八年级数学期中调研考试题附答案
八年级数学期中测试卷【含答案】
八年级数学期中测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个三角形的两边长分别为8cm和10cm,且这两边的夹角为60°,则这个三角形的周长为多少cm?A. 16cmB. 26cmC. 28cmD. 36cm2. 下列函数中,哪一个函数在其定义域内是增函数?A. y = -2x + 3B. y = x^2C. y = 1/xD. y = 3x 23. 在平面直角坐标系中,点A(2, -3)关于y轴的对称点坐标为?A. (-2, -3)B. (2, 3)C. (-2, 3)D. (3, -2)4. 一个等差数列的前三项分别为2,5,8,则该数列的第10项为多少?A. 29B. 30C. 31D. 325. 若一个圆的半径为5cm,则该圆的面积为多少平方厘米?A. 25πcm²B. 50πcm²C. 75πcm²D. 100πcm²二、判断题(每题1分,共5分)1. 两个锐角互余。
()2. 一元二次方程ax^2 + bx + c = 0 (a ≠ 0)的解为x = [-b ± √(b^2 4ac)] / 2a。
()3. 对角线互相垂直平分的四边形一定是菱形。
()4. 在一次函数y = kx + b中,若k > 0,则函数从左到右上升。
()5. 两个相似三角形的对应边长之比等于它们的面积之比。
()三、填空题(每题1分,共5分)1. 若|a| = 3,则a的值为______。
2. 在直角坐标系中,点P(4, -2)关于原点对称的点的坐标为______。
3. 若一个等差数列的首项为2,公差为3,则该数列的第5项为______。
4. 一个圆的周长为31.4cm,则该圆的半径为______cm。
5. 若sinθ = 1/2,且θ是锐角,则θ的度数为______°。
四、简答题(每题2分,共10分)1. 解释什么是等腰三角形,并给出一个等腰三角形的例子。
河北省邯郸市第二十五中学2022-2023学年八年级上学期期中考试数学试卷(含解析)
邯郸市第二十五中学2022-2023学年第一学期期中考试八年级数学一、选择题(1—10题每题3分,11—16题每题2分,共42分)1.下列图形具有稳定性的是()A. B. C. D.【答案】A解析:A .具有稳定性,符合题意;B .不具有稳定性,故不符合题意;C .不具有稳定性,故不符合题意;D .不具有稳定性,故不符合题意,故选:A .2.下列倡导节约的图案中,是轴对称图形的是()A. B. C. D.【答案】C解析:解:A 、不是轴对称图形,故此选项错误;B 、不是轴对称图形,故此选项错误;C 、是轴对称图形,故此选项正确;D 、不是轴对称图形,故此选项错误.故选C .3.平面直角坐标系中,点()3,4A -关于y 轴的对称点是1A ,点1A 的坐标是()A.()4,3-- B.()3,4- C.()3,4-- D.()3,4【答案】D解析:解:点()3,4A -关于y 轴的对称点的坐标为:()3,4.故选:D .4.如图,点C 在AD 上,,40CA CB A =∠=︒,则BCD ∠等于()A.40︒B.70︒C.80︒D.110︒【答案】C解析:解:CA CB = ,40A ∠=︒,40A B ∴∠=∠=︒,404080BCD A B ∴∠=∠+∠=︒+︒=︒,故选:C .5.如图,△ABE ≌△ACD ,BC =10,DE =4,则DC 的长是()A.8B.7C.6D.5【答案】B解析:解:∵△ABE ≌△ACD ,∴BE =CD ,∴BE +CD =BC +DE =14,∴2CD =14,∴CD =7,故选:B .6.用三角板作△ABC 的边BC 上的高,下列三角板的摆放位置正确的是()A. B.C. D.【答案】A解析:解:B ,C ,D 都不是△ABC 的边BC 上的高,A 选项是△ABC 的边BC 上的高,故选:A .7.如图所示的六边形花环是用六个全等的直角三角形拼成的,则∠ABC 等于()A.30°B.35°C.45°D.60°【答案】A 解析:解:如图,∵六边形花环是用六个全等的直角三角形拼成的,∴六边形花环为正六边形,∴∠ABD=×°6(6-2)180=120°,而∠CBD=∠BAC=90°,∴∠ABC=120°-90°=30°.故选:A .8.如图,已知ABC 的周长是20,OB 和OC 分别平分ABC ∠和ACB ∠,OD BC ⊥,垂足为点D ,3OD =,则ABC 的面积是()A.20B.30C.40D.60【答案】B 解析:连接AO ,过点O 分别作OE AB ⊥于点E ,OF AC ⊥于点F ,∵ABC AOB BOC AOC S S S S =++△△△△,111222AB OE BC OD AC OF =++,∵BO 、CO 为角平分线,∴3OE OD OF ===,∴()113203022ABC S OD AB BC AC =++==.故选:B .9.如图,一艘海轮位于灯塔P 的南偏东70°方向的M 处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P 的北偏东40°的N 处,则N 处与灯塔P 的距离为A.40海里B.60海里C.70海里D.80海里【答案】D解析:∵根据方向角的意义和平行的性质,∠M =70°,∠N =40°,∴根据三角形内角和定理得∠MPN =70°.∴∠M =∠MPN =70°.∴NP =NM =80(海里).故选D .10.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值为何?A.5B.6C.7D.10【答案】C 解析:依题意可得,当其中一个夹角为180°即四条木条构成三角形时,任意两螺丝的距离之和取到最大值,为夹角为180°的两条木条的长度之和.因为三角形两边之和大于第三边,若长度为2和6的两条木条的夹角调整成180°时,此时三边长为3,4,8,不符合;若长度为2和3的两条木条的夹角调整成180°时,此时三边长为4,5,6,符合,此时任意两螺丝的距离之和的最大值为6;若长度为3和4的两条木条的夹角调整成180°时,此时三边长为2,6,7,符合,此时任意两螺丝的距离之和的最大值为7;若长度为4和6的两条木条的夹角调整成180°时,此时三边长为2,3,10,不符合.综上可得,任意两螺丝的距离之和的最大值为7,故选C11.如图,在四边形ABCD 中,90A ∠=︒,2AD =,连接BD ,BD CD ⊥,ADB C ∠=∠.若P 是BC 边上一动点,则DP 长的值不可能是()A.1.5B.2C.2.5D.3【答案】A 解析:解:如图,过点D 作DH BC ⊥交BC 于点H ,BD CD ⊥ ,90BDC ∴∠=︒,又180C BDC DBC ∠+∠+∠=︒ ,180ADB A ABD ∠+∠+∠=︒,ADB C ∠=∠,90A ∠=︒,ABD CBD ∴∠=∠,BD ∴是ABC ∠的角平分线,又AD AB ⊥ DH BC ⊥,,AD DH =∴,又2AD = ,2DH ∴=,又∵点D 是直线BC 上一点,∴当点P 在BC 上运动时,点P 运动到与点H 重合时DP 最短,其长度为DH 的长,即DP 的长最小值为2,1.52< ,DP ∴的长不可能是1.5,故选:A .12.已知,在△ABC 中,AB AC =,如图,(1)分别以B ,C 为圆心,BC 长为半径作弧,两弧交于点D ;(2)作射线AD ,连接BD ,CD .根据以上作图过程及所作图形,下列结论中错误..的是()A.BAD CAD∠=∠ B.△BCD 是等边三角形C.AD 垂直平分BCD.ABDC S AD BC= 【答案】D解析:解:∵BD BC CD ==∴△BCD 是等边三角形故选项B 正确;∵AB AC =,,BD CD AD AD==∴ABD ACD≅△△∴BAD CAD∠=∠故选项A 正确;∵BAD CAD ∠=∠,AB AC=∴据三线合一得出AD 垂直平分BC故选项C 正确;∵四边形ABCD 的面积等于ABD △的面积与ACD 的面积之和∴12ABCD S AD BC =⋅故选项D 错误.故选:D .13.如图,在正方形网格中有M ,N 两点,在直线l 上求一点P ,使PM PN +最短,则点P 应选在()A.A 点B.B 点C.C 点D.D 点【答案】C 解析:解:如图,点M '是点M 关于直线l 的对称点,连接M N ',则M N '与直线l 的交点,即为点P ,此时PM PN +最短,M N ' 与直线l 交于点C ,∴点P 应选C 点.故选:C .14.如图,在ABC 中,30,90A C ∠=︒∠=︒,AB 的垂直平分线交AC 于D 点,交AB 于E 点,则下列结论错误的是()A.DE DC= B.AD DB = C.AD BC = D.BC AE=【答案】C 解析:解:∵ 30, 90A C ∠=︒∠=︒,∴60ABC ∠=︒,∵DE 垂直平分AB ,∴AD BD =,AE BE =,故B 选项正确,不符合题意;C 选项错误,符合题意;∴30ABD A ∠=∠=︒,∴30CBD ∠=︒,∴CBD ABD ∠=∠,∵90,C DE AB ∠=︒⊥,∴DE DC =,故A 选项正确,不符合题意;∵ 30, 90A C ∠=︒∠=︒,∴12BC AB =,∴BC AE =,故D 选项正确,不符合题意;故选:C15.如图,D 为ABC 内一点,CD 平分ACB ∠,BE CD ⊥,垂足为D ,交AC 于点E ,A ABE ∠=∠.若5AC =,3BC =,则BD 的长为()A.2.5B.1.5C.2D.1【答案】D 解析:解:∵CD 平分ACB ∠,BE CD ⊥,∴ECD BCD ∠=∠,90BDC EDC ∠=∠=︒,在BCD △与ECD 中,90ECD BCD CD CD BDC EDC ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,()ASA BCD ECD ∴≌ ,BC CE ∴=,BEC ∴ 是等腰三角形,∴12BD BE =,又A ABE ∠=∠ ,ABE ∴ 是等腰三角形,AE BE ∴=,()111222BD BE AE AC CE ∴===-,∵5AC =,3BC =,()15312BD ∴=⨯-=.故选:D .16.如图,已知等边三角形ABC ,2AB =,点D 在AB 上,点F 在AC 的延长线上,,BD CF DE BC =⊥于E ,FG BC ⊥于G ,DF 交BC 于点P ,则下列结论:①BE CG =;②EDP GFP ≌;③60EDP ∠=︒;④1EP =.其中一定正确的是()A.①③B.②④C.①②③D.①②④【答案】D 解析:解:ABC 是等边三角形,AB BC AC ∴==,60A B ACB ∠=∠=∠=︒.ACB GCF ∠=∠ ,DE BC ⊥ ,FG BC ⊥,90DEB FGC DEP ∴∠=∠=∠=︒.在DEB 和FGC △中,DEB FGC B GCF BD CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)DEB FGC ∴△≌△BE CG ∴=,DE FG =,故①正确;在DEP 和FGP 中,DEP FGP DPE FPG DE FG ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)DEP FGP ∴△≌△,故②正确;PE PG ∴=,EDP ∠不一定等于60︒,当PD AB ⊥时,60EDP ∠=︒,故③错误;PG PC CG =+ ,PE PC BE ∴=+.2PE PC BE ++= ,1PE ∴=.故④正确.正确的有①②④,故选:D .二、填空题(17,18题每题3分,19题每空2分,共10分)17.如图,ABC 中,D ,E 分别是BC ,AD 的中点,ABC 的面积是20,则阴影部分的面积是______.【答案】5解析:解:ABC 中,D 、E 分别是BC ,AD 的中点,AD ∴是ABC 的中线,CE 是ADC △的中线,2ABC ADC S S ∴= ,2ADC AEC S S = ,4ABC AEC S S ∴= ,ABC 的面积是20,AEC ∴ 的面积为5,即阴影部分的面积是5.故答案为:5.18.如图,已知8AO =,P 是射线ON 上一动点(即Р点可在射线ON 上运动),60AON ∠=︒,则OP =_______时,AOP 为直角三角形.【答案】4或16##16或4解析:解:当90APO ∠=︒时,9030OAP AOP ∠︒∠=︒=-,142OP OA ∴==,当90OAP ∠=︒时,9030OPA AOP ∠=︒-∠=︒,216OP OA ∴==,故答案为:4或16.19.如图,已知()()3,0,0,1A B -,连接AB ,过B 点作AB 的垂线段BC ,使BA BC =,连接AC ,C 点坐标为__________;Р点从A 点出发沿x 轴向左平移,连接BP ,作等腰直角BPQ V ,连接CQ ,当C 、P 、Q 三点共线时Р点的坐标为___________.【答案】①.(1,4)-②.(1,0)解析:解:如图,过C 作CH y ⊥轴于H ,则90BCH CBH ∠+∠=︒,∵()()3,0,0,1A B -,∴3OA =,1OB =,AB BC ⊥ ,90ABC ∴∠=︒,90ABO CBH ∴∠+∠=︒,ABO BCH ∴∠=∠,在ABO 和BCH V 中,ABO BCH AOB BHC AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)ABO BCH ∴≌△△,3BH OA ∴==,1CH OB ==,4OH OB BH ∴=+=,C ∴点坐标为(1,4)-;BPQ △是等腰直角三角形,90PBQ ABC ∴∠=∠=︒,PBQ ABQ ABC ABQ ∴∠-∠=∠-∠,即PBA QBC ∠=∠,在PBA △和QBC △中,BP BQ PBA QBC BA BC =⎧⎪∠=∠⎨⎪=⎩,(SAS)PBA QBC ∴△≌△,135BPA BQC ∴∠=∠=︒,BPQ △是等腰直角三角形,45BQP ∴∠=︒,当C 、P ,Q 三点共线时,135BQC ∠=︒,18013545OPB ∴∠=︒-︒=︒,1OP OB ∴==,P ∴点坐标为(1,0),故答案为:(1,4)-,(1,0).三、解答题(共68分)20.求出下列图形中x 的值.【答案】(1)70x =;(2)60x =解析:解:(1)∵40180x x ++=,解得70x =;(2)∵()7010x x x +=++,解得60x =.21.如图,在平面直角坐标系中,A(﹣3,2),B(﹣4,﹣3),C(﹣1,﹣1).(1)在图中作出ABC 关于y 轴对称的111A B C △;(2)写出点111,,A B C 的坐标(直接写答案);(3)在y 轴上画出点P ,使PB+PC 最小.【答案】(1)图见解析;(2)111(3,2),(4,3),(1,1)A B C --;(3)图见解析.解析:(1)先根据轴对称的性质分别描出点111,,A B C ,再顺次连接即可得到111A B C △,如图所示:(2)点坐标关于y 轴对称的变化规律:横坐标变为相反数,纵坐标不变3,24,3(),(),()1,1A B C ----- 1113,24,(),(),(3)1,1A B C ∴--;(3)由轴对称的性质得:1PB PB =则1PB PC PB PC+=+由两点之间线段最短得:当1,,C P B 三点共线时,1PB PC +取得最小值,最小值为1CB 如图,连接1CB ,与y 轴的交点P 即为所求.22.如图,点B ,E ,C ,F 在一条直线上,AB =DE ,AC =DF ,BF =CE .试说明:AB ∥DE .【答案】见解析解析:证明:BF CE = ,BF CF CE CF ∴+=+,即BC EF =,在ABC ∆和DEF ∆中,AB DE AC DF BC EF =⎧⎪=⎨⎪=⎩,()ABC DEF SSS ≅∆∆∴,B E ∴∠=∠,//AB DE ∴.23.如图,ABC 和ADE V 中,AB AD =,B D ∠=∠,BC DE =.边AD 与边BC 交于点P (不与点B ,C 重合),点B ,E 在AD异侧.(1)若30B ∠=︒,70APC ∠=︒,求CAE ∠的度数;(2)当30B ∠=︒,AB AC ⊥,6AB =时,设AP x =,请用含x 的式子表示PD ,并写出PD 的最大值【答案】(1)40︒(2)6PD x =-;当3x =时,PD 有最大值,即3PD =【小问1详解】解:在ABC 与ADE V 中,AB AD B D BC DE =⎧⎪∠=∠⎨⎪=⎩,()SAS ABC ADE ∴≌△△,BAC DAE ∴∠=∠,BAC DAC DAE DAC ∴∠-∠=∠-∠,BAD CAE ∴∠=∠,30B ∠=︒ ,70APC ∠=︒,703040CAE BAD APC B ∴∠=∠=∠-∠=︒-︒=︒;【小问2详解】解:AB AC ⊥ ,90BAC ∴∠=︒,6AB = ,AP x =,()SAS ABC ADE ≌,6AB AD ∴==,∴当AD BC ⊥时,x 最小,PD 最大,6PD x =-,30B ∠=︒ ,AD BC ⊥,90APB ∴∠=︒,132AP AB ∴==,3AP x ∴==时,PD 有最大值,即633PD AD AP =-=-=.24.