24.1圆的测试题

合集下载

人教版九年级数学上册《24.1.1圆》同步测试题带答案

人教版九年级数学上册《24.1.1圆》同步测试题带答案

人教版九年级数学上册《24.1.1圆》同步测试题带答案一、单选题1.下列命题中正确的有( ) A .长度相等的弧是等弧 B .相等的圆心角所对的弦相等 C .等边三角形的外心与内心重合D .任意三点可以确定一个圆2.如图,甲是由一条直径、一条弦及一段圆弧所围成的图形:乙是由两条半径与一段圆弧所围成的图形;丙是由不过圆心O 的两条线段与一段圆弧所围成的图形,下列叙述正确的是( )A .只有甲是扇形B .只有乙是扇形C .只有丙是扇形D .只有乙、丙是扇形3.如图AB 为⊙O 的定直径,过圆上一点C 作弦CD AB ⊥,OCD ∠的平分线交⊙O 于点P ,当点C (不包括A ,B 两点)在⊙O 上移动时,点P ( )A .到CD 的距离保持不变B .位置不变C .等分弧DBD .随C 点移动而移动4.下列命题中,⊙直径是圆中最长的弦;⊙长度相等的两条弧是等弧;⊙半径相等的两个圆是等圆;⊙半径不是弧,半圆包括它所对的直径,其中正确的个数是( ) A .1B .2C .3D .45.如图,以三角形三个顶点为圆心画半径为2的圆,则阴影部分面积之和为( )A .πB .2πC .3πD .4π6.如图,在Rt ⊙ABC 中,⊙ACB =90°, AC =3,以点C 为圆心、CA 为半径的圆与AB 交于点D ,若点D 巧好为线段AB 的中点,则AB 的长度为( )A .32B .3C . 6D .9二、填空题7.到点O 的距离等于7cm 的点的集合是 .8.下图中,点O 是( ),线段OA 是圆的( ),线段BC 是圆的( ).9.已知,如图AB ,AD 是O 的弦 30B ∠=︒,点C 在弦AB 上,连结CO 并延长交O 于点D ,35D ∠=︒则BAD ∠的度数是 .10.如图,半径为r 的O 沿着边长为a 的正方形ABCD 的边作无滑动地滚动一周回到原来的位置,O 自身转动的圈数是 .(用含a r ,的代数式表示)11.下列说法:⊙直径是弦;⊙弦是直径;⊙大于半圆的弧是优弧;⊙长度相等的弧是等弧,其中正确的是 .12.顶点在圆外,并且两边都和圆相交的角叫做圆外角.圆外角的两边所夹的两条弧的度数与该角的度数之间的数量关系是:圆外角的度数等于 .三、解答题13.如图,O 的弦,AB CD 的延长线交于点P ,连接OP ,且OP 平分APC ∠.求证:PA PC =.14.如图,点O 是同心圆的圆心,大圆半径OA ,OB 分别交小圆于点C ,D ,求证:AB CD ∥.15.如图所示,AB 为O 的直径,CD 是O 的弦,AB CD ,的延长线交于点E ,已知220AB DE AEC =∠=︒,.求AOC ∠的度数.16.如图,O 的半径5cm OA =,AB 是弦,C 是AB 上一点,且OC OA ⊥,OC BC =求A ∠的度数.17.如图,破残的圆形轮片上,弦AB 的垂直平分线交弧AB 于C,交弦AB 于D .(1)求作此残片所在的圆的圆心(不写作法,保留作图痕迹); (2)若AB=8cm,CD=2cm,求(1)中所作圆的半径.18.如图,在O 中,AB 是直径,CD 是弦,延长AB ,CD 相交于点P ,且2AB DP = 18P ∠=︒ 求AOC ∠的度数.题号 1 2 3 4 5 6 答案CBBCD C7.以点O 为圆心,7cm 为半径的圆 8. 圆心 半径 直径 9.65︒ 10.21a r π+/21arπ+ 11.①③/③①12.两条弧度数差值的绝对值的一半 15.60AOC ∠=︒ 16.30︒17.(2) 圆的半径为5cm. 18.54。

2019-2020学年人教版九年级数学上学期同步测试专题24-1:圆的有关性质(含解析)

2019-2020学年人教版九年级数学上学期同步测试专题24-1:圆的有关性质(含解析)

专题24.1圆的有关性质(测试)一、单选题1.下列各角中,是圆心角的是( )A .B .C .D .【答案】D 【解析】顶点在圆心,两边和圆相交的角是圆心角,选项D 中,是圆心角, 故选D .2.一个周长是l 的半圆,它的半径是( ) A .l π÷ B .2l π÷C .()2l π÷+D .()1l π÷+【答案】C 【解析】半圆的周长为半径的π倍加上半径的2倍,所以一个周长是l 的半圆,它的半径是()2l π÷+,所以选C. 3.如图,AB ,AC 分别是⊙O 的直径和弦,OD AC ⊥于点D ,连接BD ,BC ,且10AB =,8AC =,则BD 的长为( )A .B .4C .D .4.8【答案】C【解析】∵AB 为直径, ∴90ACB ︒∠=,∴6BC =, ∵OD AC ⊥, ∴142CD AD AC ===,故选C . 4.如图,AB 是O 的弦,OC AB ⊥交O 于点C ,点D 是O 上一点,30ADC ∠=︒,则BOC ∠的度数为( ).A .30°B .40°C .50°D .60°【答案】D【解析】解:如图,∵30ADC ∠=︒, ∴260AOC ADC ∠=∠=︒. ∵AB 是O 的弦,OC AB ⊥交O 于点C ,∴AC BC =.∴60AOC BOC ∠=∠=︒. 故选:D ..5.如图,有一圆形展厅,在其圆形边缘上的点A 处安装了一台监视器,它的监控角度是65°.为了监控整个展厅,最少需在圆形边缘上共安装这样的监视器( )台.A .3B .4C .5D .6【答案】A【解析】设需要安装n (n 是正整数)台同样的监控器,由题意,得:65°×2×n ≥360°, 解得n ≥3613,∴至少要安装3台这样的监控器,才能监控整个展厅.故选:A .且10CD m =,则这段弯路所在圆的半径为( )A .25mB .24mC .30mD .60m【答案】A 【解析】解:OC AB ⊥,20AD DB m ∴==,在Rt AOD ∆中,222OA OD AD =+, 设半径为r 得:()2221020r r =-+, 解得:25r m =,∴这段弯路的半径为25m故选:A .7.若AB 和CD 的度数相等,则下列命题中正确的是( ) A .AB =CDB .AB 和CD 的长度相等C .AB 所对的弦和CD 所对的弦相等D .AB 所对的圆心角与CD 所对的圆心角相等 【答案】D【解析】如图,AB 与CD 的度数相等,A 、根据度数相等,不能推出弧相等,故本选项错误;B 、根据度数相等,不能推出两弧的长度相等,故本选项错误;C 、根据度数相等,不能推出所对应的弦相等,故本选项错误;D 、根据度数相等,能推出弧所对的两个圆心角相等,故本选项正确;8.如图,C、D为半圆上三等分点,则下列说法:①AD=CD=BC;②∠AOD=∠DOC=∠BOC;③AD =CD=OC;④△AOD沿OD翻折与△COD重合.正确的有()A.4个B.3个C.2个D.1个【答案】A【解析】∵C、D为半圆上三等分点,∴»»»AD CD BC==,故①正确,∵在同圆或等圆中,等弧对的圆心角相等,等弧对的弦相,∴AD=CD=OC,∠AOD=∠DOC=∠BOC=60°,故②③正确,∵OA=OD=OC=OB,∴△AOD≌△COD≌△COB,且都是等边三角形,∴△AOD沿OD翻折与△COD重合.故④正确,∴正确的说法有:①②③④共4个,故选A.9.下列说法:①优弧一定比劣弧长;②面积相等的两个圆是等圆;③长度相等的弧是等弧;④经过圆内的一个定点可以作无数条弦;⑤经过圆内一定点可以作无数条直径.其中不正确的个数是()A.1个B.2个C.3个D.4个【答案】C【解析】解:在同圆或等圆中,优弧一定比劣弧长,所以①错误;面积相等的两个圆半径相等,则它们是等圆,所以②正确;能完全重合的弧是等弧,所以③错误;经过圆内一个定点可以作无数条弦,所以④正确;经过圆内一定点可以作无数条直径或一条直径,所以⑤错误.10.如图所示,AB 是半圆O 的直径。

24.1圆的测试题

24.1圆的测试题

24.1 圆 同步学习检测 姓名:一、选择题1.⊙O 的半径为10cm ,弦AB =12cm ,则圆心到AB 的距离为( ) A . 2cm B . 6cm C . 8cm D . 10cm2.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E,∠CDB =30°, ⊙O 的半径为cm 3,则弦CD 的长为( )A .3cm 2B .3cmC .D .9cm3.如图,弦CD 垂直于⊙O 的直径AB ,垂足为H ,且CD =BD AB 的长为( )A .2B .3C .4D .5 4.如图,∠AOB 是⊙0的圆心角,∠AOB =80°,则弧AB 所对圆周角∠ACB 的度数是( )A .40°B .45°C .50°D .80° 5.如图,BD 是⊙O 的直径,∠CBD=30,则∠A 的度数为( )A.30B.45C.60D.756.如图, AB 是⊙O 的直径,弦CD ⊥AB 于点M, AM = 2,BM = 8. 则CD 的长为( ) A .4 B .5C .8D .167.如图,在半径为2cm 的⊙O 中有长为的弦AB ,则弦AB 所对的圆心角的度数为( ) A .600B . 900C .1200D .15008.如图,⊙O 的半径为5,弦AB =8,M 是弦AB 上的动点,则OM 不可能为( ) A .2 B .3 C .4 D .59.如图,⊙O 的弦AB =6,M 是AB 上任意一点,且OM 最小值为4,则⊙O 的半径为( ) A .5 B .4 C .3 D .210.如图,已知AB 是半圆O 的直径,∠BAC=32º,D 是弧AC 的中点,那么∠DAC 的度数是( )A.25ºB.29ºC.30ºD.32°11.如下图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为( ) A .2cm B .3cmC .32cmD .52cm12.如图,圆弧形桥拱的跨度AB =12米,拱高CD =4米,则拱桥的半径为( ) A.6.5米 B.9米 C.13米 D.15米13.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是( )A .0.4米B .0.5米C .0.8米D .1米 14.如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为( )A .5米B .8米C .7米D .53米15.如图,O ⊙的直径AB 垂直弦CD 于P ,且P 是半径OB 的中点,6cm CD =,则直径AB 的长是( )A .B .C .D .16.如图,AB 是⊙O 的弦,OD ⊥AB 于D 交⊙O 于E ,则下列说法错误..的是( )A .AD =BDB .∠ACB =∠AOEC .AE BE= D .OD =DE17.如图,在Rt ABC △中,C ∠=90°,AB =10,若以点C 为圆心,CB 长为半径的圆恰好经过AB 的中点D ,则AC 的长等于( )A . B .5 C .D .618.如图,正三角形ABC 内接于⊙O,动点P在圆周的劣弧AB 上,且不与A 、B 重合,则∠BPC 等于( ) A .30 B .60 C .90 D .4519.⊙O 的半径为10cm ,弦AB =12cm ,则圆心到AB 的距离( )A . 2cmB . 6cmC . 8cmD . 10cm20. 如图,四个边长为1的小正方形拼成一个大正方形,A 、B 、O 是小正方形顶点,⊙O 的半径为1,P 是⊙O 上的点,且位于右上方的小正方形内,则∠APB 等于( )A .30°B .45°C .60°D .90°21.如图,⊙O 是正方形 ABCD 的外接圆,点 P 在⊙O 上,则∠APB 等于( )A . 30°B . 45°C . 55°D . 60°22.如图,AB 是O ⊙的直径,点C 、D 在O ⊙上,110BOC ∠=°,AD OC ∥,则AOD ∠=( )A .70°B .60°C .50°D .40° 23.如图,△ABC 内接于⊙O ,连结OA 、OB ,若∠ABO=25°,则∠C 的度数为( )A .55°B .60°C .65°D .70° 24.如图,⊙O 的半径为1,AB 是⊙O 的一条弦,且AB=3,则弦AB 所对圆周角的度数为( )A .30°B .60°C .30°或150°D .60°或120°25. 如图,么AOB 是⊙0的圆心角,∠AOB=80°,则弧AB 所对圆周角∠ACB 的度数是( )A .40°B .45°C .50°D .80° 26.如图,已知CD 为⊙O 的直径,过点D 的弦DE 平行于半径OA ,若∠D 的度数是50°,则∠C 的度数是( ) A .25° B .40° C .30° D .5027.如图,A、D是⊙O上的两个点,BC是直径,若∠D = 35°,则∠OAC的度数是()A.35°B.55°C.65°D.70°28.下列命题中,正确的个数是()个⑴直径是弦,但弦不一定是直径;⑵半圆是弧,但弧不一定是半圆⑶半径相等的两个圆是等圆;⑷一条弦把圆分成的两段弧中,至少有一段是优弧.A.1 B.2 C.3 D.429.⊙O中,AOB=∠84°,则弦AB所对的圆周角的度数为()A.42°B.138°C.69°D.42°或138°30.如图,⊙O的直径CD⊥EF于G,若∠EOD=40°,则∠DCF等于()A.80°B. 50°C. 40°D. 20°31.如图,⊙O的直径为10,弦AB的长为8,M是弦AB上的动点,则OM的长的取值范围()A.3≤OM≤5 B.4≤OM≤5 C.3<OM<5 D.4<OM<5 32.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB, ∠E=25°,则∠AOC等于()A.25°B.50°C.75°D.80°33.圆心角都是90°的扇形OAB与扇形OCD叠放在一起,OA=3,OC=1,分别连结AC、BD,则图中阴影部分的面积为() A. 1π B. π C. 2π D. 4π234.如图,已知A、B、C、D、E均在⊙O上,且AC为直径,则∠A+∠B +∠C=()度.A.30 B.60 C.90 D.12035.如图,AB是⊙O的直径,∠ACD=15°则∠BAD的度数为()A.15°B.30°C.60 °D.75°36.AC是⊙O的直径,∠BAC=20°,P是弧AB的中点,则∠PAB=()A.35° B.40 C.60° D.70°∠的度数是()37.如图∠BAC=24°,∠CED=31°BODA.550 B.1100C.1250 D.1500B38.如右图,在⊙O 中,∠B=50º,∠C=20º,则∠BOC 的= .39.如图,在“世界杯” 足球比赛中,甲带球向对方球门PQ 进攻,当他带球冲到A 点时,同样乙已经助攻冲到 B 点.有两种射门方式:第一种是甲直接射门;第二种是甲将球传给乙,由乙射门.仅从射门角度考虑,应选择______种射门方式. 40.如图,直角坐标系中一条圆弧经过网格点A 、B 、C ,其中,B 点坐标为(4,4),则弧所在圆的圆心坐标为 . 41.⊙O 中,圆心角∠AOB =1000,点C 在劣弧AB 上,点D 在优弧AB 上,则∠ACB = ,∠D = . 42.如图,⊙O 中,若∠AOB 的度数为360,∠ACB = .43.如图,AB 是⊙O 的直径,CD 是弦,∠BDC =250,则∠AOC = .44.如图等边ΔABC 的三个顶点在⊙O 上,BD 是直径,则∠BDC = ,∠ACD = .若CD =10,则⊙O 的半径长为 .45.如图,已知AB 是⊙O 的直径,C 、D 是⊙O 上的两点,且∠D=130°则∠BAC 的度数是 .46.如图,⊙O 的直径AC =2,∠BAD =75°,∠ACD =45°,则四边形ABCD 的周长为 (结果取准确值) . 47.如上右在⊙O 中,AD ∥BC ,AC 、BD 相交于点E ,连接AB 、CD ,图中的全等三角形共有 对,面积相等的三角形共有 对.48.如图,△ABC 内接于⊙O ,∠C=45°AB=4,求⊙O 的半径 . 二、解答题49.图4,平行四边形ABCD 中,以A 为圆心,AB 为半径的圆分别交AD 、BC 于F 、G,•延长B A 交圆于E.求证:EF=FG.50.已知:如图,⊙O 1与坐标轴交于A (1,0)、B (5,0)两点,点O 1.求⊙O 1的半径.51.如图所示,已知AB 为圆O 的直径,AC 为弦,OD ∥BC 交AC 于D ,OD=cm 2,求BC 的长.GFEDCBABD CBA52.⊙O 的半径是6cm ,弦AB=10cm ,弦CD=8cm 且AB ⊥CD 于P ,求OP 的长.53.如图所示,等腰△ABC 的顶角∠A = 120°,BC = 12 cm ,求它的外接圆的直径.54.如图,∆ABC 内接于⊙O ,∠BAC=120°,AB=AC ,BD 为⊙O 的直径,AD=6,求BC 的长.55.如图,⊙O 是△ABC 的外接圆,AB 为直径,AC =CF ,CD ⊥AB 于D ,且交⊙O 于G ,AF 交CD 于E . (1)求∠ACB 的度数;(2)求证:AE =CE ;56.如图,ABC △是⊙O 的内接三角形,AC BC =,D 为⊙O 中弧AB 上一点,延长DA 至点E ,使CE CD =. (1)求证:AE BD =;(2)若AC BC ⊥,求证:AD BD +.57.如图,在△ABC 中,∠ACB =90°,D 是AB 的中点,以DC 为直径的⊙O 交△ABC 的边于G ,F ,E 点. 求证:(1)F 是BC 的中点;(2)∠A =∠GEF.58.已知:如图,AB 是⊙O 的直径,点C 、D 为圆上两点,且弧CB =弧CD ,CF ⊥AB 于点F ,CE ⊥AD 的延长线于点E .求证:DE =BF ;59.已知,如图,四边形ABCD 内接于圆,延长AD 、BC 相交于点E ,点F 是BD 的延长线上的点,且DE 平分∠CDF.⑴求证:AB =AC ;⑵若AC =3cm ,AD =2cm ,求DE 的长.60.如图,已知圆内接四边形ABCD 的对角线AC 、BD 交于点N ,点M 在对角线BD 上,且满足∠BAM=∠DAN ,∠BCM=∠DCN .求证:(1)M 为BD 的中点;(2)CMAMCN AN . AB CD E FG OB A。

人教版九年级上册数学 24.1.1圆 同步习题(含解析)

人教版九年级上册数学 24.1.1圆 同步习题(含解析)

