ∴MN AC=DN CD=CD−CN CD,∵CD =CE ,MN =CN , ∴MN AC =CE−MN CE ,∴MNAC=1−MNCE ,两边同时除MN 得1AC=1MN−1CE,∴1MN=1AC+1CE.故答案为①③④【点睛】本题考查了全等三角形的判定,考查了全等三角形的对应边、对应角相等的性质,考查了平行线的运用,考查了正三角形的判定,本题属于中档题.【典例15】(2019•资阳)如图,在△ABC 中,已知AC =3,BC =4,点D 为边AB 的中点,连结CD ,过点A 作AE ⊥CD 于点E ,将△ACE 沿直线AC 翻折到△ACE ′的位置.若CE ′∥AB ,则CE ′=95.【点拨】如图,作CH ⊥AB 于H .首先证明∠ACB =90°,解直角三角形求出AH ,再证明CE ′=AH 即可.【解答】解:如图,作CH ⊥AB 于H .由翻折可知:∠AE ′C =∠AEC =90°,∠ACE =∠ACE ′, ∵CE ′∥AB , ∴∠ACE ′=∠CAD , ∴∠ACD =∠CAD , ∴DC =DA , ∵AD =DB , ∴DC =DA =DB , ∴∠ACB =90°, ∴AB =√AC 2+BC 2=5, ∵12•AB •CH =12•AC •BC ,∴CH =125,∴AH =√AC 2−CH 2=95, ∵CE ′∥AB ,∴∠E ′CH +∠AHC =180°, ∵∠AHC =90°, ∴∠E ′CH =90°, ∴四边形AHCE ′是矩形, ∴CE ′=AH =95, 故答案为95.【点睛】本题考查翻折变换,平行线的性质等知识,解题的关键是学会添加常用辅助线,构造特殊四边形解决问题,属于中考常考题型.【典例16】(2019•达州)如图,抛物线y =﹣x 2+2x +m +1(m 为常数)交y 轴于点A ,与x 轴的一个交点在2和3之间,顶点为B .①抛物线y =﹣x 2+2x +m +1与直线y =m +2有且只有一个交点;②若点M (﹣2,y 1)、点N (12,y 2)、点P (2,y 3)在该函数图象上,则y 1<y 2<y 3;③将该抛物线向左平移2个单位,再向下平移2个单位,所得抛物线解析式为y =﹣(x +1)2+m ; ④点A 关于直线x =1的对称点为C ,点D 、E 分别在x 轴和y 轴上,当m =1时,四边形BCDE 周长的最小值为√34+√2.其中正确判断的序号是 ①③④ .【点拨】①把y =m +2代入y =﹣x 2+2x +m +1中,判断所得一元二次方程的根的情况便可得判断正确; ②根据二次函数的性质进行判断;③根据平移的公式求出平移后的解析式便可;④因BC 边一定,只要其他三边和最小便可,作点B 关于y 轴的对称点B ′,作C 点关于x 轴的对称点C′,连接B′C′,与x轴、y轴分别交于D、E点,求出B′C′便是其他三边和的最小值.【解答】解:①把y=m+2代入y=﹣x2+2x+m+1中,得x2﹣2x+1=0,∵△=4﹣4=0,∴此方程两个相等的实数根,则抛物线y=﹣x2+2x+m+1与直线y=m+2有且只有一个交点,故此小题结论正确;②∵抛物线的对称轴为x=1,∴点P(2,y3)关于x=1的对称点为P′(0,y3),∵a=﹣1<0,∴当x<1时,y随x增大而增大,又∵﹣2<0<12,点M(﹣2,y1)、点N(12,y2)、点P′(0,y3)在该函数图象上,∴y2>y3>y1,故此小题结论错误;③将该抛物线向左平移2个单位,再向下平移2个单位,抛物线的解析式为:y=﹣(x+2)2+2(x+2)x+m+1﹣2,即y=﹣(x+1)2+m,故此小题结论正确;④当m=1时,抛物线的解析式为:y=﹣x2+2x+2,∴A(0,2),C(2,2),B(1,3),作点B关于y轴的对称点B′(﹣1,3),作C点关于x轴的对称点C′(2,﹣2),连接B′C′,与x轴、y轴分别交于D、E点,如图,则BE+ED+CD+BC=B′E+ED+C′D+BC=B′C′+BC,根据两点之间线段最短,知B′C′最短,而BC的长度一定,∴此时,四边形BCDE周长=B′C′+BC最小,为:√B′M2+C′M2+√BM2+CM2=√32+52+√12+12=√34+√2,故此小题结论正确;故答案为:①③④.【点睛】本题考查二次函数的应用、二次函数的图象与性质、二次函数与坐标轴的交点、求线段和的最小值等知识,解题的关键是灵活运用所学知识解决问题,属于中考填空题中的压轴题.【典例17】(2019•遂宁)如图,在平面直角坐标系中,矩形OABC的顶点O落在坐标原点,点A、点C分别位于x轴,y轴的正半轴,G为线段OA上一点,将△OCG沿CG翻折,O点恰好落在对角线AC上的点P处,反比例函数y=12x经过点B.二次函数y=ax2+bx+c(a≠0)的图象经过C(0,3)、G、A三点,则该二次函数的解析式为y=12x2−114x+3.(填一般式)【点拨】点C (0,3),反比例函数y =12x 经过点B ,则点B (4,3),由勾股定理得:(4﹣x )2=4+x 2,故点G (32,0),将点C 、G 、A 坐标代入二次函数表达式,即可求解.【解答】解:点C (0,3),反比例函数y =12x经过点B ,则点B (4,3), 则OC =3,OA =4, ∴AC =5,设OG =PG =x ,则GA =4﹣x ,P A =AC ﹣CP =AC ﹣OC =5﹣3=2, 由勾股定理得:(4﹣x )2=4+x 2, 解得:x =32,故点G (32,0),将点C 、G 、A 坐标代入二次函数表达式得:{c =394a +32b +c =014a +4b +c =0,解得:{ a =12b =−114c =3,故答案为:y =12x 2−114x +3.【点睛】本题考查的是二次函数综合运用,涉及到矩形基本性质、反比例函数基本性质与应用,其中用勾股定理求OG 的长度,是本题解题的关键.【典例18】(2018•凉山州)△AOC 在平面直角坐标系中的位置如图所示,OA =4,将△AOC 绕O 点,逆时针旋转90°得到△A 1OC 1,A 1C 1,交y 轴于B (0,2),若△C 1OB ∽△C 1A 1O ,则点C 1的坐标 (43,83) .【点拨】如图作C 1H ⊥x 轴于H .由△C 1OB ∽△C 1A 1O ,推出OC 1A 1C 1=OB OA 1=12,由tan ∠C 1A 1H =OBOA 1=C 1K A 1H =12,设C 1H =m ,则A 1H =2m ,OH =2m ﹣4,构建方程即可解决问题; 【解答】解:如图作C 1H ⊥x 轴于H .∵△C 1OB ∽△C 1A 1O , ∴OC 1A 1C 1=OB OA 1=12,∵tan ∠C 1A 1H =OBOA 1=C 1HA 1H =12,设C 1H =m ,则A 1H =2m ,OH =2m ﹣4,∴A 1C 1=√5m ,OC 1=√m 2+(2m −4)2, ∴√5m =2√m 2+(2m −4)2, 解得m =83或85(舍弃),∴C 1(43,83).(本题也可以证明tan ∠OC 1H =OH HC 1=12,S 设C 1(m ,2m ),根据A 1H =4m ,构建方程)【点睛】本题考查相似三角形的性质、坐标与图形的旋转等知识,解题的关键是学会利用参数构建方程解决问题,属于中考填空题中的压轴题.【精练1】(2019秋•河东区期末)如图,在反比例函数y =−6x (x <0)的图象上任取一点P ,过P 点分别作x 轴,y 轴的垂线,垂足分别为M ,N ,那么四边形PMON 的面积为 .【点拨】设出点P 的坐标,四边形PMON 的面积等于点P 的横纵坐标的积的绝对值,把相关数值代入即可.【解答】解:设点P 的坐标为(x ,y ),∵点P 的反比例函数解析式上, ∴xy =﹣6,易得四边形PMON 为矩形, ∴四边形PMON 的面积为|xy |=6, 故答案为6.【点睛】考查反比例函数的比例系数的意义;用到的知识点为:在反比例函数图象上的点的横纵坐标的积等于反比例函数的比例系数.注意面积应为正值.【精练2】(2016秋•江阴市校级月考)如图,正方形ABCD 的边长为1cm ,M 、N 分别是BC 、CD 上两个动点,且始终保持AM ⊥MN ,则△ADN 的最小面积为 .【点拨】设BM =xcm ,则MC =(1﹣x )cm ,当AM ⊥MN 时,利用互余关系可证△ABM ∽△MCN ,利用相似比求CN ,根据三角形的面积公式表示出△ADN 的面积,用二次函数的性质求面积的最小值. 【解答】解:设BM =xcm ,则MC =(1﹣x )cm , ∵∠AMN =90°,∴∠AMB +∠NMC =90°,∠NMC +∠MNC =90°, ∴∠AMB =∠MNC , 又∵∠B =∠C , ∴△ABM ∽△MCN ,则AB MC=BM CN,即11−x=x CN,解得:CN =x(1−x)1=x (1﹣x ), ∴S △ADN =S 正方形ABCD =12×1×[1﹣x (1﹣x )]=12x 2−12x +12, ∵12<0,∴当x =12cm 时,S △ADN 最小,最小值是4×12×12−(−12)24×12=38(cm 2).故答案是:38cm 2.【点睛】本题考查了二次函数的性质的运用.关键是根据已知条件判断相似三角形,利用相似比求函数关系式.【精练3】(2019秋•香坊区期末)等边△ABC 中,点P 是BC 所在直线上一点,且PC :BC =1:4,则tan ∠APB 的值是 .【点拨】过A 作AD ⊥BC 于D ,设等边△ABC 的边长为4a ,则DC =2a ,AD =2√3a ,PC =a ,分类讨论:当P 在BC 的延长线上时,DP =DC +CP =2a +a =3a ;当P 点在线段BC 上,即在P ′的位置,则DP ′=DC ﹣CP ′=a ,然后分别利用正切的定义求解即可. 【解答】解:如图,过A 作AD ⊥BC 于D ,设等边△ABC 的边长为4a ,则DC =2a ,AD =2√3a ,PC =a , 当P 在BC 的延长线上时,DP =DC +CP =2a +a =3a , 在Rt △ADP 中,tan ∠APD =AD DP =2√3a 3a =2√33; 当P 点在线段BC 上,即在P ′的位置,则DP ′=DC ﹣CP ′=a , 在Rt △ADP ′中,tan ∠AP ′D =AD DP′=2√3aa =2√3.故答案为2√3或2√33.【点睛】本题考查了解直角三角形:利用三角函数和勾股定理求三角形中未知的边或角的过程叫解直角三角形.也考查了分类讨论思想的运用.【精练4】(2019秋•长清区期中)如图,在△ABC 中,∠BAC =90°,AB =AC =√2,点D 、E 分别在BC 、AC 上(点D 不与点B 、C 重合),且∠ADE =45°,若△ADE 是等腰三角形,则CE = .【点拨】可得∠B =∠C =45°,可证得△DCE ∽△ABD ,由于D 与B 、C 不重合,显然∠ADE =∠AED=45°不符合题意,即AD≠AE,所以此题分两种情况讨论:①AD=DE,此时(2)的相似三角形全等,由此可求得CD、BD的长,进而可得CE、AE的值.【解答】解:∵点D不能与B点重合,∴AD=AE不能成立,(或:∵∠ADE=45°,若AD=AE,则∠AED=ADE=45°,从而∠DAE=90°,即B与D重合,这与已知条件矛盾).①当AE、DE为腰,即AE=DE时(如图1),∠EAD=∠EDA=45°,此时,AD平分∠BAC,∴D为BC边的中点(“三线合一”性质),且E也为AC边的中点,∴CE=AE=√2 2;②当AD、DE为腰,即AD=DE时(如图2),∵∠BAC=90°,AB=AC=2,∴∠B=∠C=45°.∵∠ADE=45°,∴∠B=∠C=∠ADE.∵∠ADB=∠C+∠DAC,∠DEC=∠ADE+∠DAC,∴∠ADB=∠DEC.∵∠ADC +∠B +∠BAD =180,∠DEC +∠C +∠CDE =180°, ∴∠ADC +∠B +∠BAD =∠DEC +∠C +∠CDE , ∴∠EDC =∠BAD , ∴△ABD ∽△DCE 此时AD 与DE 为对应边,∴△ABD ≌△DCE ,DC =AB =√2, CE =BD =BC ﹣CD =2−√2. 因此CE 的长为2−√2或√22. 故答案为:2−√2或√22. 【点睛】本题考查了相似三角形的判定与性质,等腰三角形的判定,解答时证明三角形相似是关键. 【精练5】(2019秋•江岸区校级月考)我们把函数y ={x 2−2x −3(x ≥0)x 2+2x −3(x ≤0)的图象记为C ,若直线y =x +b与图象C 有且只有三个公共点,则b 的取值是 .【点拨】画出分段函数的图象,结合图象找到直线与该图象有三个交点的两端情况:直线经过点(0,﹣3)时;直线y =x +b 与y =x 2+2x ﹣3(x ≤0)部分只有一个交点时. 【解答】解:根据函数解析式分别画出函数图象,如图所示: 当直线经过点(0,﹣3)时,此时函数与直线y =x +b 恰有三个交点, ∴b =﹣3,当直线y =x +b 与y =x 2+2x ﹣3(x ≤0)部分只有一个交点时, ∴x 2+2x ﹣3=x +b , ∴b =−134; ∴b =﹣3或b =−134时两图象有三个交点; 故答案为−134或﹣3.【点睛】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.【精练6】(2018秋•越秀区期末)抛物线y=ax2+bx+c的对称轴为直线x=﹣1,部分图象如图所示,下列判断中:①abc>0;②b2﹣4ac>0;③9a﹣3b+c=0;④6a﹣2b+c<0;⑤若点(﹣0.5,y1),(﹣2,y2)均在抛物线上,则y1>y2,其中正确的判断是(填写所有正确判断的序号)【点拨】根据抛物线的开口方向,对称轴,抛物线与x轴的交点情况,二次函数图象上点的坐标特征判断即可.【解答】解:∵抛物线对称轴x=﹣1,经过(1,0),∴−b2a=−1,a+b+c=0,∴b=2a,c=﹣3a,∵抛物线开口向上,∴a>0,∴b>0,c<0,∴abc<0,故①错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故②正确;∵抛物线与x轴交于(﹣3,0),∴9a﹣3b+c=0,故③正确;∵9a﹣3b+c=0,b=2a,c=﹣3a,∴6a﹣2b+c=6a﹣4a﹣3a=﹣a<0,故④正确;∵抛物线对称轴x=﹣1,∴x=﹣0.5与x=﹣1.5的函数值相等,∵﹣1.5>﹣2,∴则y1<y2;故⑤错误;故答案为:②③④.【点睛】本题考查二次函数与系数的关系,二次函数图象上的点的特征,解题的关键是灵活运用所学知识解决问题,灵活运用数形结合思想.【精练7】(2019春•东海县期中)如图,P是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60°,得到线段AQ,连接BQ,若P A=3,PB=4,PC=5,则四边形APBQ的面积为【点拨】连结PQ,如图,根据等边三角形的性质得∠BAC=60°,AB=AC,再根据旋转的性质得AP=AQ=3,∠P AQ=60°,则可判断△APQ为等边三角形,所以PQ=AP=3,接着证明△APC≌△ABQ得到PC=QB=5,然后利用勾股定理的逆定理证明△PBQ为直角三角形,再根据三角形面积公式,利用S=S△BPQ+S△APQ进行计算.四边形APBQ【解答】解:连结PQ,如图,∵△ABC为等边三角形,∴∠BAC=60°,AB=AC,∵线段AP绕点A顺时针旋转60°得到线段AQ,∴AP=AQ=3,∠P AQ=60°,∴△APQ为等边三角形,∴PQ=AP=3,∵∠CAP+∠BAP=60°,∠BAP+∠BAQ=60°,∴∠CAP=∠BAQ,且AC=AB,AP=AQ∴△APC≌△ABQ(SAS),∴PC=QB=5,在△BPQ中,∵PB2=42=16,PQ2=32=9,BQ2=52=25,∴PB2+PQ2=BQ2,∴△PBQ为直角三角形,∠BPQ=90°,∴S四边形APBQ=S△BPQ+S△APQ=12BP×PQ+√34×PQ2=6+9√34故答案为:6+9√3 4【点睛】本题考查了旋转的性质,全等三角形的性质,勾股定理以及逆定理,证明△APQ为等边三角形是本题的关键.【精练8】(2019•吉林)如图,在扇形OAB中,∠AOB=90°.D,E分别是半径OA,OB上的点,以OD,OE为邻边的▱ODCE的顶点C在AB̂上.若OD=8,OE=6,则阴影部分图形的面积是(结果保留π).【点拨】连接OC,根据同样只统计得到▱ODCE是矩形,由矩形的性质得到∠ODC=90°.根据勾股定理得到OC=10,根据扇形的面积公式和矩形的面积公式即可得到结论.【解答】解:连接OC,∵∠AOB=90°,四边形ODCE是平行四边形,∴▱ODCE是矩形,∴∠ODC=90°.∵OD=8,OE=6,∴OC=10,∴阴影部分图形的面积=90⋅π×102360−8×6=25π﹣48.故答案为:25π﹣48.【点睛】本题考查了扇形的面积的计算,矩形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.【精练9】(2019•虞城县一模)如图1,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C停止,它们运动的速度都是1cm/s.设P、Q出发ts时,△BPQ的面积为ycm2,已知y与t的函数关系如图2所示(其中曲线OM为抛物线的一部分,其余各部分均为线段)当点P在ED上运动时,连接QD,若QD平分∠PQC,则t的值为.【点拨】根据题意和函数图象可以得到BE和BC的长,然后根据当t=5时,y=10可以得到AB的长,然后根据QD平分∠PQC,可得DG=DC,进而可以求得相应的t的值.【解答】解:由题意可得,BE =5,BC =12, ∵当t =5时,S =10, ∴10=5×AB2,得AB =4, 作EH ⊥BC 于点H ,作EF ∥PQ ,P 1Q 2∥EF ,作DG ⊥P 1Q 2于点G , 则EH =AB =4,BE =BF =5, ∵∠EHB =90°, ∴BH =√52−42=3, ∴HF =2,∴EF =√42+22=2√5, ∴P 1Q 2=2√5,设当点P 运动到P 1时,Q 2D 平分∠P 1Q 2C ,则DG =DC =4,P 1D =17﹣AE ﹣EP 1=12﹣3﹣(t ﹣5)=14﹣t , ∴(14−t)×42=2√5×42,解得,t =14﹣2√5, 故答案为:14﹣2√5.【点睛】本题考查动点问题的函数图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.【精练10】(2018秋•市中区期末)将正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2按如图所示方式放置,点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =x +1和x 轴上,则点B 2019的横坐标是 .【点拨】根据直线y=x+1可求与x轴、y轴的交点坐标,得出第一个正方形的边长,得出点B1的横坐标,根据第二个正方形与第一个正方形的关系,可求出第二个正方形的边长,进而确定B2的横坐标,依此类推,可得出B2019的横坐标.【解答】解:当x=0时,y=x+1=1,∴A(0,1),当y=0时,x=﹣1,∴直线与x轴的交点(﹣1,0)∴B1(1,1),易得△A1B1A2、△A2B2A3、△A3B3A4、△A4B4A5……均是等腰直角三角形,可得:每一个正方形的边长都是它前一个正方形边长的2倍,因此:B2的横坐标为1+1×2=1+2=20+21=3=22﹣1,B3的横坐标为1+1×2+2×2=1+2+4=20+21+22=7=23﹣1,B4的横坐标为24﹣1,B5的横坐标为25﹣1,……B2019的横坐标为22019﹣1,故答案为:22019﹣1.【点睛】此题主要考查了一次函数图形上的点与坐标特征,规律型问题常用的方法是,分别求出前几个数据,然后依据变化规律,得出一般的结论.本题就是先求出B1的横坐标为21﹣1,B2的横坐标为22﹣1,B3的横坐标为23﹣1,B4的横坐标为24﹣1,……进而得到B n的横坐标为2n﹣1.【精练11】(2019•鄂尔多斯模拟)如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),根据这个规律探索可得,第56个点的坐标为.【点拨】根据题意和图象中的点的坐标,可以发现这些点的变化规律,从而可以求得第56个点的坐标.【解答】解:由题意可得,横坐标是1的点有1个,横坐标是2的点有2个,横坐标是3的点有3个,…,∵56=(1+2+3+…+10)+1,∴第56个点的坐标为(11,10),故答案为:(11,10)【点睛】本题考查规律性:点的坐标,解答本题的关键是明确题意,发现题目中点的变化规律,求出相应的点的坐标.【精练12】(2019春•徐州期中)如图,在矩形ABCD中,AB=2cm,BC=3cm,现有一根长为2cm的棒EF紧贴着矩形的边(即两个端点始终落在矩形的边上),按逆时针方向滑动一周,则木棒EF的中点P 在运动过程中所经过的路径长度为cm.【点拨】根据题意可以判断出点P的运动轨迹是4段弧长和2段线段的长度.【解答】解:连接BP,如图所示:∵P是EF的中点,∴BP=12EF=12×2=1,如图所示,点P的运动轨迹是4段弧长+2段线段的长度,即4×90π×1180+2×1=2π+2.故答案为:2π+2.【点睛】本题考查了轨迹、矩形的性质、直角三角形斜边上的中线等于斜边的一半的性质以及弧长的计算.判断出点的P运动的轨迹是解题的关键.【精练13】(2018秋•雨花区校级期末)如图,在Rt△ABC中,∠ABC=90°,AB=BC,点D是AC的中点,直角∠EDF的两边分别交AB、BC于点E、F,给出以下结论:①AE=BF;②S四边形BEDF=12S△ABC;③EF=BD;④∠BFE=∠CDF;⑤△DEF是等腰直角三角形,当∠EDF在△ABC内绕顶点D旋转时(点E不与点A、B重合),上述结论始终成立的有个.。
2021级重庆九年级中考17题行程问题专题练习(巴蜀中学试题集)
2021级重庆中考17题行程问题专题练习(巴蜀试题集)1(巴蜀2020级初三下数学自主测试A、B 两地相距90km,甲、乙两人从两地出发相向而行,甲先出发.图中l1,l2 表示两人离A地的距离S(km)与时间t(h)的关系,结合图象,下列结论错误的是()A.l1 是表示甲离A地的距离与时间关系的图象B.乙的速度是30km/ hC.两人相遇时间在t 1.2hD.当甲到达终点时乙距离终点还有45 k m2(巴蜀2020级初三下第三次模拟)在中考考试中,第一堂语文考试9:00开考,小恺8:00从家出发匀速步行去中考考场,5分钟后,弟弟小熙发现哥哥忘记带准考证,马上沿同一路线匀速送去给哥哥,哥哥到考场门口时发现忘带准考证,马上以之前的速度回家取,途中遇到赶来的弟弟,哥哥拿到准考证后以同样的速度赶往考场,弟弟则回到家中.哥哥与弟弟之间的距离y(米)与弟弟从家出发后步行的时间x(分)之间的关系如图所示(交接准考证的时间忽略不记).则下列结论中,不正确的是()A.弟弟出发20分钟时,将准考证拿给哥哥B.哥哥出发20分钟到达考场忘记拿准考证C.哥哥返回考场时,离开考还有30分钟D.哥哥返回考场时,弟弟离家还有300米3(巴蜀2020级初三上自主训练四)周末小明匀速步行从家赶往学校参加植树活动,出发30分钟后,发现忘带植树工具,于是马上掉头往回走,速度比之前每小时提高了1千米(仍保持匀速步行),同时小明打电话给爸爸,请爸爸帮他把植树工具送过来,从小明开始打电话到爸爸出门一共用了4分钟,爸爸的速度与小明提速后的速度相同。
两人相遇后,小明接过工具立即赶往学校,爸爸则转身回家,两人速度均保持不变,爸爸在回家途中用了10分钟吃早餐,当爸爸到家时小明刚好到达学校,两人相距的路程y (千米)与小明从家出发的时间x (分钟)之间的函数关系如图所示,则小明从家到学校途中步行的总路程是千米。
4(巴蜀2020级初三下定时训练一)如图,小明和小亮同时从学校放学,两人以各自速度匀速步行回家,小明的家在学校的正西方向,小亮的家在学校的正东方向,小明准备一回家就开始做作业,打开书包时发现错拿了小亮的练习册,于是立即跑步去追小亮,终于在途中追上了小亮并交还了练习册,然后再以先前的速度步行回家,(小明在家中耽搁和交还作业的时间忽略不计)结果小明比小亮晚回到家中.如图是两人之间的距离y 米与他们从学校出发的时间x 分钟的函数关系图.则小明的家和小亮的家相距 米.5(巴蜀2020级初三下二诊考试)甲乙两地相距300km ,一辆货车和一辆轿车先后从甲地出发到乙地停止,货车先出发从甲地匀速开往乙地,货车开出一段时间后,轿车出发,匀速行驶一段时间后接到通知提速后匀速赶往乙地(提速时间不计),最后发现轿车比货车提前0.5小时到达,下图表示两车之间的距离y(km)与货车行驶的时间x(h)之间的关系,则货车行驶 小时.两车在途中相遇.6(巴蜀2020级初三下模拟考试一)甲骑自行车从A 地到B 地,甲出发1分钟后乙骑平衡车从A 第地沿同一条路线追甲,追上甲时,平衡车电量耗尽,乙立即手推平衡车返回A 地,速度变为原来的31,甲继续向B 地骑行,结果甲乙同时到达各自的目的地并停止行进.整个过程中,两人均保持各自的速度匀速行驶,甲乙两人相距的路程y (米)与甲出发的时间x (分钟)之间的部分关系如图所示,则A 、B 两地相距的路程为 米。
2022最新中考数学专题测试:相似三角形及应用(含解析)
专题17 相似三角形及应用学校:___________姓名:___________班级:___________1.【江苏省南通市海安县2022模拟届九年级上学期期末考试数学试题】下列条件不能判定△ABC 与△DEF 相似的是( )A .AB BC AC DE EF DF == B .AB BCDE EF=,A D ∠=∠ C .∠A=∠D ,∠B=∠E D .AB BCDE EF=,∠B=∠E【考点定位】相似三角形的判定.2.【江苏省徐州市市区、铜山县2022模拟届九年级中考模拟数学试题】直线l 1∥l 2∥l 3,且l 1与l 2的距离为1,l 2与l 3的距离为3,把一块含有45°角的直角三角形如图放置,顶点A ,B ,C 恰好分别落在三条直线上,AC 与直线l 2交于点D ,则线段BD 的长度为()A .254 B .253C .203D .154【答案】A .【解析】分别过点A 、B 、D 作AF ⊥l 3,BE ⊥l 3,DG ⊥l 3,先根据全等三角形的判定定理得出△BCE ≌△ACF ,故可得出CF 及CE 的长,在Rt △ACF 中根据勾股定理求出AC 的长,再由相似三角形的判定得出△CDG ∽△CAF ,故可得出CD 的长,在Rt △BCD 中根据勾股定理即可求出BD 的长.分别过点A 、B 、D 作AF ⊥l 3,BE ⊥l 3,DG ⊥l 3,∵△ABC 是等腰直角三角形,∴AC=BC ,∵∠EBC+∠BCE=90°,∠BCE+∠ACF=90°,∠ACF+∠CAF=90°,∴∠EBC=∠ACF ,∠BCE=∠CAF , 在△BCE 与△ACF 中,EBC ACF BC ACBCE CAF ∠=∠⎧⎪=⎨⎪∠=∠⎩,【考点定位】1.相似三角形的判定与性质;2.平行线之间的距离;3.全等三角形的判定与性质;4.等腰直角三角形.3.【江苏省淮安市2022模拟年中考数学试题】如图,l 1∥l 2∥l 3,直线a ,b 与l 1、l 2、l 3分别相交于A 、B 、C 和点D 、E 、F .若32=BCAB ,DE =4,则EF 的长是( )A .38 B .320C .6D .10 【答案】C .【考点定位】平行线分线段成比例.4.【江苏省南京市2022模拟年中考数学试题】如图所示,△ABC 中,DE ∥BC ,若12AD DB =,则下列结论中正确的是( ) A .12AE EC = B .12DE BC = C .1=3ADE ABC △的周长△的周长 D .1=3ADE ABC △的面积△的面积【答案】C .【考点定位】相似三角形的判定与性质.5.【江苏省南通市海安县2022模拟届九年级上学期期末考试数学试题】若△ABC ∽△A ′B ′C ′,相似比为1:3,则△ABC 与△A ′B ′C ′的面积之比为.【答案】1:9.【解析】∵△ABC∽△A′B′C′,相似比为1:3,∴△ABC与△A′B′C′的面积之比为1:9.故答案为:1:9.【考点定位】相似三角形的性质.6.【江苏省扬州市2022模拟年中考数学试题】如图,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,同一条直线上的三个点A、B、C都在横格线上,若线段AB=4 cm,则线段BC=cm【答案】12【考点定位】平行线分线段成比例7.【江苏省常州市2022模拟年中考数学试题】如图,在△ABC 中,DE ∥BC ,AD :DB =1:2,DE =2,则BC 的长是.【答案】6.【考点定位】相似三角形的判定与性质.8.【江苏省无锡市2022模拟年中考数学试题】已知:如图,AD 、BE 分别是△ABC 的中线和角平分线,AD ⊥BE ,AD =BE =6,则AC 的长等于.【答案】952BACDE故答案为:952【考点定位】全等三角形的判定及性质;相似三角形的判定及性质;勾股定理. 9.【江苏省苏州市吴中、相城、吴江区2022模拟届九年级中考一模数学试题】如图,在平面直角坐标系中,已知点A (0,6),B (8,0).点P 从A 点出发,以每秒1个单位的速度沿AO 运动;同时,点Q 从O 出发,以每秒2个单位的速度沿OB 运动,当Q 点到达B 点时,P 、Q 两点同时停止运动. (1)求运动时间t 的取值范围;(2)t 为何值时,△POQ 的面积最大?最大值是多少?(3)t 为何值时,以点P 、0、Q 为顶点的三角形与Rt △AOB 相似?【答案】(1) 0≤t ≤4;(2) 当t=3时,△POQ 的面积最大,最大值是9.(3) 当t 为125或1811时,以点P 、0、Q 为顶点的三角形与Rt △AOB 相似. 【解析】试题分析:(1)由点Q 从O 出发,以每秒2个单位的速度沿OB 运动,当Q 点到达B 点时,P 、Q 两点同时停止运动,可得:2t=8,解得:t=4,进而可得:0≤t ≤4;(2)先根据三角形的面积公式,用含有t 的式子表示△POQ 的面积=-t 2+6t ,然后根据二次函数的最值公式解答即可;试题解析:(1)∵点A (0,6),B (8,0),∴OA=6,OB=8,∵点Q 从O 出发,以每秒2个单位的速度沿OB 运动,当Q 点到达B 点时,P 、Q 两点同时停止运动, ∴2t=8,解得:t=4, ∴0≤t ≤4;(2)根据题意得:经过t 秒后,AP=t ,OQ=2t ,∴OP=OA -AP=6-t , ∵△POQ 的面积=12•OP •OQ ,即△POQ 的面积=12×(6-t )×2t=-t 2+6t . ∵a=-1<0,∴△POQ 的面积有最大值,当t=-2ba=3时,△POQ 的面积的最大值=244ac b a =9,即当t=3时,△POQ 的面积最大,最大值是9. (3)①若Rt △POQ ∽Rt △AOB 时,∵Rt △POQ ∽Rt △AOB ,∴PO OQ AO OB =,即6268t t -=,解得:t=125②若Rt △QOP ∽Rt △AOB 时, ∵Rt △QOP ∽Rt △AOB ,∴PO OQ OB AO =,即6286t t -=,解得:t=1811.所以当t 为125或1811时,以点P 、0、Q 为顶点的三角形与Rt △AOB 相似. 【考点定位】相似三角形与一次函数综合题.10.【江苏省南京市2022模拟年中考数学试题】如图,△ABC 中,CD 是边AB 上的高,且AD CDCD BD=.(1)求证:△ACD ∽△CBD ; (2)求∠ACB 的大小.【答案】(1)证明见试题解析;(2)90°. 【解析】【考点定位】相似三角形的判定与性质.。
