函数的极值与导数说课

合集下载

函数的极值与导数的教案

函数的极值与导数的教案

函数的极值与导数教案章节一:极值的概念与定义教学目标:1. 了解极值的概念;2. 掌握极值的定义;3. 能够判断函数的极值点。

教学内容:1. 引入极值的概念;2. 讲解极值的定义;3. 举例说明如何判断函数的极值点。

教学方法:1. 采用讲解法,讲解极值的概念和定义;2. 利用图形和实际例子,让学生直观地理解极值点;3. 进行课堂练习,巩固所学知识。

教学评估:1. 课堂练习;2. 学生能够准确判断函数的极值点。

教案章节二:导数与极值的关系教学目标:1. 了解导数与极值的关系;2. 掌握求函数极值的方法;3. 能够运用导数研究函数的极值问题。

教学内容:1. 讲解导数与极值的关系;2. 教授求函数极值的方法;3. 举例说明如何运用导数研究函数的极值问题。

教学方法:1. 采用讲解法,讲解导数与极值的关系;2. 通过例题,教授求函数极值的方法;3. 进行课堂练习,巩固所学知识。

教学评估:1. 课堂练习;2. 学生能够运用导数研究函数的极值问题。

教案章节三:一元函数的极值教学目标:1. 了解一元函数的极值;2. 掌握一元函数极值的判断方法;3. 能够求出一元函数的极值。

教学内容:1. 讲解一元函数的极值;2. 教授一元函数极值的判断方法;3. 举例说明如何求出一元函数的极值。

教学方法:1. 采用讲解法,讲解一元函数的极值;2. 通过例题,教授一元函数极值的判断方法;3. 进行课堂练习,巩固所学知识。

教学评估:1. 课堂练习;2. 学生能够准确判断一元函数的极值点;3. 学生能够求出一元函数的极值。

教案章节四:二元函数的极值教学目标:1. 了解二元函数的极值;2. 掌握二元函数极值的判断方法;3. 能够求出二元函数的极值。

教学内容:1. 讲解二元函数的极值;2. 教授二元函数极值的判断方法;3. 举例说明如何求出二元函数的极值。

教学方法:1. 采用讲解法,讲解二元函数的极值;2. 通过例题,教授二元函数极值的判断方法;3. 进行课堂练习,巩固所学知识。

高中数学教案函数的极值和导数

高中数学教案函数的极值和导数

高中数学教案——函数的极值和导数一、教学目标:1. 理解导数的概念,掌握基本初等函数的导数公式。

2. 学会利用导数判断函数的单调性,理解函数的极值概念。

3. 能够运用导数解决实际问题,提高解决函数问题的能力。

二、教学内容:1. 导数的定义及几何意义2. 基本初等函数的导数公式3. 导数的计算法则4. 利用导数判断函数的单调性5. 函数的极值及其判定三、教学重点与难点:1. 重点:导数的定义、基本初等函数的导数公式、导数的计算法则、利用导数判断函数的单调性、函数的极值及其判定。

2. 难点:导数的应用,如何利用导数解决实际问题。

四、教学方法:1. 采用启发式教学,引导学生主动探究导数的定义及应用。

2. 利用多媒体课件,直观展示函数的导数与单调性、极值之间的关系。

3. 结合实际例子,让学生感受导数在解决实际问题中的重要性。

4. 开展小组讨论,培养学生合作学习的能力。

五、教学过程:1. 导入:回顾初中阶段学习的函数图像,引导学生思考如何判断函数的单调性、2. 讲解导数的定义:通过几何直观,解释导数的含义,引导学生理解导数表示函数在某点的瞬时变化率。