如图:已知等边ABC 中,D 是AC 的中点,E 是BC 延长线上的一点,且CE CD =.(1)求E ∠的度数.(2)求证:DBE 是等腰三角形.【答案】(1)30︒(2)见解析【小问1详解】解: ABC 是等边三角形,60ACB ABC ∠=∠=︒∴,又CE CD = ,E CDE ∴∠=∠,又ACB E CDE ∠=∠+∠ ,1302E ACB ∴∠=∠=︒;【小问2详解】证明: 等边ABC 中,D 是AC 的中点,11603022DBC ABC ∴∠=∠=⨯︒=︒由(1)知30E ∠=︒,30DBC E ∴∠=∠=︒,DB DE ∴=,即DBE 是等腰三角形.25.如果一个多边形的各边都相等且各角也都相等,那么这样的多边形叫做正多边形,如正三角形就是等边三角形,正四边形就是正方形,如下图,就是一组正多边形,(1)观察上面每个正多边形中的∠α,填写下表:正多边形边数3456……n ∠α的度数______°_____°______°______°……_____°(2)根据规律,计算正八边形中的∠α的度数.(3)是否存在正n 边形使得∠α=21°?若存在,请求出n 的值,若不存在,请说明理由.【答案】(1)60,45,36,30°,180n;(2)22.5;(3)不存在.解析:(1)观察上面每个正多边形中的∠α,填写下表:正多边形边数3456…n ∠α的度数60°45°36°30°…(1808)°(2)根据规律,计算正八边形中的∠α=(1808)°=22.5°;(3)不存在,理由如下:设存在正n 边形使得∠α=21°,得∠α=21°=(180n)°.解得n=847,n 是正整数,n=847(不符合题意要舍去),不存在正n 边形使得∠α=21°.26.如图,已知:在ABC 中,4AC BC ==,120ACB ∠=︒,将一块足够大的直角三角尺()90,30PMN M MPN ∠=︒∠=︒按如图放置,顶点Р在线段AB 上滑动(且不与A 、B 重合),三角尺的直角边PM 始终经过点C ,并且与CB 的夹角PCB α∠=,斜边PN 交AC 于点D .(1)当α=______°,PN BC ∥,此时APD ∠=______°(2)点Р在滑动时,当AP 长为多少时,ADP △与BPC △全等,为什么?(3)点Р在滑动时,PCD 的形状可以是等腰三角形吗?若可以,直接写出夹角α的大小;若不可以,请说明理由.【答案】(1)30,30(2)4AP =时,ADP △与BPC △全等,理由见解析(3)45α∠=︒或90︒时,PCD 的形状可以是等腰三角形【小问1详解】若PN BC ∥,则MPN α∠=∠,30MPN ∠=︒,∴30MPN α∠=∠=︒,120ACB ∠=︒ ,AC BC =,30A B ∴∠=∠=︒,30α∠=︒,303060APC B α∴∠=∠+∠=︒+︒=︒,30MPN ∠=︒,603030APD APC MPN ∠=∠-∠=︒-︒=︒,故答案为:30,30;【小问2详解】当4AP =时,ADP BPC ≌ ,理由如下:120ACB ∠=︒ ,AC BC =,30A B ∴∠=∠=︒,APC ∠ 是BPC △的一个外角,30APC B αα∴∠=∠+∠=︒+∠,30APC DPC APD APD ∠=∠+∠=︒+∠ ,APD α∴∠=∠,4AP BC == ,在ADP △和BPC △中,A B AP BC APD BCP ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ASA ADP BPC ∴≌ ;【小问3详解】PCD QV 是等腰三角形,120PCD α∠=-°,30CPD ∠=︒,①当PC PD =时,()118030752PCD PDC ∴∠=∠=︒-︒=︒,即12075α-=°°,45α∴∠=︒;②当PD CD =时,PCD 是等腰三角形,30PCD CPD ∴∠=∠=︒,即12030α-=°°,90α∴=︒;③当PC CD =时,PCD 是等腰三角形,30CDP CPD ∴∠=∠=︒,180230120PCD ∴∠=︒-⨯︒=︒,即120120α-=°°,0α∴=︒,此时点P 与点B 重合,点D 和A 重合,∵点P 不与A ,B 重合,0α∴=︒,舍去,综合所述:当PCD 是等腰三角形时,45α=︒或90︒.20。
八年级期中试卷数学及答案
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √9B. √16C. √-9D. √02. 下列各数中,无理数是()A. √4B. √25C. √2D. √03. 下列各数中,整数是()A. -3B. 2.5C. √9D. √-44. 下列各数中,正数是()A. -3B. 0C. 2D. √-95. 下列各数中,负数是()A. -3B. 0C. 2D. √96. 已知x是实数,且x^2 = 4,则x的值是()A. 2B. -2C. 2或-2D. 无法确定7. 已知a、b是实数,且a + b = 0,则a和b互为()A. 相等B. 相反数C. 绝对值相等D. 无法确定8. 下列等式中,正确的是()A. (-2)^2 = 4B. (-3)^3 = -27C. (-4)^4 = 256D. (-5)^5 = -31259. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 110. 已知a、b是实数,且a^2 + b^2 = 0,则a和b的关系是()A. a = 0且b = 0B. a = 0或b = 0C. a和b都是正数D. a和b都是负数二、填空题(每题3分,共30分)11. 有理数a的相反数是______。
12. 绝对值小于2的有理数有______。
13. 若|a| = 5,则a的值为______。
14. 已知a、b是实数,且a - b = 3,则a + b的值为______。
15. 已知x是实数,且x^2 - 4x + 3 = 0,则x的值为______。
16. 若|a| = |b|,则a和b的关系是______。
17. 若a^2 = b^2,则a和b的关系是______。
18. 若a、b是实数,且a + b = 0,则a和b互为______。
19. 已知x是实数,且x^2 + 4x + 3 = 0,则x的值为______。
20. 若|a| > |b|,则a和b的关系是______。
2024年人教版八年级数学下册期中考试卷(附答案)
2024年人教版八年级数学下册期中考试卷(附答案)一、选择题:5道(每题1分,共5分)1. 下列哪个选项是勾股定理的正确表达?A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + c^2 = b^2D. a^2 c^2 = b^22. 在直角三角形中,如果一个角是30度,那么它的对边长度是斜边长度的多少?A. 1/2B. 1/3C. 1/4D. 1/63. 下列哪个选项是平行四边形的性质?A. 对边相等B. 对角相等C. 对角线互相平分D. 所有选项都正确4. 下列哪个选项是正方形的性质?A. 对边平行B. 四个角都是直角C. 对角线相等D. 所有选项都正确5. 下列哪个选项是圆的性质?A. 半径相等B. 直径相等C. 圆心到圆上任意一点的距离相等D. 所有选项都正确二、判断题5道(每题1分,共5分)1. 勾股定理只适用于直角三角形。
()2. 平行四边形的对角线互相平分。
()3. 正方形的对角线相等且互相垂直。
()4. 圆的半径是圆心到圆上任意一点的距离。
()5. 圆的直径是圆上任意两点之间的距离。
()三、填空题5道(每题1分,共5分)1. 勾股定理的表达式是:a^2 + b^2 = ______。
2. 平行四边形的对角线互相平分,所以它的对角线长度是______。
3. 正方形的四个角都是______度。
4. 圆的半径是圆心到圆上______的距离。
5. 圆的直径是圆上______点之间的距离。
四、简答题5道(每题2分,共10分)1. 简述勾股定理的内容。
2. 简述平行四边形的性质。
3. 简述正方形的性质。
4. 简述圆的性质。
5. 简述圆的直径和半径之间的关系。
五、应用题:5道(每题2分,共10分)1. 在直角三角形ABC中,已知AC = 6cm,BC = 8cm,求AB的长度。
2. 在平行四边形ABCD中,已知AB = 10cm,BC = 8cm,求CD的长度。
江苏省盐城市盐都区2023-2024第一学期期中考试八年级数学试卷参考答案
2023/2024学年度第一学期阶段性发展评价八年级数学参考答案及评分标准(阅卷前请认真校对,以防答案有误!)一、选择题(每小题3分,共24分)二、填空题(每小题3分,共24分)9.-210.5011.312.-513.4514.1.615.4816.三、解答题(共10题,共72分)17.(本题满分6分)解:(1)1;……………………………3分(2)-1.…………………………6分18.(本题满分6分)(1)如图所示,△A 1B 1C 1即为所求;………………2分(2)如图所示,点P 即为所求.C P ﹣P 1A 的值最大,最大值为线段A 1C 的长,A 1C =5,故答案为5;…4分(3)如图,在正方形网格中存在4个格点、C 两点构成以BC 为底边的等腰三角形,故答案为4.……6分19.(本题满分6分)解:∵x 的算术平方根是3,∴x=9………………2分∵x +y 的立方根是2,∴x +y=8,∴y=-1,………………4分∴x +5y =4,∴x +5y 的平方根为±2.………………6分20.(本题满分6分)证明:(1)∵EA ∥FB ,∴∠EAC =∠FBD ,∵EC ∥FD ,∴∠ECA =∠FDB ,…………………………2分题号12345678答案DBBAABCC217在△EAC和△FBD中,∠EAC=∠FBD∠ECA=∠FDBEA=FB,∴△EAC≌△FBD(AAS);…………………………4分(2)∵△EAC≌△FBD,∴AC=BD,∴AC﹣BC=BD﹣BC,即AB=CD.…………………………6分21.(本题满分6分)解:∠BQM=60°…………………………1分∵△ABC是等边三角形,∴AB=AC=BC,∠ABC=∠BCA=∠BAC=60°,在△ABM和△BCN中BM=CN∠ABM=∠BCNAB=BC∴△ABM≌△BCN(SAS),∴∠M=∠N,又∠NAQ=∠MAC,∴∠BQM=∠N+∠NAQ=∠M+∠MAC=∠ACB=60°.……………………6分22.(本题满分6分)(1)证明:连接AE,∵AD⊥BC于点D,且D为线段CE的中点,∴AD垂直平分CE,∴AC=AE,∵EF垂直平分AB,∴AE=BE,∴BE=AC;……………3分(2)∵EF垂直平分AB,∴EF⊥AB,∴∠BFE=90°∵∠BEF=55°,∴∠B=35°∵AE=BE,∠B=35°,∴∠BAE=∠B=35°,∵AD⊥BC,∴∠ADB=90°,∴∠BAD=90°﹣35°=55°,∴∠EAD=55°﹣35°=20°,∵AC=AE,AD⊥BC,∴∠EAD=∠CAD=20°,∴∠BAC=∠BAE+∠EAD+∠CAD=75°.……………………………6分23.(本题满分6分)(1)解:AE=BD,……………………………1分∵AC⊥BC,DC⊥EC,∴∠ACB=∠DCE=90°,∴∠ACE=∠BCD,∵AC=BC,EC=DC,在△ACE和△BCD中,AC =BC ∠ACE =∠BCD EC =DC∴△ACE ≌△BCD (SAS )∴AE =BD .……………………4分(2)解:50.……………………6分如图,AE 、BD 相交于点O ,AC 、BD 相交于点H ,∵AC ⊥BC ,DC ⊥EC ,∴∠ACB =∠DCE =90°,∵AC =3,CE =4,∴DE 2=2CE 2=2×42=32,AB 2=2AC 2=2×32=18,由(1)得△ACE ≌△BCD (SAS ),∴∠CAE =∠CBD ,∵∠AHO =∠BHC ,∴∠CBD +∠CHB =∠CAE +∠AHO =90°,∴AE ⊥BD ,∴AD 2=OA 2+OD 2,BE 2=OB 2+OE 2,∴AD 2+BE 2=OA 2+OD 2+OB 2+OE 2=DE 2+AB 2=32+18=50.24.(本题满分8分)解:(1)如图2中,∵AB =AC ,∠BAD =∠CAD ,∴BD =DC =3,∴BC =6,∴h (BC )=BC ﹣AD =6﹣5=1.故答案为1.…2分(2)如图3中,作BH ⊥AC 于H .∵∠ABC =90°,AB =5,BC =12,∴AC 2=AB 2+BC 2=169,∴AC=13∵21•AC •BH =21•AB •BC ,∴BH =1360∴h (AC )=AC ﹣BH =13﹣1360=13109.故答案为13109.……………4分(3)如图4所示,∵AD ⊥BC ,∴∠ADB =∠ADC =90°,在Rt △ABD 中,AB =25,AD =15,根据勾股定理得:BD =AB 2﹣AD 2=400,∴BD =20,在Rt △ADC 中,AC =17,AD =15,根据勾股定理得:DC =AC 2﹣AD 2=64,∴BD =8,∴BC =BD +DC =20+8=28,∴h (BC )=BC ﹣AD =28﹣15=13;………………6分如图5所示,BC =BD ﹣DC =20﹣8=12,∴h (BC )=BC ﹣AD =12﹣15=﹣3.综上所述,h (BC )为13或﹣3,……………………8分29292121(1)如图所示,过点M 作MD ⊥AB 于点D ,∵B C=9cm ,AC =12cm ,AB =15cm ∴∠C =90°∵BM 平分∠A BC ,∠C =90°∴MD =MC .在Rt △BMD 与Rt △BMC 中,MD =MC BM =BM∴Rt △BMD ≌Rt △BMC (HL ),∴BD =BC =9cm ,∴AD =15—9=6cm .设MC =x cm ,则MA =(12—x )cm在Rt △AMD 中,MD 2+AD 2=MA 2,即x 2+62=(12—x )2,解得:x =,∴当t =秒时,AM 平分∠CAB ;…………………………………………4分(2)10若M 在边AC 上时,BC =CM =9cm ,此时用的时间为9s ,△BCM 为等腰三角形;20若M 在AB 边上时,有三种情况:①若使BM =CB =9cm ,此时AM =6cm ,M 运动的路程为18cm ,所以用的时间为18s ,故t=18s 时△BCM 为等腰三角形;②若CM =BC =9cm ,过C 作斜边AB 的高,根据面积法求得高为7.2cm ,根据勾股定理求得BM =10.8cm ,所以M 运动的路程为27﹣10.8=16.2cm ,∴t 的时间为16.2s ,△BCM 为等腰三角形;③若BM =CM 时,则∠MCB =∠MBC ,∵∠ACM +∠BCM =90°,∠MBC +∠CAM =90°,∴∠ACM =∠CAM ,∴MA =MC ∴MA =MB =7.5cm ∴M 的路程为19.5cm ,所以时间为19.5s 时,△BCM 为等腰三角形.∴t=9s 或16.2s 或18s 或19.5s 时△BCM 为等腰三角形………………8分(3)6s 或18s …………………………………………………………………………10分1°相遇前当M 点在AC 上,N 在AB 上,则AM =12﹣t ,AN =24﹣2t ,12﹣t +24﹣2t =×36,∴t =6;2°相遇后当M 点在AB 上,N 在AC 上,则AM =t ﹣12,AN =2t ﹣24,t ﹣12+2t ﹣24=×36,∴t =18,∴t =6s 或18s 时,直线MN 把△ABC 的周长分成相等的两部分.21【背景问题】解:(1)在△ADC 和△EDB 中,BD =CD∠BDE =∠CDA AD =DE∴△ADC ≌△EDB (SAS ),故答案选:B ;…………………………………………2分(2)AE ﹣AB <BE <AB +AE ,∴2<AC <18,故答案为:2<AC <18;…………4分【感悟方法】证明:延长AD 到M ,使AD =DM ,连接BM ,如图2,∵AD 是△ABC 中线,∴BD =DC ,在△ADC 和△MDB 中,BD =DC∠ADC =∠BDM AD =DM∴△ADC ≌△MDB (SAS ),∴BM =AC ,∠CAD =∠M ,∵AC =BF ∴BF =BM ,∴∠BFD =∠M ,∴∠BFD =∠CAD =∠M ,∵∠AFE =∠BFD ,∴∠CAD =∠AFE ,∴AE =EF .…………………………8分【深入探究】(3)8…………………………………………………………………………10分理由如下:如图3,延长CQ 到R ,使得QR =CQ ,连AR ∵△ABC 和△CDE 都是等腰直角三角形,∴∠ACB =∠DCE =90°,AC =BC ,CE =CD ,∴∠BCE +∠ACD =180°,在△AQR 和△DQC 中,AQ =DQ ∠AQR =∠CQD QR =QC∴△AQR ≌△DQC (SAS ),∴AR =CD =CE ,∠ARQ =∠DCQ ,∴AR ∥CD ,∴∠CAR +∠ACD =180°,∴∠CAR =∠BCE ,在△ACR 和△CBE 中,CA =CB ∠CAR =∠BCE AR =CE∴△ACR ≌△CBE (SAS ),∴∠ACR =∠CBE ,CR =BE ,∵∠ACR +∠BCK =90°,∴∠CBE +∠BCK =90°,∴∠CKB =90°,∴BE ⊥QC .∵CQ=4,CK=2,∴BE=8∴ BCE S △BE •CK=821(4)2……………………………………………………………………12分解:如图4,过点B 作BM ∥AC 交GE 于点M ,∴∠C =∠MBC ,∵点E 为BC 边的中点∴BE=CE在△BEM 和△CEF 中∠MBC =∠C BE=CE ∠BEM =∠CEF∴△BEM ≌△CEF (ASA ),∴∠M =∠MFC =∠AFG ,BM =FC ,∵AD 平分∠BAC ,BM ∥AC ,则∠BAD =∠DAC =45°=∠G =∠AFG ,∠M =∠AFG =45°,∴∠G =∠M ,∴BM =BG ,∵∠G =45°,∴△AFG 为等腰直角三角形,∵CF =6,设AF =AG =x ,∴AC =AF +FC =x +6,AB =BG -AG =6-x ∵ABC S △=21AB ×AC ∴(x +6)(6-x )=16,∴x=2,∴AG =2。
