2015年高中数学1.2.1顺序结构学案苏教版必修3

合集下载

2015-2016年最新审定苏教版高中数学必修三:1.2.1《顺序结构》ppt(精品课件)

2015-2016年最新审定苏教版高中数学必修三:1.2.1《顺序结构》ppt(精品课件)

流程图都必须有起止框;②判断框是唯一具有超 过一个退出点的符号;③对于一个程序来说,判
断框内的条件表达方法是唯一的;④输出框只能
放在处理框后.其中说法正确的是________.
解析: 由流程图的概念所确定.
答案:
①②
典 例 剖 析
变式训 练 1.关于流程图说法错误的是 ( C A.流程图由图框和流程线组成 B.图框表示各种操作的类型
最新审定苏教版高中数学必修三精品课件
1.2.1
顺序结构
情景切入 算法的三种基本逻辑结构是:顺序结构、 选择结构、循环结构,理论上已经证明,任何 一个算法都可以用这三种基本逻辑结构表
示.因此有必要掌握这三种基本逻辑结构.
1.掌握流程图中各种图形符号及其表示的功能. 2.理解顺序结构的构成特点. 3.初步掌握用程序框图表示顺序结构的简单算法.
要 点 导 航 法步骤的图形符号如表所示:
图形符号
名称
起止框 输入、 输出框 处理框
符号表示的意义
框图的开始或结束 数据的输入或结果 的输出 赋值、执行计算语
栏 目 链 接
句、结果的传送
要 点 导 航 (续表) 根据给定条件判 断 执行步骤的路径
栏 目 链 接
判断框 流程线
要 点 导 航
画流程图的规则:①使用标准的框图图形符 号.②框图一般按从上到下、从左到右的方向 画.③除判断框外,其他图形符号只有一个进入 点和一个退出点.判断框是具有超过一个退出点
栏 目 链 接
栏 目 链 接
要 点 导 航
一、流程图
一般来说,算法有下列三种描述方法: ①自然语言;②流程图;③程序语言.在上节 中,我们已经接触了一些用自然语言描述的算
栏 目 链 接

高中数学 第一章 算法初步 1.2.1 顺序结构学案 苏教版必修3-苏教版高一必修3数学学案

高中数学 第一章 算法初步 1.2.1 顺序结构学案 苏教版必修3-苏教版高一必修3数学学案

1.2.1 顺序结构1.了解常用流程图符号(输入、输出框,处理框,判断框,起止框,流程线等)的意义.(重点)2.能用流程图表示顺序结构.(易错、易混点)3.能识别简单的流程图所描述的算法.(重点、难点)[基础·初探]教材整理1 流程图的概念阅读教材P7的内容,完成下列问题.1.流程图流程图是由一些图框和流程线组成的,其中图框表示各种操作的类型,图框中的文字和符号表示操作的内容,流程线表示操作的先后次序.2.流程图的图形符号及其作用图形符号名称符号表示的意义起止框表示算法的开始或结束,一般画成圆角矩形处理框表示赋值或计算,一般画成矩形根据条件决定执行两条路径中的某一条,一般画判断框成菱形输入、输表示输入、输出操作,一般画成平行四边形出框流程线表示执行步骤的路径,用箭头线表示判断正误:(1)流程图是描述算法的语言.( )(2)任何流程图都有起止框,它表示一个算法的起始和结束.( )(3)在流程图中,任何一个程序框都只有一个进入点和退出点.( )【解析】(1)√.流程图是算法的图形表示,故正确.(2)√.由算法的含义知正确.(3)×.在程序框中,除判断框外,其他程序框符号只有一个进入点和一个退出点.故错误.【答案】(1)√(2)√(3)×教材整理2 顺序结构及形式阅读教材P8~P9“练习”以上部分,完成下列问题.1.顺序结构依次进行多个处理的结构称为顺序结构.顺序结构是任何一个算法都离不开的最简单、最基本的结构.2.顺序结构的形式顺序结构的形式如图1­2­1所示,其中A与B两个框是依次执行的.图1­2­1判断正误:(1)顺序结构必须有两个起止框,穿插输入、输出框和处理框,没有判断框.( )(2)顺序结构中的处理框按计算机执行顺序沿流程线依次排列.( )(3)含有顺序结构的流程图中,其顺序结构只能是自上而下.( )【解析】(1)√.根据顺序结构的定义知正确.(2)√.结合顺序结构的定义知(2)正确.(3)×.在流程图中,顺序结构可按自上而下或自左而右的顺序排列,故(3)错误.【答案】(1)√(2)√(3)×[小组合作型]对流程图的认识和理解下列关于流程图及其图形的叙述正确的是________.(填序号)①流程图虽可以描述算法,但不如用自然语言描述算法直观;②流程图中可以没有输出框,但必须要有输入框给变量赋值;③输入框可以在起始框后,也可以在判断框后;④判断框内的条件是唯一的.【精彩点拨】根据流程图的概念及各种程序框的功能逐一判断即可.【自主解答】①错误.流程图是算法的图形表示,比用语言表示算法更直观;②错误.输入框、输出框是任何一个流程图都不可缺少的;③正确.输入框可以在任何需要输入、输出的地方出现;④错误.判断框内的条件不是唯一的,如条件a>b也可写成a≤b.故不正确.【答案】③解决此类问题的关键是正确理解流程图的概念,对构成流程图的各种图形符号的功能要准确把握,具体应用时注意其特点.[再练一题]1.下列关于流程线的说法,正确的是________.(填序号)①流程线表示算法步骤执行的顺序,用来连接流程框;②流程线只要是上下方向就表示自上向下执行,此时可以不要箭头;③流程线无论什么方向,总要按箭头的指向执行;④流程线是带有箭头的线,它可以画成折线.【解析】由流程线的概念知只有①③④正确.【答案】①③④顺序结构流程图的画法已知点P(x0,y0)和直线l:Ax+By+C=0(A2+B2≠0),求点P(x0,y0)到直线l 的距离d.设计算法,并画出流程图.【导学号:11032003】【精彩点拨】设计解题的算法→判断流程图结构→画出流程图【自主解答】算法如下:S1 输入点的坐标x0,y0,输入直线方程的系数A,B,C;S2 E1←Ax0+By0+C;S3 E2←A2+B2;S4 d ←|E 1|E 2;S5 输出d . 流程图如图所示:1.应用顺序结构表示算法的步骤:(1)仔细审题,理清题意,找到解决问题的方法; (2)梳理解题步骤;(3)用数学语言描述算法,明确输入量、计算过程、输出量; (4)用流程图表示算法过程.2.画流程图时一定要严格使用图形符号,另外,画图时要按算法的顺序进行.[再练一题]2.利用梯形的面积公式计算上底长为2、下底长为4、高为5的梯形的面积,设计解决该问题的一个算法,并画出流程图.【解】 算法如下: S1 a ←2,b ←4,h ←5; S2 S ←12(a +b )·h ;S3 输出S . 流程图如下:[探究共研型]顺序结构的读图与识图问题探究1 程序框具有什么功能?z←x+y表示的功能是什么?【导学号:11032004】【提示】在流程图中,程序框具有赋值或运算的功能.z←x+y表示的功能是先计算x+y的值,然后再赋值给变量z.探究2 阅读流程图1­2­2,并说明该流程图的功能,其中变量p的作用是什么?图1­2­2【提示】该流程图的功能是交换变量x,y的值.其中p是中间变量,它的功能是实现变量x,y的值的交换.如图1­2­3所示是为解决某个问题而绘制的流程图,仔细分析各图框内的内容及图框之间的关系,回答下面的问题:图1­2­3(1)该流程图解决的是怎样的一个问题?(2)若最终输出的结果y 1=3,y 2=-2,当x 取5时输出的结果5a +b 的值应该是多少? (3)在(2)的前提下,输入的x 值越大,输出的ax +b 是不是越大?为什么? (4)在(2)的前提下,当输入的x 值为多大时,输出结果ax +b 等于0?【精彩点拨】 先分析流程图的功能,然后转化为数学问题,根据函数关系依次解答. 【自主解答】 (1)该流程图解决的是求函数f (x )=ax +b 的函数值的问题. (2)y 1=3,即2a +b =3,y 2=-2, 即-3a +b =-2.由⎩⎪⎨⎪⎧2a +b =3,-3a +b =-2,得⎩⎪⎨⎪⎧a =1,b =1.∴f (x )=x +1.∴当x 取5时,5a +b =f (5)=5+1=6.(3)输入x 值越大,输出的函数值ax +b 越大.因为函数f (x )=x +1为增函数. (4)令f (x )=x +1=0,得x =-1,因此,当输入x 的值为-1时,输出的函数值为0.1.识图是高考对流程图考查的题型之一,解题时需要明白流程图的作用是什么,解决的是一个什么样的问题,这样才能解决相应的问题.2.本题在求解过程中用到了方程及函数的思想,解题的关键要读懂流程图的含义.[再练一题]3.写出下列算法的功能:图1­2­4(1)图①中算法的功能是(a>0,b>0)__________________________________________________________________________________________________________________________________________________________________.(2)图②中算法的功能是____________________________________________________________________________________________________________.【解析】结合流程图的含义可知①的功能是求直角边长为a,b的直角三角形斜边的长;②的功能是求两个实数a,b的和.【答案】(1)求以a,b为直角边的直角三角形斜边c的长(2)求两个实数a,b的和1.下面的流程图是顺序结构的是________.(填序号)图1­2­5【解析】根据顺序结构的特点和形式知只有①是顺序结构.【答案】①2.下列流程图1­2­6表示的算法最后运行的结果为________.图1­2­6【解析】 无论a ,b 输入什么数值,程序执行到第二、三步重新对a ,b 进行赋值,a =4,b =2,所以T =8.【答案】 83.如图1­2­7是一个算法的流程图,已知输入a 1=3,输出的结果为7,则a 2的值是________.【解析】 由流程图的意义可知12(a 1+a 2)=7,又a 1=3,故a 2=11.【答案】 11图1­2­7 图1­2­84.下面流程图1­2­8输出的S 表示________.【解析】 由流程图知S =π×52=25π,表示半径为5的圆的面积. 【答案】 半径为5的圆的面积5.写出求函数y =ln x 的函数值的算法,并画出流程图. 【解】 算法如下: S1 输入自变量x 的值;S2 计算y←ln x;S3 输出y的值.流程图如下:。

1.2.顺序结构-苏教版必修3教案

1.2.顺序结构-苏教版必修3教案

1.2.顺序结构-苏教版必修3教案
学科
计算机科学
年级
高中
内容
本节课主要介绍计算机程序中的顺序结构,并以苏教版必修3教材为基础撰写了相应的教案。

教学目标
1.理解计算机程序中的顺序结构;
2.掌握基本的程序编写方法;
3.能够用所学知识编写简单的计算机程序。

教学准备
1.教案;
2.课件;
3.计算机;
4.编辑器。

教学流程
第一步:导入新知
1.向学生介绍本节课的主题:顺序结构;
2.简单讲解什么是顺序结构以及它在计算机程序中的作用。

第二步:学习主要内容
1.介绍苏教版必修3中有关顺序结构的内容;
2.讲解程序编写技巧,并通过实例演示。

第三步:巩固练习
1.让学生进行练习,完成一定难度的编程任务;
2.在学生练习过程中,及时指导、纠错。

第四步:总结
1.要求学生总结所学知识,并进行回答问题;
2.确认学生是否习得相关知识并具有操作能力。

教学亮点
1.采用了实例演示的方法,能够更加直观生动地体现程序编写方法;
2.通过练习,能够让学生更好地掌握相关知识。

参考资料
1.《苏教版必修3》;
2.《计算机科学基础教程》。

高中数学 1.2 流程图与顺序结构教案 苏教版必修3

高中数学 1.2 流程图与顺序结构教案 苏教版必修3

流程图与顺序结构
教学目标:了解流程图的概念,了解常用流程图符号(输入输出框、处理框、判断框、起止框、流程线等)的意义;能用程序图表示顺序结构的算法;发展学生有条
理的思考与表达能力,培养学生的逻辑思维能力. 教学重点:运用流程图表示顺序结构的算法.
教学难点:规范流程图的表示. 教学过程:
一.问题情境
1.情境:回答下面的问题:
(1)123100++++= ;
(2)123n ++++= ;
2.问题:已知1232006n ++++>,求n 的最小值,试设计算法.
二.学生活动
探究:
上述算法可以用框图直观地描述出来:
三.建构数学
1.流程图的概念:
2.构成流程图的图形符号及其作用:
3.规范流程图的表示:
①使用标准的框图符号;
②框图一般按从上到下、从左到右的方向画,流程线要规范; ③除判断框外,大多数框图符号只有一个进入点和一个退出点. ④在图形符号内描述的语言要非常简练、清楚.
4.顺序结构的概念:
四.数学运用
例1.写出作ABC ∆的外接圆的一个算法.
小结:
例2.已知两个单元分别存放了变量x 和y 的值,试交换这两个变量值.
小结: 例3.半径为r 的圆的面积计算公式为2S r π=,当10r =时,写出计算圆面积的算
法,画出流程图.
小结:
练习:书P9 1、2
1、确定已知线段AB 的三等分点,试设计一个算法,用流程图表示。

高中数学 1.2.1 顺序结构同步教学课件 苏教版必修3

高中数学 1.2.1 顺序结构同步教学课件 苏教版必修3








分 析
由于学生首次接触算法图框,根据教学内容、教学目标
误 辨

教 学
和学生的认知水平,本节课主要采取问题导入式教学,即“创



案 设情境,提出问题——讨论问题,提出方案——交流方案, 双



解 决 问 题 —— 模 拟练 习 , 运 用问 题 —— 归 纳总结 , 完 善 认
达 标



教 学
1.了解流程图的概念及常用图框符号

方 案 设
课 的意义.

