最新EMC_PCB_Design精品资料

合集下载

EMC设计技巧及其PCB设计中的EMC设计概念

EMC设计技巧及其PCB设计中的EMC设计概念

EMC设计技巧及其PCB设计中的EMC设计概念1.电源和信号分离:电源和信号的分离是EMC设计的首要任务之一、在PCB设计中,应将电源线与信号线分开布局,以减少互相干扰。

同时,应尽可能减少电源和信号线之间的交叉。

2. 确保地线的良好连接:地线是EMC设计中非常重要的要素,它能够减少电磁辐射和EMI(Electromagnetic Interference)。

在PCB布局中,应尽量保证地线的连续性和低阻抗,降低电磁波辐射。

同时,应避免形成大的回路环路。

3.使用过滤器:过滤器能够消除电源中的高频噪声,并减少信号线上的干扰。

在PCB设计中,可以采用滤波器来实现对电源线和信号线的滤波,以确保干净的电源和信号。

4.布局合理:合理的布局能够降低电磁辐射和EMI。

在PCB布局中,应尽量减少高频回路和低频回路之间的交叉,在布局时要考虑到信号线的长度和走线路径,避免形成长的导线。

5.适当的屏蔽:在一些高频或EMI敏感的电路中,可以采用屏蔽措施来降低电磁辐射和EMI。

在PCB设计中,可以使用金属屏蔽罩或层叠设计来实现对敏感电路的屏蔽,防止其受到外界噪声的干扰。

6.管理高速信号:高速信号的传输会产生较大的电磁辐射和EMI。

在PCB设计中,应采取措施来管理高速信号,如使用差分信号传输、布局合理的地线和终端阻抗匹配等,以降低高速信号对其他电路的干扰。

7.控制接地回路:在PCB设计中,应注意控制接地回路的路径和走向,避免形成大的环路和共模回路。

合理的接地设计能够减少电磁辐射和EMI,提高电子设备的EMC性能。

8.增加电磁屏蔽性能:在PCB设计中,可以通过增加电磁屏蔽材料和层叠设计来提高电子设备的屏蔽性能。

如通过增加地层、空层、屏蔽层等,来抑制电磁辐射和EMI。

以上是一些常见的EMC设计技巧和PCB设计中的EMC设计概念。

在实际应用中,由于不同电子设备的特点和需求不同,EMC设计也会有一定的差异。

因此,在进行EMC设计时,需要根据具体情况选择合适的技巧和措施,以确保电子设备在特定环境下的正常运行和协调工作。

PCB EMC设计指导书

PCB EMC设计指导书

PCB EMC设计指导书PCB EMC设计指导书1、引言1.1 目的1.2 范围1.3 定义2、设计准则2.1 电磁兼容性(EMC)基础知识2.1.1 电磁辐射和抗扰度2.1.2 EMI / EMC 标准和法规2.1.3 PCB EMC 设计原则2.2 PCB 布局与走线2.2.1 分层布局2.2.2 构建地面层2.2.3 信号与功率分离布线2.2.4 控制信号和高频信号走线2.2.5 时钟信号走线2.2.6 地线和信号线的分隔与交叉 2.2.7 电源线与信号线的分离2.2.8PCB 响应电磁干扰2.3 元件选择和布局2.3.1 高频元件布局2.3.2 过滤器和抑制器件选择2.3.3 元件之间的距离和隔离2.3.4 电源和地线布局2.3.5 电源噪声抑制2.4 PCB 设计技巧2.4.1 PCB 层厚和材料选择2.4.2 阻抗控制2.4.3 地线设计2.4.4 控制信号与高频信号传输 2.4.5 地和电源平面结构2.4.6 PCB 整体尺寸和外壳设计3、PCB 测试和验证3.1 EMI 测试方法3.2 EMI 测试仪器和设备3.3 可行性测试3.4 PCB EMC 验证方法4、EMI 问题的分析和解决4.1 EMI 问题分析方法4.2 EMI 解决技术和方法4.2.1 增加滤波器4.2.2 降低串扰4.2.3 调整元件布局4.2.4 优化引脚布局4.2.5 控制功率和信号引脚的电流路径 4.2.6 使用屏蔽技术4.2.7 电磁屏蔽盖设计4.2.8地线和电源线降噪5、参考文献附件:附件1:EMC 测试报告示例附件2:PCB 布局示意图案例本文所涉及的法律名词及注释:1、EMC:电磁兼容性,是指电子设备在共存共用相互连接的环境下,不互相干扰而正常工作的能力。