北师大版八年级上册数学期中考试试题含答案
北师大版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案,每小题3分)1.下列哪个点在函数112y x =+的图象上()A .(2,1)B .(2,1)-C .(2,0)-D .(2,0)2.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A 所代表的正方形的面积为()A .4B .8C .16D .643.已知点P (m+3,2m+4)在x 轴上,那么点P 的坐标为()A .(﹣1,0)B .(1,0)C .(﹣2,0)D .(2,0)4.△ABC 的三条边分别为a ,b ,c ,下列条件不能判断△ABC 是直角三角形的是()A .a 2+b 2=c 2B .a=5,b=12,c=13C .∠A=∠B+∠CD .∠A :∠B :∠C=3:4:55.下列各式的计算中,正确的是()A =B =C =D=-6.在函数y =1x -中,自变量x 的取值范围是()A .x≥1B .x≤1且x≠0C .x≥0且x≠1D .x≠0且x≠17.已知直角三角形两边的长为3和4,则此三角形的周长为()A .12B .C .12或D .以上都不对8.如图,长为8cm 的橡皮筋放置在x 轴上,固定两端A 和B ,然后把中点C 向上拉升3cm 至D 点,则橡皮筋被拉长了()A .2cmB .3cmC .4cmD .5cm9.化简二次根式)AB C D10.如图,在正方形ABCD 纸片上有一点P ,PA =1,PD =2,PC =3,现将△PCD 剪下,并将它拼到如图所示位置(C 与A 重合,P 与G 重合,D 与D 重合),则∠APD 的度数为A .150°B .135°C .120°D .108°11|1|0-=b ,那么()2017a b +的值为()A .-1B .1C .20173D .20173-12.如图1,点G 为BC 边的中点,点H 在AF 上,动点P 以每秒2cm 的速度沿图1的边运动,运动路径为G→C→D→E→F→H ,相应的△ABP 的面积y (cm 2)关于运动时间t (s )的函数图象如图2,若AB =6cm ,则下列结论正确的个数有()①图1中BC 长4cm ;②图1中DE 的长是6cm ;③图2中点M 表示4秒时的y 值为24cm 2;④图2中的点N 表示12秒时y 值为15cm 2.A .4个B .3个C .2个D .1个二、填空题13.-27的立方根为________________,________.14.已知函数y =(a+1)x+a 2﹣1,当a_____时,它是一次函数;当a_____时,它是正比例函数.15.如图,△ABC 的边BC 在数轴上,AB ⊥BC ,且BC =3,AB =1,以C 为圆心,AC 长为半径画圆分别交数轴于点A′、点A″,那么数轴上点A′、点A″所表示的数分别是_____、_____.16.如图,在平面直角坐标系中,点A 1,A 2,A 3…都在x 轴上,点B 1,B 2,B 3…都在直线y =x 上,OA 1=1,且△B 1A 1A 2,△B 2A 2A 3,△B 3A 3A 4,…△B n A n A n +1…分别是以A 1,A 2,A 3,…A n …为直角顶点的等腰直角三角形,则△B 10A 10A 11的面积是________.三、解答题17.计算:|13|+(2019﹣20﹣(12)﹣2182818(263)(263)32)2--19.如图,在平面直角坐标系中,正方形ABCD 和正方形EFGC 面积分别为64和16.(1)请写出点A ,E ,F 的坐标;(2)求S △BDF .204792737272,请你观察上述式子规律后解决下面问题.(1)规定用符号[m]表示实数m 的整数部分,例如:[45]=0,[π]=3,填空:10+2]=;[5=.(2)如果a ,5b ,求a 2﹣b 2的值.21.如图,在长方形ABCD 中,AB =8,AD =10,点E 为BC 上一点,将△ABE 沿AE 折叠,使点B 落在长方形内点F 处,且DF =6.(1)试说明:△ADF 是直角三角形;(2)求BE 的长.22.先阅读下面的解题过程,然后再解答.我们只要找到两个数a ,b ,使a b m +=,ab n =,即22m +==0)b => .这里7m =,12n =,由于437+=,4312⨯=,所以227,+=,2+..23.(1)如图1,长方体的长为4cm,宽为3cm,高为12cm.求该长方体中能放入木棒的最大长度;(2)如图2,长方体的长为4cm,宽为3cm,高为12cm.现有一只蚂蚁从点A处沿长方体的表面爬到点G处,求它爬行的最短路程.(3)若将题中的长方体换成透明圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁且离容器上沿3cm的点A处.求蚂蚁吃到饭粒需要爬行的最短路程是多少?24.在平面直角坐标系中,已知点A(-3,-1),B(-1,0),C(-2,3),请在图中画出△ABC,并画出与△ABC关于y轴对称的图形.25.如图(1),是两个全等的直角三角形(直角边分别为a,b,斜边为c)(1)用这样的两个三角形构造成如图(2)的图形,利用这个图形,证明:a2+b2=c2;(2)用这样的两个三角形构造图3的图形,你能利用这个图形证明出题(1)的结论吗?如果能,请写出证明过程;(3)当a=3,b=4时,将其中一个直角三角形放入平面直角坐标系中,使直角顶点与原点重合,两直角边a,b分别与x轴、y轴重合(如图4中Rt△AOB的位置).点C为线段OA 上一点,将△ABC沿着直线BC翻折,点A恰好落在x轴上的D处.①请写出C、D两点的坐标;②若△CMD为等腰三角形,点M在x轴上,请直接写出符合条件的所有点M的坐标.参考答案1.C【分析】分别把x=2和x=−2代入解析式求出对应的y值来判断点是否在函数图象上.【详解】解:(1)当x=2时,y=2,所以(2,1)不在函数112y x=+的图象上,(2,0)也不在函数112y x=+的图象上;(2)当x=−2时,y=0,所以(−2,1)不在函数112y x=+的图象上,(−2,0)在函数112y x=+的图象上.故选C.【点睛】本题考查的知识点是一次函数图象上点的坐标特征,即直线上的点的坐标一定适合这条直线的解析式.2.D【分析】根据正方形的面积等于边长的平方,由正方形PQED的面积和正方形PRQF的面积分别表示出PR2及PQ2,又三角形PQR为直角三角形,根据勾股定理求出QR2,即为所求正方形的面积.【详解】解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又∵△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣225=64,则正方形QMNR的面积为64.故选:D.【点睛】此题考查了勾股定理,以及正方形的面积公式.勾股定理最大的贡献就是沟通“数”与“形”的关系,它的验证和利用都体现了数形结合的思想,即把图形的性质问题转化为数量关系的问题来解决.能否由实际的问题,联想到用勾股定理的知识来求解是本题的关键.3.B【分析】根据x轴上点的纵坐标为0列方程求出m的值,再求解即可.【详解】∵点P(m+3,2m+4)在x轴上,∴2m+4=0,解得m=−2,∴m+3=−2+3=1,∴点P的坐标为(1,0).故选B.【点睛】本题考查的知识点是点的坐标,解题关键是熟记x轴上的点纵坐标为0.4.D【分析】根据勾股定理的逆定理及三角形内角和定理对各选项进行逐一判断即可.【详解】解:A、a2+b2=c2,是直角三角形,故本选项不符合题意;B、∵52+122=132,∴此三角形是直角三角形,故本选项不符合题意;C、∵∠A+∠B+∠C=180°,∠A=∠B+∠C∴∠A=90°,∴此三角形是直角三角形,故本选项不符合题意;D、设∠A=3x,则∠B=4x,∠C=5x,∵∠A+∠B+∠C=180°,∴3x+4x+5x=180°,解得x=15°∴∠C=5×15°=75°,∴此三角形不是直角三角形,故本选项符号要求;故选D.【点睛】本题考查勾股定理及三角形内角和定理,熟知以上知识是解答此题的关键.5.D【分析】根据二次根式的乘法法则对A进行判断;根据二次根式的除法法则对B进行判断;根据二次根式的加减法对C、D进行判断.【详解】解:A、原式=A选项错误;B、原式==B选项错误;CC选项错误;D=-,所以D选项正确.故选:D.【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.6.C【分析】根据分式和二次根式有意义的条件进行计算即可.【详解】由题意得:x≥0且x﹣1≠0.解得:x≥0且x≠1.故x的取值范围是x≥0且x≠1.故选C.【点睛】本题考查了函数自变量的取值范围问题,掌握分式和二次根式有意义的条件是解题的关键.7.C【详解】设Rt△ABC的第三边长为x,①当4为直角三角形的直角边时,x为斜边,由勾股定理得,,此时这个三角形的周长=3+4+5=12;②当4为直角三角形的斜边时,x为直角边,由勾股定理得,=,此时这个三角形的周长.故选C8.A 【分析】根据勾股定理可以得到AD 和BD 的长度,然后用AD+BD-AB 的长度即为所求.【详解】根据题意可得BC=4cm ,CD=3cm ,根据Rt △BCD 的勾股定理可得BD=5cm ,则AD=BD=5cm ,所以橡皮筋被拉长了(5+5)-8=2cm .【点睛】主要考查了勾股定理解直角三角形.9.B 【分析】首先根据二次根式有意义的条件求得a 、b 的取值范围,然后再利用二次根式的性质进行化简即可【详解】202a a ∴+<∴<-a a a ∴∙=--故选B【点睛】本题考查了二次根式的性质及化简,解题的关键是根据二次根式有意义的条件判断字母的取值范围.本题需要重点注意字母和式子的符号.10.B 【分析】连接PG ,由题意得出PD =GD =2,∠CDP =∠ADG ,得出∠PDG =∠ADC =90°,得出△PDG 是等腰直角三角形,由等腰直角三角形的性质得出∠GPD =45°,PGPD =,得出AP 2+PG 2=AG 2,由勾股定理的逆定理得出∠GPA =90°,即可得出答案.【详解】解:连接PG ,如图所示:∵四边形ABCD 是正方形,∴AD =CD ,∠ADC =90°,AG =PC =3,∵PA =1,PD =2,PC =3,将△PCD 剪下,并将它拼到如图所示位置(C 与A 重合,P 与G 重合,D 与D 重合),∴PD =GD =2,∠CDP =∠ADG ,∴∠PDG =∠ADC =90°,∴△PDG 是等腰直角三角形,∴∠GPD =45°,PG PD =,∵AG =PC =3,AP =1,PG =,∴AP 2+PG 2=AG 2,∴∠GPA =90°,∴∠APD =90°+45°=135°;故选:B .【点睛】本题考查了勾股定理、勾股定理的逆定理、正方形的性质、等腰直角三角形的判定与性质等知识,熟练掌握正方形的性质和勾股定理的逆定理是解题的关键.11.A【分析】根据算术平方根和绝对值的非负性,确定a 、b 的值,再代入代数式求值即可.【详解】解:由题意得:a+2=0,b-1=0,即a=-2,b=1所以,()()()201720172017==211=1a b +-+--故答案为A.【点睛】本题主要考查了非负数的性质,利用非负数的性质确定待定的字母的值是解答的关键12.C【分析】理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.【详解】解:由图象可得:0~2秒,点P在GC上运动,则GC=2×2=4cm,∵点G是BC中点,∴BC=2GC=8cm,故①不合题意;由图象可得:2﹣4秒,点P在CD上运动,则第4秒时,y=S△ABP =12×6×8=24cm2,故③符合题意;由图象可得:4﹣7秒,点P在DE上运动,则DE=2×3=6cm,故②符合题意;由图象可得:当第12秒时,点P在H处,∵EF=AB﹣CD=6﹣4=2cm,∴t=22=1s,∴AH=8+6﹣2×(12﹣5﹣1)=6,∴y=S△ABP =12×6×6=18cm2,故④不合题意,∴正确的是②③,故选:C.【点睛】本题考查了动点问题的函数图象,关键是能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.13.-3;2 ;【分析】根据立方根、平方根的定义和倒数乘积等于1即可解题.【详解】解:(1)∵(-3)×(-3)×(-3)=-27,∴-27的立方根为-3;(24=±2;(3)∵(1⎛⨯= ⎝⎭,∴5的倒数为故答案为:-3;±2;14.≠1,=1【分析】根据一次函数的定义、正比例函数的定义,可得答案.【详解】解:已知函数y =(a+1)x+a 2﹣1,当a=-1时,a+1=0,y=a 2﹣1,∴当a≠﹣1时,它是一次函数;当a =1时,a 2﹣1=0,它是正比例函数,故答案为:≠1,=1.【点睛】本题主要考查了一次函数和正比例函数的定义,一次函数y kx b =+的定义条件是:k 、b 为常数,0k ≠,自变量次数为1,0b =是一次函数是正比例函数.15.1、1【解析】【分析】根据勾股定理求出AC ,得到OA′和OA′′的长,根据数轴的概念解答即可.【详解】由勾股定理得,AC ,则CA′=CA′′,∴OA′﹣1,OA′′+1,∴A′、点A″所表示的数分别是1故答案为:1【点睛】本题考查的是勾股定理、实数与数轴,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c,那么a2+b2=c2.16.217【解析】【分析】根据OA1=1,可得点A1的坐标为(1,0),然后根据△OA1B1,△B1A1A2,△B2B1A2,△B2A2A3,△B3B2A3…都是等腰直角三角形,求出A1A2,B1A2,A2A3,B2A3…的长度,然后找出规律,求出点B10的坐标.结合等腰直角三角形的面积公式解答.【详解】∵OA1=1,∴点A1的坐标为(1,0).∵△OA1B1是等腰直角三角形,∴A1B1=1,∴B1(1,1).∵△B1A1A2是等腰直角三角形,∴A1A2=1,B1A2∵△B2B1A2为等腰直角三角形,∴A2A3=2,∴B2(2,2),同理可得:B3(22,22),B4(23,23),…B n(2n﹣1,2n﹣1),∴点B10的坐标是(29,29),∴△B10A10A11的面积是:12×29×29=217.故答案为:217.【点睛】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线,直线上任意一点的坐标都满足函数关系式y=kx+b.也考查了等腰直角三角形的性质.17【分析】首先计算乘方,然后从左向右依次计算,求出算式的值是多少即可.【详解】解::|1(2019﹣)0﹣(1 2)﹣21+1﹣44【点睛】此题主要考查实数的运算,解题的关键是熟知实数的性质.18.﹣3【分析】根据二次根式的混合运算顺序,先对各项利用二次根式的乘除化简,再用加减法进行计算即可.