3. 学习基本初等函数的导数公式:讲解幂函数、指数函数、对数函数、三角函数的导数公式。

4. 导数的计算法则:讲解导数的四则运算法则,举例说明。

5. 利用导数判断函数的单调性:引导学生利用导数符号判断函数的单调性,讲解“增函数”和“减函数”的概念。

6. 函数的极值及其判定:讲解极值的概念,举例说明如何利用导数判断函数的极值。

7. 课堂练习:布置相关练习题,让学生巩固所学知识。

8. 总结:回顾本节课所学内容,强调导数在研究函数单调性、极值方面的应用。

9. 拓展:引导学生思考导数在其他领域的应用,如物理、经济学等。

10. 课后作业:布置课后作业,巩固所学知识,提高解题能力。

六、教学评价:1. 课后作业:通过布置相关的习题,检验学生对导数概念、基本初等函数的导数公式、导数计算法则、单调性和极值的理解和应用能力。

《函数的极值和导数》课件

《函数的极值和导数》课件

Part
05
导数的计算方法
导数的四则运算规则
01
加法法则
$(uv)' = u'v + uv'$
02
减法法则
$(u-v)' = u'-v'$
03
乘法法则
$(uv)' = u'v + uv'$
04
除法法则
$left(frac{u}{v}right)' = frac{u'v-uv'}{v^2}$
复合函数的导数计算
最小成本问题
总结词
利用极值理论寻找最小成本
详细描述
在生产和经营活动中,也常常需要寻求最小成本。通过建立数学模型,利用函数的极值和 导数,可以找到使得成本最小的生产量、原材料采购量等决策变量。
实例
某公司需要采购原材料,每次采购的成本包括固定成本5万元和变动成本与采购量的比例 系数0.1万元/单位。求该公司的最小总成本。通过建立函数并求导,可以找到使得总成本 最小的采购量。
Part
03
极值在实际问题中的应用
最大利润问题
01
总结词
利用极值理论寻找最大利润
02 03
详细描述
在生产和经营活动中,常常需要寻求最大利润。通过建立数学模型,利 用函数的极值和导数,可以找到使得利润最大的生产量、价格等决策变 量。
实例
某公司生产一种产品,其固定成本为100万元,每生产一个单位的产品 ,成本为2万元,售价为5万元。求该公司的最大利润。通过建立函数并 求导,可以找到使得利润最大的产量。
Part
04
导数的几何意义
导数在平面上的表示
切线斜率

函数的极值与导数(教案)

函数的极值与导数(教案)

函数的极值与导数(教案)第一章:极值的概念教学目标:1. 理解极值的概念;2. 能够找出函数的极值点;3. 能够判断函数的极值类型。

教学内容:1. 引入极值的概念;2. 讲解极值的判断方法;3. 举例讲解如何找出函数的极值点;4. 讲解极大值和极小值的概念;5. 举例讲解如何判断函数的极大值和极小值。

教学活动:1. 引入极值的概念,引导学生思考什么是极值;2. 通过示例讲解如何找出函数的极值点,引导学生动手尝试;3. 讲解极大值和极小值的概念,引导学生理解极大值和极小值的区别;4. 通过示例讲解如何判断函数的极大值和极小值,引导学生进行判断。

作业布置:1. 练习找出给定函数的极值点;2. 练习判断给定函数的极大值和极小值。

第二章:导数的基本概念教学目标:1. 理解导数的概念;2. 能够计算常见函数的导数;3. 能够利用导数判断函数的单调性。

教学内容:1. 引入导数的概念;2. 讲解导数的计算方法;3. 举例讲解如何利用导数判断函数的单调性;4. 讲解导数的应用。

教学活动:1. 引入导数的概念,引导学生思考什么是导数;2. 通过示例讲解如何计算常见函数的导数,引导学生动手尝试;3. 讲解导数的应用,引导学生理解导数在实际问题中的应用;4. 通过示例讲解如何利用导数判断函数的单调性,引导学生进行判断。

作业布置:1. 练习计算给定函数的导数;2. 练习利用导数判断给定函数的单调性。

第三章:函数的单调性教学目标:1. 理解函数单调性的概念;2. 能够利用导数判断函数的单调性;3. 能够找出函数的单调区间。

教学内容:1. 引入函数单调性的概念;2. 讲解如何利用导数判断函数的单调性;3. 举例讲解如何找出函数的单调区间;4. 讲解函数单调性的应用。

教学活动:1. 引入函数单调性的概念,引导学生思考什么是函数单调性;2. 通过示例讲解如何利用导数判断函数的单调性,引导学生动手尝试;3. 讲解如何找出函数的单调区间,引导学生理解单调区间的概念;4. 通过示例讲解如何找出给定函数的单调区间,引导学生进行判断。