24.1.1圆同步习题一.选择题1.下列说法正确的是()A.弦是直径B.弧是半圆C.直径是圆中最长的弦D.半圆是圆中最长的弧2.已知⊙O的半径是5cm,则⊙O中最长的弦长是()A.5cm B.10cm C.15cm D.20cm 3.下列说法中,不正确的是()A.圆既是轴对称图形又是中心对称图形B.圆的每一条直径都是它的对称轴C.圆有无数条对称轴D.圆的对称中心是它的圆心4.下列说法错误的是()A.圆有无数条直径B.连接圆上任意两点之间的线段叫弦C.过圆心的线段是直径D.能够重合的圆叫做等圆5.已知AB是直径为10的圆的一条弦,则AB的长度不可能是()A.2B.5C.9D.11 6.如图,图中的弦共有()A.1条B.2条C.3条D.4条7.到定点的距离等于定长的点的集合是()A.圆的外部B.圆的内部C.圆D.圆的内部和圆8.等于圆周的弧叫做()A.劣弧B.半圆C.优弧D.圆9.⊙O中,直径AB=a,弦CD=b,则a与b大小为()A.a>b B.a≥b C.a<b D.a≤b10.在平面直角坐标系中,⊙C的圆心坐标为(1,0),半径为1,AB为⊙C的直径,若点A的坐标为(a,b),则点B的坐标为()A.(﹣a﹣1,﹣b)B.(﹣a+1,﹣b)C.(﹣a+2,﹣b)D.(﹣a﹣2,﹣b)二.填空题11.过圆内一点(非圆心)有条弦,有条直径.12.一个圆环的内直径是6cm,圆环的宽度是2cm,这个圆环的面积是cm2.13.到点O的距离等于8的点的集合是.14.平面上的一个圆,把平面上的点分成三类:圆上的点,圆内的点和圆外的点,圆的内部可以看成是到圆心的距离的点的集合,圆的外部可以看成是到圆心的距离点的集合.15.下列说法:①直径是圆中最长的弦;②弧是半圆;③过圆心的直线是直径;④半圆不是弧;⑤长度相等的弧是等弧,正确的是.(填写正确的序号)三.解答题16.已知:如图,BD、CE是△ABC的高,M为BC的中点.试说明点B、C、D、E在以点M为圆心的同一个圆上.17.已知线段AB=3cm,用图形表示到点A的距离小于2cm,且到点B的距离大于2cm的所有点的集合.18.已知点P、Q,且PQ=4cm,(1)画出下列图形:到点P的距离等于2cm的点的集合;到点Q的距离等于3cm的点的集合.(2)在所画图中,到点P的距离等于2cm,且到点Q的距离等于3cm的点有几个?请在图中将它们表示出来.参考答案1.解:A、直径是弦,但弦不一定是直径,故错误,不符合题意;B、半圆是弧,但弧不一定是半圆,故错误,不符合题意;C、直径是圆中最长的弦,正确,符合题意;D、半圆是小于优弧而大于劣弧的弧,故错误,不符合题意,故选:C.2.解:∵⊙O的半径是5cm,∴⊙O中最长的弦,即直径的长为10cm,故选:B.3.解:A.圆既是轴对称图形又是中心对称图形,正确;B.圆的每一条直径所在直线都是它的对称轴,故B错误;C.圆有无数条对称轴,正确;D.圆的对称中心是它的圆心,正确.故选:B.4.解:A、圆有无数条直径,故本选项说法正确;B、连接圆上任意两点的线段叫弦,故本选项说法正确;C、过圆心的弦是直径,故本选项说法错误;D、能够重合的圆全等,则它们是等圆,故本选项说法正确;故选:C.5.解:因为圆中最长的弦为直径,所以弦长L≤10.故选:D.6.解:图形中有弦AB和弦CD,共2条,故选:B.7.解:圆可以看做是所有到定点O的距离等于定长r的点的集合.故选:C.8.解:根据直径所对的两条弧是半圆,大于半圆的弧是优弧,则等于圆周的弧叫做优弧.故选:C.9.解:直径是圆中最长的弦,因而有a≥b.故选:B.10.解:如图,作AD⊥x轴于D,BE⊥x轴于E,∵AB为⊙C的直径,∴CA=CB,而∠ACD=∠BCE,∴Rt△ACD≌Rt△BCE,∴AD=BE,DC=CE,∵点A的坐标为(a,b),⊙C的圆心坐标为(1,0),∴BE=AD=b,EC=CD=a﹣1,∴OE=1﹣(a﹣1)=﹣a+2,∴B点坐标为(﹣a+2,﹣b),当点A圆上的任何位置都有此结论.故选:C.11.解:过圆内一点(非圆心)有无数条弦,有1条直径.故答案为无数,1.12.解:∵圆环的内直径是6cm,圆环的内半径是3cm,∵圆环的宽度是2cm,∴圆环的外半径是2+3=5cm,∴圆环的面积是3.14×5×5﹣3.14×3×3=78.5﹣28.26=50.24(cm2),故答案为50.24.13.解:到点O的距离等于8的点的集合是:以点O为圆心,以8为半径的圆.故答案是:以点O为圆心,以8为半径的圆.14.解:根据点和圆的位置关系,知圆的内部是到圆心的距离小于半径的所有点的集合;圆是到圆心的距离等于半径的所有点的集合.所以与圆心的距离不大于半径的点所组成的图形是圆的内部(包括边界).故答案为:小于半径,大于半径.15.解:直径是圆中最长的弦,所以①正确;弧是不一定为半圆,所以②错误;过圆心的弦是直径,所以③错误;半圆是弧,所以④错误;能够重合的弧是等弧,所以⑤错误.故答案为①.16.证明:连接ME、MD,∵BD、CE分别是△ABC的高,M为BC的中点,∴ME=MD=MC=MB=BC,∴点B、C、D、E在以点M为圆心的同一圆上.17.解:如图:阴影部分就是到点A的距离小于2cm,且到点B的距离大于2cm的所有点组成的图形18.解:(1)到点P的距离等于2cm的点的集合图中⊙P;到点Q的距离等于3cm的点的集合图中⊙Q.(2)到点P的距离等于2cm,且到点Q的距离等于3cm的点有2个,图中C、D.。

人教版九年级数学上册 第24章24.1 ---24.4练习题(有答案)

人教版九年级数学上册  第24章24.1  ---24.4练习题(有答案)