2022年中考数学真题-专题17 图形变换(平移、旋转、对称)(1)(全国通用解析版)
专题17图形变换(平移、旋转、对称)一.选择题(2022·湖南娄底)1. 下列与2022年冬奥会相关的图案中,是中心对称图形的是()A. B. C. D.【答案】D【解析】【分析】中心对称图形定义:如果一个图形绕某一点旋转180度,旋转后的图形能和原图形回完全重合,那么这个答图形叫做中心对称图形,根据中心对称图形定义逐项判定即可.【详解】解:根据中心对称图形定义,可知D符合题意,故选:D.【点睛】本题考查中心对称图形的识别,掌握中心对称图形的定义是解决问题的关键.(2022·四川自贡)2. 剪纸与扎染、龚扇被称为自贡小三绝,以下学生剪纸作品中,轴对称图形是()A. B.C. D.【答案】D【解析】【分析】根据轴对称图形的定义判断即可.【详解】∵不是轴对称图形,∴A不符合题意;∵不是轴对称图形,∴B不符合题意;∵不是轴对称图形,∴C不符合题意;∵是轴对称图形,∴D符合题意;故选D.【点睛】本题考查了轴对称图形即沿着某条直线折叠,直线两旁的部分完全重合,熟练掌握定义是解题的关键.(2022·山东泰安)3. 下列图形:其中轴对称图形的个数是()A. 4B. 3C. 2D. 1【答案】B【解析】【分析】对每个图形逐一分析,能够找到对称轴的图形就是轴对称图形.【详解】从左到右依次对图形进行分析:第1个图在竖直方向有一条对称轴,是轴对称图形,符合题意;第2个图在水平方向有一条对称轴,是轴对称图形,符合题意;第3个图找不到对称轴,不是轴对称图形,不符合题意;第4个图在竖直方向有一条对称轴,是轴对称图形,符合题意;因此,第1、2、4都是轴对称图形,共3个.故选:B.【点睛】本题考查轴对称图形的概念,解题的关键是寻找对称轴.(2022·江苏苏州)0,2,点B是x轴正半轴上的一点,将线段AB绕点A按4. 如图,点A的坐标为()m,则m的值为()逆时针方向旋转60°得到线段AC.若点C的坐标为(),3A.【答案】C【解析】【分析】过C作CD⊥x轴于D,CE⊥y轴于E,根据将线段AB绕点A按逆时针方向旋转60°得到线段AC,可得△ABC是等边三角形,又A(0,2),C(m,3),即得AC BC AB==,可得BD=m=.OB=m=,即可解得3【详解】解:过C 作CD ⊥x 轴于D ,CE ⊥y 轴于E ,如图所示:∵CD ⊥x 轴,CE ⊥y 轴,∴∠CDO =∠CEO =∠DOE =90°,∴四边形EODC 是矩形,∵将线段AB 绕点A 按逆时针方向旋转60°得到线段AC ,∴AB =AC ,∠BAC =60°,∴△ABC 是等边三角形,∴AB =AC =BC ,∵A (0,2),C (m ,3),∴CE =m =OD ,CD =3,OA =2,∴AE =OE −OA =CD −OA =1,∴AC BC AB ===,在Rt △BCD 中,BD =在Rt △AOB 中,OB ==∵OB +BD =OD =m ,m =,化简变形得:3m 4−22m 2−25=0,解得:3m =或3m =-(舍去),∴m=,故C正确.故选:C.【点睛】本题考查直角坐标系中的旋转变换,解题的关键是熟练应用勾股定理,用含m的代数式表示相关线段的长度.(2022·浙江湖州)5. 如图,将△ABC沿BC方向平移1cm得到对应的△A′B′C′.若B′C=2cm,则BC′的长是()A. 2cmB. 3cmC. 4cmD. 5cm【答案】C【解析】【分析】据平移的性质可得BB′=CC′=1,列式计算即可得解.【详解】解:∵△ABC沿BC方向平移1cm得到△A′B′C′,∴BB′=CC′=1cm,∵B′C=2cm,∴BC′= BB′+ B′C+CC′=1+2+1=4(cm).故选:C.【点睛】本题考查了平移的性质,熟记性质得到相等的线段是解题的关键.(2022·浙江嘉兴)6. “方胜”是中国古代妇女的一种发饰,其图案由两个全等正方形相叠组成,寓意是同心吉祥.如图,将边长为2cm的正方形ABCD沿对角线BD方向平移1cm得'''',形成一个“方胜”图案,则点D,B′之间的距离为()到正方形A B C DA. 1cmB. 2cmC. 1)cmD. -1)cm 【答案】D【解析】【分析】先求出BD,再根据平移性质求得BB'=1cm,然后由BD BB-′求解即可.【详解】解:由题意,BD=,由平移性质得BB'=1cm,∴点D,B′之间的距离为DB'=BD BB-′=(1)cm,故选:D.【点睛】本题考查平移性质、正方形的性质,熟练掌握平移性质是解答的关键.(2022·湖南怀化)7. 如图,△ABC沿BC方向平移后的像为△DEF,已知BC=5,EC=2,则平移的距离是()A. 1B. 2C. 3D. 4【答案】C【解析】【分析】根据题意判断BE的长就是平移的距离,利用已知条件求出BE即可.【详解】因为ABC沿BC方向平移,点E是点B移动后的对应点,所以BE的长等于平移的距离,由图可知,点B、E、C在同一直线上,BC=5,EC=2,所以BE=BC-ED=5-2=3,故选C.【点睛】本题考查了平移,正确找出平移对应点是求平移距离的关键.(2022·湖南邵阳)8. 下列四种图形中,对称轴条数最多的是()A. 等边三角形B. 圆C. 长方形D. 正方形【答案】B【解析】【分析】分别求出各个图形的对称轴的条数,再进行比较即可.【详解】解:因为等边三角形有3条对称轴;圆有无数条对称轴;长方形有2条对称轴;正方形有4条对称轴;经比较知,圆的对称轴最多.故选:B.【点睛】此题考查了轴对称图形对称轴条数的问题,解题的关键是掌握轴对称图形对称轴的定义以及性质.(2022·江苏连云港)9. 下列图案中,是轴对称图形的是()A. B. C. D.【答案】A【解析】【分析】根据轴对称图形的概念逐项分析判断即可,轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.【详解】A.是轴对称图形,故该选项正确,符合题意;B.不是轴对称图形,故该选项不正确,不符合题意;C.不是轴对称图形,故该选项不正确,不符合题意;D.不是轴对称图形,故该选项不正确,不符合题意;故选A【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.(2022·四川遂宁)10. 下面图形中既是轴对称图形又是中心对称图形的是()科克曲线笛卡尔心形线阿基米德螺旋线赵爽弦图A. 科克曲线B. 笛卡尔心形线C. 阿基米德螺旋线D. 赵爽弦图【答案】A【解析】【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A、科克曲线既是轴对称图形又是中心对称图形,故本选项符合题意;B、笛卡尔心形线是轴对称图形,不是中心对称图形,故本选项不符合题意;C、阿基米德螺旋线不是轴对称图形,也不是中心对称图形,故本选项不符合题意;D、赵爽弦图不是轴对称图形,是中心对称图形,故本选项不符合题意.故选:A.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.(2022·新疆)11. 平面直角坐标系中,点P (2,1)关于x 轴对称的点的坐标是( )A. ()2,1B. ()2,1-C. ()2,1-D. ()2,1--【答案】B【解析】【分析】直接利用关于x 轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数,得出答案.【详解】解:点P (2,1)关于x 轴对称的点的坐标是(2,-1).故选:B .【点睛】本题主要考查了关于x 轴对称点的性质,正确掌握横纵坐标的关系是解题关键.(2022·天津) 12. 在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A. B. C. D.【答案】D【解析】【分析】根据轴对称图形的概念对各项分析判断即可得解.【详解】A .不是轴对称图形,故本选项错误;B .不是轴对称图形,故本选项错误;C .不是轴对称图形,故本选项错误;D .是轴对称图形,故本选项正确.故选:D .【点睛】本题考查轴对称图形,理解轴对称图形的概念是解答的关键.(2022·天津)13. 如图,在△ABC 中,AB =AC ,若M 是BC 边上任意一点,将△ABM 绕点A 逆时针旋转得到△ACN ,点M 的对应点为点N ,连接MN ,则下列结论一定正确的是( )A. AB AN =B. AB NC ∥C. AMN ACN ∠=∠D. MN AC ⊥【答案】C【解析】 【分析】根据旋转的性质,对每个选项逐一判断即可.【详解】解:∵将△ABM 绕点A 逆时针旋转得到△ACN ,∴△ABM ≌△ACN , ∴AB =AC ,AM =AN ,∴AB 不一定等于AN ,故选项A 不符合题意; ∵△ABM ≌△ACN ,∴∠ACN =∠B ,而∠CAB 不一定等于∠B ,∴∠ACN 不一定等于∠CAB ,∴AB 与CN 不一定平行,故选项B 不符合题意; ∵△ABM ≌△ACN ,∴∠BAM =∠CAN ,∠ACN =∠B ,∴∠BAC =∠MAN ,∵AM =AN ,AB =AC ,∴△ABC 和△AMN 都是等腰三角形,且顶角相等, ∴∠B =∠AMN ,∴∠AMN =∠ACN ,故选项C 符合题意;∵AM =AN ,而AC 不一定平分∠MAN ,∴AC 与MN 不一定垂直,故选项D 不符合题意; 故选:C . 【点睛】本题考查了旋转的性质,等腰三角形的判定与性质.旋转变换是全等变换,利用旋转不变性是解题的关键.(2022·江苏扬州)14. 如图,在ABC ∆中,AB AC <,将ABC 以点A 为中心逆时针旋转得到ADE ,点D 在BC 边上,DE 交AC 于点F .下列结论:①AFE DFC △△;②DA 平分BDE ∠;③CDF BAD ∠=∠,其中所有正确结论的序号是( )A. ①②B. ②③C. ①③D. ①②③【答案】D【解析】【分析】根据旋转的性质可得对应角相等,对应边相等,进而逐项分析判断即可求解.【详解】解:∵将ABC 以点A 为中心逆时针旋转得到ADE ,∴ADE ABC ≌, E C ∴∠=∠,AFE DFC ∠=∠,∴AFE DFC △△,故①正确;ADE ABC ≌,AB AD ∴=,ABD ADB ∴∠=∠,ADE ABC ∠=∠,ADB ADE ∴∠=∠,∴DA 平分BDE ∠,故②正确;ADE ABC ≌,BAC DAE ∴∠=∠,BAD CAE ∴∠=∠,AFE DFC △△,CAE CDF ∴∠=∠,CDF BAD ∠=∠∴,故③正确故选D【点睛】本题考查了性质的性质,等边对等角,相似三角形的性质判定与性质,全等三角形的性质,掌握以上知识是解题的关键.(2022·四川南充)15. 如图,将直角三角板ABC 绕顶点A 顺时针旋转到AB C ''△,点B '恰好落在CA 的延长线上,3090∠=︒∠=︒,B C ,则BAC '∠为( )A. 90︒B. 60︒C. 45︒D. 30【答案】B【解析】 【分析】根据直角三角形两锐角互余,求出BAC ∠的度数,由旋转可知BAC B AC ''∠=∠,在根据平角的定义求出BAC '∠的度数即可.【详解】∵3090∠=︒∠=︒,B C ,∴90903060BAC B ∠=︒-∠=︒-︒=︒,∵由旋转可知60B A BAC C ''∠=︒∠=,∴618060860100C B A BA BA C C '''=︒-∠=︒-︒-︒=︒∠∠-,故答案选:B .【点睛】本题考查直角三角形的性质以及图形的旋转的性质,找出旋转前后的对应角是解答本题的关键.(2022·山东泰安)16. 如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,ABC ∆经过平移后得到111A B C ∆,若AC 上一点(1.2,1.4)P 平移后对应点为1P ,点1P 绕原点顺时针旋转180,对应点为2P ,则点2P 的坐标为( ,A. (2.8,3.6)B. 2.8,6()3.--C. (3.8,2.6)D. ( 3.8, 2.6)--【答案】A【解析】 【详解】分析:由题意将点P 向下平移5个单位,再向左平移4个单位得到P 1,再根据P 1与P 2关于原点对称,即可解决问题,详解,由题意将点P 向下平移5个单位,再向左平移4个单位得到P 1,∵P ,1.2,1.4,,∴P 1,,2.8,,3.6,,∵P 1与P 2关于原点对称,∴P 2,2.8,3.6,,故选A,点睛:本题考查了坐标与图形变化,平移变换,旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.(2022·湖北宜昌)17. 将四个数字看作一个图形,则下列四个图形中,是中心对称图形的是( )A.B. C. D.【答案】D【解析】【分析】中心对称图形的定义:把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,根据中心对称图形的定义逐项判定即可.【详解】解:根据中心对称图形定义,可知符合题意, 故选:D .【点睛】本题考查中心对称图形,掌握中心对称图形定义,能根据定义判定图形是否是中心对称图形是解决问题的关键.(2022·湖南常德)18. 如图,在Rt ABC △中,90ABC ∠=︒,30ACB ∠=︒,将ABC 绕点C 顺时针旋转60︒得到DEC ,点A 、B 的对应点分别是D ,E ,点F 是边AC 的中点,连接BF ,BE ,FD .则下列结论错误的是( )A. BE BC =B. BF DE ∥,BF DE =C. 90DFC ∠=︒D. 3DG GF =【答案】D【解析】 【分析】根据旋转的性质可判断A ;根据直角三角形的性质、三角形外角的性质、平行线的判定方法可判断B ;根据平行四边形的判定与性质以及全等三角形的判定与性质可判断C ;利用等腰三角形的性质和含30°角的直角三角形的性质可判断D .【详解】A .∵将,ABC 绕点C 顺时针旋转60°得到,DEC ,∴∠BCE =∠ACD =60°,CB =CE ,∴△BCE 是等边三角形,∴BE =BC ,故A 正确;B .,点F 是边AC 中点,,CF =BF =AF =12AC ,,,BCA =30°,,BA =12AC ,,BF =AB =AF =CF ,,,FCB =,FBC =30°,延长BF 交CE 于点H ,则∠BHE =∠HBC +∠BCH =90°,∴∠BHE =∠DEC =90°,∴BF //ED ,∵AB =DE ,∴BF =DE ,故B 正确.C .∵BF ∥ED ,BF =DE ,∴四边形BEDF 是平行四边形,∴BC =BE =DF ,∵AB =CF , BC =DF ,AC =CD ,∴△ABC ≌△CFD ,∴=90DFC ABC ∠=∠︒,故C 正确;D .∵∠ACB =30°, ∠BCE =60°,∴∠FCG =30°,∴FG =12CG ,∴CG =2FG .∵∠DCE =∠CDG =30°,∴DG =CG ,∴DG =2FG .故D 错误.故选D .【点睛】本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,含30°角的直角边等于斜边的一半,以及平行四边形的判定与性质等知识,综合性较强,正确理解旋转性质是解题的关键.(2022·湖南常德) 19. 国际数学家大会每四,举行一届,下面四届国际数学家大会会标中是中心对称图形的是()A. B.C. D.【答案】B【解析】【分析】根据中心对称的概念对各图形分析判断即可得解.【详解】解:A不是中心对称图形,故A错误;B是中心对称图形,故B正确;C不是中心对称图形,故C错误;D不是中心对称图形,故D错误;故选B.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180︒后两部分重合,理解并掌握如何判断中心对称图形的条件是解题的关键.(2022·河北)20. 题目:“如图,∠B=45°,BC=2,在射线BM上取一点A,设AC=d,若对于d的一个数值,只能作出唯一一个△ABC,求d的取值范围.”对于其答案,甲答:d≥,乙答:d=1.6,丙答:d=)2A. 只有甲答的对B. 甲、丙答案合在一起才完整C. 甲、乙答案合在一起才完整D. 三人答案合在一起才完整【答案】B【解析】 【分析】过点C 作CA BM '⊥于A ',在A M '上取A A BA ''''=,发现若有两个三角形,两三角形的AC 边关于A C '对称,分情况分析即可【详解】过点C 作CA BM '⊥于A ',在A M '上取A A BA ''''=∵∠B =45°,BC =2,CA BM '⊥∴BA C '是等腰直角三角形∴A C BA ''===∵A A BA ''''=∴2A C ''==若对于d 的一个数值,只能作出唯一一个△ABC通过观察得知:点A 在A '点时,只能作出唯一一个△ABC (点A 在对称轴上),此时d =的答案;点A 在A M ''射线上时,只能作出唯一一个△ABC (关于A C '对称的AC 不存在),此时2d ≥,即甲的答案,点A 在BA ''线段(不包括A '点和A ''点)上时,有两个△ABC (二者的AC 边关于A C '对称);故选:B【点睛】本题考查三角形的存在性质,勾股定理,解题关键是发现若有两个三角形,两三角形的AC边关于A C'对称(2022·山西)21. 2022年4月16日,神舟十三号载人飞船圆满完成全部既定任务,顺利返回地球家园.六个月的飞天之旅展现了中国航天科技的新高度下列航天图标,其文字上方的图案是中心对称图形的是()A. B. C. D.【答案】B【解析】【分析】利用中心对称图形的定义直接判断.【详解】解:根据中心对称图形的定义,四个选项中,只有B选项的图形绕着某点旋转180°后能与原来的图形重合,故选B.【点睛】本题考查中心对称图形的判定,掌握中心对称图形的定义是解题的关键.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心.(2022·河南)22. 如图,在平面直角坐标系中,边长为2的正六边形ABCDEF的中心与原点O∥轴,交y轴于点P.将,OAP绕点O顺时针旋转,每次旋转90°,则重合,AB x第2022次旋转结束时,点A的坐标为()A. )1-B. (1,-C. ()1-D. (【答案】B【解析】【分析】首先确定点A 的坐标,再根据4次一个循环,推出经过第2022次旋转后,点A 的坐标即可.【详解】解:正六边形ABCDEF 边长为2,中心与原点O 重合,AB x ∥轴, ∴AP =1, AO =2,∠OP A =90°,∴OP∴A (1,第1次旋转结束时,点A -1);第2次旋转结束时,点A 的坐标为(-1,;第3次旋转结束时,点A 的坐标为(1);第4次旋转结束时,点A 的坐标为(1;∵将,OAP 绕点O 顺时针旋转,每次旋转90°,∴4次一个循环,∵2022÷4=505……2,∴经过第2022次旋转后,点A 的坐标为(-1,,故选:B【点睛】本题考查正多边形与圆,规律型问题,坐标与图形变化﹣旋转等知识,解题的关键是学会探究规律的方法,属于中考常考题型.(2022·四川宜宾)23. 如图,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,点D 是BC 边上的动点(不与点B 、C 重合),DE 与AC 交于点F ,连结CE .下列结论:①BD CE =;②DAC CED ∠=∠;③若2BD CD =,则45CF AF =;④在ABC 内存在唯一一点P ,使得PA PB PC ++的值最小,若点D 在AP 的延长线上,且AP 的长为2,则2CE =+ )A. ①②④B. ①②③C. ①③④D. ①②③④ 【答案】B【解析】【分析】证明BAD CAE ≌,即可判断①,根据①可得ADB AEC ∠=∠,由180ADC AEC ∠+∠=︒可得,,,A D C E 四点共圆,进而可得DAC DEC ∠=∠,即可判断②,过点A 作AG BC ⊥于G ,交ED 的延长线于点H ,证明FAH FCE ∽,根据相似三角形的性质可得45CF AF =,即可判断③,将APC △绕A 点逆时针旋转60度,得到AB P ''△,则APP '是等边三角形,根据当,,,B P P C ''共线时,PA PB PC ++取得最小值,可得四边形ADCE 是正方形,勾股定理求得DP , 根据CE AD AP PD ==+即可判断④. 【详解】解:ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒, ,,AB AC AD AE BAD CAE ∴==∠=∠BAD CAE ∴△≌△BD CE ∴=故①正确;BAD CAE ≌ADB AEC ∴∠=∠180ADC AEC ∴∠+∠=︒,,,A D C E ∴四点共圆,CD CD =DAC DEC ∴∠=∠故②正确;如图,过点A 作AG BC ⊥于G ,交ED 的延长线于点H ,BAD CAE ≌,45,45ACE ABD ACB ∴∠=∠=︒∠=︒90DCE ∴∠=︒FC AH ∴∥2BD CD =,BD CE =1tan 2DC DEC CE ∴∠==,13CD BC = 设6BC a =,则2DC a =,132AG BC a ==,24EC DC a == 则32GD GC DC a a a =-=-=FC AH ∥1tan 2GD H GH ∴== 22GH GD a ∴==325AH AG GH a a a ∴=+=+=AH ,CE ,FAH FCE ∴∽CF CE AF AH∴= 4455CF a AF a ∴== 则45CF AF =; 故③正确如图,将ABP 绕A 点逆时针旋转60度,得到AB P ''△,则APP '是等边三角形,PA PB PC PP P B PC B C '''+++∴'+=≥,当,,,B P P C ''共线时,PA PB PC ++取得最小值,此时180********CPA APP '∠=-∠=︒-=︒︒︒,180********APB AP B AP P ∠=∠=︒-∠=︒-︒='''︒,360360*********BPC BPA APC ∠=︒-∠-∠=︒-︒-︒=︒,此时120APB BPC APC ∠=∠=∠=︒,AC AB AB '==,AP AP '=,APC AP B ''∠=∠,AP B APC ''∴≌,PC P B PB ''∴==,60APP DPC '∠=∠=︒,DP ∴平分BPC ∠,PD BC ∴⊥,,,,A D C E 四点共圆,90AEC ADC ∴∠=∠=︒,又AD DC BD ==,BAD CAE ≌,AE EC AD DC ∴===,则四边形ADCE 是菱形,又90ADC ∠=︒,∴四边形ADCE 是正方形,9060150B AC B AP PAC P AP ''''∠=∠+∠+∠=︒+︒=︒,则'B A BA AC ==,()1180152B ACB B AC '''∠=∠=︒-∠=︒, 30PCD ∠=︒,DC ∴=,DC AD =,2AP =,则)12AP AD DP DP =-==,1DP ∴==, 2AP =,3CE AD AP PD ∴==+=,故④不正确,故选B .【点睛】本题考查了旋转的性质,费马点,圆内接四边形的性质,相似三角形的性质与判定,全等三角形的性质与判定,勾股定理,解直角三角形,正方形的性质与判定,掌握以上知识是解题的关键.二.填空题(2022·云南)24. 点A (1,-5)关于原点的对称点为点B ,则点B 的坐标为______.【答案】(-1,5)【解析】【分析】根据若两点关于坐标原点对称,横纵坐标均互为相反数,即可求解.【详解】解:∵点A (1,-5)关于原点的对称点为点B ,∴点B 的坐标为(-1,5).故答案为:(-1,5)【点睛】本题主要考查了平面直角坐标系内点关于原点对称的特征,熟练掌握若两点关于坐标原点对称,横纵坐标均互为相反数是解题的关键.(2022·湖南湘潭)25. 如图,一束光沿CD 方向,先后经过平面镜OB 、OA 反射后,沿EF 方向射出,已知120AOB ∠=︒,20CDB ∠=︒,则∠=AEF _________.【答案】40°##40度【解析】【分析】根据入射角等于反射角,可得,CDB EDO DEO AEF ∠=∠∠=∠,根据三角形内角和定理求得40OED ∠=︒,进而即可求解.【详解】解:依题意,,CDB EDO DEO AEF ∠=∠∠=∠,∵120AOB ∠=︒,20CDB ∠=︒,20CDB EDO ∴∠=∠=︒,∴18040OED ODE AOB ∠=-∠-∠=︒,∴40AEF DEO ∠=∠=︒.故答案为:40.【点睛】本题考查了轴对称的性质,三角形内角和定理的应用,掌握轴对称的性质是解题的关键.(2022·浙江丽水)26. 一副三角板按图1放置,O 是边()BC DF 的中点,12cm BC =.如图2,将ABC 绕点O 顺时针旋转60︒,AC 与EF 相交于点G ,则FG 的长是___________cm .【答案】3【解析】【分析】BC 交EF 于点N ,由题意得,=90EDF BAC ∠=∠︒,60DEF ∠=︒,30DFE ∠=︒,=45ABC ACB ∠=∠︒,BC =DF =12,根据锐角三角函数即可得DE ,FE ,根据旋转的性质得ONF △是直角三角形,根据直角三角形的性质得3ON =,即3NC =,根据角之间的关系得CNG △是等腰直角三角形,即3NG NC ==cm ,根据90FNO FED ∠=∠=︒,30NFO DFE ∠=∠=︒得FON FED △∽△,即ON FNDE DF=,解得FN = 【详解】解:如图所示,BC 交EF 于点N ,由题意得,=90EDF BAC ∠=∠︒,60DEF ∠=︒,30DFE ∠=︒,=45ABC ACB ∠=∠︒,BC =DF =12,在Rt EDF 中,12tan tan 60DF DE EDF ===∠︒12sin sin 60DF EF EDF ===∠︒∵△ABC 绕点O 顺时针旋转60°,∴60BOD NOF ∠=∠=︒,∴90NOF F ∠+∠=︒,∴18090FNO NOF F ∠=︒-∠-∠=︒,∴ONF △是直角三角形, ∴132ON OF ==(cm ), ∴3NC OC ON =-=(cm ),∵90FNO ∠=︒,∴18090GNC FNO ∠=︒-∠=︒,∴NGC 是直角三角形,∴18045NGC GNC ACB ∠=-∠-∠=︒,∴CNG △是等腰直角三角形,∴3NG NC ==cm ,∵90FNO FED ∠=∠=︒,30NFO DFE ∠=∠=︒,∴FON FED △∽△, 即ON FN DE DF=,12FN =,FN =∴3FG FN NG =-=(cm ),故答案为:3.【点睛】本题考查了直角三角形的性质,相似三角形的判定与性质,旋转的性质,解题的关键是掌握这些知识点.(2022·河南)27. 如图,将扇形AOB 沿OB 方向平移,使点O 移到OB 的中点O '处,得到扇形A O B '''.若∠O =90°,OA =2,则阴影部分的面积为______.【答案】3π+【解析】【分析】设A O '与扇形AOB 交于点C ,连接OC ,解Rt OCO ',求得60O C COB '=∠=︒,根据阴影部分的面积为()OCO A O B OCB S S S''''--扇形扇形,即可求解.【详解】如图,设A O '与扇形AOB 交于点C ,连接OC ,如图O '是OB 的中点11122OO OB OA '∴===, OA =2, AOB ∠=90°,将扇形AOB 沿OB 方向平移,90A O O ''∴∠=︒1cos 2OO COB OC '∴∠== 60COB ∴∠=︒sin 60O C OC '∴=︒=∴阴影部分的面积为()OCO A O B OCB S S S ''''--扇形扇形OCO AOB OCB S S S ''=-+扇形扇形22906012213603602ππ=⨯-⨯+⨯32π=+故答案为:32π+ 【点睛】本题考查了解直角三角形,求扇形面积,平移的性质,求得60COB ∠=︒是解题的关键.(2022·河南)28. 如图,在Rt △ABC 中,∠ACB =90°,AC BC ==,点D 为AB 的中点,点P 在AC 上,且CP =1,将CP 绕点C 在平面内旋转,点P 的对应点为点Q ,连接AQ ,DQ .当∠ADQ =90°时,AQ 的长为______.【解析】【分析】连接CD ,根据题意可得,当∠ADQ =90°时,分Q 点在线段CD 上和DC 的延长线上,且1CQ CP ==,勾股定理求得AQ 即可.【详解】如图,连接CD ,在Rt △ABC 中,∠ACB =90°,AC BC ==4AB ∴=,CD AD ⊥,122CD AB ∴==, 根据题意可得,当∠ADQ =90°时,Q 点在CD 上,且1CQ CP ==,211DQ CD CQ ∴=-=-=,如图,在Rt ADQ △中,AQ ===在Rt ADQ △中,2,3AD CD QD CD CQ ===+=AQ ∴===【点睛】本题考查了旋转的性质,勾股定理,直角三角形斜边上中线的性质,确定点Q 的位置是解题的关键.(2022·浙江金华)29. 如图,在Rt ABC 中,90,30,2cm ACB A BC ∠=︒∠=︒=.把ABC 沿AB 方向平移1cm ,得到A B C ''',连结CC ',则四边形AB C C ''的周长为_____cm .【答案】8+【解析】【分析】通过勾股定理,平移的特性,特殊角的三角函数,分别计算出四边形的四条边长,再计算出周长即可.【详解】解:∵90,30,2cm ACB A BC ∠=︒∠=︒=,∴AB =2BC =4,∴∵把ABC 沿AB 方向平移1cm ,得到A B C ''',∴1CC '=,=4+1=5AB ', =2B C BC ''=,∴四边形的周长为:1528++=+故答案为:8+【点睛】本题考查勾股定理,平移的特性,特殊角的三角函数,能够熟练掌握勾股定理是解决本题的关键.(2022·四川德阳)30. 如图,直角三角形ABC 纸片中,90ACB ∠=︒,点D 是AB 边上的中点,连接CD ,将ACD △沿CD 折叠,点A 落在点E 处,此时恰好有CE AB ⊥.若1CB =,那么CE =______.【解析】【分析】根据D 为AB 中点,得到AD =CD =BD ,即有,A =,DCA ,根据翻折的性质有,DCA =,DCE ,CE =AC ,再根据CE ,AB ,求得,A =,BCE ,即有,BCE =,ECD =,DCA =30°,则有,A =30°,在Rt △ACB 中,即可求出AC ,则问题得解.【详解】,,ACB =90°,,,A +,B =90°,,D 为AB 中点,,在直角三角形中有AD =CD =BD ,,,A =,DCA ,根据翻折的性质有,DCA =,DCE ,CE =AC ,,CE ,AB ,,,B +,BCE =90°,,,A +,B =90°,,,A =,BCE ,,,BCE =,ECD =,DCA ,,,BCE +,ECD +,DCA=,ACB =90°,,,BCE =,ECD =,DCA =30°,,A =30°,,在Rt △ACB 中,BC =1, 则有13tan tan 30BC AC A ===∠,CE AC ==【点睛】本题考查了翻折的性质、直角三角形斜边中线的性质、等边对等角以及解直角三角形的知识,求出,BCE =,ECD =,DCA =30°是解答本题的关键. (2022·山东泰安)31. 