2、EMI:电磁干扰,是指电子设备在工作时产生的电磁能量对其他设备或系统的干扰现象。

3、PCB:Printed Circuit Board,印刷电路板的简称,用于连接和支持电子元件的导电板。

改善EMC的PCB设计

改善EMC的PCB设计

改善EMC的PCB设计EMC(电磁兼容性)是指电子设备在电磁环境中,能够正常工作且不对周围环境产生电磁干扰。

在PCB(Printed Circuit Board,印制电路板)设计中,提高EMC性能对于确保设备正常运行至关重要。

下面将提供一些改善EMC的PCB设计的方法。

1.地线设计和布局地线是实现电磁屏蔽和减少辐射的关键因素。

在PCB布局中,要确保地区域的大小足够满足设备要求,并且要与其他信号线和功率线保持足够的距离。

通过采用良好的地线布局和连接,可以减少电磁回流路径,从而减小辐射噪声。

2.分割和层次化布局使用多层PCB设计可以有效地隔离不同功能模块之间的干扰。

将模拟和数字信号引脚分开,并使用不同的地面和电源平面层进行分割。

通过层次化布局,可以减少不同信号层之间的相互干扰。

3.排线和长度匹配电磁辐射和抗扰度问题常常与排线和长度不匹配有关。

在PCB设计中,应尽量避免直角和尖锐的信号线转弯,并将信号线的长度匹配到尽可能相似的长度。

此外,通过差分信号线技术可以减少同轴线干扰。

4.电磁屏蔽和滤波器在PCB布局中,可以使用电磁屏蔽罩来减少辐射噪声。

合理安排滤波器的位置,以消除电子设备中的高频噪声和EMI干扰,同时确保信号质量。

5.引脚布局和连接合理的引脚布局和连接可以使信号线和功率线更好地分离,减少互相干扰的可能性。

通过优化引脚交叉点的布局,可以减少接地和电源回路之间的交叉干扰。

6.整体系统测试和仿真在进行PCB设计之前,可以使用电磁仿真软件对整个系统进行测试。

通过模拟和优化关键信号线和功率线,可以提前检测到潜在的EMC问题,并采取相应的改进措施。

通过采用上述方法,可以改善EMC的PCB设计,提高设备的电磁兼容性。

然而,需要注意的是,每个设计都具有其特定的要求和限制,因此在实际设计过程中,还需要根据具体情况进行适当的调整和优化。

同时,密切关注相关的行业标准和法规要求,确保设计符合相关的EMC标准。

PCB 的EMC 设计

PCB 的EMC 设计

PCB 的EMC 设计印制电路板中的电磁干扰问题包括公共阻抗耦合、串扰、高频载流导线产生的辐射,以及印制线条对高频辐射的感应等。

其中的高频辐射的问题最为严重,这是因为电源线和接地线、信号线的阻抗随着频率的增高而增高,较易通过公共阻抗耦合产生干扰;同时,频率增高使得线路间寄生电容的容抗减小,因而串扰更易发生;此外,随着频率的增高,还使走线尺寸达到可以和时钟及其谐波的波长相比拟的程度。

因此,高频辐射情况更加明显。

高频数字线路设计的另一个问题是由于传输线路阻抗不匹配而导致的信号反射与畸变。

1. PCB 中的公共阻抗耦合问题当模拟电路和数字电路在同一块印制电路板上混装时,若电源与地线共用,则可能产生严重的公共阻抗耦合问题。

在地线回路中产生的干扰电压,严重时可能高于接在公共回路中的模拟和数字电路的噪音容限,造成设备工作的不稳定。

较好的印制电路板布线方案是,让模拟和数字电路分别拥有自己的电源和地线通路,这样干扰电压就不会出现在放大器的输入端上。

另外,在可能的情况下,应尽量加宽这两部分电路的电源与地线,以便减小电源与地线回路的阻抗,减小任何可能在电源与地线回路中的干扰电压。

一单独工作的PCB 的模拟地和数字地可在系统接地点附近单点汇接,如电源电压一致,模拟和数字电路的电源在电源入口单点汇接,如电源电压不一致,在两电源较近处并一1~2nf 的电容,给两电源间的信号返回电流提供通路。

如此PCB 是插在母板上的,则母板的模拟和数字电路的电源和地也要分开,模拟地和数字地在母板的接地处接地,电源处理与上面一样。

2. PCB 的布局设计建议归结如下:・当高速、中速和低速数字电路混用时,在印制板上要给它们分配不同的布局区域。

・对低电平模拟电路和数字逻辑电路要尽可能地分离。

图1是印制板的最佳布局。

因为这种布局可以使高频电流在印制板上的走线路径变短,有助于降低线路板内部的串扰、公共阻抗耦合和辐射发射。

图2 则表示了在线路板上有模拟电路的情况。

PCBEMC设计规范

PCBEMC设计规范

PCBEMC设计规范PCBEMC(Printed Circuit Board Electromagnetic Compatibility)设计规范是指在设计和制造PCB(Printed Circuit Board)时,为了保证电路板的电磁兼容性,所需遵循的一系列规范和技术要求。