人教版九年级数学上册第24章24.1 ---24.4练习题(有答案)24.1 圆的有关性质一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 下列说法中,正确的是()A.长度相等的两条弧是等弧B.优弧一定大于劣弧C.任意三角形都一定有外接圆D.不同的圆中不可能有相等的弦2. 如图,AB是⊙O的直径,点A是弧CD的中点,若∠B=25∘,则∠AOC=()A.25∘B.30∘C.40∘D.50∘3. 如图,一座石拱桥是圆弧形其跨度AB=24米,半径为13米,则拱高CD为()A.3√5米B.5米C.7米D.8米4. 锐角△ABC的三条高AD、BE、CF交于H,在A、B、C、D、E、F、H七个点中.能组成四点共圆的组数是()A.4组B.5组C.6组D.7组5. 如图,在⊙O中,∠ABC=130∘,则∠AOC等于()A.50∘B.80∘C.90∘D.100∘6. 如图,在⊙O中,∠BAC=15∘,∠ADC=20∘,则∠ABO的度数为()A.70∘B.55∘C.45∘D.35∘7. 如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5∘,OC=3√2,CD的长为()A.2B.4C.6D.88. 如图,四边形ABCD 内接于半径为6的⊙O 中,连接AC ,若AB =CD ,∠ACB =45∘,∠ACD =12∠BAC ,则BC 的长度为( )A.6√3B.6√2C.9√3D.9√29. 高速公路的隧道和桥梁最多.如图是一个隧道的横截面,若它的形状是以O 为圆心的圆的一部分,路面AB =12米,净高CD =9米,则此圆的半径OA =( )A.122米B.132米C.142米D.152米10. 如图,四边形ABCD 是⊙O 的内接四边形,点D 是AĈ的中点,点E 是BC ̂上的一点,若∠CED =40∘,则∠ADC =( )A.100∘B.110∘C.95∘D.120∘二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , )11. 已知AB 、CD 是⊙O 的两条弦,若AB ̂=CD ̂,且AB =2,则CD =________.12. 如图,AB是⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于点E,已知AB=2DE,若△COD为直角三角形,则∠E的度数为________∘.13. 如图,圆内接四边形ABCD两组对边的延长线分别相交于点E,F,且∠A=62∘,∠E =24∘,则∠F=________.14. 如图,四边形ABCD内接于⊙O,∠A=62∘,则∠C=________∘.15. 在△ABC中,∠B=60∘,∠BCA=20∘,∠DAC=20∘,∠BCA的平分线交AB于E,连DE,则∠BDE=________.16. 芳芳家今年搬进了新房,新房外飘的凉台呈圆弧形(如图所示),她测得凉台的宽度AB为8m,凉台的最外端C点离AB的距离CD为2m,则凉台所在圆的半径为________.17. 已知一条弧的度数为120∘,则它所对的圆周角的度数是________∘.18. 如图,在△ABC中,已知∠ACB=130∘,∠BAC=20∘,BC=2,以点C为圆心,CB 为半径的圆交AB于点D,则BD的长为________.19. 如图,四边形ABCD内接于⊙O,F是弧CD上一点,且弧DF=弧BC,连接CF并延长交AD的延长线于点E,连接AC,若∠ABC=105∘,∠BAC=25∘,则∠E的度数为________度.20. 如图是比例尺为1:200的铅球场地的示意图,铅球投掷圈的直径为2.135m,体育课上,某生推出的铅球落在投掷区的点A处,他的铅球成绩约为________m(精确到0.1m).三、解答题(本题共计6 小题,共计60分,)21. 如图,⊙O是△ABC外接圆,AB=AC,P是⊙O上一点.(1)分别出图①和图②中∠BPC的角平分线;(2)结合图②,说明你这样理由.22. 如图,AB和CD是⊙O的弦,且AB=CD,E、F分别为弦AB、CD的中点,证明:OE=OF.23. 如图,⊙O的弦AC、BD交于点Q,AP、CP是⊙O的切线,O、Q、P三点共线.求证:PA2=PB⋅PD.24. 如图,AB、CD是⊙O中的两条弦,M、N分别是AB、CD的中点,且∠OMN=∠ONM.求证:AB=CD.25. 如图,⊙O的半径长为12cm,弦AB=16cm.(1)求圆心到弦AB的距离;(2)如果弦AB的两端点在圆周上滑动(AB弦长不变),那么弦AB的中点形成什么样的图形?̂上一点,AG、CD的延长线26. 如图,已知AB是⊙O的直径,弦CD⊥AB于点E,G是AD相交于点F,求证:∠FGD=∠AGC.参考答案一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】C2.【答案】D3.【答案】D4.【答案】C5.【答案】D6.【答案】B7.【答案】C8.【答案】A9.【答案】B10.【答案】A二、填空题(本题共计10 小题,每题 3 分,共计30分)11.【答案】212.【答案】22.513.【答案】32∘14.【答案】11815.【答案】20∘16.【答案】5米17.【答案】6018.【答案】2√319.【答案】5020.【答案】6.1三、解答题(本题共计6 小题,每题10 分,共计60分)21.【答案】解:(1)如图①,连接AP,即为所求角平分线;如图②,连接AO并延长,与⊙O交于点D,连接PD,即为所求角平分线(2)∵ AD是直径,∵ 半圆ABD=半圆ACD又∵ AB=AC,̂=AĈ,∵ AB∵ BĈ=BD̂,∵ ∠BPD=∠CPD,即PD平分∠BPC.22.【答案】证明:连结OA、OC,如图,∵ E、F分别为弦AB、CD的中点,∵ OE⊥AB,AE=BE,OF⊥CD,CF=DF,∵ AB=CD,∵ AE=CF,在Rt△AEO和Rt△COF中,{AE=CFAO=CO,∵ Rt△AEO≅Rt△COF(HL),∵ OE=OF.23.【答案】证明:连接OA、OB、OD、OC,设DP交⊙O于E.∵ AP、CP是⊙O的切线,∵ ∠OAP=∠PCO=90∘∵ A、O、C、P四点共圆,∵ OQ⋅PQ=AQ⋅CQ(相交弦定理);又∵ DQ⋅BQ=AQ⋅CQ(相交弦定理),∵ OQ⋅PQ=DQ⋅BQ,∵ D、O、B、P四点共圆;∵ OD=OB,∵ ∠ODB=∠OBD;又∵ ODPB四点共圆∵ ∠ODB=∠OPB;∠OBD=∠OPD;∵ ∠OPD=∠OPB,∵ PB=PE,∵ PA2=PE⋅PD=PB⋅PD(切割线定理),即PA2=PB⋅PD.24.【答案】证明:∵ M、N分别是AB、CD的中点,∵ OM⊥AB,ON⊥CD,又∵ ∠OMN=∠ONM,∵ OM=ON,∵ AB=CD.25.【答案】解:(1)作OC⊥AB,垂足为C连接AO,则AC=8cm,在Rt△AOC中,OC=√OA2−AC2=√122−82=√80=4√5cm(或OC=8.944cm);即圆心到弦的距离是4√5cm.(2)形成一个以O为圆心,4√5cm为半径的圆.(答“以O为圆心,OC长为半径的圆”亦可,如果只答“是一个圆”得1分)26.【答案】证明:连接AC,∵ 四边形ACDG是圆内接四边形,∵ ∠FGD=∠ACD.∵ 弦CD⊥AB于点E,∵ AĈ=AD̂,∵ ∠AGC=∠ACD,∵ ∠FGD=∠AGC.24.2 点和圆、直线和圆的位置关系(满分120分;时间:120分钟)一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 已知⊙O的半径为7cm,OA=5cm,那么点A与⊙O的位置关系是()A.在⊙O内B.在⊙O上C.在⊙O外D.不能确定2. 等边三角形的内切圆与它的外接圆的半径比是()A.√22B.12C.1D.23. 如图,AB是⊙O的弦,BC与⊙O相切于点B,连结OA,若∠ABC=70∘,则∠A等于()A.10∘B.15∘C.20∘D.30∘4. 如图,在⊙O中,AB为直径,BC为弦,CD为切线,连接OC.若∠BCD=50∘,则∠AOC的度数为()A.40∘B.50∘C.80∘D.100∘5. 如图,⊙O的半径为5,△ABC内接于⊙O,且BC=8,AB=AC,点D在AĈ上.若∠AOD=∠BAC,则CD的长为()A.5B.6C.7D.86. 下列关于圆的切线的说法正确的是()A.垂直于圆的半径的直线是圆的切线B.与圆只有一个公共点的射线是圆的切线C.经过半径的一端且垂直于半径的直线是圆的切线D.如果圆心到一条直线的距离等于半径长,那么这条直线是圆的切线7. 已知△ABC中,∠B≠∠C,求证:AB≠AC.若用反证法证这个结论,应首先假设()A.∠B=∠CB.∠A=∠BC.AB=ACD.∠A=∠C8. 如图,在⊙O中,AB为直径,点M为AB延长线上的一点,MC与⊙O相切于点C,圆周上有另一点D与点C分居直径AB两侧,且使得MC=MD=AC,连接AD,现有下列结论:①MD与⊙O相切;②四边形ACMD是菱形;③AB=MO;④∠ADM=120∘,其中正确的结论有()A.1个B.2个C.3个D.4个9. 如图,在△ABC中,AB=13,AC=5,BC=12,经过点C且与边AB相切的动圆与CA、CB分别相交于点P、Q,则线段PQ长度的最小值是()A.125B.6013C.5D.无法确定10. 如图,AE、AD和BC分别切⊙O于点E、D、F,如果AD=20,则△ABC的周长为()A.20B.30C.40D.50二、填空题(本题共计7 小题,每题3 分,共计21分,)11. 如图,△ABC的一边AB是⊙O的直径,请你添加一个条件,使BC是⊙O的切线,你所添加的条件为________.12. 已知⊙O1与⊙O2相交于A,B两点,且⊙O1经过点O1,∠AO1B=100∘,则∠AO2B=________.13. 如图,一圆内切于四边形ABCD,且AB=8,CD=5,则AD+BC的长为________.14. 如图,在边长为54√3的正三角形ABC中,O1为△ABC的内切圆,圆O2与O1外切,且与AC、BC相切;圆O3与O2外切,且与AC、BC相切…如此继续下去,请计算圆O5的周长为________.(结果保留π)15. 已知⊙O是等腰梯形ABCD的内切圆,上底AD=a,下底BC=b,则其内切圆的半径OP为________.16. 已知在直角ABC中,∠C=90∘,AC=8cm,BC=6cm,则△ABC的外接圆半径长为________cm,△ABC的内切圆半径长为________cm,△ABC的外心与内心之间的距离为________cm.17. 如图,已知⊙O是△ABC的内切圆,切点为D、E、F,如果AE=2,CD=1,BF= 3,则内切圆的半径r=________.三、解答题(本题共计5小题,共计69分,)18. 如图,在△ABC中,∠ACB=90∘.(1)尺规作图(保留作图痕迹,不写作法):①作AC的垂直平分线,垂足为D;②以D为圆心,DA长为半径作圆,交AB于E(E异于A),连接CE;(2)探究CE与AB的位置关系,并证明你的结论.19. 如图,在Rt△ABC中,∠C=90∘,∠A=30∘,O为AB上一点,BO=x,⊙O的半径为2.(1)当x为何值时,直线BC与⊙O相切?(2)当x在什么范围内取值时,直线BC与⊙O相离、相交?20. 如图,在△ABC中,以AB为直径的⊙O分别与BC,AC相交于点D,E,且BD=CD,过D作DF⊥AC,垂足为F.(1)求证:DF是⊙O的切线;(2)若AD=5√3,∠CDF=30∘,求⊙O的半径.21. 如图,⊙O的半径为5cm,AB、AC是⊙O的两条弦,AB=6√2cm,AC=8cm.过点O作一个圆与AC相切,则这个圆的半径是多少?它与AB具有怎样的位置关系?为什么?22 如图,Rt△ABC中,∠C=90∘,AC=4.BC=3,点M是AB上一点,以M为圆心作⊙M,(1)若⊙M经过A、C两点,求⊙M的半径,并判断点B与⊙M的位置关系.(2)若⊙M和AC、BC都相切,求⊙M的半径.参考答案与试题解析一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】A【解答】解:∵ ⊙O的半径为7cm,OA=5cm,∵ d<r,∵ 点A与⊙O的位置关系是:点A在圆内,故选A.2.【答案】B【解答】解:如图,连接OD、OE;∵ AB、AC切圆O与E、D,∵ OE⊥AB,OD⊥AC,∵ AO=AO,EO=DO,∵ △AEO≅△ADO(HL),∵ ∠DAO=∠EAO;又∵ △ABC为等边三角形,∵ ∠BAC=60∘,×60∘=30∘,∵ ∠OAC=12∵ OD:AO=1:2.,∵ 等边三角形的内切圆与外接圆半径的比是12故选B.3.【答案】C【解答】解:连接OB,∵ BC是⊙O的切线,∵ OB⊥BC,∵ ∠CBO=90∘,∵ ∠ABC=70∘,∵ ∠OBA=90∘−70∘=20∘,∵ OA=OB,∵ ∠A=∠OBA=20∘,故选C.4.【答案】C【解答】解:∵ 在⊙O中,AB为直径,BC为弦,CD为切线,∵ ∠OCD=90∘,∵ ∠BCD=50∘,∵ ∠OCB=40∘,∵ ∠AOC=80∘,故选C.5.【答案】B【解答】连接BD,∵ AB=AC,∵ ∠ABC=∠ACB,∵ ∠BAC+2∠ACB=180∘,∵ ∠BAC=∠AOD,∵ ∠AOD+2∠ACB=180∘,∵ ∠AOD=2∠ACD,∵ 2∠ACD+2∠ACB=180∘,∵ ∠ACD+∠ACB=90∘,即∠BCD=90∘,∵ BD为⊙O的直径,∵ BD=10,∵ CD=√BD2−BC2=√102−82=6,6.【答案】D【解答】解:A,经过半径的外端点且垂直于半径的直线是圆的切线,故原命题错误;B,与圆只有一个公共点的直线是圆的切线,故原命题错误;C,经过半径的外端点且垂直于半径的直线是圆的切线,故原命题错误;D,如果圆心到一条直线的距离等于半径长,那么这条直线是圆的切线,正确.故选D.7.【答案】C【解答】解:∵ 已知△ABC中,∠B≠∠C,求证:AB≠AC.∵ 若用反证法证这个结论,应首先假设:AB=AC.故选:C.8.【答案】D【解答】解:如图,连接CO,DO,∵ MC与⊙O相切于点C,∵ ∠MCO=90∘,在△MCO与△MDO中,{MC=MD,MO=MO,CO=DO,∵ △MCO≅△MDO(SSS),∵ ∠MCO=∠MDO=90∘,∠CMO=∠DMO,∵ MD与⊙O相切,故①正确;在△ACM与△ADM中,{CM =DM ,∠CMA =∠DMA ,AM =AM ,∵ △ACM ≅△ADM(SAS),∵ AC =AD ,∵ MC =MD =AC =AD ,∵ 四边形ACMD 是菱形,故②正确;如图连接BC ,∵ AC =MC ,∵ ∠CAB =∠CMO ,又∵ AB 为⊙O 的直径,∵ ∠ACB =90∘,在△ACB 与△MCO 中,{∠CAB =∠CMO ,AC =MC ,∠ACB =∠MCO , ∵ △ACB ≅△MCO(SAS),∵ AB =MO ,故③正确;∵ △ACB ≅△MCO ,∵ BC =OC ,∵ BC =OC =OB ,∵ ∠COB =60∘,∵ ∠MCO =90∘,∵ ∠CMO =30∘,又∵ 四边形ACMD 是菱形,∵ ∠CMD =60∘,∵ ∠ADM =120∘,故④正确;故正确的有4个.故选D .9.【答案】B【解答】解:∵ 在△ABC中,AB=13,AC=5,BC=12,∵ AB2=AC2+BC2.∵ ∠ACB=90∘,∵ PQ一定是直径.要使过点C且与边AB相切的动圆的直径最小,则PQ即为斜边上的高,则PQ=AC⋅BCAB =6013.故选B.10.【答案】C【解答】解:据切线长定理有AD=AE,BE=BF,CD=CF;则△ABC的周长=AB+BC+AC=AB+BF+CF+AC=AB+BE+AC+CD=AD+AE=2AD=40.故选C.二、填空题(本题共计7 小题,每题 3 分,共计21分)11.【答案】∠ABC=90∘【解答】解:当△ABC为直角三角形时,即∠ABC=90∘时,BC与圆相切,∵ AB是⊙O的直径,∠ABC=90∘,∵ BC是⊙O的切线,(经过半径外端,与半径垂直的直线是圆的切线).故答案为:∠ABC=90∘.12.【答案】130∘或50∘【解答】解:①如图:∵ ∠AO1B=80∘,∠AO1B=50∘,∵ ∠ACB=12∵ A、C、B、O2四点共圆,∵ ∠AO2B+∠ACB=180∘,∵ ∠AO2B=130∘,②如图:∠AO1B=50∘;此时∠AO2B=12故答案为:130∘或50∘.13.【答案】13【解答】解:由题意可得圆外切四边形的两组对边和相等,所以AD+BC=AB+CD=5+8=13,故选答案是:13.14.【答案】2π3【解答】解:如图过点O2作O2D⊥O1E于D,∵ △ABC是等边三角形,O1为△ABC的内切圆,∵ O1E⊥BC,∠O1BE=∠O1O2D=30∘,BE=12BC=27√3,∵ O1E=27,设⊙O1,⊙O2的半径为R,r,∴O1O2=12O1D,∵ r=13R,同理⊙O3的半径=13r=19R=3,⊙O4=13×3=1,⊙O5=13×1=13,∵ ⊙O5的周长=2×13π=23π.15.【答案】√ab2【解答】解:设⊙O的半径OP=r,过A作AE⊥BC于E,过D作DF⊥BC于F,过D作MN⊥AD交BC于N,则AE // MN // DF,∵ AD // BC,∵ 四边形AENM和四边形DFNM是平行四边形,∵ AE=NM=DF=2r,AD=EF=b−a,∵ AB=DC,∵ 由勾股定理得:BE=CF=12(b−a),∵ ⊙O是等腰梯形ABCD的内切圆,∵ AB=DC12(a+b),在Rt△ABE中,由勾股定理得:AE=√[12(a+b)]2−[12(b−a)]2=√ab,∵ OP=√ab2.故答案为:√ab2.16.【答案】5,2,√5【解答】解:(1)∵ ∠C=90∘,AC=8cm,BC=6cm,∵ AB=√82+62=10cm.∵ △ABC的外接圆半径长R=AB2=102=5cm.故答案为:5cm.(2)∵ AC=8cm,BC=6cm,由(1)知AB=10cm,∵ △ABC的内切圆半径长r=a+b−c2,=8+6−10=2cm.故答案为:2cm.(3)连接ID,IE,IF,∵ ⊙I是△ABC的内切圆,∵ ID⊥BC,IE⊥AC,IF⊥AB,∵ ∠CDI=∠CEI=∠C=90∘,又∵ DI=EI,∵ 四边形CDIE是正方形.∵ CD=CE=DI=IE,由(2)知DI=IE=IF2cm,∵ CD=2cm.∵ BC=6cm,∵ BD=4cm.∵ ⊙I是△ABC的内切圆,∵ BD=BF=4cm.∵ BO=5cm,∵ OF=1cm.在Rt△IFO中,IO=√22+12=√5cm.∵ △ABC的外心与内心之间的距离为√5cm.故答案为:√5cm.17.【答案】1【解答】解:∵ ⊙O是△ABC的内切圆,切点为D、E、F,∵ AF=AE,EC=CD,DB=BF,∵ AE=2,CD=1,BF=3,∵ AF=2,EC=1,BD=3,∵ AB=BF+AF=3+2=5,BC=BD+DC=4,AC=AE+EC=3,∵ △ABC是直角三角形,=1.∵ 内切圆的半径r=3+4−52故答案为:1.三、解答题(本题共计7 小题,每题10 分,共计70分)18.【答案】(1)解:①如解图,直线DF即为AC的垂直平分线;②如解图,⊙D即为所求作的圆;(2)证明:CE⊥AB.证明:∵ AD是⊙D的半径,点D是线段AC的中点,∵ AC是⊙D的直径,∵ ∠AEC=90∘,∵ CE⊥AB.【解答】(1)解:①如解图,直线DF即为AC的垂直平分线;②如解图,⊙D即为所求作的圆;(2)证明:CE⊥AB.证明:∵ AD是⊙D的半径,点D是线段AC的中点,∵ AC是⊙D的直径,∵ ∠AEC=90∘,∵ CE⊥AB.19.【答案】解:(1)作OD // AC,交BC于点D,∵ ∠C=90∘,∠A=30∘,∵ ∠B=60∘,∠DOB=30∘,∵ BO=x,OD=2,∵ cos30∘=2,x,解得:x=4√33时,直线BC与⊙O相切;即当x为4√33(2)由(1)得:①若圆O与直线BC相离,则有OB大于x,即x>4√3;3.②若圆O与直线CB相交,则有OB小于x,即x<4√33【解答】解:(1)作OD // AC,交BC于点D,∵ ∠C=90∘,∠A=30∘,∵ ∠B=60∘,∠DOB=30∘,∵ BO=x,OD=2,,∵ cos30∘=2x解得:x=4√3,3即当x为4√33时,直线BC与⊙O相切;(2)由(1)得:①若圆O与直线BC相离,则有OB大于x,即x>4√33;②若圆O与直线CB相交,则有OB小于x,即x<4√33.20.【答案】【解答】此题暂无解答21.【答案】解:作OD⊥AC于D,OE⊥AB于E,连接OA,如图所示:则AD=CD=12AC=4cm,AE=BE=12AB=3√2cm,∠ODA=∠OEA=90∘,由勾股定理得:OD=√OA2−AD2=√52−42=3(cm),OE=√OA2−AE2=√52−(3√2)2=√7(cm),即过点O作一个圆与AC相切,则这个圆的半径是3cm,这个圆与AB相交,理由如下:∵ √7<3,即d<r,∵ 与CA相切的圆与AB相交.【解答】解:作OD⊥AC于D,OE⊥AB于E,连接OA,如图所示:则AD=CD=12AC=4cm,AE=BE=12AB=3√2cm,∠ODA=∠OEA=90∘,由勾股定理得:OD=√OA2−AD2=√52−42=3(cm),OE=√OA2−AE2=√52−(3√2)2=√7(cm),即过点O作一个圆与AC相切,则这个圆的半径是3cm,这个圆与AB相交,理由如下:∵ √7<3,即d<r,∵ 与CA相切的圆与AB相交.22.【答案】(1)证明见解析;(2)证明见解析;(3)CP=16.9cm【解答】(1)如图,连接OD,:BC是○○的直径,________BAC=90∘AD平分么BAC,∵ ________BAC=2∠BAD,BOD=2BAD,.2BOD=∠BAC=90∘DPIIBC,.________ODP=∠BOD=90∘….PDLOD,:OD是○○半径,…PD是○O的切线;(2):PDIIBC,∵ ________ACB=2PACB=∠ADB∵ .ADB=2P________AB+∠ACD=180∘&nbsp∴ ACD+∠DCP=180∘________DCP=∠ABD∵ ΔABD∼△DCP;(3):BC是○○的直径,∠BDC=∠BAC=90∘在Rt△ABC中,BC=√AB2+AC2=13cm:AD平分么BAC,∵ 2EAD=∠CAD∵ 2BOD=∠COD∵ BD=CE).在Rt△BCD中,BD2+CD2=BC2∴ BD=CD=√22BC=13√22ΔABD−△DCP∵ABCD=BDCPCP=16x−s&nbsprcm.BK−P22.【答案】解:(1)∵ ⊙M经过A、C两点,∵ M在AC的垂直平分线上,设点D是AC的中点,连接CM,DM,∵ DM // BC,∵ AM:BM=AD:CD=1,∵ M是AB的中点,∵ AM=CM=BM,连接CM,∵ Rt△ABC中,∠C=90∘,AC=4,BC=3,∵ AB=√AC2+BC2=5,∵ CM=12AB=2.5,∵ ⊙M的半径为 2.5,点B在⊙M上.(2)连接EM,FM,∵ ⊙M和AC、BC都相切,∵ ME⊥AC,MF⊥BC,CE=CF,∵ ∠C=90∘,∵ 四边形CEMF是正方形,设EM=x,则CE=x,∵ AE=AC−CE=4−x,∵ △AEM∽△ACB,∵ AE:AC=EM:BC,∵ 4−x4=x3,解得:x=127.即⊙M的半径为127.【解答】解:(1)∵ ⊙M经过A、C两点,∵ M在AC的垂直平分线上,设点D是AC的中点,连接CM,DM,∵ DM // BC,∵ AM:BM=AD:CD=1,∵ M是AB的中点,∵ AM=CM=BM,连接CM,∵ Rt△ABC中,∠C=90∘,AC=4,BC=3,∵ AB=2+BC2=5,∵ CM=12AB=2.5,∵ ⊙M的半径为 2.5,点B在⊙M上.(2)连接EM,FM,∵ ⊙M和AC、BC都相切,∵ ME⊥AC,MF⊥BC,CE=CF,∵ ∠C=90∘,∵ 四边形CEMF是正方形,设EM=x,则CE=x,∵ AE=AC−CE=4−x,∵ △AEM∽△ACB,∵ AE:AC=EM:BC,∵ 4−x4=x3,解得:x=127.即⊙M的半径为127.24.3正多边形和圆一.选择题1.下面说法正确的个数有()①若m>n,则ma2>nb2;②由三条线段首尾顺次相接所组成的图形叫做三角形;③有两个角互余的三角形一定是直角三角形;④各边都相等的多边形是正多边形;⑤如果一个三角形只有一条高在三角形的内部,那么这个三角形一定是钝角三角形.A.1 个B.2 个C.3 个D.4 个2.下列说法,错误的是()A.为了解一种灯泡的使用寿命,宜采用普查的方法B.一元二次方程3x2﹣2x﹣1=0有两个不相等的实数根C.一次函数y=﹣3x+2的图象经过第一、二、四象限D.正六边形每个内角的度数是外角度数的2倍3.如图,正五边形ABCDE内接于⊙O,点P是劣弧上一点(点P不与点C重合),则∠CPD=()A.45°B.36°C.35°D.30°4.如图,用若n个全等的正五边形按如下方式拼接可以拼成一个环状,使相邻的两个正五边形有公共顶点,所夹的锐角为24°,图中所示的是前3个正五边形的拼接情况,拼接一圈后,中间会形成一个正多边形,则n的值为()A.5B.6C.8D.105.如图,五边形ABCDE是⊙O的内接正五边形,则正五边形中心角∠COD的度数是()A.60°B.36°C.76°D.72°6.如图,正方形ABCD和正三角形AEF内接于⊙O,DC、BC交EF于G、H,若正方形ABCD的边长是4,则GH的长度为()A.2B.4﹣C.D.﹣7.如图,⊙O是正八边形ABCDEFGH的外接圆,则下列结论:①弧DF的度数为90°;②AE=DF;③S=AEDF.正八边形ABCDEFGH其中所有正确结论的序号是()A.①②B.①③C.②③D.①②③8.如图,正方形ABCD和正三角形AEF都内接于⊙O,EF与BC,CD分别相交于点G,H,则的值为()A.B.C.D.29.如图,正五边形ABCDE与正三角形AMN都是⊙O的内接多边形,若连接BM,则∠MBC的度数是()A.12°B.15°C.30°D.48°10.如图,在由边长相同的7个正六边形组成的网格中,点A,B在格点上.再选择一个格点C,使△ABC是以AB为腰的等腰三角形,符合点C条件的格点个数是()A.1B.2C.3D.4二.填空题11.正六边形的边长为2,则边心距为.12.如图,正方形ABCD内接于⊙O,若⊙O的半径是1,则正方形的边长是.13.中心角为36°的正多边形边数为.14.如图,正五边形ABCDE内接于圆O,P为弧DE上的一点(点P不与点D、E重合),则∠CPD的度数为.15.如图1,将一个正三角形绕其中心最少旋转60°,所得图形与原图的重叠部分是正六边形;如图2,将一个正方形绕其中心最少旋转45°,所得图形与原图形的重叠部分是正八边形;依此规律,将一个正七边形绕其中心最少旋转°,所得图形与原图的重叠部分是正多边形.在图2中,若正方形的边长为4,则所得正八边形的面积为.三.解答题16.如图,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)求证:△ABC是等边三角形.(2)若⊙O的半径为2,求等边△ABC的边心距.17.如图,以△ABC的一边AC为直径的⊙O交AB边于点D,E是⊙O上一点,连接DE,∠E=∠B.(1)求证:BC是⊙O的切线;(2)若∠E=45°,AC=4,求⊙O的内接正四边形的边长.18.如图,实线部分是由正方形,正五边形和正六边形叠放在一起形成的,其中正方形和正六边形的边长相同,求图中∠MON的度数.19.中心为O的正六边形ABCDEF的半径为6cm,点P,Q同时分别从A,D两点出发,以1cm/s的速度沿AF,DC向终点F,C运动,连接PB,PE,QB,QE,设运动时间为t(s).(1)求证:四边形PBQE为平行四边形;(2)求矩形PBQE的面积与正六边形ABCDEF的面积之比.参考答案与试题解析一.选择题1.【解答】解:①若m>n,则ma2>nb2,当a=0时错误;故不符合题意;②由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形,故不符合题意;③有两个角互余的三角形一定是直角三角形,故符合题意;④各边都相等,各角也相等的多边形是正多边形,故不符合题意.⑤如果一个三角形只有一条高在三角形的内部,那么这个三角形是钝角三角形或直角三角形,故不符合题意;故选:A.2.【解答】解:A、为了解一种灯泡的使用寿命,此调查具有破坏性,宜采用抽查的方法;故此选项符合题意;B、一元二次方程3x2﹣2x﹣1=0有两个不相等的实数根;故此选项不符合题意;C、一次函数y=﹣3x+2的图象经过第一、二、四象限;故此选项不符合题意;D、正六边形每个内角的度数是外角度数的2倍;故此选项不符合题意;故选:A.3.【解答】解:如图,连接OC,OD,∵ABCDE是正五边形,∴∠COD==72°,∴∠CPD=∠COD=36°,故选:B.4.【解答】解:∵正五边形的每个内角为:=108°,∴组成的正多边形的每个内角为:360°﹣2×108°﹣24°=120°,∵n个全等的正五边形拼接可以拼成一个环状,中间会形成一个正多边形,∴组成的正多边形为正n边形,则=120°,解得:n=6,故选:B.5.【解答】解:∵五边形ABCDE是⊙O的内接正五边形,∴五边形ABCDE的中心角∠COD的度数为=72°,故选:D.6.【解答】解:连接AC交EF于M,连接OF,∵四边形ABCD是正方形,∴∠B=90°,∴AC是⊙O的直径,∴△ACD是等腰直角三角形,∴AC=AD=4,∴OA=OC=2,∵△AEF是等边三角形,∴AM⊥EF,∠OFM=30°,∴OM=OF=,∴CM=,∴∠ACD=45°,∠CMG=90°,∴∠CGM=45°,∴△CGH是等腰直角三角形,∴GH=2CM=2.故选:A .7.【解答】解:设圆心为O ,连接OD ,OF ,∵∠DOE =∠EOF ==45°,∴∠DOF =90°,∴弧DF 的度数为90°,∴①正确;∵∠DOF =90°,OD =OF ,∴2OD 2=DF 2,∴OD =, ∵AE =2OD ,∴AE =DF , ∴②正确;∵S 四边形ODEF =DFOE ,∴S 正八边形ABCDEFGH =4S 四边形ODEF =2DFOE ,∵OE =AE ,∴S 正八边形ABCDEFGH =AEDF ,∴③正确;故选:D .8.【解答】解:如图,连接AC、BD、OF,设⊙O的半径是r,则OF=r,∵AO是∠EAF的平分线,∴∠OAF=60°÷2=30°,∵OA=OF,∴∠OF A=∠OAF=30°,∴∠COF=30°+30°=60°,∴FI=r sin60°=r,∴EF=r×2=r,∵AO=2OI,∴OI=r,CI=r﹣r=r,∴==,∴GH=BD=r,∴==.故选:C.9.【解答】解:连接OA、OC.∵五边形ABCDE是正五边形,∴∠AOB==72°,∴∠AOC=72°×2=144°,∵△AMN是正三角形,∴∠AOM==120°,∴∠COM=∠AOC﹣∠AOM=144°﹣120°=24°,∴∠MBC=∠COM=×24°=12°.故选:A.10.【解答】解:AB的长等于六边形的边长+最长对角线的长,据此可以确定共有2个点C,位置如图,故选:B.二.填空题(共5小题)11.【解答】解:如图所示:连接OA、OB,作OC⊥AB于C,则∠OCA=90°,AC=BC=AB=1,∠AOB=60°,∴∠AOC=30°,∴OC=AC=;故答案为:.12.【解答】解:连接OB,OC,则OC=OB=1,∠BOC=90°,在Rt△BOC中,BC==.∴正方形的边长是,故答案为:.13.【解答】解:由题意可得:∵360°÷36°=10,∴它的边数是10.故答案为10.14.【解答】解:如图,连接OC,OD.∵ABCDE是正五边形,∴∠COD==72°,∴∠CPD=∠COD=36°,故答案为:36°.15.【解答】解:如图2所示:将一个正三角形绕其中心最少旋转60°,所得图形与原图的重叠部分是正六边形;将一个正方形绕其中心最少旋转45°,所得图形与原图形的重叠部分是正八边形;依此规律,将一个正七边形绕其中心最少旋转,所得图形与原图的重叠部分是正多边形.在图2中,由题意得:PM=MN=NQ,AM=AP=BN=BQ,则MN=PM=AM,∵AM+MN+BN=AB=4,∴AM+AM+AM=4,解得:AM=4﹣2,则所得正八边形的面积为4×4﹣4××(4﹣2)2=32﹣32;故答案为:(),32﹣32.三.解答题(共4小题)16.【解答】(1)证明:在⊙O中,∵∠BAC与∠CPB是对的圆周角,∠ABC与∠APC是所对的圆周角,∴∠BAC=∠CPB,∠ABC=∠APC,又∵∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°,∴△ABC为等边三角形;(2)过O作OD⊥BC于D,连接OB,则∠OBD=30°,∠ODB=90°,∵OB=2,∴OD=1,∴等边△ABC的边心距为1.17.【解答】解:(1)证明:连接CD,∵AC为直径,∴∠ADC=90°,∵∠E=∠ACD,∠E=∠B.∴∠ACD=∠B,∴∠ACD+∠CAD=∠B+∠CAD=90°,∴∠ACB=90°,∴BC是⊙O的切线;(2)如图,连接OD、CE,若∠E=45°,则∠AOD=90°,∵AC=4,∴OA=OD=2,∴AD=2.∴⊙O的内接正四边形的边长为AD的长为2.18.【解答】解:由正方形、正五边形和正六边形的性质得,∠AOM=108°,∠OBC=120°,∠NBC=90°,∴∠AOB=×120°=60°,∠MOB=108°﹣60°=48°,∴∠OBN=360°﹣120°﹣90°=150°,∴∠NOB=×(180°﹣150°)=15°,∴∠MON=33°.19.【解答】(1)证明:∵六边形ABCDEF是正六边形,∴AB=BC=CD=DE=EF=F A,∠A=∠ABC=∠C=∠D=∠DEF=∠F,∵点P,Q同时分别从A,D两点出发,以1cm/s速度沿AF,DC向终点F,C运动,。

