高二数学选修1-1知识点
数学高二选修一知识点归纳
数学高二选修一知识点归纳高二数学选修一知识点归纳一、数列与数列的通项公式数列是一系列按照一定规律排列的数的集合。
常见的数列有等差数列和等比数列。
等差数列中,相邻两项之间的差值是一个常数,称为公差;等比数列中,相邻两项之间的比值是一个常数,称为公比。
数列的通项公式是通过观察数列规律得到的一个表示第n项与n的关系的公式。
掌握求解数列的通项公式,并能灵活运用。
二、函数与函数的图像函数是一种特殊的关系,它将一个集合的元素对应到另一个集合的元素。
常见的函数类型有线性函数、二次函数、指数函数等。
函数的图像是函数在坐标系中的表示,通过画出函数的图像,可以更加直观地了解函数的性质,如增减性、奇偶性、单调性等。
在绘制函数图像时,需要注意的是选择适当的坐标轴范围、标注关键点和曲线的趋势。
三、三角函数与三角恒等式三角函数是描述角度和边长之间关系的一组函数,包括正弦函数、余弦函数、正切函数等。
它们在几何、物理、工程等领域具有广泛的应用。
三角恒等式是指在三角函数中满足恒等关系的式子,例如正弦函数的平方加余弦函数的平方等于1。
掌握三角函数的定义、性质以及三角恒等式的推导和应用。
四、数列和矩阵的和与积数列的和是指将数列中所有元素相加的结果,常用的有等差数列的和公式和等比数列的和公式。
矩阵的和是指将两个矩阵中对应位置的元素相加得到的新矩阵。
数列和矩阵的积是指将数列中所有元素相乘的结果,常用的有等比数列的积公式和矩阵的乘法规则。
熟练掌握计算数列和矩阵的和与积的方法。
五、解三角函数方程和解二次方程三角函数方程是指含有三角函数的方程,解三角函数方程的关键是找到方程的解集。
解二次方程是指求解形式为ax^2 + bx + c = 0的方程。
根据二次方程的特点,可以使用求根公式或配方法来求解。
熟练掌握解三角函数方程和解二次方程的方法,并能灵活运用以解决实际问题。
六、平面向量的运算与坐标表示平面向量是指具有大小和方向的量,可以表示为带箭头的线段。
高二数学选修1-1第一章常用逻辑用语
常用逻辑用语一、命题及其关系考点:要点1.命题:一般地,把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.要点2.四种命题:(1)一般地,用p和q分别表示命题的条件和结论,用¬p和¬q分别表示p和q的否定,于是四种命题的形式就是:原命题:若p,则q;逆命题:若q,则p;否命题:若¬p,则¬q;逆否命题:若¬q,则¬p.要点3.四种命题的关系:互为逆否的两个命题同真假.考点1. 命题及其真假判断:例1、判断下列语句是否是命题?若是,判断其真假并说明理由。
1)x>1或x=1;2)如果x=1,那么x=33)x2-5x+6=0; 4)当x=4时,2x<0; 5)垂直于同一条直线的两条直线必平行吗?6)矩形难道不是平行四边形吗? 7)矩形是平行四边形吗?;8)求证:若x∈R,方程x2-x+1=0无实根.解析:1)不是,x值不确定。
2)是,假命题3)不是命题.因为语句中含有变量x,在不给定变量的值之前,我们无法确定这语句的真假.同样如“2x>0”也不是命题.4)是命题.它是作出判断的语言,它是一个假命题.5)不是命题.因为并没有对垂直于同一条直线的两条直线平行作出判断,疑问句不是命题.6)是命题.通过反意疑问句对矩形是平行四边形作出了判断,它是真命题.7)不是.不是陈述句8)不是命题.它是祈使句,没有作出判断.如“把门关上”是祈使句,也不是命题.练一练: 1. 判断下列语句是不是命题。
(1)2+22是有理数; (2)1+1>2; (3)2100是个大数; (4)986能被11整除;(5)非典型性肺炎是怎样传播的? (6)(6)x ≤3。
2. 判断下列语句是不是命题。
(1)矩形难道不是平行四边形吗? (2)垂直于同一条直线的两条直线平行吗? (3)一个数不是合数就是质数。
(4)大角所对的边大于小角所对的边; (5)y+x 是有理数,则x 、y 也是有理数。
高二数学选修11知识点
高二数学选修11知识点1. 复数及其运算1.1 复数的定义在数学中,复数可以表示为a+bi的形式,其中a和b为实数,i 为虚数单位。
1.2 复数的运算复数的加减法:将实部和虚部分别相加减即可得到结果。
复数的乘法:使用分配律,将每一项相乘并整理后可得到结果。
复数的除法:为了除掉虚数,可以将分子和分母同时乘以共轭复数,然后进行乘法和整理,最后可得到结果。
2. 复数的表示形式2.1 广义辐角表示形式复数可以通过广义辐角来表示,即z = r(cosθ + isinθ),其中r为绝对值,θ为辐角。
2.2 三角形式表示复数也可以通过三角形式来表示,即z = r·exp(iθ),其中r为绝对值,θ为辐角。
3. 复数的应用3.1 复数在代数方程中的应用复数可以用来解决一些无实数解的代数方程,比如平方根为负数的情况。
3.2 复数在电路中的应用在电路分析中,复数可以用来表示电压和电流的相位关系,从而帮助进行分析和计算。
3.3 复数在信号处理中的应用复数在信号处理中有广泛的应用,特别是在频域上的分析和处理中,包括傅里叶变换等。
4. 多项式函数4.1 多项式的定义在代数学中,多项式是由系数和幂次构成的表达式,例如f(x)= anxn + an-1xn-1 + ... + a1x + a0。
4.2 多项式函数的性质多项式函数具有以下性质:- 多项式函数的导数是另一个多项式函数;- 多项式函数的次数是最高次幂的次数;- 多项式函数可以通过多项式除法进行因式分解等。
5. 三角函数的复数表示5.1 正弦函数的复数表示正弦函数可以通过欧拉公式表示为sin(x) = (e^(ix) - e^(-ix)) /(2i)。
5.2 余弦函数的复数表示余弦函数可以通过欧拉公式表示为cos(x) = (e^(ix) + e^(-ix)) / 2。
5.3 欧拉公式欧拉公式指出e^(ix) = cos(x) + isin(x),在复数运算和三角函数的复数表示中起到重要的作用。
高中数学 复习课(一)常用逻辑用语讲义(含解析)新人教A版选修1-1-新人教A版高二选修1-1数学教
复习课(一) 常用逻辑用语命题及其关系通过选择题、填空题的方式设置一些多知识点、知识跨度大的试题,考查命题及其关系,以及对命题真假的判断.[考点精要]四种命题的相互改写交换原命题的条件和结论,所得的命题是原命题的逆命题;同时否定原命题的条件和结论,所得的命题是原命题的否命题;交换原命题的条件和结论,并且同时否定,所得的命题是原命题的逆否命题.[注意] 互为逆否命题的两个命题,它们具有相同的真假性.[典例] 将下列命题改写成“若p,则q”的形式,并写出它的逆命题、否命题和逆否命题并判断它们的真假.(1)垂直于同一平面的两条直线平行;(2)当mn<0时,方程mx2-x+n=0有实数根.[解] (1)将命题写成“若p,则q”的形式为:若两条直线垂直于同一个平面,则这两条直线平行.它的逆命题、否命题和逆否命题如下:逆命题:若两条直线平行,则这两条直线垂直于同一个平面.(假命题)否命题:若两条直线不垂直于同一个平面,则这两条直线不平行.(假命题)逆否命题:若两条直线不平行,则这两条直线不垂直于同一个平面.(真命题)(2)将命题写成“若p,则q”的形式为:若mn<0,则方程mx2-x+n=0有实数根.它的逆命题、否命题和逆否命题如下:逆命题:若方程mx2-x+n=0有实数根,则mn<0.(假命题)否命题:若mn≥0,则方程mx2-x+n=0没有实数根.(假命题)逆否命题:若方程mx2-x+n=0没有实数根,则mn≥0.(真命题)[类题通法]简单命题真假的判断方法[题组训练]1.命题“若函数f (x )=x 2-ax +3在[1,+∞)上是增函数,则a ≤2”的否命题( ) A .与原命题同为假命题 B .与原命题一真一假 C .为假命题D .为真命题解析:选D 原命题显然为真,原命题的否命题为“若函数f (x )=x 2-ax +3在[1,+∞)上不是增函数,则a >2”,为真命题,故选D.2.下列命题中为真命题的是( ) A .命题“若a >b ,则3a >3b”的逆命题 B .命题“若x 2≤1,则x ≤1”的否命题 C .命题“若x =1,则x 2-x =0”的否命题 D .命题“若a >b ,则1a <1b”的逆否命题解析:选A 对于A ,逆命题是“若3a >3b,则a >b ”,是真命题;对于B ,否命题是“若x 2>1,则x >1”,是假命题,因为x 2>1⇔x >1或x <-1;对于C ,否命题是“若x ≠1,则x 2-x ≠0”,是假命题,因为当x =0时,x 2-x =0;对于D ,逆否命题是“若1a ≥1b,则a ≤b ”,是假命题,如a =1,b =-1.故选A.3.下列说法中错误的个数是( )①命题“余弦函数是周期函数”的否命题是“余弦函数不是周期函数” ②命题“若x >1,则x -1>0”的否命题是“若x ≤1,则x -1≤0” ③命题“两个正数的和为正数”的否命题是“两个负数的和为负数”④命题“x =-4是方程x 2+3x -4=0的根”的否命题是“x =-4不是方程x 2+3x -4=0的根”A .1B .2C .3D .4解析:选C ①错误,否命题是“若一个函数不是余弦函数,则它不是周期函数”;②正确;③错误,否命题是“若两个数不全为正数,则它们的和不为正数”;④错误,否命题是“若一个数不是-4,则它不是方程x 2+3x -4=0的根”.充分条件与必要条件充要条件是数学的重要概念之一,在数学中有着非常广泛的应用,在高考中有着较高的考查频率,其特点是以高中数学的其他知识为载体考查充分条件、必要条件、充要条件的判断.[考点精要]充分条件、必要条件与充要条件(1)如果p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件; (2)如果p ⇒q ,q ⇒p ,则p 是q 的充要条件.[典例] (1)(2017·某某高考)已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4+S 6>2S 5”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件(2)(2017·某某高考)设θ∈R ,则“⎪⎪⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件[解析] (1)因为{a n }为等差数列,所以S 4+S 6=4a 1+6d +6a 1+15d =10a 1+21d,2S 5=10a 1+20d ,S 4+S 6-2S 5=d ,所以d >0⇔S 4+S 6>2S 5.(2)法一:由⎪⎪⎪⎪⎪⎪θ-π12<π12,得0<θ<π6,故sin θ<12.