有趣的数学知识记忆方法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有趣的数学知识记忆方法
有趣的数学知识记忆方法
“四多”记忆法
要使记忆对象经久不忘,一般来说要经过多次反复的感知。

“四多”即多看、多听、多读、多写。

特别是边读边默写,记忆效果更佳。

例如,甲对某组公式单纯抄写四次,乙对同组公式抄写两次然后默写(默写不出时可看书)两次,实验证明,乙的记忆效果优于甲。

静心记忆法
记忆要从平心静气开始,根据一定的记忆目标,找出适合于自己学习特点的记忆方法。

比如记忆环境的选择就因人而异。

有人觉得早晨记忆力好;有人感到晚上记忆力好;有人习惯于边走边读边记;有人则要在安静的环境下记忆才好等等。

不管选择何种方式记忆,都必须保持“心静”。

心静才能集中注意力记忆,心静才能形成记忆的优势兴奋中心,记忆需从静始!
逻辑记忆法
按照知识的顺序、层次、系统列出某单元知识结构图,根据知识结构图逐步分层记忆,可提高记忆的效率。

例如,三角函数的和差角公式,倍角与半角公式,和积互换公式,就可按证明过程的逻辑先后顺序列出公式结构图帮助记忆;同角的三角函数间的关系(俗称八大公式)可根据三角函数线利用单位圆来帮助记忆;三角形的各种面积公式可按下面的逻辑顺序记忆
系统记忆法
有位青年总结自己的经验得出:“总结+消化=记忆”。

这正是根据系统记忆法的思想总结出来的。

因为系统记忆法,就是按照数学知识的系统性,把知识进行恰当的比较、分类、条理化,顺理成章,编织成网,这样记住的就不是零星的知识而是一串,它往往采取列表比较的形式,或抓住主线、内在联系把重要概念、公式和章节联系串为一个整体。

在学习中,应用系统记忆法来小结,总结整理自己的知识系统,对掌握知识大有裨益。

有趣的数学记忆法口诀
自变量的取值范围
分式分母不为零,
偶次根下负不行;
零次幂底数不为零,
整式、奇次根全能行。

函数图象的移动规律
若把一次函数解析式写成y=k(x+0)+b,二次函数的解析式写成y=a(x+h)2+k 的形式,则可用下面的口诀:
左右平移在括号,
上下平移在末稍,
左正右负须牢记,
上正下负错不了。

二次函数的图象与性质的口诀
二次函数抛物线,图象对称是关键;
开口、顶点和交点,它们确定图象现;
开口、大小由a断,c与y轴来相见,
b的符号较特别,符号与a相关联;
顶点位置先找见,y轴作为参考线,
左同右异中为0,牢记心中莫混乱;
顶点坐标最重要,一般式配方它就现,
横标即为对称轴,纵标函数最值见。

巧记三角函数定义
初中所学的三角函数有正弦、余弦、正切、余切,它们实际是直角三角形的边的比值,可以把两个字用/隔开,再用下面的.
一句话记定义:
一位不高明的厨子教徒弟杀鱼,说了这么一句话:“正对鱼磷(余邻)直刀切。

”正:正弦或正切,对:对边即正是对;余:余弦或余弦,邻:邻边即余是邻;切是直角边.
平行四边形的判定
要证平行四边形,两个条件才能行。

一证对边都相等,或证对边都平行。

一组对边也可以,必须相等且平行。

对角线,是个宝,互相平分“跑不了”。

函数学习口决
正比例函数是直线,图象一定过原点,
k的正负是关键,决定直线的象限,
负k经过二四限,x增大y在减,
上下平移k不变,由引得到一次线,
向上加b向下减,图象经过三个限,
两点决定一条线,选定系数是关键。

反比例函数双曲线,待定只需一个点,
正k落在一三限,x增大y在减,
图象上面任意点,矩形面积都不变,
对称轴是角分线,x、y的顺序可交换。

二次函数抛物线,选定需要三个点,
a的正负开口判,c的大小y轴看,
△的符号最简便,x轴上数交点,
a、b同号轴左边,抛物线平移a不变,
顶点牵着图象转,三种形式可变换,
配方法作用最关键。

相关文档
最新文档