电磁兼容性(EMC)是指电子设备在电磁环境中,无论是作为干扰源还是受到干扰,都不存在对其它设备或环境的无意干扰的能力。

PCBEMC设计规范的主要目的是避免电路板干扰周围设备和被周围设备干扰的情况,以保证电子设备的正常运行。

一、PCBEMC设计规范的基本要求1、尽量避免信号线的大环路:大环路是导致电磁干扰的主要原因之一。

因此,再设计PCB时,应尽量避免信号线的大环路。

2、减少地线的阻抗:地线的阻抗对于电磁兼容性非常重要。

地线阻抗过大容易导致共模信号的产生,而地线阻抗过小又会导致与其它地面之间的干扰。

因此,应采用正确的地面布局,减少地线的阻抗。

3、正确选择适当的电容:电容必须正确地选择,以防止高频电流的干扰。

电容的参数应该与应用环境的情况相结合。

4、正确布局各器件:各器件在PCB上应尽可能地被布置在合理的位置,以防止器件之间的互相干扰。

另外,在布局时,应注意与辐射源的距离,尽量避免电路板上的辐射源与周围设备的相互干扰。

5、正确选择适当的地面:地面的用途是通过减小信号的信源来减少桥接层和辐射的成本。

因此,必须正确选择适当的地面。

适当的地面可以降低自由空间的辐射垂直系数,并减小外界电磁场辐射下的接收功率。

6、控制走线电阻:在PCBEMC设计中,走线的电阻至关重要。

电阻越大,电流越大,产生的辐射越大,从而对周围设备产生干扰。

因此,应尽量控制走线的电阻。

7、正确选择适当的接口:在PCBEMC设计中,正确选择适当的接口可以有效地防止电磁干扰的影响。

因此,在选择接口时应遵循EMC方面的实际需求。

二、PCBEMC设计规范的实现方法1、采用不同层次的布线方式采用不同层次的布线方式可以在PCB上实现不同信号之间的隔离,从而避免互相干扰。

PCB印制电路板-PCBEMC设计规范 精品

PCB印制电路板-PCBEMC设计规范 精品

PCB EMC设计规范目录第一部分布局1 层的设置1.1 合理的层数1.1.1 Vcc、GND的层数1.1.2 信号层数1.2 单板的性能指标与成本要求1.3 电源层、地层、信号层的相对位置1.3.1 Vcc、GND 平面的阻抗以及电源、地之间的EMC环境问题1.3.2 Vcc、GND 作为参考平面,两者的作用与区别1.3.3 电源层、地层、信号层的相对位置2 模块划分及特殊器件的布局2.1 模块划分2.1 .1 按功能划分2 .1.2 按频率划分2.1.3 按信号类型分2.1.4 综合布局2.2 特殊器件的布局2.2.1 电源部分2.2.2 时钟部分2.2.3 电感线圈2.2.4 总线驱动部分2.2.5 滤波器件3 滤波3.1 概述3.2 滤波器件3.2.1 电阻3.2.2 电感3.2.3 电容3.2.4 铁氧体磁珠3.2.5 共模电感3.3 滤波电路3.3.1 滤波电路的形式3.3.2 滤波电路的布局与布线3.4 电容在PCB的EMC设计中的应用3.4.1 滤波电容的种类3.4.2 电容自谐振问题3.4.3 ESR对并联电容幅频特性的影响3.4.4 ESL对并联电容幅频特性的影响3.4.5 电容器的选择3.4.6 去耦电容与旁路电容的设计建议3.4.7 储能电容的设计4 地的分割与汇接4.1 接地的含义4.2 接地的目的4.3 基本的接地方式4.3.1 单点接地4.3.2 多点接地4.3.3 浮地4.3.4 以上各种方式组成的混合接地方式4.4 关于接地方式的一般选取原则4.4.2 背板接地方式4.4.3 单板接地方式第二部分布线1 传输线模型及反射、串扰1.1 概述:1.2 传输线模型1.3 传输线的种类1.3.1 微带线(microstrip)1.3.2 带状线(Stripline)1.3.3嵌入式微带线1.4 传输线的反射1.5 串扰2 优选布线层2.1 表层与内层走线的比较2.1.1 微带线(Microstrip)2.1.3 微带线与带状线的比较2.2 布线层的优先级别3 阻抗控制3.1 特征阻抗的物理意义3.1.1 输入阻抗:3.1.2 特征阻抗3.1.3 偶模阻抗、奇模阻抗、差分阻抗3.2 生产工艺对对阻抗控制的影响3.3 差分阻抗控制3.3.1 当介质厚度为5mil时的差分阻抗随差分线间距的变化趋势3.3.2 当介质厚度为13 mil时的差分阻抗随差分线间距的变化趋势3.3.3 当介质厚度为25 mil时的差分阻抗随差分线间距的变化趋势3.4 屏蔽地线对阻抗的影响3.4.1 地线与信号线之间的间距对信号线阻抗的影响3.4.2 屏蔽地线线宽对阻抗的影响3.5 阻抗控制案例4 特殊信号的处理5 过孔5.1 过孔模型5.1.1 过孔的数学模型5.1.2 对过孔模型的影响因素5.2 过孔对信号传导与辐射发射影响5.2.1 过孔对阻抗控制的影响5.2.2 过孔数量对信号质量的影响6 跨分割区及开槽的处理6.1 开槽的产生6.1.1 对电源/地平面分割造成的开槽6.2 开槽对PCB板EMC性能的影响6.2.1 高速信号与低速信号的面电流分布6.2.2 分地”的概念6.2.3 信号跨越电源平面或地平面上的开槽的问题6.3 对开槽的处理6.3.1 需要严格的阻抗控制的高速信号线,其轨线严禁跨分割走线6.3.2 当PCB板上存在不相容电路时,应该进行分地的处理6.3.3 当跨开槽走线不可避免时,应该进行桥接6.3.4 接插件(对外)不应放置在地层隔逢上6.3.5 高密度接插件的处理6.3.6 跨“静地”分割的处理7 信号质量与EMC 7.1 EMC简介7.2 信号质量简介7.3 EMC与信号质量的相同点7.4 EMC与信号质量的不同点7.5 EMC与信号质量关系小结第三部分背板的EMC设计1 背板槽位的排列1.1 单板信号的互连要求1.2 单板板位结构1.2.1 板位结构影响;1.2.2 板间互连电平、驱动器件的选择2 背板的EMC设计2.1 接插件的信号排布与EMC设计2.1.1 接插件的选型2.1.2 接插件模型与针信号排布2.2 阻抗匹配2.3 电源、地分配2.3.1 电源分割及热插拔对电源的影响2.3.2 地分割与各种地的连接2.3.3屏蔽层第四部分射频PCB的EMC设计1 板材1.1 普通板材1.2 射频专用板材2 隔离与屏蔽2.1 隔离2.2 器件布局2.3 敏感电路和强辐射电路2.4 屏蔽材料和方法2.5 屏蔽腔的尺寸3 滤波3.1 电源和控制线的滤波3.2 频率合成器数据线、时钟线、使能线的滤波4 接地4.1 接地分类4.2 大面积接地4.3 分组就近接地4.4 射频器件接地4.4 接地时应注意的问题4.5 接地平面的分布5 布线5.1 阻抗控制5.2 转角5.3 微带线布线5.4 微带线耦合器5.5 微带线功分器5.6 微带线基本元件5.7 带状线布线5.8 射频信号走线两边包地铜皮6 其它设计考虑第一部分布局1 层的设置在PCB的EMC设计考虑中,首先涉及的便是层的设置;单板的层数由电源、地的层数和信号层数组成;电源层、地层、信号层的相对位置以及电源、地平面的分割对单板的EMC指标至关重要。