人教版九年级数学上册 24.1圆的有关 性质 同步检测题【含答案】

人教版九年级数学上册  24.1圆的有关 性质 同步检测题【含答案】

圆24.1 圆的有关性质同步检测题一.选择题(共13 小题)1.已知⊙O 的半径为2,A 为圆内一定点,AO=1.P 为圆上一动点,以A P 为边作等腰△APG,AP=PG,∠APG=120°,OG 的最大值为()A.1+B.1+2C.2+D. 12.如图,AB,BC 是⊙O 的弦,∠B=60°,点 O 在∠B 内,点 D 为AC上的动点,点 M,N,P分别是A D,D C,C B 的中点.若⊙O 的半径为2,则P N+MN 的长度的最大值是()A.1+B.1+2C.2+2D.3.如图,AB 是⊙O 的直径,AB=10,P 是半径O A 上的一动点,PC⊥AB 交⊙O 于点C,在半径O B 上取点Q,使得O Q=CP,DQ⊥AB 交⊙O 于点D,点C,D 位于A B 两侧,连接C D 交A B 于点F,点P从点A出发沿A O 向终点O运动,在整个运动过程中,△CFP 与△DFQ 的面积和的变化情况是()A.一直减小B.一直不变C.先变大后变小D.先变小后变大4.如图,在⊙O 中,弦A B=6,点C是A B 所对优弧上一点,∠ABC=120°,BC=8,点P 为 AB 上方一点,记△PAB 的面积为 S1,△AOB 的面积为 S2,且 S1=12S2,则 OP+PC的最小值为()A .BCD .105.如图,AB 是⊙O 的直径,点 D ,C 在⊙O 上,∠DOC =90°,AD ,BC =1,则⊙O的半径为()A B .2 C .2D .26.如图,在⊙O 中,AB =2CD ,那么()A . 2CD AB >B .2CD AB <C .=2CD ABD .AB 与2CD 的大小关系无法比较 7.如图,BC 是⊙O 的直径,A ,D 是⊙O 上的两点,连接 A B ,AD ,BD ,若∠ADB =70°, 则∠ABC 的度数是( )A.20°B.70°C.30°D.90°8.如图,点A、B、C 是⊙O 上的点,OA=AB,则∠C 的度数为()A.30°B.45°C.60°D.30°或60°9.如图,AB 是半圆的直径,O 为圆心,C 是半圆上的点,D 是弧AC上的点.若∠BOC =500,则∠D 的度数()A.105°B.115°C.125°D.85°10.如图,四边形A BCD 内接于⊙O,连结O A、OC.若∠AOC=∠ABC,则∠D 的大小为()A.50°B.60°C.80°D.120°11.如图,在⊙O 中∠O=50°,则∠A 的度数为()A.50°B.20°C.30°D.25°12.如图,AB 为⊙O 的直径,弦CD⊥OB 于E,且点E为半径O B 的中点,连结A C,则∠A 的度数为()A.20°B.30°C.45°D.60°13.如图,点A、B、C、D 在⊙O 上,OB∥CD.若∠A=28°,则∠BOD 的大小为()A.152°B.134°C.124°D.114°二.填空题(共9小题)14.如图,在⊙O 中,弦B C,DE 交于点P,延长B D,EC 交于点A,BC=10,BP=2CP,若BDAD=23,则D P 的长为.15.如图,△ABC 内接于半径为AB 为直径,点 M 是弧AC的中点,连结 BM交AC 于点E,AD 平分∠CAB 交B M 于点D.(1)∠ADB=°;(2)当点D恰好为B M 的中点时,BC 的长为.16.如图,四边形A BCD 内接于⊙O,∠BOD=120°,则∠DCE=.17.如图,点A,B,C,D 是⊙O 上的四个点,已知∠BCD=110°,格据推断出∠BAD 的度数为70°,则她判断的依据是点.18.如图,⊙O 的半径为2,点A为⊙O 上一点,如果∠BAC=60°,OD⊥弦B C 于点D,那么O D 的长是.19.如图,AB 是⊙O 的直径,AC 是⊙O 的弦,点D 是弧AC上的中点,AC=8,OA=5,连接AD、BD,则△ABD 的面积是.20.已知:如图,在△ABC 中,AB=AC,以A B 为直径作圆交B C 于D,交A C 于E.若∠A=84°,则弧AE的度数为.21.如图,点A,B,C,D 是⊙O 上的四个点,点B是弧A C 的中点,如果∠ABC=70°,那∠ADB=.22.如图,MN 为⊙O 的直径,MN=10,AB 为⊙O 的弦,已知M N⊥AB 于点P,AB=8,现要作⊙O 的另一条弦C D,使得C D=6 且C D∥AB,则P C 的长度为.三.解答题(共3小题)23.如图,AB 是⊙O 的直径,点C、D 是⊙O 上的点,且O D∥BC,AC 分别与B D、OD 相交于点E、F.(1)求证:点D为弧AC的中点;(2)若C B=6,AB=10,求D F 的长;(3)若⊙O 的半径为5,∠DOA=80°,点P是线段A B 上任意一点,试求出P C+PD 的最小值.24.如图,以△ABC 的一边AB 为直径的半圆与其它两边AC,BC 的交点分别为D,E,且弧DE=弧BE(1)试判断△ABC 的形状,并说明理由;(2)已知半圆的半径为5,BC=12,求B D 的长.25.如图,AB 为半圆O的直径,CD 是半圆上两点,AC=2BC,F 在B D 上且C F⊥CD,求证:AD=2BF.。

九年级数学上学期 24.1 圆的有关性质 同步练习卷 含解析

九年级数学上学期 24.1 圆的有关性质 同步练习卷  含解析

24.1 圆的有关性质一.选择题(共12小题)1.⊙O中,直径AB=a,弦CD=b,则a与b大小为()A.a>b B.a≥b C.a<b D.a≤b2.已知⊙O的半径为6cm,P为线段OA的中点,若点P在⊙O上,则OA的长()A.等于6cm B.等于12cm C.小于6cm D.大于12cm3.下列说法错误的是()A.圆有无数条直径B.连接圆上任意两点之间的线段叫弦C.过圆心的线段是直径D.能够重合的圆叫做等圆4.如图,从A地到B地有两条路可走,一条路是大半圆,另一条路是4个小半圆.有一天,一只猫和一只老鼠同时从A地到B地.老鼠见猫沿着大半圆行走,它不敢与猫同行(怕被猫吃掉),就沿着4个小半圆行走.假设猫和老鼠行走的速度相同,那么下列结论正确的是()A.猫先到达B地B.老鼠先到达B地C.猫和老鼠同时到达B地D.无法确定5.如图,AB,CD是⊙O的直径,=,若∠AOE=32°,则∠COE的度数是()A.32°B.60°C.68°D.64°6.⊙O中,M为的中点,则下列结论正确的是()A.AB>2AMB.AB=2AMC.AB<2AMD.AB与2AM的大小不能确定7.在同圆中,若AB=2CD,则与的大小关系是()A.>B.<C.=D.不能确定8.如图,⊙O的半径为4,将⊙O的一部分沿着弦AB翻折,劣弧恰好经过圆心O,则折痕AB的长为()A.4B.6 C.2D.39.一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O 到水面的距离OC是()A.4 B.5 C.6D.610.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4cm,则球的半径长是()A.2 cm B.2.5 cm C.3 cm D.4 cm11.如图,四边形ABCD内接于⊙O,它的一个外角∠EBC=65°,分别连接AC,BD,若AC=AD,则∠DBC的度数为()A.50°B.55°C.65°D.70°12.如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC于点Q.若QP=QO,则的值为()A.B.C.D.二.填空题(共8小题)13.如图,小量角器的0°刻度线在大量角器的0°刻度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P在大量角器上对应的度数为40°,那么在小量角器上对应的度数为.(只考虑小于90°的角度)14.如图,CD是⊙O的直径,∠EOD=84°,AE交⊙O于点B,且AB=OC,则∠A的度数是.15.如图所示,弧AD是以等边三角形ABC一边AB为半径的四分之一圆周,P为弧AD上任意一点,若AC=5,则四边形ACBP周长的最大值是.16.如图,已知AB是⊙O的直径,PA=PB,∠P=60°,则弧CD所对的圆心角等于度.17.如图,定长弦CD在以AB为直径的⊙O上滑动(点C、D与点A、B不重合),M是CD的中点,过点C作CP⊥AB于点P,若CD=3,AB=8,PM=l,则l的最大值是.18.“圆材埋壁”是我国古代数一学著作《九章算术》中的一个问题.“今有圆材,埋壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言表达是:如图所示,CD为⊙O的直径,弦AB⊥CD,垂足为E,CE=1寸,AB=1尺,则直径CD长为寸.19.如图,AB为⊙O的直径,CD为⊙O的弦,∠ACD=54°,则∠BAD=.20.如图,四边形ABCD内接于⊙O,E为CD延长线上一点.若∠B=110°,则∠ADE的度数为.三.解答题(共5小题)21.如图,在⊙O中,AD=BC,求证:DC=AB.22.已知:如图,OA、OB为⊙O的半径,C、D分别为OA、OB的中点.求证:AD=BC.23.如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长.24.如图,有一座拱桥是圆弧形,它的跨度AB=60米,拱高PD=18米.(1)求圆弧所在的圆的半径r的长;(2)当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PE =4米时,是否要采取紧急措施?25.已知:如图1,在⊙O中,直径AB=4,CD=2,直线AD,BC相交于点E.(1)∠E的度数为;(2)如图2,AB与CD交于点F,请补全图形并求∠E的度数;(3)如图3,弦AB与弦CD不相交,求∠AEC的度数.参考答案与试题解析一.选择题(共12小题)1.⊙O中,直径AB=a,弦CD=b,则a与b大小为()A.a>b B.a≥b C.a<b D.a≤b【分析】根据直径是弦,且是最长的弦,即可求解.【解答】解:直径是圆中最长的弦,因而有a≥b.故选:B.2.已知⊙O的半径为6cm,P为线段OA的中点,若点P在⊙O上,则OA的长()A.等于6cm B.等于12cm C.小于6cm D.大于12cm【分析】点在圆上,则d=r;点在圆外,d>r;点在圆内,d<r(d即点到圆心的距离,r即圆的半径).【解答】解:根据点和圆的位置关系,得OP=6,再根据线段的中点的概念,得OA=2OP =12.故选:B.3.下列说法错误的是()A.圆有无数条直径B.连接圆上任意两点之间的线段叫弦C.过圆心的线段是直径D.能够重合的圆叫做等圆【分析】根据直径、弧、弦的定义进行判断即可.【解答】解:A、圆有无数条直径,故本选项说法正确;B、连接圆上任意两点的线段叫弦,故本选项说法正确;C、过圆心的弦是直径,故本选项说法错误;D、能够重合的圆全等,则它们是等圆,故本选项说法正确;故选:C.4.如图,从A地到B地有两条路可走,一条路是大半圆,另一条路是4个小半圆.有一天,一只猫和一只老鼠同时从A地到B地.老鼠见猫沿着大半圆行走,它不敢与猫同行(怕被猫吃掉),就沿着4个小半圆行走.假设猫和老鼠行走的速度相同,那么下列结论正确的是()A.猫先到达B地B.老鼠先到达B地C.猫和老鼠同时到达B地D.无法确定【分析】利用半圆的弧长公式,即可分别求得两个路径的长,然后进行比较即可.【解答】解:以AB为直径的半圆的长是:π•AB;设四个小半圆的直径分别是a,b,c,d,则a+b+c+d=AB.则老鼠行走的路径长是:a+πb+πc+πd=π(a+b+c+d)=π•AB.故猫和老鼠行走的路径长相同.故选:C.5.如图,AB,CD是⊙O的直径,=,若∠AOE=32°,则∠COE的度数是()A.32°B.60°C.68°D.64°【分析】根据圆心角、弧、弦的关系,由=得到∠BOD=∠AOE=32°,然后利用对顶角相等得∠BOD=∠AOC=32°,易得∠COE=64°.【解答】解:∵=,∴∠BOD=∠AOE=32°,∵∠BOD=∠AOC,∴∠AOC=32°∴∠COE=32°+32°=64°.故选:D.6.⊙O中,M为的中点,则下列结论正确的是()A.AB>2AMB.AB=2AMC.AB<2AMD.AB与2AM的大小不能确定【分析】以及等弧所对的弦相等,以及三角形中两边之和大于第三边,即可判断.【解答】解:连接BM.∵M为的中点,∴AM=BM,∵AM+BM>AB,∴AB<2AM.故选:C.7.在同圆中,若AB=2CD,则与的大小关系是()A.>B.<C.=D.不能确定【分析】先根据题意画出图形,找出两相同的弦CD、DE,根据三角形的三边关系得到CE 与CD+DE的关系,再比较出AB与CE的长,利用圆心角、弧、弦的关系进行解答即可.【解答】解:如图所示,CD=DE,AB=2CD,在△CDE中,∵CD=DE,∴CE<CD+DE,即CE<2CD=AB,∴CE<AB,∴<.故选:A.8.如图,⊙O的半径为4,将⊙O的一部分沿着弦AB翻折,劣弧恰好经过圆心O,则折痕AB的长为()A.4B.6 C.2D.3【分析】过O作垂直于AB的半径OC,设交点为D,根据折叠的性质可求出OD的长;连接OA,根据勾股定理可求出AD的长,由垂径定理知AB=2AD,即可求出AB的长度.【解答】解:过O作OC⊥AB于D,交⊙O于C,连接OA,Rt△OAD中,OD=CD=OC=2,OA=4,根据勾股定理,得:AD=,由垂径定理得,AB=2AD=4,故选:A.9.一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O 到水面的距离OC是()A.4 B.5 C.6D.6【分析】根据垂径定理求出BC,根据勾股定理求出OC即可.【解答】解:∵OC⊥AB,OC过圆心O点,∴BC=AC=AB=×16=8,在Rt△OCB中,由勾股定理得:OC===6,故选:D.10.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4cm,则球的半径长是()A.2 cm B.2.5 cm C.3 cm D.4 cm【分析】取EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM=4﹣x,MF=2,然后在Rt△MOF中利用勾股定理求得OF的长即可.【解答】解:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=4,设OF=x,则ON=OF,∴OM=MN﹣ON=4﹣x,MF=2,在直角三角形OMF中,OM2+MF2=OF2即:(4﹣x)2+22=x2解得:x=2.5故选:B.11.如图,四边形ABCD内接于⊙O,它的一个外角∠EBC=65°,分别连接AC,BD,若AC=AD,则∠DBC的度数为()A.50°B.55°C.65°D.70°【分析】先根据圆内接四边形的性质得出∠ADC=∠EBC=65°,再根据AC=AD得出∠ACD =∠ADC=65°,故可根据三角形内角和定理求出∠CAD=50°,再由圆周角定理得出∠DBC=∠CAD=50°.【解答】解:∵四边形ABCD内接于⊙O,∴∠ADC=∠EBC=65°.∵AC=AD,∴∠ACD=∠ADC=65°,∴∠CAD=180°﹣∠ACD﹣∠ADC=50°,∴∠DBC=∠CAD=50°,故选:A.12.如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC于点Q.若QP=QO,则的值为()A.B.C.D.【分析】设⊙O的半径为r,QO=m,则QP=m,QC=r+m,QA=r﹣m.利用相交弦定理,求出m与r的关系,即用r表示出m,即可表示出所求比值.【解答】解:如图,设⊙O的半径为r,QO=m,则QP=m,QC=r+m,QA=r﹣m.在⊙O中,根据相交弦定理,得QA•QC=QP•QD.即(r﹣m)(r+m)=m•QD,所以QD=.连接DO,由勾股定理,得QD2=DO2+QO2,即,解得所以,故选:D.二.填空题(共8小题)13.如图,小量角器的0°刻度线在大量角器的0°刻度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P在大量角器上对应的度数为40°,那么在小量角器上对应的度数为70°.(只考虑小于90°的角度)【分析】设大量角器的左端点为A,小量角器的圆心为B.利用三角形的内角和定理求出∠PBA的度数.然后根据圆的知识可求出小量角器上对应的度数.【解答】解:设大量角器的左端点是A,小量角器的圆心是B,连接AP,BP,则∠APB=90°,∠PAB=20°,因而∠PBA=90°﹣20°=70°,在小量角器所求弧所对的圆心角为70°,因而P在小量角器上对应的度数为70°.故答案为:70°;14.如图,CD是⊙O的直径,∠EOD=84°,AE交⊙O于点B,且AB=OC,则∠A的度数是28°.【分析】根据等腰三角形的性质,可得∠A与∠AOB的关系,∠BEO与∠EBO的关系,根据三角形外角的性质,可得关于∠A的方程,根据解方程,可得答案.【解答】解:由AB=OC,得AB=OB,∠A=∠AOB.由BO=EO,得∠BEO=∠EBO.由∠EBO是△ABO的外角,得∠EBO=∠A+∠AOB=2∠A,∠BEO=∠EBO=2∠A.由∠DOE是△AOE的外角,得∠A+∠AEO=∠EOD,即∠A+2∠A=84°,∠A=28°.故答案为:28°.15.如图所示,弧AD是以等边三角形ABC一边AB为半径的四分之一圆周,P为弧AD上任意一点,若AC=5,则四边形ACBP周长的最大值是15+5.【分析】因为P在半径为5的圆周上,若使四边形周长最大,只要AP最长即可(因为其余三边长为定值5).【解答】解:由于AC和BC值固定,点P在弧AD上,而B是圆心,所以PB的长也是定值,因此,只要AP的长为最大值,∴当P的运动到D点时,AP最长,∵弧AD是以等边三角形ABC一边AB为半径的四分之一圆周,∴∠DBA=90°,∴由勾股定理得AD的长为5,∴周长为5×3+5=15+5.故答案为:15+5.16.如图,已知AB是⊙O的直径,PA=PB,∠P=60°,则弧CD所对的圆心角等于60 度.【分析】先利用PA=PB,∠P=60°得出△PAB是等边三角形,再求出△COA,△DOB也是等边三角形,得出∠COA=∠DOB=60°,可求∠COD.【解答】解:连接OC,OD,∵PA=PB,∠P=60°,∴△PAB是等边三角形,有∠A=∠B=60°,∵OA=OC=OD=OB,∴△COA,△DOB也是等边三角形,∴∠COA=∠DOB=60°,∴∠COD=180°﹣∠COA﹣∠DOB=60度.17.如图,定长弦CD在以AB为直径的⊙O上滑动(点C、D与点A、B不重合),M是CD的中点,过点C作CP⊥AB于点P,若CD=3,AB=8,PM=l,则l的最大值是 4 .【分析】方法一、延长CP交⊙O于K,连接DK,求出当DK为直径时符合,再求出PM即可;方法二、求出C,M,O,P,四点共圆,连接PM,则PM为⊙E的一条弦,当PM为直径时PM最大,所以PM=CO=4时PM最大.【解答】解:方法一、延长CP交⊙O于K,连接DK,则PM=DK,当DK过O时,DK最大值为8,PM=DK=4,方法二、连接CO,MO,∵∠CPO=∠CMO=90°,∴C,M,O,P,四点共圆,且CO为直径(E为圆心),连接PM,则PM为⊙E的一条弦,当PM为直径时PM最大,所以PM=CO=4时PM最大.即PM max=4,故答案为:4.18.“圆材埋壁”是我国古代数一学著作《九章算术》中的一个问题.“今有圆材,埋壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言表达是:如图所示,CD为⊙O的直径,弦AB⊥CD,垂足为E,CE=1寸,AB=1尺,则直径CD长为26 寸.【分析】连接OA,设OA=r,则OE=r﹣CE=r﹣1,再根据垂径定理求出AE的长,在Rt △OAE中根据勾股定理求出r的值,进而得出结论.【解答】解:连接OA,设OA=r,则OE=r﹣CE=r﹣1,∵AB⊥CD,AB=1尺,∴AE=AB=5寸,在Rt△OAE中,OA2=AE2+OE2,即r2=52+(r﹣1)2,解得r=13(寸).∴CD=2r=26寸.故答案为:26.19.如图,AB为⊙O的直径,CD为⊙O的弦,∠ACD=54°,则∠BAD=36°.【分析】连接BD,根据AB为直径,得出∠ADB=90°,∠ABD=∠ACD=54°,继而可求得∠BAD.【解答】解:连接BD,如图所示:∵∠ACD=54°,∴∠ABD=54°,∵AB为直径,∴∠ADB=90°,∴∠BAD=90°﹣∠ABD=36°,答案为:36°.20.如图,四边形ABCD内接于⊙O,E为CD延长线上一点.若∠B=110°,则∠ADE的度数为110°.【分析】根据圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角)可得答案.【解答】解:∵∠B=110°,∴∠ADE=110°.故答案为:110°.三.解答题(共5小题)21.如图,在⊙O中,AD=BC,求证:DC=AB.【分析】根据在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,由AD=BC得到=,把两弧都加上弧AC 得到=,于是得到DC=AB.【解答】证明:∵AD=BC,∴=,∴+=+,即=,∴DC=AB.22.已知:如图,OA、OB为⊙O的半径,C、D分别为OA、OB的中点.求证:AD=BC.【分析】利用SAS证明△AOD≌△BOC,根据全等三角形的对应边相等得到AD=BC.【解答】证明:∵OA,OB为⊙O的半径,C,D分别为OA,OB的中点,∴OA=OB,OC=OD.在△AOD与△BOC中,∵,∴△AOD≌△BOC(SAS).∴AD=BC.23.如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长.【分析】过O作OF垂直于CD,连接OD,利用垂径定理得到F为CD的中点,由AE+EB 求出直径AB的长,进而确定出半径OA与OD的长,由OA﹣AE求出OE的长,在直角三角形OEF中,利用30°所对的直角边等于斜边的一半求出OF的长,在直角三角形ODF中,利用勾股定理求出DF的长,由CD=2DF即可求出CD的长.【解答】解:过O作OF⊥CD,交CD于点F,连接OD,∴F为CD的中点,即CF=DF,∵AE=2,EB=6,∴AB=AE+EB=2+6=8,∴OA=4,∴OE=OA﹣AE=4﹣2=2,在Rt△OEF中,∠DEB=30°,∴OF=OE=1,在Rt△ODF中,OF=1,OD=4,根据勾股定理得:DF==,则CD=2DF=2.24.如图,有一座拱桥是圆弧形,它的跨度AB=60米,拱高PD=18米.(1)求圆弧所在的圆的半径r的长;(2)当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PE =4米时,是否要采取紧急措施?【分析】(1)连结OA,利用r表示出OD的长,在Rt△AOD中根据勾股定理求出r的值即可;(2)连结OA′,在Rt△A′EO中,由勾股定理得出A′E的长,进而可得出A′B′的长,据此可得出结论.【解答】解:(1)连结OA,由题意得:AD=AB=30,OD=(r﹣18)在Rt△ADO中,由勾股定理得:r2=302+(r﹣18)2,解得,r=34;(2)连结OA′,∵OE=OP﹣PE=30,∴在Rt△A′EO中,由勾股定理得:A′E2=A′O2﹣OE2,即:A′E2=342﹣302,解得:A′E=16.∴A′B′=32.∵A′B′=32>30,∴不需要采取紧急措施.25.已知:如图1,在⊙O中,直径AB=4,CD=2,直线AD,BC相交于点E.(1)∠E的度数为600;(2)如图2,AB与CD交于点F,请补全图形并求∠E的度数;(3)如图3,弦AB与弦CD不相交,求∠AEC的度数.【分析】(1)连结OD,OC,BD,根据已知得到△DOC为等边三角形,根据直径所对的圆周角是直角,求出∠E的度数;(2)同理解答(2)(3).【解答】解:(1)如图1,连结OD,OC,BD,∵OD=OC=CD=2∴△DOC为等边三角形,∴∠DOC=60°∴∠DBC=30°∴∠EBD=30°∵AB为直径,∴∠ADB=90°∴∠E=90°﹣300=600∠E的度数为600;(2)①如图2,直线AD,CB交于点E,连结OD,OC,AC.∵OD=OC=CD=2,∴△DOC为等边三角形,∴∠DOC=60°,∴∠DAC=30°,∴∠EBD=30°,∵AB为直径,∴∠ACB=90°,∴∠E=90°﹣30°=60°,(3)如图3,连结OD,OC,∵OD=OC=CD=2,∴△DOC为等边三角形,∴∠DOC=60°,∴∠CBD=30°,∴∠ADB=90°,∴∠BED=60°,∴∠AEC=60°.。