由sin θ<12,得-7π6+2k π<θ<π6+2k π,k ∈Z ,推不出“⎪⎪⎪⎪⎪⎪θ-π12<π12”.故“⎪⎪⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的充分而不必要条件.法二:⎪⎪⎪⎪⎪⎪θ-π12<π12⇒0<θ<π6⇒sin θ<12,而当sin θ<12时,取θ=-π6,⎪⎪⎪⎪⎪⎪-π6-π12=π4>π12. 故“⎪⎪⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的充分而不必要条件. [答案] (1)C (2)A [类题通法]充要关系的判断方法(1)定义法:直接判断若p则q,若q则p的真假.(2)等价法:利用A⇒B与綈B⇒綈A,B⇒A与綈A⇒綈B,A⇔B与綈B⇔綈A的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)利用集合间的包含关系判断:若A⊆B,则A是B的充分条件或B是A的必要条件;若A=B,则A是B的充要条件.[题组训练]1.设四边形ABCD的两条对角线为AC,BD,则“四边形ABCD为菱形”是“AC⊥BD”的( )A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件解析:选A 若四边形ABCD为菱形,则AC⊥BD,反之,若AC⊥BD,则四边形ABCD不一定是菱形,故选A.2.设α,β是两个不同的平面,m是直线且m⊂α,“m∥β”是“α∥β”的( ) A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件解析:选B 当m∥β时,过m的平面α与β可能平行也可能相交,因而m∥β⇒/ α∥β;当α∥β时,α内任一直线与β平行,因为m⊂α,所以m∥β.综上知,“m∥β”是“α∥β”的必要不充分条件.3.对于任意实数x,〈x〉表示不小于x的最小整数,例如〈1.1〉=2,〈-1.1〉=-1,那么“|x-y|<1”是“〈x〉=〈y〉”的( )A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件解析:选B 当x=1.8,y=0.9时,满足|x-y|<1,但〈1.8〉=2,〈0.9〉=1,即〈x〉≠〈y〉;当〈x〉=〈y〉时,必有|x-y|<1,所以“|x-y|<1”是“〈x〉=〈y〉”的必要不充分条件,故选B.含有逻辑联结词、量词的命题的真假,以及全称命题,特称命题的否定.[考点精要]1.含有逻辑联结词的命题与集合之间的关系2.全称命题、特称命题的否定全称命题“∀x ∈M ,p (x )”的否定是“∃x 0∈M ,綈p (x 0)”,特称命题“∃x 0∈M ,p (x 0)”的否定是“∀x ∈M ,綈p (x )”.[典例] (1)已知命题p :∀x 1,x 2∈R ,[f (x 2)-f (x 1)](x 2-x 1)≥0,则綈p 是( ) A .∃x 1,x 2∈R ,[f (x 2)-f (x 1)](x 2-x 1)≤0 B .∀x 1,x 2∈R ,[f (x 2)-f (x 1)](x 2-x 1)≤0 C .∃x 1,x 2∈R ,[f (x 2)-f (x 1)](x 2-x 1)<0 D .∀x 1,x 2∈R ,[f (x 2)-f (x 1)](x 2-x 1)<0(2)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题:p 1:|a +b |>1⇔θ∈⎣⎢⎡⎭⎪⎫0,2π3; p 2:|a +b |>1⇔θ∈⎝⎛⎦⎥⎤2π3,π;p 3:|a -b |>1⇔θ∈⎣⎢⎡⎭⎪⎫0,π3;p 4:|a -b |>1⇔θ∈⎝ ⎛⎦⎥⎤π3,π.其中的真命题是( ) A .p 1,p 4 B .p 1,p 3 C .p 2,p 3D .p 2,p 4[解析] (1)已知全称命题p :∀x 1,x 2∈R ,[f (x 2)-f (x 1)]·(x 2-x 1)≥0,则綈p :∃x 1,x 2∈R ,[f (x 2)-f (x 1)](x 2-x 1)<0,故选C.(2)由|a +b |>1可得:a 2+2a ·b +b 2>1,∵|a |=1,|b |=1,∴a ·b >-12.故θ∈⎣⎢⎡⎭⎪⎫0,2π3.当θ∈⎣⎢⎡⎭⎪⎫0,2π3时,a ·b >-12,|a +b |2=a 2+2a ·b +b 2>1,即|a +b |>1;由|a -b |>1可得:a 2-2a ·b +b 2>1,∵|a |=1,|b |=1,∴a ·b <12.故θ∈⎝ ⎛⎦⎥⎤π3,π,反之也成立.[答案] (1)C (2)A [类题通法]1.判断含有逻辑联结词的命题真假的方法 (1)先确定简单命题p ,q .(2)分别确定简单命题p ,q 的真假. (3)利用真值表判断所给命题的真假. 2.判断含有量词的命题真假的方法(1)全称命题的真假判定:要判定一个全称命题为真,必须对限定集合M 中每一个x 验证 p (x )成立,一般用代数推理的方法加以证明;要判定一个全称命题为假,只需举出一个反例即可.(2)特称命题的真假判定:要判定一个特称命题为真,只要在限定集合M 中,能找到一个x =x 0,使p (x 0)成立即可;否则,这一特称命题为假.(3)全称命题的否定一定是特称命题,特称命题的否定一定是全称命题.首先改变量词,把全称量词改为存在量词,把存在量词改为全称量词,然后把判断词加以否定.[题组训练]1.设命题p :函数y =sin 2x 的最小正周期为π2;命题q :函数y =cos x 的图象关于直线x =π2对称,则下列判断正确的是( )A .p 为真B .綈q 为假C .p ∧q 为假D .p ∨q 为真解析:选C 由题意p 与q 均为假命题,故p ∧q 为假.2.命题“存在x ∈R ,使得x 2+2x +5=0”的否定是________________.解析:这里给出的是一个特称命题,其否定是一个全称命题.等于的否定是不等于. 答案:对任意的x ∈R ,都有x 2+2x +5≠03.已知p :点M (2,3)在直线ax -y +1=0上,q :方程x 2+y 2+x +y +a =0表示圆,p ∨q 是假命题,某某数a 的取值X 围.解:当p 是真命题时,2a -3+1=0,即a =1, 所以当p 是假命题时,a ≠1;当q 是真命题时,1+1-4a >0,即a <12,所以当q 是假命题时,a ≥12.又p ∨q 是假命题,所以p ,q 均为假命题, 所以a ≥12且a ≠1,所以实数a 的取值X 围是⎣⎢⎡⎭⎪⎫12,1∪(1,+∞).1.设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :∀x ∈A,2x ∈B ,则( ) A .綈p :∃x ∈A,2x ∈B B .綈p :∃x ∉A,2x ∈B C .綈p :∃x ∈A,2x ∉BD .綈p :∀x ∉A,2x ∉B解析:选C 命题p 是全称命题:∀x ∈M ,p (x ),则綈p 是特称命题:∃x ∈M ,綈p (x ).故选C.2.命题p :若ab =0,则a =0;命题q :若a =0,则ab =0,则( ) A .“p 或q ”为假 B .“p 且q ”为真 C .p 真q 假D .p 假q 真解析:选D 由条件易知:命题p 为假命题,命题q 为真命题,故p 假q 真.从而“p 或q ”为真,“p 且q ”为假.3.下列命题中,真命题是( ) A .∃x 0∈R ,e x 0≤0 B .∀x ∈R,2x >x 2C .a +b =0的充要条件是ab=-1 D .a >1,b >1是ab >1的充分条件解析:选D ∵∀x ∈R ,e x >0,∴A 错;∵函数y =2x 与y =x 2的图象有交点,如点(2,2),此时2x=x 2,∴B 错;∵当a =b =0时,a +b =0,而0作分母无意义,∴C 错;a >1,b >1,由不等式可乘性知ab >1,∴D 正确.4.设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b ⊥m ,则“α⊥β”是“a ⊥b ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A 先证“α⊥β⇒a ⊥b ”.∵α⊥β,α∩β=m ,b ⊂β,b ⊥m ,∴b ⊥α.又∵a ⊂α,∴b ⊥a ;再证“a ⊥b ⇒/ α⊥β”.举反例,当a ∥m 时,由b ⊥m 知a ⊥b ,此时二面角αm β可以为(0,π]上的任意角,即α不一定垂直于β.故选A.5.下列有关命题的说法错误的是( )A .命题“若x 2-1=0,则x =1”的逆否命题为“若x ≠1,则x 2-1≠0” B .“x =1”是“x 2-3x +2=0”的充分不必要条件 C .若集合A ={x |kx 2+4x +4=0}中只有一个元素,则k =1D .对于命题p :∃x 0∈R ,使得x 20+x 0+1<0,则綈p :∀x ∈R ,均有x 2+x +1≥0 解析:选C A 显然正确;当x =1时,x 2-3x +2=0成立,但x 2-3x +2=0时,x =1或x =2,故“x =1”是“x 2-3x +2=0”的充分不必要条件,B 正确;若集合A ={x |kx 2+4x +4=0}中只有一个元素,则k =0或k =1,故C 错误;D 显然正确.6.已知p :m -1<x <m +1,q :(x -2)(x -6)<0,且q 是p 的必要不充分条件,则m 的取值X 围是( )A .(3,5)B .[3,5]C .(-∞,3)∪(5,+∞)D .(-∞,3]∪[5,+∞)解析:选B p :m -1<x <m +1,q :2<x <6.因为q 是p 的必要不充分条件,所以由p 能得到q ,而由q 得不到p ,所以可得⎩⎪⎨⎪⎧m -1>2,m +1≤6或⎩⎪⎨⎪⎧m -1≥2,m +1<6.解得3≤m ≤5.7.命题“在△ABC 中,如果∠C =90°,那么c 2=a 2+b 2”的逆否命题是__________________________________.答案:在△ABC 中,若c 2≠a 2+b 2,则∠C ≠90°8.设p :x >2或x <23;q :x >2或x <-1,则綈p 是綈q 的________条件.解析:綈p :23≤x ≤2.綈q :-1≤x ≤2.因为綈p ⇒綈q ,但綈q ⇒/ 綈p . 所以綈p 是綈q 的充分不必要条件. 答案:充分不必要9.已知命题p :“∀x ∈[1,2],x 2-a ≥0”,命题q :“∃x 0∈R ,x 20+2ax 0+2-a =0”,若命题“p 且q ”是真命题,则实数a 的取值X 围是________.