如图,将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°,点O ,B 的对应点分别为O ′,B ′,连接BB ′,则图中阴影部分的面积是__________________.【答案】23π 【解析】 【分析】连接OO ′,BO ′,根据旋转的性质得到AO AO '=,OA OB =,O B OB ''=,60OAO '∠=︒,120AOB AO B ''∠=∠=︒,推出△OAO ′是等边三角形,得到60AOO '∠=︒,因为∠AOB =120°,所以60O OB '∠=︒,则OO B '是等边三角形,得到120AO B '∠=︒,得到30O B B O BB ''''∠=∠=︒,90B BO '∠=︒,根据直角三角形的性质得24B O OB '==,根据勾股定理得B B '=,用B OB '△的面积减去扇形O OB '的面积即可得.【详解】解:如图所示,连接OO ′,BO ′,∵将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°,∴AO AO '=,OA OB =,O B OB ''=,60OAO '∠=︒,120AOB AO B ''∠=∠=︒ ∴△OAO ′是等边三角形,∴60AOO '∠=︒,OO OA '=,∴点O '在,O 上,∵∠AOB =120°,∴60O OB '∠=︒,∴OO B '是等边三角形,∴120AO B '∠=︒,∵120AO B ''∠=︒,∴120B O B ''∠=︒, ∴11(180)(180120)3022O B B O BB B O B ''''''∠=∠=︒-∠=⨯︒-︒=︒, ∴180180306090B BO OB B B OB '''∠=︒-∠-∠=︒-︒-︒=︒,∴24B O OB '==,在Rt B OB '中,根据勾股定理得,B B '==∴图中阴影部分的面积=2160222=223603B OB O OB S S ''⨯-=⨯⨯扇形ππ,故答案为:23π. 【点睛】本题考查了圆与三角形,旋转的性质,勾股定理,解题的关键是掌握这些知识点.(2022·湖南怀化)32. 已知点A (﹣2,b )与点B (a ,3)关于原点对称,则a ﹣b =______.【答案】5【解析】【分析】根据平面直角坐标系中,关于原点对称的点横、纵坐标都互为相反数,求出a ,b 的值即可.【详解】∵点A (﹣2,b )与点B (a ,3)关于原点对称,∴2a =,3b =-,∴()235a b -=--=故答案为:5.【点睛】本题考查平面直角坐标系中,关于原点对称的点的坐标的特点,掌握特殊位置关系的点的坐标变化是解答本题的关键.(2022·浙江台州)33. 如图,△ABC 的边BC 长为4cm .将△ABC 平移2cm 得到△A ′B ′C ′,且BB ′⊥BC ,则阴影部分的面积为______2cm .【答案】8【解析】【分析】根据平移的性质即可求解.【详解】解:由平移的性质S △A ′B ′C ′=S △ABC ,BC =B ′C ′,BC ∥B ′C ′,∴四边形B ′C ′CB 为平行四边形,∵BB ′⊥BC ,∴四边形B ′C ′CB 为矩形,∵阴影部分的面积=S △A ′B ′C ′+S 矩形B ′C ′CB -S △ABC=S 矩形B ′C ′CB=4×2=8(cm 2).故答案为:8.【点睛】本题考查了矩形的判定和平移的性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.三.解答题(2022·湖南湘潭)34. 如图,在平面直角坐标系中,已知ABC 的三个顶点的坐标分别为()1,1A -,()4,0B -,()2,2C -.将ABC 绕原点O 顺时针旋转90︒后得到111A B C △.(1)请写出1A 、1B 、1C 三点的坐标:1A _________,1B _________,1C _________(2)求点B 旋转到点1B 的弧长.【答案】(1)(1,1);(0,4);(2,2)(2)2π【解析】【分析】(1)将,ABC绕着点O按顺时针方向旋转90°得到,A1B1C1,点A1,B1,C1的坐标即为点A,B,C绕着点O按顺时针方向旋转90°得到的点,由此可得出结果.(2)由图知点B旋转到点1B的弧长所对的圆心角是90º,OB=4,根据弧长公式即可计算求出.【小问1详解】解:将,ABC绕着点O按顺时针方向旋转90°得到,A1B1C1,点A1,B1,C1的坐标即为点A,B,C绕着点O按顺时针方向旋转90°得到的点,所以A1(1,1);B1(0,4);C1(2,2)【小问2详解】解:由图知点B旋转到点1B的弧长所对的圆心角是90度,OB=4,∴点B旋转到点1B的弧长=904 180π⨯⨯=2π【点睛】本题主要考查点的旋转变换和弧长公式,解题的关键是熟练掌握旋转变换的定义和弧长公式.(2022·湖北武汉)35. 如图是由小正方形组成的96⨯网格,每个小正方形的顶点叫做格点.ABC的三个顶点都是格点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图(1)中,D,E分别是边AB,AC与网格线的交点.先将点B绕点E 旋转180︒得到点F,画出点F,再在AC上画点G,使DG BC∥;(2)在图(2)中,P是边AB上一点,BACα∠=.先将AB绕点A逆时针旋转。
中考数学复习考点知识讲解与练习17 一次函数与反比例函数综合训练(基础篇)
中考数学复习考点知识讲解与练习专题17 一次函数与反比例函数综合训练(基础篇)中考中,一次函数与反比例函数相结合的题型是必考点,难度分为中档和偏难两个考点,分值点比高,也是期末考试的必考点,因此,本中考数学复习考点知识讲解与练习 专题汇编了一次函数与反比例函数综合训练中考数学复习考点知识讲解与练习 专题,有针对性训练学生的能力,也是教学辅导学生的较好的参考资料,本中考数学复习考点知识讲解与练习 专题分为两部分,基础篇以中档偏下难度为主,以填空和选择题形式出现,提高篇以综合解答题为本,着重培养学生综合能力,本中考数学复习考点知识讲解与练习 专题着眼于数形结合思想解题,提升学生数学思想。
一、单选题1.若0ab >,则一次函数y ax b =-与反比例函数aby x=在同一坐标系数中的大致图象是()A .B .C .D .2.一次函数y =ax -a 与反比例函数y =ax(a ≠0)在同一平面直角坐标系中的图象可能是( )A .B .C .D .3.一次函数y=ax+b 与反比例函数cy x=的图象如图所示,则( )A .a >0,b >0,c >0B .a <0,b <0,c <0C .a <0,b >0,c >0D .a <0,b <0,c >04.(2022·监利县新沟新建中学九年级月考)已知反比例函数y =kx的图象过一、三象限,则一次函数y =kx +k 的图象经过( ) A .一、二、三象限 B .二、三、四象限 C .一、二、四象限D .一、三、四象限5.对于一次函数3y mx =+,如果y 随x 的增大而减小,那么反比例函数my x=满足() A .当0x >时,0y > B .在每个象限内,y 随x 的增大而减小 C .图像分布在第一、三象限D .图像分布在第二、四象限6.如图,已知点A 是一次函数y =x 的图象与反比例函数的图象在第一象限内的交点,点B 在x 轴的负半轴上,且OA=OB ,那么△AOB 的面积为()A.2 B. C. D.7.已知反比例函数kyx(k≠0),当x>0时,y随x的增大而增大,那么一次函数y=kx﹣k的图象经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限8.(2022·河南九年级期末)已知一次函数y1=kx+b((k≠0)与反比例函数y2=mx(m>0)的图象如图所示,则当y1>y2时,自变量x满足的条件是()A.1<x<3 B.1≤x≤3C.x>1 D.x<39.(2014·甘肃九年级期末)如图,某反比例函数的图象过点(-2,1),则此反比例函数表达式为()A .B .C .D . 10.(2022·河南郑州外国语中学九年级期中)如图,反比例函数y=kx的图象经过点M ,则此反比例函数的解析式为()A .y=-12xB .y=12xC .y=-2xD .y=2x11.(2017·江苏八年级期末)如图,反比例函数y=kx的图象经过点M ,则此反比例函数的解析式为()A .y=-12xB .y=12xC .y=-2xD .y=2x12.一次函数y ax a =-与反比例函数(0)a y a x=≠在同一坐标系中的图象可能是() A . B .2y x =2y x =-12y x =12y x=-C .D .13.(2016·河南九年级月考)反比例函数和一次函数在同一直角坐标系中的图象大致是()A .B .C .D .14.(2016·山西九年级期末)一次函数与反比例函数在同一平面直角坐标系中的图象可能是()A .B .C .D .15.(2022·山西八年级月考)如图,一次函数()0y kx b k =+≠与反比例函数()0m y m x =≠分别交于,A B 两点,则不等式mkx b x+<的解集是()A .2x <-B .4x >C .2x <-或04x <<D .24x -<<16.已知一次函数y k kx =-与反比例函数ky x=,当k 0<时,它们的图像在同一直角坐标平面内大致是()A .B .C .D .17.如图,一次函数23y x =-+分别与x 轴y 轴交于A ,B 两点,AC y ∥轴,BC x ∥轴,反比例函数(0)k y x x=>经过点C ,则k 的值为().A .92B .92-C .94D .94-18.(2022·全国九年级单元测试)如图,一次函数与反比例函数的图象相交于A 、B 两点,则图中使反比例函数的值大于一次函数的值的x 的取值范围是( )A .x <﹣1B .x >2C .﹣1<x <0或x >2D .x <﹣1或0<x <219.(2011·贵州中考真题)一次函数y=kx+k (k≠0)和反比例函数(0)ky k x=≠在同一直角坐标系中的图象大致是( )A .B .C .D .20.一次函数y =ax +a(a 为常数,a≠0)与反比例函数y =ax(a 为常数,a≠0)在同一平面直角坐标系内的图像大致为( )A .B .C .D .二、填空题21.(2022·全国九年级单元测试)如图,一次函数与反比例的图象相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是________.22.(2022·黑龙江九年级期末)已知一次函数23y x =-与反比例函数ky x=的图象交于点()2,3P a -,则k =________.23.如图,一次函数y 1=﹣x ﹣1与反比例函数y 2=﹣2x 的图象交于点A (﹣2,1),B(1,﹣2),则使y 1>y 2的x 的取值范围是_____.24.如图,一次函数y 1=ax +b 和反比例函数y 2=xk的图象相交于A ,B 两点,则使y 1>y 2成立的x 取值范围是_____.25.(2022·四川中考模拟)一次函数y 1=k 1x +b 和反比例函数y 2=2k x(k 1•k 2≠0)的图象如图所示,若y 1>y 2,则x 的取值范围是_______.26.一次函数图象过点()0,2-日与直线23y x =-平行,则一次函数解析式__________. 27.如图,一次函数y kx b =+与反比例函数ky x=交于点()1,A m -、()3,B n ,要使一次函数值大于反比例函数值,则x 的范围是________.28.反比例函数ky x=的图象与一次函数y mx b =+的图象交于()1,3A ,(),1B n -两点.则反比例函数的解析式是________,一次函数的解析式是________.29.(2017·山东中考模拟)如图,反比例函数的图象与一次函数y =x +2的图象交于A 、B 两点. 当x __________时,反比例函数的值小于一次函数的值.30.如图,已知一次函数y kx b =+与反比例函数my x=(0m <)图象在第二象限相交于A (﹣4,12),B (n ,2)两点,当x 满足条件:_____时,一次函数大于反比例函数的值.31.如图,一次函数的图象y x b =-+与反比例函数的图象ay x=交于A(2,﹣4),B(m, 2)两点.当x 满足条件______________时,一次函数的值大于反比例函数值.32.(2022·浙江八年级单元测试)已知反比例函数2ky x=和一次函数,y=2x-1,其中一次函数图象经过(a, b)和(a+1,b+k) 两点,则反比例函数的解析式是__________.三、解答题33.如图,一次函数y x b =+和反比例函数()0ky k x=≠交于点()2,1A .()1求反比例函数和一次函数的解析式; ()2求AOB 的面积;()3根据图象写出一次函数的值大于反比例函数的值的x 的取值范围.34.如图,一次函数y kx b =+的图象与反比例函数my x=的图象交于点()1,6A -,(),2B a .求一次函数和反比例函数的解析式.35.(2022·保定市第三中学分校九年级期末)已知:如图,反比例函数ky x=的图象与一次函数y x b =+的图象交于点(1,4)A 、点(4,)B n -. (1)求一次函数和反比例函数的解析式; (2)求OAB ∆的面积;(3)直接写出一次函数值大于反比例函数值的自变量x 的取值范围.36.如图,一次函数y kx b =+的图象与反比例函数m y x =的图象交于()A 2,3-,B ()4,n 两点.(1)求一次函数与反比例函数的解析式; (2)结合图形,直接写出一次函数大于反比例函数时自变量x 的取值范围.37.如图,一次函数y kx b =+的图象与反比例函数m y x=的图象交于()2,1A -,()1,B n 两点.(1)试确定上述反比例函数和一次函数的表达式; (2)当x 为何值时反比例函数值大于一次函数的值;(3)当x 为何值时一次函数值大于比例函数的值;(4)求AOB ∆的面积.38.(2022·山西九年级期末)如图,反比例函数k y x=(0k ≠)的图象与一次函数y ax b =+的图象交于(1,3)A ,(3,)B m -两点. (1)分别求出反比例函数与一次函数的表达式.(2)当反比例函数的值大于一次函数的值时,请根据图象直接写出x 的取值范围.39.(2022·江西九年级)如图,一次函数y =kx +b 的图象与反比例函数y =m x的图象交于A (﹣2,1),B (1,n )两点.(1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值>反比例函数的值的x 的取值范围.40.如图,一次函数y kx b =+的图象与反比例函数m y x=的图象交于(21)(1)A B n -,,,两点.(1)试确定上述反比例函数和一次函数的表达式;(2)求AOB 的面积.(3)根据图象写出反比例函数y≥n 的x 取值范围.。
中考数学专题17 三角形与全等三角形
温馨提示:
三角形的边、角之间的关系是三角形中重要的性质,在比较角的大小、线段的长短及求角或线段中经常用到。学习时应结合图形,做到熟练、准确地应用。
三角形的角平分线、高、中线均为线段。
(三)全等三角形的概念与性质
1.能够完全重合的两个三角形叫做全等三角形.
【答案】(1)C(2)A(3)C
方法总结:
(1)考查三角形的边或角时,一定要注意三角形形成的条件:两边之和大于第三边,两边之差小于第三边;
(2)在求三角形内角和外角时,要明确所求的角属于哪个三角形的内角和外角,要抓住题目中的等量关系;
类型二全等三角形
(1)如图,已知AC=FE,BC=DE,点A、D、B、F在一条直线上,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是_________________________.
2.三角形的两边之和大于第三边,两边之差小于第三边.
3.三角形中的重要线段
(1)角平分线:三角形的三条角平分线交于一点,这点叫做三角形的内心,它到三角形各边的距离相等.
(2)中线:三角形的三条中线交于一点,这点叫做三角形的重心.
(3)高:三角形的三条高交于一点,这点叫做三角形的垂心.
(4)三边垂直平分线:三角形的三边垂直平分线交于一点,这点叫做三角形的外心,外心到三角形三个顶点距离相等.
1.(2009·温州)下列长度的三条线段能组成三角形的是()
A.1cm,2cm,3.5cmB.4cm,5cm,9cm
C.5cm,8cm,15cmD.6cm,8cm,9cm
解析:计算较小两数的和与最大数比较,大于的组成三角形,否则不能.
答案:D
2.(2008·嘉兴)如图,△ABC中,已知AB=8,BC=6,CA=4,DE是中位线,则DE=()
2024年初中数学中考高频考点解答题测试卷 (17)
一、解答题1. 如图,在平面直角坐标系中,已知三个顶点的坐标分别为、、.(1)画关于原点成中心对称的;(2)把向上平移4个单位长度,得,画出;(3)和关于某点成中心对称,直接写出该对称中心的坐标_________.2. 二次函数(1)画出上述二次函数的图象;(2)如图,二次函数的图象与x轴的其中一个交点是B,与y轴的交点是C,直线BC与反比例函数的图象交于点D,且BC=3CD,求反比例函数的解析式.(3)在(2)的条件下,x轴上的点P的横坐标是多少时,△BCP与△OCD相似.3. 以人工智能、大数据、物联网为基础的技术创新促进了新业态蓬勃发展,新业态发展对人才的需求更加旺盛.庐江城西高新区某大型科技公司上半年新招聘软件、硬件、总线、测试四类专业的毕业生,现随机调查了名新聘毕业生的专业情况,并将调查结果绘制成如图两幅不完整的统计图.请根据统计图提供的信息,解答下列问题(1)______,______.(2)在扇形统计图中,“软件”所对应的扇形的圆心角是______度;(3)随机调查了名新聘毕业生中有5名同学选择测试专业,他们男女性别比恰好为3:2,如果选取两名新聘测试专业的工人到省城合肥培训,用列表法或树状图方法,求恰好选一男一女的工人概率.4. 在数学活动课中,小明剪了一张如图所示的纸片,其中,他将折叠压平使点落在点处,折痕为点在上,点在上.(1)请作出折痕;(要求:尺规作图,不写作法,保留作图痕迹)(2)判断的形状,并说明理由.5. 如图,半圆的直径,点在上且,点是半圆上的动点,过点作交(或的延长线)于点.设,.(当点与点或点重合时,的值为0)小石根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究.下面是小石的探究过程,请补充完整:(1)通过取点、画图、测量,得到了与的几组值,如下表:1 1.52 2.53 3.5________________ 3.74 3.8 3.3 2.50(2)在给出的平面直角坐标系中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当与直径所夹的锐角为时,的长度约为________.6. 在数轴上表示下列各数,并用“”把它们连接起来.,,,,,.7. 如图,等腰中,.(1)利用尺规完成以下作图,并保留作图痕迹(不写作法).①作的角平分线交于点D;②在边的延长线上作一点E,使,连接.(2)在(1)所作的图形中,猜想线段与的数量关系,并证明.8. 阅读下面的材料:如图1,在线段上找一点C(),若,则称点C为线段的黄金分割点,这时比值为,人们把称为黄金分割数,长期以来,很多人都认为黄金分割数是一个很特别的数,我国著名数学家华罗庚先生所推广的优选法中,就有一种0.618法应用了黄金分割数.我们可以这样作图找到已知线段的黄金分割点:如图2,在数轴上点O表示数0,点E表示数2,过点E作,且,连接;以F为圆心,长为半径作弧,交于H;再以O为圆心,长为半径作弧,交于点P,则点P就是线段的黄金分割点.根据材料回答下列问题:(1)根据作图,写出图中相等的线段: ;(2)求点P在数轴上表示的数,并写出的值.9. 作图题.(1)过点作的高,并指出垂足;(2)过点作直线平行于;(3)利用尺规,画出的中线.10. 【问题呈现】老师在课堂中提出这样的问题:如图1,在中,,,若,求的长.【合作交流】(1)在解决这个问题时,小胡代表小组给了一种不同的做法:解:把沿着翻折,得到.,,,,(请在下面补全小胡的证明过程)【思维拓展】(2)如图2,点是内一点,,,,若,则、、三者之间的相等关系是___________.【能力提升】(3)①如图3,在四边形中,,,,且,则的周长为__________.②如图4,在四边形中,,平分,,,,则________.11. 如图,已知≌,且、、、四点在同一直线上.(1)在图1中,请你用无刻度的直尺作出线段的垂直平分线;(2)在图2中,请你用无刻度的直尺作出线段的垂直平分线.12. 在正方形中,为正方形的外角的角平分线,点在线段上,过点作于点,连接,过点作于点,交射线于点.(1)如图1,若点与点重合.①依题意补全图1.②判断与的数量关系并加以证明.(2)如图2,若点恰好在线段上,正方形的边长为,请写出求长的思路().可以不写出计算结果13. 如图,AD为△ABC的中线,BE为△ABD的中线.(1)∠ABE=15°,∠BAD=40°,求∠BED的度数;(2)尺规作图:过点E作EF⊥BC,垂足为F(保留作图痕迹);(3)在(2)的条件下,若△ABC的面积为40,BC=10,求EF的长.14. “书香三晋,文化山西”全民阅读系列活动始于2014年,过去六年,我省全民阅读活动取得了长足进步.今年,我省“书香三晋,文化山西”全民阅读工作将紧围绕“学习宣传贯彻党的十九大精神”“纪念改革开放四十周年”“红色的魅力”“弘扬中华优秀传统文化”四大主题展开.本学期初,某校开展了以“弘扬中华优秀传统文化”为主题的读书活动.校德育处对本校七年级学生四月份“阅读该主题相关书籍的读书量”(下面简称“读书量”)进行了随机抽样调查,并对所有随机抽取学生的“读书量”(单位:本)进行了统计,如图所示:根据以上信息,解答下列问题:(1)本次共调查了名学生;(2)补全上面两幅统计图,填出本次所抽取学生四月份“读书量”的众数为;(3)求本次所抽取学生四月份“读书量”的平均数;(4)该年级读书爱好者社团名成员代表中有名女生名男生,现在需要从这人中随机抽取人参加省电视台举办的“弘扬中华优秀传统文化”主题读书活动,请用列表或画树状图的方法.求被抽取的人恰好是名男生名女生的概率.15. 初二年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的条形统计图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了 名学生;(2)在扇形统计图中,项目“独立思考”所在的扇形的圆心角的度数为 度;(3)请将条形统计图补充完整;(4)如果全市有6000名初二学生,那么在试卷评讲课中,“独立思考”的初二学生约有多少人?16. 如图所示的正方形网格中,每个小正方形的边长为1,的三个顶点都在格点上,且顶点,的坐标分别为,.(1)判断的形状是__________三角形;(2)在网格内画出平面直角坐标系,并写出点的坐标__________;(3)画出关于轴对称的.17. 图①、图②均是的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1,线段的端点均在格点上,只用无刻度的直尺,在给定的网格中按要求画图.(1)的长为_______________.(2)在图①中画一个以为直角边的等腰直角三角形.(3)在图②中画一个以为斜边的等腰直角三角形.18. 如图,在中,,.(1)用直尺和圆规作,使圆心O在边,且经过A,B两点上(不写作法,保留作图痕迹);(2)连接,求证:平分.19. 如图,已知锐角和直角.在内部求作,使与互余.(尺规作图,保留作图痕迹,不写作法)20. 如图,△A1B1C1是△ABC向右平移四个单位长度后得到的,且三个顶点的坐标分别为A1(1,1),B1(4,2),C1(3,4).(1)请画出△ABC,并写出点A、B、C的坐标;(2)求出△AOA1的面积.21. 如图,在网格上,平移△ABC,并将△ABC的一个顶点A平移到点D处,(1)请你作出平移后的图形△DEF;(2)请求出△DEF的面积.22. 一辆巡逻车从文化广场A出发,向西走了2km到达学校B,继续向西走了1km到达公园C,然后向东走了5km 到达商场D,最后回到文化广场A.(1)用一个单位长度表示1km,向东为正方向,以文化广场为原点,画出数轴,并在数轴上标明 A、B、C、D 的位置.(2)商场 D 离文化广场 A 有多远?(3)巡逻车一共行驶了多远?23. 某校组织了一次全校1000名学生参加的“中考体育模拟”测试,测试结束后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次模拟测试的成绩分布情况,学校随机抽取了其中100名学生的成绩作为样本进行整理,得到如下两个不完整的统计图表:成绩分频数频率5二、解答题103040请根据所给的信息,解答下列问题:(1) , ;(2)请补全频数分布直方图;(3)这次比赛成绩的中位数会落在分数段 ;(4)若成绩在90分以上(包括90分)的为“优”,则该校参加这次模拟测试的1000名学生中成绩“优”的学生优多少人?24. 如图,AB 表示路灯,CD 、CʹDʹ表示小明所在两个不同位置:(1)分别画出这两个不同位置小明的影子;(2)小明发现在这两个不同的位置上,他的影子长分别是自己身高的1倍和2倍,他又量得自己的身高为1.5米,DDʹ长为3米,你能帮他算出路灯的高度吗?(B 、D 、Dʹ在一条直线上)25.如图,已知的三个顶点的坐标分别是,,.(1)画出与关于轴对称的,并直接写出的坐标;(2)在轴上有一点,使得,请直接写出点的坐标.26. 游泳池应定期换水,某游泳池在一次换水前存水936立方米,换水时关闭进水孔打开排水孔,以每小时78立方米的速度将水放完,当放水时间增加时,游泳池的存水随之减少,它们的变化情况如下表:放水时间/小时123456游泳池的存水/立方米858780702546(1)在这个变化过程中,自变量是________,因变量是________;(2)请将上述表格补充完整;(3)设放水时间为小时,游泳池的存水量为立方米,写出与的关系式(不要求写自变量范围).27. 综合实践为了测量一条两岸平行的河流宽度,三个数学兴趣小组设计了不同的方案,他们在河的南岸点A处测得北岸的树H恰好在A的正北方向.测量方案与数据如下表:课题测量河流宽度测量工具测量角度的仪器、皮尺等测量方案示意图说明点B,C在点A的正东方向点B,D在点A的正东方向点B在点A的正东方向点C在点A的正西方向测量数据,,.,,.,,.(1)哪个小组的数据无法计算出河宽?(2)请选择其中一个方案及其数据求出河宽(结果精确到).(参考数据:,,,)28.曲阜尼山圣境孔子像,背山面湖,面南而立,为世界最高最大的孔子像,成为儒客和游人朝拜、瞻仰必到之处.一游客想知道孔子像的高度.如图,与水平面垂直,在点D处测得顶部A 的仰角是,向前走了24米至点E处,测得此时顶部A的仰角是,请聪明的你帮他求出孔子像的高度.(参考数据:)29. 抚顺市某中学在今年11月份组织七年级学生去抚顺市素质教育基地进行实践活动学习,由胡主任和甲、乙两名同学到客车租赁公司洽谈租车事宜.(1)两同学向公司经理了解租车的价格.公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元.”胡主任说:“我们学校八年级昨天在这个公司租了2辆60座和5辆45座的客车,一天的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗?”请你求出来.(2)公司经理问:“你们准备怎样租车?”,甲同学说:“我的方案是只租用45座的客车,可是会有一辆客车空出30个座位”;乙同学说“我的方案只租用60座客车,正好坐满且比甲同学的方案少用两辆客车”,你知道七年级共有多少人去素质教育基地进行实践活动吗?(3)胡主任在一旁听了他们的谈话说:考考你们七年数学学习的情况,“若从省钱角度考虑,还有别的方案吗?”如果是聪明的你,你该如何设计租车方案,请直接写出租车方案.30. 某商场购进甲、乙两种商品后,甲种商品加价50%、乙种商品加价40%作为标价,适逢元旦,商场举办促销活动,甲种商品打八折销售,乙种商品打八五折销售,某顾客购买甲、乙两种商品各1件,共付款538元,已知商场共盈利88元,求甲、乙两种商品的进价各是多少元?31. 某风筝加工厂计划一周生产某种型号的风筝700只,平均每天生产100只,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(增产记为正、减产记为负);星期一二三四五六日增减(1)根据记录的数据,该厂生产风筝最多的一天是星期______;(2)产量最多的一天比产量最少的一天多生产多少只风筝?(3)该厂实行每周计件工资制,每生产一只风筝可得20元,若超额完成任务,则超过部分每只另奖5元;少生产一只扣4元,那么该厂工人这一周的工资总额是多少元?32. 某公司销售一种进价为20元/个的计算器,其销售量y(万个)与销售价格x(元/个)的变化满足;同时,销售过程中的其他开支(不含进价)总计40万元.(1)求出该公司销售这种计算器的净得利润z(万元)与销售价格x(元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?(2)该公司要求净得利润不能低于40万元,请写出销售价格x(元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?33. 列方程解应用题:某商场经销甲、乙两种服装.甲种服装每件进价250元,售价400 元;乙种服装每件进价400元,售价600元.(1)销售甲种服装每件利润为元______,销售乙种服装每件利润率为______.(2)该商场同时购进甲、乙两种服装共50件,总进价恰好为17000元,求商场销售完这批服装共盈利多少?34. 某商场服装部为了调动营业员的积极性,计划实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个恰当的年销售目标,商场服装部统计了每位营业员在去年的销售额(单位:万元),并且计划根据统计制定今年的奖励制度.下面是根据统计的销售额绘制的统计表:年销售额(万2016106元)人数(人)1374根据以上信息,回答下列问题:(1)年销售额在 万元的人数最多,年销售额的中位数是 万元;(2)计算平均年销售额;(3)如果想让一半左右的营业员都能获得奖励,你认为年销售额定位多少合适?说明理由.35. 下表为抄录体育官方票务网公布的三种球类比赛的部分门票价格,根据某公司购买的门票种类、数量绘制的统计图表如下:4依据上边的图表,回答下列问题:(1)其中足球比赛的门票有张;观看乒乓球比赛的门票占全部门票的 %;(2)公司决定采用随机抽取的方式把门票分配给100名员工,在看不到门票的条件下,每人抽取一张(假设所有门票的形状、大小、质地完全相同且充分洗匀),则员工小李抽到男篮门票的概率是;(3)若购买乒乓球门票的总款数占全部门票总款数的,求每张乒乓球门票的价格.36. 一商场经销的A,B两种商品,A种商品每件进价40元,利润率为50%;B种商品每件进价50元,售价80元.(1)A种商品每件售价为______元;(2)若该商场同时购进A,B两种商品共100件,恰好总进价为4700元,求购进A,B两种商品各多少件?