PCB、EMC设计

PCB、EMC设计

总目1 目的2 范围3 定义4 引用标准和参考资料第一部分布局1 层的设置2 模块划分及特殊器件的布局3 滤波4 地的分割与汇接第二部分布线1 传输线模型及反射、串扰2优选布线层3阻抗控制4 特殊信号的处理5 过孔6跨分割区及开槽的处理7 信号质量与EMC第三部分背板的EMC设计1 背板槽位的排列2 背板的EMC设计第四部分射频PCB的EMC设计1 板材2 隔离与屏蔽3滤波4 接地5布线6 其它设计考虑:第五部分附录1 PCB设计中的安规考虑目录1 目的2 范围3 定义4 引用标准和参考资料第一部分布局1 层的设置1.1 合理的层数1.1.1 Vcc、GND的层数1.1.2 信号层数1.2 单板的性能指标与成本要求1.3 电源层、地层、信号层的相对位置1.3.1 Vcc、GND 平面的阻抗以及电源、地之间的EMC环境问题1.3.2 Vcc、GND 作为参考平面,两者的作用与区别1.3.3 电源层、地层、信号层的相对位置2 模块划分及特殊器件的布局2.1 模块划分2.1 .1 按功能划分2 .1.2 按频率划分2.1.3 按信号类型分2.1.4 综合布局2.2 特殊器件的布局2.2.1 电源部分2.2.2 时钟部分2.2.3 电感线圈2.2.4 总线驱动部分2.2.5 滤波器件3 滤波3.1 概述3.2 滤波器件3.2.1 电阻3.2.2 电感3.2.3 电容3.2.4 铁氧体磁珠3.2.5 共模电感3.3 滤波电路3.3.1 滤波电路的形式3.3.2 滤波电路的布局与布线3.4 电容在PCB的EMC设计中的应用3.4.1 滤波电容的种类3.4.2 电容自谐振问题3.4.3 ESR对并联电容幅频特性的影响3.4.4 ESL对并联电容幅频特性的影响3.4.5 电容器的选择3.4.6 去耦电容与旁路电容的设计建议3.4.7 储能电容的设计4 地的分割与汇接4.1接地的含义4.2 接地的目的4.3 基本的接地方式4.3.1 单点接地4.3.2 多点接地4.3.3 浮地4.3.4 以上各种方式组成的混合接地方式4.4 关于接地方式的一般选取原则:4.4.2 背板接地方式4.4.3 单板接地方式第二部分布线1 传输线模型及反射、串扰1.1 概述:1.2 传输线模型1.3 传输线的种类1.3.1 微带线(microstrip)1.3.2 带状线(Stripline)1.3.3嵌入式微带线1.4 传输线的反射1.5 串扰2优选布线层2.1 表层与内层走线的比较2.1.1 微带线(Microstrip)2.1.3 微带线与带状线的比较2.2 布线层的优先级别3 阻抗控制3.1 特征阻抗的物理意义3.1.1 输入阻抗:3.1.2 特征阻抗3.1.3 偶模阻抗、奇模阻抗、差分阻抗3.2 生产工艺对对阻抗控制的影响3.3 差分阻抗控制3.3.1 当介质厚度为5mil时的差分阻抗随差分线间距的变化趋势3.3.2 当介质厚度为13 mil时的差分阻抗随差分线间距的变化趋势3.3.3 当介质厚度为25 mil时的差分阻抗随差分线间距的变化趋势3.4 屏蔽地线对阻抗的影响3.4.1 地线与信号线之间的间距对信号线阻抗的影响3.4.2 屏蔽地线线宽对阻抗的影响3.5 阻抗控制案例4 特殊信号的处理5 过孔5.1 过孔模型5.1.1 过孔的数学模型5.1.2 对过孔模型的影响因素5.2 过孔对信号传导与辐射发射影响5.2.1 过孔对阻抗控制的影响5.2.2 过孔数量对信号质量的影响6 跨分割区及开槽的处理6.1 开槽的产生6.1.1 对电源/地平面分割造成的开槽6.2 开槽对PCB板EMC性能的影响6.2.1 高速信号与低速信号的面电流分布6.2.2 分地”的概念6.2.3 信号跨越电源平面或地平面上的开槽的问题6.3 对开槽的处理6.3.1 需要严格的阻抗控制的高速信号线,其轨线严禁跨分割走线6.3.2 当PCB板上存在不相容电路时,应该进行分地的处理6.3.3 当跨开槽走线不可避免时,应该进行桥接6.3.4 接插件(对外)不应放置在地层隔逢上6.3.5 高密度接插件的处理6.3.6 跨“静地”分割的处理7 信号质量与EMC7.1 EMC简介7.2 信号质量简介7.3 EMC与信号质量的相同点7.4 EMC与信号质量的不同点7.5 EMC与信号质量关系小结:第三部分背板的EMC设计1 背板槽位的排列1.1 单板信号的互连要求1.2 单板板位结构1.2.1 板位结构影响;1.2.2 板间互连电平、驱动器件的选择2 背板的EMC设计2.1 接插件的信号排布与EMC设计2.1.1 接插件的选型2.1.2 接插件模型与针信号排布2.2 阻抗匹配2.3 电源、地分配2.3.1 电源分割及热插拔对电源的影响2.3.2 地分割与各种地的连接2.3.3屏蔽层第四部分射频PCB的EMC设计1 板材1.1 普通板材1.2 射频专用板材2 隔离与屏蔽2.1 隔离2.2 器件布局2.3 敏感电路和强辐射电路2.4 屏蔽材料和方法2.5 屏蔽腔的尺寸3滤波3.1 电源和控制线的滤波3.2 频率合成器数据线、时钟线、使能线的滤波4 接地4.1 接地分类4.2 大面积接地4.3 分组就近接地4.4 射频器件接地4.4 接地时应注意的问题4.5 接地平面的分布5布线5.1 阻抗控制5.2 转角5.3 微带线布线5.4 微带线耦合器5.5 微带线功分器5.6 微带线基本元件5.7 带状线布线5.8 射频信号走线两边包地铜皮6 其它设计考虑:第五部分附录1 PCB设计中的安规考虑1.1 引言1.2 安全标识1.2.1 对安全标识通用准则1.2.2 电击和能量的危险1.2.4 可更换电池1.3 爬电距离与电气间隙1.4 涂覆印制板1.4.1 PCB板的机械强度1.4.2 印制板材料的阻燃等级1.4.3 热循环试验与热老化试验1.4.4 抗电强度试验1.4.5 耐划痕试验1.5 布线和供电工作室技术规范1 目的本指导书旨在指导PCB的EMC设计,将电路EMC设计要求在PCB中得以实现。