【详解】((22222⎡⎤⎡--+-⨯⎢⎥⎢⎣⎦⎣5(243)(29=+---3=.【点睛】本题考查了二次根式的混合运算、平方差公式、完全平方公式,解决本题的关键是熟练运用公式.19.(1)A (0,8),E (8,4),F (12,4);(2)S △BDF =32【分析】(1)根据正方形的面积求出两个正方形的边长,再求出OG ,然后写出各点的坐标即可;(2)根据S △BDF =S △BDC +S 梯形BCGF ﹣S △DGF 列式计算即可得解.【详解】解:(1)∵正方形ABCD 和正方形EFGC 面积分别为64和16,∴正方形ABCD 和正方形EFGC 的边长分别为8和4,∴OG =8+4=12,∴A (0,8),E (8,4),F (12,4);(2)S △BDF =S △BDC +S 梯形BCGF ﹣S △DGF ,=12×8×8+12×(4+8)×4﹣12×(8+4)×4,=32+24﹣24,=32.【点睛】本题考查了坐标与图形性质,三角形的面积,难点在于(2)列出BDF ∆的面积的表达式.20.(1)5,1;(2)a 2﹣b 2的值为7【分析】(1)根据题目中所给规律即可得结果;(2)把无理数的整数部分和小数部分分别表示出来,再代入计算即可.【详解】解:(1的整数部分为33,∴2]5+=;[51=.故答案为5、1.(2)根据题意,得34<< ,859∴<+<,583a ∴=-.152<514b ∴==-1a b ∴+=,7a b -=.22()()a b a b a b ∴-=+-7=-.∴22a b -的值为7.【点睛】本题考查了估算无理数的大小,解决本题的关键是根据无理数的整数部分确定小数部分.21.(1)见解析;(2)BE =4.【分析】(1)由折叠的性质可知AF=AB=8,然后再依据勾股定理的逆定理可证明△ADF 为直角三角形;(2)由题意可证点E 、D 、F 在一条直线上,设BE=x ,则EF=x ,DE=6+x ,EC=10-x ,在Rt △CED 中,依据勾股定理列方程求解即可.【详解】(1)将△ABE 沿AE 折叠,使点B 落在长方形内点F 处,∴AF =AB =8,∵AF 2+DF 2=62+82=100=102=AD 2,∴∠AFD =90°∴△ADF 是直角三角形(2)∵折叠∴BE =EF ,∠B =∠AFE =90°又∵∠AFD =90°∴点D ,F ,E 在一条直线上.设BE =x ,则EF =x ,DE =6+x ,EC =10-x ,在Rt △DCE 中,∠C =90°,∴CE 2+CD 2=DE 2,即(10-x )2+82=(6+x )2.∴x =4.∴BE =4.【点睛】本题主要考查的是翻折的性质、勾股定理的逆定理、勾股定理的定理,依据勾股定理列出关于x 的方程是解题的关键.22.见解析【分析】应先找到哪两个数的和为13,积为42.再判断是选择加法,还是减法.【详解】根据题意,可知13m =,42n =,由于7613+=,7642⨯=,所以2213+==【点睛】此题考查二次根式的性质与化简,解题关键在于求得13m =,42n =.23.(1)13cm ;(2;(3)13(cm )【分析】(1)利用勾股定理直接求出木棒的最大长度即可.(2)将长方体展开,利用勾股定理解答即可;(3)将容器侧面展开,建立A 关于EF 的对称点A′,根据两点之间线段最短可知A′B 的长度即为所求.【详解】解:(1)由题意得:如图,该长方体中能放入木棒的最大长度是:=;cm13()(2)①如图,AG,②如图,AG=,③如图,AG ,;(3) 高为12cm ,底面周长为10cm ,在容器内壁离容器底部3cm 的点B 处有一饭粒,此时蚂蚁正好在容器外壁,离容器上沿3cm 与饭粒相对的点A 处,5A D cm ∴'=,12312BD AE cm =-+=,∴将容器侧面展开,作A 关于EF 的对称点A ',连接A B ',则A B '即为最短距离,13()A B cm '=.【点睛】本题考查了平面展开—最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.24.画图见解析.【解析】分析:首先在平面直角坐标系中描出各点,然后顺次连接得到△ABC ,找出三个顶点关于y 轴对称的点坐标,然后顺次连接,得出对称后的图形.详解:如图所示:点睛:本题主要考查的是图形的轴对称,属于基础题型.关于y 轴对称的两个点,他们的横坐标互为相反数,纵坐标相等.25.(1)见解析;(2)能,见解析;(3)①C 、D 两点的坐标为C (0,32),D (2,0);②符合条件的所有点M 的坐标为:(716,0)、(92,0);、(﹣2,0)、(﹣12,0)【分析】(1)根据梯形的面积的两种表示方法即可证明;(2)根据四边形ABCD 的面积的两种表示方法即可证明;(3)①根据翻折的性质和勾股定理即可求解;②根据等腰三角形的性质分四种情况求解即可.【详解】解:(1)∵S 梯形ABCD =211222ab c ⨯+S 梯形ABCD =()()12a b a b ++21112()()222ab c a b a b ∴⨯+=++22222ab c a ab b ∴+=++222c a b ∴=+.(2)连接BD ,如图:S 四边形ABCD =()21122c a b a +-,S 四边形ABCD =21122ab b +,∴221111()2222c a b a ab b +-=+,222c a b ∴=+.(3)①设OC a =,则4AC a =-,又5AB =,根据翻折可知:5BD AB ==,4CD AC a ==-,532OD BD OB =-=-=.在Rt COD ∆中,根据勾股定理,得22(4)4a a -=+,解得32a =.3(0,)2C ∴,(2,0)D .答:C 、D 两点的坐标为3(0,)2C ,(2,0)D .②如图:当点M 在x 轴正半轴上时,CM DM =,设CM DM x ==,则2223(2)()2x x =-+,解得2516x =,7216x ∴-=,7(16M ∴,0);CD MD =,35422=-=,59222+=,9(2M ∴,0);当点M 在x 轴负半轴上时,CM CD =,2OM OD == ,(2,0)M ∴-;DC DM =,35422=-=,51222OM ∴=-=,1(2M ∴-,0).∴符合条件的所有点M 的坐标为:7(16,0)、9(2,0)、(2,0)-、1(2-,0).【点睛】本题考查了等腰三角形的判定和性质,勾股定理,折叠的性质,是三角形的综合题,解决本题的关键是分情况讨论思想的运用.。
2023-2024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)
20232024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)(考试时间:90分钟,满分:100分)一、选择题(每题2分,共20分)1. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=62. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=63. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=64. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8D. 4x2y=65. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=66. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=67. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=68. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=69. 下列哪个选项是正确的?A. 3x+5y=10C. 5x+3y=15D. 4x2y=610. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=6二、填空题(每题2分,共20分)1. 2x+3y=6,求x的值。
2. 3x+5y=10,求y的值。
3. 4x2y=6,求x的值。
4. 5x+3y=15,求y的值。
5. 2x4y=8,求x的值。
6. 3x+5y=10,求y的值。
7. 4x2y=6,求x的值。
8. 5x+3y=15,求y的值。
9. 2x4y=8,求x的值。
10. 3x+5y=10,求y的值。
三、解答题(每题5分,共25分)1. 解方程组:2x+3y=63x+5y=102. 解方程组:5x+3y=153. 解方程组:2x4y=83x+5y=104. 解方程组:3x+5y=104x2y=65. 解方程组:5x+3y=152x4y=8四、计算题(每题10分,共30分)1. 计算:2x+3y=63x+5y=102. 计算:4x2y=65x+3y=153. 计算:2x4y=83x+5y=10五、应用题(每题10分,共20分)1. 应用题:2x+3y=62. 应用题: 4x2y=6 5x+3y=15答案解析:一、选择题1. A2. B3. C4. D5. A6. B7. C8. D9. A10. B二、填空题1. x=12. y=23. x=24. y=35. x=26. y=27. x=28. y=39. x=210. y=2三、解答题1. x=1, y=22. x=2, y=33. x=2, y=24. x=2, y=35. x=2, y=2四、计算题1. x=1, y=22. x=2, y=33. x=2, y=2五、应用题1. x=1, y=22. x=2, y=38. 简答题(每题5分,共25分)1. 简述一元二次方程的一般形式。
初二数学题期中试卷含答案
一、选择题(每题3分,共30分)1. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 2答案:C2. 已知a<0,b<0,则下列各式中正确的是()A. ab>0B. a+b>0C. a-b>0D. a×b>0答案:D3. 下列各数中,有理数是()A. πB. √2C. 3.14D. √-1答案:C4. 下列各数中,无理数是()A. √4B. √-1C. √9D. √0答案:B5. 下列各数中,负数是()A. -2.5B. 0C. 2.5D. -2答案:A6. 下列各数中,正数是()A. -2B. 0C. 2D. -2.5答案:C7. 已知x²=4,则x的值是()A. ±2B. ±1C. ±4D. ±3答案:A8. 下列各数中,质数是()A. 1B. 4C. 6D. 7答案:D9. 下列各数中,合数是()A. 2B. 3C. 4D. 5答案:C10. 下列各数中,偶数是()A. 1B. 2C. 3D. 4答案:B二、填空题(每题5分,共25分)11. 有理数a的相反数是__________。
答案:-a12. 绝对值等于3的数是__________。
答案:±313. 有理数0的倒数是__________。
答案:不存在14. 有理数a与b的乘积为0,则a、b中至少有一个数是__________。
答案:015. 下列各数中,-5的平方根是__________。
答案:±√5三、解答题(每题10分,共40分)16. 计算下列各式的值:(1)(-2)³×(-3)²(2)(4/5)×(3/2)÷(2/3)答案:(1)-2³×(-3)²= -8×9 = -72(2)(4/5)×(3/2)÷(2/3) = (4×3×3)÷(5×2×2) = 36÷20 = 9/517. 已知x²+4x+4=0,求x的值。
八年级第一学期学期中考试数学试卷(附带答案)
八年级第一学期学期中考试数学试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________注意事项:本试题共6页,满分为150分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、座号和准考证号填写在答题卡上,并同时将考点、姓名、准考证号和座号填写在试卷规定的位置上.答选择题时,必须使用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;答非选择题时,用0.5mm 黑色签字笔在答题卡上题号所提示的答题区域作答.答案写在试卷上无效.考试结束后,将本试卷和答题卡一并交回.第I 卷(选择题共40分)一.选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只 有一项是符合题目要求的.) 1.4的算术平方根是( )A.±2B.2C.﹣2D.±16 2.下列各数中,是无理数的是( )A.3.1415926B.√4C.√﹣83D.π 3.下列各点在第二象限的是( )A.(﹣√3,0)B.(﹣2,1)C.(0,﹣1)D.(2,﹣1) 4.下列运算正确的是( )A.√2+√3=√5B.3√3-√3=3C.√3×√5=√15D.√24+√6=45.已知点(-1,y 1),(3,y 2)在一次函数y=2x+1的图象上,则y 1,y 2的大小关系是( ) A.y 1<y 2 B.y 1=y 2 C.y 1>y 2 D.不能确定6.已知(k ,b )为第四象限内的点,则一次函数y =kx -b 的图象大致( )A. B. C. D.7.已知{x =1y =﹣1是方程x -my=3的解,那么m 的值( )A.2B.﹣2C.4D.﹣48.我国古代《算法统宗》里有这样一首诗:"我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空."诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住:如果每一间客房住9人,那么就空出一间客房,设该店有客房x 间、房客y 人,下列方程组中正确的是( ) A.{7x +7=y9(x -1)=y B.{7x +7=y 9(x +1)=y C.{7x -7=y 9(x -1)=y D.{7x -7=y9(x +1)=y9.如图,△ABC 是直角三角形,点C 在数轴上对应的数为﹣2,且AC=3,AB=1,若以点C 为圆心,CB 为半径画弧交数轴于点M ,则A 和M 两点间的距离为( )A.0.4B.√10-2C.√10-3D.√5-1(第9题图) (第10题图)10.甲、乙两车从A 城出发匀速行驶至B 城,在整个行驶过程中,甲、乙两车离开A 城的距 离y (千米)与甲车行驶的时间1(小时)之间的函数关系如图所示,则下列结论:①A 、B 两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t =54或154.其中正确的结论有( ) A.1个 B.2个 C.3个 D.4个第II 卷(非选择题共110分)二.填空题:(本大题共6个小题,每小题4分,共24分) 11.电影票上"8排5号"记作(8,5),则"6排7号"记作 . 12.。
2024年最新人教版八年级数学(上册)期中考卷及答案(各版本)
2024年最新人教版八年级数学(上册)期中考卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列数中,最小的数是()A. 3B. 2C. 0D. 12. 已知函数f(x) = 2x + 3,那么f(1)的值为()A. 1B. 1C. 5D. 53. 下列哪个图形是平行四边形()A. 矩形B. 正方形C. 梯形D. 三角形4. 已知等差数列{an}的前三项分别为1,3,5,那么第10项的值为()A. 19B. 20C. 21D. 225. 下列哪个数是无理数()A. √2B. √4C. √9D. √16二、判断题5道(每题1分,共5分)1. 0是正数和负数的分界点。
()2. 两个负数相乘,结果是正数。
()3. 任何数乘以1都等于它本身。
()4. 两个数的和与它们的顺序无关。
()5. 任何数除以0都有意义。
()三、填空题5道(每题1分,共5分)1. 一个正数与它的相反数相加,结果是______。
2. 函数f(x) = 2x 3中,当x = 2时,f(x)的值为______。
3. 平行四边形的对边______且______。
4. 等差数列{an}的前n项和为______。
5. 两个无理数相乘,结果可能为______。
四、简答题5道(每题2分,共10分)1. 简述实数的分类。
2. 解释等差数列的通项公式。
3. 什么是函数,给出一个函数的例子。
4. 举例说明平行四边形与矩形的区别。
5. 简述勾股定理的内容。
五、应用题:5道(每题2分,共10分)1. 计算下列表达式的值:3x 5,其中x = 4。