(3)元旦期间,该商场对A,B两种商品进行优惠促销活动:如果购物超过600元,那么超过600元的部分打折优惠.琪琪购买了总价值为800元的A,B商品,享受优惠后,实际共付款720元,直接写出该商场超过600元的部分是打几折销售的?37. 某种产品的成本是每件元,试销售阶段每件产品的销售价x(元)与日销售量y(件)之间的关系如下表所示.已知y是x的一次函数.x/元152030…y/件252010…(1)若每日的销售利润是元,求每件产品的销售价;(2)要使每日获得最大销售利润,每件产品的销售价应定为多少?此时每日的销售利润是多少?38. 某商场购进甲、乙两种服装后,都加价再标价出售,春节期间商场搞优惠促销,决定将甲、乙两种服装分别按标价的八折和九折出售,某顾客购买甲、乙两种服装共付款元,两种服装标价之和为元,这两种服装的进价和标价各是多少元?39. “蛟龙号”载人潜水器是中国探索深海的利器,如图,在某次任务中,当蛟龙号下潜到点B处时,科研人员在海面的观察点A测得点B的俯角为;当蛟龙号继续垂直下潜2千米到达海底C处时,在观察点A测得点C的俯角为,求点C到海面的深度.(结果精确到0.1千米,参考,)40. 为了迎接“十·一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:运动鞋价格/种类甲乙进价(元/双)m售价(元/双)160120已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润售价进价)不少于10800元,且不超过11100元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠元出售.乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?41. 如图,某动力科学研究实验基地内装有一段长为的笔直轨道,现将长度为的金属滑块在上面往返滑动一次,滑动开始前,滑块左端与点A重合,滑动过程由三个阶段组成:1.滑块以的速度沿方向匀速滑动,当滑块的右端与点B重合时,滑动停止.2.滑块停顿.3.滑块以小于的速度沿方向匀速返回,当滑块的左端与点A重合时,滑动停止.设滑动时间为时,滑块左端离点A的距离为,右端离点B的距离为,(1)当时,求的值.(2)整个滑动过程总用时(含停顿的时间),请根据所给条件解决下列问题:①求滑块返回的速度.②记,若,求t的值.42. (1)【操作】有若干张如图①所示的正方形纸片,将其沿虚线剪成如图②所示的A、B、C三类纸片.由图①可得到一个我们学习过的乘法公式,它是______;(2)【理解】用图②中的A、B、C三类纸片拼成一个两边长分别为和的长方形.求需要A、B、C三类纸片的张数,并画出拼出的长方形;(3)【拓展】从图②中取出2张A型和1张C型纸片,将其中2张A型纸片放入到C型纸片内,如图③所示;再从图②中取出2张A型和1张C型纸片,将2张A型纸片放入到C型纸片内,如图④所示.若图④中的阴影部分图形的面积和比图③中的阴影部分图形的面积大,求a的值.43. 某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6080元的利润,应将销售单价定为多少元?44. 仁寿某商场服装柜在销售中发现:“爱童”牌童装平均每天可售出20件,每件盈利40元.为迎接“元旦”节,商场决定采取适当的降价措施扩大销量,增加盈利,减少库存.经市场调查发现:如果每件童装每降价4元,则平均每天就可多售出8件.(1)要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?(2)如果你是老总,请算一下每件童装应降价多少元可使一天的盈利最大?最大盈利是多少?45. 某超市以20元/千克的价格购进一批绿色食品,在整个销售旺季的40天里,设第天的销售单价为元/千克,与满足如下关系:,(1)第几天时销售单价为24元/千克?(2)如图,设第天的销售量为千克,与之间的关系可用图中的函数图象来刻画.若超市第天销售该绿色食品获得的利润为元,求关于的函数表达式,并求出第几天的利润最大,最大利润是多少?46. 某新型农场正值草莓丰收季节,安排6位员工进行草莓采摘工作.规定每位员工每天采摘数量以为标准,超出部分记作正数,不足部分记作负数,下面是6位员工某一天采摘草莓的实际情况:,,,,,(1)这6位员工草莓采摘实际总质量能达到标准总质量吗?(2)该农场工资标准是:每人每天的基本工资是200元.若没达到标准数量,每少扣2元;若超出标准数量,每多奖励3元,该农场这天共需支付的工资总额是多少元?47. 某个体户计划投入一笔资金采购一批紧俏商品,经过市场调查发现,有两种销售方案可行,方案1:月初出售,可获利,并可用本利再投资其他商品,到月末又可获利;方案2:月末出售,可获利,但需付900元存储费.(1)若该个体户投资2.5万元,选择哪种销售方案获利较多?(2)若该个体户投入a万元,当a为何值时,两种销售方案的利润一样多?(3)若该个体户投入a万元,试根据a的值比较两种销售方案的利润.48. 如图,台风“海葵”中心沿东西方向由A向B移动,已知点C为一海港,且点C与直线上的两点A、B的距离分别为,又,经测量,距离台风中心及以内的地区会受到影响.(1)海港C受台风影响吗?为什么?(2)若台风中心的移动速度为25千米/时,则台风影响该海港持续的时间有多长?49. 在学校组织的数学竞赛中,八(1)班比赛成绩分为、、、四个等级,其中相应等级的得分依次记为100分,90分,80分,70分,学校将八(1)班成绩现整理并绘制成如下的统计图.请你根据以上提供的信息解答下列问题:(1)请补全条形统计图(2)八年级一班竞赛成绩众数是________,中位数落在________类.(3)若该校有1500名学生,请估计该校本次竞赛成绩为类的学生人数.三、解答题50. 某店商计划采购甲、乙两种不同型号的平板电脑共30台,两种型号的平板电脑每台进价和销售价格如表所示:型号甲乙每台进价/元16002500每台售价/元20003000设采购甲型平板电脑x 台,全部售出后获利y 元.(1)求y 与x 的函数表达式;(2)若要求采购甲型平板电脑数量不小于乙型的2倍,如何采购才能使得获利最大?最大利润为多少?51. 按逻辑填写步骤和理由,将下面的证明过程补充完整.如图,四边形中,点在上,,.(1)求证:.证明:(已知)()()在和中( )(已证)(已知)( )(用字母表示)(2)若,则度.(直接填空)52. 如图,在正方形中,E 是边的中点,F是上一点且,连接,,求证:.53. 如图,在Rt△ABC中,∠BAC=90°,BD是角平分线,以点D为圆心,DA为半径的⊙D与AC相交于点E.(1)求证:BC是⊙D的切线;(2)若AB=5,BC=13,求CE的长.54. 如图ABC中,AD是高,CE为中线,DC=BE,DG⊥CE于G点,求证:(1)G为CE的中点.(2)∠B=2∠BCE.55. 如图(1),正方形中,P为边上的一个动点,作等腰直角,,连接.(1)在点P的运动过程中,点E的运动是有规律的,试说明点E运动的方向路线,并证明你的结论;(2)若交于点F,连接,小红在研究这个图形时,经过思考,发现这道题目里面包含有一个什么角模型,请你在她的基础上,证明;(3)如图(2),连接,H为的中点,连接,若的长是方程的一个实数根,求线段的最小值.56. 在中,,,是的角平分线,于点E.(1)如图1,连接,求证:是等边三角形;(2)如图2,点N是线段上的一点,以为一边,在的下方作,交延长线于点G.试探究,与数量之间的关系,并说明理由.57. 如图,在⊙O中,AB为直径,C为⊙O上一点.过点C作⊙O的切线,与AB的延长线交于点P.(1)若∠CAB=25°,求∠P的大小;(2)求证:.58. 如图,在中,,平分,交于点,过点作于点.(1)求证:≌;(2)若,求的度数.59. 如图,在▱ABCD中,E,F分别为BC,AB中点,连接FC,AE,且AE与FC交于点G,AE的延长线与DC的延长线交于点N.(1)求证:△ABE≌△NCE;(2)若AB=3n,FB=GE,试用含n的式子表示线段AN的长.60. 如图,已知在Rt△ABC中,∠ACB=90°,D是边AC延长线上一定点.(1)用直尺和圆规在边BC的延长线上求作一点P,使得∠CDP=∠A(不写作法和证明,保留作图痕迹);(2)在(1)的情况下,连接BD、AP,若AC=CD,猜想四边形ABDP是哪种特殊的四边形?并证明你的猜想.61. 已知△ABC和△ADE都是等腰三角形,AB=AC,AD=AE,∠DAE=∠BAC.【初步感知】(1)特殊情形:如图①,若点D,E分别在边AB,AC上,则DB EC.(填>、<或=)(2)发现证明:如图②,将图①中△ADE的绕点A旋转,当点D在△ABC外部,点E在△ABC内部时,求证:DB=EC.【深入研究】(3)如图③,△ABC和△ADE都是等边三角形,点C,E,D在同一条直线上,则∠CDB的度数为 ;线段CE,BD之间的数量关系为 .(4)如图④,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,点C、D、E在同一直线上,AM为△ADE中DE边上的高,则∠CDB的度数为 ;线段AM,BD,CD之间的数量关系为 .62. 如图,在中,,,的垂直平分线交于点,交于点,,连接.。
2022-2023学年广东省广州市中考数学专项提升仿真模拟测试题(一模二模)含答案
2022-2023学年广东省广州市中考数学专项提升仿真模拟测试题(一模)一、选一选(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣6的相反数是()A.6B.﹣6C.D.2.某4S店今年1~5月新能源汽车的销量(辆数)分别如下:25,33,36,31,40,这组数据的平均数是()A.34B.33C.32.5D.313.下列运算正确的是()A.a2+a3=a5B.(a3)2=a6C.(a﹣b)2=a2﹣b2D.x6÷x3=x24.2022年2月第24届冬季在我国北京成功举办,以下是参选的会徽设计的部分图形,其中既是轴对称图形又是对称图形的是()A.B.C.D.5.下列说法错误的是()A.打开电视机,台正在播放发射神舟十四号载人飞船的新闻,这是随机B.要了解小王一家三口的身体健康状况,适合采用抽样C.一组数据的方差越小,它的波动越小D.样本中个体的数目称为样本容量6.如图是正方体的表面展开图,则与“话”字相对的字是()A.跟B.党C.走D.听7.如图,在▱ABCD中,已知AB=12,AD=8,∠ABC的平分线BM交CD边于点M,则DM的长为()A.2B.4C.6D.88.如图,数轴上的两点A、B对应的实数分别是a、b,则下列式子中成立的是()A.1﹣2a>1﹣2b B.﹣a<﹣b C.a+b<0D.|a|﹣|b|>09.如图,在平面直角坐标系中,点B、C、E在y轴上,点C的坐标为(0,1),AC=2,Rt△ODE 是Rt△ABC某些变换得到的,则正确的变换是()A.△ABC绕点C逆时针旋转90°,再向下平移1个单位B.△ABC绕点C顺时针旋转90°,再向下平移1个单位C.△ABC绕点C逆时针旋转90°,再向下平移3个单位D.△ABC绕点C顺时针旋转90°,再向下平移3个单位10.如图,在平面直角坐标系中,点M为x轴正半轴上一点,过点M的直线l∥y轴,且直线l=15,则k的值为()分别与反比例函数y=和y=的图象交于P、Q两点.若S△POQA.38B.22C.﹣7D.﹣2211.如图,正六边形ABCDEF 内接于⊙O ,半径为6,则这个正六边形的边心距OM 和的长分别为()A.4,B.3,πC.2,D.3,2π12.如图,抛物线y =ax 2+bx +c 与x 轴交于两点(x 1,0)、(2,0),其中0<x 1<1.下列四个结论:①abc <0;②a +b +c >0;③2a ﹣c >0;④没有等式ax 2+bx +c >﹣x +c 的解集为0<x<x 1.其中正确结论的个数是()A.4B.3C.2D.1二、填空题(本大题共4小题,每小题5分,共20分.)13.(5分)函数的自变量x 的取值范围是.14.(5分)如图,在⊙O 中,∠ABC =50°,则∠AOC 等于.15.(5分)对于非零实数a ,b ,规定a ⊕b =﹣.若(2x ﹣1)⊕2=1,则x 的值为.16.(5分)勾股定理被记载于我国古代的数学著作《周髀算经》中,汉代数学家赵爽为了证明勾股定理,创制了一幅如图①所示的“弦图”,后人称之为“赵爽弦图”.图②由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD 、正方形EFGH 、正方形MNKT 的面积分别为S 1、S 2、S 3.若正方形EFGH 的边长为4,则S 1+S 2+S 3=.三、解答题(本大题共5小题,共44分.解答应写出必要的文字说明或推演步骤.)17.(8分)(1)计算:+|(﹣)﹣1|﹣2cos45°;(2)先化简,再求值:(+)÷,其中a =﹣,b =+4.18.(8分)如图,在▱ABCD 中,点E 、F 在对角线BD 上,且BE =DF .求证:(1)△ABE ≌△CDF ;(2)四边形AECF 是平行四边形.19.(9分)为让同学们了解新冠的危害及预防措施,某中学举行了“新冠预防”知识竞赛.数学课外小组将八(1)班参加本校知识竞赛的40名同学的成绩(满分为100分,得分为正整数且无满分,为75分)分成五组进行统计,并绘制了下列没有完整的统计图表:分数段频数频率74.5﹣79.520.0579.5﹣84.58n84.5﹣89.5120.389.5﹣94.5m0.3594.5﹣99.540.1(1)表中m=,n=;(2)请补全频数分布直方图;(3)本次知识竞赛中,成绩在94.5分以上的选手,男生和女生各占一半,从中随机确定2名学生参加颁奖,请用列表法或树状图法求恰好是一名男生和一名女生的概率.20.(9分)如图所示,九(1)班数学兴趣小组为了测量河对岸的古树A、B之间的距离,他们在河边与AB平行的直线l上取相距60m的C、D两点,测得∠ACB=15°,∠BCD=120°,∠ADC=30°.(1)求河的宽度;(2)求古树A、B之间的距离.(结果保留根号)21.(10分)如图,△ABC 内接于⊙O ,AB 是⊙O 的直径,⊙O 的切线PC 交BA 的延长线于点P ,OF ∥BC 交AC 于点E ,交PC 于点F ,连接AF .(1)判断直线AF 与⊙O 的位置关系并说明理由;(2)若⊙O 的半径为6,AF =2,求AC 的长;(3)在(2)的条件下,求阴影部分的面积.四、填空题(本大题共4小题,每小题6分,共24分.)22.(6分)分解因式:a 4﹣3a 2﹣4=.23.(6分)如图,已知函数y =kx +b 的图象点P (2,3),与反比例函数y =的图象在象限交于点Q (m ,n ).若函数y 的值随x 值的增大而增大,则m 的取值范围是.24.(6分)已知x 1、x 2是关于x 的方程x 2﹣2x +k ﹣1=0的两实数根,且+=x 12+2x 2﹣1,则k 的值为.25.(6分)如图,矩形ABCD 中,AB =6,AD =4,点E 、F 分别是AB 、DC 上的动点,EF ∥BC ,则AF+CE的最小值是.五、解答题(本大题共3小题,每小题12分,共36分.)26.(12分)为贯彻执行“德、智、体、美、劳”五育并举的教育方针,内江市某中学组织全体学生前往某劳动实践开展劳动实践.在此次中,若每位老师带队30名学生,则还剩7名学生没老师带;若每位老师带队31名学生,就有一位老师少带1名学生.现有甲、乙两型客车,它们的载客量和租金如表所示:甲型客车乙型客车载客量(人/辆)3530租金(元/辆)400320学校计划此次劳动实践的租金总费用没有超过3000元.(1)参加此次劳动实践的老师和学生各有多少人?(2)每位老师负责一辆车的组织工作,请问有哪几种租车?(3)学校租车总费用至少是多少元?27.(12分)如图,在矩形ABCD中,AB=6,BC=4,点M、N分别在AB、AD上,且MN⊥MC,点E为CD的中点,连接BE交MC于点F.(1)当F为BE的中点时,求证:AM=CE;(2)若=2,求的值;(3)若MN∥BE,求的值.28.(12分)如图,抛物线y=ax2+bx+c与x轴交于A(﹣4,0),B(2,0),与y轴交于点C (0,2).(1)求这条抛物线所对应的函数的表达式;(2)若点D为该抛物线上的一个动点,且在直线AC上方,求点D到直线AC的距离的值及此时点D的坐标;(3)点P为抛物线上一点,连接CP,直线CP把四边形CBPA的面积分为1:5两部分,求点P的坐标.2022-2023学年广东省广州市中考数学专项提升仿真模拟测试题(一模)一、选一选(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣6的相反数是()A.6B.﹣6C.D.【分析】根据相反数的定义,即可解答.解:﹣6的相反数是6,故选:A.【点评】本题考查了相反数,解决本题的关键是熟记相反数的定义.2.某4S店今年1~5月新能源汽车的销量(辆数)分别如下:25,33,36,31,40,这组数据的平均数是()A.34B.33C.32.5D.31【分析】根据算术平均数的计算方法进行计算即可.解:这组数据的平均数为:=33(辆),故选:B.【点评】本题考查实数平均数,掌握算术平均数的计算方法是正确计算的关键.3.下列运算正确的是()A.a2+a3=a5B.(a3)2=a6C.(a﹣b)2=a2﹣b2D.x6÷x3=x2【分析】根据合并同类项的法则,幂的乘方的运算法则以及同底数幂除法的运算法则计算并作出判断即可.解:A.a2和a3没有是同类项,没有能合并,故没有符合题意;B.(a3)2=a6,故符合题意;C.(a﹣b)2=a2﹣2ab+b2,故没有符合题意;D.x6÷x3=x6﹣3=x3,故没有符合题意.故选:B.【点评】本题综合考查了整式的运算,熟练掌握整式的运算法则是解题的关键,属于基础题型.4.2022年2月第24届冬季在我国北京成功举办,以下是参选的会徽设计的部分图形,其中既是轴对称图形又是对称图形的是()A.B.C.D.【分析】根据轴对称图形和对称图形的定义解答即可.解:根据轴对称图形和对称图形的定义可知,C选项既是轴对称图形,又是对称图形,故选:C.【点评】本题主要考查了轴对称图形和对称图形,熟练掌握它们的定义是解答本题的关键.5.下列说法错误的是()A.打开电视机,台正在播放发射神舟十四号载人飞船的新闻,这是随机B.要了解小王一家三口的身体健康状况,适合采用抽样C.一组数据的方差越小,它的波动越小D.样本中个体的数目称为样本容量【分析】根据随机的定义,抽样和全面的特点,方差的特点,样本容量的定义解答即可.解:A.打开电视机,台正在播放发射神舟十四号载人飞船的新闻,这是随机,故A选项没有符合题意;B.要了解小王一家三口的身体健康状况,适合采用全面,故B选项符合题意;C.一组数据的方差越小,它的波动越小,故C选项没有符合题意;D.样本中个体的数目称为样本容量,故D选项没有符合题意.故选:B.【点评】本题主要考查了随机,抽样和全面,方差的,样本容量,熟练掌握相关的定义和特点是解答本题的关键.6.如图是正方体的表面展开图,则与“话”字相对的字是()A.跟B.党C.走D.听【分析】根据正方体表面展开图的特征进行判断即可.解:由正方体表面展开图的“相间、Z端是对面”可知,“话”与“走”是对面,故C.【点评】本题考查正方体相对两个面上的文字,掌握正方体表面展开图的特征是正确判断的前提.7.如图,在▱ABCD中,已知AB=12,AD=8,∠ABC的平分线BM交CD边于点M,则DM的长为()A.2B.4C.6D.8【分析】由平行四边形的得CD=AB=12,BC=AD=8,AB∥CD,再证∠CBM=∠CMB,则MC=BC=8,即可得出结论.解:∵四边形ABCD是平行四边形,∴CD=AB=12,BC=AD=8,AB∥CD,∴∠ABM=∠CMB,∵BM是∠ABC的平分线,∴∠ABM=∠CBM,∴∠CBM=∠CMB,∴MC=BC=8,∴DM=CD﹣MC=12﹣8=4,故选:B.【点评】本题考查了平行四边形的性质、等腰三角形的判定以及平行线的性质等知识,熟练掌握平行四边形的性质,证明MC=BC是解题的关键.8.如图,数轴上的两点A、B对应的实数分别是a、b,则下列式子中成立的是()A.1﹣2a>1﹣2b B.﹣a<﹣b C.a+b<0D.|a|﹣|b|>0【分析】依据点在数轴上的位置,没有等式的性质,值的意义,有理数大小的比较法则对每个选项进行逐一判断即可得出结论.解:由题意得:a<b,∴﹣2a>﹣2b,∴1﹣2a>1﹣2b,∴A选项的结论成立;∵a<b,∴﹣a>﹣b,∴B选项的结论没有成立;∵﹣2<a<﹣1,2<b<3,∴|a|<|b|,∴a+b>0,∴C选项的结论没有成立;∵﹣2<a<﹣1,2<b<3,∴|a|<|b|,∴|a|﹣|b|<0,∴D选项的结论没有成立.故选:A.【点评】本题主要考查了没有等式的性质,值的意义,有理数大小的比较法则,利用点在数轴上的位置确定出a,b的取值范围是解题的关键.9.如图,在平面直角坐标系中,点B、C、E在y轴上,点C的坐标为(0,1),AC=2,Rt△ODE 是Rt△ABC某些变换得到的,则正确的变换是()A.△ABC绕点C逆时针旋转90°,再向下平移1个单位B.△ABC绕点C顺时针旋转90°,再向下平移1个单位C.△ABC绕点C逆时针旋转90°,再向下平移3个单位D.△ABC绕点C顺时针旋转90°,再向下平移3个单位【分析】观察图形可以看出,Rt△ABC通过变换得到Rt△ODE,应先旋转然后平移即可.解:根据图形可以看出,△ABC绕点C顺时针旋转90°,再向下平移3个单位可以得到△ODE.故选:D.【点评】本题考查的是坐标与图形变化,旋转和平移的知识,掌握旋转和平移的概念和性质是解题的关键.10.如图,在平面直角坐标系中,点M为x轴正半轴上一点,过点M的直线l∥y轴,且直线l分别与反比例函数y=和y=的图象交于P、Q两点.若S=15,则k的值为()△POQA.38B.22C.﹣7D.﹣22【分析】设点P(a,b),则Q(a,),依据已知条件利用待定系数法解答即可.解:设点P(a,b),Q(a,),则OM=a,PM=b,MQ=﹣,∴PQ=PM+MQ=b﹣.∵点P在反比例函数y=的图象上,∴ab=8.=15,∵S△POQ∴PQ•OM=15,∴×a(b﹣)=15.∴ab﹣k=30.∴8﹣k=30,解得:k=﹣22.故选:D.【点评】本题主要考查了反比例函数图象的性质,反比例函数图象上点的坐标的特征,利用点的坐标表示出相应线段的长度是解题的关键.11.如图,正六边形ABCDEF内接于⊙O,半径为6,则这个正六边形的边心距OM和的长分别为()A.4,B.3,πC.2,D.3,2π【分析】连接OB、OC,根据正六边形的性质求出∠BOC,根据等边三角形的判定定理得到△BOC为等边三角形,根据垂径定理求出BM,根据勾股定理求出OM,根据弧长公式求出的长.解:连接OB、OC,∵六边形ABCDEF为正六边形,∴∠BOC==60°,∵OB=OC,∴△BOC为等边三角形,∴BC=OB=6,∵OM⊥BC,∴BM=BC=3,∴OM===3,的长为:=2π,故选:D.【点评】本题考查的是正多边形和圆、弧长的计算,正确求出正六边形的角是解题的关键.12.如图,抛物线y =ax 2+bx +c 与x 轴交于两点(x 1,0)、(2,0),其中0<x 1<1.下列四个结论:①abc <0;②a +b +c >0;③2a ﹣c >0;④没有等式ax 2+bx +c >﹣x +c 的解集为0<x<x 1.其中正确结论的个数是()A.4B.3C.2D.1【分析】利用二次函数的图象和性质依次判断即可.解:∵抛物线开口向上,对称轴在y 轴右边,与y 轴交于正半轴,∴a >0,b <0,c >0,∴abc <0,∴①正确.∵当x =1时,y <0,∴a +b +c <0,∴②错误.∵抛物线对称轴x =﹣>1,a >0,∴b <﹣2a ,∵a +b +c <0,∴a ﹣2a +c <0,∴2a ﹣c >a >0,∴③正确.如图:设y 1=ax 2+bx +c ,y 2=﹣x +c ,由图值,y 1>y 2时,x <0或x >x 1,故④错误.故选:C .【点评】本题考查二次函数的图象和性质,掌握二次函数的图象和性质是求解本题的关键.二、填空题(本大题共4小题,每小题5分,共20分.)13.(5分)函数的自变量x 的取值范围是x ≥3.【分析】根据被开方数非负列式求解即可.解:根据题意得,x ﹣3≥0,解得x ≥3.故x ≥3.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母没有能为0;(3)当函数表达式是二次根式时,被开方数非负.14.(5分)如图,在⊙O 中,∠ABC =50°,则∠AOC 等于100°.【分析】根据圆周角定理解答即可.解:由圆周角定理得:∠AOC =2∠ABC ,∵∠ABC =50°,∴∠AOC =100°,故100°.【点评】本题考查的是圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.15.(5分)对于非零实数a ,b ,规定a ⊕b =﹣.若(2x ﹣1)⊕2=1,则x 的值为.【分析】利用新规定对计算的式子变形,解分式方程即可求得结论.解:由题意得:=1,解得:x =.经检验,x =是原方程的根,∴x =.故.【点评】本题主要考查了解分式方程,本题是新定义型题目,准确理解新规定并熟练应用是解题的关键.16.(5分)勾股定理被记载于我国古代的数学著作《周髀算经》中,汉代数学家赵爽为了证明勾股定理,创制了一幅如图①所示的“弦图”,后人称之为“赵爽弦图”.图②由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD 、正方形EFGH 、正方形MNKT 的面积分别为S 1、S 2、S 3.若正方形EFGH 的边长为4,则S 1+S 2+S 3=48.【分析】由勾股定理和乘法公式完成计算即可.解:设八个全等的直角三角形的长直角边为a ,短直角边是b ,则:S 1=(a +b )2,S 2=42=16,S 3=(a ﹣b )2,且:a 2+b 2=EF 2=16,∴S 1+S 2+S 3=(a +b )2+16+(a ﹣b )2=2(a 2+b 2)+16=2×16+16=48.故48.【点评】本题考查勾股定理的应用,应用勾股定理和乘法公式表示三个正方形的面积是求解本题的关键.三、解答题(本大题共5小题,共44分.解答应写出必要的文字说明或推演步骤.)17.(8分)(1)计算:+|(﹣)﹣1|﹣2cos45°;(2)先化简,再求值:(+)÷,其中a =﹣,b =+4.【分析】(1)直接利用角的三角函数值以及负整数指数幂的性质、二次根式的性质分别化简,进而得出答案;(2)先根据分式的运算法则化简分式,再代入求值.解:(1)原式=×2+2﹣2×=+2﹣=2.(2)原式=[+]•=•=.当a=﹣,b=+4时,原式=.【点评】本题考查了二次根式的运算,角的函数值,负指数次幂的运算,以及分式的化简求值,正确熟练的运算是解题的关键.18.(8分)如图,在▱ABCD中,点E、F在对角线BD上,且BE=DF.求证:(1)△ABE≌△CDF;(2)四边形AECF是平行四边形.【分析】(1)根据平行四边形的性质得到AB=CD,AB∥CD,根据平行线的性质得到∠ABD=∠CDB,利用SAS定理证明△ABE≌△CDF;(2)根据全等三角形的性质得到AE=CF,∠AEB=∠CFD,根据平行线的判定定理证明AE∥CF,再根据平行四边形的判定定理证明结论.证明:(1)∵四边形ABCD为平行四边形,∴AB=CD,AB∥CD,∴∠ABD=∠CDB,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)由(1)可知,△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴180°﹣∠AEB=180°﹣∠CFD,即∠AEF=∠CFE,∴AE∥CF,∵AE=CF,AE∥CF,∴四边形AECF是平行四边形.【点评】本题考查的是平行四边形的判定和性质、全等三角形的判定和性质,掌握平行四边形的对边平行且相等、平行且相等的四边形是平行四边形是解题的关键.19.(9分)为让同学们了解新冠的危害及预防措施,某中学举行了“新冠预防”知识竞赛.数学课外小组将八(1)班参加本校知识竞赛的40名同学的成绩(满分为100分,得分为正整数且无满分,为75分)分成五组进行统计,并绘制了下列没有完整的统计图表:分数段频数频率74.5﹣79.520.0579.5﹣84.58n84.5﹣89.5120.389.5﹣94.5m0.3594.5﹣99.540.1(1)表中m=14,n=0.2;(2)请补全频数分布直方图;(3)本次知识竞赛中,成绩在94.5分以上的选手,男生和女生各占一半,从中随机确定2名学生参加颁奖,请用列表法或树状图法求恰好是一名男生和一名女生的概率.【分析】(1)由样本容量乘以频率得出m的值,再由频率的定义求出n的值即可;(2)由(1)的结果,补全频数分布直方图即可;(3)画树状图,共有12种等可能的结果,其中确定的2名学生恰好是一名男生和一名女生的结果有8种,再由概率公式求解即可.解:(1)m=40×35%=14,n=8÷40=0.2,故14,0.2;(2)补全频数分布直方图如下:(3)∵成绩在94.5分以上的选手有4人,男生和女生各占一半,∴2名是男生,2名是女生,画树状图如下:共有12种等可能的结果,其中确定的2名学生恰好是一名男生和一名女生的结果有8种,∴确定的2名学生恰好是一名男生和一名女生的概率为=.【点评】此题考查了树状图法求概率、频数分布表和频数分布直方图等知识.正确画出树状图是解题的关键,用到的知识点为:概率=所求情况数与总情况数之比.20.(9分)如图所示,九(1)班数学兴趣小组为了测量河对岸的古树A、B之间的距离,他们在河边与AB平行的直线l上取相距60m的C、D两点,测得∠ACB=15°,∠BCD=120°,∠ADC=30°.(1)求河的宽度;(2)求古树A、B之间的距离.(结果保留根号)【分析】(1)过点A作AE⊥l,垂足为E,设CE=x米,则DE=(x+60)米,先利用平角定义求出∠ACE=45°,然后在Rt△AEC中,利用锐角三角函数的定义求出AE的长,再在Rt △ADE中,利用锐角三角函数的定义列出关于x的方程,进行计算即可解答;(2)过点B作BF⊥l,垂足为F,CE=AE=BF=(30+30)米,AB=EF,先利用平角定义求出∠BCF=60°,然后在Rt△BCF中,利用锐角三角函数的定义求出CF的长,进行计算即可解答.解:(1)过点A作AE⊥l,垂足为E,设CE=x米,∵CD=60米,∴DE=CE+CD=(x+60)米,∵∠ACB=15°,∠BCD=120°,∴∠ACE=180°﹣∠ACB﹣∠BCD=45°,在Rt△AEC中,AE=CE•tan45°=x(米),在Rt△ADE中,∠ADE=30°,∴tan30°===,∴x=30+30,经检验:x=30+30是原方程的根,∴AE=(30+30)米,∴河的宽度为(30+30)米;(2)过点B作BF⊥l,垂足为F,则CE=AE=BF=(30+30)米,AB=EF,∵∠BCD=120°,∴∠BCF=180°﹣∠BCD=60°,在Rt△BCF中,CF===(30+10)米,∴AB=EF=CE﹣CF=30+30﹣(30+10)=20(米),∴古树A、B之间的距离为20米.【点评】本题考查了解直角三角形的应用,根据题目的已知条件并图形添加适当的辅助线是解题的关键.21.(10分)如图,△ABC 内接于⊙O ,AB 是⊙O 的直径,⊙O 的切线PC 交BA 的延长线于点P ,OF ∥BC 交AC 于点E ,交PC 于点F ,连接AF .