先进EMC的PCB设计与布局

先进EMC的PCB设计与布局

先进EMC的PCB 设计和布局第8部分-上半部----- 一些多方面的最终问题这是8篇关于印刷电路版PCB设计和布局中在电磁兼容性EMC的实践验证过的设计技术系列文章中的最后一篇。

这个系列适合将在PCB上构造的电子电路的设计人员,并可作为PCB设计人员的课程。

本系列覆盖了所有的应用领域,包括家用电器、商业/医学/工业设备、以及从汽车、铁路、船只到航空和军事领域。

PCB技术在以下方面是很有用的:·减少(或消除)封闭层次的屏蔽以节省成本;·减少设计迭代的次数,从而减少上市时间和遵从标准的成本;·改进位于同一位置的无线数据通信 (GSM、DECT、蓝牙、IEEE 802.11等)的有效范围;·使用甚高速设备或大功率数字信号处理 (DSP);·使用最新的IC技术(130nm或90nm芯片处理,“芯片尺度”包装等)。

本系列覆盖的主题包括:1.节省时间和总体成本;2.隔离和接口抑制;3.PCB基座粘合;4.OV和电源的参考平面;5.解除耦合,包括埋入式电容技术;6.发射线;7.路由和层堆叠,包括微经由技术;8.一些多方面的最终问题。

本文是这个系列的最后一部分,希望读者阅读后,能找到一些感兴趣或有用的东西。

在此前,电磁兼容杂志发表的 "电磁兼容技术设计"系列文章 [1]就包括了一节PCB设计和布局,但仅仅覆盖了PCB中最基本的EMC技术,即无论电路有多简单,所有PCB都必须遵循的技术。