苏版数学初三上册(24.1.1圆)练习(含解析解析)

苏版数学初三上册(24.1.1圆)练习(含解析解析)

苏版数学初三上册(24.1.1圆)练习(含解析解析)一.选择题(共15小题)1.下列说法错误的是()A.直径是圆中最长的弦B.长度相等的两条弧是等弧C.面积相等的两个圆是等圆D.半径相等的两个半圆是等弧2.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E等于()A.42°B.28°C.21°D.20°3.如图,在⊙O中,弦的条数是()A.2B.3C.4D.以上均不正确4.以下说法正确的个数有()①半圆是弧.②三角形的角平分线是射线.③在一个三角形中至少有一个角不大于60°.④过圆内一点可以画无数条弦.⑤所有角的度数都相等的多边形叫做正多边形.A.1个B.2个C.3个D.4个5.如图所示圆规,点A是铁尖的端点,点B是铅笔芯尖的端点,已知点A与点B的距离是2cm,若铁尖的端点A固定,铅笔芯尖的端点B绕点A旋转一周,则作出的圆的直径是()A.1cm B.2cm C.4cm D.πcm6.下列语句中正确的有几个()①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③两个轴对称图形的对应点一定在对称轴的两侧;④一个圆有无数条对称轴.A.1B.2C.3D.47.点A、O、D与点B、O、C分别在同一直线上,图中弦的条数为()A.2B.3C.4D.58.下列说法错误的是()A.直径是圆中最长的弦B.半径相等的两个半圆是等弧C.面积相等的两个圆是等圆D.长度相等的两条弧是等弧9.如图,在△ABC中,∠ACB=90°,∠A=40°,以C为圆心,CB为半径的圆交AB 于点D,连接CD,则∠ACD=()A.10°B.15°C.20°D.25°10.下列说法:(1)长度相等的弧是等弧,(2)半径相等的圆是等圆,(3)等弧能够重合,(4)半径是圆中最长的弦,其中正确的有()A.1个B.2个C.3个D.4个11.下列说法正确的是()A.长度相等的弧是等弧B.相等的圆心角所对的弧相等C.面积相等的圆是等圆D.劣弧一定比优弧短12.下列说法错误的是()A.圆上的点到圆心的距离相等B.过圆心的线段是直径C.直径是圆中最长的弦D.半径相等的圆是等圆13.生活中处处有数学,下列原理运用错误的是()A.建筑工人砌墙时拉的参照线是运用“两点之间线段最短”的原理B.修理损坏的椅子腿时斜钉的木条是运用“三角形稳定性”的原理C.测量跳远的成绩是运用“垂线段最短”的原理D.将车轮设计为圆形是运用了“圆的旋转对称性”原理14.如图,四边形PAOB是扇形OMN的内接矩形,顶点P在上,且不与M、N重合,当P点在上移动时,矩形PAOB的形状,大小随之变化,则AB的长度()A.不变B.变小C.变大D.不能确定15.下列判断结论正确的有()(1)直径是圆中最大的弦.(2)长度相等的两条弧一定是等弧.(3)面积相等的两个圆是等圆.(4)同一条弦所对的两条弧一定是等弧.(5)圆上任意两点间的部分是圆的弦.A.1个B.2个C.3个D.4个二.填空题(共10小题)16.如图,在正方形纸片ABCD中,EF∥AD,M,N是线段EF的六等分点,若把该正方形纸片卷成一个圆柱,使点A与点D重合,此时,底面圆的半径为2cm,则此时M、N两点间的距离是cm.17.线段AB=10cm,在以AB为直径的圆上,到点A的距离为5cm的点有个.18.点A、B在⊙O上,若∠AOB=40°,则∠OAB=.19.战国时的《墨经》就有“圆,一中同长也”的记载.它的意思是圆上各点到圆心的距离都等于.20.如图,小量角器的0°刻度线在大量角器的0°刻度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P在大量角器上对应的度数为40°,那么在小量角器上对应的度数为.(只考虑小于90°的角度)21.战国时期数学家墨子撰写的《墨经》一书中,就有“圆,一中同长也”的记载,这句话里的“中”字的意思可以理解为.22.在同一平面内,1个圆把平面分成2个部分,2个圆把平面最多分成4个部分,3个圆把平面最多分成8个部分,4个圆把平面最多分成14个部分,那么10个圆把平面最多分成个部分.23.如图,AB是⊙O的直径,C是BA延长线上一点,点D在☉O上,且CD=OA,CD的延长线交⊙O于点E.若∠C=20°,则∠BOE的度数是.24.如图,AB是⊙O的直径,点C在⊙O上,CD⊥AB,垂足为D,已知CD=4,OD=3,求AB的长是.25.如图,△ABC中,∠ACB=90°,∠A=40°,以C为圆心、CB为半径的圆交AB 于点D,则∠ACD=度.三.解答题(共6小题)26.如图,AB是半圆O的直径,D是半圆上的一点,∠DOB=75°,DC交BA的延长线于E,交半圆于C,且CE=AO,求∠E的度数.27.如图,已知AB是⊙O的直径,C是⊙O上的一点,CD⊥AB于D,AD<BD,若CD=2cm,AB=5cm,求AD、AC的长.28.如图AB=3cm,用图形表示:到点A的距离小于2cm,且到点B的距离不小于2cm的所有点的集合(用阴影表示,注意边界上的点是否在集合中,如果在,用实线表示,如果不在,则用虚线表示).29.已知:如图,AB是⊙O的直径,点C、D在⊙O上,CE⊥AB于E,DF⊥AB 于F,且AE=BF,AC与BD相等吗?为什么?30.已知点P、Q,且PQ=4cm,(1)画出下列图形:到点P的距离等于2cm的点的集合;到点Q的距离等于3cm的点的集合.(2)在所画图中,到点P的距离等于2cm,且到点Q的距离等于3cm的点有几个?请在图中将它们表示出来.31.如图所示,AB为⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于点E,已知AB=2DE,∠AEC=20°.求∠AOC的度数.参考答案与试题解析一.选择题(共15小题)1.【解答】解:A、直径是圆中最长的弦,所以A选项的说法正确;B、在同圆或等圆中,长度相等的两条弧是等弧,所以B选项的说法错误;C、面积相等的两个圆的半径相等,则它们是等圆,所以C选项的说法正确;D、半径相等的两个半圆是等弧,所以D选项的说法正确.故选:B.2.【解答】解:连结OD,如图,∵OB=DE,OB=OD,∴DO=DE,∴∠E=∠DOE,∵∠1=∠DOE+∠E,∴∠1=2∠E,而OC=OD,∴∠C=∠1,∴∠C=2∠E,∴∠AOC=∠C+∠E=3∠E,∴∠E=∠AOC=×84°=28°.故选:B.3.【解答】解:如图,在⊙O中,有弦AB、弦DB、弦CB、弦CD.共有4条弦.故选:C.4.【解答】解:圆的任意一条直径的端点把圆分成两条弧,每一条弧都叫做半圆,故①正确;根据三角形角平分线的定义可知,三角形的角平分线是一条线段,故②错误;在一个三角形中至少有一个角不大于60°,故③正确;过圆内一点可以画无数条弦,故④正确;矩形的四个角都相等,都等于90°,而矩形不是正四边形,故⑤错误;故选:C.5.【解答】解:∵AB=2cm,∴圆的直径是4cm,故选:C.6.【解答】解:①关于一条直线对称的两个图形一定能重合;正确.②两个能重合的图形一定关于某条直线对称;错误.③两个轴对称图形的对应点一定在对称轴的两侧;错误,也可以在对称轴上.④一个圆有无数条对称轴.正确.故选:B.7.【解答】解:由图可知,点A、B、E、C是⊙O上的点,图中的弦有AB、BC、CE,一共3条.故选:B.8.【解答】解:A、直径是圆中最长的弦,正确,不符合题意;B、半径相等的两个半圆是等弧,正确,不符合题意;C、面积相等的两个圆是等圆,正确,不符合题意;D、长度相等的两条弧是等弧,错误,符合题意,故选:D.9.【解答】解:∵∠ACB=90°,∠A=40°,∴∠B=50°,∵CD=CB,∴∠BCD=180°﹣2×50°=80°,∴∠ACD=90°﹣80°=10°;故选:A.10.【解答】解:(1)长度相等的弧是等弧,错误;(2)半径相等的圆是等圆,正确;(3)等弧能够重合,正确;(4)半径是圆中最长的弦,错误;11.【解答】解:A、能完全重合的弧才是等弧,故本选项错误;B、必须在同圆或等圆中,相等的圆心角所对的弧相等,故本选项错误;C、面积相等的圆是等圆;故本选项正确;D、在同圆或等圆中,劣弧一定比优弧短.故本选项错误.故选:C.12.【解答】解:A、正确.圆上的点到圆心的距离相等;B、错误.过圆心的线段不一定是直径;C、正确.直径是圆中最长的弦;D、正确.半径相等的圆是等圆;故选:B.13.【解答】解:A、错误.建筑工人砌墙时拉的参照线是运用“两点确定一条直线”的原理;B、正确.修理损坏的椅子腿时斜钉的木条是运用“三角形稳定性”的原理;C、正确.测量跳远成绩的依据是垂线段最短;D、正确.将车轮设计为圆形是运用了“圆的旋转对称性”的原理;故选:A.14.【解答】解:∵四边形PAOB是扇形OMN的内接矩形,∴AB=OP=半径,当P点在上移动时,半径一定,所以AB长度不变,故选:A.15.【解答】解:(1)直径是圆中最大的弦,说法正确;(2)长度相等的两条弧一定是等弧,说法错误,在同圆或等圆中,能够完全重合的两段弧为等弧,不但长度相等,弯曲程度也要相同;(3)面积相等的两个圆是等圆,说法正确;(4)同一条弦所对的两条弧一定是等弧,说法错误,同一条弦所对的两条弧不一定是等弧,除非这条弦为直径;(5)圆上任意两点间的部分叫弧.错误;故选:B.二.填空题(共10小题)16.【解答】解:根据题意得:EF=BC,MN=EF,把该正方形纸片卷成一个圆柱,使点A与点D重合,则线段BC形成一半径为2cm 的圆,线段BC是圆的周长,BC=EF=2π×2=4π,∴的长=EF==,∴n=120°,即∠MON=120°,∵OM=ON,∴∠M=30°,过O作OG⊥MN于G,∵OM=2,∴OG=1,MG=,∴MN=2MG=2,故答案为:2.17.【解答】解:如图所示:到点A的距离为5cm的点有2个.故答案为:2.18.【解答】解:如图,∵∠AOB=40°,OA=OB,∴∠OAB=∠OBA==70°,故答案为:70°.19.【解答】解:战国时期的《墨经》一书中记载:“圜(圆),一中同长也”.表示圆心到圆上各点的距离都相等,即半径都相等;故答案为:半径.20.【解答】解:设大量角器的左端点是A,小量角器的圆心是B,连接AP,BP,则∠APB=90°,∠PAB=20°,因而∠PBA=90°﹣20°=70°,在小量角器中弧PB所对的圆心角是70°,因而P在小量角器上对应的度数为70°.故答案为:70°;21.【解答】解:战国时期的《墨经》一书中记载:“圜(圆),一中同长也”.表示圆心到圆上各点的距离都相等,即半径都相等;故答案为:圆心22.【解答】解:∵1个圆把平面分成部分=2,2个圆把平面最多分成的部分=2+2=4,3个圆把平面最多分成的部分=2+2+4=2+2(1+2)=8,4个圆把平面最多分成的部分=2+2(1+2+3)=14,∴10个圆把平面最多分成的部分=2+2(1+2+3+4+5+6+7+8+9)=92.故答案为92.23.【解答】解:连接OD,∵CD=OA=OD,∠C=20°,∴∠ODE=2∠C=40°,∵OD=OE,∴∠E=∠EDO=40°,∴∠EOB=∠C+∠E=40°+20°=60°,故答案为:60°.24.【解答】解:连接OC,∵CD=4,OD=3,在Rt△ODC中,∴OC===5,∴AB=2OC=10,故答案为:10.25.【解答】解:∵△ABC中,∠ACB=90°,∠A=40°∴∠B=50°∵BC=CD∴∠B=∠BDC=50°∴∠BCD=80°∴∠ACD=10°.三.解答题(共6小题)26.【解答】解:连结OC,如图,∵CE=AO,而OA=OC,∴OC=EC,∴∠E=∠1,∴∠2=∠E+∠1=2∠E,∵OC=OD,∴∠D=∠2=2∠E,∵∠BOD=∠E+∠D,∴∠E+2∠E=75°,∴∠E=25°.27.【解答】解:连接OC,∵AB=5cm,∴OC=OA=AB=cm,Rt△CDO中,由勾股定理得:DO==cm,∴AD=﹣=1cm,由勾股定理得:AC==,则AD的长为1cm,AC的长为cm.28.【解答】解:到点A的距离小于2cm,且到点B的距离不小于2cm的所有点的集合如图所示:29.【解答】解:AC与BD相等.理由如下:连结OC、OD,如图,∵OA=OB,AE=BF,∴OE=OF,∵CE⊥AB,DF⊥AB,∴∠OEC=∠OFD=90°,在Rt△OEC和Rt△OFD中,,∴Rt△OEC≌Rt△OFD(HL),∴∠COE=∠DOF,∴AC弧=BD弧,∴AC=BD.30.【解答】解:(1)到点P的距离等于2cm的点的集合图中⊙P;到点Q的距离等于3cm的点的集合图中⊙Q.(2)到点P的距离等于2cm,且到点Q的距离等于3cm的点有2个,图中C、D.31.【解答】解:连接OD,如图,∵AB=2DE,而AB=2OD,∴OD=DE,∴∠DOE=∠E=20°,∴∠CDO=∠DOE+∠E=40°,而OC=OD,∴∠C=∠ODC=40°,∴∠AOC=∠C+∠E=60°.。

人教版九年级数学上册《24.1.1-圆》同步练习题-附答案

人教版九年级数学上册《24.1.1-圆》同步练习题-附答案

人教版九年级数学上册《24.1.1 圆》同步练习题-附答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.把圆规的两脚分开,两脚间的距离是3厘米,再把有针尖的一只脚固定在一点上,把装有铅笔尖的一只脚旋转一周,就画出一个圆,则这个圆的()A.半径是3厘米B.直径是3厘米C.周长是3π厘米D.面积是3π厘米2.已知⊙O的半径长7cm,P为线段O A的中点,若点P在⊙O上,则OA的长是()A.等于7cm B.等于14cm C.小于7cm D.大于14cm3.下列说法正确的是()A.同弧或等弧所对的圆心角相等B.所对圆心角相等的弧是等弧C.弧长相等的弧一定是等弧D.平分弦的直径必垂直于弦4.已知O的半径为5,则该圆中最长的弦的长是()A.52B.53C.10 D.155.如图,在平面直角坐标系中,Q(3,4),P是在以Q为圆心,2为半径的⊙Q上一动点,设P点的横坐标为x,A(1,0)、B(-1,0),连接P A、PB,则P A2+PB2的最大值是A.64 B.98 C.100 D.1246.如图,在矩形ABCD中,AB=10,BC=12,E是矩形内部的一个动点,连接AE BE CE DE,,,,下列选项中的结论错误..的是()A .0261CE <<B .无论点E 在何位置,总有2222AE CE BE DE +=+C .若AE BE ⊥,则线段CE 的最小值为8D .若60EAD EBC ∠+∠=︒,AE BE +的最大值为23 7.下列命题是假命题的是( )A .不在同一直线上的三点确定一个圆B .矩形的对角线互相垂直且平分C .正六边形的内角和是720°D .角平分线上的点到角两边的距离相等8.下列命题正确的是( )A .相等的圆心角所对的弧是等弧B .等圆周角对等弧C .任何一个三角形只有一个外接圆D .过任意三点可以确定一个圆9.下列条件中,能确定圆的是( )A .以已知点O 为圆心B .以1cm 长为半径C .经过已知点A ,且半径为2cmD .以点O 为圆心,1cm 为半径10.下列条件中,能确定一个圆的是( )A .经过已知点MB .以点O 为圆心,10cm 长为半径C .以10cm 长为半径D .以点O 为圆心二、填空题11.如图,在平面直角坐标系中,点A 的坐标为(0,12),点B 的坐标为(5,0),动点P 在以A 为圆心,7为半径的圆周上运动,连接BP .(1)当动点P 与点B 距离最远时,此时线段BP 的长度为 ;(2)连接OP ,当OBP ∆为等腰三角形时,则P 点坐标为 .12.(1)图⊙中有 条弧,分别为 ;(2)写出图⊙中的一个半圆 ;劣弧: ;优弧: .13.如图,在⊙ABC 中,AC =BC ,⊙ACB =90°,以点A 为圆心,AB 长为半径画弧,交AC 延长线于点D ,则AC CD 的值为 ;过点C 作CE ⊙AB ,交BD 于点E ,连接BE ,则CE AD的值为 .14.如图,在矩形ABCD 中,AB =6,AD =8,E 是AB 边的中点,F 是线段BC 的动点,将△EBF 沿EF 所在直线折叠得到△EB ´F ,连接B ´D ,则B ′D 的最小值是 .15.如图,在O 中,点A 、B 在圆上,且AB OA =,则OAB ∠的度数为 °.16.直径为6cm 的圆周长是 cm .17.如图,点A 、B 在O 上,且AB BO =.ABO ∠的平分线与AO 相交于点C ,若3AC =,则O 的周长为 .(结果保留π)18.如图,在矩形ABCD 中,AB=2,AD=3,动点P 在矩形的边上沿B C D A →→→运动.当点P 不与点A 、B 重合时,将ABP 沿AP 对折,得到AB P ',连接CB ',则在点P 的运动过程中,线段CB '的最小值为 .19.直线4y x =+分别与x 轴、y 轴相交于点M 、N ,边长为2的正方形OABC 的一个顶点O 在坐标系的原点,直线AN 与MC 相交于点P ,若正方形绕着点O 旋转一周,则点P 到点()0,2长度的最小值是 .20.国际奥委会会旗上的图案是由代表五大洲的五个圆环组成,现在在某体育馆前的草坪上要修剪出此图案.已知,每个圆环的内、外半径分别为4米和5米,图中重叠部分的每个小曲边四边形的面积都为1平方米,若修剪每平方米的人工费用为10元,则修剪此图案所花费的人工费为 元(π取3).三、解答题21.综合与实践【问题背景】“夏至”过后,越来越多的市民喜欢去海边游玩。

人教版 九年级数学 第24章 圆 24.1 ---24.4章节复习题(含答案)

人教版 九年级数学 第24章 圆 24.1 ---24.4章节复习题(含答案)