解析:命题p :“∀x ∈[1,2],x 2-a ≥0”为真,则a ≤x 2,x ∈[1,2]恒成立,所以a ≤1. 命题q :“∃x 0∈R ,x 20+2ax 0+2-a =0”为真, 则“4a 2-4(2-a )≥0,即a 2+a -2≥0”,解得a ≤-2或a ≥1. 若命题“p 且q ”是真命题,则实数a 的取值X 围是(-∞,-2]∪{1}. 答案:(-∞,-2]∪{1}10.已知p :x 2-8x -20>0,q :x 2-2x +1-a 2>0,若p 是q 的充分不必要条件,求正实数a 的取值X 围.解:p :x 2-8x -20>0⇔x <-2或x >10, 令A ={x |x <-2或x >10},∵a >0,∴q :x <1-a 或x >1+a , 令B ={x |x <1-a 或x >1+a }, 由题意p ⇒q 且q ⇒/ p ,知A B ,应有⎩⎪⎨⎪⎧a >0,1+a <10,1-a ≥-2或⎩⎪⎨⎪⎧a >0,1+a ≤10,1-a >-2⇒0<a ≤3,∴a 的取值X 围为(0,3].11.已知函数f (x )=⎩⎪⎨⎪⎧-x -1,x <-2,x +3-2≤x ≤12.(1)求函数f (x )的最小值;(2)已知m ∈R ,命题p :关于x 的不等式f (x )≥m 2+2m -2对任意m ∈R 恒成立;q :函数y =(m 2-1)x是增函数.若“p 或q ”为真,“p 且q ”为假,某某数m 的取值X 围.解:(1)作出函数f (x )的图象,可知函数f (x )在(-∞,-2)上单调递减,在⎝ ⎛⎭⎪⎫-2,12上单调递增,故f (x )min =f (-2)=1.(2)对于命题p ,m 2+2m -2≤1, 故-3≤m ≤1; 对于命题q ,m 2-1>1,故m >2或m <- 2.由于“p 或q ”为真,“p 且q ”为假,则p 与q 一真一假.①若p 真q 假,则⎩⎨⎧-3≤m ≤1,-2≤m ≤2,解得-2≤m ≤1.②若p 假q 真,则⎩⎨⎧m >1或m <-3,m <-2或m >2,解得m <-3或m > 2. 故实数m 的取值X 围是(-∞,-3)∪[-2,1]∪(2,+∞).。
选修1-1第三章第2节导数公式及运算法则(文)
='])([x kf )(x f k '; =±)'(v u ''v u ±;=)'(uv u v v u '+'; =⎪⎭⎫ ⎝⎛'v u 2v uv v u '-'(0)v ≠。
知识点一:利用公式与运算法则求导数例1 求下列函数的导数: (1)cos x y e x = (2)ln 1x y x =- (3)2tan y x x =+ (4)x y xe -=思路分析:看清结构,根据公式和法则进行运算。
解答过程:(1)x e x e x e x e y x x x x sin cos )(cos cos )(-='+'=')sin (cos x x e x -=1(1)ln ln (ln )(1)(1)ln ln 1(x x x x x x xx x x--''-----21324354()()(sin )sin cos ()()(sin cos )2cos ()()(2cos )2(cos sin )()()[2(cos sin )]4sin x x xxxxxxxxxxf x f x e x e x e xf x f x e x e x e xf x f x e x e x e x f x f x e x e x e x''===+''==+=''===-''==-=-……观察规律,发现每求4次导,sin x e x 循环出现,且导数值变为上个周期的-4倍, 1234567829101112(0)(0)(0)(0)01225(0)(0)(0)(0)0(4)(8)(8)5(4)(0)(0)(0)(0)5(4)f f f f f f f f f f f f +++=+++=+++=+-+-+-=⨯-+++=⨯- …… 所以:20122502(0)55(4)5(4)...5(4)i f =+⨯-+⨯-++⨯-∑解题后的思考:与判别式法求切线相比,用导数求切线,扩大了可求切线的函数图象的范围,且运算量小。
人教版高二数学选修1-1《双曲线及标准方程、几何性质》
双曲线及标准方程、几何性质一、双曲线的定义及标准方程【知识要点】1. 双曲线的定义第一定义:平面内与两定点21,F F 的距离之差的绝对值为常数(小于21F F )的点的轨迹叫双曲线.第二定义:平面内与一个定点F 和一条定直线)(l F l ∉的距离之比是常数)),1((+∞∈e e 的点的轨迹叫做双曲线。
2. 双曲线的方程(1)标准方程:12222=-b y a x 或12222=-b x a y ,其中222,0,0b a c b a +=>>。
(2)一般方程:122=+By Ax ,其中0<AB【基础训练】1.已知点)0,5(1-F ,)0,5(2-F ,动点P 满足821=-PF PF ,则动点P 的轨迹是( ) A.椭圆 B.双曲线 C.两条射线 D.线段 2.已知双曲线19422=-y x 上一点P 到一个焦点的距离为5,则P 到另一个焦点的距离为( )A.1B.9C.1或9D.4或93.到两定点)5,0(),5,0(B A -的距离之差的绝对值为6的动点的轨迹方程为 。
4.两个焦点的坐标分别为)0,2(),0,2(-,并且经过)2,3(的双曲线的标准方程是 。
5.已知平面内有一长度为4的定线段AB ,动点P 满足3=-PB PA ,O 为AB 的中点,则OP 的最小值为 。
【典例精析】例1.方程13122=-+-my m x 表示焦点在y 轴上的双曲线,则m 的范围是( ) A. 3<m 且1≠m B.1>m 且3≠m C.31<<mD.3>m 或1-<m例2.已知双曲线的中心在原点,焦点在坐标轴上,分别求满足下列条件的双曲线的方程.(1)一个焦点为)0,4(-,且一条渐近线的方程是023=-y x ;(2)离心率为2,且过点)10,4(-P .例3.求与圆4)2(22=++y x 外切,并过定点)0,2(B 的动圆圆心M 的轨迹方程。
高二数学选修1-1知识点
高二数学选修1-1知识点第一章:命题与逻辑结构 知识点:1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句. 假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题. 若原命题为“若p ,则q ”,它的逆命题为“若q ,则p ”.4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题. 若原命题为“若p ,则q ”,则它的否命题为“若p ⌝,则q ⌝”.5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命题. 若原命题为“若p ,则q ”,则它的逆否命题为“若q ⌝,则p ⌝”.6、四种命题的真假性:原命题 逆命题 否命题 逆否命题 真 真 真 真 真 假 假 真 假 真 真 真 假 假 假 假四种命题的真假性之间的关系:()1两个命题互为逆否命题,它们有相同的真假性;()2两个命题为互逆命题或互否命题,它们的真假性没有关系.7、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).8、用联结词“且”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∧.当p 、q 都是真命题时,p q ∧是真命题;当p 、q 两个命题中有一个命题是假命题时,p q ∧是假命题.用联结词“或”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∨. 当p 、q 两个命题中有一个命题是真命题时,p q ∨是真命题;当p 、q 两个命题都是假命题时,p q ∨是假命题.对一个命题p 全盘否定,得到一个新命题,记作p ⌝.若p 是真命题,则p ⌝必是假命题;若p 是假命题,则p ⌝必是真命题.9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“∀”表示. 含有全称量词的命题称为全称命题.全称命题“对M 中任意一个x ,有()p x 成立”,记作“x ∀∈M ,()p x ”. 短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“∃”表示. 含有存在量词的命题称为特称命题.特称命题“存在M 中的一个x ,使()p x 成立”,记作“x ∃∈M ,()p x ”.10、全称命题p :x ∀∈M ,()p x ,它的否定p ⌝:x ∃∈M ,()p x ⌝.全称命题的否定 是特称命题.考点:1、充要条件的判定 2、命题之间的关系★1.命题“对任意的3210x x x ∈-+R ,≤”的否定是( ) A .不存在3210x R x x ∈-+,≤ B .存在3210x R x x ∈-+,≤ C .存在3210x R x x ∈-+>,D .对任意的3210x R x x ∈-+>,★2、给出命题:若函数y =f (x )是幂函数,则函数y =f (x )的图象不过第四象限,在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是 (A)3(B)2(C)1(D)0★3. 已知α,β表示两个不同的平面,m 为平面α内的一条直线,则“αβ⊥”是“m β⊥”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件第二章:圆锥曲线 知识点:1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆.这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距.2、椭圆的几何性质: 焦点的位置 焦点在x 轴上焦点在y 轴上图形标准方程()222210x y a b a b +=>> ()222210y x a b a b +=>> 范围a x a -≤≤且b y b -≤≤b x b -≤≤且a y a -≤≤顶点()1,0a A -、()2,0a A()10,b B -、()20,b B()10,a A -、()20,a A ()1,0b B -、()2,0b B 轴长 短轴的长2b = 长轴的长2a =焦点 ()1,0F c -、()2,0F c()10,F c -、()20,F c焦距 ()222122F F c c a b ==-对称性 关于x 轴、y 轴、原点对称离心率)01c e e a ==<<准线方程2a x c=±2a y c=±3、设M 是椭圆上任一点,点M 到1F 对应准线的距离为1d ,点M 到2F 对应准线的距离为2d ,则1212F F e d d M M ==.4、平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.5、双曲线的几何性质:焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程()222210,0x y a b a b -=>> ()222210,0y x a b a b-=>> 范围 x a ≤-或x a ≥,y R ∈y a ≤-或y a ≥,x R ∈顶点 ()1,0a A -、()2,0a A ()10,a A -、()20,a A 轴长 虚轴的长2b = 实轴的长2a =焦点 ()1,0F c -、()2,0F c()10,F c -、()20,F c焦距 ()222122F F c c a b ==+对称性 关于x 轴、y 轴对称,关于原点中心对称离心率)1c e e a ==>准线方程2a x c =±2a y c =±渐近线方程b y x a=±a y x b=±6、实轴和虚轴等长的双曲线称为等轴双曲线.7、设M 是双曲线上任一点,点M 到1F 对应准线的距离为1d ,点M 到2F 对应准线的距离为2d ,则1212F F e d d M M ==.8、平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.定点F 称为抛物线的焦点,定直线l 称为抛物线的准线. 9、抛物线的几何性质:标准方程22y px =()0p >22y px =- ()0p > 22x py = ()0p > 22x py =-()0p >图形顶点()0,0对称轴x 轴y 轴焦点,02p F ⎛⎫ ⎪⎝⎭ ,02p F ⎛⎫- ⎪⎝⎭ 0,2p F ⎛⎫ ⎪⎝⎭0,2p F ⎛⎫- ⎪⎝⎭准线方程2px =-2px =2p y =-2p y =离心率1e =范围0x ≥ 0x ≤ 0y ≥ 0y ≤10、过抛物线的焦点作垂直于对称轴且交抛物线于A 、B 两点的线段AB ,称为抛物线的“通径”,即2p AB =.考点:1、圆锥曲线方程的求解2、直线与圆锥曲线综合性问题3、圆锥曲线的离心率问题典型例题:★★1.设O 是坐标原点,F 是抛物线22(0)y px p =>的焦点,A 是抛物线上的一点,FA 与x 轴正向的夹角为60,则OA 为( )A .214pB.2C.6p D .1336p ★★2.与直线20x y +-=和曲线221212540x y x y +--+=都相切的半径最小的圆的标准方程是 .★★★3.(本小题满分14分) 已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.(1)求椭圆C 的标准方程;(2)若直线:l y kx m =+与椭圆C 相交于A B ,两点(A B ,不是左右顶点),且以AB 为直径的图过椭圆C 的右顶点.求证:直线l 过定点,并求出该定点的坐标.第三章:导数及其应用 知识点:1、若某个问题中的函数关系用()f x 表示,问题中的变化率用式子()()2121f x f x x x --fx ∆=∆表示,则式子()()2121f x f x x x --称为函数()f x 从1x 到2x 的平均变化率. 2、函数()f x 在0x x =处的瞬时变化率是()()210021limlimx x f x f x fx x x∆→∆→-∆=-∆,则称它为函数()y f x =在0x x =处的导数,记作()0f x '或0x x y =',即()()()0000limx f x x f x f x x∆→+∆-'=∆.3、函数()y f x =在点0x 处的导数的几何意义是曲线()y f x =在点()()00,x f x P 处的切线的斜率.曲线()y f x =在点()()00,x f x P 处的切线的斜率是()0f x ',切线的方程为()()()000y f x f x x x '-=-.若函数在0x 处的导数不存在,则说明斜率不存在,切线的方程为0x x =. 4、若当x 变化时,()f x '是x 的函数,则称它为()f x 的导函数(导数),记作()f x '或y ',即()()()limx f x x f x f x y x∆→+∆-''==∆.5、基本初等函数的导数公式:()1若()f x c =,则()0f x '=;()2若()()*n f x x x Q =∈,则()1n f x nx -'=; ()3若()sin f x x =,则()cos f x x '=;()4若()cos f x x =,则()sin f x x '=-; ()5若()x f x a =,则()ln x f x a a '=;()6若()x f x e =,则()x f x e '=; ()7若()log a f x x =,则()1ln f x x a '=;()8若()ln f x x =,则()1f x x '=.6、导数运算法则:()1 ()()()()f x g x f x g x '''±=±⎡⎤⎣⎦; ()2 ()()()()()()f x g x f x g x f x g x '''⋅=+⎡⎤⎣⎦; ()3()()()()()()()()()20f x f x g x f x g x g x g x g x '⎡⎤''-=≠⎢⎥⎡⎤⎣⎦⎣⎦. 7、对于两个函数()y f u =和()u g x =,若通过变量u ,y 可以表示成x 的函数,则称这个函数为函数()y f u =和()u f x =的复合函数,记作()()y f g x =.复合函数()()y f g x =的导数与函数()y f u =,()u g x =的导数间的关系是x u x y y u '''=⋅.8、在某个区间(),a b 内,若()0f x '>,则函数()y f x =在这个区间内单调递增;若()0f x '<,则函数()y f x =在这个区间内单调递减.9、点a 称为函数()y f x =的极小值点,()f a 称为函数()y f x =的极小值;点b 称为函数()y f x =的极大值点,()f b 称为函数()y f x =的极大值.极小值点、极大值点统称为极值点,极大值和极小值统称为极值.10、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时:()1如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; ()2如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值.11、求函数()y f x =在[],a b 上的最大值与最小值的步骤是:()1求函数()y f x =在(),a b 内的极值;()2将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的一个是最大值,最小的一个是最小值.考点:1、导数在切线方程中的应用2、导数在单调性中的应用3、导数在极值、最值中的应用4、导数在恒成立问题中的应用典型例题★1.(05全国卷Ⅰ)函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =( ) A .2 B. 3 C. 4 D.5★2.函数5123223+--=x x x y 在[0,3]上的最大值与最小值分别是( ) A.5 , - 15 B.5 , 4 C.- 4 , - 15 D.5 , - 16 ★★★3.(根据04年天津卷文21改编)已知函数)0()(3≠++=a d cx ax x f 是R 上的奇函数,当1=x 时)(x f 取得极值-2.(1)试求a 、c 、d 的值;(2)求)(x f 的单调区间和极大值;★★★4.(根据山东2008年文21改编)设函数2312)(bx ax e x x f x ++=-,已知12=-=x x 和为)(x f 的极值点。
高二数学选修1知识点
高二数学选修1知识点数学是一门基础性学科,是培养学生综合思维能力和逻辑推理能力的重要学科之一。
高二数学选修1是高中数学课程中的一部分,是为了满足学生个性化发展需求和应对高考的要求而设置的选修课程。
下面将介绍高二数学选修1的几个重要知识点。
一、立体几何1.空间直线和平面的方程空间直线和平面的方程是立体几何中的重要内容。
直线的方程可以用点向式、对称式和一般式表示,平面的方程可以用点法式和一般式表示。
在解题过程中,我们需要根据已知的条件将问题转化为方程,然后进行求解。
2.空间几何体的性质和计算常见的空间几何体包括球、锥、柱、棱柱等。
我们需要掌握它们的性质和计算方法,如球的体积和表面积的计算公式,锥的体积计算公式等。
通过熟练掌握这些知识点,可以帮助我们解决与空间几何体相关的问题。
二、数列与数学归纳法1.数列的定义和计算数列是按照一定规律排列的数的集合。
我们需要了解常见数列的定义和计算方法,如等差数列、等比数列等。
在计算数列的首项、公差或公比以及前n项和时,需要掌握相应的公式和求解思路。
2.数学归纳法的应用数学归纳法是数学中一种重要的证明方法。
它的基本思想是证明第一个命题成立,然后假设第k个命题成立,利用这个假设证明第k+1个命题成立。
在解决数列问题、不等式问题以及推理证明问题时,数学归纳法都是一个有效的工具。
三、概率与统计1.随机事件及其运算随机事件是指在一定条件下随机发生的事件。
我们需要了解随机事件的基本概念和性质,如事件的取非、和、积运算。
通过对随机事件的运算,可以帮助我们计算复杂的概率问题。
2.概率的计算和应用概率是描述随机事件发生可能性大小的数值。
我们需要掌握基本的概率计算方法,如古典概率、几何概率和条件概率等。
在实际生活中,概率的应用非常广泛,如抽样调查、事件发生的可能性预测等。
总结:高二数学选修1包括立体几何、数列与数学归纳法以及概率与统计等多个知识点。
在学习这些知识点时,我们需要理解概念、记忆公式,并能够熟练运用于解决实际问题。
3.1.3导数的几何意义课件—人教B版高中数学选修1-1
五.当堂检测
1.设f′(x 0)=0,则曲线y=f(x)在点(x 0,f( x 0 ))处的切线( B )
△y
曲线在点P处的切线的斜率
P(x0,y0)
△x
M
o
x
lim lim k= y
f (x0 x) f (x0 )
x x0
x0
x
4.导数的几何意义:
函数y f (x)在 x0 处的导数的几何意
义是曲线
y
f (x)
在P(x0 ,
f (x )) 处切线 0
的斜率.