函数的极值与导数的教案

函数的极值与导数的教案

函数的极值与导数一、教学目标1. 理解导数的定义和几何意义2. 学会求函数的导数3. 理解函数的极值概念4. 学会利用导数研究函数的极值二、教学内容1. 导数的定义和几何意义2. 常见函数的导数3. 函数的极值概念4. 利用导数研究函数的单调性5. 利用导数求函数的极值三、教学重点与难点1. 重点:导数的定义和几何意义,常见函数的导数,函数的极值概念,利用导数求函数的极值2. 难点:导数的运算法则,利用导数研究函数的单调性,求函数的极值四、教学方法1. 采用讲授法讲解导数的定义、几何意义、常见函数的导数及函数的极值概念2. 利用例题解析法讲解利用导数研究函数的单调性和求函数的极值3. 组织学生进行小组讨论和互动,巩固所学知识五、教学过程1. 导入:复习导数的定义和几何意义,引导学生思考如何求函数的导数2. 新课:讲解常见函数的导数,引导学生掌握求导数的方法3. 案例分析:利用导数研究函数的单调性,求函数的极值,引导学生理解和应用所学知识4. 练习与讨论:布置练习题,组织学生进行小组讨论,解答练习题5. 总结与拓展:总结本节课的主要内容,布置课后作业,引导学生思考如何利用导数研究更复杂的函数极值问题六、课后作业1. 复习导数的定义和几何意义,常见函数的导数2. 练习求函数的导数3. 利用导数研究函数的单调性,求函数的极值七、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答情况,了解学生的学习状态2. 练习与讨论:评估学生在练习题和小组讨论中的表现,检验学生对知识的掌握程度3. 课后作业:检查课后作业的完成情况,评估学生对课堂所学知识的巩固程度六、教学策略的调整1. 根据学生的课堂反馈,适时调整教学节奏和难度,确保学生能够跟上教学进度。