2. 已知函数f(x) = x^2 2x + 1,求f(3)的值。
3. 一个等差数列的前3项分别为2,5,8,求第10项的值。
4. 在一个长方形中,长为8cm,宽为6cm,求其对角线的长度。
5. 已知一个正方形的面积为36cm^2,求其边长。
六、分析题:2道(每题5分,共10分)1. 已知一个等差数列的前5项分别为2,5,8,11,14,求该数列的通项公式。
初二数学期中考试试卷(含答案)精选全文
可编辑修改精选全文完整版初二数学期中考试试卷(含答案)初二数学期中考试试卷(含答案)一、选择题:共40分1. 下列哪一个选项是正确的?()A. 三角形的内角和为90度B. 直角三角形的两条直角边的边长之和大于斜边的边长C. 平行四边形的对边垂直D. 两条相互垂直的直线一定相交于一点答案:B2. 若一个数的个位数和十位数相加等于十位数,百位数的值为3,则该数是()A. 210B. 123C. 132D. 102答案:C3. 当x取什么值时,方程2x - 5 = -7的解唯一?()A. 1B. -1C. 4D. -4答案:A4. 在一个比赛中,小明以每小时40公里的速度骑自行车行驶,他经过3小时后,还剩下120公里的路程未行驶。
这个比赛的总路程是()A. 240公里B. 320公里C. 400公里D. 480公里答案:C5. 若a:b = 3:5,b:c = 2:7,则a:c =()A. 3:5B. 6:7C. 3:35D. 6:35答案:B二、填空题:共30分1. 一个角度的补角是135°,那么这个角度的度数是_______。
答案:452. 单价为40元的商品,现在打7折,最终的价格是_______元。
答案:283. 把一个正方形的边长增加1cm,它的面积增加_________平方厘米。
答案:24. 若一个数的3/5是80,那个数是_______。
答案:1205. 若x的值满足x ÷ 2 = 5,那么x是_______。
答案:10三、解答题:共30分1. 一个三位数,个位数字是它的和的2倍,十位数字比个位数字大2,百位数字比十位数字大2,求这个三位数是多少。
答案:假设这个三位数为abc,根据题意得到以下等式:个位数字: a = 2(b + c)十位数字: b = c + 2百位数字: c = b + 2代入第二个等式得:b = (c + 2)再代入第三个等式得:c = ((c + 2) + 2),化简得:c = c + 4显然,上述等式没有解,因此这个三位数不存在。
八年级期中测试卷数学【含答案】
八年级期中测试卷数学【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是偶数?A. 3B. 4C. 5D. 62. 如果 a = 3, b = 5,那么 a + b 的值是多少?A. 8B. 9C. 10D. 113. 下列哪个数是素数?A. 12B. 13C. 15D. 184. 一个等边三角形的内角是多少度?A. 30°B. 45°C. 60°D. 90°5. 如果一个圆的半径是5cm,那么这个圆的面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π二、判断题(每题1分,共5分)1. 方程 2x + 3 = 7 的解是 x = 2。
()2. 任何两个奇数相加的和都是偶数。
()3. 一个等腰三角形的两个底角相等。
()4. 圆的周长和它的直径成正比。
()5. 对角线互相垂直的四边形一定是菱形。
()三、填空题(每题1分,共5分)1. 如果一个数加上5等于10,那么这个数是______。
2. 一个正方形的边长是6cm,那么这个正方形的面积是______平方厘米。
3. 2的平方根是______。
4. 如果一个事件是必然事件,那么这个事件发生的概率是______。
5. 在直角坐标系中,点(3, 4)的横坐标是______。
四、简答题(每题2分,共10分)1. 请简述勾股定理的内容。
2. 什么是算术平均数?如何计算一组数据的算术平均数?3. 请解释什么是概率,并给出一个概率的例子。
4. 请简述平行线的性质。
5. 请解释什么是等差数列,并给出一个等差数列的例子。
五、应用题(每题2分,共10分)1. 一个长方形的长是10cm,宽是5cm,请计算这个长方形的面积。
2. 如果一辆汽车以60km/h的速度行驶,行驶了3小时,请计算这辆汽车行驶的总距离。
3. 一个班级有40名学生,其中有20名学生喜欢打篮球,请计算喜欢打篮球的学生所占的百分比。
八年级期中数学试卷及答案
(考试时间:90分钟,满分:100分)一、选择题(每题2分,共30分)1.若a>b,则ac与bc的大小关系是()A.ac>bcB.ac<bcC.ac=bcD.无法确定答案:A2.下列哪个数是4的平方根?()A.2B.-2C.4D.-4答案:B3.已知一个等腰三角形的底边长为10cm,腰长为13cm,则这个三角形的周长为()A.32cmB.36cmC.42cmD.26cm答案:C(更多选择题题目及答案省略)二、判断题(每题1分,共20分)1.两个负数相乘,其结果一定是正数。
()答案:√2.任何数与0相乘,其结果一定是0。
()答案:√3.若a>b,则a^2>b^2。
()答案:×(更多判断题题目及答案省略)三、填空题(每空1分,共10分)1.若x+3=7,则x=_______。
答案:42.若一个正方形的边长为a,则其面积为_______。
答案:a^23.若|x|=5,则x的值为_______或_______。
答案:5;-5(更多填空题题目及答案省略)四、简答题(每题10分,共10分)1.简述勾股定理及其应用。
答案:勾股定理指出,在一个直角三角形中,直角边的平方和等于斜边的平方。
应用勾股定理可以解决与直角三角形相关的问题,如计算直角三角形的边长、判断一个三角形是否为直角三角形等。
(更多简答题题目及答案省略)五、综合题(1和2两题7分,3和4两题8分,共30分)1.已知一个等差数列的首项为2,公差为3,求第10项的值。
答案:第10项的值为2+(101)3=2+27=29。
2.解方程:2(x3)+4=3x+1。
答案:2x6+4=3x+1,化简得x=9。
(更多综合题题目及答案省略)三、填空题(每空1分,共10分)4.若一个数的平方根是9,则这个数是_______。
答案:815.已知一个等边三角形的周长为24cm,则其边长为_______。
答案:8cm6.若a=3,b=-2,则a+b的值为_______。
初二期中试卷及答案数学
一、选择题(每题3分,共30分)1. 下列数中,有理数是()A. √9B. √16C. √25D. √36答案:D解析:有理数是可以表示为两个整数之比的数。
选项A、B、C都是无理数,因为它们不能表示为两个整数的比。
而√36 = 6,是有理数。
2. 若a > b,则下列不等式中正确的是()A. a + 1 > b + 1B. a - 1 > b - 1C. a + 1 < b + 1D. a - 1 < b - 1答案:A解析:在不等式两边同时加上或减去相同的数,不等号的方向不变。
因此,a + 1 > b + 1是正确的。
3. 已知x + y = 5,xy = 4,则x^2 + y^2的值为()A. 21B. 25C. 16D. 9答案:A解析:利用公式(x + y)^2 = x^2 + 2xy + y^2,可得x^2 + y^2 = (x + y)^2 -2xy = 5^2 - 2×4 = 25 - 8 = 17。
因此,选项A正确。
4. 下列函数中,反比例函数是()A. y = 2x + 3B. y = 3x^2C. y = 2/xD. y = 5x答案:C解析:反比例函数的形式为y = k/x,其中k为常数。
选项C符合这个形式,因此是反比例函数。
5. 在△ABC中,∠A = 45°,∠B = 60°,则∠C的度数为()A. 75°B. 105°C. 120°D. 135°答案:C解析:三角形内角和为180°,∠A + ∠B + ∠C = 180°。
代入已知角度,得45° + 60° + ∠C = 180°,解得∠C = 180° - 105° = 75°。
因此,选项C正确。
6. 下列图形中,中心对称图形是()A. 等腰三角形B. 正方形C. 等边三角形D. 梯形答案:B解析:中心对称图形是指存在一个点,使得图形上的任意一点关于这个点对称。
重庆市沙坪坝区2023-2024学年八年级下学期期中考试数学试题(含答案)
重庆市沙坪坝区2023–2024学年下期期中调研测试八年级数学试题卷一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.下列二次根式中,是最简二次根式的是( )ABCD2.已知函数,则自变量x 的取值范围是()A .x >-3B .x≥-3C.x ≠-3D .x ≤-33.下列计算,正确的是( )A B .C.D .4的运算结果应在( )A .2到3之间B .3到4之间C .4到5之间D .5到6之间5.下列命题正确的是()A .一组对边平行另一组对边相等的四边形是平行四边形B .对角线相等的四边形是矩形C .对角线相等的平行四边形是菱形D .有一个角是直角的菱形是正方形6.如图,用正方形按规律依次拼成下列图案.由图知,第①个图案中有2个正方形;第②个图案中有4个正方形;第③个图案中有7个正方形.按此规律,第8个图案中正方形的个数为()A .16B .22C .29D .377.正比例函数y =kx (k ≠0)的函数值y 随着x 增大而减小,则一次函数y =x +k 的图象大致是()A .B .C .D .y ==1-=)221-=54+=1-8.如图,5个阴影四边形都是正方形,所有三角形都是直角三角形,若正方形A 、C 、D 的面积依次为4、5、20,则正方形B 的面积为()A .8B .9C .10D .119.如图,在正方形ABCD 中,E 为对角线AC 上与A ,C 不重合的一个动点,过点E 作EF ⊥AB 与点F ,EG ⊥BC 于点G ,连接DE ,FG ,若∠AED =α,则∠EFG =()A .a -90°B .180°-aC .a -45°D .2a -90°10.将自然数1,2,3,4,5,6分别标记在6个形状大小质地等完全相同的卡片上,随机打乱之后一一摸出,并将摸出的卡片上的数字分别记为,记,以下3种说法中:①A 最小值为3;②A 的值一定是奇数;③A 化简之后一共有5种不同的结果.说法正确的个数为( )A .3B.2C .1D .0二、填空题(本大题8个小题,每小题4分,共32分)11.计算:______.12.已知一次函数y =-2x +1的图象经过,若,则______(填“>”“<”或“=”).13.如图,□ABCD 对角线AC 、BD 相交于点O ,E 为AB 中点,AE =3,OE =4,则□ABCD 的周长为______.14.如图,矩形ABCD 中,对角线AC 、BD 相交于点O ,且∠OAD =55°.则∠ODC =______.123456,,,,,a a a a a a 123456A a a a a a a =-+-+-()2π1--=1122(,),(,)A x y B x y 12x x >1y 2y15.如图,两个边长均为6的正方形ABCD 、正方形OGFE 有一部分堆叠在一起,O 恰为AC 中点,则图中阴影部分的面积为______.16.若关于x 的一次函数y =x +2a -5的图象经过第二象限,且关于y的分式方程的解为非负整数,则所有满足条件的整数a 的值之和为______.17.如图,将一个长为9,宽为3的长方形纸片ABCD 沿EF 折叠,使点C 与点A 重合,则EF 的长为______.18.若一个四位自然数,满足A ,B ,C ,D 互不相同且A -D =B -C >0;若,规定.(1)当N =1234,且F (M *N)为整数时,A +B-C -D =______;(2)若,且F (M *N )是一个立方数(即某一个整数的立方),则满足条件的M 的最小值为______.三、解答题(本大题8个小题,19题8分,其余题各10分,共78分)19.计算:(2).20.如图,四边形ABCD 是矩形,连接AC 、BD 交于点O ,AE 平分∠BAO 交BD 于点E .210122y a y y y+--=--M ABCD =N abcd =()*5Aa Bb Cc DdF M N +++=N DCBA =))2111++(1)用尺规完成基本作图:作∠ACD 的角平分线交BD 于点F ,连接AF ,EC ;(保留作图痕迹,不写作法与结论)(2)求证:四边形AECF 是平行四边形.证明:∵四边形ABCD 是矩形,∴AO =OC ,,∴ ① .∵AE 平分∠BAO ,CF 平分∠DCO ,∴,∴ ② .∵在△AEO 和△CFO 中,∴△AEO ≌△CFO (ASA ),∴ ④ .又∵AO =CO ,∴四边形AECF 是平行四边形( ⑤ ).21.已知在Rt △ABC 中,∠ACB =90°,AC =9,AB =15,BD =5,过点D 作DH ⊥AB 于点H .(1)求CD 的长;(2)求DH 的长.22.随着人口的增加和城市化进程的加快,为了预防污水排放量不断增加而导致水体污染,高新区进行了污水治理,现需铺设一段全场为4600米的污水排放管道,铺了1600米后,为了尽量减少施工对城市交通所造成的影响,承包商安排工人每天加班,每天的工作量比原来提高了25%,共用50天完成了全部任务.(1)求原来每天铺设多少米管道?(2)若承包商安排工人加班后每天支付给工人工资增加了20%,完成整个工程后承包商共支付工人工资224000元,请问安排工人加班前每天需支付工人工资多少元?AB CD ∥11,22EAO BAO FCO DCO ∠=∠∠=∠EAO FCOAO CO ∠=∠⎧⎪=⎨⎪⎩③23.如图,在□ABCD 中,AD =6,CD =4,∠ADC =30°,动点P 以每秒1个单位的速度从点B 出发沿折线B →A →D 运动(含端点),在运动过程中,过点P 作PH ⊥BC 于点H ,设点P 的运动时间为x 秒,点P 到直线BC 的距离与点P 到点A 的距离之和记为y .(1)请直接写出y 关于x 的函数表达式,并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;(3)请直接写出当y 为3时x 的值.24.如图,在△ABC 中,,AD 是BC 边上的中线,F 为AC 右侧一点,连接AF 、CF ,恰好满足,连接BF 交AD 于E .(1)求证:四边形ADCF 是菱形;(2)若AB =6,AE =2,求四边形ADCF 的面积.25.如图,在平面直角坐标系中,函数y =-2x +12的图象分别交x 轴、y 轴于A 、B 两点,过点A 的直线交y 轴正半轴于点M ,且点M 为线段OB 的中点.(1)求直线AM 的函数解析式;(2)若点C 是直线AM 上一点,且,求点C 的坐标;(3)点P 为x 轴上一点,当,∠PBA =∠BAM 时,请直接写出满足条件的点P的坐标.90BAC ∠=︒,AF BC CF AD ∥∥23ABC AMO S S =△△26.正方形ABCD 对角线AC ,BD 相交于点O ,E 为线段AO 上一点,连接BE .(1)如图1,若,求AB 的长度;(2)如图2,F 为BC 上一点,连接DF ,G 为DF 上一点,连接OG ,CG ;若∠DOG =∠BEO ,∠FGC =∠BDF ,AE =CG ,求证:BE =2CG ;(3)如图3,若正方形ABCD 边长为2,延长BE 交AD 于F ,在AD 上截取DG =AF ,连接CG 交BD 于H ,连接AH 交BF 于K ,连接DK ,直接写出DK 的最小值.重庆市沙坪坝区2023—2024学年度下期期中调研测试八年级数学试题参考答案及评分意见一、选择题:题号12345678910答案ABCBDDADCB二、填空题:11.2; 12.<; 13.28; 14.35°; 15.9; 16.14; 1718.10;6721.三、解答题:19.;解:原式.BE AE==22=+=+-=(2)解:原式20.(1)如图:(2)①∠BAO =∠DCO . ②∠EAO =∠FCO . ③∠AOE =∠COF . ④OE =OF .⑤对角线互相平分的四边形是平行四边形.21.解:(1)∵∠ACB =90°,AC =9,AB =15,∴Rt △ABC 中,由勾股定理得:,∴CD =CB -BD =12-5=7.(2)∵DH ⊥AB ,∴,∴,∴DH =3.22.解:(1)设原来每天铺设x 米管道,由题意得.解得:x =80.经检验,x =80是原方程的解,且符合题意;答:原来每天铺设80米管道.(2)设安排工人加班前每天应支付工人y 元,由题意得.解得:y =4000.答:安排工人加班前每天应支付工人4000元.))2111++31619=-+-=-12BC ===1122ADB S AB DH BD AC =⋅=⋅△11155922DH ⨯⋅=⨯⨯()1600300050125%x x+=+()160030120%22400080y y ⋅++=23.