即 = k
f
(x0 )
lim
x0
f
程度, 这说明曲线ht在t1附近比在t2附近下降得缓慢.
变式训练
如图,试描述函数y=f(x)在x=-3,-2,0,1附近的变化情况.
(1)函数f(x)在x=-3处切线斜率k>0,曲线是上升 的.即函数f(x)在x=-3附近是单调递增
(2)函数f(x)在x=-2处切线的斜率k<0,曲线是降 落的即函数f(x)在x=-2附近是单调递减
导数的几何意义
高二数学 选修1-1
一、复习回顾
1、割线的斜率 k y x
y =fx0+x-fx0 表示“平均变化率”
x
x
其几何意义表示曲线上两点连线(就是曲线的割线)的斜率。
瞬时变化率
f
x
0
= lim x0
y x
= lim x0
f
高二数学选修1-1知识点
高二数学选修1-1知识点
一、方程式:
1、一元一次方程的解法
任意一元一次方程ax+b=0(a≠0)的解可以用公式x=-b/a来求得;当a=0,则方程不是一元一次方程,此时可以通过代入数值来求解;当a=0,b=0时,方程有无数个解,即x任意取值。
二、平面向量
1、平面向量的加法和减法
平面上两个向量可以相加和相减。
如果向量A=(x1,y1)、向量B=(x2,y2),则向量A加B=(x1+x2,y1+y2),向量A减B=(x1-x2,y1-y2)。
2、夹角的余弦定理
夹角的余弦定理:证明两个向量A=(x1,y1)、B=(x2,y2)夹角α满足关系A•Bcosα=|A||B|,即向量的乘积cosα等于两个向量的模的乘积。
三、立体几何
2、平面和直线的表示方法
1)任一点加直线的法线向量的表示方法:若直线L上任一点P(x0,y0),其具有直线L的法向量N=(a,b),则该直线可以用P(x0,y0)和N(a,b)来表示;
2)点斜式:若该直线上任一点P(x0,y0),则该直线可以写成x-x0/a=y-y0/b =k,称为点斜式;
3)参数方程形式:若直线L上任一点A(at,bt),则这条直线可以用参数方程形式x=at+r,y=bt+s的形式表示;
2)用平面方程形式:若平面上任一点A(x1,y1,z1),则平面的方程可以写成
ax+by+cz+d=0。
高二数学选修一知识点框架
高二数学选修一知识点框架
一、函数与导数
1. 函数的定义与性质
2. 导数的定义与性质
二、三角函数与三角恒等变换
1. 三角函数的定义与性质
2. 三角恒等变换的基本公式
三、数列与数学归纳法
1. 数列的概念与性质
2. 数学归纳法的基本思想与应用
四、概率与统计
1. 概率的基本概念与计算方法
2. 统计的基本概念与应用
五、平面向量与解析几何
1. 平面向量的定义与运算法则
2. 解析几何中的点、线、面的方程与性质
六、数学建模与实际问题
1. 数学建模的基本步骤与方法
2. 实际问题的数学分析与求解
七、微积分基础
1. 极限的概念与计算方法
2. 级数的概念与性质
八、线性代数基础
1. 线性方程组的解与性质
2. 矩阵的基本运算与性质
九、数论基础
1. 整数的性质与整除关系
2. 同余与模运算的基本理论
十、解析几何基础
1. 直线与圆的方程与性质
2. 平面与空间中点、直线、圆锥曲线的方程与性质
十一、几何证明与图形的性质
1. 几何证明的基本方法与技巧
2. 二维图形的基本性质与判定
以上是高二数学选修一的知识点框架。
学习这些知识点将帮助你建立扎实的数学基础,为进一步学习和理解高等数学打下坚实的基础。
希望你能够认真学习,并能够灵活运用这些知识解决实际问题。
数学是一门非常重要的学科,掌握好数学知识对于你的学业发展和未来职业发展都将产生积极的影响。
祝你学业进步!。
高二文科数学选修1-1第三章导数的概念及运算带答案
导数的概念及运算[必备知识]考点1 函数y =f (x )在x =x 0处的导数 1.定义称函数y =f (x )在x =x 0处的瞬时变化率lim Δ x →f (x 0+Δx )-f (x 0)Δx =lim Δ x →0 ΔyΔx为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δ x →0ΔyΔx =lim Δ x →0 f (x 0+Δx )-f (x 0)Δx. 2.几何意义函数f (x )在x =x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0). 考点2 基本初等函数的导数公式若y =f (x ),y =g (x )的导数存在,则 (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 考点4 复合函数的导数设函数u =φ(x )在点x 处有导数u ′=φ′(x ),函数y =f (u )在点x 的对应点u 处有导数y ′=f ′(u ),则复合函数y =f [φ(x )]在点x 处也有导数y ′x =f ′u ·u ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. [必会结论]1.f ′(x 0)与x 0的值有关,不同的x 0,其导数值一般也不同. 2.f ′(x 0)不一定为0,但[f (x 0)]′一定为0.3.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数. 4.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”. 一、疑难辨析判断下列结论的正误.(正确的打“√”,错误的打“×”) 1.f ′(x 0)是导函数f ′(x )在x =x 0处的函数值.( ) 2.曲线的切线不一定与曲线只有一个公共点.( ) 3.与曲线只有一个公共点的直线一定是曲线的切线.( )4.对于函数f (x )=-x 2+3x ,由于f (1)=2,所以f ′(1)=2′=0.( )5.物体的运动方程是s =-4t 2+16t ,则该物体在t =0时刻的瞬时速度是0.( ) 6.若f (x )=f ′(a )x 2+ln x (a >0),则f ′(x )=2xf ′(a )+1x .( )答案 1.√ 2.√ 3.× 4.× 5.× 6.√ 二、例题练习1.已知函数()y f x =,那么下列说法错误的是( ) A.()()00y f x x f x +∆=∆-叫做函数值的增量 B.()()00f x x f x y x x+∆-∆=∆∆叫做函数在0x 到0x x +∆之间的平均变化率 C.()f x 在0x 处的导数记为y ' D.()f x 在0x 处的导数记为()0f x '【答案】C【解析】由导数的定义可知C 错误.故选C.2. 已知函数y =2+1x ,当x 由1变到2时,函数的增量Δy =________.【答案】 -12【解析】 Δy =⎝⎛⎭⎫2+12-(2+1)=-12. 3.设函数()f x 在1x =处可导,则()()11lim 2x f x f x∆→+∆--∆等于()A .()1f 'B .()112f '- C .()21f '-D .()1f '- 【答案】B【解析】函数()f x 在1x =处()()()0111limx f x f f x ∆→+∆-'=∆()()0112lim 2x f x f x∆→+∆-=--∆,所以()()()0111lim122x f x f f x ∆→+∆-'=--∆.4.若函数()y f x =在区间(),a b 内可导,且()0,x a b ∈,若0()f x '=4,则()()0002limh f x f x h h→--的值为( )A .2B .4C .8D .12 【答案】C【解析】由函数()y f x =在某一点处的导数的定义可知()()()()()000000022lim2lim 282h h f x f x h f x f x h f x h h→→----'===5.若()()0003lim1x f x x f x x∆→+∆-=∆,则()0f x '=__________.【答案】13【解析】由于()()()()()000000033lim 3lim 313x x f x x f x f x x f x f x x x∆→∆→+∆-+∆-'===∆∆,所以()013f x '=. 6.[课本改编]曲线y =x 2在(1,1)处的切线方程是( ) A .2x +y +3=0 B .2x -y -3=0 C .2x +y +1=0 D .2x -y -1=0答案 D 解析 ∵y ′=2x ,∴k =y ′| x =1=2;故所求切线方程为:y -1=2(x -1)即2x -y-1=0,故选D.7.函数y =f (x )的图象在点P (5,f (5))处的切线方程是y =-x +8,则f (5)+f ′(5)=( ) A .1 B .2 C .3 D .4 答案 B解析 由条件知f ′(5)=-1,又在点P 处切线方程为y -f (5)=-(x -5),∴y =-x +5+f (5),即y =-x +8,∴5+f (5)=8,∴f (5)=3,∴f (5)+f ′(5)=2. 8.函数y =x ·e x 在点(1,e)处的切线方程为( ) A .y =2e x B .y =x -1+eC .y =-2e x +3eD .y =2e x -e答案 D解析 函数y =x ·e x 的导函数是f ′(x )=e x +x e x ,在点(1,e)处,把x =1代入f ′(x )=e x +x e x ,得k =f ′(1)=2e ,点斜式得y -e =2e(x -1),整理得y =2e x -e.9.已知函数2()cos 3g x x x =+,则2()πg'=_______________.【答案】13. 【解析】因为2()sin 1g x x '=-+,所以2()πg'=2π21sin 113233-+=-=.故填13.10=')1(f _______________.【答案】e【解析】0x =得(0)1f =,∴(1)e f '=.11.已知函数()f x 的导函数为()f x ',且满足()(1)2ln xf f x x ='+,则(1)f '= A .e - B .1- C .1D .e【答案】B 【解析】∵函数()f x 的导函数为()f x ',且满足()(1)2ln (0)f x x xf x ='+>,1x =代入()f x '可得(1)2(1)1f f '='+,解得(1)1f '=-.故选B .12.若2()24ln f x x x x =--,则()0f x '>的解集为_______________. 【答案】(2,)+∞【解析】由()224ln f x x x x =--,得()()4220f x x x x'=-->,则由不等式()42200x x x-->>,得()2200x x x -->>,从而可解得2x >.