标 2.掌握画流程图的基本规则,能正确
双 基

解 画出流程图.(重点)
达 标
课 前
读 3.能用流程图表示顺序结构的算法.

(难点)







课 堂 互 动 探 究
教 师 备 课 资 源
菜单

学 教
流程图的概念



【问题导思】



计 索过程,让学生全程参与到问题的探索中而突破难点.
基 达

课 前
通过学生对常见的图框及功能的理解和认识,结合典型


主 导
例题及变式训练,使学生初步掌握顺序结构的流程图的设计
时 作


而强化了重点.
课 堂 互 动 探 究
教 师 备 课 资 源
菜单

学 教
●教学流程



教 学 方 案 设 计

高中数学 1.2 流程图—循环结构教学设计 苏教版必修3

高中数学 1.2 流程图—循环结构教学设计 苏教版必修3

流程图—循环结构引入新课1.问题:北京获得了2008年的奥运会的主办权,你知道在申办奥运会的最后阶段时,国际奥委会是如何通过投票来决定主办权归属的吗? 对五个申报的城市进行表决的程序是:首先进行的第一轮投票,如果有哪一个城市得票超过半数,那么该城市将获得举办权,表决结束;如果所有的申报城市的票数都没有半数,则将得票最少的城市淘汰,然后重复上述过程,直到选出一个申办城市为止.你能用一个算法来表达上述过程吗?你能猜想出循环结构的大致流程图吗?例题剖析例1 写出求54321⨯⨯⨯⨯值的一个算法.画出计算1019131211+++++Λ值的一个算法的流程图.总 课 题算法初步 总课时 第 4 课时 分 课 题 流程图——循环结构 分课时 第 4 课时 教学目标 理解循环结构的执行过程.会用流程图表示循环结构. 重点难点 掌握循环结构的执行过程;用流程图表示循环结构的算法.例2例3 设计一个计算10个数的平均数的算法,并画出流程图.巩固练习1.设计计算108642⨯⨯⨯⨯值的一个算法,并画出流程图.2.先分步写出计算100642++++Λ的一个算法,再画出流程图(使用循环结构).3.用i N 代表第i 个学生的学号,i G 代表第i 个学生的成绩(50321 =,,,,Λi ),上图表示了一个什么样的算法?课堂小结了解循环结构的含义,能识别流程图表示的算法. 开始 i ←1 G ≥80 打印i i G N Y N i ←i+1 i >50 Y N结束课后训练一 基础题1.在算法中, 需要重复执行同一操作的结构称为( ) A .顺序结构 B .循环结构 C .选择结构 D .分支结构2.写出计算997531+++++Λ的一个算法,并画出流程图(使用循环结构).3.如下图所示的四个流程图,都是为计算2222100642++++Λ而设计的, 正确的流程图序号为_________;图③中,输出的结果为__________________________ (只须给出算式表达式).二 提高题4.写出求222299321++++Λ的值的一个算法,并画出流程图.是 否5.设计一个算法求100991431321211⨯++⨯+⨯+⨯Λ的值,并画出流程图.。

高中数学苏教版必修三学案:1.2.1 顺序结构

高中数学苏教版必修三学案:1.2.1 顺序结构

1.2.1顺序结构[学习目标] 1.掌握流程图的概念.2.熟悉各种图框及流程线的功能和作用.3.能用流程图表示顺序结构的算法.知识点一流程图1.流程图流程图是由一些图框和流程线组成的,其中图框表示各种操作的类型,图框中的文字和符号表示操作的内容,流程线表示操作的先后次序.2.流程图的图形符号及其作用顺序结构、条件结构和循环结构是算法的基本逻辑结构,所有算法都是由这三种基本结构构成的.知识点二顺序结构1.顺序结构的定义由若干个依次执行的步骤组成的.这是任何一个算法都离不开的基本结构.2.结构形式题型一流程图的认识和理解例1下列关于流程图中图形符号的理解正确的有______.①任何一个流程图必须有起止框;②输入框只能放在开始框后,输出框只能放在结束框前;③判断框是唯一的具有超过一个退出点的图形符号;④对于一个流程图来说,判断框内的条件是唯一的.★答案★①③解析①任何一个程序必须有开始和结束,从而流程图必须有起止框,正确.②输入、输出框可以用在算法中任何需要输入、输出的位置,错误.③正确.④判断框内的条件不是唯一的,错误.反思与感悟(1)理解流程图中各框图的功能是解此类题的关键,用流程图表示算法更直观、清晰、易懂;(2)起止框用“”表示,是任何流程不可少的,表示算法的开始或结束;(3)输入、输出框用“”表示,可用在算法中任何需要输入、输出的位置,需要输入的字母、符号、数据都填在框内;(4)处理框用“”表示,算法中处理数据需要的算式、公式等可以分别写在不同的用以处理数据的处理框内,另外,对变量进行赋值时,也用到处理框;(5)判断框用“”表示,是唯一具有超过一个退出点的图形符号.跟踪训练1下列说法正确的是________.①流程图中的图形符号可以由个人来确定;②也可以用来执行计算语句;③流程图中可以没有输出框,但必须要有输入框;④用流程图表达算法,其优点是算法的基本逻辑结构展现得非常直接.★答案★④解析一个完整的流程图至少要有起止框和输入、输出框,输入、输出框只能用来输入、输出信息,不能用来执行计算.题型二利用顺序结构表示算法例2已知f(x)=x2-1,求f(2),f(-3),f(3),并计算f(2)+f(-3)+f(3)的值,设计出解决该问题的一个算法,并画出流程图.解算法S1x←2.S2y1←x2-1.S3x←-3.S4y2←x2-1.S5x←3.S6y3←x2-1.S7y←y1+y2+y3.S8输出y1,y2,y3,y.流程图:反思与感悟应用顺序结构表示算法的步骤:(1)仔细审题,理清题意,找到解决问题的方法.(2)梳理解题步骤.(3)用数学语言描述算法,明确输入量,计算过程,输出量.(4)用流程图表示算法过程.跟踪训练2利用梯形的面积公式计算上底为2,下底为4,高为5的梯形面积,设计出该问题的算法及流程图.解算法如下:S1a←2,b←4,h←5.S2 S ←12(a +b )h .S3 输出S .该算法的流程图如图所示:题型三 流程图的应用例3 如图所示是解决某个问题而绘制的流程图,仔细分析各框图内的内容及框图之间的关系,回答下面的问题:(1)该框图解决的是怎样的一个问题?(2)若最终输出的结果y 1=3,y 2=-2,当x 取5时输出的结果5a +b 的值应该是多大? (3)在(2)的前提下,输入的x 值越大,输出的ax +b 是不是越大?为什么? (4)在(2)的前提下,当输入的x 值为多大时,输出结果ax +b 等于0?解 (1)该框图解决的是求函数f (x )=ax +b 的函数值的问题.其中输入的是自变量x 的值,输出的是x 对应的函数值.(2)y 1=3,即2a +b =3, ① y 2=-2,即-3a +b =-2,②由①②得a =1,b =1. ∴f (x )=x +1,∴当x 取5时,5a +b =f (5)=5+1=6.(3)输入的x 值越大,输出的函数值ax +b 越大, ∵f (x )=x +1是R 上的增函数.(4)令f(x)=x+1=0,得x=-1,因此当输入的x值为-1时,输出的函数值为0.反思与感悟(1)解决流程图类型的题目关键就是读图,因此我们需要明白流程图的作用是什么,解决的是一个什么样的问题,这样才能解决相应的问题.(2)本题在求解过程中用到了方程及函数的思想,同时要读懂流程图的含义.跟踪训练3写出下列算法的功能:(1)图①中算法的功能是(a>0,b>0)__________________________________________.(2)图②中算法的功能是_______________________________________.★答案★(1)求以a,b为直角边的直角三角形斜边c的长(2)求两个实数a,b的和设计流程图例4设计流程图,求半径为10的圆的面积.错解流程图如图:错解分析错误的根本原因在于流程图中缺少起止框,不是完整的,因漏掉起止框而致误.自我矫正流程图如图:1.任何一种算法都离不开的基本结构为________.★答案★顺序结构2.下列图形符号属于判断框的是________.(填序号)①②③④★答案★③解析判断框用菱形表示.3.流程图符号“”的功能是________.★答案★赋值计算解析图形符号“”是处理框,它的功能是赋值、计算,不是输入、输出框和判断框.4.下列关于流程图的说法中正确的是________.①流程图只有一个入口,也只有一个出口;②流程图中的每一部分都应有一条从入口到出口的路径通过它;③流程图中的循环可以是无尽的循环;④流程图中的语句可以有执行不到的.★答案★①②解析由流程图的概念知,整个框图只有一个入口,一个出口,流程图中的每一部分都有可能执行到,不能出现“死循环”,必须在有限步骤内完成.故①②正确,③④错误.5.如图所示的流程图,输出的结果是S=7,则输入的A值为________.★答案★ 3解析该流程图的功能是输入A,计算2A+1的值.由2A+1=7,解得A=3.1.在设计计算机程序时要画出程序运行的流程图,有了这个流程图,再去设计程序就有了依据,从而就可以把整个程序用机器语言表述出来,因此流程图是我们设计程序的基础和开端.2.规范流程图的表示:(1)使用标准的框图符号;(2)框图一般按从上到下、从左到右的方向画,流程线要规范;(3)除判断框外,其他框图符号只有一个进入点和一个退出点;(4)在图形符号内描述的语言要非常简练、清楚;(5)由于纸面等原因,将一个流程图分开,要在断开处画上连接点,并标出连接的号码.。