解:(1)(2)性质:当0<x <4时,y 随x 增大而减小;当4<x <10时,y 随x 增大而增大.(3)x =2或5.24.解:(1)证明:∵,∴四边形ADCF 是平行四边形;∵∠BAC =90°,AD 是BC 边上的中线,∴CD =DA =BD ,∴四边形ADCF 是菱形.(2)如图,连接DF 交AC 于O ;∵四边形ADCF 是平行四边形,∴CD =AF ,∵BD =CD ,∴BD =AF ;∵,∴四边形BDAF 是平行四边形,∴E 为DA 中点,DF =AB =6;∴AD =2AE =4,∴BC =2AD =8;∵在Rt △BAC 中,∠BAC =90°,∴由勾股定理得:∴25.解:(1)在函数y =-2x +12中,令x =0得y =12;∴B (0,12).令y =0得x =6;∴A (6,0).∵M 为OB 中点,∴M (0,6).设直线AM 解析式为y =kx +b ,()140422(410)x x y x x ⎧-+≤≤⎪=⎨⎪-<≤⎩//,//AM BC CF AD //BD AF AC ===11622ADCF S DF AC =⋅⋅=⨯⨯=菱形将A(6,0),M(0,6)代入得:解得∴直线AM解析式为y=-x+6.(2)如图,过点C作CD⊥x轴于N,交直线AB于D,设C(c,-c+6),则D(c,-2c+12),∴∴;∵,∴;∴3|c-6|=12,∴c=10或2,∴C(10,-4)或(2,4).(3)P(12,0)或.26.解:(1)如图,过点E作EH⊥AB于H,60,06k bk b+=⎧⎨⋅+=⎩16kb=-⎧⎨=⎩()()62126CD c c c=-+--+=-ABC ADC BDCS S S=-△△△1122CD AN CD NO=⋅⋅-⋅()1116636 222CD AN NO CD AO c c=⋅-=⋅⋅=⨯⋅-=-11661822AMOS AO MO=⋅⋅=⨯⨯=△22181233ABC AMOS S=⨯=⨯=△△12,07⎛⎫⎪⎝⎭∵四边形ABCD 为正方形,∴∠BAE =∠ABO =45°,∴△AHE 为等腰直角三角形,∴.∴在Rt △BHE 中,由勾股定理得:,∴AB =AH +HB =1+2=3.(4分)(2)证明:如图,过点C 作直线,交DG 延长线于M ,交OG 延长线于N ,连接BM .∵四边形ABCD 是正方形,∴AB =BC ,AC ⊥BD ,BO =DO ,∠BAE =∠DBC =45°;∵,∴∠BDG =∠1,∠BCM =∠DBC =45°=∠BAE ;∵∠BDG =∠CGF ,∴∠1=∠CGF ,∴CG =CM ;∵AE =CG ,∴AE =CM ;∴在△BAE 与△BCM 中,∴,∴∴BE =BM ,∠ABE =∠2.∵∠DBM =∠2+45°,∠DOG =∠BEO =45°+∠ABE ,∴∠DBM =∠DOG ,∴,∴四边形BONM 是平行四边形,∴BO =MN ,∴DO =MN ;∴在△ODG 与△NMG 中,∴,∴∴OG =GN ,G 为O 中点,∵∠OCN =90°,∴CG =OG ,∵BE =BM =2OG ,∴BE =2G C.1AH HE AE ====2BH ===//MN BD //MN BD AB CBBAE BCM AE CG =⎧⎪∠=∠⎨⎪=⎩()SAS BAE BCM △≌△//BM OG 1DOG OGD NGM OD MN ∠=∠⎧⎪∠=∠⎨⎪=⎩()SAS ODG NMG △≌△(简释,如图:,取AB 中点T ,连接TK ,TD ,则)1-90AHO CHO HAO HCOEBO AKE ⇒∠=∠=∠⇒∠=︒△≌△112DK DT KT AB AB ≥-=-=-。
2023-2024学年度上学期八年级期中测试题数学附详细答案
2023-2024学年度上学期八年级期中测试题数学本试卷包括三道大题,共24小题,共4页.全卷满分120分.考试时间为90分钟. 注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效.一、选择题(每小题3分,共24分)1.在实数√3,0,−0.33,10中,其中无理数是A.√3B.0C.−0.33D.10 2.64的算术平方根是A.√8B.8C.±8D.16 3.下列计算正确的是A.a+a=a 2B.a 2·a 2=2a 2C.(−ab) 2=ab 2D.(2a) 2÷4a=a 4.下列计算正确的是A.√9=±3B.√9=−3C.√273=3 D.−√273=3 5.若等腰三角形的两边长分别为2、4,则它周长为A.8B.10C.8或10D.10或12 6.下列分解因式正确的是A.a 2+a+1=a(a+1)+1B.a 2−ab=a(a −1)C.a 2−4b 2=(a+2b)(a −2b)D.a 2+2ab+b 2=(a −b)27.如图,A 、B 两点分别位于一个池塘的两端,小明想用绳子测量A 、B 之间的距离,但绳子不够长.他通过思考又想到了这样一个方法:先在地上取一个可以直接到达A 、B 的点C ,连接AC 并延长到点D ,使CD=CA ;连接BC 并延长到点E ,使CE=CB ,连接DE 并且测出DE 的长即为A 、B 之间的距离.图中△ABC ≌△DEC 的数学理由是 A.SSS B.SAS C.ASA D.AAS8.如图,在△ABA 1中,AB=A 1B ,∠B=20°.在A 1B 上取一点C ,延长AA 1到点A 2,使A 1A 2=A 1C ,连结A 2C ;在A 2C 上取一点D ,延长A 1A 2到点A 3,使A 2A 3=A 2D ,连结A 3D ;……,按此操作进行下去,在以点A 5为顶角顶点的等腰三角形的底角的度数为 A.20° B.10° C.5° D.2.5° 二、填空题(每小题3分,共18分) 9.16的平方根为_______.10.命题“内错角相等”是______命题(填“真”或“假”). 11.若a+b=3,则a 2−b 2+6b 的值为_______.12.如图,△ABC ≌△DBE ,点B 在线段AE 上,若∠C=25°,则∠BDE 的度数是_____.13.如图,在△ABC 中,AB=AC ,点D 为BC 的是中点,连结AD ,在边AC 上截取AD=AE.若∠BAD=20°,则∠EDC 的大小为____度.14.如图,四边形ABCD 中,AB=BC ,∠ABC=90°,对角线BD ⊥CD.若BD=6,CD=1,则四(第12题)AB ED C(第13题)ABCEDA(第14题)BDC(第7题)(第8题)B C DE A 12 A3 A4 A n边形ABCD 的面积为_____.三、解答题(本大题10小题,共78分)15.(6分)计算:(1)(6ab)2÷4a 2. (2)(a+b)(a −3b). 16.(6分)因式分解下列各题:(1)a 2−9. (2)a 2+12a+36. 17.(6分)如图,AB=AE ,AC=AD ,∠BAD=∠EAC ,∠D=43°,求∠C 的大小.18.(7分)先化简,再求值:(2x +1)(2x −1)− x (4x −3),其中x =120.19.(7分)图①、图②、图③均是4×4的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,△ABC 的顶点均在格点上.只用无刻度的直尺,在给定的网格中按要求画图,所画图形的顶点均在格点上,不要求写出画法,并保留作图痕迹.(1)在图①中画△BCD ,使△BCD 与△ABC 全等.(2)在图②中画△BCE ,使△BCE 与△ABC 的面积相等,但不全等.(3)在图③中画△FGH ,使△FGH 与△ABC 全等,且所作的三角形有一条边经过AC 的中点.(第19题)图③AC B图② AC B图①AC BA(第17题)ECDB20.(7分)先化简,再求值:(2a −b)2−(a −2b)(a+2b)−2a(a-2b),其中a=√5,b=1. 21.(8分)如图①,在△ABC 中,AB=5,AC=4,∠ABC 和∠ACB 的平分线交于点D ,过点D 作EF ∥BC ,分别交边AB 、AC 于E 、F 两点. (1)求△AEF 的周长.(2)如图②,在△ABC 中,AB=5,AC=4,∠ABC 和∠ACG 的平分线交于点D ,过点D 作EF ∥BC ,分别交边AB 、AC 于E 、F 两点.若AC=4AF ,则△AEF 的周长为________.22.(9分)【探究】在△ABC 中,AB=AC ,D 是边BC 上一点,以AD 为一边在AD 的右侧作△ADE 使AE=AD ,∠DAE=∠BAC ,连结CE. (1)求证:△BAD ≌△CAE.(2)若∠BAC=α,求∠DCE 的大小(用含α的代数式表示).【应用】若∠BAC=50°,且△DCE 的两个锐角的度数之比为1︰4,则∠DAC 的大小为_____度.23.(10分)【教材原题】观察图①,用等式表示下图中图形的面积的运算为_________.ABEC(第22题)D(第21题)图②A BC GDEFA图①CEF DB【类比探究】观察图②,用等式表示图中阴影部分图形的面积和为___________. 【应用】(1)根据图②所得的公式,若a+b=10,ab=5,则a 2+b 2=___________. (2)若x 满足(11−x )(x −8)=2,求(11−x )2+(x −8)2的值.【拓展】如图③,某学校有一块梯形空地ABCD ,AC ⊥BD 于点E ,AE=DE ,BE=CE.该校计划在△AED 和△BEC 区域内种花,在△CDE 和△ABE 的区域内种草.经测量种花区域的面积和为252,AC=7,直接写出种草区域的面积和.24.(12分)如图,在△ABC 中,∠ABC=90°,AB=4,BC=6,点B 在直线m 上,点M 是直线m 上点B 左边的一点,且BM=2,∠ABM=60°.动点P 从点A 出发,以每秒1个单位长度的速度沿折线AB-BC 向终点C 匀速运动;同时动点Q 从C 点出发,以每秒3个单位长度的速度沿折线沿CB-BA 向终点A 匀速运动.分别过点P 、点Q 作PD ⊥m 于D ,QE ⊥m 于E.设点P 的运动时间为t(s). (1)用含t 的代数式表示BQ 的长.(2)当点Q 在边BC 上时,求证:∠PBD=∠BQE.(3)连结PM 、QM ,在不添加辅助下和连结其它线段的条件下,当图中存在等边三角形时,求t 的值.(4)当△PBD 与△BQE 全等时,直接写出t 的值.A(第23题)图①图②图③D CBabab a 2b 2花 草草=++ 花E2023-2024学年度上学期八年级期中测试题参考答案数学本试卷包括三道大题,共24小题,共4页.全卷满分120分.考试时间为90分钟. 注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效.一、选择题(每小题3分,共24分)1.在实数√3,0,−0.33,10中,其中无理数是A.√3B.0C.−0.33D.10 1.解:√3是无限不循环小数,是无理数,故选A 。
初二期中数学试题及答案
初二期中数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 计算下列哪个表达式的结果为负数?A. \(3 - (-2)\)B. \(-4 + 5\)C. \(-3 \times 2\)D. \(6 \div 2\)答案:C3. 如果 \(x = 3\),那么 \(2x - 5\) 的值是多少?A. 1B. 4C. 6D. 0答案:A4. 一个数的平方等于9,这个数是多少?A. 3B. -3C. 3或-3D. 只有3答案:C5. 以下哪个图形是轴对称图形?A. 平行四边形B. 矩形C. 梯形D. 不规则多边形答案:B6. 以下哪个选项表示的是一次函数?A. \(y = 2x + 3\)B. \(y = x^2 + 1\)C. \(y = \frac{1}{x}\)D. \(y = 3\)答案:A7. 一个等腰三角形的两边长分别为5和8,那么它的周长是多少?A. 18B. 21C. 26D. 无法确定答案:B8. 以下哪个分数是最简分数?A. \(\frac{6}{8}\)B. \(\frac{9}{12}\)C. \(\frac{5}{7}\)D. \(\frac{10}{15}\)答案:C9. 如果一个圆的半径是3厘米,那么它的面积是多少?A. 28.26平方厘米B. 9平方厘米C. 18.84平方厘米D. 3.14平方厘米答案:C10. 下列哪个选项是不等式 \(2x - 3 > 5\) 的解?A. \(x > 4\)B. \(x < 4\)C. \(x > 2\)D. \(x < 2\)答案:A二、填空题(每题3分,共30分)11. 一个数的相反数是-5,这个数是______。
答案:512. 如果一个角的补角是120°,那么这个角的度数是______。
答案:60°13. 计算 \((-2)^3\) 的结果是______。
初二数期中考试题及答案
初二数期中考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是偶数?A. 1B. 2C. 3D. 4答案:B2. 计算下列算式的结果:(3x - 2) + (2x + 1) = ?A. 5x - 1B. 5x + 1C. 4x - 1D. 4x + 1答案:B3. 一个数的平方是25,那么这个数是:A. 5B. -5C. 5或-5D. 以上都不是答案:C4. 下列哪个选项是质数?A. 2B. 4C. 6D. 8答案:A5. 一个三角形的两个内角分别是50°和60°,第三个内角是:A. 70°B. 80°C. 90°D. 100°答案:B6. 圆的周长公式是:A. C = πdB. C = 2πrC. C = πrD. C = 2r答案:B7. 计算下列算式的结果:(2x^2 - 3x + 1) - (x^2 + 2x - 3) = ?A. x^2 - 5x + 4B. x^2 - 5x + 2C. x^2 - x + 4D. x^2 - x + 2答案:A8. 一个正方体的体积是27立方厘米,它的边长是:A. 3厘米B. 6厘米C. 9厘米D. 12厘米答案:A9. 一个数的绝对值是5,那么这个数是:A. 5B. -5C. 5或-5D. 0答案:C10. 一个数的相反数是-3,那么这个数是:A. 3B. -3C. 0D. 6答案:A二、填空题(每题4分,共20分)1. 一个数的平方根是4,那么这个数是______。
答案:162. 一个数的立方是-8,那么这个数是______。
答案:-23. 一个三角形的内角和是______度。
答案:1804. 一个数的倒数是1/2,那么这个数是______。
答案:25. 一个圆的直径是14厘米,那么它的半径是______厘米。
答案:7三、解答题(每题10分,共50分)1. 已知一个长方形的长是10厘米,宽是6厘米,求它的周长和面积。
湖北省武汉市武昌区多校2023-2024学年八年级上学期期中考试数学试卷(含答案)