故()0f x '>的解集为(2,)+∞.13.求下列函数的导数:(1)y =e x sin x ;(2)y =x ⎝⎛⎭⎫x 2+1x +1x 3; (3)y =x -sin x 2cos x2;(3)=xx ln ;[解] (1)y ′=(e x )′sin x +e x (sin x )′=e x sin x +e x cos x . (2)因为y =x 3+1x 2+1,所以y ′=3x 2-2x 3.(3)因为y =x -12sin x ,所以y ′=1-12cos x .14.[2015·天津高考]已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数,若f ′(1)=3,则a 的值为________.答案 3解析 因为f (x )=ax ln x ,所以f ′(x )=a ln x +ax ·1x =a (ln x +1).由f ′(1)=3得a (ln1+1)=3,所以a =3.15.若曲线f (x )=ax 5+ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________. 【答案】(-∞,0)【解析】曲线f (x )=ax 5+ln x 存在垂直于y 轴的切线,即f ′(x )=0有正实数解.又∵f ′(x )=5ax 4+1x ,∴方程5ax 4+1x=0有正实数解.∴5ax 5=-1有正实数解.∴a <0.16.等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)·(x -a 2)·…·(x -a 8),则f ′(0)=( ) A .26 B .29 C .212 D .215 【答案】C【解析】因为f ′(x )=x ′·[]x -a 1x -a 2…x -a 8+[]x -a 1x -a 2…x -a 8′·x =(x -a 1)(x -a 2)…(x -a 8)+ []x -a 1x -a 2…x -a 8′·x ,所以f ′(0)=(0-a 1)(0-a 2)…(0-a 8)+0=a 1a 2…a 8.因为数列{a n }为等比数列,所以a 2a 7=a 3a 6=a 4a 5=a 1a 8=8,所以f ′(0)=84=212.17.[2016·襄阳调研]曲线y =x 3-2x +4在点(1,3)处的切线的倾斜角为( ) A .30° B .45° C .60°D .120°答案 B 解析 由y ′=3x 2-2得y ′| x =1=1,即曲线在点(1,3)处的切线斜率为1,所以切线的倾斜角为45°,故选B.18.[2016·大同质检]一点P 在曲线y =x 3-x +23上移动,设点P 处切线的倾斜角为α,则角α的取值范围是( )A.⎣⎡⎦⎤0,π2B.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π C.⎣⎡⎭⎫3π4,π D.⎝⎛⎦⎤π2,3π4 答案 B 解析 ∵y ′=3x 2-1,∴tan α=3x 2-1≥-1,∴α∈⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π. 19.[2016·深圳中学实战考试]函数y =x 33-x 2+1(0<x <2)的图象上任意点处切线的倾斜角记为α,则α的最小值是( ) A.π4B.π6C.5π6D.3π4答案 D 解析 由于y ′=x 2-2x ,当0<x <2时,-1≤y ′<0,据导数的几何意义得-1≤tan α<0,当tan α=-1时,α取得最小值,即αmin =3π4. 20.[2016·山西师大附中质检]已知曲线y =13x 3+43.(1)求曲线在点P (2,4)处的切线方程; (2)求曲线过点P (2,4)的切线方程.解 (1)根据已知得点P (2,4)是切点且y ′=x 2,所以在点P (2,4)处的切线的斜率为y ′| x =2=4.所以曲线在点P (2,4)处的切线方程为y -4=4(x -2),即4x -y -4=0.(2)设曲线y =13x 3+43与过点P (2,4)的切线相切于点A ⎝⎛⎭⎫x 0,13x 30+43,则切线的斜率为y ′| x =x 0=x 20.所以切线方程为y -⎝⎛⎭⎫13x 30+43=x 20(x -x 0),即y =x 20·x -23x 30+43.因为点P (2,4)在切线上,所以4=2x 20-23x 30+43, 即x 30-3x 20+4=0,所以x 30+x 20-4x 20+4=0,所以x 20(x 0+1)-4(x 0+1)(x 0-1)=0,所以(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2, 故所求的切线方程为x -y +2=0或4x -y -4=0.21.设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.解 (1)方程7x -4y -12=0可化为y =74x -3.当x =2时,y =12.又f ′(x )=a +bx2,于是⎩⎨⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x .(2)证明:设P (x 0,y 0)为曲线上的任一点,由y ′=1+3x 2知曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝⎛⎭⎫1+3x 20(x -x 0),即y -⎝⎛⎭⎫x 0-3x 0=⎝⎛⎭⎫1+3x 20(x -x 0). 令x =0得y =-6x 0,从而得切线与直线x =0的交点坐标为⎝⎛⎭⎫0,-6x 0. 切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形面积为12⎪⎪⎪⎪-6x 0||2x 0=6. 故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值,此定值为6. 备用:1.函数f (x )=ln x -2xx 的图象在点(1,-2)处的切线方程为( )A .2x -y -4=0B .2x +y =0C .x -y -3=0D .x +y +1=0答案 C解析 f ′(x )=1-ln xx 2,则f ′(1)=1,故该切线方程为y -(-2)=x -1,即x -y -3=0.2.[2014·江西高考]若曲线y =x ln x 上点P 处的切线平行于直线2x -y +1=0,则点P 的坐标是________. 答案 (e ,e)解析 令f (x )=x ln x ,则f ′(x )=ln x +1,设P (x 0,y 0),则f ′(x 0)=ln x 0+1=2,∴x 0=e ,此时y 0=x 0ln x 0=eln e =e ,∴点P 的坐标为(e ,e).[2014·江苏高考]在平面直角坐标系xOy 中,若曲线y =ax 2+b x (a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是________. 答案 -3解析 由曲线y =ax 2+b x 过点P (2,-5),得4a +b2=-5.①又y ′=2ax -b x 2,所以当x =2时,4a -b 4=-72,②由①②得⎩⎪⎨⎪⎧a =-1,b =-2,所以a +b =-3.3. [2016·沈阳模拟]若存在过点O (0,0)的直线l 与曲线f (x )=x 3-3x 2+2x 和y =x 2+a 都相切,则a 的值是( ) A .1 B.164C .1或164D .1或-164[正解] 易知点O (0,0)在曲线f (x )=x 3-3x 2+2x 上, (1)当O (0,0)是切点时,同上面解法.(2)当O (0,0)不是切点时,设切点为P (x 0,y 0),则y 0=x 30-3x 20+2x 0,且k =f ′(x 0)=3x 20-6x 0+2.①又k =y 0x 0=x 20-3x 0+2,②由①,②联立,得x 0=32(x 0=0舍),所以k =-14,∴所求切线l 的方程为y =-14x .由⎩⎪⎨⎪⎧y =-14x ,y =x 2+a ,得x 2+14x +a =0.依题意,Δ=116-4a =0,∴a =164.综上,a =1或a =164.[答案] C[2016·沈阳模拟]若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 等于( )A .-1或-2564B .-1或214C .-74或-2564D .-74或7答案 A解析 ∵y =x 3,∴y ′=3x 2.设过点(1,0)的直线与y =x 3相切于点(x 0,x 30),则在该点处的切线斜率为k =3x 20,所以切线方程为:y -x 30=3x 20(x -x 0),即y =3x 20x -2x 30.又点(1,0)在切线上,则x 0=0或x 0=32.当x 0=0时,由y =0与y =ax 2+154x -9相切可得a =-2564;当x 0=32时,由y =274x -274与y =ax 2+154x -9相切,得a =-1. 综上,a =-1或a =-2564.故选A.。
高二数学选修1-1第二章精讲笔记
高二数学选修1-1第二章《圆锥曲线》精讲笔记姓名 学队考点一:椭圆及其标准方程椭圆的定义: ,其中 ,两个定点叫做椭圆的 ,焦点间的距离叫做 。
注意:2a ˃21F F 表示 ;2a=21F F 表示 ;2a ˂21F F 表示 ; 例2、平面内,若点M 到定点F1(0,-1)、F2(0,1)的距离之和为2,则点M 的轨迹为( )A .椭圆B .直线F1F2C .线段F1F2D .直线F1F2的垂直平分线精炼考点2、下列说法中,正确的是( )A .平面内与两个定点F 1、F 2的距离和等于常数的点的轨迹是椭圆B .与两个定点F 1、F 2的距离和等于常数(大于|F 1F 2|)的点的轨迹是椭圆C .方程x 2a 2+y 2a 2-c 2=1(a >c >0)表示焦点在x 轴上的椭圆D .方程x 2a 2+y 2b2=1(a >0,b >0)表示焦点在y 轴上的椭圆互改互签例3 已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为32,且G 上一点到G 的两个焦点的距离之和为12,则椭圆G 的方程为______________.3、求椭圆16x2+9y2=144的长轴长、短轴长、离心率、焦点和顶点坐标.标准方程)0(,12222>>=+b a b y a x )0(,12222>>=+b a b x a y 图形a 、b 、c 关系对称性 顶点坐标 焦点坐标焦距轴长 短轴长___________,长轴长_________________.准线方程离心率 通径互改互签考点三:双曲线的定义把平面内与两个定点F1,F2的距离的____________等于常数(大于0且小于|F1F2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的________,两焦点间的距离叫做双曲线的________.例3、双曲线x216-y29=1上一点P到点(5,0)的距离为15,那么该点到点(-5,0)的距离为() A.7B.23 C.5或25 D.7或23互改互签考点四:双曲线的几何性质例4.已知双曲线的渐近线是x+2y=0,并且双曲线过点M(4,3),求双曲线的标准方程。