2. 对于学生掌握不够扎实的知识点,可以通过举例、讲解、练习等多种方式加强巩固。

3. 鼓励学生提出问题,充分调动学生的主动学习积极性,提高课堂互动性。

七、教学案例分析1. 通过分析具体案例,让学生理解导数在实际问题中的应用,例如在物理学中的速度、加速度的计算。

《函数的极值与导数》教案完美版

《函数的极值与导数》教案完美版

《函数的极值与导数》教案完美版第一章:极值的概念与性质1.1 极值的定义引入极值的概念,解释函数在某一点的局部性质。

通过图形和实例直观展示极值的存在。

1.2 极值的判定条件介绍函数的导数与极值的关系,讲解导数为零的必要性和充分性。

分析导数为正和导数为负时函数的单调性,得出极值的判定条件。

1.3 极值的判定定理介绍罗尔定理、拉格朗日中值定理和柯西中值定理在极值判定中的应用。

证明极值的判定定理,并通过实例进行验证。

第二章:导数与函数的单调性2.1 导数的定义与计算引入导数的概念,解释导数表示函数在某一点的瞬时变化率。

讲解导数的计算规则,包括常数函数、幂函数、指数函数和三角函数的导数。

2.2 导数与函数的单调性分析导数正负与函数单调性的关系,得出单调递增和单调递减的定义。

通过实例和图形展示导数与函数单调性的联系。

2.3 单调性的应用讲解利用单调性解决函数极值问题的方法。

分析函数的单调区间和极值点,得出函数的单调性对极值的影响。

第三章:函数的极值点与导数3.1 极值点的定义与判定引入极值点的概念,解释极值点是函数导数为零或不存在的点。

讲解极值点的判定方法,包括导数为零和导数不存在的条件。

3.2 极值点的求解方法介绍求解极值点的方法,包括解析法和数值法。

讲解如何利用导数和图形求解函数的极值点。

3.3 极值点的应用分析极值点在实际问题中的应用,如最优化问题。

举例说明如何利用极值点解决实际问题。

第四章:函数的拐点与导数4.1 拐点的定义与判定引入拐点的概念,解释拐点是函数导数由正变负或由负变正的点。

讲解拐点的判定方法,包括导数的正负变化和二阶导数的符号。

4.2 拐点的求解方法介绍求解拐点的方法,包括解析法和数值法。

讲解如何利用导数和图形求解函数的拐点。

4.3 拐点的应用分析拐点在实际问题中的应用,如曲线拟合和物体的运动。

举例说明如何利用拐点解决实际问题。

第五章:函数的极值与图像5.1 极值与函数图像的关系分析极值点在函数图像中的位置和特征。

函数的极值与导数课件公开课

函数的极值与导数课件公开课

x (–∞, –3)
f (x) +
f (x) 单调递增
–3 (–3, 3)
0

54 单调递减
3
( 3, +∞)
0
+
54 单调递增
所以, 当 x = –3 时, f (x)有极大值 54 ; 当 x = 3 时, f (x)有极小值 – 54 .
思考
(1)导数为0的点一定是 函数的极值点吗?
y y=x3
当 x= 2时,f(x)有极小值 5-4 2.
(2)由(1)的分析知 y=f(x)的图象的 大致形状及走向如图所示.所以, 当 5-4 2<a<5+4 2时,直线 y =a 与 y=f(x)的图象有三个不同 交点,即方程 f(x)=a 有三个不同 的解.
【名师点评】 用求导的方法确定方程根的个数, 是一种很有效的方法.它通过函数的变化情况, 运用数形结合思想来确定函数图象与x轴的交点 个数,从而判断方程根的个数.
【解】 (1)f′(x)=3x2-6,令 f′(x)=0, 解得 x1=- 2,x2= 2. 因为当 x> 2或 x<- 2时,f′(x)>0; 当- 2<x< 2时,f′(x)<0. 所以 f(x)的单调递增区间为(-∞,- 2)和( 2, +∞);单调递减区间为(- 2, 2). 当 x=- 2时,f(x)有极大值 5+4 2;
若f ’(x0)左正右负,则f(x0)为极大值; 若 f ’(x0)左负右正,则f(x0)为极小值
求导—求极点—列表—求极值
练习:
求下列函数的极值:
(1) f (x) x3 27x; (2) f (x) 3x x3
解:
(3) f (x) ln x 1 ; x
(1) 令f (x) 3x2 27 0, 解得 x1 3, x2 3.列表:

数学教案导数复习函数的极值与最值,导数的综合运用

数学教案导数复习函数的极值与最值,导数的综合运用

数学教案-导数复习函数的极值与最值,导数的综合运用教案章节:一、函数的极值概念与判定1. 学习目标:理解函数极值的概念,掌握函数极值的判定方法。

2. 教学内容:介绍函数极值的定义,分析函数极值的判定条件,举例说明函数极值的判定方法。

3. 教学过程:(1) 引入函数极值的概念,解释函数在某一点取得最大值或最小值的意义。

(2) 讲解函数极值的判定条件,如导数为零或不存在,以及函数在该点附近的单调性变化。

(3) 举例说明函数极值的判定方法,如通过导数的正负变化来判断函数的增减性。

二、函数的最值问题1. 学习目标:理解函数最值的概念,掌握函数最值的求解方法。

2. 教学内容:介绍函数最值的概念,分析函数最值的求解方法,举例说明函数最值的求解过程。

3. 教学过程:(1) 引入函数最值的概念,解释函数在整个定义域内取得最大值或最小值的意义。

(2) 讲解函数最值的求解方法,如通过导数的研究来确定函数的极值点,进而求得最值。

(3) 举例说明函数最值的求解过程,如给定一个函数,求其在定义域内的最大值和最小值。

三、导数的综合运用1. 学习目标:掌握导数的综合运用方法,能够运用导数解决实际问题。

2. 教学内容:介绍导数的综合运用方法,分析导数在实际问题中的应用,举例说明导数的综合运用过程。

3. 教学过程:(1) 讲解导数的综合运用方法,如通过导数研究函数的单调性、极值、最值等。

(2) 分析导数在实际问题中的应用,如优化问题、速度与加速度的关系等。

(3) 举例说明导数的综合运用过程,如给定一个实际问题,运用导数来解决问题。

四、实例分析与练习1. 学习目标:通过实例分析与练习,巩固函数极值与最值的求解方法,提高导数的综合运用能力。

2. 教学内容:分析实例问题,运用函数极值与最值的求解方法,进行导数的综合运用练习。

3. 教学过程:(1) 分析实例问题,引导学生运用函数极值与最值的求解方法来解决问题。

(2) 进行导数的综合运用练习,让学生通过实际问题来运用导数,巩固所学知识。

函数的极值与导数(教案

函数的极值与导数(教案

函数的极值与导数一、教学目标:1. 理解极值的概念,掌握求函数极值的方法。

2. 掌握导数的定义,了解导数与函数极值的关系。

3. 能够运用导数判断函数的单调性,解决实际问题。

二、教学内容:1. 极值的概念:局部最小值、局部最大值、全局最小值、全局最大值。

2. 求函数极值的方法:(1)利用导数求极值;(2)利用二阶导数判断极值类型;(3)利用图像观察极值。

3. 导数的定义:函数在某一点的导数表示函数在该点的切线斜率。

4. 导数与函数极值的关系:(1)函数在极值点处的导数为0;(2)函数在极值点附近的导数符号发生变化。

5. 利用导数判断函数的单调性:(1)导数大于0,函数单调递增;(2)导数小于0,函数单调递减。

三、教学重点与难点:1. 教学重点:(1)极值的概念及求法;(2)导数的定义及求法;(3)导数与函数极值的关系;(4)利用导数判断函数的单调性。

2. 教学难点:(1)二阶导数判断极值类型;(2)利用导数解决实际问题。

四、教学方法:1. 采用讲解、演示、练习、讨论相结合的方法;2. 使用多媒体课件辅助教学,增强直观性;3. 设置典型例题,引导学生思考、探究;4. 注重引导学生发现规律,提高学生解决问题的能力。

五、教学安排:1. 课时:本章共需4课时;2. 教学过程:第一课时:极值的概念及求法;第二课时:导数的定义及求法;第三课时:导数与函数极值的关系;第四课时:利用导数判断函数的单调性,解决实际问题。

六、教学评价:1. 课堂讲解:观察学生对极值概念、导数定义及应用的理解程度,以及他们在课堂上的参与度和提问反馈。

2. 作业练习:通过布置相关的习题,评估学生对求极值方法、导数计算和单调性判断的掌握情况。

3. 小组讨论:评估学生在小组内的合作能力和解决问题的创造性思维。

4. 课后反馈:收集学生的疑问和反馈,以便对教学方法和内容进行调整。

七、教学反思:1. 教学方法是否适合学生的学习水平,是否需要调整以提高教学效果。

函数的极值与导数(教案

函数的极值与导数(教案

函数的极值与导数第一章:函数极值概念的引入1.1 教学目标让学生了解极值的概念,理解极大值和极小值的区别。

学会通过图像来观察函数的极值。

掌握利用导数求函数极值的方法。

1.2 教学内容函数极值的定义利用图像观察函数极值利用导数求函数极值1.3 教学步骤1. 引入极值的概念,让学生通过具体的例子来理解极大值和极小值。

2. 通过图像来观察函数的极值,引导学生学会从图像中找出极大值和极小值。

3. 讲解利用导数求函数极值的方法,让学生通过例题来掌握这个方法。

1.4 作业布置f(x) = x^3 3x^2 + 3x 1g(x) = x^2 4x + 4第二章:函数的单调性2.1 教学目标让学生理解函数单调性的概念,学会判断函数的单调性。

掌握利用导数来判断函数的单调性。

2.2 教学内容函数单调性的定义利用导数判断函数单调性2.3 教学步骤1. 引入函数单调性的概念,让学生通过具体的例子来理解函数单调性。

2. 讲解利用导数来判断函数单调性的方法,让学生通过例题来掌握这个方法。

2.4 作业布置h(x) = x^3 3xk(x) = x^2 4x + 3第三章:函数的极值定理3.1 教学目标让学生了解函数的极值定理,学会应用极值定理来解决问题。