(1)判断直线AF 与⊙O 的位置关系并说明理由;(2)若⊙O 的半径为6,AF =2,求AC 的长;(3)在(2)的条件下,求阴影部分的面积.【分析】(1)连接OC ,证明△AOF ≌△COF (SAS ),由全等三角形的判定与性质得出∠OAF =∠OCF =90°,由切线的判定可得出结论;(2)由直角三角形的性质求出∠AOF =30°,可得出AE =OA =3,则可求出答案;(3)证明△AOC 是等边三角形,求出∠AOC =60°,OC =6,由三角形面积公式和扇形的面积公式可得出答案.解:(1)直线AF 与⊙O 相切.理由如下:连接OC,∵PC为圆O切线,∴CP⊥OC,∴∠OCP=90°,∵OF∥BC,∴∠AOF=∠B,∠COF=∠OCB,∵OC=OB,∴∠OCB=∠B,∴∠AOF=∠COF,∵在△AOF和△COF中,,∴△AOF≌△COF(SAS),∴∠OAF=∠OCF=90°,∴AF⊥OA,又∵OA为圆O的半径,∴AF为圆O的切线;(2)∵△AOF≌△COF,∴∠AOF=∠COF,∵OA=OC,∴E为AC中点,即AE=CE=AC,OE⊥AC,∵∠OAF=90°,OA=6,AF=2,∴tan∠AOF =,∴∠AOF =30°,∴AE =OA =3,∴AC =2AE =6;(3)∵AC =OA =6,OC =OA ,∴△AOC 是等边三角形,∴∠AOC =60°,OC =6,∵∠OCP =90°,∴CP =OC =6,∴S △OCP =OC •CP ==18,S 扇形AOC ==6π,∴阴影部分的面积为S △OCP ﹣S 扇形AOC =18﹣6π.【点评】此题是圆的综合题,考查了切线的判定与性质,全等三角形的判定与性质,平行线的性质,等腰三角形的性质,解直角三角形,三角形的面积求法,等边三角形的判定与性质,扇形的面积公式,熟练掌握切线的判定与性质是解本题的关键.四、填空题(本大题共4小题,每小题6分,共24分.)22.(6分)分解因式:a 4﹣3a 2﹣4=(a 2+1)(a +2)(a ﹣2).【分析】先利用十字相乘法因式分解,在利用平方差公式进行因式分解.解:a 4﹣3a 2﹣4=(a 2+1)(a 2﹣4)=(a 2+1)(a +2)(a ﹣2),故(a 2+1)(a +2)(a ﹣2).【点评】本题考查的是十字相乘法因式分解,掌握十字相乘法、平方差公式因式分解是解题的关键.23.(6分)如图,已知函数y =kx +b 的图象点P (2,3),与反比例函数y =的图象在象限交于点Q (m ,n ).若函数y 的值随x 值的增大而增大,则m 的取值范围是<m <2.【分析】过点P 分别作x 轴,y 轴的平行线,与双曲线分别交于点A ,B ,利用解析式分别求得A ,B 坐标,依据题意确定点Q 的移动范围,从而得出结论.解:过点P 作PA ∥x 轴,交双曲线与点A ,过点P 作PB ∥y 轴,交双曲线与点B ,如图,∵P (2,3),反比例函数y =,∴A (,3),B (2,1).∵函数y 的值随x 值的增大而增大,∴点Q (m ,n )在A ,B 之间,∴<m <2.故<m <2.【点评】本题主要考查了反比例函数与函数图象的交点问题,待定系数法,反比例函数的性质,函数的性质,函数图象上点的坐标的特征,确定点Q 的移动范围是解题的关键.24.(6分)已知x 1、x 2是关于x 的方程x 2﹣2x +k ﹣1=0的两实数根,且+=x 12+2x 2﹣1,则k 的值为2.【分析】根据x 1、x 2是关于x 的方程x 2﹣2x +k ﹣1=0的两实数根,可得x 1+x 2=2,x 1•x 2=k﹣1,x 12﹣2x 1+k ﹣1=0,把+=x 12+2x 2﹣1变形再整体代入可得=4﹣k ,解出k 的值,并检验即可得k =2.解:∵x 1、x 2是关于x 的方程x 2﹣2x +k ﹣1=0的两实数根,∴x 1+x 2=2,x 1•x 2=k ﹣1,x 12﹣2x 1+k ﹣1=0,∴x 12=2x 1﹣k +1,∵+=x 12+2x 2﹣1,∴=2(x 1+x 2)﹣k ,∴=4﹣k ,解得k =2或k =5,当k =2时,关于x 的方程为x 2﹣2x +1=0,Δ≥0,符合题意;当k =5时,关于x 的方程为x 2﹣2x +4=0,Δ<0,方程无实数解,没有符合题意;∴k =2,故2.【点评】本题考查一元二次方程根与系数的关系,解题的关键是掌握一元二次方程根与系数的关系得出x 1+x 2=2,x 1•x 2=k ﹣1,从而根据已知得到关于k 的方程,注意要由求得的k 值检验原方程是否有实数根.25.(6分)如图,矩形ABCD 中,AB =6,AD =4,点E 、F 分别是AB 、DC 上的动点,EF ∥BC ,则AF +CE 的最小值是10.【分析】延长BC 到G ,使CG =EF ,连接FG ,则四边形EFGC 是平行四边形,得CE =FG ,则AF +CE =AF +FG ,可知当点A 、F 、G 三点共线时,AF +CE 的值最小为AG ,利用勾股定理求出AG的长即可.解:延长BC 到G ,使CG =EF ,连接FG ,∵EF∥CG,EF=CG,∴四边形EFGC是平行四边形,∴CE=FG,∴AF+CE=AF+FG,∴当点A、F、G三点共线时,AF+CE的值最小为AG,由勾股定理得,AG===10,∴AF+CE的最小值为10,故10.【点评】本题主要考查了矩形的性质,平行四边形的判定与性质,勾股定理等知识,作辅助线将AF+CE的最小值转化为AG的长是解题的关键.五、解答题(本大题共3小题,每小题12分,共36分.)26.(12分)为贯彻执行“德、智、体、美、劳”五育并举的教育方针,内江市某中学组织全体学生前往某劳动实践开展劳动实践.在此次中,若每位老师带队30名学生,则还剩7名学生没老师带;若每位老师带队31名学生,就有一位老师少带1名学生.现有甲、乙两型客车,它们的载客量和租金如表所示:甲型客车乙型客车载客量(人/辆)3530租金(元/辆)400320学校计划此次劳动实践的租金总费用没有超过3000元.(1)参加此次劳动实践的老师和学生各有多少人?(2)每位老师负责一辆车的组织工作,请问有哪几种租车?(3)学校租车总费用至少是多少元?【分析】(1)设参加此次劳动实践的老师有x人,可得:30x+7=31x﹣1,即可解得参加此次劳动实践的老师有8人,参加此次劳动实践的学生有247人;(2)根据每位老师负责一辆车的组织工作,知一共租8辆车,设租甲型客车m辆,可得:,解得m的范围,解得一共有3种租车:租甲型客车3辆,租乙型客车5辆或租甲型客车4辆,租乙型客车4辆或租甲型客车5辆,租乙型客车3辆;(3)设学校租车总费用是w元,w=400m+320(8﹣m)=80m+2560,由函数性质得学校租车总费用至少是2800元.解:(1)设参加此次劳动实践的老师有x人,参加此次劳动实践的学生有(30x+7)人,根据题意得:30x+7=31x﹣1,解得x=8,∴30x+7=30×8+7=247,答:参加此次劳动实践的老师有8人,参加此次劳动实践的学生有247人;(2)师生总数为247+8=255(人),∵每位老师负责一辆车的组织工作,∴一共租8辆车,设租甲型客车m辆,则租乙型客车(8﹣m)辆,根据题意得:,解得3≤m≤5.5,∵m为整数,∴m可取3、4、5,∴一共有3种租车:租甲型客车3辆,租乙型客车5辆或租甲型客车4辆,租乙型客车4辆或租甲型客车5辆,租乙型客车3辆;(3)设租甲型客车m辆,则租乙型客车(8﹣m)辆,由(2)知:3≤m≤5.5,设学校租车总费用是w元,w=400m+320(8﹣m)=80m+2560,∵80>0,∴w随m的增大而增大,∴m=3时,w取最小值,最小值为80×3+2560=2800(元),答:学校租车总费用至少是2800元.【点评】本题考查一元方程,一元没有等式组及函数的应用,解题的关键是读懂题意,列出方程,没有等式和函数关系式.27.(12分)如图,在矩形ABCD中,AB=6,BC=4,点M、N分别在AB、AD上,且MN⊥MC,点E为CD的中点,连接BE交MC于点F.(1)当F为BE的中点时,求证:AM=CE;(2)若=2,求的值;(3)若MN∥BE,求的值.【分析】(1)根据矩形的性质,利用AAS证明△BMF≌△ECF,得BM=CE,再利用点E为CD 的中点,即可证明结论;(2)利用△BMF∽△ECF,得,从而求出BM的长,再利用△ANM∽△BMC,得,求出AN的长,可得答案;(3)首先利用同角的余角相等得∠CBF=∠CMB,则tan∠CBF=tan∠CMB,得,可得BM的长,由(2)同理可得答案.(1)证明:∵F为BE的中点,∴BF=EF,∵四边形ABCD是矩形,∴AB∥CD,AB=CD∴∠BMF=∠ECF,∵∠BFM=∠EFC,∴△BMF≌△ECF(AAS),∴BM=CE,∵点E为CD的中点,∴CE=DE,∴BM=CE=DE,∵AB=CD,∴AM=CE;(2)解:∵∠BMF=∠ECF,∠BFM=∠EFC,∴△BMF∽△ECF,∴,∵CE=3,∴BM=,∴AM=,∵CM⊥MN,∴∠CMN=90°,∴∠AMN+∠BMC=90°,∵∠AMN+∠ANM=90°,∴∠ANM=∠BMC,∵∠A=∠MBC,∴△ANM∽△BMC,∴,∴,∴,∴DN=AD﹣AN=4﹣=,∴;(3)解:∵MN∥BE,∴∠BFC=∠CMN,∴∠FBC+∠BCM=90°,∵∠BCM+∠BMC=90°,∴∠CBF=∠CMB,∴tan∠CBF=tan∠CMB,∴,∴,∴,∴=,由(2)同理得,,∴,解得AN=,∴DN=AD﹣AN=4﹣=,∴=.【点评】本题是相似形综合题,主要考查了矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质,三角函数等知识,求出BM的长是解决(2)和(3)的关键.28.(12分)如图,抛物线y=ax2+bx+c与x轴交于A(﹣4,0),B(2,0),与y轴交于点C (0,2).(1)求这条抛物线所对应的函数的表达式;(2)若点D为该抛物线上的一个动点,且在直线AC上方,求点D到直线AC的距离的值及此时点D的坐标;(3)点P为抛物线上一点,连接CP,直线CP把四边形CBPA的面积分为1:5两部分,求点P的坐标.。
中考数学测试篇17试题
创作时间:2022年4月12日 创作编者:聂明景创作时间:2022年4月12日 创作编者:聂明景第二初级中学2021年中考数学 测试篇17〔无答案〕 浙教版创作单位:*XXX创作时间:2022年4月12日 创作编者:聂明景(时间是:50分钟 满分是:100分)一、选择题(每一小题3分,一共27分)1.(2021·)假设直线y =-2x -4与直线y =4x +b 的交点在第三象限,那么b 的取值范围是( ) A.-4<b <8B.-4<b <0C.b <-4或者b >8D.-4≤b ≤82.(2021·)如图,直线y 1=x +m 与y 2=kx -1相交于点P (-1,1),那么关于x 的不等式x +m >kx -1的解集在数轴上表示正确的选项是( )3.(2021·)如下图,函数y 1=|x |和y 2=13x +43y 1>y 2时,x 的取值范围是( )A.x <-1B.-1<x <2C.x >2D.x <-1或者x >24.(2021·)一次函数y =ax +b 的图象过第一、二、四象限,且与x 轴交于点(2,0),那么关于x 的不等式a (x -1)-b >0的解集为( ) A.x <-1 B.x >-1 C.x >1D.x <15.(2021·)假设反比例函数y =k x与一次函数y =x +2的图象没有交点,那么k 的值可以是( ) A.-2 B.-1C.16.(2021·)直线y =kx (k >0)与双曲线y =3x交于点A (x 1,y 1),B (x 2,y 2)两点,那么x 1y 2+x 2y 1的值是( )A.-6B.-9C.07.(2021·)如图是二次函数y =ax2+bx+c的局部图象,由图象可知不等式ax2+bx+c<0的解集是( )A.-1<x<5B.x>5C.x<-1且x>5D.x<-1或者x>58.(2021·)设二次函数y=x2+bx+c,当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,那么c的取值范围是( )A.c=3B.c≥3C.1≤c≤3D.c≤39.(2021·)二次函数y=ax2+bx+c(a≠0)的图象如下图,其对称轴为x=1,有如下结论:①c<1;②2a+b=0;③b2<4ac;④假设方程ax2+bx+c=0的两根为x1,x2,那么x1+x2=2.那么正确的结论是( )A.①②B.①③C.②④D.③④二、填空题(每一小题4分,一共20分) 10.(2021·)如图,直线y=kx+b经过A(3,1)和B(6,0)两点,那么不等式组0<kx+b <13x的解集为 .11.(2021·)如图,直线y=k1x +b与双曲线y=k2x交于A、B两点,其横坐标分别为1和5,那么不等式k1x<k2x+b的解集是 .12.(2021·)函数y=x+3x的图象如图所示,关于该函数,以下结论正确的选项是 (填序号).①函数图象是轴对称图形;②函数图象是中心对称图形;③当x>0时,函数有最小值;④点(1,4)在函数图象上;⑤当x<1或者x>3时,y>4.13.(2021·黔东南)设函数y=x-3与y=2x的图象的两个交点的横坐标为a,b,那么1a+1b = .14.(2021·)给出以下命题:命题1.点(1,1)是双曲线y=1x与抛物线y=x2的一个交点.命题2.点(1,2)是双曲线y=2x与抛物线y=2x2的一个交点.命题3.点(1,3)是双曲线y=3x与抛物线y=3x2的创作时间:2022年4月12日 创作编者:聂明景创作时间:2022年4月12日 创作编者:聂明景一个交点. …请你观察上面的命题,猜测出命题n (n 是正整数): .三、解答题(一共53分)15.(12分)(2021·)甲、乙两个港口相距72千米,一艘轮船从甲港出发,顺流航行3小时到达乙港,休息1小时后立即返回;一艘快艇在轮船出发2小时后从乙港出发,逆流航行2小时到甲港,并立即返回(掉头时间是忽略不计).水流速度是2千米/时,以下图表示轮船和快艇距甲港的间隔y (千米)与轮船出发时间是x (小时)之间的函数关系式,结合图象解答以下问题:(顺流速度=船在静水中速度+水流速度;逆流速度=船在静水中速度-水流速度)(1)轮船在静水中的速度是 千米/时;快艇在静水中的速度是 千米/时.(2)求快艇返回时的解析式,写出自变量的取值范围.(3)快艇出发多长时间是,轮船和快艇在返回途中相距12千米?(直接写出结果)16.(12分)(2021·)如图,直线y =k 1x +b与双曲线y =k 2x相交于A (1,2)、B (m ,-1) 两点.(1)求直线和双曲线的解析式.(2)假设A 1(x 1,y 1),A 2(x 2,y 2),A 3(x 3,y 3)为双曲线上的三点,且x 1<x 2<0<x 3,请直接写出y 1,y 2,y 3的大小关系式.(3)观察图象,请直接写出不等式k 1x +b >k 2x的解集.17.(14分)(2021·)在一次数学活动课上,教师出了一道题:(1)解方程:x2-2x-3=0.巡视后,教师发现同学们解此道题的方法有公式法、配方法和十字相乘法(分解因式法).接着,教师请大家用自己熟悉的方法解第二道题:(2)解关于x的方程mx2+(m-3)x-3=0(m为常数,且m≠0).教师继续巡视,及时观察、点拨大家,再接着,教师将第二道题变式为第三道题:(3)关于x的函数y=mx2+(m-3)x-3(m为常数)①求证:不管m为何值,此函数的图象恒过x轴、y轴上的两个定点(设x轴上的定点为A,y轴上的定点为C);②假设m≠0时,设此函数的图象与x轴的另一个交点为B.当△ABC为锐角三角形时,观察图象,直接写出m的取值范围.请你也用自己熟悉的方法解上述三道题. 18.(15分)(2021·)抛物线C1的函数解析式为y=ax2+bx-3a(b<0),假设抛物线C1经过点(0,-3),方程ax2+bx-3a=0的两根为x1,x2,且|x1-x2|=4.(1)求抛物线C1的顶点坐标.(2)实数x>0,请证明x+1x≥2,并说明x为何值时才会有x+1x=2.(3)假设将抛物线先向上平移4个单位,再向左平移1个单位后得到抛物线C2,设A(m,y1),B(n,y2)是C2上的两个不同点,且满足:∠AOB=90°,m>0,nm的表达式表示出△AOB的面积S,并求出S的最小值及S取最小值时一次函数OA的函数解析式.。
2025年中考数学总复习前17题基础训练 (23)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
8. (2023·永州)如图,在Rt△ABC中,∠C=90°,以点B为圆心,任意
长为半径画弧,分别交AB,BC于点M,N,再分别以点M,N为圆心,
1
大于 MN的长为半径画弧,两弧交于点P,作射线BP交AC于点D,作
2
DE⊥AB,垂足为E.下列结论中,不一定正确的是( C )
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
− 2 > 1,
4. (2023·广东)不等式组ቊ
的解集为( D )
<4
A. -1<x<4
B. x<4
C. x<3
D. 3<x<4
解析:解不等式x-2>1,得x>3.又∵ x<4,∴ 不等式组的解集为3<
x<4.
1
2
3
4
5
6
7
8
9
10
11
12
−
−
即(m-6)2+ −
=
.
−
−
∴ m2-12m+36+m2-2(12m-36)+
= ,
(0,6),M(m,m)代入,得ቊ
+=,
1
2
3
4
5
6
7
8
9
10
11
12
−
=
中考数学复习满分突破(全国通用):专题17 直角三角形翻折模型(解析版)
专题17直角三角形翻折模型已知在Rt△ABC 中,∠ABC=90°,AB=3,BC=4,AC=5模型一:沿过点A 的直线翻折使得点B 的对应点B’落在斜边AC 上,折痕为AD,求线段AD,DC,B’C 长度。
解法一(勾股定理思路):由已知条件可知,AB=AB’,BD=B’D ∵∠ABC=90°,AB=3,AC=5∴∠AB’D=90°,AB’=3,B’C=2设BD=x,则B’D=x,DC=4-x在Rt△DB’C 中,由勾股定理可得DB’2+B’C 2=DC 2即x 2+22=(4-x)2解得x=1.5∴B’D=1.5,DC=2.5同理AD=32√5解法二(相似三角形思路):由已知条件易证△ABC∽△DB’C 则AB BC=DB ’B'C则B’D=1.5再由勾股定理求解线段AD长【模型变形】已知在Rt△ABC 中,∠ABC=90°,AB=3,BC=4,AD 为∠BAC 的角平分线,求DC 长解法(思路):过点D 作DE⊥AC,垂足为点E则△ABD≌△AED(AAS)(证明过程略)∴∠ABD=∠AED,BD=DE,AB=AE 剩余步骤参照模型一解法一模型二:沿过点C 的直线翻折使得点B 的对应点B’落在斜边AC 上,折痕为CD,求线段AD,DC,AB’长度。
解法一(勾股定理思路):由已知条件可知,BD=B’D,BC=B’C ∵∠ABC=90°,BC=4,AC=5∴∠CB’D=90°,B’C=4,AB’=1设BD=x,则B’D=x,AD=3-x在Rt△ADB’中,由勾股定理可得DB’2+AB’2=AD 2即x 2+12=(3-x)2解得x=43∴B’D=43,AD=53在Rt△DCB’中,由勾股定理可Q 求得CD 长解法二(相似三角形思路):由已知条件易证△ABC∽△AB’D 则AB BC=AB ’B'D则B’D=43再由勾股定理求解线段CD 长模型三:沿MN 翻折使得点A 与点C 重合,求线段AN,BM,MN 长度。
2024年上海中考数学模拟练习卷十七及参考答案
上海市2024年中考数学模拟练习卷17(考试时间:100分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答填空题时,请将每小题的答案直接填写在答题卡中对应横线上。
写在本试卷上无效。
4.回答解答题时,每题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上。
写在本试卷上无效。
5.考试结束后,将本试卷和答题卡一并交回。
一、选择题:(本大题共6题,每题4分,共24分.下列各题四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题卡的相应位置上.)1.下列分数中不能化成有限小数的()A .330B .38C .312D .562.已知0a >,下列四个选项中正确的是()A .1a a-=-B .01a =C .()22a a -=-D .23a =3.关于x 的一元二次方程22220x ax a ++-=的根的情况是()A .有两个不相等的实数根B .没有实数根C .有两个相等的实数根D .无法确定4.一次数学单元测试,某小组5名同学的成绩统计如下(有两个数据被遮盖):组员甲乙丙丁戊平均成绩众数得分8177808280则被遮盖的两个数据依次是()A .80,80B .81,80C .80,81D .81,825.下列说法中,不正确...的是()A .周长相等的两个等边三角形一定能够重合B .面积相等的两个圆一定能够重合C .面积相等的两个正方形一定能够重合D .周长相等的两个菱形一定能够重合6.如果一个正九边形的边长为a ,那么这个正九边形的半径是()A .sin 20a︒B .cos20a ︒C .2sin 20a ︒D .2cos20a ︒二、填空题:(本大题共12题,每题4分,共48分.)7.计算:1233--=.8.函数xy x=的定义域是.90x =的解是.10.不等式组()3142152x x x x ⎧-<-⎪⎨+->⎪⎩的解集是;11.已知正比例函数()13y m x =-,y 的值随x 的值的增大而增大,那么m 的取值范围是12.如果从1,2,3,5,8,13,21,24这8个数中任意选取一个数,那么取到的数恰好是素数的概率是.13.将抛物线223y x x =-+向下平移m 个单位后,它的顶点恰好落在x 轴上,那么m =.14.几个同学包租一辆面包车去旅游,面包车的租价为180元,后来又增加了两名同学,租车价不变,结果每个同学比原来少分摊了3元车费.若设原参加旅游的同学有x 人,则根据题意可列方程.15.如图,梯形ABCD 中,AB CD ∥,且43AB CD =,若AB m = ,AD n = .请用m ,n来表示AC =.16.如图,在平行四边形ABCD 中,点F 是AD 上的点,2AF FD =,直线BF 与AC 相交于点E ,交CD 的延长线于点G ,若2BE =,则EG 的值为.17.在平面直角坐标系xOy 中,我们定义点(),A x y 的“关联点”为(),B x y x y +-.如果已知点A 在直线3y x =+上,点B 在O 的内部,O 的半径长为,那么点A 的横坐标x 的取值范围是.18.如图,已知在菱形ABCD 中,1cos 3B =,将菱形ABCD 绕点A 旋转,点B 、C 、D 分别旋转至点E 、F 、G ,如果点E 恰好落在边BC 上,设EF 交边CD 于点H ,那么CHDH的值是.三、解答题:(本大题共7题,第19-22每题10分,第23-24每题12分,第25题14分,共78分.解答应写出文字说明,证明过程或演算步骤.)19()2tan60 3.14π-︒+-+.20.先化简,再求值:222111121a a a a a a -+⎛⎫-+÷ ⎪--+⎝⎭.其中,实数a 的相反数是它本身.21.如图,△ABC 中,AB =BC =13,AC =10,∠ABC 的平分线与边AC 交于点F ,且与外角∠ACD 的平分线CE 交于点E .(1)求sin A 的值;(2)求EF 的长.22.小红打算买一束百合和康乃馨组合的鲜花,在“母亲节”送给妈妈.已知买2支康乃馨和3支百合共需花费28元,买3支康乃馨和2支百合共需花费27元.(1)求买一支康乃馨和一支百合各需多少元?(2)小红准备买康乃馨和百合共9支,且百合花支数不少于康乃馨支数.设买这束鲜花所需费用为w 元,康乃馨有x 支,求w 与x 之间的函数关系式,并直接写出满足上述条件且费用最少的买花方案.23.如图,已知在ABC 中,点E 、F 在边BC 上.(1)如果AEF △是等边三角形,且120BAC ∠=︒,求证:ABE ACF ∽ ;(2)如果AB AC =,2AE EF EC =⋅,求证:22BF AF CE AE =.24.已知抛物线212y x bx c =++与x 轴交于A B 、两点(点A 在点B 的左侧),与y 轴交于点C ,直线6y x =--经过点A 与点C .(1)求抛物线的表达式;(2)点P 在线段AC 下方的抛物线上,过点P 作BC 的平行线交线段AC 于点D ,交y 轴于点E .①如果C F 、两点关于抛物线的对称轴对称,联结DF ,当DF CF ⊥时,求PDF ∠的正切值;②如果:3:5PD DE =,求点P 的坐标.25.如图,扇形MON 的半径为r ,圆心角90MON ∠=︒,点A 是 MN 上的动点(点A 不与点M 、N 重合),点B 、C 分别在半径OM 、ON 上,四边形ABOC 为矩形,点G 在线段BC 上,且2CG BG =.(1)求证:23CG r =;(2)如图,以A 为顶点、AC 为一边,作CAP BCO ∠=∠,射线AP 交射线ON 于点P ,连接AN ,OG ①当BGO ANP ∠=∠时,求OBG △与ANP 的面积之比;②把OGB V 沿直线OG 翻折后记作OGB '△,当OB BC '⊥时,求P ∠的正切值.参考答案:一、选择题:(本大题共6题,每题4分,共24分.下列各题四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题卡的相应位置上.)123456DBAADC二、填空题:(本大题共12题,每题4分,共48分.)7.13-8.0x ≠9.3x =-10.517x -<<-/517x ->>-11.13m </13m >12.1213.214.18018032x x -=+15.34n m+ 16.317.30x -<<18.23三、解答题:(本大题共7题,第19-22每题10分,第23-24每题12分,第25题14分,共78分.解答应写出文字说明,证明过程或演算步骤.)19.解:原式=211++=112+=3220.解:222111121a a a a a a -+⎛⎫-+÷ ⎪--+⎝⎭()222211=111a a a a a a ⎛⎫-+-÷ ⎪-⎭-+-⎝()()()222221111=1a a a a a a ---⋅-+-+()2=11a a --+2=11a a -+-2a a =-+,∵实数a 的相反数是它本身,∴a a =-,即0a =,∴原式000=+=.21.(1)解:∵AB =BC ,BF 平分∠ABC ,∴BF ⊥AC ,152AF CF AC ===,∴∠AFB =∠CFB =90°,∴12BF ==,∴12sin 13BF A AB ==;(2)解:如图所示,过点E 作EH ⊥BD 于H ,∵CE 平分∠ACD ,BE ⊥CF ,CH ⊥EH ,∴EF =EH ,∵BF 平分∠ABF ,∴∠ABF =∠CBF ,∴5sin =sin =sin ==13EH AF CBF EBH ABF BE AB =∠∠∠,∴51213EF EF =+,∴152EF =.22.(1)解:设一支康乃馨的价格是x 元,一支百合的价格是y 元,根据题意可知:23283227x y x y +=⎧⎨+=⎩解得56x y =⎧⎨=⎩,答:买一支康乃馨需要5元,买一支百合需要6元;(2)解:由题意知:()569w x x =+-,54x =-,由9x x -≥可知0 4.5x <≤,且x 是正整数,当4x =时,w 的值最小,即买4支康乃馨和5支百合时,花费最少,花费50元.23.(1)解:证明: AEF △是等边三角形,∴60AEF AFE EAF ∠=∠=∠=︒,180120AEB AEF ∠=︒-∠=︒∴,180120AFC AFE ∠=︒-∠=︒,AEB AFC ∴∠=∠,120BAC ∠=︒60BAE CAF ∠∠∴+=︒在ABE 中,120AEB ∠=︒,60B BAE ∴∠+∠=︒,B CAF ∴∠=∠,∴ABE ACF ∽ ;(2)过点A 作AH BC ⊥于H ,如图2所示:∵2AE EF EC =⋅,∵:AE EC EF AE =:,∵AEF CEA ∠=∠,∴EAF ECA ∽△△,∴EAF C ∠=∠,∵AB AC =,∴B C ∠=∠,∴B EAF ∠=∠,∴11BAF EAF B ∠=∠+∠=∠+∠,又∵1AEF B ∠=∠+∠,∴BAF AEF ∠=∠,又∵B C ∠=∠,∴BAF CEA ∽ ,∴22BAF CEAS AF S AE =△△,∴12BAF BF AH S =⋅ ,12CEA CE AH S =⋅ ,∴BAF CEA S S BF CE =:: ,∴22BF AF CE AE =.24.(1)解:∵直线6y x =--经过点A 与点C 则当06x y ==-,;06y x ==-,∴()()6060A C --,,,∴60186c b c =-⎧⎨=-+⎩,,解得62c b =-⎧⎨=⎩21262y x x =+-;(2)解:①如图:∵()()6060A C --,,,,且C F 、两点关于抛物线21262y x x =+-的对称轴对称,∴6F c y y ==-,221222b x a =-=-=-⨯则4F x =-∵DF CF ⊥∴DF y ∥轴则FDC OCA∠=∠∵过点P 作BC 的平行线交线段AC 于点D ,交y 轴于点E .∴PE BC PDF ACB ∠=∠ ,则PDF OCB ∠=∠∵21262y x x =+-x 轴交于A B 、两点(点A 在点B 的左侧),∴210262x x =+-∴6x =-,2x =∴()20B ,∵PDF OCB∠=∠则PDF ∠的正切值等于21tan 63OB OCB OC ∠===;②设21262P p p p ⎛⎫+- ⎪⎝⎭,,BC 的解析式为y mx n=+∴把()()0620C B -,,,代入y mx n =+得602n m n =-⎧⎨=+⎩解得63n m =-⎧⎨=⎩∵过点P 作BC 的平行线交线段AC 于点D ,交y 轴于点E ∴设PE 的解析式为3y x b=+把21262P p p p ⎛⎫+- ⎪⎝⎭,代入3y x b=+得2162p p b =--∴21623y x p p =--+令0x =,2162p p y =--即21062E p p ⎛⎫-- ⎪⎝⎭,当261362y x y x p p =--⎧⎪⎨=+--⎪⎩解得21184x p p+=-则把21184x p p +=-代入21623y x p p =--+得211684y p p =--∴22111168484D p p p p ⎛⎫-+-- ⎪⎝⎭,∵过点P 作PM y ⊥轴,过点D 作DN y ⊥轴,∴EDN EPM∽∴EN DEEM EP=∵:3:5PD DE =∴58EN EM =∶∶∵21062E p p ⎛⎫-- ⎪⎝⎭,,22111168484D p p p p ⎛⎫-+-- ⎪⎝⎭,,21262P p p p ⎛⎫+- ⎪⎝⎭,∴222111336628484EN p p p p p p ⎛⎫=-----=- ⎪⎝⎭,2211626322EM p p p p p⎛⎫=---+-=- ⎪⎝⎭∴23358348p p p --=∶∶解得1103p p ==-,∵点P 在线段AC 下方的抛物线上,∴10p =(舍去)∴3p =-.把3p =-代入21262y p p =+-∴19241592362222y =⨯-⨯-=-=∴点P 的坐标1532⎛⎫- ⎪⎝⎭,25.(1)证明:连接AO ,∵四边形ABOC 为矩形,∴BC OA r ==,∵2CG BG =,∴11223333BG BC r CG BC r ====,;(2)①如图,连接AO ,∵四边形ABOC 为矩形,∴90BOC ACO ACP BAC ∠=∠=∠=∠=︒,BCO BAO ∠=∠,∵CAP BCO ∠=∠,∴CAP BAO ∠=∠,∴CAP CAO BAO CAO ∠+∠=∠+∠,即90PAO BAC ∠=∠=︒,∴90OAN PAN ∠+∠=︒,∵90BOC ACP ∠=∠=︒,CAP BCO ∠=∠,∴P CBO ∠=∠,∵BGO ANP ∠=∠,∴,BGO PNA CGO ANO ∠=∠ ∽,∴2OBGANPS BG S PN ⎛⎫= ⎪⎝⎭ ,,GOB PAN P CBO ∠=∠∠=∠,∵90COG GOB BOC ∠+∠=∠=︒,∴COG OAN ∠=∠,∵AO NO =,∴ONA OAN ∠=∠,∴COG CGO ∠=∠,∴23OC CG r ==,∵90PAO ACO ∠=∠=︒,AOC POA ∠=∠,∴AOC POA ∽,∴AOOCPO AO =,∴2233rr PO r ==,∴32PO r =,∴3122PN PO ON r r r =-=-=,∴22143192OBG ANP r S BG S PN r ⎛⎫ ⎪⎛⎫=== ⎪ ⎪⎝⎭ ⎪⎝⎭;②如图,延长B G '交OB 于点Q ,设OB x =,则2222OC BC OB r x =--∵OB BC '⊥,∴1122BCO S BC OH BO CO =⋅=⋅ ,∴22BO CO x r x OH BC ⋅-=∴2222222x r x x BH BO OH x r r⎛⎫-=--= ⎪⎪⎝⎭,∴213x GH BH BG r r =-=-,由翻折可知,,B CBO '∠=∠,GOB GOB '∠=∠∵OB BC '⊥,∴90B HGB ''∠+∠=︒,∵,BGQ HGB B CBO ''∠=∠∠=∠,∴90CBO BGQ ∠+∠=︒,∴GQ OB ⊥,∴90GQO GHO ∠=∠=︒,在GQO 和GHO △中,GQO GHOGO GO GOB GOB ∠=∠⎧⎪=⎨⎪∠'=∠⎩,∴()ASA GQO GHO ≌,∴213x GQ GH r r ==-,22x r x OQ OH -==∵222BQ GQ BG +=,∴22221133xx r rr r⎛⎫⎛⎫⎛⎫-+-=⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,解得3x=,∴23 OC r ==,∵P CBO∠=∠,90BOC∠=︒,∴23tan tan5rOCP CBOOB=∠==,即P∠.。