那个系列已经发布。

该作者发表的其它文章和书籍也涉及到PCB的基本EMC问题。

与上面的文章一样,本系列也不会将太多的时间花费在分析这些技术为何有效的方面,而是集中于描述它们的实际应用,以及适用的条件。

但这些技术是在实践中经过世界上无数设计人员验证过的,这些技术为何有效,是为学术界了解的,因此可以放心使用。

本系列描述了少数还没有完全检验过的技术,在适当的时候,我们会指出。

优秀的PCB的EMC设计

优秀的PCB的EMC设计

优秀的PCB的EMC设计1.理解PCB的布线规则:-适当选择信号线和地线的宽度和间距,并使用正确的电源和地面分层。

-避免信号线和地线之间的交叉和平行布线,以减少电磁耦合。

-通过较短的信号线长度和最小的线距来减少电磁辐射。

-使用地面平面和屏蔽层来降低射频信号的传输和辐射。

2.使用屏蔽:-在PCB上使用适当的屏蔽罩或金属屏蔽箱,以减少电磁辐射和抑制电磁干扰。

-在高频电路上使用抗干扰屏蔽设备,如屏蔽罩、屏蔽片等。

3.选择适当的元件和材料:-选择具有较低电磁辐射和敏感性的元件。

-选择具有良好屏蔽特性的材料和涂层,以减少电磁辐射和电磁干扰。

4.地线设计:-为电路板提供足够的地线连接和地面平面,以提供良好的信号返回路径和屏蔽。

-避免地线环路,减少磁场耦合。

5.电源供应设计:-使用电源滤波器和稳压器来减少电源中的高频噪声和波动。

-对于敏感电路,可以使用降噪电源芯片和电磁兼容电源设计。

6.热管理:-使用适当的散热器和热沉,以保持电路板和元件的正常工作温度。

-热管理有助于减少电磁辐射,并提供更好的电路性能。

7.地线引出和阻抗控制:-避免地线引出点的高频电流环流,减少电磁辐射。

-控制地线的阻抗和电流分布,以减少干扰和保持信号完整性。

8.使用模拟和数字信号隔离:-对于混合信号电路,使用适当的信号隔离技术和屏蔽,以防止模拟信号对数字信号的干扰和干扰。

9.进行电磁辐射测试:-在PCB设计完成后,进行电磁辐射测试,并根据测试结果进行必要的修改和优化。

10.避免信号回流路径:-在设计PCB时,避免信号线回流路径和大电流线的交叉,尤其在高速信号线和敏感信号线周围。

通过采用以上优秀的PCBEMC设计原则和技术,可以有效减少电磁辐射和敏感性,提高电路板的抗干扰能力和电磁兼容性。

这将确保电路板与其他设备和系统相互协作,无干扰地工作。

EMC基本原理及PCB设计

EMC基本原理及PCB设计

EMC基本原理及PCB设计抗干扰是指电子设备在电磁环境中能够抵抗外部电磁场干扰的能力。

干扰源可以是来自其他电子设备、电源、信号线以及无线电等。

为了抵抗这些外部干扰,PCB设计中需要采取适当的措施,例如加强电磁屏蔽,提高电路抗干扰能力等。

抗辐射是指电子设备在正常工作时不会产生过多的电磁辐射。

电磁辐射会对其他电子设备或者人体造成干扰甚至危害。

因此,在PCB设计时需要采取相应的措施来减少电磁辐射。

这包括控制信号线的长度、布局合理,优化电路的接地设计等。

在PCB设计中,为了满足EMC要求,主要有以下几个方面需要注意:首先,合理的布局和层叠是减少电磁干扰和辐射的关键。

布局时应尽量避免信号线与电源、地线、边缘及其他高速信号线等敏感区域交叉。

层叠设计时,应将地层和电源层分离,并合理布局敏感信号线与信号地线之间的间距。

同时,还需要控制信号线的长度和走线方式,以减少电磁辐射。

其次,良好的接地设计是EMC设计的重点。

通过确保接地线的低阻抗、减少负载电流回流路径的环路面积,可以降低信号的回流路径上的电压降和电磁辐射。

另外,使用适当的滤波器和抑制器也是EMC设计中的常见手段。

滤波器可以用于减少电源线上的电磁干扰,而抑制器则可以用于降低信号线上的电磁辐射。

此外,还需要注意信号线的走向和长度。

信号线的走向应尽量平行,并且避免形成环路。

同时,信号线的长度也需要控制在合理范围内,以避免信号的反射和辐射。

最后,EMC测试也是保证设计符合要求的重要手段。

通过进行EMC测试,可以评估设计的抗干扰和抗辐射能力,并及时调整设计方案。

综上所述,EMC是电子设备设计中不可忽视的重要环节。

通过合理的PCB设计,包括布局、层叠、接地、滤波和抑制等措施,可以确保电子设备在电磁环境中能够正常工作并且不对周围的电磁环境产生干扰。

先进EMC的PCB设计与布局

先进EMC的PCB设计与布局

先进EMC的PCB 设计和布局第8部分-上半部----- 一些多方面的最终问题这是8篇关于印刷电路版PCB设计和布局中在电磁兼容性EMC的实践验证过的设计技术系列文章中的最后一篇。

这个系列适合将在PCB上构造的电子电路的设计人员,并可作为PCB设计人员的课程。

本系列覆盖了所有的应用领域,包括家用电器、商业/医学/工业设备、以及从汽车、铁路、船只到航空和军事领域。

PCB技术在以下方面是很有用的:·减少(或消除)封闭层次的屏蔽以节省成本;·减少设计迭代的次数,从而减少上市时间和遵从标准的成本;·改进位于同一位置的无线数据通信 (GSM、DECT、蓝牙、IEEE 802.11等)的有效范围;·使用甚高速设备或大功率数字信号处理 (DSP);·使用最新的IC技术(130nm或90nm芯片处理,“芯片尺度”包装等)。

本系列覆盖的主题包括:1.节省时间和总体成本;2.隔离和接口抑制;3.PCB基座粘合;4.OV和电源的参考平面;5.解除耦合,包括埋入式电容技术;6.发射线;7.路由和层堆叠,包括微经由技术;8.一些多方面的最终问题。

本文是这个系列的最后一部分,希望读者阅读后,能找到一些感兴趣或有用的东西。

在此前,电磁兼容杂志发表的 "电磁兼容技术设计"系列文章[1]就包括了一节PCB设计和布局,但仅仅覆盖了PCB中最基本的EMC技术,即无论电路有多简单,所有PCB都必须遵循的技术。

那个系列已经发布。

该作者发表的其它文章和书籍也涉及到PCB的基本EMC问题。

与上面的文章一样,本系列也不会将太多的时间花费在分析这些技术为何有效的方面,而是集中于描述它们的实际应用,以及适用的条件。

但这些技术是在实践中经过世界上无数设计人员验证过的,这些技术为何有效,是为学术界了解的,因此可以放心使用。

本系列描述了少数还没有完全检验过的技术,在适当的时候,我们会指出。

EMC_PCB_Design

EMC_PCB_Design
5,Audio elementary stream for reference measurement : 1KHz/full range –6dB

6, ,Audio elementary stream for noise measurement : 1kHZ/Silence
7,Audio bit rate: 192kbit/s
產品對外界雜訊抗干擾之能力. 俗稱為 “電磁免疫力”
P. 2
June 28, 2013
Set top box CE Test 選用標準
EMI: EN55013:2001+A1:2003, EN61000-3-2:2000 EN61000-3-3:1995+A1:2001 EMS: EN55020:2002+A1:2003 IEC61000-4-2:2001 IEC61000-4-3:2002+A1:2002 IEC61000-4-4:2004 LVD: IEC60065:2001-12
三,DVB-S(依據標準EN300421):
Test FREQ: 1550Mhz Modulation scheme :QPSK Code rate : ¾ Useful bit rate: 38.015Mhz Level: 60dB/75歐 四,若產品有RF部分,則應加測RF部分的頻率;具體如下: 1,PAL G :CH21 ;CH69 2,PAL I :CH21;CH69 3,PAL D :CH21;CH69 注意; 在測試Tuner 部分的頻率時,其RF應在OFF狀態
P. 20
June 28, 2013
依據堆疊理論,當有多於三個完整平面時,即一個 power 兩個ground。將獲得最佳的EMI 效果。此為PCB 在EMI 仰制的基礎觀念。