高二数学选修1-1、1-2数学知识点(文科)
高二数学选修1-1、1-2数学知识点(文科)高二数学选修1-11、数列的性质与特征(一)数列概念:数列是列有次序的一组有限个或无限个数构成的数组,又称有序数列。
(二)有序数列比较:任意两个有序数列可以比较是否有序,已经大小关系。
(三)数列等比:如果一个数列中每一项都是等比的,则该数列为等比数列。
2、等比数列的性质(一)等比数列的公比:等比数列的前两项的比值称为公比,记为q,如果前两项之比为正数,则称为正比,公比q也为正数;反之,反比,公比q为负数。
(二)特定的等比数列:(1)等比数列的通项公式:设等比数列的公比为q,使得a1,a2,…,an均成等差数列,则数列中任一项,可以表示为an=a1qn-1(2)定积分数:一列等比数列或它们的和称为定积分数,也称为定量数列。
3、等差数列的性质(一)等差数列的公差:等差数列的前后项的差称为公差,记为d。
4、等比数列与等差数列的混合(一)等比等差数列:等比等差数列是指一个拥有等比性质和等差性质的数列。
高二数学选修1-21、数学归纳法数学归纳法是一种发现规律的方法,它可以帮助我们用有限个具体的实例对一般情况作出正确的推论。
它包括三个步骤:(一)假设它是真的先假设某一定理是正确的,设定一个最初的论据。
(二)证明它是正确的为了证明这个定理是正确的,我们可以分别从可能的情况开始,例如从最小的情况,再一步步推导出更大的情况,以此来证明它是正确的。
(三)总结出结论最后要通过将实例抽象,归纳得出结论,它一般归纳为一个公式,表示一般情况。
2、数学归纳法的应用(一)证明定理:数学归纳法可以用来证明一般性的定理,先从特殊情况进行证明,再以特殊情况为基础归纳出一般性的结论。
(二)导出公式:我们可以用数学归纳法来导出感性的认识变成理性的形式,即由具体的实例可以推出一般性的公式来表示具体情况。
3、数学归纳法的注意事项(一)假设的充分性:在使用数学归纳法前,要确定假设是完全充分的,不可以太过抽象,要尽量把可能性全部考虑到。
高二数学选修一章节知识点
高二数学选修一章节知识点一、函数及其图像1. 函数的定义与性质函数是一种特殊的关系,其可以将集合A中的每个元素对应到集合B中的唯一元素上。
函数的定义包括定义域、值域和对应关系,同时具有单射、满射和一一对应等性质。
2. 基本函数图像及其性质常见的基本函数图像包括线性函数、二次函数、指数函数、对数函数、三角函数等。
各个函数图像的变化规律和性质需要掌握,如线性函数的斜率决定了直线的倾斜程度,指数函数的增长趋势等。
3. 函数的平移、伸缩和翻转函数的平移、伸缩和翻转是指在函数图像上对每个点进行相应的变换,使得图像发生相应的改变。
平移可以改变图像的位置,伸缩可以改变图像的形状和大小,翻转可以改变图像的方向。
二、三角函数1. 弧度制与角度制在三角函数中,弧度制和角度制是两种常用的计量方式。
弧度制是以单位圆上的弧长作为度量单位,角度制是以度数作为度量单位。
两者之间的转换需要掌握。
2. 基本三角函数及其性质基本三角函数包括正弦函数、余弦函数和正切函数。
它们在单位圆上的定义与性质需要了解,如正弦函数的取值范围为[-1,1],余弦函数的取值范围也为[-1,1]等。
3. 三角函数的图像与性质三角函数的图像是周期性的,了解其周期、振幅、对称轴等性质对于理解函数图像很重要。
同时,掌握三角函数的奇偶性质以及图像的对称关系也是必要的。
三、导数与函数的应用1. 函数的导数概念函数的导数是描述函数变化率的重要概念,表示函数在某一点处的切线斜率。
导数的计算需要使用极限的概念,可以通过函数的定义式或几何性质进行求解。
2. 基本导数公式和运算法则基本导数公式包括常数函数、幂函数、指数函数和对数函数的导数计算公式。
此外,还需要掌握导数与四则运算、复合函数、反函数等运算法则。
3. 函数的应用函数的导数具有许多应用,如求函数的极值、判定函数的单调性、确定函数的增减区间等。
此外,还包括利用导数求解最优化问题、确定曲线在给定条件下的特征等。
四、数列与级数1. 数列的概念与性质数列可以看作是按照一定规律排列的一系列数,其中可以有重复的或无穷多项。
高二数学选修1-1第一章常用逻辑用语
常用逻辑用语一、命题及其关系考点:要点1.命题:一般地,把用语言、符号或式子表达的,可以推断真假的陈述句叫做命题.其中推断为真的语句叫做真命题,推断为假的语句叫做假命题.要点2.四种命题:(1)一般地,用p和q分别表示命题的条件和结论,用¬p和¬q分别表示p和q的否定,于是四种命题的形式就是:原命题:若p,则q;逆命题:若q,则p;否命题:若¬p,则¬q;逆否命题:若¬q,则¬p.要点3.四种命题的关系:互为逆否的两个命题同真假.考点1. 命题及其真假推断:例1、推断下列语句是否是命题?若是,推断其真假并说明理由。
1)x>1或x=1;2)假如x=1,那么x=33)x2-5x+6=0; 4)当x=4时,2x<0; 5)垂直于同一条直线的两条直线必平行吗?6)矩形莫非不是平行四边形吗? 7)矩形是平行四边形吗?;8)求证:若x∈R,方程x2-x+1=0无实根.解析:1)不是,x值不确定。
2)是,假命题3)不是命题.因为语句中含有变量x,在不给定变量的值之前,我们无法确定这语句的真假.同样如“2x>0”也不是命题.4)是命题.它是作出推断的语言,它是一个假命题.5)不是命题.因为并没有对垂直于同一条直线的两条直线平行作出推断,疑问句不是命题.6)是命题.通过反意疑问句对矩形是平行四边形作出了推断,它是真命题.7)不是.不是陈述句8)不是命题.它是祈使句,没有作出推断.如“把门关上”是祈使句,也不是命题.练一练: 1. 推断下列语句是不是命题。
(1)2+22是有理数;(2)1+1>2;(3)2100是个大数;(4)986能被11整除;(5)非典型性肺炎是怎样传播的? (6)(6)x ≤3。
2. 推断下列语句是不是命题。
(1)矩形莫非不是平行四边形吗? (2)垂直于同一条直线的两条直线平行吗? (3)一个数不是合数就是质数。
(4)大角所对的边大于小角所对的边; (5)y+x 是有理数,则x 、y 也是有理数。
高二数学选修1-1圆锥曲线方程知识点_圆锥曲线知识点总结
高二数学选修1-1圆锥曲线方程知识点_圆锥曲线知识点总结圆锥曲线是解析几何的核心内容,是中学数学的重点、难点,下面是小编给大家带来的高二数学选修1-1圆锥曲线方程知识点,希望对你有帮助。
高二数学圆锥曲线方程知识点高二数学学习方法课内重视听讲,课后及时复习。
新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。
上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。
特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。
首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,应尽量回忆而不采用不清楚立即翻书之举。
认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。
在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。
适当多做题,养成良好的解题习惯。
要想学好数学,多做题是难免的,熟悉掌握各种题型的解题思路。
刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。
对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。
在平时要养成良好的解题习惯。
让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。
实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。
如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。
调整心态,正确对待考试。
首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。
高二选择性必修一数学知识点总结
高二选择性必修一数学知识点总结
高二选修一数学包括解析几何、统计与概率、代数学和椭圆及矩阵四方面内容。
解析几何:
1、曲线的参数方程、极坐标方程;
2、圆、椭圆、抛物线、双曲线等曲线的性质;
3、曲线的切线,曲线的渐近线,圆的切线、切点;
4、正割线、奇割线、双曲线、抛物线的双曲线;
5、圆的外接四边形,椭圆的两个焦点和椭圆的标准方程等。
统计与概率:
1、统计的频率分布,频率分布直方图、折线图及多维频率分布;
2、算术平均数、几何平均数、加权平均数、几何中心;
3、期望与方差、协方差;
4、概率的定义及其性质;
5、条件概率,独立性、条件独立性;
6、互不相容事件及随机变量概念;
7、独立重复试验、有限重复试验及其概率分布;
8、正态分布、卡方分布、泊松分布、伽马分布等。
代数学:
1、多项式的概念及其运算;
2、一元多项式的方程的解法;
3、二次不等式及其解法;
4、基本运算法则:乘方定理、乘除法;
5、一元二次函数及其图象;
6、列方程组及解法;
7、矩阵及其性质;
8、三角函数及其基本性质等。
椭圆及矩阵:
1、椭圆的概念及其性质;
2、椭圆的标准方程及变换;
3、椭圆的运动,复数的概念;
4、矩阵的秩及其性质;。
高二数学选修1-1_《充分条件与必要条件》数学视野
《充分条件与必要条件》数学视野
中国古代思想家、哲学家、数学家、逻辑学家、战略家墨子在经上说:“故,小故,有之不必然,无之必不然.体也,若有端.大故,有之(必)无(不)然.若见之成见也”.
译文:原理,小原理,有它不一定产生某种结果,没有它定不会产生某种结果,它是整体的一部分,就好比线上的点.大原理,有它必定产生某种结果,没有它必定不会产生某种结果.好比看到的物体而产生视觉.