专题17:一次函数的实际应用(简答题专项)-2021广东地区中考数学真题与模拟试题精选汇编(解析版)
专题17:一次函数的实际应用(简答题专项)-2021年广东地区中考数学真题与模拟试题精选汇编一、解答题1.(2021·广东深圳市·九年级二模)五一节前,某商店拟用1000元的总价购进A 、B 两种品牌的电风扇进行销售,为更好的销售,每种品牌电风扇都至少购进1台.已知购进3台A 种品牌电风扇所需费用与购进2台B 种品牌电风扇所需费用相同,购进1台A 种品牌电风扇与2台B 种品牌电风扇共需费用400元. (1)求A 、B 两种品牌电风扇每台的进价分别是多少元?(2)销售时,该商店将A 种品牌电风扇定价为180元/台,B 种品牌电风扇定价为250元/台,为能在销售完这两种电风扇后获得最大的利润,该商店应采用哪种进货方案?【答案】(1)A 种品牌电风扇每台进价100元,B 种品牌电风扇每台进价150元;(2)该商店应用采用的进货方案是购进7台A 品牌电风扇,2台B 品牌电风扇【解析】(1)设A 种品牌电风扇每台进价x 元,B 种品牌电风扇每台进价y 元,根据题意即可列出关于x 、y 的二元一次方程组,解出x 、y 即可.(2)设购进A 品牌电风扇a 台,B 品牌电风扇b 台,获得的利润为Q 元,根据题意可列等式1001501000a b +=,由a 和b 都为整数即可求出a 和b 的值的几种可能.又可求出20800Q b =-+,结合一次函数的性质即可得出答案.【解答】解:(1)设A 种品牌电风扇每台进价x 元,B 种品牌电风扇每台进价y 元,据题意得: 322400x y x y =⎧⎨+=⎩, 解得:100150x y =⎧⎨=⎩. 答:A 种品牌电风扇每台进价100元,B 种品牌电风扇每台进价150元.(2)设购进A 品牌电风扇a 台,B 品牌电风扇b 台,获得的利润为Q 元,依题意得:1001501000a b +=,即2032b a -=, ∵a 、b 均为正整数, ∴1a =,6b =;4a =,4b =;7a =,2b =.()()1801002501508010020800Q a b a b b =-+-=+=-+,∵200-<,∴当b 的值增大时,Q 的值减小,∴当2b =时,Q 取得最大值.∴该商店应用采用的进货方案是:购进7台A 品牌电风扇,2台B 品牌电风扇.【点评】本题考查二元一次方程组和一次函数的实际应用.根据题意找出等量关系列出等式是解答本题的关键.2.(2021·广东九年级其他模拟)为做好复工复产,某工厂用A 、B 两种型号机器人搬运原料,已知A 型机器人比B 型机器人每小时多搬运20kg ,且A 型机器人搬运1200kg 所用时间与B 型机器人搬运1000kg 所用时间相等.(1)求这两种机器人每小时分别搬运多少原料?(2)该工厂计划让A 、B 两种型号机器人一共工作20个小时,并且B 型号机器人的工作时间不得低于A 型号机器人,求最多搬运多少千克原料?【答案】(1)A 型为:120千克小时,B 型为:100千克每小时;(2)最多搬运2200千克.【解析】(1)根据“A 型机器人搬运1200kg 所用时间与B 型机器人搬运1000kg 所用时间相等”建立方程即可得解;(2)根据题意设A 工作m (0m ≥)小时,共搬运了y 千克,由已知建立一元一次不等式确定参数范围,再建立关于y 的函数关系式,根据参数的范围,函数的性质确定最大值即可.【解答】解:(1)谁设B 型机器人的搬运速度为x 千克每小时,则A 型为:20x +千克每小时, 由题:1200100020x x=+, 解得:100x =,经检验100x =是方程的根,故A 型为:120千克小时,B 型为:100千克每小时;(2)设A 工作m (0m ≥)小时,共搬运了y 千克,则B 型工作20m -小时,由题20m m -≥,且0m ≥,解得:010m ≤≤,120100(20)=202000y m m m =+-+,当0m =时2000y =,当0m ≠时,根据一次函数的性质,10m =时,y 有最大值,201020002200y =⨯+=,∴最多搬运2200千克.【点评】本题考查了分式方程、一元一次函数、一元一次不等式的实际应用;能找准等量关系建立方程,能结合参数范围确定函数的最大值时解决本题的关键.3.(2021·广东佛山市·九年级一模)某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜,某超市看好甲、乙两种有机蔬菜的市场价值,经调查甲种蔬菜进价每千克m 元,售价每千克16元;乙种蔬菜进价每千克n 元,售价每千克18元.(1)该超市购进甲种蔬菜10千克和乙种蔬菜5千克需要170元;购进甲种蔬菜6千克和乙种蔬菜10千克需要200元.求m ,n 的值.(2)该超市决定每天购进甲、乙两种蔬菜共100千克,且投入资金不少于1160元又不多于1168元,设购买甲种蔬菜x 千克,求有哪几种购买方案.(3)在(2)的条件下,超市在获得的利润取得最大值时,决定售出的甲种蔬菜每千克捐出2a 元,乙种蔬菜每千克捐出a 元给当地福利院,若要保证捐款后的利润率不低于20%,求a 的最大值.【答案】(1)m 的值为10,n 的值为14;(2)有3种购买方案,方案1:购买甲种蔬菜58千克,乙种蔬菜42千克;方案2:购买甲种蔬菜59千克,乙种蔬菜41千克;方案3:购买甲种蔬菜60千克,乙种蔬菜40千克;(3)a 的最大值为1.8.【解析】(1)根据“购进甲种蔬菜15千克和乙种蔬菜20千克需要430元;购进甲种蔬菜10千克和乙种蔬菜8千克需要212元”,即可得出关于m ,n 的二元一次方程组,解之即可得出结论;(2)根据总价=单价×数量结合投入资金不少于1160元又不多于1168元,即可得出关于x 的一元一次不等式组,解之即可得出x 的取值范围,再结合x 为正整数即可得出各购买方案;(3)求出(2)中各购买方案的总利润,比较后可得出获得最大利润时售出甲、乙两种蔬菜的重量,再根据总利润=每千克利润×销售数量结合捐款后的利润率不低于20%,即可得出关于a 的一元一次不等式,解之取其中的最大值即可得出结论.【解答】(1)依题意,得:105170610200m n m n +=⎧⎨+=⎩, 解得:1014m n =⎧⎨=⎩. 答:m 的值为10,n 的值为14.(2)设购买甲种蔬菜x 千克,则购买乙种蔬菜(100)x -千克,依题意,得:1014(100)11601014(100)1168x x x x +-≥⎧⎨+-≤⎩, 解得:5860x ≤≤.∵x 为正整数,∴58,59,60x =,∴有3种购买方案,方案1:购买甲种蔬菜58千克,乙种蔬菜42千克;方案2:购买甲种蔬菜59千克,乙种蔬菜41千克;方案3:购买甲种蔬菜60千克,乙种蔬菜40千克.(3)设超市获得的利润为y 元,则(1610)(1814)(100)2400y x x x =-+--=+.∵20k =>,∴y 随x 的增大而增大,∴当60x =时,y 取得最大值,最大值为260400520⨯+=.依题意,得:(16102)60(1814)40(10601440)20%a a --⨯+--⨯≥⨯+⨯⨯,解得: 1.8a ≤.答:a 的最大值为1.8.【点评】本题考查了二元一次方程组的应用、一元一次不等式组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)根据各数量之间的关系,正确列出一元一次不等式.4.(2021·深圳市高级中学九年级二模)某社区拟建A ,B 两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B 类摊位的占地面积多2平方米,建A 类摊位每平方米的费用为40元,建B 类摊位每平方米的费用为30元,用60平方米建A 类摊位的个数恰好是用同样面积建B 类摊位个数的35. (1)求每个A ,B 类摊位占地面积各为多少平方米?(2)该社拟建A ,B 两类摊位共90个,且B 类摊位的数量不少于A 类摊位数量的3倍.求建造这90个摊位的最大费用.【答案】(1)5平方米;3平方米 (2)10520元【解析】(1)设A 类摊位占地面积x 平方米,则B 类占地面积()2x -平方米,根据同等面积建立A 类和B 类的倍数关系列式即可;(2)设建A 类摊位a 个,则B 类(90)a -个,设费用为z ,由(1)得A 类和B 类摊位的建设费用,列出总费用的表达式,根据一次函数的性质进行讨论即可.【解答】解:(1)设每个A 类摊位占地面积x 平方米,则B 类占地面积()2x -平方米 由题意得6060325x x =⨯- 解得5x =,∴23x -=,经检验5x =为分式方程的解∴每个A 类摊位占地面积5平方米,B 类占地面积3平方米(2)设建A 类摊位a 个,则B 类(90)a -个,费用为z∵3(90)a a ≤-∴022.5a <≤405303(90)z a a =⨯+⨯-1108100a =+,∵110>0,∴z 随着a 的增大而增大,又∵a 为整数,∴当22a =时z 有最大值,此时10520z =∴建造90个摊位的最大费用为10520元【点评】本题考查了一次函数的实际应用问题,熟练的掌握各个量之间的关系进行列式计算,是解题的关键.5.(2021·广东深圳市·九年级一模)某公司销售一种商品,成本为每件20元,经过市场调查发现,该商品的日销售量y (件)与销售单价x (元)是一次函数关系,其销售单价、日销售量的三组对应数值如下表:(2)若物价部门规定每件商品的利润率不得超过100%,设日利润为w 元,求公司销售该商品获得的最大日利润;(3)若物价部门规定该商品销售单价不能超过a 元,并且由于某种原因,该商品每件成本变成了之前的2倍,在日销售量y (件)与销售单价x (元)保持(1)中函数关系不变的情况下,该商品的日销售最大利润是1500元,求a 的值.【答案】(1)y =-x +120;(2)1600元;(3)a =70.【解析】(1)设函数的表达式为y =kx +b ,利用待定系数法解题;(2)设公司销售该商品获得的最大日利润为w 元,利用总利润=单利⨯销售量列函数关系式,化为顶点解析式,根据二次函数的增减性解题即可;(3)当w 最大=1500时,解得x 的值,再由x 的取值范围分两种情况讨论①a <80或②a ≥80时,根据二次函数的增减性解题即可.【解答】(1)设函数的表达式为y =kx +b ,将(40,80)、(60,60)代入上式得:40806060k b k b +=⎧⎨+=⎩,解得 1120k b =-⎧∴⎨=⎩, 故y 与x 的关系式为y =-x +120;(2)公司销售该商品获得的最大日利润为w 元,则w =(x -20)y =(x -20)(-x +120)21402400x x =-+-=-(x -70)2+2500,∵x -20≥0,-x +120≥0,x -20≤20×100%,∴20≤x ≤40,∵-1<0,故抛物线开口向下,故当x <70时,w 随x 的增大而增大,∴当x =40(元)时,w 的最大值为1600(元),故公司销售该商品获得的最大日利润为1600元;(3)(202)(120)w x x =-⨯-+21604800x x =-+-2(80)1600x =--+当w 最大=1500时,2(80)1600x --+==1500,解得x 1=70,x 2=90,∵x -2×20≥0,∴x ≥40,又∵x ≤a ,∴40≤x ≤a .∴有两种情况,①a <80时,即40≤x ≤a ,在对称轴左侧,w 随x 的增大而增大,∴当x =a =70时,w 最大=1500,②a ≥80时,即40≤x ≤a ,在40≤x ≤a 范围内w 最大=1600≠1500,∴这种情况不成立,综上所述,a =70.【点评】本题考查二次函数的实际应用,涉及一次函数的应用、待定系数法解一次函数的解析式等知识,是重要考点,难度较易,掌握相关知识是解题关键.6.(2021·广东深圳市·九年级一模)在2020年新冠肺炎抗疫期间,小明决定在淘宝上销售一批口罩.经市场调研:某类型口罩进价每袋为20元,当售价为每袋25元时,销售量为250袋,若销售单价每提高1元,销售量就会减少10袋.(1)直接写出小明销售该类型口罩销售量y (袋)与销售单价x (元)之间的函数关系式 ;每天所得销售利润w (元)与销售单价x (元)之间的函数关系式 .(2)若小明想每天获得该类型口罩的销售利润2000元时,则销售单价应定为多少元?(3)若每天销售量不少于100袋,且每袋口罩的销售利润至少为17元,则销售单价定位多少元时,此时利润最大,最大利润是多少?【答案】(1)210500,1070010000y x w x x =-+=-+-; (2)30元或40元; (3)销售单价定位37元时,此时利润最大,最大利润是2210元.【解析】(1)根据“若销售单价每提高1元,销售量就会减少10袋,当销售单价为x 元时,销售量为()2501025x --⎡⎤⎣⎦袋”,即可得出y 关于x 的函数关系式,然后再根据销售利润w (元)等于销售数量乘以每袋利润可得销售利润w (元)与销售单价x (元)之间的函数关系式;(2)代入w=2000,建立一元二次方程,解方程求出x 的值,由此即可得出结论;(3)根据题意先求解销售单价x 的范围,利用配方法将w 关于x 的函数关系式变形为:()210352250w x =--+,根据二次函数的性质即可解决最值问题.【解答】解:(1)根据题意得,()250102510500y x x =--=-+;则()()220105001070010000w x x x x =--+=-+-,故答案为:210500,1070010000.y x w x x =-+=-+-(2)∵w=2000,∴210700100002000x x -+-=,27012000,x x ∴-+=()()30400,x x ∴--=解得:1230,40,x x ==答:销售单价应定为30元或40元,小明每天获得该类型口罩的销售利润2000元;(3)根据题意得,105001002017x x -+≥⎧⎨-≥⎩ , ∴x 的取值范围为:3740x ≤≤, ∵函数()22107001000010352250x x x w -+-=--+=,∴ 对称轴为x=35,10a =-<0,∴ 当3740x ≤≤,y 随x 的增大而减小,∴当x=37时,w 最大值=2210.答:销售单价定位每袋37元时,此时利润最大,最大利润是2210元.【点评】本题考查了一次函数的应用,二次函数的应用,一元一次不等式组的应用,一元二次方程的解法,关键是正确理解题意,找出题目中的等量关系,掌握利用二次函数的性质求最值是解题的关键. 7.(2021·广东深圳实验学校九年级其他模拟)5月18日,我市九年级学生安全有序开学复课.为切实做好疫情防控工作,开学前夕,我市某校准备在民联药店购买口罩和水银体温计发放给每个学生.已知每盒口罩有100只,每盒水银体温计有10支,每盒口罩价格比每盒水银体温计价格多150元.用1200元购买口罩盒数与用300元购买水银体温计所得盒数相同.(1)求每盒口罩和每盒水银体温计的价格各是多少元?(2)如果给每位学生发放2只口罩和1支水银体温计,且口罩和水银体温计均整盒购买.设购买口罩m 盒(m 为正整数),则购买水银体温计多少盒能和口罩刚好配套?请用含m 的代数式表示.(3)在民联药店累计购医用品超过1800元后,超出1800元的部分可享受8折优惠.该校按(2)中的配套方案购买,共支付w 元,求w 关于m 的函数关系式.若该校九年级有900名学生,需要购买口罩和水银体温计各多少盒?所需总费用为多少元?【答案】(1)每盒口罩和每盒水银体温计的价格各是200元,50元;(2)5m;(3)()()45043603604w m mw m m⎧=≤⎪⎨=+>⎪⎩,需要购买口罩18盒,水银体温计90盒,所需总费用为6840元.【解析】(1)设每盒水银体温计的价格是x元,根据用1200元购买口罩盒数与用300元购买水银体温计的盒数相同列出方程,求解即可;(2)先用m表示出需要水银体温计的支数,再表示出水银体温计的盒数;(3)分当m≤4时,当m>4时,分别得出关系式,再合并,根据若该校九年级有900名学生求出口罩的盒数m,从而得到体温计的盒数以及总费用.【解答】解:(1)设每盒水银体温计的价格是x元,则每盒口罩的价格是x+150元,根据题意可得:1200300150x x=+,解得:x=50,经检验:x=50是原方程的解,50+150=200元,∴每盒口罩和每盒水银体温计的价格各是200元,50元;(2)∵购买口罩m盒,∴共有口罩100m个,∵给每位学生发放2只口罩和1支水银体温计,∴需要发放1002m支水银体温计,∴需要购买1001052mm÷=盒水银体温计;(3)由题意可得:令200m+5m×50=1800,解得:m=4,若未超过1800元,即当m≤4时,则w=200m+5m×50=450m,若超过1800元,即当m>4时,w=(200m+5m×50-1800)×0.8+1800=360m+360,∴w关于m的函数关系式为()()45043603604w m mw m m⎧=≤⎪⎨=+>⎪⎩,若该校九年级有900名学生,即1002m=900,解得:m=18,则360360w m =+=6840,答:需要购买口罩18盒,水银体温计90盒,所需总费用为6840元.【点评】本题考查了分式方程的实际应用,一次函数的实际应用,解题的关键是理解题意,弄清口罩盒数与体温计盒数的配套关系.8.(2021·广东九年级专题练习)由于新能源汽车越来越受到消费者的青睐,某经销商决定分两次购进甲、乙两种型号的新能源汽车(两次购进同一种型号汽车每辆的进价相同).第一次用275万元购进甲型号汽车30辆和乙型号汽车20辆;第二次用191万元购进甲型号汽车14辆和乙型号汽车25辆.(1)求甲、乙两种型号汽车每辆的进价;(2)经销商分别以每辆甲型号汽车8.8万元,每辆乙型号汽车5.8万元的价格销售后,根据销售情况,决定再次购进甲、乙两种型号的汽车共100辆,且乙型号汽车的辆数不少于甲型号汽车辆数的2倍,若两种型号汽车每辆的进价与售价均不变,请你求出获利最大的购买方案,并求出最大利润.【答案】(1)甲型号汽车每辆6.5万元,乙型号汽车每辆4万元;(2)再次购进甲型号汽车33辆,购进乙型号汽车67辆,且最大利润为196.5万元.【解析】(1)设甲型号汽车每辆x 万元,乙型号汽车每辆y 万元,根据题意可列出关于x 、y 的二元一次方程组,求出x 、y 即可.(2)设再次购进甲型号汽车a 辆,则购进乙型号汽车(100-a )辆,利润为w 万元.根据题意可列出w 与a 的关系式,且可求出a 的取值范围,再根据一次函数的增减性,即可求出答案.【解答】(1)设甲型号汽车每辆x 万元,乙型号汽车每辆y 万元,根据题意可列方程组30202751425191x y x y +=⎧⎨+=⎩, 解得: 6.54x y =⎧⎨=⎩,故甲型号汽车每辆6.5万元,乙型号汽车每辆4万元.(2)设再次购进甲型号汽车a 辆,则购进乙型号汽车(100-a )辆,利润为w 万元.根据题意可知(8.8 6.5)(5.84)(100)1002w a a a a =-+--⎧⎨-≥⎩, 整理得: 0.51801003w a a =+⎧⎪⎨≤⎪⎩. ∵对于0.5180w a =+,w 的值随a 的增大而增大,且a 为整数.∴当a =33时,w 最大,最大值为0.533180196.5w =⨯+=万元.故再次购进甲型号汽车33辆,则购进乙型号汽车100-33=67辆,且最大利润为196.5万元.【点评】本题考查一次函数、二元一次方程组、一元一次不等式的实际应用.根据题意找出数量关系是解答本题的关键.9.(2021·广东九年级其他模拟)为了让农民文化生活更加丰富多彩,某村决定修建文化广场,计划在一部分广场地面铺设相同大小规格的红色和白色地砖.经过市场调查,获取地砖市场相关信息如下:50块,白色地砖35块,共需付款750元求红色地砖与白色地砖的原价各多少元?(2)经过测算,修建这个文化广场需要购买两种地砖共计12000块,其中白色地砖的数量不少于红色地砖的数量的一半,且白色地砖的数量不多于7000块,求购买红色地砖与白色地砖各多少块时,付款最少.【答案】(1)红色地砖每块8元,白色地砖每块10元;(2)购买红色地砖7000块,白色地砖5000块,费用最少,最少费用为89800元.【解析】(1)设红色地砖的原价是每块x元,白色地砖的原价是每块y元,根据题意列出二元一次方程组,求解即可;(2)设购买白色地砖m块,则购买红色地砖(12000﹣m)块,利用已知得出m的取值范围,再利用一次函数增减性得出答案.【解答】解:(1)设红色地砖的原价是每块x元,白色地砖的原价是每块y元,根据题意,得4060920, 5035750.x yx y+=⎧⎨+=⎩解得8,10. xy=⎧⎨=⎩答:红色地砖每块8元,白色地砖每块10元;(2)设购买白色地砖m块,则购买红色地砖(12000﹣m)块,所需付款的总费用为w元,由题意可得:m≥12(12000﹣m),解得:m≥4000,又m≤7000,所以白砖块数m的取值范围:4000≤m≤7000,当4000≤m<5000时,w=0.8×8(12000﹣m)+10m=3.6m+76800,所以m=4000时,w有最小值91200元,当5000≤m≤7000时,w=8×0.8(12000﹣m)+0.9×10m=2.6m+76800,所以m=5000时,w有最小值89800元,∵89800<91200,∴购买红色地砖7000块,白色地砖5000块,费用最少,最少费用为89800元.【点评】本题主要考查了一次函数的应用以及二元一次方程组的应用,正确得出函数关系式是解题关键. 10.(2021·广东阳江市·九年级一模)如图,在平面直角坐标系中,C ,D 是反比例函数k y x=的图象上的两点,以CD 为边作正方形ABCD ,点A ,B 分别在x 轴、y 轴的正半轴上,点B 的坐标为(0,1),且45ABO ∠=︒.(1)求k 的值;(2)求CD 所在直线的解析式.【答案】(1)2;(2)3y x =-+【解析】(1)过点D 作DH OA ⊥,垂足为点H .由题意可得1OA OB ==,且点A 的坐标为(1,0).由此易证(AAS)HAD OAB △≌△,即1AH DH ==,即得出D 点坐标,从而求出k 的值.(2)连接AC ,由正方形性质可知,90CAO ∠=︒,2222CA BO ===,即得出C 点坐标.再利用待定系数法即可求出直线CD 的解析式.【解答】(1)如图,过点D 作DH OA ⊥,垂足为点H .∵点B 的坐标为(0,1),且45ABO ∠=︒,∴1OA OB ==,点A 的坐标为(1,0).∵AD AB =,45DAH OAB ∠=∠=︒,90DHA BOA ∠=∠=︒,∴(AAS)HAD OAB △≌△.∴1AH DH ==.∴点D 的坐标为(2,1).把点D (2,1)代入k y x=,即12k =, 解得2k =.(2)如(1)图,连接AC .由正方形ABCD 可知,90CAO ∠=︒,2222CA BO ===. ∴点C 的坐标为(1,2).设直线CD 的解析式为y ax b =+,把点C ,D 的坐标代入y ax b =+,得221a b a b +=⎧⎨+=⎩解得:13a b =-⎧⎨=⎩. ∴直线CD 的解析式为3y x =-+.【点评】本题为反比例函数与几何综合,考查全等三角形的判定和性质,等腰直角三角形的性质,勾股定理,一次函数的几何应用以及利用待定系数法求解析式.作出辅助线是解答本题的关键.11.(2021·广东佛山市·九年级一模)某学校为了改善办学条件,计划购置一批电子白板和台式电脑.经招投标,购买一台电子白板比购买2台台式电脑多3000元,购买2台电子白板和3台台式电脑共需2.7万元.(1)求购买一台电子白板和一台台式电脑各需多少元?(2)根据该校实际情况,购买电子白板和台式电脑的总台数为24,并且台式电脑的台数不超过电子白板台数的3倍.问怎样购买最省钱?【答案】(1)购买一台电子白板需9000元,一台台式电脑需3000元;(2)购买电子白板6台,台式电脑18台最省钱.【解析】(1)先设购买一台电子白板需x 元,一台台式电脑需y 元,根据购买一台电子白板比购买2台台式电脑多3000元,购买2台电子白板和3台台式电脑共需2.7万元列出方程组,求出x ,y 的值即可; (2)先设需购买电子白板a 台,则购买台式电脑(24﹣a )台,根据台式电脑的台数不超过电子白板台数的3倍列出不等式,求出a 的取值范围,再设总费用为w 元,根据一台电子白板和一台台式电脑的价格列出w 与a 的函数解析式,根据一次函数的性质,即可得出最省钱的方案.【解答】(1)设购买一台电子白板需x 元,一台台式电脑需y 元,根据题意得:230002327000x y x y -=⎧⎨+=⎩,解得:90003000x y =⎧⎨=⎩. 答:购买一台电子白板需9000元,一台台式电脑需3000元;(2)设需购买电子白板a 台,则购买台式电脑(24﹣a )台,根据题意得:24﹣a≤3a ,解得:a≥6,设总费用为w 元,则w =9000a+3000(24﹣a )=6000a+72000,∵6000>0,∴w 随x 的增大而增大,∴a =6时,w 有最小值.答:购买电子白板6台,台式电脑18台最省钱.【点评】本题考查了二元一次方程组、一元一次不等式以及一次函数的应用,解题的关键是读懂题意,找出题目中的等量关系与不等关系,列出关系式.12.(2021·广东九年级其他模拟)某物流公 司承接A 、B 两种货物运输业务,已知5月份A 货物运费单价为50元/吨,B 货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A 货物70元/吨,B 货物40元/吨;该物流公司6月承接的A 种货物和B 种数量与5月份相同,6月份共收取运费13000元.(1)该物流公司月运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物330吨,且A 货物的数量不大于B 货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?【答案】(1)A 为100吨,B 为150吨(2)19800元【解析】(1)根据题意设未知数,然后根据所需要的运费和的等量关系列方程组,解二元一次方程组可得解;(2)设A 种货物为a 吨,则B 种货物为(330-a )吨,根据6月的运费单价可列式求出运费的式子(是一个一次函数),然后根据A 货物的数量不大于B 货物的2倍,可列不等式求出a 的范围,最后根据一次函数的增减性判断求出结果.【解答】(1)解:设A 种货物运输了x 吨,,B 种货物运输了y 吨,依题意得:50309500{704013000x y x y +=+= 解之得:100150x y =⎧⎨=⎩(2)设A 种货物为a 吨,则B 种货物为330a -()吨,设获得的利润为W 元 依题意得:(330)2a a ≤-⨯①7040(330=)3013200W a a a =+-+②由①得220a ≤由②可知W 随着a 的增大而增大故W 取最大值时a =220,即W=19800元13.(2021·广东九年级其他模拟)某车行去年A 型车的销售总额为6万元,今年每辆车的售价比去年减少400元.若卖出的数量相同,销售总额将比去年减少20%.(1)求今年A 型车每辆车的售价.(2)该车行计划新进一批A 型车和B 型车共45辆,已知A 、B 型车的进货价格分别是1100元,1400元,今年B 型车的销售价格是2000元,要求B 型车的进货数量不超过A 型车数量的两倍,应如何进货才能使这批车获得最大利润,最大利润是多少?【答案】(1)今年A 型车每辆车售价为1600元;(2)购进15辆A 型车、30辆B 型车时销售利润最大,最大利润是25500元.【解答】分析:(1)设今年A 型车每辆售价为x 元,则去年每辆售价为(x+400)元,根据数量=总价÷单价,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设今年新进A 型车a 辆,销售利润为y 元,则新进B 型车(45﹣a )辆,根据销售利润=单辆利润×销售数量,即可得出y 关于a 的函数关系式,由B 型车的进货数量不超过A 型车数量的两倍,即可得出关于a 的一元一次不等式,解之即可得出a 的取值范围,再利用一次函数的性质即可解决最值问题. 详解:(1)设今年A 型车每辆售价为x 元,则去年每辆售价为(x+400)元,根据题意得:6000060000(120%)400x x⨯-=+, 解得:x=1600,经检验,x=1600是原分式方程的解,∴今年A 型车每辆车售价为1600元.(2)设今年新进A 型车a 辆,销售利润为y 元,则新进B 型车(45﹣a )辆,根据题意得:y=(1600﹣1100)a+(2000﹣1400)(45﹣a )=﹣100a+27000.∵B 型车的进货数量不超过A 型车数量的两倍,∴45﹣a≤2a ,解得:a≥15.∵﹣100<0,∴y 随a 的增大而减小,∴当a=15时,y 取最大值,最大值=﹣100×15+27000=25500,此时45﹣a=30.答:购进15辆A 型车、30辆B 型车时销售利润最大,最大利润是25500元.点睛:本题考查了分式方程的应用、一元一次不等式的应用以及一次函数的性质,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)利用一次函数的性质求出最大利润.14.(2021·广东九年级二模)已知某酒店的三人间和双人间客房标价为:三人间为每人每天200元,双人间为每人每天300元,为吸引客源,促进旅游,在“十·一”黄金周期间酒店进行优惠大酬宾,凡团体入住一律五折优惠.一个50人的旅游团在十月二号到该酒店住宿,租住了一些三人间、双人间客房.(1)如果租住的每个客房正好住满,并且一天一共花去住宿费6300元.求租住了三人间、双人间客房各多少间?(2)设三人间共住了x 人,这个团一天一共花去住宿费y 元,请写出y 与x 的函数关系式,并写出自变量的取值范围.(3)一天6300元的住宿费是否为最低?如果不是,请设计一种方案:要求租住的房间正好被住满的,并使住宿费用最低,请写出设计方案,并求出最低的费用.【答案】(1)租住了三人间8间,双人间13间;(2)()507500050y x x =-+≤≤;(3)一天6300元的住宿费不是最低;若48人入住三人间,则费用最低,为5100元.所以住宿费用最低的设计方案为:48人住3人间,2人住2人间【解析】(1)设三人间有a 间,双人间有b 间.注意凡团体入住一律五折优惠,根据①客房人数50=;②住宿费6300列方程组求解;(2)根据题意,三人间住了x 人,则双人间住了()50x -人.住宿费100=⨯三人间的人数150+⨯双人间的人数;(3)根据x 的取值范围及实际情况,运用函数的增减性质解答.【解答】解:(1)设三人间有a 间,双人间有b 间,根据题意得:1003150263003250a b a b ⨯+⨯=⎧⎨+=⎩, 解得:813a b =⎧⎨=⎩, 答:租住了三人间8间,双人间13间;(2)根据题意得:()()10015050507500050y x x x x =+-=-+≤≤,(3)因为500-<,所以y 随x 的增大而减小,故当x 满足3x 、502x -为整数,且3x 最大时, 即48x =时,住宿费用最低,此时5048750051006300y =-⨯+=<,答:一天6300元的住宿费不是最低;若48人入住三人间,则费用最低,为5100元.所以住宿费用最低的设计方案为:48人住3人间,2人住2人间.【点评】本题考查二元一次方程组的应用、一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和方程的思想解答.。