pcb emc标准

pcb emc标准

pcb emc标准PCB EMC标准。

PCB是印刷电路板的英文缩写,是电子产品中的重要组成部分。

在电子产品设计中,电磁兼容(EMC)标准是非常重要的,特别是对于PCB设计来说更是如此。

本文将介绍PCB EMC标准的相关内容,希望能够对PCB设计者有所帮助。

首先,PCB EMC标准是指在PCB设计过程中需要遵循的一系列电磁兼容性要求。

这些标准旨在确保电子产品在工作时不会产生电磁干扰,同时也能够抵御外部电磁干扰。

因此,遵循PCB EMC标准对于产品的性能和可靠性至关重要。

其次,PCB EMC标准通常包括对于电磁兼容性的要求和测试方法。

在PCB设计中,需要考虑到电路板的布局、线路走向、接地设计、电源线路、信号线路等方面的因素。

通过合理的布局和设计,可以减少电磁辐射和敏感性,从而提高产品的电磁兼容性。

另外,PCB EMC标准还涉及到对于电磁干扰的抑制和屏蔽。

在PCB设计中,需要采取一系列措施来减少电磁干扰的产生,比如使用屏蔽罩、增加接地层、减小回路面积等。

这些措施可以有效地提高产品的抗干扰能力,保证产品在复杂电磁环境下的正常工作。

此外,PCB EMC标准还包括对于电磁兼容性测试的要求。

在产品设计完成后,需要进行一系列的电磁兼容性测试,以验证产品是否符合相关的标准要求。

这些测试通常包括辐射测试、传导测试、静电放电测试等,通过这些测试可以评估产品的电磁兼容性能,为产品的上市提供有力的保障。

最后,PCB EMC标准是一个不断更新和完善的过程。

随着电子产品的不断发展和技术的进步,电磁兼容性要求也在不断提高。

因此,PCB设计者需要密切关注最新的标准要求,不断学习和提升自己的设计水平,以满足市场和客户的需求。

总的来说,PCB EMC标准是PCB设计中不可忽视的重要部分,遵循相关的标准要求可以提高产品的可靠性和稳定性,减少电磁干扰对产品的影响。

希望本文能够对PCB设计者有所启发,也希望大家能够在实际的设计过程中充分重视PCB EMC标准的要求,为电子产品的发展贡献自己的力量。

PCB的EMC设计参考初稿

PCB的EMC设计参考初稿

PCB的EMC设计参考初稿介绍在现代电子设备中,电磁兼容性(EMC)设计是非常重要的。

EMC 设计旨在确保电子设备之间的电磁兼容性,以避免电磁干扰和敏感性问题。

在PCB设计过程中,EMC设计是必不可少的一部分。

本文档将提供一份PCB的EMC设计参考初稿。

1. PCB布局良好的PCB布局是EMC设计的关键。

以下是一些建议,以确保良好的PCB布局:•尽量减小传输线长度,以减少辐射和敏感性问题。

•为高频信号和敏感信号设计独立的区域,以减小干扰。

•使用屏蔽箱或地面屏蔽来防止信号泄露和外部干扰。

•尽量将高频组件和敏感组件远离辐射源和干扰源。

•注意地面铺铜的规划,确保良好的地面连接。

•避免地面回路的共振,通过合理的地面分割和引入适当的滤波器来解决共振问题。

•确保高频信号走线短、直接、紧凑,降低串扰和损耗。

•使用差分信号传输技术来降低串扰和提高信号完整性。

2. 信号层规划在PCB设计中,正确的信号层规划是至关重要的。

以下是一些信号层规划的建议:•将信号层平衡分布在整个PCB中,以避免过于集中在某一区域。

•避免信号层之间的交叉和平面转角,以减少串扰和回路共振。

•使用地平面层作为信号层之间的屏蔽层,减小信号层之间的干扰。

•使用布满地线或电源平面层来提供良好的信号返回路径。

•对于高速信号,使用分层稳定电压(Power Plane Partitioning)来降低串扰。

•将时钟信号分离并提供相应的屏蔽,以避免时钟辐射对其他信号的干扰。

3. 电源和地线设计电源和地线设计对于EMC设计来说也是至关重要的一部分。

以下是一些电源和地线设计的建议:•使用降噪电容器来稳定电源,减小信号引起的功率波动。

•使用密集铺设地线以降低地线回路的阻抗。

•对于模拟和数字地线,进行分离,避免相互干扰。

•为每个部分的地线提供一个较低阻抗的地线回路,以确保信号正确返回。

4. 板上滤波器和抑制电路在PCB设计中,使用板上滤波器和抑制电路是降低干扰和提高EMC的重要手段。

PCB板中的EMC设计指南和整改方法

PCB板中的EMC设计指南和整改方法

PCB板中的EMC设计指南和整改方法EMC(电磁兼容性)设计是在PCB(印刷电路板)设计中至关重要的一环。

它确保电子设备在电磁环境中正常运行,同时不产生对其他设备或系统的电磁干扰。

为了实现良好的EMC设计,下面将介绍一些EMC设计指南和可能的整改方法。

EMC设计指南:1.良好的地线设计:地线是EMC设计的基础。

一个良好设计的地线系统可以有效降低电磁干扰。

地线应该尽量厚实,形成一个低阻抗的路径,以便将电流引导回源。

此外,地线的布局应符合电磁场传播的方向,避免出现回路共振。

2.分隔信号和电源线:为了避免信号引起电源线的干扰,应尽量将它们分隔布线。

如果信号和电源线必须穿越,那么应尽可能以垂直或交叉的方式进行布线。

3.组件布局:EMC设计中组件的布局也是重要的。

应将发射较强电磁干扰的组件(如高频放大器、开关电源等)远离敏感组件。

此外,应避免长线或环路,以减少电磁辐射。

4.屏蔽处理:对于发射强电磁干扰的组件或系统,可以采用屏蔽措施,如使用金属外壳或屏蔽盖。

屏蔽材料应选择导电性好的材料,并确保屏蔽与地线连接良好。

5.使用滤波器:滤波器可用于限制高频信号的传输,从而减少辐射和传导干扰。

在PCB设计中,可以使用滤波器对输入和输出信号进行滤波,尤其是在高速信号传输或高频噪声环境中。

整改方法:1.优化地线布局:如果发现地线布局存在问题,应重新考虑地线的布局方式。

可以通过增加地线的宽度和长度,减少电磁干扰。

2.重新布线:如果信号和电源线布线混在一起,可以尝试重新布线,将它们分隔开来。

这有助于减少信号对电源线的干扰。

3.添加衰减材料:如果存在辐射干扰,可以在关键区域添加衰减材料,如吸波材料或铁氧体材料。

这些材料可以吸收电磁辐射,并减少传导干扰。

4.优化组件布局:如果发现组件之间存在辐射干扰,可以尝试调整它们的位置。

将辐射干扰较大的组件远离敏感组件,减少电磁干扰的影响。

5.重新选择元件:如果一些元件的辐射干扰太大,可以尝试重新选择辐射干扰较小的元件。

最新PCB板EMC设计技术

最新PCB板EMC设计技术

最新PCB板EMC设计技术作成者:钟凯2008.4目录1.EMC基础知识2.PCB分层设计3.PCB布局设计4.PCB布线设计5.附录EMC基础知识电磁干扰(Electromagnetic Interference),简称EMI,有传导干扰和辐射干扰两种。