人教版 九年级数学 第24章24.1 ---24.4复习题(含答案) 24.1 圆的有关性质一、选择题(本大题共10道小题)1. 如图,已知直径MN ⊥弦AB ,垂足为C ,有下列结论:①AC =BC ;②AN ︵=BN ︵;③AM ︵=BM ︵;④AM =BM .其中正确的个数为( )A .1B .2C .3D .42. 小红不小心把家里的一块圆形玻璃镜打碎了,需要配制一块同样大小的玻璃镜,工人师傅在一块如图所示的玻璃镜残片的边缘描出了点A ,B ,C ,给出三角形ABC ,则这块玻璃镜的圆心是 ( )A .AB ,AC 边上的中线的交点 B .AB ,AC 边上的垂直平分线的交点 C .AB ,AC 边上的高所在直线的交点D .∠BAC 与∠ABC 的角平分线的交点3.如图,点B ,C ,D 在⊙O 上,若∠BCD =130°,则∠BOD 的度数是( )A .50°B .60°C .80°D .100°4. 如图,AB ,AC分别是⊙O 的直径和弦,OD AC ⊥于点D ,连接BD ,BC ,且10AB =,8AC =,则BD 的长为A.5B.4C.13D.4.85.如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF.若∠AOF=40°,则∠F的度数是( )A.20°B.35°C.40°D.55°6. 如图,在半径为5的⊙O中,弦AB=6,OP⊥AB,垂足为P,则OP的长为() A.3 B.2.5 C.4 D.3.57. 如图,AB为⊙O的直径,C,D为⊙O上两点.若∠BCD=40°,则∠ABD的大小为()A.60°B.50°C.40°D.20°8. 如图,四边形ABCD是菱形,⊙O经过点A,C,D,与BC相交于点E,连接AC ,AE .若∠D =80°,则∠EAC 的度数为( )A .20°B .25°C .30°D .35°9. 如图,在半径为5的⊙O 中,AB ,CD 是互相垂直的两条弦,垂足为P ,且AB =CD =8,则OP 的长为( )A .3B .4C .3 2D .4 210. 如图,⊙P与x 轴交于点A(—5,0),B(1,0),与y 轴的正半轴交于点C.若∠ACB =60°,则点C 的纵坐标为( )A.13+ 3B .2 2+ 3C .4 2D .2 2+2二、填空题(本大题共8道小题)11. 如图所示,AB 为☉O 的直径,点C 在☉O 上,且OC ⊥AB ,过点C 的弦CD 与线段OB 相交于点E ,满足∠AEC=65°,连接AD ,则∠BAD= 度.12. (2019•娄底)如图,C 、D 两点在以AB 为直径的圆上,2AB =,30ACD ∠=︒,则AD __________.13. 如图,以△ABC的边BC为直径的⊙O分别交AB,AC于点D,E,连接OD,OE.若∠A=65°,则∠DOE=________°.14. 如图,在⊙O中,BD为⊙O的直径,弦AD的长为3,AB的长为4,AC平分∠DAB,则弦CD的长为________.15. 如图,在⊙O中,半径OA垂直于弦BC,点D在圆上,且∠ADC=30°,则∠AOB的度数为________.16. 如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E 在边BC上,连接AE.若∠ABC=64°,则∠BAE的度数为________.17. 当宽为3 cm 的刻度尺的一边与⊙O 相切于点A 时,另一边与⊙O 的两个交点B ,C 处的读数如图所示(单位: cm),那么该圆的半径为________cm.18. 如图,△ABC 内接于⊙O ,若∠OAB =32°,则∠C =________°.三、解答题(本大题共4道小题)19. 如图,在⊙O 中,M ,N 分别是半径OA ,OB 的中点,且CM ⊥OA 交⊙O 于点C ,DN ⊥OB 交⊙O 于点D .求证:AC ︵=BD ︵.20. 如图,AB 为O 的直径,点C 在O 上.(1)尺规作图:作BAC 的平分线,与O 交于点D ;连接OD ,交BC 于点E (不写作法,只保留作图痕迹,且用黑色墨水笔将作图痕迹加黑); (2)探究OE 与AC 的位置及数量关系,并证明你的结论.21. 如图,直线AB经过⊙O的圆心,与⊙O相交于点A,B,点C在⊙O上,且∠AOC=30°,P是直线AB上的一个动点(与点O不重合),直线PC与⊙O相交于点Q.在直线AB上使QP=QO成立的点P共有几个?请相应地求出∠OCP的度数.22. 如图,点E是△ABC的内心,线段AE的延长线交BC于点F(∠AFC≠90°),交△ABC的外接圆于点D.(1)求点F与△ABC的内切圆⊙E的位置关系;(2)求证:ED=BD;(3)若∠BAC=90°,△ABC的外接圆的直径是6,求BD的长;(4)B,C,E三点可以确定一个圆吗?若可以,则它们确定的圆的圆心和半径分别是什么?若不可以,请说明理由.人教版 九年级数学 24.1 圆的有关性质 课后训练-答案一、选择题(本大题共10道小题) 1. 【答案】D2. 【答案】B[解析]本题实质上是要确定三角形外接圆的圆心,三角形外接圆的圆心是三边垂直平分线的交点,故选B .3. 【答案】D[解析] 由同弧所对的圆周角等于圆心角的一半, 可知∠α=2∠BCD =260°. 而∠α+∠BOD =360°, 所以∠BOD =100°.4. 【答案】C【解析】∵AB 为直径,∴90ACB ∠=︒,∴6BC ===, ∵OD AC ⊥,∴142CD AD AC ===,在Rt CBD △中,BD ==C .5. 【答案】B6. 【答案】C7. 【答案】B[解析] 如图,连接AD.∵AB 为⊙O 的直径,∴∠ADB =90°.∵∠A 和∠BCD 都是BD ︵所对的圆周角,∴∠A =∠BCD =40°,∴∠ABD =90°-40°=50°.故选B.8. 【答案】C9. 【答案】C[解析] 如图,过点O 作OE ⊥AB ,OF ⊥CD ,垂足分别为E ,F ,连接AO.∵OE ⊥AB ,∴AE =12AB =4.在Rt △OAE 中,OA =5,由勾股定理可得OE =3,同理得OF =3.又∵AB ⊥CD ,∴四边形OEPF 是正方形,∴PE =OE = 3.在Rt △OPE 中,由勾股定理可得OP =3 2.10. 【答案】B[解析] 如图,连接PA ,PB ,PC ,过点P 作PD ⊥AB 于点D ,PE⊥OC 于点E.∵∠ACB =60°,∴∠APB =120°. ∵PA =PB ,∴∠PAB =∠PBA =30°. ∵A(-5,0),B(1,0), ∴AB =6, ∴AD =BD =3,∴PD =3,PA =PB =PC =2 3. ∵PD ⊥AB ,PE ⊥OC ,∠AOC =90°,∴四边形PEOD 是矩形,∴OE =PD =3,PE =OD =3-1=2, ∴CE =PC2-PE2=12-4=2 2, ∴OC =CE +OE =2 2+3, ∴点C 的纵坐标为2 2+ 3. 故选B.二、填空题(本大题共8道小题)11. 【答案】20 [解析]如图,连接DO ,∵CO ⊥AB , ∴∠COB=90°,∵∠AEC=65°,∴∠C=25°,∵OD=OC ,∴∠ODC=∠C=25°,∴∠DOC=130°,∴∠DOB=40°,∵2∠BAD=∠DOB , ∴∠BAD=20°.12. 【答案】1【解析】∵AB 为直径,∴90ADB ∠=︒,∵30B ACD ∠=∠=︒,∴112122AD AB ==⨯=. 故答案为:1.13. 【答案】50[解析] 由三角形的内角和定理,得∠B +∠C =180°-∠A .再由OB =OD =OC =OE ,得到∠BDO =∠B ,∠CEO =∠C .在等腰三角形BOD 和等腰三角形COE 中,∠DOB +∠EOC =180°-2∠B +180°-2∠C =360°-2(∠B +∠C )=360°-2(180°-∠A )=2∠A ,所以∠DOE =180°-2∠A =50°.14. 【答案】52 2 [解析] ∵BD 为⊙O 的直径,∴∠DAB =∠DCB =90°. ∵AD =3,AB =4,∴BD =5.又∵AC 平分∠DAB ,∴∠DAC =∠BAC =45°, ∴∠DBC =∠DAC =45°,∠CDB =∠BAC =45°, 从而CD =CB ,∴CD =52 2.15. 【答案】60°[解析] ∵OA ⊥BC ,∴AB ︵=AC ︵,∴∠AOB =2∠ADC.∵∠ADC=30°,∴∠AOB =60°.16. 【答案】52°[解析] ∵四边形ABCD 是圆内接四边形,∴∠B +∠D =180°.∵∠B =64°,∴∠D =116°.又∵点D 关于AC 的对称点是点E , ∴∠AEC =∠D =116°.又∵∠AEC =∠B +∠BAE ,∴∠BAE =52°.17. 【答案】25618. 【答案】58[解析] 方法一:如图①,连接OB.∵在△OAB 中,OA =OB ,∴∠OAB =∠OBA.又∵∠OAB =32°,∴∠OBA =32°,∴∠AOB =180°-2×32°=116°.又∵∠C =12∠AOB(一条弧所对的圆周角是它所对的圆心角的一半), ∴∠C =58°.方法二:如图②,过点A 作直径AD ,连接BD ,则∠ABD =90°,∴∠C =∠D =90°-32°=58°(同弧所对的圆周角相等).三、解答题(本大题共4道小题)19. 【答案】证明:如图,连接OC ,OD ,则OC =OD .∵M ,N 分别是半径OA ,OB 的中点, ∴OM =ON .∵CM ⊥OA ,DN ⊥OB ,∴∠OMC =∠OND =90°. 在Rt △OMC 和Rt △OND 中,⎩⎨⎧OC =OD ,OM =ON ,∴Rt △OMC ≌Rt △OND (HL), ∴∠MOC =∠NOD ,∴AC ︵=BD ︵.20. 【答案】(1)如图所示:(2)OE AC ∥,12OE AC =. 理由如下:∵AD 平分BAC ∠, ∴12BAD BAC ∠=∠, ∵12BAD BOD ∠=∠,∴BOD BAC ∠=∠, ∴OE AC ∥,∵OA OB =,∴OE 为ABC △的中位线, ∴OE AC ∥,12OE AC =.21. 【答案】解:在直线AB 上使QP =QO 成立的点P 共有3个. (1)如图①.在△QOC 中,OC =OQ ,∴∠OQC =∠OCQ . 在△OPQ 中,QP =QO ,∴∠QOP =∠QPO .又∵∠QPO =∠OCQ +∠AOC ,且∠AOC =30°,∠QOP +∠QPO +∠OQC =180°,∴3∠OCQ =120°, ∴∠OCQ =40°. 即∠OCP =40°.(2)如图②. ∵QO =QP , ∴∠QPO =∠QOP .设∠QPO =x ,则∠OQC =∠QPO +∠QOP =2x .又∵OC =OQ , ∴∠OCQ =∠OQC =2x ,∴∠AOC =∠OPC +∠OCP =x +2x =3x . ∵∠AOC =30°,∴3x =30°,解得x =10°, ∴∠OCP =2x =20°. (3)如图③.∵QO =QP ,∴∠QOP =∠QPO . ∵OC =OQ ,∴∠OQC =∠OCQ .设∠QPO =y ,则∠OQC =∠OCQ =∠QPO +∠AOC =y +30°,∴在△OPQ中,有y+y+y+30°=180°,解得y=50°,∴∠OCP=180°-50°-30°=100°.综上所述,在直线AB上使QP=QO成立的点P共有3个,∠OCP的度数分别为40°,20°,100°.22. 【答案】解:(1)设⊙E切BC于点M,连接EM,则EM⊥BC.又线段AE的延长线交BC 于点F,∠AFC≠90°,∴EF>EM,∴点F在△ABC的内切圆⊙E外.(2)证明:∵点E是△ABC的内心,∴∠BAD=∠CAD,∠ABE=∠CBE.∵∠CBD=∠CAD,∴∠BAD=∠CBD.∵∠BED=∠ABE+∠BAD,∠EBD=∠CBE+∠CBD,∴∠BED=∠EBD,∴ED=BD.(3)如图①,连接CD.设△ABC的外接圆为⊙O.∵∠BAC=90°,∴BC是⊙O的直径,∴∠BDC=90°.∵⊙O的直径是6,∴BC=6.∵E为△ABC的内切圆的圆心,∴∠BAD=∠CAD,∴BD=CD.又∵BD2+CD2=BC2,∴BD=CD=3 2.(4)B,C,E三点可以确定一个圆.如图②,连接CD.∵点E是△ABC的内心,∴∠BAD=∠CAD,∴BD=CD.又由(2)可知ED=BD,∴BD=CD=ED,∴B,C,E三点确定的圆的圆心为点D,半径为BD(或ED,CD)的长度.24.2 点和圆、直线和圆的位置关系一、选择题(本大题共8道小题)1. 已知⊙O的半径为5 cm,圆心O到直线l的距离为5 cm,则直线l与⊙O的位置关系为()A.相交B.相切C.相离D.无法确定2. 2019·武汉江岸区期中点P到直线l的距离为3,以点P为圆心,以下列长度为半径画圆,能使直线l与⊙P相交的是()A.1 B.2 C.3 D.43. 2020·武汉模拟在Rt△ABC中,∠BAC=90°,AB=8,AC=6,以点A为圆心,4.8为半径的圆与直线BC的公共点的个数为()A.0 B.1 C.2 D.不能确定4. 如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与图中7×4方格中的格点相连,连线能够与该圆弧相切的格点有()A.1个B.2个C.3个D.4个5.如图,AP为⊙O的切线,P为切点,若∠A=20°,C、D为圆周上两点,且∠PD C=60°,则∠OBC等于( )A. 55°B. 65°C. 70°D. 75°6. 如图,在△MBC中,∠MBC=90°,∠C=60°,MB=2 3,点A在MB上,以AB为直径作⊙O与MC相切于点D,则CD的长为()A. 2B. 3 C.2 D.37. 如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA,CB分别相交于点P,Q,则线段PQ的最小值为()A.5 B.4 2 C.4.75 D.4.88. 一把直尺、含60°角的三角尺和光盘如图所示摆放,A为60°角与直尺的交点,AB=3,则光盘的直径是()A.3 B.3 3 C.6 D.6 3二、填空题(本大题共8道小题)9. 直角三角形的两条直角边分别是5和12,则它的内切圆半径为.10. 如图,P A,PB是☉O的切线,A,B为切点,点C,D在☉O上.若∠P=102°,则∠A+∠C=.11. 设⊙O 的半径为3,点O 到直线l 的距离为d ,若直线l 与⊙O 至少有一个公共点,则d 的取值范围是________.12. 如图,AB是⊙O 的直径,⊙O 交BC 于点D ,DE ⊥AC ,垂足为E ,要使DE是⊙O 的切线,则图中的线段应满足的条件是____________.13. 如图,在△ABC 中,∠A =60°,BC =5 cm.能够将△ABC 完全覆盖的最小圆形纸片的直径是________cm.14. 已知l 1∥l 2,l 1,l 2之间的距离是3 cm ,圆心O 到直线l 1的距离是1 cm ,如果圆O 与直线l 1,l 2有三个公共点,那么圆O 的半径为________cm.15. 如图,AB 是⊙O的直径,OA =1,AC 是⊙O 的弦,过点C 的切线交AB 的延长线于点D.若BD =2-1,则∠ACD =________°.16. 如图所示,在半圆O 中,AB 是直径,D是半圆O 上一点,C 是AD ︵的中点,CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE,CB于点P,Q,连接AC,有下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心.其中正确的结论是________(只需填写序号).三、解答题(本大题共4道小题)17. 在△ABC中,AB=AC=10,BC=16,⊙A的半径为7,判断⊙A与直线BC 的位置关系,并说明理由.18. 如图,AC是⊙O的直径,PA切⊙O于点A,PB切⊙O于点B,且∠APB=60°.(1)求∠BAC的度数;(2)若PA=1,求点O到弦AB的距离.19. 已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.(1)如图①,当直线l与⊙O相切于点C时,求证:AC平分∠DAB;(2)如图②,当直线l与⊙O相交于点E,F时,求证:∠BAF=∠DAE.20. 如图,直线AB经过⊙O上的点C,直线AO与⊙O交于点E和点D,OB与⊙O交于点F,连接DF,DC.已知OA=OB,CA=CB.(1)求证:直线AB是⊙O的切线;(2)求证:∠CDF=∠EDC;(3)若DE=10,DF=8,求CD的长.人教版九年级数学24.2 点和圆、直线和圆的位置关系培优训练-答案一、选择题(本大题共8道小题)1. 【答案】B2. 【答案】D3. 【答案】B4. 【答案】C[解析] 如图,连接AB,BC,作AB,BC的垂直平分线,可得点A,B,C所在的圆的圆心为O′(2,0).只有当∠O′BF=∠O′BD+∠DBF=90°时,BF与圆相切,此时△BO′D≌△FBE,EF=DB=2,此时点F的坐标为(5,1).作过点B,F的直线,直线BF经过格点(1,3),(7,0),此两点亦符合要求.即与点B的连线,能够与该圆弧相切的格点是(5,1)或(1,3)或(7,0),共3个.5. 【答案】B【解析】连接OP ,如解图,则OP ⊥AP .∵∠D =60°,∴∠COP =120°,∵∠A =20°,∠APO =90°,∴∠AOP =70°,∴∠AOC =50°,∵OB =OC ,∴∠OBC =180°-50°2=65°.解图6. 【答案】C[解析] 在Rt △BCM 中,∠MBC =90°,∠C =60°,∴∠BMC =30°,∴BC =12MC ,即MC =2BC.由勾股定理,得MC2=BC2+MB2.∵MB =2 3, ∴(2BC)2=BC2+12,∴BC =2.∵AB 为⊙O 的直径,且AB ⊥BC ,∴BC 为⊙O 的切线.又∵CD 也为⊙O 的切线,∴CD =BC =2.7. 【答案】D[解析] 如图,设PQ 的中点为F ,⊙F 与AB 的切点为D ,连接FD ,FC ,CD .∵AB =10,AC =8,BC =6, ∴∠ACB =90°, ∴PQ 为⊙F 的直径.∵⊙F 与AB 相切,∴FD ⊥AB ,FC +FD =PQ ,而FC +FD ≥CD ,∴当CD 为Rt △ABC 的斜边AB 上的高且点F 在CD 上时,PQ 有最小值,为CD 的长,即CD 为⊙F 的直径.∵S △ABC =12BC ·AC =12CD ·AB ,∴CD =4.8.故PQ 的最小值为4.8.8. 【答案】D[解析] 设光盘的圆心为O ,连接OA ,OB ,则OB⊥AB ,∠OAB =12×(180°-60°)=60°. ∵AB =3,∴OA =6,OB =3 3, ∴光盘的直径是6 3.故选 D.二、填空题(本大题共8道小题)9. 【答案】2 [解析]直角三角形的斜边==13,所以它的内切圆半径==2.10. 【答案】219°[解析]连接AB ,∵P A ,PB 是☉O 的切线, ∴P A=PB. ∵∠P=102°,∴∠P AB=∠PBA=(180°-102°)=39°. ∵∠DAB +∠C=180°,∴∠P AD +∠C=∠P AB +∠DAB +∠C=180°+39°=219°.11. 【答案】0≤d≤312. 【答案】BD =CD或AB =AC (答案不唯一)[解析] (1)连接OD .要使DE 是⊙O 的切线,结合DE ⊥AC ,只需OD ∥AC ,根据O 是AB 的中点,只需BD =CD 即可;(2)根据(1)中探求的条件,要使BD =CD ,则连接AD ,由于∠ADB =90°,只需AB =AC ,根据等腰三角形的三线合一即可.13. 【答案】10 33 如图,能够将△ABC 完全覆盖的最小圆形纸片是△ABC 的外接圆⊙O.连接OB ,OC ,则∠BOC =2∠A =120°.过点O 作OD ⊥BC 于点D ,则∠BOD =12∠BOC =60°.