宁夏2024年中考数学试卷
宁夏2024年中考数学试卷一、选择题(本题共8小题,每小题3分,共24分.在每小题给出的四个选项中只有一个是符合题目要求的)1.下列各数中,无理数是()A.-1B.C.D.2.下列运算正确的是()A.B.C.D.3.小明与小亮要到科技馆参观.小明家、小亮家和科技馆的方位如图所示,则科技馆位于小亮家的()A.南偏东方向B.北偏西方向C.南偏东方向D.北偏西方向4.某班24名学生参加一分钟跳绳测试,成绩(单位:次)如下表:成绩171及以下172173174175及以上人数38652则本次测试成绩的中位数和众数分别是()A.172和172B.172和173C.173和172D.173和1735.用5个大小相同的小正方体搭一个几何体,其主视图、左视图如图2,现将其中4个小正方体按图1方式摆放,则最后一个小正方体应放在()A.①号位置B.②号位置C.③号位置D.④号位置6.已知,则的取值范围在数轴上表示正确的是()A.B.C.D.7.数学活动课上,甲、乙两位同学制作长方体盒子.已知甲做6个盒子比乙做4个盒子少用10分钟,甲每小时做盒子的数量是乙每小时做盒子的数量的2倍.设乙每小时做个盒子,根据题意可列方程()A.B.C.D.8.如图,在Rt中,,点在直线上,点B,C在直线上,,动点从点出发沿直线以的速度向右运动,设运动时间为.下列结论:①当时,四边形ABCP的周长是10cm;②当t=4s时,点到直线的距离等于5cm;③在点运动过程中,的面积随着的增大而增大;④若点D,E分别是线段PB,PC的中点,在点运动过程中,线段DE的长度不变.其中正确的是()A.①④B.②③C.①③D.②④二、填空题(本题共8小题,每小题3分,共24分)9.地球上水(包括大气水、地表水和地下水)的总体积约为14.2亿km3.请将数据1420000000用科学记数法表示为.10.为考察一种枸杞幼苗的成活率,在同一条件下进行移植试验,结果如下表所示:移植总4015030050070010001500数成活数351342714516318991350成活的频率0.8750.8930.9030.9020.9010.8990.900估计这种幼苗移植成活的概率是(结果精确到0.1).11.某水库警戒水位为29.8米,取警戒水位作为0点.如果水库水位为31.4米记作+1.6米,那么水库水位为28米记作米.12.若二次函数的图象与轴有交点,则的取值范围是.13.如图,在正五边形ABCDE的内部,以CD边为边作正方形CDFH,连接BH,则°.14.在平面直角坐标系中,一条直线与两坐标轴围成的三角形是等腰三角形,则该直线的解析式可能为(写出一个即可).15.观察下列等式:第1个:第2个:第3个:第4个:……按照以上规律,第个等式为.16.如图1是三星堆遗址出土的陶盉(hè),图2是其示意图.已知管状短流,四边形BCDE是器身,.器身底部CD距地面的高度为21.5cm,则该陶盉管状短流口距地面的高度约为cm(结果精确到0.1cm).(参考数据:)三、解答题(本题共10小题,其中17~22题每小题6分,23、24题每小题8分,25、26题每小题10分,共72分)17.解不等式组18.先化简,再求值:,其中.19.如图,在中,点是边BC的中点,以AB为直径的经过点,点是边AC上一点(不与点A,C重合).请仅用无刻度直尺按要求作图,保留作图痕迹,不写作法.⑴过点A作一条直线,将分成面积相等的两部分;⑵在边AB上找一点,使得.20.中国传统手工艺享誉海内外,扎染和刺绣体现了中国人民的智慧和创造力.某店销售扎染和刺绣两种工艺品,已知扎染175元/件,刺绣325元/件.(1)某天这两种工艺品的销售额为1175元,求这两种工艺品各销售多少件?(2)中国的天问一号探测器、奋斗者号潜水器等科学技术世界领先,国人自豪感满满,相关纪念品深受青睐.该店设立了一个如图所示可自由转动的转盘(转盘被分为5个大小相同的扇形).凡顾客在本店购买一件工艺品,就获得一次转动转盘的机会,当转盘停止时,顾客即可免费获得指针指向区域的纪念品一个(指针指向两个扇形的交线时,视为指向右边的扇形).一顾客在该店购买了一件工艺品,求该顾客获得纪念品的概率是多少?21.如图,在中,点M,N在AD边上,,连接CM并延长交BA的延长线于点,连接BN并延长交CD的延长线于点F.求证:.小丽的思考过程如下:参考小丽的思考过程,完成推理.22.尊老敬老是中华民族的传统美德,爱老是全社会的共同责任.为了解某地区老年人的生活状况,随机抽取部分65岁及以上的老年人进行了一次问卷调查.调查问卷以下问题均为单选题,请根据实际情况选择(例:岁表示大于等于65岁同时小于70岁).1.您的年龄范围()A.岁B.岁C.岁D.80岁及以上2.您的养老需求()A.医疗服务B.社交娱乐C.健身活动D.餐饮服务 E.其他3.您的健康状况()A.良好B.一般C.较差将调查结果绘制成如下统计图表.请阅读相关信息,解答下列问题:健康状况统计表岁岁岁80岁及以上良好65%58%50%40%一般25%30%35%40%较差10%12%15%20%(1)参与本次调查的老年人共有人,有“医疗服务”需求的老年人有人;(2)已知该地区65岁及以上的老年人人口总数约为6万人,估计该地区健康状况较差的老年人人口数;(3)根据以上信息,针对该地区老年人的生活状况,你能提出哪些合理化的建议?(写出一条即可) 23.在同一平面直角坐标系中,函数的图象可以由函数的图象平移得到.依此想法,数学小组对反比例函数图象的平移进行探究.【动手操作】列表:…-5-4-3-2-112345……-1-221……-5-4-3-20123……-1-2-4421…(1)描点连线:在已画出函数的图象的坐标系中画出函数的图象.(2)【探究发现】①将反比例函数的图象向平移个单位长度得到函数的图象.②上述探究方法运用的数学思想是 A.整体思想B.类比思想C.分类讨论思想(3)【应用延伸】①将反比例函数的图象先,再得到函数的图象.②函数图象的对称中心的坐标为.24.如图,是的外接圆,AB为直径,点是的内心,连接AD并延长交于点,过点作的切线交AB的延长线于点.(1)求证:;(2)连接CE,若的半径为,求阴影部分的面积(结果用含的式子表示). 25.综合与实践如图1,在中,BD是的平分线,BD的延长线交外角的平分线于点.(1)【发现结论】结论1:;结论2:当图1中时,如图2所示,延长BC交AE于点,过点作AF的垂线交BF于点,交AC的延长线于点.则AE与EG的数量关系是.(2)【应用结论】求证:;(3)在图2中连接FH,AG,延长AG交FH于点,补全图形,求证:. 26.抛物线与轴交于两点,与轴交于点,点是第四象限内抛物线上的一点.(1)求抛物线的解析式;(2)如图1,过作轴于点,交直线BC于点.设点的横坐标为,当时,求的值;(3)如图2点,连接CF并延长交直线PD于点,点是轴上方抛物线上的一点,在(2)的条件下,轴上是否存在一点,使得以F,M,N,H为顶点的四边形是平行四边形.若存在,直接写出点的坐标;若不存在,请说明理由.答案解析部分1.【答案】D2.【答案】B3.【答案】A4.【答案】C5.【答案】B6.【答案】A7.【答案】C8.【答案】A9.【答案】1.42×10910.【答案】0.911.【答案】-1.812.【答案】13.【答案】8114.【答案】(要求即可)15.【答案】16.【答案】34.117.【答案】解:解不等式①得,.解不等式②得,所以不等式组的解集为.18.【答案】解:原式当时,原式19.【答案】解:⑴过A,D两点画直线AD.则直线AD为所求作直线.⑵连接BP交AD点E,连接CE并延长,交AB于点P'.则点P'为所求作点.20.【答案】(1)解:设销售扎染x件,刺绣y件.根据题意得,所以,因为x,y均为非负整数.所以,当时,(舍去);当时,(舍去);当时,;当时,(舍去).答:该店销售扎染3件.刺绣2件.(2)解:转动一次转盘所有等可能结果共5种,指针指向有纪念品的扇形(记为事件A)的结果有3种.所以,答:该顾客获得纪念品的概率是21.【答案】证明:四边形ABCD是平行四边形同理可得,又即又22.【答案】(1)1200;660(2)解:根据题意得,答:估计该地区健康状况较差的老年人有7650人.(3)解:根据养老需求统计图可知,医疗服务需求占比大,因此建议提高本地区老年人的医疗服务质量(只要建议合理即可).23.【答案】(1)如图所示:(2)左;1;B(3)右平移2个单位长度;向下平移1个单位长度;(2,-1)24.【答案】(1)证明:连接OE,交BC于点G∵OA=OE∴∠OAE=∠OEA又∵D为△ABC的内心∴∠OAE=∠CAE∴∠OEA=∠CAE∴OE//AC又∵AB为☉O的直径∴∠ACB=90°∴∠BGO=90°又∵EF为☉O的切线且OE为☉O的半径∴∠FEO=90°∴∠BGO=∠FEO∴BC//EF.(2)解:连接BE,.25.【答案】(1);相等(2)证明:在中,在中,在和中(3)证明:补全图形如图所示.证明:在Rt中,又又26.【答案】(1)解:(1)把点代入得,即抛物线的解析式为.(2)解:把代入得,解得,.点的坐标为.当时,点的坐标为.根据题意得,点D的坐标为.把代入得点的坐标为.设直线BC的解析式为,把代入得,解得直线BC的解析式为:.当时,点的坐标为.又轴轴又解得,(舍去).(3)存在.点的坐标为或或或.提示:设直线CF的解析式为,把代入得,解得的解析式为:.当时,点的坐标为.又点是轴上方抛物线上的一点当时,解得,.点的坐标为或.当点的坐标为时,点的坐标为或.当点的坐标为时,点的坐标为或.综上所述,点的坐标为或或或.。
2022-2023学年北京区域联考中考数学专项提升仿真模拟测试题(二模三模)含解析
2022-2023学年北京区域联考中考数学专项提升仿真模拟测试题(二模)一.选一选(共10小题,满分30分,每小题3分)1. 元月份某,北京市的气温为﹣6℃,长泰县的气温为15℃,那么这长泰县的气温比北京市的气温高( )A. 15℃B. 20℃C. 21℃D. 21℃2. 据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5300万美元,“5300万”用科学记数法可表示为( )A. 5.3×103B. 5.3×104C. 5.3×107D. 5.3×1083. 下列电脑桌面快捷方式的图片中,是轴对称图形的是( )A. B. C. D.4. 在社会中,四名同学分别就同一种商品的价格变化情况,给了如下四幅图,为了更直观、清楚地体现该商品的价格增长势头,你认为比较理想的是( )A. B. C. D.5. 若a、b 是一元二次方程x2+3x -6=0 的两个没有相等的根,则a2﹣3b 的值是()A. -3B. 3C. ﹣15D. 156. 已知函数y=(k﹣2)x+k没有第三象限,则k的取值范围是( )A. k≠2B. k>2C. 0<k<2D. 0≤k<27. 已知⊙O的半径为10,P为⊙O内一点,且OP=6,则过P点,且长度为整数的弦有()A. 5条B. 6条C. 8条D. 10条8. 下列运算正确的是( )A. (x 3)2=x 5B. (﹣2x )2÷x =4xC. (x +y )2=x 2+y 2D. =1y x x y y x +--9. 如图,已知正方形ABCD 的边长为4,点E 、F 分别在边AB 、BC 上,且AE=BF=1,CE 、DF 交于点O.下列结论:①∠DOC=90°, ②OC=OE , ③tan ∠OCD = ,④ 中,正43ODC BEOF SS ∆=四边形确的有【 】A. 1个B. 2个C. 3个D. 4个10. 如图所示,向一个半径为、容积为的球形容器内注水,则能够反映容器内水的体积R V与容器内水深间的函数关系的图象可能是()yxA. B. C. D.二.填 空 题(共6小题,满分18分,每小题3分)11.都有意义,则x 的取值范围是 _____.12. 如图,AB ∥CD ,∠DCE=118°,∠AEC 的角平分线EF 与GF 相交于点F ,∠BGF=132°,则∠F 的度数是__.13. 一个几何体,是由许多规格相同的小正方体堆积而成的,其主视图,左视图如图所示要摆成这样的图形,至少需用_____块小正方体.14. [x]表示没有超过x 的整数,例如[﹣3.5]=﹣4,[2.1]=2,若y=x ﹣[x],下列命题:①当x=﹣0.5时,y=0.5;②y 的取值范围是:0≤y≤1;③对于所有的自变量x ,函数值y 随着x 增大而一直增大.其中正确命题有_____(只填写正确命题的序号).15. 已知△ABC 与△ABD 没有全等,且AC=AD =1,∠ABD=∠ABC=45°,∠ACB=60°,则CD =_____.16. 小明在操场上做游戏,他发现地上有一个没有规则的封闭图形ABC .为了知道它的面积,小明在封闭图形内划出了一个半径为1米的圆,在没有远处向圈内掷石子,且记录如下:依此估计此封闭图形ABC 的面积是_____m 2.三.解 答 题(共9小题,满分72分)17. (1)计算:()﹣2 ()0;13(2)先化简,再求值:()÷,其中x=﹣1.322x x x x --+24x x -18. 已知:如图,在△ABC 中,AB=AC ,点D 、E 分别在AB 、AC 上,(1)若∠BDO=∠CEO ,求证:BE=CD .(2)若点E 为AC 中点,问点D 满足什么条件时候,.12OE OB =19. 小军同学在学校组织的社会中负责了解他所居住的小区450户居民的生活用水情况,他从中随机了50户居民的月均用水量(单位:t ),并绘制了样本的频数分布表和频数分布直方图(如图).月均用水量(单位:t )频数百分比2≤x <324%3≤x <41224%4≤x <5 5≤x <61020%6≤x <7 12%7≤x <836%8≤x <924%(1)请根据题中已有的信息补全频数分布表和频数分布直方图;(2)如果家庭月均用水量“大于或等于4t 且小于7t”为中等用水量家庭,请你通过样本估计总体中的中等用水量家庭大约有多少户?(3)从月均用水量在2≤x <3,8≤x <9这两个范围内的样本家庭中任意抽取2个,求抽取出的2个家庭来自没有同范围的概率.20. 某种水果的价格如表:购买的质量(千克)没有超过10千克超过10千克每千克价格6元5元张欣两次共购买了25千克这种水果(第二次多于次),共付款132元.问张欣次、第二次分别购买了多少千克这种水果?21. 已知关于的没有等式的解是,求m 的值.x 24132m x mx +-≤16x ≥22. 随着人们经济收入的没有断提高,汽车已越来越多地进入到各个家庭.某大型超市为缓解停车难问题,建筑设计师提供了楼顶停车场的设计示意图.按规定,停车场坡道口上坡要张贴限高标志,以便告知车辆能否驶入.如图,地面所在的直线ME 与楼顶所在的直线AC 是平行的,CD 的厚度为0.5m ,求出汽车通过坡道口的限高DF 的长(结果到0.1m ,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).23. 如图,象限内的点A 、B 在反比例函数的图象上,点C 在y 轴上,BC ∥x 轴,点A 的坐标为(2,4),且tan ∠ACB =32求:(1)反比例函数的解析式;(2)点C 的坐标;(3)sin∠ABC的值.24. 如图,AB是⊙O的直径,点C在⊙O上,∠ABC的平分线与AC相交于点D,与⊙O过点A的切线相交于点E.(1)∠ACB= °,理由是: ;(2)猜想△EAD的形状,并证明你的猜想;(3)若AB=8,AD=6,求BD.25. 已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个没有同的公共点,试求t的取值范围.2022-2023学年北京区域联考中考数学专项提升仿真模拟测试题(二模)一.选一选(共10小题,满分30分,每小题3分)1. 元月份某,北京市的气温为﹣6℃,长泰县的气温为15℃,那么这长泰县的气温比北京市的气温高( )A. 15℃B. 20℃C. 21℃D. 21℃【正确答案】D 【详解】分析:根据题意列出式子按有理数减法法则计算即可.详解:由题意可得:(℃).15(6)15621--=+=故选D.点睛:本题考查的是有理数减法的实际应用,解题的关键是根据题意列出正确的算式.2. 据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5300万美元,“5300万”用科学记数法可表示为( )A. 5.3×103B. 5.3×104C. 5.3×107D. 5.3×108【正确答案】C 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的值与小数点移动的位数相同.当原数值>1时,n 是正数;当原数的值<1时,n 是负数.【详解】解:5300万=53000000=.75.310⨯故选C.在把一个值较大的数用科学记数法表示为的形式时,我们要注意两点:①必须满足:10n a ⨯a ;②比原来的数的整数位数少1(也可以通过小数点移位来确定).110a ≤<n n 3. 下列电脑桌面快捷方式的图片中,是轴对称图形的是( )A. B. C. D.【正确答案】D【详解】分析:根据轴对称图形的定义进行判断即可.详解:A选项中的图形没有是轴对称图形,没有能选A;B选项中的图形没有是轴对称图形,没有能选B;C选项中的图形没有是轴对称图形,没有能选C;D选项中的图形是轴对称图形,可以选D.故选D.点睛:本题考查的是轴对称图形的识别,解题的关键是正确理解轴对称图形的定义:“把一个图形沿着某条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形”,这样对照定义进行判断即可得到正确答案了.4. 在社会中,四名同学分别就同一种商品的价格变化情况,给了如下四幅图,为了更直观、清楚地体现该商品的价格增长势头,你认为比较理想的是( )A. B. C. D.【正确答案】C【详解】分析:按照画折线统计图的规范要求进行判断即可.详解:因为绘制折线统计图时,首先要确定好横轴与纵轴的单位长度,然后根据具体数量通过向横轴和纵轴作垂线的方式确定好各点的位置,再顺次连接所描各点即可得到所求折线,所以对比四位同学所画折线统计图可知,符合画折线统计图的规范的,比较理想的是C.故选C.点睛:本题考查是绘制折线统计图,解题的关键是理解画折线统计图的步骤和注意事项.5. 若 a 、b 是一元二次方程 x 2+3x -6=0 的两个没有相等的根,则 a 2﹣3b 的值是()A. -3B. 3C. ﹣15D. 15【正确答案】D 【分析】根据根与系数的关系可得a +b =﹣3,根据一元二次方程的解的定义可得a 2=﹣3a +6,然后代入变形、求值即可.【详解】∵a 、b 是一元二次方程x 2+3x ﹣6=0的两个没有相等的根,∴a +b =﹣3,a 2+3a ﹣6=0,即a 2=﹣3a +6,则a 2﹣3b =﹣3a +6﹣3b =﹣3(a +b )+6=﹣3×(﹣3)+6=9+6=15.故选D .本题考查了根与系数的关系及一元二次方程的解,难度适中,关键掌握用根与系数的关系与代数式变形相进行解题.6. 已知函数y =(k ﹣2)x+k 没有第三象限,则k 的取值范围是( )A. k≠2B. k >2C. 0<k <2D. 0≤k <2【正确答案】D 【详解】直线没有第三象限,则第二、四象限或、二、四象限,当第二、四象限时,函数为正比例函数,k=0当、二、四象限时, ,解得0<k<2,200k k -<⎧⎨≥⎩综上所述,0≤k<2.故选D7. 已知⊙O 的半径为10,P 为⊙O 内一点,且OP =6,则过P 点,且长度为整数的弦有( )A. 5条B. 6条C. 8条D. 10条【正确答案】C 【详解】解:如图,AB 是直径,OA=10,OP=6,过点P 作CD ⊥AB ,交圆于点C ,D 两点.由垂径定理知,点P 是CD 的中点,由勾股定理求得,PC=8,CD=16,则CD 是过点P 最短的弦,长为16;AB是过P 最长的弦,长为20.所以过点P 的弦的弦长可以是17,18,19各两条.总共有8条长度为整数的弦.故选C .8. 下列运算正确的是( )A. (x 3)2=x 5B. (﹣2x )2÷x =4xC. (x +y )2=x 2+y 2D. =1y x x y y x +--【正确答案】B 【分析】按照幂的相关运算法则、乘法公式和分式的相关运算法则进行计算,再判断即可得到答案.【详解】A .因为,所以该选项计算错误;326()x x =B .因为,所以该选项计算正确;2(2)4x x x -÷=C .因为,所以该选项计算错误;222()2x y x xy y +=++D .因为,所以该选项计算错误.1y x y x x y y x x y x y +=-=-----故选:B .本题是一道考查整式和分式相关运算的题目,正确理解相关运算的运算法则是正确解答本题的关键.9. 如图,已知正方形ABCD 的边长为4,点E 、F 分别在边AB 、BC 上,且AE=BF=1,CE 、DF 交于点O.下列结论:①∠DOC=90°, ②OC=OE , ③tan ∠OCD = ,④ 中,正43ODC BEOF SS ∆=四边形确的有【 】A. 1个B. 2个C. 3个D. 4个【正确答案】C【详解】∵正方形ABCD 的边长为4,∴BC=CD=4,∠B=∠DCF=90°.∵AE=BF=1,∴BE=CF=4-1=3.在△EBC 和△FCD 中,∵BC=CD ,∠B=∠DCF ,BE=CF ,∴△EBC ≌△FCD (SAS ).∴∠CFD=∠BEC .∴∠BCE+∠BEC=∠BCE+∠CFD=90°.∴∠DOC=90°.故①正确.如图,连接DE若OC=OE ,∵DF ⊥EC ,∴CD=DE .∵CD=AD <DE (矛盾),故②错误.∵∠OCD+∠CDF=90°,∠CDF+∠DFC=90°,∴∠OCD=∠DFC .∴tan ∠OCD=tan ∠DFC=.故③正确.DC 4=FC 3∵△EBC ≌△FCD ,∴S △EBC =S △FCD .∴S △EBC -S △FOC =S △FCD -S △FOC ,即S △ODC =S 四边形BEOF .故④正确.故选C .10. 如图所示,向一个半径为、容积为的球形容器内注水,则能够反映容器内水的体积R V 与容器内水深间的函数关系的图象可能是( )y xA. B. C. D.【正确答案】A【详解】试题分析:观察可得,只有选项B 符合实际,故答案选A .考点:函数图象.二.填 空 题(共6小题,满分18分,每小题3分)11.都有意义,则x 的取值范围是 _____.【正确答案】x= 4或x >4.【详解】x 应满足①x 2+2x ≥0;②|x | 4≥0;③x 2 2x ≥0;④x +4≥0;≠⑥x 2 x 2≥0;⑦x 2+x 2≥0;≠2,依次解得:①x ≤ 2或x ≥0;②x ≤ 4或x ≥4;③x ≤0或x ≥2;④x ≥ 4;⑤x ≠4,x ≠ 1;⑥x ≤ 1或x ≥2;⑦x ≤ 2或x ≥1;⑧x≠ 3,x≠2,∴综合可得x= 4或x>4.故答案为x= 4或x>4.点睛:本题考查了分式和二次根式有意义的条件,分式有意义的条件是分母没有等于0,二次根式有意义的条件是被开方式大于且等于0.12. 如图,AB∥CD,∠DCE=118°,∠AEC的角平分线EF与GF相交于点F,∠BGF=132°,则∠F的度数是__.【正确答案】11°.【详解】分析:本题考查的是平行线的内错角相等,角平分线的性质和三角形外角的性质.解析:∵AB//CD,∠DCE=118°,∴∠AEC=118°,∵∠AEC的角平分线EF与GF相交线于点F, ∴∠AEF=∠FEC=59°,∵∠BGF=132°,∴∠F=11°.故答案为11°.13. 一个几何体,是由许多规格相同的小正方体堆积而成的,其主视图,左视图如图所示要摆成这样的图形,至少需用_____块小正方体.【正确答案】5【详解】由题图可得:第二层有2个小正方体,层至少有4个小正方体,故至少需用6个小正方体.14. [x]表示没有超过x的整数,例如[﹣3.5]=﹣4,[2.1]=2,若y=x﹣[x],下列命题:①当x=﹣0.5时,y=0.5;②y的取值范围是:0≤y≤1;③对于所有的自变量x,函数值y随着x增大而一直增大.其中正确命题有_____(只填写正确命题的序号).【正确答案】①.【分析】由[x]表示没有超过x 的整数可知取值代入检验即可判断出几个命题的[]1x x x -<≤正误.【详解】①∵[x]表示没有超过x 的整数,∴在y=x ﹣[x]中,当x=-0.5时,y=-0.5-(-1)=0.5,∴命题①成立;②∵[x]表示没有超过x 的整数,∴,[]1x x x -<≤∴在y=x ﹣[x]中,y<x-(x-1)=1,即y<1且,即;0y x x ≥-=0y ≥∴在y=x ﹣[x]中,y 的取值范围是:,01y ≤<∴命题②错误;③∵在y=x ﹣[x]中,当x=-3时,y=-3-(-3)=0;当x=4时,y=4-4=0;而此时-3<4,但0=0,∴命题③错误.综上所述,正确的命题是:①.故答案为①.本题是一道考查“新运算”的题目,解题的关键是:(1)读懂题中对新运算的定义;(2)对于第3个命题采用取值法进行验证说明比较简单.15. 已知△ABC 与△ABD 没有全等,且AC =AD =1,∠ABD=∠ABC=45°,∠ACB=60°,则CD =_____.【正确答案】1.【分析】根据题意分两种情形分别求解即可.【详解】解:如图,当CD在AB同侧时,∵AC=AD=1,∠C=60°,∴△ACD是等边三角形,∴CD=AC=1,当C、D在AB两侧时,∵△ABC与△ABD没有全等,∴△ABD′是由△ABD沿AB翻折得到,∴△ABD≌△ABD′,∴∠AD′B=ADB=120°,∵∠C+∠AD′B=180°,∴∠CAD′+∠CBD′=180°,∵∠CBD′=90°,∴∠CAD′=90°,∴CD′当D″在BD′的延长线上时,AD″=AC,也满足条件,此时CD″BC,此时△ABD≌△ABC,没有符合题意,故答案为1.本题考查等边三角形的判定和性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考填空题中的压轴题..16. 小明在操场上做游戏,他发现地上有一个没有规则的封闭图形ABC.为了知道它的面积,小明在封闭图形内划出了一个半径为1米的圆,在没有远处向圈内掷石子,且记录如下:依此估计此封闭图形ABC的面积是_____m2.【正确答案】3π.【详解】分析:由表中记录的数据通过计算可知,随着投掷石子次数的增加,石子落在阴影内的次数与落在⊙O 内(包括⊙O 上)的次数之比逐渐稳定在2:1左右,由此说明S 阴影=2S ⊙O 这样已知即可求出整个图形的面积了.详解:由表中数据可得:当投掷石子50次时,;当投掷石子150次时,40.7419m n =≈;当投掷石子300次时,;430.5185m n =≈930.5186m n ==∴石子落在阴影部分的概率大约是落在⊙O 内(包括和⊙O 上)的概率的2倍,∴S 阴影=2S ⊙O ,又∵S ⊙O =,π∴S 阴影=,2π∴此封闭图形ABC 的面积是:m 2.3π故答案为.3π点睛:读懂题意,明白“石子落在阴影部分和圆内(包括圆上)部分的概率之比等于两部分图形的面积之比”是正确解答此题的关键.三.解 答 题(共9小题,满分72分)17. (1)计算:()﹣2 ()0;13(2)先化简,再求值:()÷,其中x=﹣1.322x x x x --+24xx-【正确答案】(1)2)2x+8,6.【详解】试题分析:(1)先计算-2、0次方、去值符号和将tan 30°代入计算,再加减;(2)先化简,再将x=-1代入计算即可;试题解析:(1)原式=9-1+26=10=10(2)解:原式=[]·3(2)(2)(2)(2)(2)(2)x x x x x x x x +--+-+-(2)(2)x x x +-=23622(2)(2)·(2)(2)x x x x x x x x x +-++-+-=228x xx +=2x +8,当x =-1时,原式=2×(-1)+8=6.18. 已知:如图,在△ABC 中,AB=AC ,点D 、E 分别在AB 、AC 上,(1)若∠BDO=∠CEO ,求证:BE=CD .(2)若点E 为AC 中点,问点D 满足什么条件时候,.12OE OB =【正确答案】(1)详见解析;(2)详见解析.