传导干扰主要是电子设备产生的干扰信号通过导电介质或公共电源线互相产生干扰;辐射干扰是指电子设备产生的干扰信号通过空间耦合把干扰信号传给另一个电网络或电子设备。

为了防止一些电子产品产生的电磁干扰影响或破坏其它电子设备的正常工作,各国政府或一些国际组织都相继提出或制定了一些对电子产品产生电磁干扰有关规章或标准,符合这些规章或标准的产品就可称为具有电磁兼容性EMC(Electromagnetic Compatibility)。

电磁兼容性EMC标准不是恒定不变的,而是天天都在改变,这也是各国政府或经济组织,保护自己利益经常采取的手段。

1.传导干扰传导干扰一般是通过电压或电流的形式在电路中进行传播的。

1-1.回路电流产生传导干扰1-2.电磁感应产生传导干扰2.辐射干扰辐射干扰一般是通过电磁感应的形式在空间进行传播的。

3.EMC三要素:干扰源耦合途径敏感设备静电,雷击,快速瞬变脉冲群,辐射电磁场等PCB分层设计PCB一般分为单层板和多层板,多层板包括两层板,四层板,六层板,八层板,十层板等等。

1.概述多层印制板有更好的电磁兼容性设计。

使得印制板在正常工作时能满足电磁兼容和敏感度标准。

正确的堆叠有助于屏蔽和抑制EMI。

2.多层印制板设计基础。

多层印制板的电磁兼容分析可以基于克希霍夫定律和法拉第电磁感应定律。

根据克希霍夫定律,任何时域信号由源到负载的传输都必须有一个最低阻抗的路径。

见图一。

图中I=I′,大小相等,方向相反。

图中I 我们称为信号电流,I′称为映象电流,而I′所在的层我们称为映象平面层。

如果信号电流下方是电源层(POWER),此时的映象电流回路是通过电容耦合所达到的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

P. 4
2019年4月12日星期五
Set top box CE Test item
二: EMS

1,S1-Immunity Against Input Interference(輸入端抗擾度) 2,S2a-Immunity conducted voltage()


3,s2b-Immunity From Conducted Currents(天線端抗擾度)
產品對外界雜訊抗干擾之能力. 俗稱為 “電磁免疫力”
P. 2
2019年4月12日星期五
Set top box CE Test 選用標準
EMI: EN55013:2001+A1:2003, EN61000-3-2:2000 EN61000-3-3:1995+A1:2001 EMS: EN55020:2002+A1:2003 IEC61000-4-2:2001 IEC61000-4-3:2002+A1:2002 IEC61000-4-4:2004 LVD: IEC60065:2001-12
4,s3-Immunity From Radiated Fields(電磁環境抗擾度) 5,Electrostatic Discharge Immunity Test (靜電抗擾度) 6,Radiated ,Radio-Frequency,Electromagnetic Field Immunity Test(R/S,輻射抗擾度測試) 7,Electrical Fast Transient/Burst Immunity Test(EFT/電 快速瞬變脈衝群抗擾度測試)
P. 3
2019年4月12日星期五
Set top box CE Test item


一: EMI
1,Mains terminal disturbance voltage(Conduction ,電源傳導干擾) 2,Antenna terminal disturbance voltage,(天線輸入 端傳導干擾) 3,Disturbance radiation(輻射場強干擾) 4,Radiated power(輻射功率干擾) 5,Wanted signal and disturbance voltage at the RF output terminals of equipment with incorporated RF video modulator (天線輸出端傳導干 擾)

5,humidity test; 6,working voltages test;


7,components fault test;
8,electric strength test; 9,touch current; 10,withdrawal of mains plug;

11,Other test;
二, DVB-C(EN300429)
Test FREQ : 375MHz Modulation scheme : 64QAM Useful bit rate: 38.015Mbit/s Level: 60dB/75歐
P. 7
2019年4月12日星期五
STB Test set up and Channel
三,DVB-S(依據標準EN300421):
Test FREQ: 1550Mhz Modulation scheme :QPSK Code rate : ¾ Useful bit rate: 38.015Mhz Level: 60dB/75歐 四,若產品有RF部分,則應加測RF部分的頻率;具體如下: 1,PAL G :CH21 ;CH69 2,PAL I :CH21;CH69 3,PAL D :CH21;CH69 注意; 在測試Tuner 部分的頻率時,其RF應在OFF狀態
Set top box CE 認證簡介
2019年4月12日星期五
CE 概述

CE=EMC+LVD EMC:電磁干擾和電磁相容 LVD:低電壓指令
電磁干擾
● EMC=EMI+EMS EMI:Electro Magnetic Interference
產品有其電磁干擾(輻射或傳導)之現象;
EMS:Electro Magnetic Susceptibility 電磁相容

P. 9
2019年4月12日星期五
P. 5
2019年4月12日星期五
Set top box CE Test item
三: LVD

1,input test(輸入測試); 2,Marking test; 3,heating test (under normal operations and under fault operations); 4,surge test;
P. 8
2019年4月12日星期五
STB Test Signal

1,Test Standard:
TR101154
2,Source coding: MPEG 2 Video/MPEG 2 Audio 3,Video elementary stream: Colourate : 6Mbit/s
5,Audio elementary stream for reference measurement : 1KHz/full range –6dB

6, ,Audio elementary stream for noise measurement : 1kHZ/Silence
7,Audio bit rate: 192kbit/s
P. 6
2019年4月12日星期五
STB Test set up and Channel
一,DVB-T(依據標準: EN300744)
Test channel: CH9;CH25;CH55 Test Modulation: OFDM Test Mode : 2k or 8k Modulation scheme: 64QAM Code Rate: 2/3 Guard Interval : 1/32 Useful bit rate: 24.128Mbit/s
相关文档
最新文档