∴∠OBD =30°,∴OB =2OD.由垂径定理,得BD =12BC =52 cm ,在Rt △BOD 中,由勾股定理,得OB2=OD2+BD2,即(2OD)2=OD2+(52)2,解得OD =56 3 cm.∴OB =5 33cm ,∴能够将△ABC 完全覆盖的最小圆形纸片的直径是10 33 cm.14. 【答案】2或4 [解析] 设圆O 的半径为r cm 如图①所示,r -1=3,得r =4;如图②所示,r +1=3,得r =2.15. 【答案】112.5 [解析] 如图,连接OC.∵CD 是⊙O 的切线,∴OC ⊥CD.∵BD =2-1,OA =OB =OC =1,∴OD =2,∴CD =OD2-OC2=(2)2-12=1,∴OC =CD ,∴∠DOC =45°.∵OA =OC ,∴∠OAC =∠OCA ,∴∠OCA =12∠DOC =22.5°,∴∠ACD =∠OCA +∠OCD =22.5°+90°=112.5°.16. 【答案】②③ [解析] ∵在半圆O 中,AB 是直径,D 是半圆O 上一点,C 是AD ︵的中点,∴AC ︵=DC ︵,但不一定等于DB ︵,∴∠BAD 与∠ABC 不一定相等,故①错误.如图,连接OD ,则OD ⊥GD ,∠OAD =∠ODA .∵∠ODA +∠GDP =90°,∠OAD +∠GPD =∠OAD +∠APE =90°, ∴∠GPD =∠GDP ,∴GP =GD ,故②正确.补全⊙O ,延长CE 交⊙O 于点F .∵CE ⊥AB ,∴A 为FC ︵的中点,即AF ︵=AC ︵.又∵C 为AD ︵的中点,∴CD ︵=AC ︵,∴AF ︵=CD ︵,∴∠CAP =∠ACP ,∴AP =CP .∵AB 为⊙O 的直径,∴∠ACQ =90°,∴∠ACP +∠PCQ =90°,∠CAP +∠PQC =90°,∴∠PCQ =∠PQC ,∴PC =PQ ,∴AP =PQ ,即P 为Rt △ACQ 的斜边AQ 的中点,∴点P 为Rt △ACQ 的外心,故③正确.三、解答题(本大题共4道小题)17. 【答案】解:⊙A 与直线BC 相交.理由:过点A 作AD ⊥BC 于点D ,则BD =CD =8.∵AB =AC =10,∴AD =6.∵6<7,∴⊙A 与直线BC 相交.18. 【答案】解:(1)∵PA 切⊙O 于点A ,PB 切⊙O 于点B ,∴PA =PB ,∠PAC =90°.∵∠APB =60°,∴△APB 是等边三角形,∴∠BAP =60°,∴∠BAC =90°-∠BAP =30°.(2)过点O 作OD ⊥AB 于点D ,如图所示,则AD =BD =12AB.由(1)得△APB是等边三角形,∴AB=PA=1,∴AD=1 2.在Rt△AOD中,∵∠BAC=30°,∴OD=12OA.由勾股定理,得OA2=OD2+AD2,即(2OD)2=OD2+(1 2)2,∴OD=36,即点O到弦AB的距离为36.19. 【答案】证明:(1)如图①,连接OC.∵直线l与⊙O相切于点C,∴OC⊥l.又∵AD⊥l,∴AD∥OC,∴∠DAC=∠ACO.∵OA=OC,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB.(2)如图②,连接BF.∵AB是⊙O的直径,∴∠AFB=90°,∴∠BAF=90°-∠B.∵∠AEF=∠ADE+∠DAE=90°+∠DAE,又由圆内接四边形的性质,得∠AEF+∠B=180°,∴90°+∠DAE+∠B=180°,∴∠DAE=90°-∠B,∴∠BAF=∠DAE.20. 【答案】解:(1)证明:如图,连接OC.∵OA=OB,AC=CB,∴OC⊥AB.又∵点C在⊙O上,∴直线AB是⊙O的切线.(2)证明:∵OA=OB,AC=CB,∴∠AOC=∠BOC.∵OD=OF,∴∠ODF=∠OFD.∵∠AOB=∠ODF+∠OFD=∠AOC+∠BOC,∴∠BOC=∠OFD,∴OC∥DF,∴∠CDF=∠OCD.∵OD=OC,∴∠ODC=∠OCD,∴∠CDF=∠EDC.(3)如图,过点O作ON⊥DF于点N,延长DF交AB于点M. ∵ON⊥DF,∴DN=NF=4.在Rt△ODN中,∵∠OND=90°,OD=5,DN=4,∴ON=OD2-DN2=3.由(2)知OC∥DF,∴∠OCM+∠CMN=180°.由(1)知∠OCM=90°,∴∠CMN=90°=∠OCM=∠MNO,∴四边形OCMN是矩形,∴CM=ON=3,MN=OC=5.在Rt△CDM中,∵∠DMC=90°,CM=3,DM=DN+MN=9,∴CD=DM2+CM2=92+32=310.24.3正多边形和圆一、选择题1.如图,四边形ABCD是⊙O的内接四边形,AB为⊙0直径,点C为劣弧BD 的中点,若∠DAB=40°,则∠ABC=().A.140°B.40°C.70°D.50°2.如图,圆O是△ABC的外接圆,连接OA、OC,∠OAC=20°,则∠ABC的度数为()A.140°B.110°C.70°D.40°3.如图,已知△ABC为⊙O的内接三角形,AB>AC.E为BAC的中点,过E 作EF⊥AB于F.若AF=1,AC=4,∠C=60°,则⊙O的面积是()A.8πB.10πC.12πD.18π4.如图,四边形ABCD 内接于O ,9AB =,15AD =,120BCD ∠=︒,弦AC 平分BAD ∠,则AC 的长是( )A .73B .83C .12D .135.如图,AB 为⊙O 的直径,点C 为圆上一点,∠BAC =20°,将劣弧AC 沿弦AC 所在的直线翻折,交AB 于点D ,则弧AD 的度数等于( )A .40°B .50C .80°D .1006.如图,等边△ABD 与等边△ACE ,连接BE 、CD ,BE 的延长线与CD 交于点F ,下列结论:(1)BE=CD ;(2)AF 平分∠EAC ; (3)∠BFD=60°;(4)AF+FD=BF 其中正确的有( )A .1个B .2个C .3个D .4个7.正方形ABCD 中,对角线AC 、BD 交于O ,Q 为CD 上任意一点,AQ 交BD 于M ,过M作MN ⊥AM 交BC 于N ,连AN 、QN .下列结论:①MA=MN ;②∠AQD=∠AQN ; ③S △AQN =12S 五边形ABNQD ;④QN 是以A 为圆心,以AB 为半径的圆的切线.其中正确的结论有( )A .①②③④B .只有①③④C .只有②③④D .只有①② 8.如图,在菱形ABCD 中,点P 是BC 边上一动点,连结AP ,AP 的垂直平分线交BD 于点G ,交 AP 于点E ,在P 点由B 点到C 点的运动过程中,∠APG 的大小变化情况是( )A .变大B .先变大后变小C .先变小后变大D .不变9.如图,矩形ABCD 为⊙O 的内接四边形,AB =2,BC =3,点E 为BC 上一点,且BE =1,延长AE 交⊙O 于点F ,则线段AF 的长为( )A .755B .5C .5+1D .35210.在四边形ABCD 中,M 、N 分别是CD 、BC 的中点, 且AM ⊥CD ,AN ⊥BC ,已知∠MAN=74°,∠DBC=41°,则∠ADB 度数为( ).A .15°B .17°C .16°D .32°二、填空题11.如图,C 为半圆O 上一点,AB 为直径,且AB 2a =,COA 60∠=.延长AB 到P ,使1BP AB 2=,连CP 交半圆于D ,过P 作AP 的垂线交AD 的延长线于H ,则PH 的长度为________.12.如图,边长为4的正方形ABCD内接于⊙O,点E是弧AB上的一动点(不与点A、B重合),点F是弧BC上的一点,连接OE,OF,分别与交AB,BC于点G,H,且∠EOF=90°,连接GH,有下列结论:①弧AE=弧BF;②△OGH是等腰直角三角形;③四边形OGBH的面积随着点E位置的变化而变化;④△GBH周长的最小值为4+22.其中正确的是_____.(把你认为正确结论的序号都填上)13.如图,在Rt△ABC中,∠BAC=90°,BC=5,AB=3,点D是线段BC上一动点,连接AD,以AD为边作△ADE∽△ABC,点N是AC的中点,连接NE,当线段NE最短时,线段CD的长为_____.14.如图,四边形ABCD内接于⊙O,∠1+∠2=64°,∠3+∠4=__________°.15.如图,边长一定的正方形ABCD,Q为CD上一个动点,AQ交BD于点M,过M作MN⊥AQ交BC于点N,作NP⊥BD于点P,连接NQ,下列结论:①AM=MN;②MP=12BD;③BN+DQ=NQ;④AB BNBM2是_____.三、解答题16.如图,四边形ABCD 是O 的内接四边形,42BC =,45BAC ∠=,75ABC ∠=,求AB 的长.17.如图,已知∠MON=120°,点A ,B 分别在OM ,ON 上,且OA =OB =a ,将射线OM 绕点O 逆时针旋转得到OM′,旋转角为α(0120α≤<︒︒且60α≠︒),作点A 关于直线OM′的对称点C ,画直线BC 交于OM′与点D ,连接AC ,AD .有下列结论:有下列结论:①∠BDO + ∠ACD = 90°;②∠ACB 的大小不会随着a 的变化而变化;③当 30︒=α时,四边形OADC 为正方形;④ACD ∆23a .其中正确的是________________.(把你认为正确结论的序号都填上) 18.我们定义:有一组邻边相等且有一组对角互补的凸四边形叫做等补四边形 (1)概念理解①根据上述定义举一个等补四边形的例子:②如图1,四边形ABCD 中,对角线BD 平分∠ABC ,∠A +∠C =180°,求证:四边形ABCD是等补四边形(2)性质探究:③小明在探究时发现,由于等补四边形有一组对角互补,可得等补四边形的四个顶点共圆,如图2,等补四边形ABCD内接于⊙O,AB=AD,则∠ACD∠ACB(填“>”“<”或“=“);④若将两条相等的邻边叫做等补四边形的“等边”,等边所夹的角叫做“等边角”,它所对的角叫做“等边补角”连接它们顶点的对角线叫做“等补对角线”,请用语言表述③中结论:(3)问题解决在等补四边形ABCD中,AB=BC=2,等边角∠ABC=120°,等补对角线BD 与等边垂直,求CD的长.19.定义:在凸四边形中,我们把两组对边乘积的和等于对角线的乘积的四边形称为“完美四边形”(1)在正方形、矩形、菱形中,一定是“完美四边形”的是______.(2)如图1,在△ABC中,AB=2,BC=52,AC=3,D为平面内一点,以A、B、C、D四点为顶点构成的四边形为“完美四边形”,若DA,DC的长是关于x的一元二次方程x2-(m+3)x+14(5m2-2m+13)=0(其中m为常数)的两个根,求线段BD的长度.(3)如图2,在“完美四边形”EFGH中,∠F=90°,EF=6,FG=8,求“完美四边形”EFGH面积的最大值.20.如图,O 是ABC 的外接圆,ABC 的外角DAC ∠的平分线交O 于点E ,连接CE 、BE .(1)求证:BE CE =;(2)若60CAB ∠=︒,23BC =,求劣弧BC 的长度.21.(1)已知:如图1,AB 是O 的直径,点P 为O 上一点(且点P 不与A 、B 重合)连接PA ,PB ,APB ∠的角平分线PC 交O 于点C . ①若86PA PB ==,,求AB 的长 ②求证:2PA PB PC +=(2)如图2,在正方形ABCD 中,52AB 2=,若点P 满足3PC =,且90APC ∠=︒,请直接写出点B 到AP 的距离.22.如图(1) ,折叠平行四边形ABCD ,使得,B D 分别落在,BC CD 边上的,B D ''点,,AE AF 为折痕(1)若AE AF =,证明:平行四边形ABCD 是菱形; (2)若110BCD ︒∠= ,求B AD ''∠的大小;(3)如图(2) ,以,AE AF 为邻边作平行四边形AEGF ,若AE EC =,求CGE ∠的大小23.在平面直角坐标系xOy 中,已知(0,2)A ,动点P 在3y x =的图像上运动(不与O 重合),连接AP ,过点P 作PQ AP ⊥,交x 轴于点Q ,连接AQ .(1)求线段AP 长度的取值范围;(2)试问:点P 运动过程中,QAP ∠是否问定值?如果是,求出该值;如果不是,请说明理由.(3)当OPQ ∆为等腰三角形时,求点Q 的坐标.【参考答案】1.C 2.B 3.C 4.B 5.D 6.C 7.A 8.D 9.A 10.C 113 12.①②④ 13.411014.64 15.①②③④ 16.317.①②④18.(1)①正方形;②略;(2)③=;④等补四边形的“等补对角线”平分“等边补角”;(3)CD 的值为2或4. 19.(1)正方形、矩形;(2)3;(3)49. 20.(1)略;(2)43π21.(1)①10AB =,②略;(2)72或12 22.(1)略;(2)30°;(3)45°.23.(1)3AP ≥;(2)QAP ∠为定值,QAP ∠=30°;(3)1(234,0)Q +,2(234,0)Q -,3(23,0)Q -,423(,0)3Q24.4 弧长和扇形面积一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , ) 1. 如图是一圆锥的侧面展开图,其弧长为,则该圆锥的全面积为A.B.C.D.2. 一扇形面积是,半径为,则该扇形圆心角度数是( ) A.B.C.D.3. 圆锥的底面半径为,母线长为,则该圆锥的侧面积为( ) A.B.C.D.4. 如图,在边长为的正方形内部,以各边为直径画四个半圆,则图中阴影部分的面积是( )A. B. C. D.5. 如果圆柱的底面直径为,母线长为,那么圆柱的侧面展开图的面积等于()A. B. C. D.6. 一个扇形占其所在圆的面积的,则该扇形圆心角是()A. B. C. D.无法计算7. 如图,圆锥的底面半径,高,则这个圆锥的侧面展开图的圆心角是()A. B. C. D.8. 一个圆锥的底面圆的周长是,母线长是,它的侧面展开图的圆心角的度数是()A. B. C. D.9. 已知一个圆锥的侧面积是,它的侧面展开图圆心角为,则这个圆锥的底面半径为A. B. C. D.10. 如图,边长为米的正方形池塘的周围是草地,池塘边、、、处各有一棵树,且米.现用长米的绳子将一头羊拴在其中的一棵树上.为了使羊在草地上活动区域的面积最大,应将绳子拴在()A.处B.处C.处D.处二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 如果圆柱的母线长为,底面半径为,那么这个圆柱的侧面积是________.12. 一个圆锥的侧面展开图是一个圆心角为,面积为的扇形,则这个圆锥的高是________.13. 一个圆柱体底面积直径是高的倍,如果底面积半径是分米,则它的表面积是________平方分米.14. 一个扇形的圆心角是,面积为,那么这个扇形的弧长为________.15. 用一个圆心角为的扇形作一个圆锥的侧面,若这个圆锥的底面半径恰好等于,则这个圆锥的母线长为________.16. 已知圆锥的底面周长为,母线长为,那么这个圆锥的侧面积是________(结果保留).17. 如图,已知的半径,弦,且,点在上,则图中的阴影部分的面积是________.18. 如图,为的弦,点为的中点,,当点、在上运动一周时,点所走过的路径与围成的图形面积是________.19. 如图所示,已知的半径,,则所对的弧的长为________.20. 现有圆周的一个扇形彩纸片,该扇形的半径为,小红同学为了在“六一”儿童节联欢晚会上表演节目,她打算剪去部分扇形纸片后,利用剩下的纸片制作成一个底面半径为的圆锥形纸帽(接缝处不重叠),那么剪去的扇形纸片的圆心角为________.三、解答题(本题共计6 小题,共计60分,)21. 如图,扇形的圆心角,半径,若将此扇形围成一个圆锥的侧面,求圆锥的底面面积的半径.22. 如图,圆锥的底面半径为,高为,求这个圆锥的侧面积和表面积.23. 如图,圆锥的底面半径,高.求这个圆锥的表面积.取24. 如图,在中,,,以腰为直径作半圆,分别交,于点,.求,的长.25. 有一直径为圆形纸片,从中剪出一个圆心角是的最大扇形(如图所示).(1)求阴影部分的面积(2)用所剪的扇形纸片围城一个圆锥,该圆锥的底面圆的半径是多少?26. 如图,一个圆锥的高为,侧面展开图是半圆.求圆锥的母线长与底面半径之比;求的度数;求圆锥的侧面积(结果保留).参考答案与试题解析一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】B【解答】解:设圆锥的底面圆的半径为,扇形的半径为,根据题意得,解得,,解得,所以该圆锥的全面积.故选.2.【答案】A【解答】解:设扇形圆心角的度数为,∴,∴.即扇形圆心角度数为.故选.3.【答案】C【解答】圆锥的侧面展开图为扇形,由扇形面积公式可以得出此圆锥侧面积为:=.4.【答案】D【解答】解:如图所示,.故选.5.【答案】A【解答】解:圆柱的侧面积,故选.6.【答案】B【解答】解:∵一个扇形占其所在圆的面积的,∴该扇形的圆心角占它所在圆的圆心角的,即.故选.7.【答案】C【解答】解:圆锥的母线长,设这个圆锥的侧面展开图的圆心角为,根据题意得,解得,即这个圆锥的侧面展开图的圆心角为.故选.8.【答案】C【解答】解:圆锥侧面展开图的扇形面积半径为,弧长为,代入扇形弧长公式,即,解得,即扇形圆心角为度.故选.9.【答案】【解答】此题暂无解答10.【答案】B【解答】解:①;②;③;④,故选二、填空题(本题共计10 小题,每题 3 分,共计30分)11.【答案】【解答】解:这个圆柱的侧面积.故答案为:.12.【答案】【解答】解:设母线长为,底面圆的半径为,,解得:,底面圆的周长为:,解得:,∴这个圆锥的高是:.故答案为:.13.【答案】【解答】解:∵一个圆柱体底面直径是高的倍,如果底面半径是分米,∴高为分米,底面周长为:(分米),则其侧面积为:(平方分米),上下两底面积为:(平方分米).故它的表面积是:平方分米.14.【答案】【解答】解:设这个扇形的半径是.根据扇形面积公式,得,解得(负值舍去).故半径为.弧长是:.故答案为.15.【答案】【解答】解:设圆锥的母线长为,根据题意得:,解得:.故答案为:.16.【答案】【解答】解:圆锥的侧面积.17.【答案】【解答】解:连接,,∵,∴,∵,∴是等边三角形,∴,,∴,故答案为:.18.【答案】【解答】解:如图,连接、,点所走过的路径为小圆,∵点为的中点,,∴,且,∴点所走过的路径与围成的图形面积是,故答案为:.19.【答案】【解答】解:所对的弧的长,故答案为:.20.【答案】【解答】解:解得:,∵扇形彩纸片是圆周,因而圆心角是∴剪去的扇形纸片的圆心角为.剪去的扇形纸片的圆心角为.故答案为.三、解答题(本题共计 6 小题,每题10 分,共计60分)21.【答案】圆锥的底面圆的半径为.【解答】解:设圆锥的底面圆的半径为,根据题意得,解得.22.【答案】解:∵圆锥的底面半径为,高为,∴圆锥的母线长为,∴.∵圆锥的底面积,∴.【解答】解:∵圆锥的底面半径为,高为,∴圆锥的母线长为,∴.∵圆锥的底面积,∴.23.【答案】解:在中,,,由勾股定理知,侧面积,底面积,∴圆锥的表面积.【解答】解:在中,,,由勾股定理知,侧面积,底面积,∴圆锥的表面积.24.【答案】解:连接,∵,,∴,∴的长,连接、,∵为圆的直径,∴,又,∴,∴,∴的长.【解答】解:连接,∵,,∴,∴的长,连接、,∵为圆的直径,∴,又,∴,∴,∴的长.25.【答案】解:(1)连接,,∵,,∴是圆的直径,,∵圆的直径为,则,故.∴阴影;(2)的长,则,解得:.故该圆锥的底面圆的半径是.【解答】解:(1)连接,,∵,,∴是圆的直径,,∵圆的直径为,则,故.∴阴影;(2)的长,则,解得:.故该圆锥的底面圆的半径是.26.【答案】解:设此圆锥的高为,底面半径为,母线长,∵,∴;由中图所示,∵,,∴,,∴,同理,则;由中图可知,,∴,即,解得,∴,∴圆锥的侧面积为.【解答】解:设此圆锥的高为,底面半径为,母线长,∵,∴;由中图所示,∵,,∴,,∴,同理,则;由中图可知,,∴,即,解得,∴,∴圆锥的侧面积为.。