所谓“故”,就指“物之所以然”.就事物来说,“故”是形成事物变化发展的原因或者道理.“小故”指小原因或者小道理,是事物发展过程中的一个或者部分原因,也可能是一个或者部分道理.这些小原因或者小道理不能成为决定事物发展过程的决定性因素,它们成立时不一定会有结果,而不成立时肯定不会有结果.众多的小原因或者小道理组成了事物完整的大原因或者大道理.所以“大故”可以说是所有“小故”的总合,这样“大故”是事物发展过程的全部原因或者全部道理.因此,“大故”就是成功率为100%的条件,当然“大故”成立时肯定会有结果.
1/ 1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学选修1-1知识点第一章:命题与逻辑结构 知识点:1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句. 假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题. 若原命题为“若p ,则q ”,它的逆命题为“若q ,则p ”.4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题. 若原命题为“若p ,则q ”,则它的否命题为“若p ⌝,则q ⌝”.5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命题. 若原命题为“若p ,则q ”,则它的逆否命题为“若q ⌝,则p ⌝”.6、四种命题的真假性:原命题 逆命题 否命题 逆否命题 真 真 真 真 真 假 假 真 假 真 真 真 假 假 假 假四种命题的真假性之间的关系:()1两个命题互为逆否命题,它们有相同的真假性;()2两个命题为互逆命题或互否命题,它们的真假性没有关系.7、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).8、用联结词“且”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∧.当p 、q 都是真命题时,p q ∧是真命题;当p 、q 两个命题中有一个命题是假命题时,p q ∧是假命题. 用联结词“或”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∨.当p 、q 两个命题中有一个命题是真命题时,p q ∨是真命题;当p 、q 两个命题都是假命题时,p q ∨是假命题.对一个命题p 全盘否定,得到一个新命题,记作p ⌝.若p 是真命题,则p ⌝必是假命题;若p 是假命题,则p ⌝必是真命题.9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“∀”表示. 含有全称量词的命题称为全称命题.全称命题“对M 中任意一个x ,有()p x 成立”,记作“x ∀∈M ,()p x ”. 短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“∃”表示. 含有存在量词的命题称为特称命题.特称命题“存在M 中的一个x ,使()p x 成立”,记作“x ∃∈M ,()p x ”.10、全称命题p :x ∀∈M ,()p x ,它的否定p ⌝:x ∃∈M ,()p x ⌝.全称命题的否定 是特称命题.考点:1、充要条件的判定 2、命题之间的关系★1.命题“对任意的3210x x x ∈-+R ,≤”的否定是( ) A .不存在3210x R x x ∈-+,≤ B .存在3210x R x x ∈-+,≤ C .存在3210x R x x ∈-+>,D .对任意的3210x R x x ∈-+>,★2、给出命题:若函数y =f (x )是幂函数,则函数y =f (x )的图象不过第四象限,在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是 (A)3(B)2(C)1(D)0★3. 已知α,β表示两个不同的平面,m 为平面α内的一条直线,则“αβ⊥”是“m β⊥”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件第二章:圆锥曲线 知识点:1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆.这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质:焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程()222210x y a b a b +=>> ()222210y x a b a b +=>> 范围a x a -≤≤且b y b -≤≤b x b -≤≤且a y a -≤≤顶点()1,0a A -、()2,0a A()10,b B -、()20,b B()10,a A -、()20,a A ()1,0b B -、()2,0b B 轴长 短轴的长2b = 长轴的长2a =焦点 ()1,0F c -、()2,0F c()10,F c -、()20,F c焦距 ()222122F F c c a b ==-对称性 关于x 轴、y 轴、原点对称离心率)01c e e a ==<<准线方程2a x c=±2a y c=±3、设M 是椭圆上任一点,点M 到1F 对应准线的距离为1d ,点M 到2F 对应准线的距离为2d ,则1212F F e d d M M ==.4、平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.5、双曲线的几何性质:焦点的位置 焦点在x 轴上焦点在y 轴上 图形标准方程()222210,0x y a b a b -=>> ()222210,0y x a b a b-=>> 范围 x a ≤-或x a ≥,y R ∈y a ≤-或y a ≥,x R ∈顶点 ()1,0a A -、()2,0a A()10,a A -、()20,a A 轴长 虚轴的长2b = 实轴的长2a =焦点 ()1,0F c -、()2,0F c()10,F c -、()20,F c焦距 ()222122F F c c a b ==+对称性 关于x 轴、y 轴对称,关于原点中心对称离心率)1c e e a ==>准线方程2a x c =±2a y c =±渐近线方程b y x a=±a y x b=±6、实轴和虚轴等长的双曲线称为等轴双曲线.7、设M 是双曲线上任一点,点M 到1F 对应准线的距离为1d ,点M 到2F 对应准线的距离为2d ,则1212F F e d d M M ==.8、平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.定点F 称为抛物线的焦点,定直线l 称为抛物线的准线. 9、抛物线的几何性质:标准方程22y px =()0p >22y px =- ()0p > 22x py = ()0p > 22x py =-()0p >图形顶点()0,0对称轴x 轴y 轴焦点,02p F ⎛⎫ ⎪⎝⎭ ,02p F ⎛⎫- ⎪⎝⎭ 0,2p F ⎛⎫ ⎪⎝⎭0,2p F ⎛⎫- ⎪⎝⎭准线方程2px =-2px =2p y =-2p y =离心率1e =范围0x ≥ 0x ≤ 0y ≥ 0y ≤10、过抛物线的焦点作垂直于对称轴且交抛物线于A 、B 两点的线段AB ,称为抛物线的“通径”,即2p AB =.考点:1、圆锥曲线方程的求解2、直线与圆锥曲线综合性问题3、圆锥曲线的离心率问题典型例题:★★1.设O 是坐标原点,F 是抛物线22(0)y px p =>的焦点,A 是抛物线上的一点,FA与x 轴正向的夹角为60,则OA为( )A .214pB .2C pD .1336p ★★2.与直线20x y +-=和曲线221212540x y x y +--+=都相切的半径最小的圆的标准方程是 .★★★3.(本小题满分14分) 已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1. (1)求椭圆C 的标准方程;(2)若直线:l y kx m =+与椭圆C 相交于A B ,两点(A B ,不是左右顶点),且以AB 为直径的图过椭圆C 的右顶点.求证:直线l 过定点,并求出该定点的坐标.第三章:导数及其应用 知识点:1、若某个问题中的函数关系用()f x 表示,问题中的变化率用式子()()2121f x f x x x --fx ∆=∆表示,则式子()()2121f x f x x x --称为函数()f x 从1x 到2x 的平均变化率. 2、函数()f x 在0x x =处的瞬时变化率是()()210021limlimx x f x f x fx x x∆→∆→-∆=-∆,则称它为函数()y f x =在0x x =处的导数,记作()0f x '或0x x y =',即()()()0000limx f x x f x f x x∆→+∆-'=∆.3、函数()y f x =在点0x 处的导数的几何意义是曲线()y f x =在点()()00,x f x P 处的切线的斜率.曲线()y f x =在点()()00,x f x P 处的切线的斜率是()0f x ',切线的方程为()()()000y f x f x x x '-=-.若函数在0x 处的导数不存在,则说明斜率不存在,切线的方程为0x x =.4、若当x 变化时,()f x '是x 的函数,则称它为()f x 的导函数(导数),记作()f x '或y ',即()()()limx f x x f x f x y x∆→+∆-''==∆.5、基本初等函数的导数公式:()1若()f x c =,则()0f x '=;()2若()()*n f x x x Q =∈,则()1n f x nx -'=; ()3若()sin f x x =,则()cos f x x '=;()4若()cos f x x =,则()sin f x x '=-; ()5若()x f x a =,则()ln x f x a a '=;()6若()x f x e =,则()x f x e '=;()7若()log a f x x =,则()1ln f x x a '=;()8若()ln f x x =,则()1f x x'=. 6、导数运算法则:()1 ()()()()f x g x f x g x '''±=±⎡⎤⎣⎦;()2 ()()()()()()f x g x f x g x f x g x '''⋅=+⎡⎤⎣⎦; ()3()()()()()()()()()20f x f x g x f x g x g x g x g x '⎡⎤''-=≠⎢⎥⎡⎤⎣⎦⎣⎦. 7、对于两个函数()y f u =和()u g x =,若通过变量u ,y 可以表示成x 的函数,则称这个函数为函数()y f u =和()u f x =的复合函数,记作()()y f g x =.复合函数()()y f g x =的导数与函数()y f u =,()u g x =的导数间的关系是x u x y y u '''=⋅.8、在某个区间(),a b 内,若()0f x '>,则函数()y f x =在这个区间内单调递增;若()0f x '<,则函数()y f x =在这个区间内单调递减.9、点a 称为函数()y f x =的极小值点,()f a 称为函数()y f x =的极小值;点b 称为函数()y f x =的极大值点,()f b 称为函数()y f x =的极大值.极小值点、极大值点统称为极值点,极大值和极小值统称为极值.10、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时:()1如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; ()2如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值.11、求函数()y f x =在[],a b 上的最大值与最小值的步骤是:()1求函数()y f x =在(),a b 内的极值;()2将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的一个是最大值,最小的一个是最小值.考点:1、导数在切线方程中的应用2、导数在单调性中的应用3、导数在极值、最值中的应用4、导数在恒成立问题中的应用典型例题★1.(05全国卷Ⅰ)函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =( ) A .2 B. 3 C. 4 D.5★2.函数5123223+--=x x x y 在[0,3]上的最大值与最小值分别是( ) A.5 , - 15 B.5 , 4 C.- 4 , - 15 D.5 , - 16 ★★★3.(根据04年天津卷文21改编)已知函数)0()(3≠++=a d cx ax x f 是R 上的奇函数,当1=x 时)(x f 取得极值-2.(1)试求a 、c 、d 的值;(2)求)(x f 的单调区间和极大值;★★★4.(根据山东2008年文21改编)设函数2312)(bxaxexxf x++=-,已知12=-=xx和为)(xf的极值点。