武昌区多校2023-2024学年上学期期中联考八年级数学试题一、单选题(每小题3分,共30分)1.已知一个三角形的两边长分别为4和1,则这个三角形的第三边长可能是()A.3B.4C.5D.62.“甲骨文”,是中国的一种古老文字,又称“契文”、“殷墟文字”,下列甲骨文中,不是轴对称图形的是()A. B. C. D.3.一个多边形内角和是540°,则这个多边形是()A.四边形B.五边形C.六边形D.七边形4.下列说法正确的是()A.三角形的一个外角等于任意两个内角的和B.三角形的一个外角小于它的一个内角C.三角形的一个外角大于它的相邻的内角D.三角形的一个外角大于任何一个与它不相邻的内角5.已知图中的两个三角形全等,则1∠的度数是()A.50°B.54°C.60°D.76°6.如图,点E ,F 在BC 上,BE FC =,B C ∠=∠.添加下列条件不能使得ABF DCE △≌△的是()A.AB DC =B.A D ∠=∠C.AFB DEC ∠=∠D.AF DE=7.如图,在ABC △中,90C ∠=︒,AD 平分BAC ∠交BC 于点D ,若15BC =,且:3:2BD CD =,则点D 到AB 的距离为()A.5B.6C.8D.98.如图,AC AB BD ==,AB BD ⊥,10BC =,则BCD △的面积为()A.15B.25C.20D.509.如图,A 、B 是5×6网格中的格点,网格中的每个小正方形边长都为1,以A 、B 、C 为顶点的三角形是等腰三角形的格点C 的位置有()A.8个B.11个C.12个D.14个10.如图,ABM △和CDM △均为等边三角形,直线BC 交AD 于点F ,点E 、N 分别为AD 、BC 的中点,下列结论:①AD BC =;②ME CB ⊥;③AF BF MF -=;④MNE △为等边三角形;⑤MF 平分BME ∠,其中一定成立的有()个A.1B.2C.3D.4二、填空题(每小题3分,共18分)11.点()1,3A -关于x 轴的对称点A '的坐标为__________.12.在ABC △中::1:2:3A B C ∠∠∠=,则C ∠的度数为___________.13.如图,在ABC △和DCB △中,AB DC =.若不添加任何字母与辅助线,要使ABC DCB △≌△,则可以添加一个角相等的条件是_______________.14.如图,在AOB ∠的边OA 、OB 上取点M 、N ,连接MN ,MP 平分AMN ∠,NP 平分MNB ∠,若1MN =,PMN △的面积是1,OMN △的面积是4,则OM ON +的长是______________.15.多边形的一个内角的外角与其他内角的度数和为600°,则此多边形的边数为____________.16.如图120MON =︒∠,点A 为ON 上一点,且3OA =B 为直线OM 上的一动点,以AB 为边作等边ABC △,连接OC ,当BC 最小时,此时OC =______________.三、解答题(共8小题,共72分)17.(本题满分8分)用一条长为20cm 的细绳围成一个等腰三角形,能围成一边长是6cm 的等腰三角形吗?为什么?18.(本题满分8分)如图,在四边形ABCD 中,E 是BC 的中点,延长AE 、DC 相交于点F ,BEF B F =∠+∠∠.求证:AB CF =.19.(本题满分8分)如图,点D 、E 在ABC △的边BC 上,AB AC =,AD AE =,求证:BD CE =.20.(本题满分8分)如图,在四边形ABCD 中,AB CD ∥,E 为AD 的中点,连接CE 并延长交BA 的延长线于点F .(1)求证:CDE FAE △≌△.(2)连接BE ,当BE GF ⊥时,3CD =,2AB =,求BC 的长.21.(本题满分8分)如图,在5×5的正方形网格中,请仅用无刻度直尺完成下列画图问题(画图过程用虚线表示,画图结果用实线表示).(1)在图1中,画出线段AB 的中点M .(2)在图2中,线段AC 与第3条,第5条水平网格线分别相交于D 、E 两点,在直线上画一点P ,连接PD 和PE ,使得PD PE +最小.(3)在图3中的直线上画一点F ,使45CAF ∠=︒.(4)在图4中,线段AC 与第3条水平网格线相交于D 点,过D 点画DH AG ⊥于H 点.22.(本题满分10分)定义:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)如图1,在ABC △中,AB AC =,点D 在AC 边上,且AD BD BC ==,求A ∠的大小;(2)在图1中过点C 作一条线段CE ,使BD ,CE 是ABC △的三分线;在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(3)在ABC △中,30B ∠=︒,AD 和DE 是ABC △的三分线,点D 在BC 边上,点E 在AC 边上,且AD BD =,DE CE =,请直接写出C ∠所有可能的值_________________.23.(本题满分10分)ABE △和ACF △始终有公共角A ∠,连接BC ,EF ,BE ,CF 相交于点O .(1)如图1,若ABE ACF =∠∠,BE CF =,求证:ABE ACF △≌△.(2)如图2,若ABE ACF α=∠=∠,且CE CF =,求CBE ∠的度数(用含α的式子表示)(3)如图3,若BE CF =,过点C 作CD AB ∥且CD AB =,连接DO 并延长交AC 于点G ,过点G 作GH CF ⊥于点H ,请直接写出OGH ∠与COE ∠的关系为:__________________.24.(本题满分12分)如图1,ABC △是等腰直角三角形,点B 是y 轴上的一点,边AC 交y 轴于点D .(1)若点()1,1C -,直接写出点B 的坐标__________.(2)如图2,将ABC △沿y 轴负方向平移一定单位后,使AB 边交y 轴于点E .过点B 作BG y ⊥轴且BG OB =,连接OG .过点G 作GF x ⊥轴交BC 于点F ,连接EF ,求证:FG OE EF =+.(3)如图3,在(1)的条件下,若点M 坐标为()2,0,点P 在第一象限内,连接PM ,过点P 作PH PM ⊥交y 轴于点H ,在PH 上截取PN PM =,连接BN ,过点P 作45OPQ ∠=︒交BN 于点Q ,试探究点Q 在BN 上的位置关系,并说明理由.参考答案1.B2.A3.B4.D5.A6.D7.B8.B9.C 10.C二、填空题11.()1,312.90°13.ABC DCB ∠=∠14.515.5或6(注:对1个给1分,全对3分)16.32三、解答题17.【解析】分两种情况讨论:①当6cm 为腰长时,设底边长为cm x ,6220x ⨯+=,8x =,∴三边长分别为6cm ,6cm ,8cm②当6cm 为底边长时,设底边长为cm y ,6220y +=,7y =,∴三边长分别为6cm ,7cm ,7cm18.【解析】∵BEF F ECF ∠=∠+∠,BEF B F ∠=∠+∠,∴B ECF ∠=∠∵点E 是BC 中点,∴CE BE=在ABE △和FCE △中B ECF BE CE AEB FEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ASA ABE FCE △≌△,∴AB CF =.19.【解析】证明:过点A 作AH BC ⊥于点H (辅助线交代不清扣1分)∵AB AC =,AH BC ⊥,∴BH CH=∵AD AE =,AH DE ⊥,∴DH EH=∴BH DH CH EH -=-即BD CE=20.【解析】(1)证明:∵AB CD ∥∴DCE F ∠=∠,∵点E 是AD 中点,∴DE AE =,在CDE △和FAE △中DCE F CED FEA DE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS CDE FAE ≌△△(2)由(1)知CDE FAE ≌△△,∴CE FE =,CD AF=∵BE GF ⊥,∴BE 垂直平分CF∴BC BF =,∵3CD =,2AB =∴3AF CD ==,∴325BC BF AF AB ==+=+=21.【解析】22.【解析】(1)设=A x ∠,∵AB BD BC==∴ABD A x ∠=∠=,2C BDC x x x∠=∠=+=∵AB AC =,∴2ABD C x∠=∠=在ABC △中,22180x x x ++=︒,36x =︒∴36A ∠=︒(2)(画对和度数表明即可,两个图每个各给2分)(3)20°或40°(写对1个给2分)23.【解析】(1)在ABE △和ACF △中A A ABE ACF BE CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS ABE ACF ≌△△(2)过点C 作CM BE ⊥于M ,作CN AB ⊥的延长线于N∵BOC BFC ABE BEC ACF ∠=∠+∠=∠+∠,ABE ACF∠=∠∴BFC BEC ∠=∠,即NFC MEC∠=∠∵CM BE ⊥,CN AB ⊥,∴90CNF CME ∠=∠=︒在CNF △和CNB △中NFC MEC CNF CME CF CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS CNF CME ≌△△,∴CN CM =,又CM BE ⊥,CN AB ⊥,∴BC 平分EBN∠∴EBC NBC ∠=∠,∵ABE α∠=∴1809022EBC αα︒-∠==︒-(3)2COE OGH ∠=∠或12OGH COE ∠=∠24.【解析】(1)()0,2B (2)在GF 上截取GR OE =,连接BR (或过点B 作BR BA ⊥交于GF 于R )∵BG y ⊥轴,BR x ⊥轴∴90OBG BGR BOE∠=∠=︒=∠在BGR △和BOE △中BG BO BOE BGR GR OE =⎧⎪∠=∠⎨⎪=⎩∴()SAS BGR BOE ≌△△,∴BR BE =,GBR OBE ∠=∠∵90GBR OBR ∠+∠=︒,∴90OBE OBR ∠+∠=︒,即90ABR ∠=︒∵ABC △是等腰直角三角形∴45ABC ∠=︒,∴904545RBF EBF∠=︒-︒=︒=∠在BFR △和BFE △中BR BE RBF EBF BC BC =⎧⎪∠=∠⎨⎪=⎩∴()SAS BFR BFE ≌△△,∴RF EF=∴FG RF GR EF OE=+=+(3)过点O 作OR OP ⊥交PQ 的延长线于点R ,连接BR ∵45OPQ ∠=︒,OR OP ⊥,∴904545ORP ∠=︒-︒=︒∴OPR △是等腰直角三角形∴OP OR =,90POR ∠=︒∵90BOM ∠=︒可证BOR MOP ∠=∠,再可证()SAS BOR MOP ≌△△∴BR PM PN ==,BRO MPO ∠=∠设=OPH x ∠,则90OPM ORB x ∠=∠=︒-∵45OPQ ∠=︒,∴45NPQ x ∠=︒-,904545BRQ x x ∠=︒--︒=︒-得NPQ BRQ ∠=∠,再证()AAS PNQ RBQ ≌△△得BQ NQ =,即点Q 为BN 的中点。
湖北省湖北省知名教联体2024-2025学年八年级上学期11月期中考试数学试题[含答案]
2024年秋季八年级期中质量检测数学试题(考试时间:120分钟 满分:120分)温馨提醒:1.答卷前,请将自己的姓名、班级、考号等信息准确填写在指定位置。
2.请保持卷面的整洁,书写工整、美观。
3.请认真审题,仔细答题,诚信应考,乐观自信,相信你一定会取得满意的成绩!一、选择题(共10小题,每题3分,共30分,在每题给出的四个选项中,只有一项符合题目要求)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A .B .C .D .2.一个三角形的两边长分别是12和5,第三边的长恰好是7的整数倍,那么第三边的长是( )A .7B .14C .21D .14或213.若点()1,1A m n +-与点()3,2B 关于y 轴对称,则m n +的值是( )A .5-B .3-C .3D .14.若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为( )A .50°B .80°C .65°或50°D .50°或80°5.如图,在ABC V 和DEF V 中,已知AB DE =,A D Ð=Ð,再添加一个条件,如果仍不能证明ABC DEF ≌△△成立,则添加的条件是( )A .AC DF ∥B .BC EF =C .AC DF =D .ACB F Ð=Ð6.如图,小益将平放在桌面上的正五边形磁力片和正六边形磁力片拼在一起(一边重合),则形成的1Ð的度数是( )A .118°B .122°C .128°D .132°7.如图,ABC V 中,AD 为ABC V 的角平分线,BE 为ABC V 的高,70C Ð=°,48ABC Ð=°,那么3Ð是( )A .59°B .60°C .56°D .22°8.如图,ABC DEC ≌△△,AF CD ^.若65BCE Ð=°,CAF Ð的度数为( )A .30°B .25°C .20°D .15°9.如图,ABC DCB △≌△,若96AC BE ==,,则DE 的长为( )A .3B .6C .2D .410.如图,在Rt △ABC 中,∠C=90°,AC=3,BC=4,AB 的垂直平分线交BC 于点D ,连接AD ,则△ACD 的周长是( )A .7B .8C .9D .10二、填空题(共5小题,每题3分,共15分)11.已知一个n 边形的内角和是900°,则n = .12.如图,,30,80ABE FDC FCD A Ð=°Ð=°△≌△,则ABE Ð的度数是 °.13.在平面直角坐标系中,点()3,4A ,(),B a b 关于x 轴对称,则()2024a b +的值为 .14.在ABC V 中,50B Ð=°,35C Ð=°,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD ,则BAD Ð的度数为 .15.在ABC V 中,150CA CB ACB =Ð=°,,将一块足够大的直角三角尺()9030PMN M MPN Ð=°Ð=°、按如图所示放置,顶点P 在线段AB 上滑动,三角尺的直角边PM 始终经过点C ,并且与CB 的夹角PCB a Ð=,斜边PN 交AC 于点D .在点P 的滑动过程中,若PCD △是等腰三角形,则夹角α的大小是 .三、解答题(共9题,共75分,解答应写出文字说明,证明过程或演算步骤)16.已知一个多边形的边数为n .(1)若8n =,求这个多边形的内角和.(2)若这个多边形的每个内角都比与它相邻外角的3倍还多20°,求n 的值.17.如图,已知90A D Ð=Ð=°,E 、F 在线段BC 上,DE 与AF 交于点O ,且AB DC BE CF ==,.求证:B C Ð=Ð.18.如图,在单位长度为1的方格纸中画有一个ABC V .(1)画出ABC V 关于y 轴对称的A B C ¢¢¢V ;(2)写出点A ¢、B ¢的坐标;(3)求ABC V 的面积.19.如图,DE AB ^于E ,DF AC ^于F ,若BD CD BE CF ==,.(1)求证:AD 平分BAC Ð;(2)已知 10AC =,2BE =,求AB 的长.20.(1)等腰三角形的两边长满足|a -4|+(b -9)2=0,求这个等腰三角形的周长.(2)已知a ,b ,c 是△ABC 的三边,化简:|a +b -c|+|b -a -c|-|c +b -a|.21.如图,在ABC V 中,90B Ð=°,直线CD BC ^于点,C CE 平分ACD Ð交BA 延长线于点,E EF EC ^,交CD 于点F .(1)试判断AB 与CD 的位置关系,并说明理由;(2)若34EFC BAC ÐÐ=,求AEC Ð的度数.22.如图,在ABC V 中,点E 是BC 边上的一点,连接AE ,BD 垂直平分AE ,垂足为F ,交AC 于点D . 连接DE .(1)若ABC V 的周长为19,DEC V 的周长为7,求AB 的长;(2)若30ABC Ð=°,45C Ð=°,求EAC Ð的度数.23.已知,ABC V 中,CA CB =,90ACB Ð=°,一直线过顶点C ,过A ,B 分别作其垂线,垂足分别为E ,F .(1)如图1,求证:EF AE BF =+;(2)如图2,请直接写出EF ,AE ,BF 之间的数量关系 ;(3)在(2)的条件下,若3BF AE =,4EF =,求BFC △的面积.24.如图所示,在平面直角坐标系中,()4,4P ,(1)点A 在x 的正半轴运动,点B 在y 的正半轴上,且PA PB =,①求证:PA PB ^:②求OA OB +的值;(2)点A 在x 的正半轴运动,点B 在y 的负半轴上,且PA PB =,求OA OB -的值.1.A【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】A .是轴对称图形,故A 符合题意;B .不是轴对称图形,故B 不符合题意;C .不是轴对称图形,故C 不符合题意;D .不是轴对称图形,故D 不符合题意.故选:A .【点睛】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.B【分析】本题考查三角形的三边关系,根据三角形的三边关系确定第三边的取值范围,再根据第三边的长恰好是7的整数倍,进行判断即可.【详解】解:∵三角形的两边长分别是12和5,设第三边长为x ,∴125125x -<<+,即:717x <<,∵第三边的长恰好是7的整数倍,∴第三边的长是14;故选B .3.A【分析】根据关于y 轴对称的点的坐标特点可得1312m n +=-ìí-=î,解方程即可得到答案.【详解】解:∵点()1,1A m n +-与点()3,2B 关于y 轴对称,∴1312m n +=-ìí-=î,∴41m n =-ìí=-î,∴()415m n +=-+-=-,故选A .【点睛】本题主要考查了坐标与图形变化—轴对称,熟知关于y 轴对称的点横坐标互为相反数,纵坐标相同是解题的关键.4.D【分析】本题主要考查了等腰三角形的性质和三角形内角和定理,根据等腰三角形的性质分类讨论是解答本题的关键.根据等腰三角形的性质,分已知角是顶角和底角两种情况分别即可.【详解】解:∵已知三角形是等腰三角形,∴当50°是底角时,顶角()180505080=°-°+°=°;当50°是顶角时,符合题意;综上所述,等腰三角形的顶角度数为50°或80°.故选D .5.B【分析】利用三角形全等的判定定理逐一推理即可.