人教版九年级数学上册24.1圆的有关性质训练题(含知识点)

人教版九年级数学上册24.1圆的有关性质训练题(含知识点)

24.1 圆的有关性质 姓名1.如图,如果AB 为⊙O 的直径,弦CD ⊥AB ,垂足为E ,那么下列结论中,•错误的是( ). A .CE=DE B .BC BD = C .∠BAC=∠BAD D .AC>AD2.如图,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,则弦AB 的长是( )A .4B .6C .7D .83.如图,在⊙O 中,P 是弦AB 的中点,CD 是过点P 的直径,•则下列结论中不正确的是( )A .AB ⊥CD B .∠AOB=4∠ACDC .AD BD = D .PO=PD 4.下列命题中,真命题的个数为( )①顶点在圆周上的角是圆周角;②圆周角的度数等于圆心角度数的一半;③900的圆周角所对的弦是直径;④直径所对的角是直角;⑤圆周角相等,则它们所对的弧也相等;⑥同弧或等弧所对的圆周角相等.A. 1 个B. 2 个C. 3 个D. 4 个 5.如果两个圆心角相等,那么( )A .这两个圆心角所对的弦相等B .这两个圆心角所对的弧相等C .这两个圆心角所对的弦的弦心距相等D .以上说法都不对 6.在同圆中,圆心角∠AOB=2∠COD ,则两条弧AB 与CD 关系是( ) A.AB =2CD B.AB >CD C.AB <2CD D.不能确定7.如图,⊙O 中,如果AB =2AC ,那么( )A .AB=ACB .AB=AC C .AB<2ACD .AB>2AC8.如图,A, B, C, D 是同一个圆上的顺次四点,则图中相等的圆周角共有( ) A.2对 B.4 对 C.8 对 D.16对9.如图,MN 是半圆O 的直径,K 是MN 延长线上一点,直线KP 交半圆于点Q ,P .若∠K=200,∠PMQ =400,则∠MQP 等于( )A. 300B. 350C. 400D . 50010.如图,△ABC 是⊙O 的内接三角形,且AB ≠AC ,∠ABC 和∠ACB 的平分线分别交⊙O 于点D, E ,且BD=CE ,则∠A 是( )A.300B.450C.600D.90011.如图,⊙O 的直径为10cm,弦AB 为8cm,P 是弦AB 上一点,若OP 的长为整数, 则满足条件的点P 有( ) A.2个 B.3个 C.4个 D.5个12.如图,AB 为⊙O 直径,E 是BC 中点,OE 交BC 于点D ,BD=3,AB=10,则AC=_____.13.P 为⊙O 内一点,OP=3cm ,⊙O 半径为5cm ,则经过P 点的最短弦长为________;•最长弦长为_______. 14.如图,⊙O 的直径为10,弦AB=8,P 是弦AB 上的一个动点,那么OP 长的取值范围是_____.15.如图,A, B, C, D 是⊙O 上的点,已知∠1=∠2,则与AD 相等的弧是 ,与BCD 相等的弧是 ,于是AD= , BD= . 16.如图,以ABCD 的顶点A 为圆心,AB 为半径作圆,分别交BC 、AD 于E 、F ,若∠D=50°,求BE 的度数和EF 的度数.7题 8题1题 2题 3题9题 10题 11题 12题14题 15题 16题17.如图, AB是⊙O的直径,C, D是AB上的点,且AC=BD; P,Q是⊙O上在AB同侧的两点,且AP BQ=,延长PC, QD分别交⊙O于点M, N.求证:AM BN=.18.如图,Rt△ABC中,∠C=900,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB、BC分别交于点D、E,求AB、AD的长。

人教版数学九年级上册:24.1.1 圆 同步练习(附答案)

人教版数学九年级上册:24.1.1 圆  同步练习(附答案)

24.1.1 圆1.下列条件中,能确定一个圆的是()A.以点O为圆心B.以2 cm长为半径C.以点O为圆心,以5 cm长为半径D.经过点A2.下列命题中正确的有()①弦是连接圆上任意两点的线段;②半径是弦;③直径是圆中最长的弦;④弧是半圆,半圆是弧.A.1个 B.2个 C.3个 D.4个3.如图,在⊙O中,点A,O,D和点B,O,C分别在一条直线上,图中共有3条弦,它们分别是.4.如图,在⊙O中,点B在⊙O上,四边形AOCB是矩形,对角线AC的长为5,则⊙O的半径长为.5.如图,AB是⊙O的直径,∠C=20°,则∠BOC的度数是( )A.40° B.30° C.20° D.10°6.如图,已知AB,CD是⊙O的两条直径,∠ABC=30°,那么∠BAD等于(D) A.45° B.60°C.90° D.30°7.如图,在△ABC中,BD,CE是两条高,点O为BC的中点,连接OD,OE,求证:B,C,D,E四个点在以点O为圆心的同一个圆上.8.如图,AB,AC为⊙O的弦,连接CO,BO并延长,分别交弦AB,AC于点E,F,∠B=∠C.求证:CE=BF.9.如图,在△ABC中,AB为⊙O的直径,∠B=60°,∠BOD=100°,则∠C的度数为() A.50° B.60° C.70° D.80°10.下列四边形:①平行四边形;②菱形;③矩形;④正方形.其中四个顶点在同一个圆上的有()A.1个 B.2个 C.3个 D.4个11.如图,A,B是⊙O上两点,若四边形ACBO是菱形,⊙O的半径为r,则点A与点B之间的距离为()A.2rB.3r C.R D.2r12.已知A ,B 是半径为6 cm 的圆上的两个不同的点,则弦长AB 的取值范围是 cm. 13.如图,CE 是⊙O 的直径,AD 的延长线与CE 的延长线交于点B ,若BD =OD ,∠AOC =114°,求∠AOD 的度数.14.如图,AB 是⊙O 的弦,半径OC ,OD 分别交AB 于点E ,F ,且AE =BF ,请你找出线段OE 与OF 的数量关系,并给予证明.15.如图,AB 为⊙O 的直径,CD 是⊙O 的弦,AB ,CD 的延长线交于E 点,已知AB =2DE ,∠E =18°,求∠AOC 的度数.16.如图,AB ,CD 是⊙O 的直径,且AB ⊥CD ,点P ,Q 为CB ︵上的任意两点,作PE ⊥CD ,PF ⊥AB ,QM ⊥CD ,QN ⊥AB ,则线段EF ,MN 的大小关系为EF MN.(填“<”“>”或“=”)参考答案: 1.C 2.B3. AE ,DC ,AD . 4.5. 5.A 6.D7.证明:∵BD ,CE 是两条高, ∴∠BDC =∠BEC =90°.∵△BEC 为直角三角形,点O 为BC 的中点, ∴OE =OB =OC =12BC.同理:OD =OB =OC =12BC.∴OB =OC =OD =OE.∴B ,C ,D ,E 在以点O 为圆心的同一个圆上. 8.证明:∵OB ,OC 是⊙O 的半径, ∴OB =OC.又∵∠B =∠C ,∠BOE =∠COF , ∴△EOB ≌△FOC (ASA ). ∴OE =OF.∵CE =CO +OE ,BF =BO +OF , ∴CE =BF. 9.C 10.B 11.B12.0<AB ≤12. 13.解:设∠B =x °. ∵BD =OD , ∴∠DOB =∠B =x °.∴∠ADO =∠DOB +∠B =2x °. ∵OA =OD ,∴∠A =∠ADO =2x °. ∵∠AOC =∠A +∠B ,∴2x+x=114.解得x=38.∴∠AOD=180°-∠A-∠ADO=180°-4x°=180°-4×38°=28°. 14.解:OE=OF.证明:∵OA,OB是⊙O的半径,∴OA=OB.∴∠OBA=∠OAB.又∵AE=BF,∴△OAE≌△OBF(SAS).∴OE=OF.15.解:连接OD.∵AB为⊙O的直径,OC,OD为半径,AB=2DE,∴OC=OD=DE.∴∠DOE=∠E,∠OCE=∠ODC.又∵∠ODC=∠DOE+∠E,∴∠OCE=∠ODC=2∠E.∵∠E=18°,∴∠OCE=36°.∴∠AOC=∠OCE+∠E=36°+18°=54°.16.=。

24.1圆的有关性质练习卷人教版数学九年级上册

24.1圆的有关性质练习卷人教版数学九年级上册

人教版九年级上册《24.1圆的有关性质》同步练习卷 一、选择题 1. 下列说法中错误的是( )A .半圆是弧B .半径相等的圆是等圆C .过圆心的线段是直径D .弓形是弦及弦所对的弧组成的图形2. 在以AB=8cm 为直径的圆上,到AB 的距离为4cm 的点有( )A .无数个B .1个C .2个D .4个3. 下列命题中是真命题的有( )①两个端点能够重合的弧是等弧;②圆的任意一条弦把圆分成优弧和劣弧两部分;③长度相等的弧是等弧;④半径相等的圆是等圆;⑤直径是最大的弦;⑥半圆所对的弦是直径.A .3个B .4个C .5个D .6个4. 如图,BC 是半圆O 的直径,D ,E 是BC ―上两点,连接BD ,CE 并延长交于点A ,连接OD ,OE ,如果∠DOE=40°,那么∠A 的度数为( )A .35°B .40°C .60°D .70°5.若⊙O所在平面内一点P到⊙O上的点的最大距离为7,最小距离为3,则此圆的半径为()A.5 B.2 C.10或4 D.5或2 二、填空题6.若四边形的四个顶点在同一个圆上,则这个四边形可能是______ .7.如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是 ______ .8.如图,在△ABC中,∠B=60°,∠C=70°,若AC与以AB为直径的⊙O相交于点D,则∠BOD的度数是 ______ 度.9.如图,OB、OC是⊙O的半径,A是⊙O上一点,若∠B=20°,∠C=30°,则∠BOC= ______ .10.如图,在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ,OP⊥AB,则PQ的长是 ______ .三、解答题11.如图,AC是⊙O的直径,点B在圆上(不与点A,C重合),点D在AC的延长线上,连接BD交⊙O于点E,∠AOB=3∠ADB.求证:DE= 1AC.212.如图,A、B、C为⊙O上三点,∠ACB=20〇,求∠BAO的度数.13.如图,AB、AC为⊙O的弦,连接CO、BO并延长分别交弦AB、AC于点E、F,∠B=∠C.问:线段CE和线段BF相等吗?请说明理由.14.如图,AB为⊙O的直径,点C在⊙O上.(1)尺规作图:作∠BAC的平分线,与⊙O交于点D;连接OD,交BC于点E(不写作法,只保留作图痕迹,且用黑色墨水笔将作图痕迹加黑);(2)探究OE与AC的位置及数量关系,并证明你的结论.15.如图a,直线l经过⊙O的圆心O,且与⊙O交于A,B两点,点C在⊙O上,且∠AOC=30°,点P是直线l上的一个动点(与圆心O不重合),直线CP与⊙O相交于点Q.(1)如图b,当点P在半径OA上时,若QP=QO,求∠OCP的度数.(2)当点P在直线l上其他位置时,是否还存在∠OCP使得QP=QO?若存在,请求出∠OCP的度数;若不存在,请说明理由.。

专题24.1圆(限时满分培优训练)-【拔尖特训】2024-2025学年九年级数学上册尖子生培优必刷题

专题24.1圆(限时满分培优训练)-【拔尖特训】2024-2025学年九年级数学上册尖子生培优必刷题

【拔尖特训】2024-2025学年九年级数学上册尖子生培优必刷题(人教版)专题24.1圆(限时满分培优训练)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分100分,试题共23题,其中选择10道、填空6道、解答7道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022秋•大荔县期末)已知⊙O的半径是3cm,则⊙O中最长的弦长是()A.3cm B.6cm C.1.5cm D.√3cm2.(2022秋•郯城县校级期末)有下列四种说法:①半径确定了,圆就确定了;②直径是弦;③弦是直径;④半圆是弧,但弧不一定是半圆.其中,错误的说法有()A.1种B.2种C.3种D.4种3.(2023•怀宁县一模)如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=87°,则∠E等于()A.42°B.29°C.21°D.20°4.(2022秋•郧西县期末)由所有到已知点O的距离大于或等于2,并且小于或等于3的点组成的图形的面积为()A.4πB.9πC.5πD.13π5.(2022秋•广水市期中)下列说法正确的是()A.直径是弦,弦是直径B.半圆是弧C.无论过圆内哪一点,只能作一条直径D.直径的长度是半径的2倍6.(2022春•莘县期末)下列说法:①直径是弦;②弦是直径;③半径相等的两个半圆是等弧;④长度相等的两条弧是等弧;⑤半圆是弧,但弧不一定是半圆.正确的说法有()A.1个B.2个C.3个D.4个7.(2021春•阳谷县期末)已知AB是⊙O的弦,⊙O的半径为r,下列关系式一定成立的是()A.AB>r B.AB<r C.AB<2r D.AB≤2r̂上的点,连接AD并延长与OB的延长线交于点C,8.(2022•广陵区二模)如图,在扇形AOB中,D为AB若CD=OA,∠O=72°,则∠A的度数为()A.35°B.52.5°C.70°D.72°9.(2021秋•莱阳市期末)东汉初年,我国的《周髀算经》里就有“径一周三”的古率,提出了圆的直径与̂)向右水平拉直(保持M端不动),根据该周长之间存在一定的比例关系.将图中的半圆弧形铁丝(MN古率,与拉直后铁丝N端的位置最接近的是()A.点A B.点B C.点C D.点D10.(2022秋•南岗区校级月考)如图,在⊙O中,AB为直径,CD⊥AB于C,四边形CDEF是正方形,连接BD,若CO=3,OF=1,则BD=()A.3√5B.4√5C.13D.2√10二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上11.(2022秋•夏邑县期中)下列说法中正确的有(填序号).①直径是圆中最大的弦;②长度相等的两条弧一定是等弧;③半径相等的两个圆是等圆;④面积相等的两个圆是等圆.12.(2022秋•新罗区校级期中)如图,⊙O的半径为4cm,∠AOB=60°,则弦AB的长为cm.13.(2022秋•通榆县期中)如图,在⊙O中,点A在圆内,点B在圆上,点C在圆外,若OA=3,OC=5,则OB的长度可能为(写出一个即可).14.(2022秋•通榆县期中)如图,点B,E在半圆O上,四边形OABC,四边形ODEF均为矩形.若AB=3,BC=4,则DF的长为.15.(2021秋•延平区校级月考)如图,点A、D、G、M在半圆上,四边形ABOC、DEOF、HMNO均为矩形,设BC=a,EF=b,HN=c,则a、b、c三者间的大小关系为.16.(2022•望花区模拟)如图,数学知识在生产和生活中被广泛应用.下列实例所应用的最主要的几何知识为:①射击时,瞄准具的缺口、准星和射击目标在同一直线上,应用了“两点确定一条直线”;②车轮做成圆形,应用了“圆上各点到圆心的距离相等”;③学校门口的伸缩门由菱形而不是其他四边形组成,应用了“菱形的对角线互相垂直平分”;④地板砖可以做成矩形,应用了“矩形对边相等”.上述说法正确的是.(填序号)三、解答题(本大题共7小题,共52分.解答时应写出文字说明、证明过程或演算步骤)17.设AB=4cm,作出满足下列要求的图形(1)到点A的距离等于3cm,且到点B的距离等于2cm的所有点组成的图形;(2)到点A的距离小于3cm,且到点B的距离小于2cm的所有点组成的图形;(3)到点A的距离大于3cm,且到点B的距离小于2cm的所有点组成的图形.18.(2021秋•崆峒区期末)如图,CD是⊙O的直径,点A在DC的延长线上,∠A=20°,AE交⊙O于点B,且AB=OC.(1)求∠AOB的度数.(2)求∠EOD的度数.19.(2022秋•邗江区期中)如图,半圆O的直径AB=8,半径OC⊥AB,D为弧AC上一点,DE⊥OC,DF⊥OA,垂足分别为E、F,求EF的长.20.(2022秋•朝阳区校级月考)如图,在△ABC中,∠C=90°,以点C为圆心,BC为半径的圆交AB于点D,交AC于点E.若∠A=25°,求∠DCE的度数.21.(2021秋•东台市月考)如图,⊙O的半径OC⊥AB,D为BĈ上一点,DE⊥OC,DF⊥AB,垂足分别为E、F,EF=3,求直径AB的长.22.(2021秋•赣榆区校级月考)已知:如图,BD、CE是△ABC的高,M为BC的中点.试说明点B、C、D、E在以点M为圆心的同一个圆上.23.如图,AB是⊙O的直径,把AB分成几条相等的线段,以每条线段为直径分别画小圆,设AB=a,那么⊙O的周长L=πa.(1)计算:①把AB分成两条相等的线段,每个小圆的周长;②把AB分成三条相等的线段,每个小圆的周长L3=;③把AB分成四条相等的线段,每个小圆的周长L4=;…④把AB分成n条相等的线段,每个小圆的周长L n=;(2)请仿照上面的探索方法和步骤,计算并导出:当把大圆直径平均分成n等分时,以每条线段为直径画小圆,那么每个小圆的面积S n与大圆的面积S的关系是:S n=S.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学检测试题
一、选择题(30分)
1.下列命题中,假命题是( )
A.两条弧的长度相等,它们是等弧
B.等弧所对的圆周角相等
C.直径所对的圆周角是直角。

D.一条弧所对的圆心角等于它所对圆周角的2倍. 2.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E,∠CDB =30°, ⊙O 的半径为 cm 3,则弦CD 的长为( )
A .3
cm 2
B .3cm
C .
D .9cm
3.如图,弦CD 垂直于⊙O 的直径AB ,垂足为H ,且CD =BD 则AB 的长为( ) A .2 B .3 C .4 D .5
第2题图 第3题图 第4题图 第5题图
4. 将量角器按如图所示的方式放置在三角形纸板上,使点C 在半圆上.点A 、B 的读数分别为86°、30°,则∠ACB 的大小为( )
A .15
B .28
C .29
D .34 5.如图AB 是⊙O 的直径,弦CD ⊥AB 于点M, AM = 2,BM = 8. 则CD 的长为( )
A .4
B .5
C .8
D .16
6..如图,⊙O 的半径为5,弦AB =8,M 是弦AB 上的动点,则OM 不可能为( )
A .2
B .3
C .4
D .5
7如图,已知AB 是半圆O 的直径,∠BAC=32º,D 是弧AC 的中点,那么∠DAC 的度数是( )A.25º B.29º C.30º D.32°
第6题图 第7题图 第8题图 第9题图 第10题图
8.如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为 ( )。

A .2cm
B .3cm
C .32cm
D .52cm
9.如图,四边形ABCD 内接于⊙O ,F 是CD ︵上一点,且DF ︵=BC ︵
,连接CF 并延长交AD 的延长线于点E ,连接AC.若∠ABC =105°,∠BAC =25°,则∠E 的度数为( )
A .45°
B .50°
C .55°
D .60° 10.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm 2,则该半圆
)。

A.(4 cm
B.9 cm C
..
二.填空题(27分)
11.圆内接四边形ABCD中,∠A∶∠B∶∠C=5∶2∶1,则∠D= .
12.如图,圆弧形桥拱的跨度AB=12米,拱高CD=4米,则拱桥的半径为()
12题图第13题图第14题图
13.已知:如图,⊙O
1
与坐标轴交于A(1,0)、B(5
,0)两点,点O
1
的纵坐标
O
1
的半径.
14.如图,直角坐标系中一条圆弧经过网格点A、B、C,其中B点坐标为(4,4),• 则圆弧所在圆的圆心坐标为_________.
15.弦AB把圆分成1:3两部分,则弦AB所对的圆周角等于。

16.如图,AB为⊙O的直径,弦CD⊥AB,E为 BC上一点,若∠CEA=28 ,则
∠ABD=°.
17.如图,已知AB=AC,∠APC=60°若BC=4cm,⊙O的面积.
第16题图第17题图第18题图第19题图
18.如图,点C D
、在以AB为直径的O
⊙上,且CD平分A C B
∠,若215
A B C B A
=∠=
,°,则CD的长为.
19.如图,梯形ABCD中,AB∥DC,AB⊥BC,AB=2cm,CD=4cm。

以BC上一点O为圆心的圆经过A、D两点,且∠AOD=90°,圆心O到弦AD的距离是。

三解答题(63分)
20. 如图所示,是一个直径为650mm的圆柱形输油管的横截面,若油面宽
AB=600mm,求油面的最大深度。

(8分
)
600
21.如图,在⊙O 中,D 、E 分别为半径OA 、OB 上的点,且AD =BE .点C 为弧AB 上一点,连接CD 、CE 、CO ,∠AOC =∠BOC .求证:CD =CE .(8分)
22.如图,BC 为⊙O 的直径,AD ⊥BC,垂足为D,弧AB=弧BF,BF 和AD 相交于E.试猜想AD 和BF 的长度之间的关系,并说明理由.(10分)
23.已知:如图,AB 是⊙O 的直径,点C 、D 为圆上两点,且弧CB =弧 CD ,CF ⊥AB 于点F ,CE ⊥AD 的延长线于点E .求证:DE
=BF ;(12分)
24.在⊙O中,直径AB=6,∠ABC=30°,点P在弦BC上,点Q在⊙O上,且OP⊥PQ. (1)如图1,当PQ//AB时,求BC长度(6分)
图1
(2)如图2,当点P在BC上移动时,求PQ长的最大值.(6分)
图2
25.小雅同学在学习圆的基本性质时发现了一个结论:如图,⊙O中,OM⊥弦AB 于点M,ON⊥弦CD于点N,若OM=ON,则AB=CD.(6+7=13分)
(1)请帮小雅证明这个结论;
(2)运用以上结论解决问题:在Rt△ABC中,∠ABC=90°,O为△ABC 的内心,以O为圆心,OB为半径的O D与△ABC三边分别相交于点D、E、F、G.若AD=9,CF=2,求△ABC的周长.。

相关文档
最新文档