2019-2020学年高中数学苏教版必修3教学案:第1章 1.2 1.2.1 顺序结构 Word版含解析

2019-2020学年高中数学苏教版必修3教学案:第1章 1.2 1.2.1 顺序结构 Word版含解析

1.2.1 顺序结构[新知初探]1.流程图的概念流程图是由一些图框和流程线组成的,其中图框表示各种操作的类型,图框中的文字和符号表示操作的内容,流程线表示操作的先后次序.2.常见的图框、流程线及各自表示的功能[点睛]关于流程图,要注意以下几点(1)起止框是任何流程图必不可少的,它表明算法的开始和结束.(2)输入、输出框可用在算法中任何需要输入、输出的位置,需要输入、输出的字母、符号、数据都填在框内.(3)处理框用于数据处理需要的算式、公式等,另外,对变量进行赋值,也用到了处理框.(4)流程线是有方向箭头的,不要忘记画箭头,因为它是反映流程图的先后执行顺序的,如不画箭头,就难以判定各框内程序的执行顺序了.3.顺序结构及形式[小试身手]1.下列几个选项中不是流程图符号的是________.答案:(1)2.下面三个流程图,不是顺序结构的是________.答案:(2)[典例]下列关于流程图的符号的理解中,正确的有________. ①任何一个流程图都必须有起止框;②输入框只能在开始框之后,输出框只能在结束框之前; ③判断框是唯一具有超过一个退出点的图形符号; ④判断框内的条件是唯一的.[解析] 任何一个程序都有开始和结束,因而必须有起止框;输入框和输出框可以放在算法中任何需要输入、输出的位置;判断框内的条件不是唯一的,如条件a >b ,也可写成a ≤b ,故只有①③正确.[答案] ①③流程图的基本概念[活学活用]下列关于流程线的说法:①流程线表示算法步骤执行的顺序,用来连接图框; ②流程线只要是上下方向就表示自上向下执行可以不要箭头; ③流程线无论什么方向,总要按箭头的指向执行; ④流程线是带有箭头的线,它可以画成折线. 其中正确的有________. 答案:①③④[典例]已知点P (x 0,y 0)和直线l :Ax +By +C =0(A 2+B 2≠0),求点P (x 0,y 0)到直线l 的距离d .设计算法,并画出流程图.[解] 算法如下:S1 输入点的坐标x 0,y 0,输入直线方程的系数A ,B ,C ; S2 E 1←Ax 0+By 0+C ; S3 E 2←A 2+B 2;S4 d←|E1|E2;S5 输出d . 流程图如图所示:画顺序结构的流程图利用梯形的面积公式计算上底为2,下底为4,高为5的梯形的面积.设计出该问题的算法及流程图. 解:算法如下:S1 a ←2,b ←4,h ←5;S2 S ←12(a +b )h ;S3 输出S .该算法的流程图如图所示.[典例]如图是为解决某个问题而绘制的流程图,仔细分析各图框内的内容及图框之间的关系,回答下面的问题:(1)图框①中x ←2的含义是什么? (2)图框②中y 1←ax +b 的含义是什么? (3)图框④中y 2←ax +b 的含义是什么? (4)该流程图解决的是怎样的一个问题?(5)若最终输出的结果y 1=3,y 2=-2,当x 取5时,输出的结果5a +b 的值应该是多少? (6)在(5)的前提下输入的x 值越大,输出的ax +b 的值是不是也越大?为什么? (7)在(5)的前提下,当输入的x 为多大时,输出的结果为0? [解] (1)图框①中x ←2表示把2赋给变量x (即使x =2). (2)图框②中y 1←ax +b 的含义:当x =2时, 计算ax +b 的值,并把这个值赋给y 1.(3)图框④中y 2←ax +b 的含义:当x =-3时, 计算ax +b 的值,并把这个值赋给y 2.(4)该流程图解决的是求函数f (x )=ax +b 的函数值的问题,其中输入的是自变量x 的值,输出的是x 对应的函数值.(5)y 1=3,即2a +b =3;y 2=-2,即-3a +b =-2;从而可得a =1,b =1,故f (x )=x +1,当x 取5时,顺序结构流程图的识读5a +b =f (5)=6.(6)输入的x 值越大,输出的函数值ax +b 越大, 因为f (x )=x +1是(-∞,+∞)上的增函数. (7)令f (x )=x +1=0,得x =-1,因而当输入值为-1时,输出的函数值为0.图1是计算图2中阴影部分面积的一个流程图,其中,①中应填________________.解析:∵一个花瓣形面积为2·ð··⎛⎫⎪⎝⎭1a21a a 44222=2⎝⎛⎭⎫a216π-18a2=14a 2·π-22, ∴图中阴影部分面积应为π-22a 2,故①处应填S ←π-22a 2. 答案:S ←π-22a 2[层级一 学业水平达标]1.下列几个选项中,不是流程图的符号的是________.(填序号)答案:(2)(3)(4)2.如图表示的算法结构是________. 答案:顺序结构3.要解决下面的四个问题,只用顺序结构画不 出其流程图的是________. ①当n =10时,利用公式1+2+3+…+n =错误!,计算1+2+3+ (10)②当圆的面积已知时,求圆的半径;③给定一个数x ,求函数f (x )=⎩⎨⎧1,x>0,-1,x≤0的值;④当x =5时,求函数f (x )=x 2-3x -5的函数值. 答案:③4.阅读下列流程图:若输出结果为15,则①处的执行框内应填的是________.解析:先确定①处的执行框是给x 赋值,然后倒着推,b =15时,2a -3=15,a =9,当a =9时,2x +1=9,x =3.答案:x ←35.某学生五门功课成绩为80,95,78,87,65.写出平均成绩的算法,画出流程图. 解:算法如下: S1 S ←80; S2 S ←S +95; S3 S ←S +78; S4 S ←S +87; S5 S ←S +65; S6 A ←S /5; S7 输出A . 流程图:[层级二应试能力达标] 1.如图所示的流程图解决的数学问题是________.答案:计算半径为2的圆的面积2.阅读如图所示流程图,其输出的结果是________.答案:43.下面四个流程图中不是顺序结构的是________.4.如图所示的流程图最终输出的结果是________.解析:由题意y=(22-1)2-1=8.答案:85.下列流程图表示的算法最后运行的结果为________.解析:无论a,b输入什么数值,程序执行到第二、三步重新对a,b进行赋值,a=4,b=2,所以T=8.答案:86.如图所示的流程图的输出结果是________.解析:执行过程为x =1,y =2,z =3, x =y =2,y =x =2,z =y =2. 答案:27.如图是解方程组⎩⎨⎧2x -y =1 ①4x +3y =7 ②的一个流程图,则对应的算法为:S1 _________________________________________________________; S2 _________________________________________________________; S3 _________________________________________________________. 答案:将方程②中x 的系数除以方程①中x 的系数得商数m =4÷2=2方程②减去m 乘以方程①的积消去方程②中的x 得到⎩⎨⎧2x -y =1,5y =5将上面的方程组自下而上回代求解得到y =1,x =18.要求底面边长为4,侧棱长为5的正四棱锥的侧面积及体积.甲、乙二同学分别设计了一个算法并画出了相应的流程图如下,其中正确的是________.9.如图所示是一个流程图,根据该图和下列各小题的条件回答问题.(1)该流程图解决的是一个什么问题?(2)若输入的a值为0和4时,输出的值相等,则当输入的a的值为3时,输出的值为多少?(3)在(2)的条件下,要想使输出的值最大,输入的a值应为多大?解:(1)该流程图解决的是求二次函数f(x)=-x2+mx的函数值的问题.(2)若输入的a值为0和4时,输出的值相等,即f(0)=f(4).∵f(0)=0,f(4)=-16+4m,∴-16+4m=0.∴m=4,∴f(x)=-x2+4x.∵f(3)=-32+4×3=3,∴当输入的a的值为3时,输出的值为3.(3)∵f(x)=-x2+4x=-(x-2)2+4,当x=2时,f(x)max=4,∴要想使输出的值最大,输入的a的值应为2.10.阅读下列两个求三角形面积的流程图,回答问题.(1)图①的流程图输出结果S 是多少?图②中若输入a =4,h =3,输出的结果是多少?(2)对比一下两个流程图,你有什么发现?解:(1)图①运行后,S =12×4×3=6,故图①输出结果为6.图②当a =4,h =3时输出的结果也为6. (2)通过对比,图①只能求底边长为4、高为3的三角形的面积.图②由于底边长和高要求输入,故可求任意三角形的面积.可见一个好的算法,不仅可以解决某个问题,更可以解决某一类问题,也就是说,设计算法时,我们应尽量“优化”.。

江苏高中数学教材顺序

江苏高中数学教材顺序

江苏高中数学教材顺序篇一:江苏高中数学目录告诉我每个学期学什么??按课标要求,每学期两个模块,即:高一上:必修一、二高一下:必修三、四高二上:必修五、选修1-1(文)、选修2-1(理)高二下:文选修1-2,理选修2-2、2-3然后各学校根据自己的情况安排高三一轮复习,考选修三四系列的还要再多学一点,具体内容看省里的要求。