【详解】解:∵AC DF ∥,∴ACB F Ð=Ð,∴ACB F A D AB DE Ð=ÐìïÐ=Ðíï=î,∴ABC DEF ≌△△,故A ,D 都正确,不符合题意;∵AC DF A D AB DE =ìïÐ=Ðíï=î,∴ABC DEF ≌△△,故C 正确,不符合题意;当添加BC EF =时,不符合任何一个判定定理,无法判定ABC DEF ≌△△,故B 符合题意,故选:B .【点睛】本题考查了添加条件判定全等,熟练掌握三角形全等的判定定理是解题的关键.6.D【分析】本题考查正多边形的内角和问题,根据多边形内角和公式及正多边形的性质求出2,3ÐÐ的度数,再根据123360Ð+Ð+Ð=°即可解答.【详解】解:如图,()()62180521802120,310865-´°-´°Ð==°Ð==°Q ,Q 123360Ð+Ð+Ð=°,1132\Ð=°,故选:D .7.A【分析】本题考查了三角形内角和定理,三角形的高,角平分线,对顶角相等,解题的关键是掌握这些知识点.根据三角形内角和定理得62CAB Ð=°,根据角平分线得112312CAB Ð=Ð=Ð=°,根据高得90AEB Ð=°,可得59EFA Ð=°,根据对顶角相等即可得.【详解】解:∵70C Ð=°,48ABC Ð=°,∴180170486802C A B BC CA Ð-Ð=°-°=°Ð=°-°-,∵AD 为ABC V 的角平分线,∴112312CAB Ð=Ð=Ð=°,∵BE 为ABC V 的高,∴90AEB Ð=°,∴1801180319059EFA AEB Ð=°-Ð-Ð=°-°-°=°∴359EFA Ð=Ð=°,故选:A .8.B【分析】本题考查了全等三角形的判定和性质,垂直的定义,直角三角形的性质,由全等三角形的性质可得ACB DCE Ð=Ð,即可得BCE DCA Ð=Ð,得到65ACF Ð=°,再根据直角三角形的的性质即可求解,掌握全等三角形的性质是解题的关键.【详解】解:∵ABC DEC ≌△△,∴ACB DCE Ð=Ð,∴ACB ACE DCE ACE Ð-Ð=Ð-Ð,即BCE DCA Ð=Ð,∵65BCE Ð=°,∴65DCA Ð=°,即65ACF Ð=°,∵AF CD ^,∴90AFC Ð=°,∴906525CAF Ð=°-°=°,故选:B .9.A【分析】此题考查了全等三角形的性质,熟记“全等三角形的对应边相等”是解题的关键.根据全等三角形的性质及线段的和差求解即可.【详解】解:ABC DCB QV V ≌,9AC =,9BD AC \==,BD BE DE =+Q ,6BE =,3DE \=,故选:A .10.A【分析】先根据线段垂直平分线的性质得出AD=BD ,然后求周长即可.【详解】解:∵AB 的垂直平分线交BC 于D ,∴AD=BD ,∵AC=3,BC=4∴△ACD 的周长为:AC+CD+AD=AC+BC=7.故选A .【点睛】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.11.7【分析】本题考查了多边形的内角和,熟记多边形的内角和公式是解题的关键;根据n 边形的内角和为180(2)n °-列出关于n 的方程,解方程即可求出边数n 的值.【详解】解:根据题意,得180(2)900n °-=°,解得7n =,故答案为:7.12.70【分析】本题考查了全等三角形的性质,掌握这性质是关键.根据三角形全等的性质,得出30E FCD Ð=Ð=°,然后求出18070ABE A E Ð=°-Ð-Ð=°即可.【详解】解:∵ABE FDC V V ≌,∴30E FCD Ð=Ð=°,∵80A Ð=°,∴18070ABE A E Ð=°-Ð-Ð=°.故答案为:70.13.1【解析】略14.60°##60度【分析】本题主要考查基本作图,线段垂直平分线的性质是解题的关键.由线段垂直平分线的性质可得AD DC =,根据等边对等角得到35DAC C Ð=Ð=°,根据内角和定理求得18095BAC B C Ð=°-Ð-Ð=°,最后根据角度的和差关系即可得到答案.【详解】解:由作图可知:MN 为线段AC 的垂线平分线,∴AD DC =,∴35DAC C Ð=Ð=°,在ABC V 中,50B Ð=°,35C Ð=°,∴18095BAC B C Ð=°-Ð-Ð=°,∴60BAD BAC DAC Ð=Ð-Ð=°,故答案为:60°.15.30°或75°或120°【分析】本题考查了等腰三角形的性质,三角形的内角和定理,用分类讨论的思想解决问题是解本题的关键.分三种情况考虑:当PC PD PD CD PC CD ===;;,分别求出夹角a 的大小即可.【详解】解:∵PCD △是等腰三角形,15030PCD CPD a Ð=°-Ð=°,,①当PC PD =时,∴18030752PCD PDC °-°Ð=Ð==°,即15075a °-=°, ∴75a =°; ②当PD CD =时,PCD △是等腰三角形,∴30PCD CPD Ð=Ð=°,即15030a °-=°,∴120a =°;③当PC CD =时,PCD △是等腰三角形,∴30CDP CPD Ð=Ð=°,∴180230120PCD Ð=-´=°°°, 即150120a °-=°,∴30a =°, 此时点P 与点B 重合,点D 和A 重合,综合所述:当PCD △是等腰三角形时,a =30°或75°或120°.故答案为:30°或75°或120°.16.(1)1080°(2)9【分析】本题考查多边形的内角和与外角的综合应用:(1)直接根据内角和公式进行计算即可;(2)设每个外角的度数为a ,根据题意,列出方程求出a ,再根据多边形的外角和为360度,求解即可.【详解】(1)解:()821801080-´°=°;(2)设每个外角的度数为a ,则每个内角的度数为320a +°,∴320180a a ++=°,∴40a =°,∴360940n ==.17.见解析【分析】本题主要考查了全等三角形的性质与判定,由BE CF =,得BF CE =,即可用HL 证明Rt Rt ABF DCE ≌△△,即可证明B C Ð=Ð.【详解】证明:∵BE CF =,∴BE EF CF EF +=+,即BF CE =,在Rt ABF V 和Rt DCE V 中,AB DC BF CE=ìí=î,∴()Rt Rt HL ABF DCE ≌△△,∴B C Ð=Ð.18.(1)见解析(2)点A ¢的坐标为()3,2,点B ¢的坐标为()4,3-(3)132【分析】(1)找到ABC V 中三个顶点的对称点,连接即可;(2)根据点在直角坐标系中得位置,写出坐标即可;(3)利用添补法用长方形面积减去三个三角形面积即可.【详解】(1)解:如图所示,A B C ¢¢¢V 即为所求.(2)解:由图可知点A ¢的坐标为()3,2,点B ¢的坐标为()4,3-;(3)解:ABC V 的面积为11113352315232222´-´´-´´-´´=.【点睛】本题考查了直角坐标系,相关知识带你有:图形的轴对称、割补法求三角形面积等,熟练运用直角坐标系的知识点是解题关键.19.(1)见解析(2)6【分析】(1)求出90E DFC Ð=Ð=°,根据全等三角形的判定定理得出Rt Rt BED CFD ≌△△,推出DE DF =,根据角平分线性质得出即可.(2)根据全等三角形的性质得出AE AF =,由线段的和差关系求出答案.【详解】(1)证明:DE AB ∵⊥,DF AC ^,90E DFC \Ð=Ð=°,在Rt BDE △与Rt CDF △中,BD CD BE CF =ìí=î,()Rt Rt HL BDE CDF \≌V V ,DE DF \=,又DE AB ∵⊥,DF AC ^,AD \平分BAC Ð.(2)解:Rt Rt BDE CDF ≌Q V V ,2BE =,2CF BE \==,10AC =Q ,1028AF AC CF \=-=-=,在Rt ADE V 与Rt ADF V 中,AD AD DE DF=ìí=î,()Rt Rt HL ADE ADF \≌V V ,8AE AF \==,826AB AE BE \=-=-=.【点睛】本题考查了全等三角形的性质和判定、角平分线的判定,熟练掌握全等三角形的判定及性质和角平分线的判定是解题的关键.20.(1)22;(2)22a c -.【分析】(1)根据非负数的性质求出a 、b ,再根据三角形三边关系分情况讨论求解.(2)三角形三边满足的条件是,两边和大于第三边,两边的差小于第三边,根据此来确定绝对值内的式子的正负,从而化简计算即可.【详解】解:(1)∵()240,90a b -³-³,且()2490a b -+-=,∴40,90a b -=-=,解得:4,9a b ==,①4是腰长时,三角形的三边分别是4、4、9,∵449+<,∴不能组成三角形.②4是底边时,三角形的三边分别是4、9、9,能组成三角形,周长99422=++=,综上所述,等腰三角形的周长是22.(2)ABC D Q 的三边长分别是a 、b 、c ,0a b c \+->,()0b a c b a c --=-+<,0c b a +->,原式[()]()a b c b a c c b a =+-+----+-a b c b a c c b a =+--++--+22a c =-.【点睛】此题主要考查了三角形三边关系与绝对值的性质.解此题的关键是根据三角形三边的关系来判定是否能构成三角形或绝对值内式子的正负.21.(1)AB CD ∥,理由见解析(2)36AEC Ð=°【分析】本题主要考查了平行线的性质和判定,角平分线的定义,解题的关键是熟练掌握平行线的判定和性质.(1)根据同旁内角互补两直线平行进行判断即可;(2)设4BAC x Ð=,则3EFC x Ð=,根据平行线的性质得出4ACD BAC x Ð=Ð=,根据角平分线的定义得出2ACE DCE x Ð=Ð=,根据平行线的性质得出2BEC DCE x Ð=Ð=,180CFE BEF Ð+Ð=°,即3290x x +=°,求出18x =°,即可得出答案.【详解】(1)解:AB CD ∥,理由如下:∵CD BC ^,90B Ð=°,∴90BCD B Ð=Ð=°,∴180BCD B Ð+Ð=°,∴AB CD ∥.(2)解:设4BAC x Ð=,则3EFC x Ð=.∵AB CD ∥,∴4ACD BAC x Ð=Ð=,∵CE 平分ACD Ð,∴2ACE DCE x Ð=Ð=,∵AB CD ∥,∴2BEC DCE x Ð=Ð=,180CFE BEF Ð+Ð=°,∵EF EC ^,∴90CEF Ð=°,∴1809090CFE CEB Ð+Ð=°-°=°,∴3290x x +=°,解得:18x =°,∴21836AEC Ð=´°=°.22.(1)6AB =(2)30°【分析】本题考查的是线段的垂直平分线的性质,等边对等角,三角形的内角和定理的应用,三角形的外角的性质,掌握以上基础知识是解本题的关键.(1)先证明AB BE =,AD DE =,结合ABC V 的周长为19,DEC V 的周长为7,可得19712AB BE +=-=,从而可得答案;(2)先求解1803045105BAC Ð=°-°-°=°,然后利用等边对等角和三角形内角和定理得到()1180752BAE BEA ABC Ð=Ð=°-Ð=°,进而求解即可.【详解】(1)解:∵BD 是线段AE 的垂直平分线,∴AB BE =,AD DE =,∵ABC V 的周长为19,DEC V 的周长为7,∴19AB BE CE CD AD ++++=,7CD EC DE CD CE AD ++=++=,∴19712AB BE +=-=,∴6AB BE ==;(2)解:∵30ABC Ð=°,45C Ð=°,∴1803045105BAC Ð=°-°-°=°,∵AB BE=∴()1180752BAE BEA ABC Ð=Ð=°-Ð=°∴30EAC BAC BAE Ð=Ð-Ð=°.23.(1)见解析(2)EF BF AE =-,理由见解析(3)6【分析】本题考查了全等三角形的判定和性质,三角形的面积,余角的性质.熟练掌握全等三角形的判定和性质定理是解题的关键.(1)根据垂直的定义和余角的性质得到FCB EAC Ð=Ð,根据全等三角形的性质得到AE CF =,CE BF =,等量代换得到结论;(2)根据余角的性质得到CAE BCF Ð=Ð根据全等三角形的性质得到CE BF =,AE CF =,等量代换得到结论;(3)由(2)得EF AE BF =+且3BF AE =,求得3CE AE =,得到24EF AE ==,根据三角形的面积公式即可得到结论.【详解】(1)证明:90ACB Ð=°Q ,90ECA FCB \Ð+Ð=°,又AE EF ^Q ,BF EF ^,90AEF BFC \Ð=Ð=°,90ECA EAC \Ð+Ð=°,FCB EAC \Ð=Ð,在ACE △和CBF V 中,AEC BFC EAC FCB AC BC Ð=ÐìïÐ=Ðíï=î,(AAS)ACE CBF \△≌△,AE CF ∴=,CE BF =,EF EC CF =+Q ,EF AE BF \=+;(2)解:EF BF AE =-,理由如下:90AEC CFB Ð=Ð=°Q ,90ACB Ð=°,90ACE CAE ACE BCF \Ð+Ð=Ð+Ð=°,CAE BCF\Ð=Ð又AC BC =Q ,(AAS)CAE BCF \V V ≌,CE BF \=,AE CF =,EF CE CF BF AE \=-=-,即EF BF AE =-;(3)解:由(2)得EF BF AE =-且3BF AE =,3CE AE \=,CF AE =Q ,24EF AE \==,2AE CF \==,6BF =,BFC \△的面积1126622CF BF =×=´´=.24.(1)①见解析;②8OA OB +=(2)8OA OB -=【分析】本题是三角形综合题,考查了全等三角形的判定与性质、坐标与图形性质,本题综合性强,熟练掌握全等三角形的判定与性质,正确作出辅助线,构造全等三角形是解题的关键,属于中考常考题型.(1)①过点P 作PE x ^轴于E ,作PF y ^轴于F ,根据点P 的坐标可得4PE PF ==,然后利用“HL”证明Rt APE V 和Rt BPF V 全等,根据全等三角形对应角相等可得APE BPF Ð=Ð,然后求出90APB EPF Ð=Ð=°,再根据垂直的定义证明;②根据全等三角形对应边相等可得AE BF =,再表示出PE 、PF ,然后列出方程整理即可得解;(2)根据全等三角形对应边相等可得AE BF =,再表示出PE 、PF ,然后列出方程整理即可得解.【详解】(1)①证明:如图,过点P 作PE x ^轴于E ,作PF y ^轴于F ,∴PE PF ^,∵()4,4P ,∴4PE PF ==,在Rt APE V 和Rt BPF V ,PA PB PE PF=ìí=î,∴()Rt Rt HL APE BPF V V ≌,∴APE BPF Ð=Ð,∴90APB APE BPE BPF BPE EPF Ð=Ð+Ð=Ð+Ð=Ð=°,∴PA PB ^;②解:∵()Rt Rt HL APE BPF V V ≌,∴BF AE =,∵,OA OE AE OB OF BF =+=-,∴448OA OB OE AE OF BF OE OF +=++-=+=+=;(2)解:如图,过点P 作PE x ^轴于E ,作PF y ^轴于F ,同理得()Rt Rt HL APE BPF V V ≌,∴AE BF =,∵4,4AE OA OE OA BF OB OF OB =-=-=+=+,∴44OA OB -=+,∴8OA OB -=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
回澜阁 青岛标志性旅游景点
八年级期中调研考试数学试卷
一、精心选一选(本大题共8小题,每小题3分,共24分)每小题给出的
4个选项中只有一个符合题意,请将所选选项的字母代号写在题目后的括号内.
1、如图,若 △ABC ≌△DEF ,∠E 等于( )
A .30°
B .50
°
C .60°
D 、100°
2、若点(3,y 1)和(1,y 2)都在直线y=-3x+5上,则下列结论正确的是( •)
A .y 1>y 2
B .y 1<y 2
C .y 1=y 2
D .y 1≤y 2
3、将两根钢条AA ′、BB ′的中点 O 连在一起,使 AA ′、BB ′能绕着点 O 自由转动,就做成了一个测量工作,则A ′B ′的长等于内槽宽 AB ,
那么判定△OAB ≌△OA ′B ′的理由是( )
A .边角边
B .角边角
C .边边边
D .角角边
4、汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )
5、下面是两户居民家庭全年各项支出的统计图.
根据统计图,下列对两户教育支出占全年总支出的百分比作出的判断中,正确的是( )
A .甲户比乙户大
B .乙户比甲户大
C .甲、乙两户一样大
D .无法确定哪一户大
6、如图,已知△ABC 的六个元素,则下面甲、乙、丙三个三角形中和△ABC 全等的图形是( )
A .甲和乙
B .乙和丙
C .只有乙
D .只有丙。