【详解】分析:(1)由AB=AC 可得∠ABC=∠ACB ,∠BDO=∠CEO 和BC=CB 可得△DBC ≌△ECB ,由此可得BE=CD ;(2)由E 为AC 中点可知,若此时D 为AB 的中点,则由三角形中位线定理可得DE ∥BC ,DE=BC ,从而可得△DEO ∽△BCO ,由此即可得到.1212OE DE OB BC ==详解:(1)∵AB=AC ,∴∠ABC=∠ACB ,在△DBC 与△ECB 中, ,ABC ACB BDO CEO BC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DBC ≌△ECB ,∴BE=CD ;(2)当点D 为AB 的中点时,,理由如下:12OE OB =∵点E 为AC 中点,点D 为AB 的中点,∴DE=BC ,DE ∥BC ,12∴△DEO ∽△BCO ,∴.12OE DE OB BC ==点睛:本题是一道考查三角形全等和相似三角形判定和性质的几何题,解题的关键有两点:(1)熟悉等腰三角形的性质和全等三角形的判定方法;(2)熟悉三角形中位线定理和相似三角形的判定和性质.19. 小军同学在学校组织的社会中负责了解他所居住的小区450户居民的生活用水情况,他从中随机了50户居民的月均用水量(单位:t ),并绘制了样本的频数分布表和频数分布直方图(如图).月均用水量(单位:t )频数百分比2≤x <324%3≤x <41224%4≤x <5 5≤x <61020%6≤x <7 12%7≤x <836%8≤x <924%(1)请根据题中已有的信息补全频数分布表和频数分布直方图;(2)如果家庭月均用水量“大于或等于4t 且小于7t”为中等用水量家庭,请你通过样本估计总体中的中等用水量家庭大约有多少户?(3)从月均用水量在2≤x <3,8≤x <9这两个范围内的样本家庭中任意抽取2个,求抽取出的2个家庭来自没有同范围的概率.【正确答案】(1)的总数是:50(户),6≤x<7部分的户数是: 6(户),4≤x<5的户数是:15(户),所占的百分比是:30%.(2)279(户);(3).23【分析】(1)根据组的频数是2,百分比是4%即可求得总人数,然后根据百分比的意义求解:(2)利用总户数450乘以对应的百分比求解;(3) 在2≤x<3范围的两户用a 、b 表示,8≤x<9这两个范围内的两户用1,2表示,利用树状图表示出所有可能的结果,然后利用概率公式求解.【详解】解:(1)的总数是:2÷4%=50(户),则6≤x<7部分的户数是:50×12%=6(户),则4≤x<5的户数是:50﹣2﹣12﹣10﹣6﹣3﹣2=15(户),所占的百分比是:×=30%.1550月均用水量(单位:t )频数百分比2≤x <324%3≤x <41224%4≤x <51530%5≤x <61020%6≤x <7612%7≤x <836%8≤x <924%(2)中等用水量家庭大约有450×(30%+20%+12%)=279(户);(3)在2≤x<3范围的两户用a 、b 表示,8≤x<9这两个范围内的两户用1,2表示.则抽取出的2个家庭来自没有同范围的概率是:=.81223本题主要考查统计表和条形统计图,树状图求概率,较为容易,需注意频数、频率和总数之间的关系.20. 某种水果的价格如表:购买的质量(千克)没有超过10千克超过10千克每千克价格6元5元张欣两次共购买了25千克这种水果(第二次多于次),共付款132元.问张欣次、第二次分别购买了多少千克这种水果?【正确答案】张欣次、第二次购买这种水果的质量分别为7千克、18千克.【详解】分析:由题意设张欣次和第二次购买这种水果的量分别位x 千克和y 千克,由题意可知x<12.5<y ,然后所给数量关系分和两种情况分别列出二元方程组进行解答即可.10x ≤10x >详解:设张欣次、第二次购买了这种水果的量分别为x 千克、y 千克,因为第二次购买多于次,则x <12.5<y .①当x≤10时, ,2565132x y x y +=⎧⎨+=⎩解得 ;718x y =⎧⎨=⎩②当10<x <12.5时:,此方程组无解.2555132x y x y +=⎧⎨+=⎩综上所述,张欣次、第二次购买了这种水果的量分别为7千克和18千克.答:张欣次、第二次购买了这种水果的量分别为7千克、18千克.点睛:本题的解题的关键是抓住题目中“两次共购买水果25千克,且第二次的购买量多于次”分别设两次购买水果的数量为x 和y ,从而得到x <12.5<y ,再分x≤10和10<x <12.5两种情况解答即可.21. 已知关于的没有等式的解是,求m 的值.x 24132m x mx +-≤16x ≥【正确答案】m 无值.【分析】把原没有等式化简整理可得:(12m 2)x≥4m+3,题中所给原没有等式的解集为:,可得①及②,由①可得,由②可得,综合即16x ≥1220m ->4311226m m +=-16m >53m =-可得到满足题中条件的m 的值没有存在.【详解】原没有等式可化为:4m+2x≤12mx 3,即(12m 2)x≥4m+3,又∵原没有等式的解为,16x ≥∴有①、②,1220m ->4311226m m +=-∵由①解得,由②解得,16m >53m =-∴满足条件的m 的取值没有存在,即本题无解.本题解题的关键是由“原没有等式化简所得式子(12m 2)x≥4m+3原没有等式的解集为”16x ≥得到m 需同时满足两个条件:①可得;②可得,特别要注意没有要将第1个条16m >53m =-件忽略了.22. 随着人们经济收入的没有断提高,汽车已越来越多地进入到各个家庭.某大型超市为缓解停车难问题,建筑设计师提供了楼顶停车场的设计示意图.按规定,停车场坡道口上坡要张贴限高标志,以便告知车辆能否驶入.如图,地面所在的直线ME 与楼顶所在的直线AC 是平行的,CD 的厚度为0.5m ,求出汽车通过坡道口的限高DF 的长(结果到0.1m ,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).【正确答案】坡道口的限高DF 的长是3.8m .【详解】试题分析:首先根据AC∥ME,可得∠CAB=∠AE28°,再根据三角函数计算出BC 的长,进而得到BD 的长,进而求出DF 即可.试题解析:∵AC∥ME,∴∠CAB=∠AEM,在Rt△ABC 中,∠CAB=28°,AC=9m ,∴BC=ACtan28°≈9×0.53=4.77(m ),∴BD=BC﹣CD=4.77﹣0.5=4.27(m ),在Rt△BDF 中,∠BDF+∠FBD=90°,在Rt△ABC 中,∠CAB+∠FBC=90°,∴∠BDF=∠CAB=28°,∴DF=BDcos28°≈4.27×0.88=3.7576≈3.8 (m ),答:坡道口的限高DF 的长是3.8m .23. 如图,象限内的点A 、B 在反比例函数的图象上,点C 在y 轴上,BC ∥x 轴,点A 的坐标为(2,4),且tan ∠ACB =32求:(1)反比例函数的解析式;(2)点C 的坐标;(3)sin ∠ABC的值.【正确答案】(1)y =;(2)点C 的坐标为(0,1);(3)sin ∠ABC .8x 【分析】(1)设反比例函数的解析式为,把点A 的坐标代入所设解析式中求得k 的值,即ky x =可求得所求解析式;(2)如图,过点A 作AF ⊥x 轴于点E ,交BC 于点F ,则由题意易得CF =2,tan ∠ACB =可解32得AF =3,从而可得EF =AE -AF =1,由此即可得点C 的坐标为(0,1);(3)由(1)(2)可求得点B 的坐标,从而可得BC 的长,进而可得BF 的长,AF 的长即可在Rt △ABF 中解得AB 的长,由此AF 的长即可求得sin ∠ABC 的值了.【详解】解:(1)设反比例函数解析式为,k y x =将点A (2,4)代入,得:k =8,∴反比例函数的解析式;8y x =(2)过点A 作AE ⊥x 轴于点E ,AE 与BC 交于点F ,则CF =2,又∵tan ∠ACB =,23CF AF =∴AF =3,∴EF =AE -AF =4-3=1,∴点C 的坐标为(0,1);(3)∵点C 的坐标为(0,1),BC ∥x 轴,∴点B 的纵坐标为1,∵ 当y =1时,在由1=可得x =8,8y x =8x ∴点B 的坐标为(8,1),∴BF =BC CF =6,∴AB,=∴sin∠ABC =AF AB=本题是一道反比例函数与几何图形和锐角三角函数相的题目,解题的关键是作出如图所示的辅助线,这样构造出两个直角三角形,已知条件和正切函数及正弦函数的意义即可求出所求量了.24. 如图,AB 是⊙O 的直径,点C 在⊙O 上,∠ABC 的平分线与AC 相交于点D ,与⊙O 过点A 的切线相交于点E .(1)∠ACB= °,理由是: ;(2)猜想△EAD 的形状,并证明你的猜想;(3)若AB=8,AD=6,求BD .【正确答案】(1)90°;直径所对的圆周角是直角;(2)证明见解析;(3)145【详解】试题分析:(1)根据AB 是⊙O 的直径,点C 在⊙O 上利用直径所对的圆周角是直角即可得到结论;(2)根据∠ABC 的平分线与AC 相交于点D ,得到∠CBD=∠ABE,再根据AE 是⊙O 的切线得到∠EAB=90°,从而得到∠CDB+∠CBD=90°,等量代换得到∠AED=∠EDA,从而判定△EAD 是等腰三角形.(3)证得△CDB∽△AEB 后设BD=5x ,则CB=4x ,CD=3x ,从而得到CA=CD+DA=3x+6,然后在直角三角形ACB 中,利用AC2+BC2=AB2得到(3x+6)2+(4x )2=82解得x 后即可求得BD 的长.试题解析:(1)∵AB 是⊙O 的直径,点C 在⊙O 上,∴∠ACB=90°(直径所对的圆周角是直角)(2)△EAD 是等腰三角形.证明:∵∠ABC 的平分线与AC 相交于点D ,∴∠CBD=∠ABE∵AE 是⊙O 的切线,∴∠EAB=90°∴∠AEB+∠EBA=90°,∵∠EDA=∠CDB,∠CDB+∠CBD=90°,∵∠CBE=∠ABE,∴∠AED=∠EDA,∴AE=AD∴△EAD 是等腰三角形.(3)解:∵AE=AD,AD=6,∴AE=AD=6,∵AB=8,∴在直角三角形AEB 中,EB=10∵∠CDB=∠E,∠CBD=∠ABE ∴△CDB∽△AEB,∴,6384AE DC AB BC ===∴设CB=4x ,CD=3x 则BD=5x ,∴CA=CD+DA=3x+6,在直角三角形ACB 中,AC 2+BC 2=AB 2即:(3x+6)2+(4x )2=82,解得:x=﹣2(舍去)或x=1425∴BD=5x=.145点睛:本题考查了圆的综合知识,题目中涉及到了圆周角定理、等腰三角形的性质与判定以及相似三角形的判定与性质,难度中等偏上.25. 已知,抛物线y =ax 2+ax +b (a ≠0)与直线y =2x +m 有一个公共点M (1,0),且a <b .(1)求b 与a 的关系式和抛物线的顶点D 坐标(用a 的代数式表示);(2)直线与抛物线的另外一个交点记为N ,求△DMN 的面积与a 的关系式;(3)a =﹣1时,直线y =﹣2x 与抛物线在第二象限交于点G ,点G 、H 关于原点对称,现将线段GH 沿y 轴向上平移t 个单位(t >0),若线段GH 与抛物线有两个没有同的公共点,试求t 的取值范围.【正确答案】(1)b= 2a ,顶点D的坐标为(﹣, );(2);(3) 2≤t <1294a2732748a a--.94【分析】(1)把M 点坐标代入抛物线解析式可得到b 与a 的关系,可用a 表示出抛物线解析式,化为顶点式可求得其顶点D 的坐标;(2)把点M (1,0)代入直线解析式可先求得m 的值,联立直线与抛物线解析式,消去y ,可得到关于x 的一元二次方程,可求得另一交点N 的坐标,根据a <b ,判断a <0,确定D 、M 、N 的位置,画图1,根据面积和可得△DMN 的面积即可;(3)先根据a 的值确定抛物线的解析式,画出图2,先联立方程组可求得当GH 与抛物线只有一个公共点时,t 的值,再确定当线段一个端点在抛物线上时,t 的值,可得:线段GH 与抛物线有两个没有同的公共点时t 的取值范围.【详解】解:(1)∵抛物线y=ax 2+ax+b 有一个公共点M (1,0),∴a+a+b=0,即b=-2a ,∴y=ax 2+ax+b=ax 2+ax-2a=a (x+)2-,1294a ∴抛物线顶点D的坐标为(-,-);1294a (2)∵直线y=2x+m 点M (1,0),∴0=2×1+m ,解得m=-2,∴y=2x-2,则,2222y x y ax ax a -⎧⎨+-⎩==得ax 2+(a-2)x-2a+2=0,∴(x-1)(ax+2a-2)=0,解得x=1或x=-2,2a ∴N 点坐标为(-2,-6),2a 4a ∵a <b ,即a <-2a ,∴a <0,如图1,设抛物线对称轴交直线于点E ,∵抛物线对称轴为,122a x a =-=-∴E (-,-3),12∵M (1,0),N (-2,-6),2a 4a 设△DMN 的面积为S ,∴S=S △DEN +S △DEM =|( -2)-1|•|--(-3)|=−−a ,122a 94a 2743a 278(3)当a=-1时,抛物线的解析式为:y=-x 2-x+2=-(x+)2+,1294由,222y x x y x ⎧=--+⎨=-⎩-x 2-x+2=-2x ,解得:x 1=2,x 2=-1,∴G (-1,2),∵点G 、H 关于原点对称,∴H (1,-2),设直线GH 平移后的解析式为:y=-2x+t ,-x 2-x+2=-2x+t ,x 2-x-2+t=0,△=1-4(t-2)=0,t=,94当点H 平移后落在抛物线上时,坐标为(1,0),把(1,0)代入y=-2x+t ,t=2,∴当线段GH 与抛物线有两个没有同的公共点,t 的取值范围是2≤t <.94本题为二次函数的综合应用,涉及函数图象的交点、二次函数的性质、根的判别式、三角形的面积等知识.在(1)中由M的坐标得到b与a的关系是解题的关键,在(2)中联立两函数解析式,得到关于x的一元二次方程是解题的关键,在(3)中求得GH与抛物线一个交点和两个交点的分界点是解题的关键,本题考查知识点较多,综合性较强,难度较大.2022-2023学年北京区域联考中考数学专项提升仿真模拟测试题(三模)一、选一选(每小题4分,满分40分)1. -|-2018|等于( )A. 2018B. 2018C. 1D. 02. 某红外线遥控器发出的红外线波长为0.000 000 94m ,用科学记数法表示这个数是( )A. mB. mC. mD. m79.410-⨯79.410⨯89.410-⨯89.410⨯3. 下列计算正确的是( )A. (2a -1)2=4a 2-1 B. 3a 6÷3a 3=a 2C. (-ab 2) 4=-a 4b 6D. -2a +(2a -1)=-14. 从棱长为2a 的正方体零件的一角,挖去一个棱长为a 的小正方体,得到一个如图所示的零件,则这个零件的俯视图是( )A. B. C. D.5. 如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A. 30°B. 25°C. 20°D. 15°6. 下列命题中,真命题是( )A. 两条对角线相等的四边形是矩形B. 两条对角线互相垂直且平分的四边形是正方形C. 等边三角形既是轴对称图形又是对称图形D. 有一个角是60°的等腰三角形是等边三角形7. 某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:成绩(分)35394244454850人数(人)2566876根据上表中的信息判断,下列结论中错误的是()A. 该班一共有40名同学B. 该班学生这次考试成绩的众数是45分C. 该班学生这次考试成绩的中位数是45分D. 该班学生这次考试成绩的平均数是45分8. 如图,AB是⊙O的直径,∠AOC=110°,则∠D=【】A. 250B. 350C. 550D. 7009. 已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a-b+c<0;③b+2a<0;④abc>0,其中正确的是( )A. ①②③B. ②③C. ③④D. ①④10. 我们知道,一元二次方程x2=-1没有实数根,即没有存在一个实数的平方等于-1,若我。
2021年重庆年中考17题一次函数图像与行程问题综合专题(重庆育才试题集)
2021年重庆年中考17题一次函数图像与行程问题专题(重庆育才试题集)A、两地同时相向而行,并以各自的速度匀速行驶,途中1(育才2021级初三上定时训练二)小明和小亮分别从B会经过奶茶店C,小明先到达奶茶店C,并在C地休息了一小时,然后按原速度前往B地,小亮从B地直达A地,y(千米)与小亮出发时间x(时)的函数的图像,结果还是小明先到达目的地,下图是小明和小亮两人之间的距离请问当小明到达B地时,小亮距离A地千米.2(育才2020级初三下中考模拟5月份)一辆货车从A地匀速驶往相距350km的B地,当货车行驶1小时经过途中的C地时,一辆快递车恰好从C地出发以另一速度匀速驶往B地,当快递车到达B地后立即掉头以原来的速度匀速驶往A地.(货车到达B地,快递车到达A地后分别停止运动)行驶过程中两车与B地间的距离y(单位:km)与货车从出发所用的时间x(单位:h)间的函数关系如图所示.则货车到达B地后,快递车再行驶h到达A地.3(育才2020级初三下中考模拟二)快、慢车分别从相距180千米的甲、乙两地同时出发,沿同一路线匀速行驶,相向而行,快车到达乙地停留一段时间后,按原路原速返回甲地.慢车到达甲地比快车到达甲地早小时,慢车速度是快车速度的一半.快、慢两车到达甲地后停止行驶,两车距各自出发地的路程y(千米)与所用时间x(小时)的函数图象如图所示.在快车从乙地返回甲地的过程中,当慢车恰好在快车前,且与快车相距80千米的路程时,慢车行驶的总的时间是小时.4(育才2020级初三下中考模拟三))A、B两地之间路程为4500米,甲、乙两人骑车都从A地出发,已如甲先出发6分钟后,乙才出发,乙在A、B之间的C地追赶上甲,当乙追赶上甲后,乙立即返A地,甲继续向B地前行.甲到达B地后停止骑行.乙骑行到A地时也停止(假定乙在C地掉头的时间忽略不计),在整个骑行过程中,甲和乙均保持各自的速度匀速骑行,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,则乙到达A地时,甲与B地相距的路程是米.5(育才2019级初三下中考模拟一)甲乙沿着同一路线以各自的速度匀速从A地到B地,甲出发1分钟后乙随即出发,甲、乙到达B地后均立即按原路原速返回A地,甲、乙之间的距离y(米)与甲出发的时间x(分)之间的部分图象如图所示.当甲返回到A地时,乙距离B地米.6(育才2020级初三下中考模拟二练习)小刚从家出发匀速步行去学校上学.几分钟后发现忘带数学作业,于是掉头原速返回并立即打电话给爸爸,挂断电话后爸爸立即匀速跑步去追小刚,同时小刚以原速的两倍匀速跑步回家,爸爸追上小刚后以原速的倍原路步行回家.由于时间关系小明拿到作业后同样以之前跑步的速度赶往学校,并在从家出发后23分钟到校(小刚被爸爸追上时交流时间忽略不计).两人之间相距的路程y(米)与小刚从家出发到学校的步行时间x(分钟)之间的函数关系如图所示,则小刚家到学校的路程为米.7(双福育才2020级初三下中考模拟一)小宁和弟弟小强分别从家和图书馆出发,沿同一条笔直的马路相向而行,小宁先出发5分钟后,小强骑自行车匀速回家,小宁出发时跑步,中途改为步行,且步行的速度为跑步速度的一半,到达图书馆恰好用了35分钟,两人之间的距离y(m)与小宁离开出发地的时间x(min)之间的函数图象如图所示,下列选项正确的是A.小强骑车的速度为250m/minB.小宁由跑步变为步行的时刻为15分钟C.小强到家的时刻为15分钟D.当小强到家时,小宁离图书馆的距离为1500m8(育才2020级初三下入学测试)一个阳光明媚的上午,小育和小才相约从学校沿相同的路线去学校旁边的公园写生,小育出发5分钟后小才出发,此时小育发现忘记带颜料,立即按原速原路回学校拿颜料,小育拿到颜料后,以比原速提高20%的速度赶去公园,结果还是比小才晚2分钟到公园(小育拿颜料的时间忽略不计).在整个过程中,小才保持匀速运动,小育提速前后也分别保持匀速运动,如图所示是小育与小才之间的距离y(米)与小育出发的时间x(分钟)之间的函数图象,则学校到公园的距离为米.第17题图9(育才2020级初三上第二次月考)一条笔直的公路上顺次有A、B、C三地,甲车从B地出发往A地匀速行驶,到达A地后停止,在甲车出发的同时,乙车从B地出发往A地匀速行驶(乙车比甲上快),到达A地停留1小时后,调头按原速向C地行驶,甲乙两车相遇后,甲车速度提升至原速的1.5倍,乙车速变不变,若AB两地相距300千米,在两车行驶的过程中,甲,乙两车之间的距离y(千米)与乙车行驶时间x(时)之间的关系如图所示,则甲车到达A地后,经过时乙车到达C地.10(双福育才2020级初三下第二次诊断性测试)甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,中途与乙相遇后休息了一会儿,然后以原来的速度继续行驶直到A地.设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(时),y与x之间的函数图象如图所示,则乙车到达A地时甲车距B地的路程为千米.11(育才2020级初三下开学试卷)一条笔直的公路上顺次有A、B、C三地,甲车从B地出发往A地匀速行驶,到达A地后停止,在甲车出发的同时,乙车从B地出发往A地匀速行驶,到达A地停留1小时后,调头按原速向C 地行驶,若AB两地相距300千米,在两车行驶的过程中,甲、乙两车之间的距离y(千米)与乙车行驶时间x (小时)之间的函数图象如图所示,则在他们出发后经过小时相遇.12(育才2020级初三上期末试卷)自行车远动员甲准备参加一项国际自行车赛事,为此特地骑自行车从A地出发,匀速前往168千米外的B地进行拉练.出发2小时后,乙发现他忘了带某训练用品,于是马上骑摩托车从A 地出发匀速去追甲送该用品.已知乙骑摩托车的速度比甲骑自行车的速度每小时多30千米,但摩托车行驶一小时后突遇故障,修理15分钟后,又上路追甲,但速度减小了,乙追上甲交接了训练用品(交接时间忽略不计),随后立即以修理后的速度原路返回,甲继续以原来的速度骑行直至B地.如图表示甲、乙两人之间的距离S(千米)与甲骑行的时间t(小时)之间的部分图象,则当甲达到B地时,乙距离A地千米.13(育才2020级初三上开学测试)国防教育和素质拓展期间,某天小明和小亮分别从校园某条路的A,B两端同时相向出发,当小明和小亮第一次相遇时,小明觉得自己的速度太慢便决定提速至原速的倍,当他到达B端后原地休息,小亮匀速到达A端后,立即按照原速返回B端(忽略掉头时间).两人相距的路程y(米)与小亮出发时间t(秒)之间的关系如图所示,当小明到达B端后,经过秒,小亮回到B端.14(育才2020级初三上期中试卷)小蒲家与学校之间是一条笔直的公路,小蒲从家步行前往学校的途中发现忘带作业本,便向路人借了手机打给妈妈,妈妈接到电话后,带上作业本马上赶往学校,同时小蒲沿原路返回,两人相遇后,小蒲立即赶往学校,妈妈沿原路返回家,小蒲到达学校刚好比妈妈到家晩了2分钟.若小蒲步行的速度始终不变,打电话和交接作业本的时间忽略不计,小蒲和妈妈之间的距离y米与小蒲打完电话后步行的时间x分钟之间的函数关系如图所示;则相遇后妈妈返回家的速度是每分钟米.15(育才2020级初三下入学测试)国防教育和素质拓展期间,某天小明和小亮分别从校园某条路的A,B两端同时相向出发,当小明和小亮第一次相遇时,小明觉得自己的速度太慢便决定提速至原速的32倍,当他到达B端后原地休息,小亮匀速到达A 端后,立即按照原速返回B 端(忽略掉头时间).两人相距的路程y (米)与小亮出发时间t (秒)之间的关系如图所示,当小明到达B 端后,经过______秒,小亮回到B 端.16(育才2019级初三是哪个期末测试)甲、乙两车从A 地出发,沿同一路线驶向B 地。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学试卷17时量:70分钟 满分:100分一、选择题(每小题4分,共32分) 1、在)0(>=k xk y 的图象上有三点)(),(),(333222111y x A y x A y x A 、、、;已知3210x x x <<<,则下列各式中,正确的是( )A 、310y y <<B 、130y y <<C 、312y y y <<D 、213y y y <<2、如图,图象反映的进程是:小明从家跑步到体育馆,在哪里锻炼了一阵后,又走到书店去买书,然后走回家,其中t 表示时间,s 表示小明离家的距离,则小明锻炼和买书共用去的时间为( )A 、35分钟B 、45分钟C 、50分钟D 、60分钟 3、设方程20051=+xx 的两根为b a 、,则代数式)11(3bba --的值是( )A 、2004B 、2005C 、2006D 、20074、若)1,1(P 、A (2,-4)、B )9,(-x 三点共线,则=x ( ) A 、-1B 、3C 、29 D 、55ABCD 中,E 为AB 中点,F 为BD 上一点,且DF =2FB ,则( ) A 、E 、F 、C 三点在一条直线上 B 、E 、F 、C 三点不在一条直线上C 、直线EF 与直线AC 的交点在线段AC 上D 、以上答案均不对6、如图,秋千拉绳长3米,静止时踩板离地面0.5米,某小朋友荡秋千时,秋千在最高处跳板离地面2米(左右对称),则该秋千荡进的圆弧长为( ) OAB 20.5x学校 姓名 性别 联系电话 考场号ACBD A 、π米 B 、2π米 C 、π34米D 、34米7、若0634=--z y x ,)0(072≠=-+xyz z y x ,则代数式222222103225zy x zy x ---+的值等于( )A 、21-B 、219-C 、15-D 、-138、如图所示的阴影部分由方格纸上3个小方格组成,我们称这样的图案为L 形,那么4×5个小方格组成的方格纸上可以画出不同位置的L 形图案个数是( )A 、16B 、32C 、48D 、64二、填空题(每小题4分,共32分)9、有理数c b a 、、在数轴上的位置,如图所示,若c c a b b a m ------+=11,则1000m =10、在矩形ABCD 中,DC =5cm ,在DC 上存在一点E ,沿直线AE 把AED ∆折叠,使点D 恰好落在BC 边上,设此点为F ,若ABF ∆的面积为30cm 2,那么折叠的AED ∆的面积为11、已知二次函数图象与x 轴两交点间的距离是8个单位,且顶点为)16,1(M ,则抛物线的解析式为12、如图,在ABC Rt ∆中,53sin ,90=︒=∠B C ,点D 在BC 边上,且6,45=︒=∠DC ADC , 则=∠BAD tan13、已知直角三角形的两直角边长分别为3cm 和4cm , 那么以直角边为直径的两圆公共弦长为 cm14、从两副拿掉大、小王的扑克牌中,各抽取一张、 两张牌,一张是红桃另一张为黑桃的概率是15、设x 、y 为正实数,且xy=1,当x= 时,b cED FABCDz=44411yx+的最小值为 。
16、如图,O 是等边△ABC 边的中点,也是等边△A 1B 1C 1一边的中点,则AA 1:BB 1= 。
三、解答题(每题12分,共36分)17、如下图所示,AB ⊥BC DC BC ⊥,垂足分别为B 、C(1)当AB =4,DC =1,BC =4时,在线段BC 上是否存在点P ,使AP PD ⊥? (2)设c AD b DC a AB ===,,,那么当c b a 、、之间满足什么关系时,在直线BC 上存在点P ,使AP PD ⊥?18、已知m x m x y ----=1)1(22的图象与x 轴交于21210),0,(),0,(x x x B x A <<,与y 轴交于C ,且满足COOBAO211=-(1)求这个二次函数解析式;(2)是否存在着直线b kx y +=与抛物线交于点P 、Q ,使y 轴平分CPQ ∆的面积?若存在,求出b k 、应满足的条件,若不存在,请说明理由.Cx19、已知⊙O的半径为1,以O为原点建立如图所示的直角坐标系,有一个正方形ABCD,顶点B的坐标为)13,顶点A在x轴上方,顶点D在⊙O上运动.(0,(1)当点D运动到与点OA、在一条直线上时,CD与⊙O相切吗?如果相切,请说明理由,并求出OD所在直线对应的函数表达式;如果不相切也请说明理由.(2)设点D的横坐标为x,正方形ABCD的面积为S,求出S与x的函数关系式,并求出S的最大值和最小值.数学答案17一、选择题1-4:C C C B 5-8:A B D C二、填空题9、-2000 10、16.9cm 211、16)1(15222+--=++-=x y x x y 或 12、71 13、512 14、161 15、24,116、1:3 三、解答题17、解:(1)如右图,如果存在点P ,使PD AP ⊥,那么︒=∠90APD ∴∠APB+∠CPD =90°,∴∠BPA =∠DPCCD BP PCAB PDC •APB =∴∆∆∴~ (3分)设x BP =,则x PC -=4,2144=∴=-∴x •x x∴在线段BC 上存在点P ,使PD AP ⊥,此时BP =2 (6分) (2)如果在BC 上存在点P ,使PD AP ⊥,则点P 在以AD 为直径的圆上,且圆的半径为c 21,边AD 的中点O ,作BC OE ⊥于E ,则)(21)(21b a CD AB OE +=+=(8分)∴当,21c OE <即21,P P c b a 、存在两点时<+满足条件当c OE 21=,即c b a =+时,存在一点P 满足条件 (10分)当c OE 21>,即c b a >+时,在直线BC 上不存在P 点,使PD PA ⊥ (12分)18、解:(1)mx x •CDOBAO---=--∴=-121121121mx x x x +=+-∴122121 (3分)ABCDEOPmm m •m •x x m x x +=+-∴--=-=+121121),1(22121)( 解得2=m ∴解析式为322--=x x y (6分)(2)假设存在直线b kx y +=与抛物线交于点P 、Q ,使y 轴平分CPQ ∆的面积分别在过P 、Q 点作y 轴的垂线,交y 轴于M 、N 点,设P 点坐标),(p p y x ,Q 点坐标为),(Q Q y x••QCD •PCQ S S ∆∆=∴QN CD PM CD ⋅=⋅∴21210=+∴=∴Q P x x •QN PM (8分)由⎩⎨⎧--=+=322x x y b kx y 得322--=+x x b kx ,即03)2(2=--+-b x k x Q P x x 、 是方程的两个实数根 022=+∴+=+∴k k •x x Q P2-=∴k (10分)303->∴>+b •b 又∴存在这样的直线,须满足3,2->-=b k (1219、解:(1)CD 与⊙O 相切 O D A 、、 在一条直线上,CD CDO ∴︒∠∴,=90是⊙O 的切线 (2分)CD 与⊙O 相切有两种情况 ①切点在第二象限时(如图1)设正方形ABCD 的边长为a ,则13)1(22=++a a32-==∴a a 或(舍去)当2=a 时,D 点坐标为)13132,13133(-CD ∴所在的直线方程为x y 32-= (5分)②切点在第四象限时,如图2,设正方形ABCD 的边长为b ,则13)1(22=-+b b解得3=b 或2-=b (舍去)当3=b 时,D 点坐标为)13133,13132(-∴CD 所在的直线方程为:x y 23-= (8分)(2)过点D 作DG ⊥OB 于G ,连结BD ,OD (如图3)则:BD 2=+2BG 2222221)13(x x OGODOG BO DG -+--=-+-)=(x 13214+= (10分) x BDABS 1372122+===∴ 11≤≤-x∴S 的最大值为137+,S 的最小值为137- (12分)图1图图3。