高一数学上数学1第1章集合1.1集合的含义及其表示1.2子集、全集、补集1.3交集、并集第2章函数概念与基本初等函数Ⅰ2.1函数的概念和图象函数的概念和图象函数的表示方法函数的简单性质映射的概念2.2指数函数分数指数幂指数函数2.3对数函数对数对数函数2.4幂函数2.5函数与方程二次函数与一元二次方程用二分法求方程的近似解2.6函数模型及其应用数学2第3章立体几何初步3.1空间几何体棱柱、棱锥和棱台圆柱、圆锥、圆台和球中心投影和平行投影直观图画法空间图形的展开图柱、锥、台、球的体积3.2点、线、面之间的位置关系平面的基本性质空间两条直线的位置关系直线与平面的位置关系平面与平面的位置关系第4章平面解析几何初步4.1直线与方程直线的斜率直线的方程两条直线的平行与垂直两条直线的交点平面上两点间的距离点到直线的距离4.2圆与方程圆的方程直线与圆的位置关系圆与圆的位置关系4.3空间直角坐标系空间直角坐标系空间两点间的距离高一数学下数学3第5章算法初步5.1算法的意义5.2流程图5.3基本算法语句5.4算法案例第6章统计6.1抽样方法6.2总体分布的估计6.3总体特征数的估计6.4线性回归方程第7章概率7.1随机事件及其概率7.2古典概型7.3几何概型7.4互斥事件及其发生的概率数学4第8章三角函数8.1任意角、弧度8.2任意角的三角函数8.3三角函数的图象和性质第9章平面向量9.1向量的概念及表示9.2向量的线性运算9.3向量的坐标表示9.4向量的数量积9.5向量的应用第10章三角恒等变换10.1两角和与差的三角函数10.2二倍角的三角函数10.3几个三角恒等式高二数学上数学5第11章解三角形11.1正弦定理11.2余弦定理11.3正弦定理、余弦定理的应用第12章数列12.1等差数列12.2等比数列12.3数列的进一步认识第13章不等式13.1不等关系13.2一元二次不等式13.3二元一次不等式组与简单的线性规划问题13.4基本不等式文科数学选修系列11-1(上)第1章常用逻辑用语1.1命题及其关系1.2简单的逻辑联结词1.3全称量词与存在量词第2章圆锥曲线与方程2.1圆锥曲线2.2椭圆2.3双曲线2.4抛物线2.5圆锥曲线与方程第3章导数及其应用3.1导数的概念3.2导数的运算3.3导数在研究函数中的应用3.4导数在实际生活中的应用1-2(下)第1章统计案例1.1假设检验1.2独立性检验1.3线性回归分析1.4聚类分析第2章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3公理化思想第3章数系的扩充与复数的引入3.1数系的扩充3.2复数的四则运算3.3复数的几何意义第4章框图4.1流程图5.2结构图理科数学选修系列22-1(上)第1章常用逻辑用语1.1命题及其关系1.2简单的逻辑连接词1.3全称量词与存在量词第2章圆锥曲线与方程第3章空间向量与立体几何2-2(上)第1章导数及其应用第2章推理与证明第3章数系的扩充与复数的引入2-3(下)第1章计数原理第2章概率第3章统计案例篇二:高中数学苏教版教材目录(必修+选修)苏教版-----------------------------------必修1-----------------------------------第1章集合1.1集合的含义及其表示 1.2子集、全集、补集 1.3交集、并集第2章函数2.1函数的概念2.1.1函数的概念和图象2.1.2函数的表示方法 2.2函数的简单性质2.2.1函数的单调性2.2.2函数的奇偶性 2.3映射的概念第3章指数函数、对数函数和幂函数3.1指数函数3.1.1分数指数幂3.1.2指数函数 3.2对数函数3.2.1对数3.2.2对数函数 3.3幂函数3.4函数的应用3.4.1函数与方程3.4.2函数模型及其应用-----------------------------------必修2-----------------------------------第1章立体几何初步1.1空间几何体1.1.1棱柱、棱锥和棱台1.1.2圆柱、圆锥、圆台和球1.1.3中心投影和平行投影1.1.4直观图画法1.2点、线、面之间的位置关系1.2.1平面的基本性质1.2.2空间两条直线的位置关系 1.平行直线2.异面直线1.2.3直线与平面的位置关系1.直线与平面平行2.直线与平面垂直 1.2.4平面与平面的位置关系1.两平面平行2.平面垂直1.3空间几何体的表面积和体积1.3.1空间几何体的表面积1.3.2空间几何体的体积第2章平面解析几何初步2.1直线与方程2.1.1直线的斜率2.1.2直线的方程1.点斜式2.两点式3.一般式2.1.3两条直线的平行与垂直2.1.4两条直线的交点2.1.5平面上两点间的距离 2.1.6点到直线的距离2.2圆与方程2.2.1圆的方程2.2.2直线与圆的位置关系2.2.3圆与圆的位置关系 2.3空间直角坐标系2.3.1空间直角坐标系2.3.2空间两点间的距离-----------------------------------必修3-----------------------------------第1章算法初步 1.1算法的意义1.2流程图1.2.1顺序结构1.2.2选择结构1.2.3循环结构1.3基本算法语句1.3.1赋值语句1.3.2输入、输出语句1.3.3条件语句1.3.4循环语句 1.4算法案例第2章统计2.1抽样方法2.1.1简单随机抽样1.抽签法2.随机数表法2.1.2系统抽样2.1.3分层抽样2.2总体分布的估计2.2.1频率分布表2.2.2频率分布直方图与折线图2.2.3茎叶图 2.3总体特征数的估计2.3.1平均数及其估计2.3.2方差与标准差 2.4线性回归方程第3章概率3.1随机事件及其概率3.1.1随机现象3.1.2随机事件的概率3.2古典概型 3.3几何概型 3.4互斥事件-----------------------------------必修4-----------------------------------第1章三角函数1.1任意角、弧度1.1.1任意角1.1.2弧度制1.2任意角的三角函数1.2.1任意角的三角函数1.2.2同角三角函数关系1.2.3三角函数的诱导公式1.3三角函数的图象和性质1.3.1三角函数的周期性1.3.2三角函数的图象与性质1.3.3函数y=Asin(ωx+ψ)的图象1.3.4三角函数的应用第2章平面向量2.1向量的概念及表示2.2向量的线性运算2.2.1向量的加法2.2.2向量的减法2.2.3向量的数乘 2.3向量的坐标表示2.3.1平面向量基本定理2.3.2平面向量的坐标运算 2.4向量的数量积 2.5向量的应用第3章三角恒等变换 3.1两角和与差的三角函数 3.1.1两角和与差的余弦3.1.2两角和与差的正弦3.1.3两角和与差的正切 3.2二倍角的三角函数 3.3几个三角恒等式-----------------------------------必修5-----------------------------------第1章解三角形 1.1正弦定理 1.2余弦定理1.3正弦定理、余弦定理的应用第2章数列 2.1数列2.2等差数列2.2.1等差数列的概念2.2.2等差数列的通项公式2.2.3等差数列的前n项和2.3等比数列2.3.1等比数列的概念2.3.2等比数列的通项公式2.3.3等比数列的前n项和第3章不等式3.1不等关系3.2一元二次不等式3.3二元一次不等式组与简单的线性规划问题3.3.1二元一次不等式表示的平面区域3.3.2二元一次不等式组表示的平面区域 3.3.3简单的线性规划问题3.4基本不等式ab?a?b(a?0,b?0)3.4.1基本不等式的证明23.4.2基本不等式的应用-----------------------------------选修1-1-----------------------------------第1章常用逻辑用语1.1命题及其关系1.1.1四种命题1.1.2充分条件和必要条件 1.2简单的逻辑联结词1.3全称量词与存在量词1.3.1量词1.3.2含有一个量词的命题的否定第2章圆锥曲线与方程 2.1圆锥曲线2.2椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质 2.4抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质 2.5圆锥曲线的共同性质第3章导数及其应用3.1导数的概念3.1.1平均变化率3.1.2瞬时变化率——导数3.2导数的运算3.2.1常见函数的导数3.2.2函数的和、差、积、商的导数 3.3导数在研究函数中的应用3.3.1单调性3.3.2极大值和极小值3.3.3最大值和最小值3.4导数在实际生活中的应用-----------------------------------选修1-2-----------------------------------第1章统计案例 1.1独立性检验 1.2回归分析第2章推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.1.3推理案例欣赏 2.2直接证明与间接证明2.2.1直接证明2.2.2间接证明第3章数系的扩充与复数的引入 3.1数系的扩充 3.2复数的四则运算 3.3复数的几何意义第4章框图 4.1流程图 4.2结构图-----------------------------------选修2-1-----------------------------------第1章常用逻辑用语1.1命题及其关系1.1.1四种命题1.1.2充分条件和必要条件 1.2简单的逻辑联结词1.3全称量词与存在量词1.3.1量词1.3.2含有一个量词的命题的否定第2章圆锥曲线与方程 2.1圆锥曲线2.2椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质 2.4抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质 2.5圆锥曲线的统一定义2.6曲线与方程2.6.1曲线与方程2.6.2求曲线的方程2.6.3曲线的交点第3章空间向量与立体几何3.1空间向量及其运算3.1.1空间向量及其线性运算3.1.2共面向量定理3.1.3空间向量基本定理3.1.4空间向量的坐标表示3.1.5空间向量的数量积 3.2空间向量的应用3.2.1直线的方向向量与平面的法向量3.2.2空间线面关系的判定3.2.3空间的角的计算-----------------------------------选修2-2-----------------------------------第一章导数及其应用1.1导数的概念1.1.1平均变化率1.1.2瞬时变化率——导数1.2导数的运算1.2.1常见函数的导数1.2.2函数的和、差、积、商的导数1.2.3简单复合函数的导数1.3导数在研究函数中的应用1.3.1单调性1.3.2极大值和极小值1.3.3最大值和最小值 1.4导数在实际生活中的应用1.5定积分1.5.1曲边梯形的面积1.5.2定积分1.5.3微积分基本定理第二章推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.1.3推理案例欣赏 2.2直接证明与间接证明2.2.1直接证明2.2.2间接证明 2.3数学归纳法第三章数系的扩充与复数的引入 3.1数系的扩充 3.2复数的四则运算 3.3复数的几何意义-----------------------------------选修2-3-----------------------------------第一章计数原理 1.1两个基本原理 1.2排列 1.3组合1.4计数应用题1.5二项式定理1.5.1二项式定理1.5.2二项式系数的性质及用第二章概率2.1随机变量及其概率分布 2.2超几何分布2.3独立性2.3.1条件概率2.3.2事件的独立性 2.4二项分布2.5随机变量的均值与方差2.5.1离散型随机变量的均值2.5.2离散型随机变量的方差与标准差 2.6正态分布第三章统计案例 3.1独立性检验 3.2回归分析-----------------------------------选修4-1-----------------------------------1.1 相似三角形的进一步认识1.1.1平行线分线段成比例定理 1.1.2相似三角形 1.2 圆的进一步认识1.2.1圆周角定理 1.2.2圆的切线 1.2.3圆中比例线段1.2.4圆内接四边形 1.3 圆锥截线1.3.1球的性质 1.3.2圆柱的截线 1.3.3圆锥的截线学习总结报告-----------------------------------选修4-2-----------------------------------2.1 二阶矩阵与平面向量2.1.1矩阵的概念2.1.2二阶矩阵与平面列向量的乘法 2.2 几种常见的平面变换2.2.1恒等变换 2.2.2伸压变换 2.2.3反射变换 2.2.4旋转变换 2.2.5投影变换 2.2.6切变变换2.3 变换的复合与矩阵的乘法2.3.1矩阵乘法的概念 2.3.2矩阵乘法的简单性质2.4 逆变换与逆矩阵2.4.1逆矩阵的概念2.4.2二阶矩阵与二元一次方程组 2.5 特征值与特征向量2.6 矩阵的简单应用学习总结报告-----------------------------------选修4-4-----------------------------------4.1 直角坐标系4.1.1直角坐标系 4.1.2极坐标系4.1.3球坐标系与柱坐标系 4.2 曲线的极坐标方程4.2.1曲线的极坐标方程的意义 4.2.2常见曲线的极坐标方程4.3 平面坐标系中几种常见变换4.3.1平面直角坐标系中的平移变换 4.3.2平面直角坐标系中的伸缩变换 4.4 参数方程4.4.1参数方程的意义4.4.2参数方程与普通方程的互化 4.4.3参数方程的应用4.4.4平摆线与圆的渐开线学习总结报告-----------------------------------选修4-5-----------------------------------5.1 不等式的基本性质 5.2 含有绝对值的不等式5.2.1含有绝对值的不等式的解法 5.2.2含有绝对值的不等式的证明 5.3 不等式的证明5.3.1比较法5.3.2综合法和分析法 5.3.3反证法 5.3.4放缩法5.4 几个著名的不等式5.4.1柯西不等式 5.4.2排序不等式5.4.3算术-几何平均值不等式 5.5 运用不等式求最大(小)值5.5.1运用算术-几何平均值不等式求最大(小)值 5.5.2运用柯西不等式求最大(小)值5.6 运用数学归纳法证明不等式学习总结报告篇三:高中新课标教材版本各省详表高中课标教材本(各省市)详表1、海南高中课标教材本(04秋高一起用):2、广东高中课标教材本(04秋高一起用):3、山东高中课标教材本(04秋高一起用):4、宁夏高中课标教材本(04秋高一起用):5、江苏高中课标教材本(05秋高一起用):6、福建高中课标教材本(06秋高一起用):7、辽宁高中课标教材本(06秋高一起用):8、安徽高中课标教材本(06秋高一起用):9、浙江高中课标教材本(06秋高一起用):10、天津高中课标教材本(06秋高一起用):11、湖南高中课标教材本(07秋高一起用):12、陕西高中课标教材本(07秋高一起用):13、吉林高中课标教材本(07秋高一起用):14、黑龙江高中课标教材。

高中数学 1.2.1 顺序结构学案 苏教版必修3

高中数学 1.2.1 顺序结构学案 苏教版必修3

1.2.1 顺序结构3.掌握算法的顺序结构.1.流程图流程图是由一些图框和流程线组成的,其中图框表示各种操作的类型,图框中的文字和符号表示操作的内容,流程线表示操作的先后次序.预习交流1在描述算法时,用流程图描述比用自然语言描述有哪些优点?提示:用流程图描述算法,比用自然语言看起来更清晰、更直观明确,也更接近于计算机的程序设计.预习交流2流程图中的各图框的作用是固定的吗?怎样表示它们的执行顺序?提示:各图框都有其固定的作用,提示性文字说明或信息可写在框内.用带箭头的流程线将图框连接起来,表示算法步骤的执行路径.3.顺序结构依次进行多个处理的结构称为顺序结构.如图,虚线框内是一个顺序结构,其中A 和B 两个框是依次执行的.顺序结构是一种最简单、最基本的结构.预习交流3顺序结构是任何算法都离不开的基本结构吗?提示:任何一个算法都离不开顺序结构,顺序结构是最简单、最基本的结构. 预习交流4(1)下列关于流程线的说法,不正确的是__________. ①流程线表示操作的先后次序,用来连接图框 ②流程线无论什么方向,总要按箭头的指向执行 ③流程线是带有箭头的线,它可以画成折线④流程线只要是上下方向就表示自上向下执行,可以不要箭头 提示:流程线是带有箭头的线段或折线,其中箭头表示算法步骤执行的顺序,不能丢掉,故④不正确.(2)如图所示,对本题流程图表示的算法,描述最准确的是__________.(填序号)①可用来判断a,b,c是否为一组勾股数②可用来判断a,b,c之间的大小顺序③可用来判断点(a,b)是否在直线x=c上④可用来判断点(a,b)与圆心在原点,半径为c的圆的位置关系提示:④一、对流程图的认识和理解关于对流程图的图形符号的理解正确的序号是__________.①任何一个完整的流程图都必须有起止框;②输入框只能放在开始框后,输出框只能放在结束框前;③判断框是唯一具有超过一个出口的图形符号;④对于一个流程图来说,判断框内的条件的写法是唯一的.思路分析:正确把握流程图中各个图形的作用及使用规则是解题的关键.答案:①③解析:任何一个流程图都必须有开始和结束,从而必须有起止框;输入框和输出框可以用在算法中任何需要输入、输出的位置;判断框内的条件不是唯一的,如a>b也可以写成a≤b,所以②④是错误的,①③是正确的.故填①③.1.下列功能中是处理框功能的是__________.①赋值;②计算;③判断;④输入,输出.答案:①②解析:处理框的功能是赋值或计算;判断则是判断框的功能;输入、输出则要通过输入、输出框来完成.故赋值和计算都属于处理框的功能.2.下列关于流程图的说法正确的是__________.①流程图是描述算法的语言②流程图中可以没有输出框,但必须要有输入框给变量赋值③流程图虽可以描述算法,但不如用自然语言描述算法直观④一个流程图中一定有顺序结构答案:①④解析:由于算法设计时要求返回执行的结果,故必须要有输出框.对于变量的赋值,则可以通过处理框完成,故算法设计时不一定要有输入框,所以②是错误的;相对于自然语言,用流程图描述算法的优点主要是直观、形象,容易理解,在步骤上表达简单了许多,所以③是错误的;顺序结构是任何一个流程图中都必有的基本结构,所以④正确.正确理解流程图的概念,对构成流程图的各种图形符号的功能要准确把握,具体应用时注意其特点.掌握流程图的画法规则,画流程图的规则如下:(1)使用标准的图形符号;(2)一般按从上到下、从左到右的方向画;(3)除判断框外,大多数流程图的符号只有一个进入点和一个退出点,判断框是具有超过一个退出点的唯一符号;(4)判断框分两大类:一类判断框是“Y”与“N”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果;(5)在图形符号内描述的语言要非常简练、清楚.二、应用顺序结构表示算法已知正方体的棱长为2,设计一个算法求其内切球的体积,并画出流程图.思路分析:先求正方体内切球的半径→代入公式求其内切球的体积→把算法画成流程图解:S1 a←2;S2 R←12a;S3 V←43πR3;S4 输出V.流程图如图所示:1.如图所示的流程图,输入a1=3,a2=4,则输出的结果是__________.答案:12解析:b=a1a2=3×4=12.2.写出如图所示流程图的运行结果.(1)(2)(1)S =__________;(2)若R =8,则a =__________.答案:(1)52(2)4解析:(1)∵a =2,b =4,∴S =b a +a b =42+24=52.(2)由R =8得b =R2=2.故a =2b =4.3.画出由梯形两底a ,b 和高h 求梯形面积的算法流程图. 解:应用顺序结构画出算法流程图如图所示.顺序结构是一种最简单、最常用的程序结构,它不存在条件判断、控制转移和重复执行的操作.一个顺序结构的各个部分是按语句出现的先后次序自上而下顺序执行的.任何一种算法都离不开顺序结构.用顺序结构表示算法的步骤:(1)仔细审题,理清题意,找到解决问题的方法;(2)梳理解题步骤;(3)用数学语言描述算法、明确输入量、计算过程、输出量;(4)用流程图表示算法过程.三、流程图的读图问题如图所示是为解决某个问题而绘制的流程图,仔细分析各图框内的内容及图框之间的关系,回答下面的问题:(1)该流程图解决的是怎样的一个问题?(2)若最终输出的结果y 1=3,y 2=-2,当x 取5时输出的结果5a +b 的值应该是多少? (3)在(2)的前提下,输入的x 值越大,输出的ax +b 是不是越大?为什么? (4)在(2)的前提下,当输入的x 值为多大时,输出结果ax +b 等于0? 思路分析:解答本题可先分析流程图的功能,然后根据函数关系式中变量间的关系依次解答,同时还要注意流程图中不同形式的图框的功能.解:(1)该流程图解决的是求函数f (x )=ax +b 的函数值的问题.(2)y 1=3即2a +b =3,y 2=-2即-3a +b =-2.解方程组2+=3,3+=2,a b a b ⎧⎨--⎩得1,=1.a b =⎧⎨⎩∴f (x )=x +1.∴当x 取5时,5a +b =f (5)=5+1=6. (3)输入的x 值越大,输出的函数值ax +b 越大, ∵f (x )=x +1是R 上的增函数.(4)令f (x )=x +1=0,得x =-1.因此当输入的x 值为-1时,输出的函数值为0.1.如图是一个算法的流程图,已知a 1=3,输出的结果为7,则a 2的值为__________.答案:11解析:由输出的结果为7,可知a1+a2=14.又a1=3,∴a2=11.2.阅读流程图,回答下列问题:(1)图框①中x←4的含义是什么?(2)图框②中y1←ax2+bx+c的含义是什么?(3)图框④中y2←ax2+bx+c的含义是什么?解:(1)图框①的功能是赋值.x←4表示将4赋给变量x.(2)图框②中,y1←ax2+bx+c的含义,是在执行①的前提下,即当x=4时,计算y1=ax2+bx+c 的值.(3)图框④中,y2←ax2+bx+c的含义,是在执行③的前提下,即当x=-2时,计算y2=ax2+bx+c的值.已知与流程图有关的函数问题,将流程图所表示的算法翻译成自然语言,是由用自然语言表达的算法画出流程图的逆向过程.对这两种语言的互译有助于熟练掌握算法的设计,而将流程图翻译成自然语言相对而言比较陌生,是一个难点.1.流程图中表示判断的图框是__________.答案:菱形框2.算法的三种基本结构是____________________________________________________.答案:顺序结构、选择结构、循环结构3.“”的功能是__________.答案:输入和输出信息4.写出x=2时,求函数y=x2-2x的函数值的一个算法,并用流程图表示.解:算法如下:S1 x←2;S2 y←x2-2x;S3 输出y.上述算法用流程图表示为:。

高中数学第1章算法初步1.2流程图讲义苏教版必修3

高中数学第1章算法初步1.2流程图讲义苏教版必修3

1.2 流程图1.流程图的概念流程图是由一些图框和流程线组成的,其中图框表示各种操作的类型,图框中的文字和符号表示操作的内容,流程线表示操作的先后次序.2.流程图的图形符号及其应用依次进行多个处理的结构称为顺序结构.顺序结构的形式如图所示,其中A和B两个框是依次执行的.顺序结构是任何一个算法都离不开的最简单、最基本的结构.4.选择结构先根据条件作出判断,再决定执行哪一种操作的结构称为选择结构,也称为分支结构.如图所示,虚线框内是一个选择结构,它包含一个判断框,当条件p成立(或称为“真”)时执行A,否则执行B.思考1:一个选择结构只能有两个执行选项吗?[提示] 一个选择结构只能有两个执行选项.思考2:若有多于两种选项的情况怎样处理?[提示] 可以用多个选择结构嵌套组合来处理.5.循环结构(1)定义:在算法中,需要重复执行同一操作的结构称为循环结构.(2)分类:循环结构分为当型循环和直到型循环.①当型循环:先判断所给条件p是否成立,若p成立,则执行A,再判断条件p是否成立;若p仍成立,则又执行A,如此反复,直到某一次条件p不成立时为止,这样的循环结构称为当型循环.其示意图如图1所示:图1 图2②直到型循环:先执行一次循环体,再判断所给条件是否成立,若不成立,则继续执行循环体,如此反复,直到条件成立时为止,这样的循环结构称为直到型循环.其示意图如图2所示.1.下列对流程图的描述,正确的是( )A.流程图中的循环可以是无止境的循环B.选择结构的流程图有一个入口和两个出口C.选择结构中的两条路径可以同时执行D.循环结构中存在选择结构D[根据选择结构与循环结构的定义可知,A、B、C不正确.D正确.特别提醒:本题易错选B,判断框是一个入口和两个出口,但是选择结构中的两条路径,只能执行其一,不能同时执行,故B不正确.]2.如图所示的流程图的运行结果是________.第2题图第3题图5 2[根据流程图的意义可知,当a=2,b=4时,S=24+42=52.]3.阅读如图所示的流程图,运行相应的算法,输出的结果是________.11 [第一次运行,a=3;第二次运行a=11,11<10不成立,退出.] 4.如图是求实数x的绝对值的算法流程图,则判断框①中可填________.x >0或x ≥0 [根据绝对值定义解答,|x |=⎩⎪⎨⎪⎧x , x ≥0,-x , x <0.]①流程图中的图形符号可以由个人来确定; ②也可以用来执行计算语句; ③输入框只能紧接在起始框之后;④用流程图表示算法,其优点是将算法的基本逻辑结构展现得非常直接.④ [①中框图中的图形符号有严格标准,不能由个人确定;②中只能执行判断语句,不能执行计算语句;③中输入框不一定只能紧接在起始框之后.故①②③不正确,④正确.]1.理解流程图中各框图的功能是解此类题的关键,用流程图表示算法更直观、清晰、易懂.2.起止框用“”表示,是任何流程不可少的,表明程序的开始和结束.3.输入、输出框图用“”表示,可用在算法中任何需要输入、输出的位置,需要输入的字母、符号、数据都填在框内.4.处理框图用“”表示,算法中处理数据需要的算式、公式等可以分别写在不同的用以处理数据的处理框内,另外,对变量进行赋值时,也用到处理框.5.判断框是唯一具有超过一个退出点的图框符号.1.流程图中,符号“”可用于________.(填序号) ①输入;②输出;③赋值;④判断.③ [流程图中矩形方框的功能是赋值和计算.]2.对于流程图的图框符号的理解,下列说法中正确的是________.(填序号) ①输入框、输出框有严格的位置限定; ②任何一个流程图都必须有起止框;③对于一个流程图而言,判断框中的条件是唯一确定的; ④判断框是唯一具有超过一个退出点的图框符号.②④ [任何一个流程图都必须有开始和结束,因此必须有起止框;输入框和输出框可以用在算法中的任意需要输入和输出的位置;判断框中的条件不是唯一的.]思路点拨:对于套用公式型的问题,要注意所给公式中变量的个数及输入、输出部分的设计.先写出算法,再画出对应的流程图.本题可用顺序结构解决.[解] 算法如下: S1 输入a ,b ,h ; S2 S ←12(a +b )·h ;S3 输出S . 流程图如图.应用顺序结构表示算法的步骤(1)仔细审题,理清题意,找到解决问题的方法; (2)梳理解题步骤;(3)用数学语言描述算法,明确输入量,计算过程,输出量; (4)用流程图表示算法过程. 提醒:规范流程图的画法 (1)使用标准的框图符号;(2)框图一般按从上到下、从左到右的方向画,流程线要规范; (3)除判断框外,其他框图符号只有一个进入点和一个退出点; (4)在图形符号内描述的语言要非常简练、清楚.3.已知x =4,y =2,画出计算w =3x +4y 的值的流程图.[解] 本题可用顺序结构解决,利用流程图的定义及符号之间的联系即可画出流程图. 流程图如图:4.已知一个圆柱的底面半径为R ,高为h ,求圆柱的体积.设计一个解决该问题的算法,并画出相应的流程图.[解] 算法如下: 第一步,输入R ,h . 第二步,计算V ←πR 2h .第三步,输出V . 流程图如图所示:【例3】 设计一个算法,输入x 的值,计算并输出y 的值,且y =⎩⎪⎨⎪⎧-x +1,x <0,1,x =0,x +1,x >0,试画出该算法的流程图.[解] 该函数是分段函数,当给出一个自变量x 的值时,必须先判断x 的范围,然后确定利用哪一段的解析式求对应的函数值.因为解析式分了三段,所以判断框需要两个,即进行两次判断.算法步骤如下: 第一步 输入x ;第二步 若x <0,则y ←-x +1;否则执行第三步; 第三步 若x =0,则y ←1;否则,y ←x +1; 第四步 输出y . 流程图如图所示:1.选择结构是在需要进行分类讨论时所应用的逻辑结构,但是在某些问题中,需要经过几次分类才能够将问题讨论完全,这样就需要选择结构的嵌套.所谓嵌套,是指选择结构内,又套有小的分支,对条件进行两次或更多次的判断.常用于一些分段函数的求值问题.选择结构中算法的流程要根据条件流向不同的方向,此结构中的主要部分是判断框.选择结构的嵌套中可以含有多个判断框.一般地,如果是分三段的函数,需要引入两个判断框;如果是分四段的函数,需要引入三个判断框…以此类推.其流程图如图所示.2.在选择结构中,反映的是“先判断,后执行”的思想.选择结构的两个分支在写算法时实质上是一个步骤,不能写成两个步骤.如果一个分支中还有两个子分支,这时有两种处理方法:(1)直接嵌套在这一步中; (2)用“转到”某一步.提醒:根据分段函数,设计算法流程图时,必须引入判断框,运用选择结构,当题目出现多次判断时,一定要先分清判断的先后顺序,再逐层设计流程图.5.如图所示的流程图,若输入的x的值为0,则输出的结果为________.1 [这是一个嵌套的选择结构,当输入x=0时,执行的是y←1,即y=1.故输出的结果为1.]6.设计一个求解一元二次方程ax2+bx+c=0的算法,并画出流程图.[解] 依据求解一元二次方程的方法步骤设计算法,算法步骤如下:S1 输入3个系数a,b,c;S2 计算Δ←b2-4ac;S3 判断Δ≥0是否成立.若是,则计算p←-b2a,q←Δ2a;否则,输出“方程没有实数根”,结束算法;S4 判断Δ=0是否成立.若是,则输出x1=x2=p;否则,计算x1←p+q,x2←p-q,并输出x1,x2.流程图如图所示:[1.循环结构有哪两种形式?[提示] 循环结构有当型循环结构和直到型循环结构两种常见形式.2.当型循环结构和直到型循环结构有何区别?[提示] 当型循环结构与直到型循环结构的区别为当型循环结构首先进行条件的判断,然后再执行循环体,而直到型循环结构是先执行一次循环体,然后再进行条件的判断.3.当型循环结构和直到型循环结构是否可以相互转化?[提示] 这两种循环结构可以相互转化,需要注意的是,两者相互转化时,所满足的条件不同.【例4】指出图中流程图的功能.如果用的是循环结构,则写出用的是哪一种循环结构,并画出用另一种循环结构表示的流程图.思路点拨:依据当型循环和直到型循环的结构特征判断、改写.图中是先执行再判断,故采用的直到型循环结构,可用当型循环结构改写.[解] 题图所示的是计算12+22+32+…+992的值的一个算法的流程图,采用的是直到型循环结构,可用当型循环结构表示,如图所示:1.读如图所示的流程图,完成下面各题:(1)循环体执行的次数是________.(2)输出的结果为________.(1)49 (2)2 450 [(1)∵i←i+2,∴当2n+2≥100时循环结束,此时n≥49.(2)S=0+2+4+6+…+98=2 450.]2.指出图中流程图的功能,如果是循环结构,指出是哪一种循环结构,并画出用另一种循环结构表示的流程图.[解] 依据当型循环和直到型循环结构的特征判断改写.此流程图的功能是计算1×3×5×7×…×97的值.是当型循环结构,可用直到型循环结构表示,如图所示:1.循环结构主要用于解决有规律的重复计算问题,如累加求和、累乘求积等.如果算法问题里涉及的运算进行了多次重复的操作,且先后参与运算的各数之间有相同的变化规律,就可以引入循环变量参与运算,构成循环结构.2.要用好循环结构,需要注意三个环节:(1)确定循环变量和初始值,初始值的确定要结合具体问题,这是循环的基础;(2)确定循环体,循环体是算法中反复执行的部分,是循环进行的主体;(3)确定终止循环的条件,因为一个算法必须在有限步骤内完成.3.转化与化归思想在循环结构中有重要应用.循环结构的两种形式,当型循环结构与直到型循环结构可以相互转化,需要注意的是,相互转化时所满足的判断条件不同.1.本节课的重难点是理解流程图的作用,能用顺序结构,选择结构,循环结构书写算法.2.含条件结构问题的求解策略(1)理清所要实现的算法的结构特点和流程规则,分析功能;(2)结合框图判断所要填入的内容或计算所要输入或输出的值;(3)明确要判断的条件是什么,判断后的条件对应着什么样的结果.3.利用循环结构表示算法的步骤利用循环结构表示算法,第一要先确定是利用当型循环结构,还是直到型循环结构;第二要选择准确的表示累计的变量;第三要注意在哪一步开始循环,满足什么条件不再执行循环体.1.任何一种算法都离不开的基本结构为( )A.顺序结构B.选择结构C.循环结构D.顺序结构和选择结构A[顺序结构是最简单、最基本的结构,是任何一个算法都离不开的基本结构.]2.下列关于流程线的说法,不正确的是( )A.流程线表示算法步骤执行的顺序,用来连接图框B.流程线只要是上下方向就表示自上向下执行,可以不要箭头C.流程线无论什么方向,总要按箭头的指向执行D.流程线是带有箭头的线,它可以画成折线B[依据流程线的画法及其功能判断,A、C、D正确,B不正确.]3.根据所给流程图,当输入x=10时,输出的y的值为________.14.1 [由流程图可知,该流程图的作用是计算分段函数y =⎩⎪⎨⎪⎧1.2x , x ≤7,.9x -4.9, x >7的函数值.当输入x =10时,输出的y 值为1.9×10-4.9=14.1.]4.设计求1+3+5+7+…+99的算法,并画出相应的流程图.[解] 这是求50个数和的一道题,多次求和,可以利用循环结构完成.用变量S 存放求和的结果,变量I 作为计数变量,每循环一次,I 的值增加2.算法如下: S1 S ←0; S2 I ←1;S3 如果I ≤99,那么转S4,否则转S6; S4 S ←S +I ; S5 I ←I +2,转S3; S6 输出S . 流程图如图所示:。

高中数学第一章算法初步第3课时顺序结构导学案苏教版必修3

高中数学第一章算法初步第3课时顺序结构导学案苏教版必修3

第3课时 顺序结构【学习目标】1. 理解流程图的概念以及顺序结构.2. 能运用顺序结构设计流程图以解决简单的问题. 【问题情境】1.情境:回答下面的问题: (1)123100++++= ; (2)123n ++++= ;2.问题:已知1232006n ++++>,求n 的最小值,试设计算法.【合作探究】1. 学生讨论,教师引导学生进行表达. 解 1S 取1n =;2S 计算2)1(+n n ; 3S 若(1)20062n n +>,则输出n ;否则,使1n n =+,转2S . 上述算法怎样用框图直观地描述出来? 2.知识建构(复习)1.流程图的概念:2.构成流程图的图形符号及其作用(课本第7页),结合图形讲解.3.算法都可以由顺序结构、选择结构、循环结构这三块“积木”通过组合和嵌套表达出来.4.顺序结构的概念:依次进行多个处理的结构称为顺序结构. 【展示点拨】例1写出作ABC ∆的外接圆的一个算法. 解1S 作AB 的垂直平分线1l ;2S 作BC 的垂直平分线2l ;3S 以1l 与2l 的交点M 为圆心,MA 为半径作圆,圆M 即为ABC ∆的外接圆.说明 1.以上过程通过依次执行1S 到3S 这三个步骤,完成了作外接圆这一 问题,这种依次进行多个处理的结构就是顺序结构. 2.上述算法的流程图如下图1所示,它是一个顺序结构.图1 图2例2 已知两个单元分别存放了变量x 和y 的值,试交换这两个变量值. 算法是:1S p x ←; {先将x 的值赋给变量p ,这时存放变量x 的单元可作它用} 2S x y ←; {再将y 的值赋给x ,这时存放变量y 的单元可作它用}3S y p ←. {最后将p 的值赋给y ,两个变量x 和y 的值便完成了交换} 说明:上述算法的流程图如上图2所示,它是一个顺序结构.例3半径为r 的圆的面积计算公式为2πS r =,当10r =时,写出计算圆面积的算法,画出流程图. 解 算法如下:1S 10r ←; 2S 2πS r ←;3S 输出S .说明:上述算法的流程图如右图所示,它是一个顺序结构.拓展延伸:写出求y =-x 2-2x +3的最大值的算法,画出程序框图.【学以致用】课本第9页练习第1,2题.p x ← x y ←y p ← ↓↓↓↓3、写出解方程组⎪⎩⎪⎨⎧=+=+=+)3(4)2(5)1(3x z z y y x 的一个算法,并用流程图表示算法过程。

高中数学 第一章 算法初步 1.2.1 顺序结构教案 苏教版必修3-苏教版高一必修3数学教案

高中数学 第一章 算法初步 1.2.1 顺序结构教案 苏教版必修3-苏教版高一必修3数学教案

1.2.1 顺序结构教学目标:1. 理解流程图的概念以及顺序结构.2. 能识别和理解简单的框图的功能.3. 能运用顺序结构设计流程图以解决简单的问题.教学重点:1. 流程图的概念以及顺序结构的应用.2. 用流程图表示算法.教学难点:用流程图表示算法.教学方法:1. 通过模仿、操作、探索,经历设计流程图表达求解问题的过程,加深对流程图的感知.2. 在具体问题的解决过程中,掌握基本的流程图的画法和顺序结构. 教学过程:一、问题情境1.情境:回答下面的问题:(1)123100++++= ; (2)123n ++++= ;2.问题:已知1232006n ++++>,求n 的最小值,试设计算法. 二、学生活动学生讨论,教师引导学生进行表达.解 1S 取1n =;2S 计算2)1(+n n ; 3S 若(1)20062n n +>,则输出n ;否则,使1n n =+,转2S .上述算法可以用框图直观地描述出来:教师边讲解边画出第7页图1-2-1,这样的框图我们称之为流程图.三、建构数学(复习)1.流程图的概念:流程图是用一些图框和流程线来表示算法程序结构的一种图形程序.它直观、清晰,便于检查和修改.其中,图框表示各种操作的类型,图框中的文字和符号表示操作的内容,流程线表示操作的先后次序.2.构成流程图的图形符号及其作用(课本第7页),结合图形讲解.3.规范流程图的表示:①使用标准的框图符号;②框图一般按从上到下、从左到右的方向画,流程线要规范;③除判断框外,大多数框图符号只有一个进入点和一个退出点.④在图形符号内描述的语言要非常简练、清楚.4.从流程图121--可以看出,该算法步骤中,有些是按顺序执行,有些需要选择执行,而另外一些需要循环执行.事实上,算法都可以由顺序结构、选择结构、循环结构这三块“积木”通过组合和嵌套表达出来.5.顺序结构的概念:依次进行多个处理的结构称为顺序结构.四、数学运用1.顺序结构举例例1 写出作ABC ∆的外接圆的一个算法.解 1S 作AB 的垂直平分线1l ;2S 作BC 的垂直平分线2l ;3S 以1l 与2l 的交点M 为圆心,MA 为半径作圆,圆M 即为ABC ∆的外接圆.说明 1.以上过程通过依次执行1S 到3S 这三个步骤,完成了作外接圆这一 问题,这种依次进行多个处理的结构就是顺序结构.2.上述算法的流程图如下图1所示,它是一个顺序结构.图2 例x 和y 的值,试交换这两个变量值..在计算机中,每个变量都分配了一个存储单元,它们都有各自的地址. 2x ”表示“把x 赋给p ”. 解 p . 1S px ←; {先将x 的值赋给变量p ,这时存放变量x 的单元可作它用} 2S x y ←; {再将y 的值赋给x ,这时存放变量y 的单元可作它用}3S y p ←. {最后将p 的值赋给y ,两个变量x 和y 的值便完成了交换} 说明:上述算法的流程图如上图2所示,它是一个顺序结构.例3 半径为r 的圆的面积计算公式为2πS r =,当10r =时,写出计算圆面 积的算法,画出流程图.解 算法如下: 1S 10r ←;2S 2πS r ←;3S 输出S .说明:上述算法的流程图如右图所示,它是一个顺序结构.2.练习:课本第9页练习第1,2题.五、要点归纳与方法小结本节课学习了以下内容:1.流程图的概念: p x ←x y ← y p ← ↓ ↓↓↓流程图是用一些图框和流程线来表示算法程序结构的一种图形程序.它直观、清晰,便于检查和修改.2.画流程图的步骤:首先用自然语言描述解决问题的一个算法,再把自然语言转化为流程图;3.顺序结构的概念:依次进行多个处理的结构称为顺序结构.。

高中数学第1章算法初步1.2流程图课件苏教版必修3

高中数学第1章算法初步1.2流程图课件苏教版必修3

[解] 依据当型循环和直到型循环结构的 特征判断改写.
此流程图的功能是计算 1×3×5×7×…×97 的值.是当型循环结构, 可用直到型循环结构表示,如图所示:
1.循环结构主要用于解决有规律的重复计算问题,如累加求和、 累乘求积等.如果算法问题里涉及的运算进行了多次重复的操作,且 先后参与运算的各数之间有相同的变化规律,就可以引入循环变量参 与运算,构成循环结构.
构与循环结构的定义 可知,A、B、C 不正 确.D 正确.特别提醒:
B.选择结构的流程图有一个入口和两个 本题易错选 B,判断框
出口 C.选择结构中的两条路径可以同时执行 D.循环结构中存在选择结构
是一个入口和两个出 口,但是选择结构中的 两条路径,只能执行其 一,不能同时执行,故
B 不正确.]
2.如图所示的流程图的运行结果是________.
S3 判断 Δ≥0 是否成立.若是,则计算 p←-2ba,q← 2aΔ;否则, 输出“方程没有实数根”,结束算法;
S4 判断 Δ=0 是否成立.若是,则输出 x1=x2=p;否则,计算 x1←p+q,x2←p-q,并输出 x1,x2.
流程图如图所示:
循环结构流程图 [探究问题] 1.循环结构有哪两种形式? [提示] ห้องสมุดไป่ตู้环结构有当型循环结构和直到型循环结构两种常见形 式.
其示意图如图 1 所示:
图1
图2
②直到型循环:先执行一次循环体,再判断所给条件是否成立,
若不成立,则继续执行循环体,如此反复,直到_条__件__成__立__时__为__止__,
这样的循环结构称为直到型循环.
其示意图如图 2 所示.
D [根据选择结
1.下列对流程图的描述,正确的是( ) A.流程图中的循环可以是无止境的循环

数学苏教版必修3教案:1.2.1顺序结构 Word版含解析

数学苏教版必修3教案:1.2.1顺序结构 Word版含解析

1.2.1顺序结构整体设计教材分析图1顺序结构是一种最简单、最常用、最重要的程序结构,它不存在条件判断、控制转移和重复执行的操作.顺序结构指的是依次进行多个处理的结构,它是由若干个依次执行的处理步骤组成的,是任何一个算法都离不开的最基本、最简单的结构,因此也是最重要的程序结构,其特点是各个部分按照出现的先后顺序执行.一个顺序结构可以由一个或多个语句块组成,且仅有一个入口和一个出口.最简单的一种顺序结构是每一个语句块中只含有一条不产生控制转移的执行语句.每个语句块本身也可以是一个顺序结构,因此一个顺序结构可以由许多顺序执行的语句组成.在顺序结构程序中,各语句是按照位置的先后次序,顺序执行的,且每个语句都会被执行到.在日常生活中有很多这样的例子.例如在淘米煮饭的时候,总是先淘米,然后才煮饭,不可能是先煮饭后淘米.所以在编写顺序结构的应用程序的时候,也存在着明显的先后次序,应注意这种先后顺序关系.当然,为了让计算机处理各种数据,首先就应该把源数据输入到计算机中;计算机处理结束后,再将目标数据以人能够识别的方式输出.对于顺序结构,学生容易理解,教学时让学生自己举一些只包含顺序结构算法的实例.三维目标通过实际生活中的实例和典型的顺序结构案例,使学生理解顺序结构的意义,并能够用流程图表示顺序结构以及能用顺序结构的流程图表示简单问题的算法,养成良好的逻辑思维习惯,达到提升学生逻辑思维能力的目标.重点难点教学重点:用顺序结构的流程图表示简单问题的算法.教学难点:用流程图表示算法.课时安排1课时教学过程导入新课设计思路一:(情境导入)有一个笑话,是赵本山和宋丹丹的小品中演的,宋丹丹问:“要把大象装冰箱,总共分几步?”赵本山答不上来,宋丹丹给出答案:“三步!第一步,把冰箱门打开;第二步,把大象装进去;第三步,把冰箱门带上.”尽管这是一个笑话,但是宋丹丹的答案中把大象放进冰箱分了明确的三步:第一步,把冰箱门打开;第二步,把大象装进去;第三步,把冰箱门带上.这三步缺一不可,每步都必须执行,且先后顺序不可调换.我们不知道宋丹丹是不是学习过算法,但是她的回答恰恰体现了算法中最基本、最简单的一种结构,即顺序结构的思想.(引入新课,板书课题——顺序结构)设计思路二:(问题导入)我们做任何一件事,都要按照一定的顺序来按部就班地做.例如做饭就是这样,我们必须先淘米,再把米和水按一定比例一起放在电饭锅里,再插上电源打开开关,这三个步骤缺一不可,每步都必须执行,且顺序不能调换.解决数学问题更是如此,例如我们要确定已知线段AB的三等分点,那么应该怎样来完成呢?S1过线段AB的一个端点(不妨设A)作射线AP;S2在AP上依次截取AC=CD=DE;S3连结BE;S4分别过C、D作BE的平行线,交AB于点M、N,则M、N就是线段AB的三等分点.上述四个步骤也是缺一不可,每步都必须执行,且顺序不能调换.像这样的按一定先后顺序依次执行的一种结构,就是算法中最基本、最简单的一种结构,即顺序结构.(引入新课,板书课题——顺序结构)推进新课新知探究有红和蓝两个墨水瓶,但现在却把红墨水错装在了蓝墨水瓶中,蓝墨水错装在了红墨水瓶中,要求将其互换,应该怎么解决这个问题?由于两个墨水瓶中的墨水不能直接交换,所以应该通过引进第三个空墨水瓶的办法进行交换.其算法如下:S1取一只空墨水瓶(设其为白色),将红墨水瓶中的蓝墨水装入白墨水瓶中;S2将蓝墨水瓶中的红墨水装入红墨水瓶中;S3将白墨水瓶中的蓝墨水装入蓝墨水瓶中.在计算机程序中,与这个例子类似,每个变量都有自己的存放空间,即每个变量都有自己的存储单元,每个存储单元都有各自的“门牌号码”(地址),要交换两个变量的值,需要借助一个新的存储单元来完成.例如若x、y的初值为x=1、y=2,现在要交换两个变量x、y 的值,使得x=2、y=1,那么我们应该进行如下的操作:S1p←x;S2x←y;S3y←p.S1的意思是先将x的值赋给变量p,这时存储变量x的单元可以做他用,但是这时x 的值并没有发生改变,仍然等于1,当然p的值为1;S2的意思是再将y的值赋给变量x,这时存储变量y的单元可以做他用,但是这时y 的值并没有发生改变,仍然等于2,而原来变量单元x中的值已经发生变化,不再是1,而变成了y的值2;S3的意思是最后将p的值赋给变量y,这时y的值发生改变,不再是原来的2,而等于p的值1,而变量单元x没有涉及,其中的值没有发生变化,仍然是2,p的值也还是1.经过上面S1、S2、S3三个步骤,我们发现两个变量x、y的值进行了交换,变成了x=2、y=1.这个算法可以用如图2所示的流程图来清晰地表示:图2图3在图2的流程图中,虚线框内三个处理框中的步骤依次执行,像这种依次进行多个处理的结构称为顺序结构(sequence structure).顺序结构就是如图3的虚线框内的结构,其中A、B两个框是依次执行的.顺序结构是一种最简单、最基本的结构.应用示例思路1例1 半径为r的圆的面积计算公式为S=πr2当r=10时,写出计算圆面积的算法,画出流程图.分析:本题只需要计算当半径r=10时的圆面积,所以直接取r=10代入圆的面积计算公式S=πr2即可.解:算法如下:S1r←10;{把10赋给变量r}S2S←πr2;{用公式S=πr2计算圆的面积}S3输出S.{输出圆的面积}上述算法的流程图可以表示成图4.图4图5点评:已知半径求圆的面积,只需要直接代入公式就行了.由于本题只计算半径r=10时的圆面积,所以直接把10赋给变量r即可.如果是求一组或几个半径不同的圆的面积,可以用输入语句代替赋值语句“r←10”,流程图如图5所示.输入语句和赋值语句是两种不同的语句,它们是有区别的.输入语句在每次执行的时候要先输入变量的值,然后才执行下一个语句,每次执行都可以输入不同的变量值,而不需要重新修改计算机程序;赋值语句不需要先输入变量的值,运行时直接就可以往下执行了,每一次执行的时候都只能对当前所赋给的值进行运算,变量的值不能修改,要计算新的数据就必须修改计算机程序.所以输入语句适用于计算几个或一组变量,运行程序后不能自动执行,要等待用户输入变量的值;赋值语句只适用于计算固定的一个数值,运行程序后会自动执行直到输出结果.有条件的学校可以在计算机上执行这两种不同的语句,让学生在实践中对比它们的区别.例2 写出作△ABC 的外接圆的一个算法.分析:作圆其实就是确定圆心位置和半径大小,△ABC 的外接圆的圆心就是△ABC 中两条边的垂直平分线的交点,半径就是这个圆心到任意一个顶点的距离.因此要作△ABC 的外接圆,只需要依次作两条边AB 和BC 的垂直平分线,得到交点,即外接圆的圆心M ,然后再以M 为圆心,MA 为半径作圆即可.图6解: 算法如下:S1 作AB 的垂直平分线l 1;S2 作BC 的垂直平分线l 2;S3 以l 1与l 2的交点M 为圆心,以MA 为半径作圆,圆M 即为△ABC 的外接圆. 流程图如图6.点评:以上过程通过依次执行S1到S3这三个步骤,完成了作外接圆这一问题,这种依次进行多个处理的结构就是顺序结构.例3 已知一个三角形的三边长分别为2,3,4.利用海伦—秦九韶公式设计一个算法,求出它的面积,画出算法的流程图.分析:如果一个三角形的三边为a ,b ,c ,根据海伦—秦九韶公式可以直接计算这个三角形的面积.令p=2c b a ++,则三角形面积为S=))()((c p b p a p p ---.因此这是一个简单的问题,只需先由a=2、b=3、c=4算出p 的值,再将它代入公式,最后输出结果S ,用顺序结构就能够表达算法.解:流程图如图7:图7点评:本题只需要先求出p ,然后再求S ,依次代入公式即可,用顺序结构容易完成.例4 已知一个数的13%为a ,写出求这个数的算法,并画出程序框图.分析:设这个数为b ,则b×13%=a ,得到b=a÷10013.算法就按照这个计算方法,先输入a ,再计算b.图8解:算法如下: S1 输入a ;S2 计算b=a÷10013; S3 输出b.程序框图如图8所示:点评:设计算法时,一般先用自然语言表述,再根据自然语言所描述的算法画程序框图.在逐步熟练后也可以直接画程序框图.对于较复杂的问题,我们建议还是先用自然语言表述算法过程,后画出程序框图.思路2例1 画出用现代汉语词典查阅“仕”字的程序框图.分析:利用现代汉语词典查字有多种方法,如部首查字法、拼音查字法等,现以部首查字法为例加以说明.先在“部首目录”中查“二画”中“亻”的页码(x ),再从x 页开始的“亻”部中的“三画”中查找“仕”的页码(y ),然后翻到y 页,查阅“仕”.解:流程图如图9所示:图9点评:查阅词典的过程是一个按部就班的固定流程,所以可以用顺序结构的流程图来清晰地显示操作流程.例2 已知函数f(x)=x x +1,实数a 1=f(1),a n+1=f(a n )(n ∈N*),试写出一个求a 4的算法,并画出程序框图.分析:由f(x)= x x +1及a 1=f(1),可得到a 1=111+=21,再由递推公式a n+1=f(a n )=nn a a +1(n ∈N *)可依次得到a 2,a 3,a 4.图10解:算法如下:S1 计算a 1=111+=21; S2 计算a 2=31111=+a a ; S3 计算a 3=41122=+a a ; S4 计算a 4=51133=+a a ; S5 输出a 4.流程图如图10所示:点评:这个问题实际上就是已知数列的递推公式和首项,然后依次求数列的各项的问题.由于数列的知识在必修5中出现,对于还没有学习必修5的学校,就没有必要介绍数列的知识,对于先学习了数列内容的学校,可以提醒学生,已知数列的递推公式和首项求数列的各项,用计算机可以很容易做到,因此计算机可以代替人做一些重复的机械的运算.知能训练1.根据程序框图(图11)输出的结果是( )图11A.3B.1C.2D.02.已知华氏温度F 与摄氏温度C 的转换公式是:(F -32)×95=C ,写出一个算法,并画出流程图使得输入一个华氏温度F ,输出其相应的摄氏温度C.3.若x 1,x 2是一元二次方程2x 2-3x+1=0的两个实根,求x 21+x 22的值.给出解决这个问题的一个算法,并画出程序框图.4.写出解方程组⎪⎩⎪⎨⎧=+=+=+4,5,3x z z y y x 的一个算法,并用流程图表示算法过程.解答:1.该算法的第1步分别将1、2、3三个数赋给x 、y 、z ,第2步使x 取y 的值,即x 的值变成2,第3步使p 取x 的值,即p 的值也是2,第4步让z 取p 的值,即z 取值也是2,从而得第5步输出时,z 的值是2.答案:C2.算法如下:S1 输入华氏温度F ;S2 计算C=(F -32)×95;S3 输出C.流程图如图12所示:图123.算法如下:S1 由韦达定理得x 1+x 2=23,x1x 2=21; S2 将x 21+x 22用x 1+x 2和x 1x 2表示出来;(即x 21+x 22=(x 1+x 2)2-2x 1x 2)S3 将x 1+x 2=23,x 1x 2=21代入上式,得x 21+x 22=45; S4 输出x 21+x 22的值.流程图如图13所示:图134.算法如下:S1 第1,第2个方程不动,用第3个方程减去第1个方程,得到⎪⎩⎪⎨⎧=+-=+=+1,5,3z y z y y xS2 第1,第2个方程不动,第3个方程加第2个方程,得到⎪⎩⎪⎨⎧==+=+62,5,3z z y y xS3 将上面的方程组自下而上回代求解,从而解出x=1,y=2,z=3;S4 输出方程组的解.流程图如图14所示:图14点评:顺序结构中的每个步骤是依次执行的,每个语句都会被执行到.因此只需要按照流程图的顺序依次处理即可得到结果.还可以先用自然语言描述问题处理思路和方法,然后把自然语言转化为流程图.课堂小结1.规范流程图的表示:①使用标准的框图符号;②框图一般按从上到下、从左到右的方向画,流程线要规范;③除判断框和起止框外,其他框图符号只有一个进入点和一个退出点;④在图形符号内描述的语言要非常简练、清楚.2.依次进行多个处理的结构称为顺序结构.3.画流程图的步骤:首先用自然语言描述解决问题的一个算法,再把自然语言转化为流程图.作业1.写出解不等式组⎩⎨⎧>+<-)2(512)1(,12x x 的一个算法,并画出流程图. 2.节到了,糖果店的售货员忙极了.请你设计一个算法,帮助售货员算账,已知果糖每千克10.4元,奶糖每千克15.6元,果仁巧克力每千克25.2元.那么依次购买这三种糖果a ,b ,c 千克,应付多少钱?画出流程图.3.输入一个三位正整数,把这个数的十位数字和个位数字对调,输出对调后的三位数.例如输入234,输出243,设计算法并画出流程图.解答:1.算法如下:S1 解不等式(1),得x<3;S2 解不等式(2),得x>2;S3 求上述两个不等式解的公共部分,得原不等式的解集为{2<x<3};S4 写出这个解集.流程图如图15所示:图152.算法如下:S1 输入a ,b ,c 的值;S2 P←10.4a+15.6b+25.2c ;S3 输出P.流程图如图16所示:图163.算法如下:S1输入三位数n;S2求出n的百位数字a;S3求出n的十位数字b;S4求出n的个位数字c;S5m←100a+10c+b;S6输出m.流程图如图17所示:图17设计感想对于顺序结构,学生容易理解,教学时让学生自己举一些只包含顺序结构算法的实例.然而这毕竟是学生第一次尝试编写完整的流程图,所以我们可以先选择一些很容易看出操作流程的问题来让学生实践.本课时所选择的例题,如果不是要求画出流程图,则都是很简单的数学问题或实际问题,对于高中学生来说,应该轻而易举地解决.现在老师要做的工作就是不让学生解出具体题目的解答过程和答案,而是要学生说出解题思路以及设计方案,这个思路和方案要简单可行,甚至是还不会做这样的题目的人看了你的方案后,只要按照这个方案所确定的步骤一步一步按部就班地操作,就可以得到结果,这就是流程图所要表示的意思.一个复杂的数学问题的计算机程序是需要各个部门各个学科的人齐心协力共同合作才能够完成,数学工作者的任务就是研究出数学问题或者实际问题的解决方案,即先干什么,再干什么,再把这个方案写成其他学科的人也能够看懂的操作流程,这就是流程图.然后计算机专业人员就把流程图中的每一个步骤翻译成计算机能够识别的计算机语言,这样就成了计算机程序.我们把计算机程序输入电脑,让电脑开始运行程序,这样计算机就会自动根据数学工作者所设计的流程自动执行,从而达到我们的目的.所以我们在画出流程图的时候,未必每一个步骤都要写出完整细致的详细操作方法,只要提供思路即可.例如作业3中,要调换一个三位数的十位数字和个位数字,我们必须先求出十位数字和个位数字分别是多少,因此在算法中有如下步骤:S3求出n的十位数字b;S4求出n的个位数字c.对于算法以及流程图,这样就已经够了,至于三位数n的十位数字b到底怎么样求,这个具体的求法就不是流程图部分所要考虑的内容了,换句话说,就是这个问题已经不需要数学工作者来解决,而是计算机研发人员的事情.实际上,这个求法需要用到数学中的取整函数,计算机中已经有了这样的函数了,这个问题对于计算机专业人员来说是很容易的事情.所以,流程图就是要编写出解决问题的步骤,每个步骤具体怎么操作,我们可以不必过于追究,但是我们必须保证这个步骤具有可操作性.因此,学习算法以及编写流程图对学生思维能力的提高是十分有用的,老师和学生都应该引起足够的重视.(设计者:顾文艳)。

高中数学《1.2.1 顺序结构》学案 苏教版必修3

高中数学《1.2.1 顺序结构》学案 苏教版必修3

流程图——顺序结构引入新课 1.问题:(1)=++++100321 ;(2)=++++n 321 ;(3)求当2004321>++++n 时,满足条件的n 的最小正整数;请设计第(3)个问题的算法:2程序框 名称 功能起止框 表示一个算法的起始和结束输 入 输出框 表示一个算法输入和输出的信息处理框赋值、计算判断框 判断某一个条件是否成立,成立的在出口处标明“是”或“Y ”;不成立时标明“否”或“N ”.34.顺序结构的含义及其表示.例题剖析例1 已知两个单元分别存放了变量x 和y 的值,试交换这两个变量值.总 课 题 算法初步总课时 第 2 课时 分 课 题分课时第 2 课时教学目标了解常用流程图符号(输入输出框、处理框、判断框、起止框、流程线)的意义.能用流程图表示顺序结构.能识别简单的流程图所描述的算法. 重点难点流程图框的分类和应用;用流程图表示顺序结构的算法.将自然语言表示的算法转化成流程图;各种图框的正确应用.开始 输入n 计算2)1(+n n 的值 >2004使n 的值增加1N输出n结束Y例2 半径为r 的圆的面积计算公式为2r S =π,当10=r 时,写出计算圆面积的算法,画出流程图.例3 已知点()00y x P ,和直线0:=++C By Ax l ,写出求点()00y x P ,到直线l 的距离d的算法,并画出流程图.巩固练习1.画出下列图框:(1)起止框 (2)输入输出框 (3)处理框 (4)判断框 2.依次进行多个处理的结构称为 结构. 3.写出作棱长全为2的正三棱柱的直观图的算法.4.写出解方程组⎪⎩⎪⎨⎧=+=+=+453x z z y y x 的一个算法,并用流程图表示算法过程.课堂小结了解流程图框的分类和应用,能用流程图表示顺序结构的算法.课后训练班级:高二( )班 姓名:____________一 基础题1.已知两点)47(- ,A ,)65( -,B ,完成下面所给的求线段AB 垂直平分线方程的算法.1S求线段AB 的中点C 的坐标,得C 点坐标为 ; 2S 求线段AB 的斜率,得=AB k ;3S 求线段AB 中垂线的斜率,得=k ;4S求线段AB 的垂直平分线方程为 .2.半径为r 的球的体积计算公式为334r V =π,写出当3=r 时计算球体积的一个算法,并画出流程图.3.三角形面积的计算公式ah S 21=(其中a 为边长,h 为该边上的高),用算法描述求29.1485.7==h a ,时的三角形面积,并画出流程图.4.画出解方程组⎩⎨⎧=+=-73412y x y x 的一个算法流程图.二 提高题5.写出用公式法解一元二次方程0322=--x x 的一个算法,并画出流程图.6.已知()322--=x x x f ,试设计一个算法求()2f ,()3f 及()()32f f +的值,并画出流程图.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时5.2 流程图
重点难点
重点:流程图例的分类和应用;用流程图表示顺序结构的算法。

难点
【学习导航】
知识网络
流程图例→顺序结构的表示 学习要求
1.了解常用流程图符号(输入输出框,处理框,
判断框,
起止框,流程线等)
的意义
2.能用流程图表示顺序结构
3.能识别简单的流程图所描述的算法
4.在学习用流程图描述算法的过程中,发展有条理地思考与表达的能力,提高逻辑思维能力.
【课堂互动】
自学评价
1.回答下面的问题:
(1)1+2+3+…+100= ; (2)1+2+3+…+n= ; (3)求当1+2+3+…+n>2 004时,满足条件的n 的最小正整数。

第(3)个问题的算法: S1 取n 等于1;
S2 计算2
)
1(+n n ;
S3 如果计算的值小于等于2 004,那么让n 的值增加1后转到S2重复操作,否则n 就是最终所要求的结果。

算法可以用自然语言来描述,但为了使算法的程序或步骤表达得更为直观,我们可以用图形的方式,即流程图来表示算法. 2.流程图
上述问题(3)的算法流程图表示如下:
流程图(flow chart)是用一些规定的图形、连线及简单的文字说明来表示算法及程序结构的一种图形程序.它直观、清晰、易懂,便于检查和修改.
流程图中各类图框表示各种操作的类型,具体说明如下表: 程序框 名称 功能 起止框 表示一个算法的开
始和结束
输入、输出
框 表示一个算法输入和输出的信息 处理框
赋值、计算
判断框 判断某一个条件是否成立,成立的在
出口处标明“是”
或“Y ”;不成立时标明“否”或“N ”
画流程图实际上是将问题的算法用流程图符号表示出来,所以首先要明确需要解决什么问题,采用什么算法解决。

3.问题:写出作ABC ∆的外接圆的一个算法,并画出流程图。

【解】算法如下:
1S 作AB 的垂直平分线1l ;
2S 作BC 的垂直平分线2l ;
3S 以1l 与2l 的交点M 为圆心,MA 为半径作圆,圆M 即为ABC ∆的外接圆.
思考:上述算法的过程有何特点? 4.顺序结构
以上过程通过依次执行三个步骤,完成了作外接圆这一问题。

像这种依次进行多个处理的结构称为顺序结构(sequence structure )。

顺序结构是一种最简单、最基本的结构。

【经典范例】
例1 已知两个变量x 和y ,试交换这两个变量的值。

【解】为了达到交换的目的,需要一个临时的中间变量p ,其算法是: S1 p x S2 x y S3 y p
上述算法用流程图表示如下:
点评:在计算机中,每个变量都分配了一个存储单元,它们都有各自的“门牌号码”(地址)。

例 2 半径为r 的圆的面积计算公式为
2r S π=
当10=r 时,写出计算圆面积的算法,画出
流程图。

【解】算法如下:
S1 10−−←
r {把10赋给变量r} S2 2r S π−−← {用公式计算圆的面积}
S3 输出S {输出圆的面积}
流程图:
例3 设计一个尺规作图的算法来确定线段AB 的一个五等分点,并画出流程图。

(点拨:确定线段AB 的五等分点,是指在线段AB 上确定一点M ,使得AB AM 5
1
=
.) 【解】算法如下:
S1 从A 点出发作一条与原直线不重合的射线;
S2 任取射线上一点C ,以AC 为单位长度,在射线上依次作出点E 、F 、G 、D ,使AC AD 5=;
S3 连接DB ,并过点C 作BD 的平行线交AB 于M ,M 就是要找的五等分点.
流程图如下:
追踪训练
1、写出右边程序流程
图的运算结果:如果输入R=8,那么输出
a= 4
2、已知三角形的三边a ,b ,c ,计算该三角形的面积。

写出算法,并用流程图表示出来。

【解】算法如下:
S1 计算2/)(c b a p ++=; S2 利用公式
))()((c p b p a p p s ---=即可求出三
角形的面积。

流程图:
4.用赋值语句写出下列算法,并画出流程图:摄氏温度C 为23.5℃,将它转换成华氏温度F ,并输出.已知329
5
+=C F 。

【解】流程图如下:
3、写出解方程组⎪⎩

⎨⎧=+=+=+)
3(4)2(5
)1(3x z z y y x 的一个算法,并用流程图表示算法过程。

【解】算法如下:
S1 将三个方程相加得x+y+z=6 (4)
S2 用(4)式减(1)式得z=3 S3 用(4)式减(2)式得x=1 S4 用(4)式减(3)式得y=2 流程图:。

相关文档
最新文档