3.2 教学内容函数的极值定理3.3 教学步骤1. 讲解函数的极值定理,让学生理解极值定理的意义。

2. 通过例题让学生学会应用极值定理来解决问题。

3.4 作业布置求函数f(x) = x^3 3x^2 + 3x 1 的极大值和极小值。

第四章:函数的拐点4.1 教学目标让学生了解拐点的概念,学会通过导数来找函数的拐点。

4.2 教学内容拐点的定义利用导数找拐点4.3 教学步骤1. 引入拐点的概念,让学生通过具体的例子来理解拐点。

2. 讲解利用导数来找拐点的方法,让学生通过例题来掌握这个方法。

4.4 作业布置m(x) = x^3 3xn(x) = x^2 4x + 4第五章:函数的单调性与极值的应用5.1 教学目标让学生学会运用函数的单调性和极值来解决实际问题。

数学教案导数复习函数的极值与最值,导数的综合运用

数学教案导数复习函数的极值与最值,导数的综合运用

数学教案-导数复习函数的极值与最值,导数的综合运用一、教学目标:1. 理解函数的极值与最值的概念,掌握求解函数极值与最值的方法。

2. 熟练运用导数性质,解决实际问题中的最值问题。

3. 提高学生分析问题和解决问题的能力,培养学生的逻辑思维和数学素养。

二、教学内容:1. 函数的极值与最值概念。

2. 求解函数极值与最值的方法。

3. 导数在实际问题中的应用。

三、教学重点与难点:1. 教学重点:函数的极值与最值的概念,求解方法及实际应用。

2. 教学难点:导数在实际问题中的综合运用。

四、教学方法与手段:1. 采用问题驱动法,引导学生主动探究函数极值与最值的问题。

2. 利用多媒体课件,展示函数图像,直观地引导学生理解极值与最值的概念。

3. 结合实际问题,运用导数求解最值问题,培养学生的应用能力。

五、教学过程:1. 导入新课:复习函数的极值与最值概念,引导学生回顾求解方法。

2. 知识讲解:讲解求解函数极值与最值的方法,结合实例进行分析。

3. 课堂练习:布置练习题,让学生巩固所学知识,提高解题能力。

4. 案例分析:结合实际问题,运用导数求解最值问题,培养学生的应用能力。

6. 作业布置:布置课后作业,巩固所学知识,提高学生的自主学习能力。

教案将继续编写后续章节,敬请期待。

六、教学评估:1. 课堂练习环节,通过学生解答练习题的情况,评估学生对函数极值与最值概念的理解以及求解方法的掌握程度。

2. 案例分析环节,通过学生分析实际问题、运用导数求解最值问题的过程,评估学生的应用能力和逻辑思维。

3. 课后作业的完成情况,评估学生对课堂所学知识的巩固程度和自主学习能力。

七、教学反思:1. 根据教学评估的结果,反思教学过程中是否存在不足,如有需要,调整教学方法,以提高教学效果。

2. 针对学生的掌握情况,针对性地进行辅导,解决学生在学习过程中遇到的问题。

3. 结合学生的反馈,优化教学内容,使之更符合学生的学习需求。

八、课后作业:1. 复习本节课所学的函数极值与最值的概念及求解方法。

《函数的极值与导数》教案完美版

《函数的极值与导数》教案完美版

《函数的极值与导数》教案完美版第一章:极值的概念与定义1.1 极值的概念引入极值的概念,让学生了解函数在某一点取得局部最值的含义。

通过图像和实际例子来说明极值的存在和重要性。

1.2 极值的定义介绍极值的定义,包括局部极值和全局极值。

解释极值的必要条件和充分条件。

第二章:导数与极值的关系2.1 导数的定义与性质复习导数的定义和基本性质,包括导数的符号变化与函数单调性的关系。

2.2 导数与极值的关系引入导数与极值的关系,讲解导数为零的点可能是极值点的原理。

通过实例来说明导数在判断极值中的作用。

第三章:一元函数的极值判定3.1 判定极值的存在性介绍判定极值存在性的方法,包括罗尔定理和拉格朗日中值定理。

3.2 判定极值的具体方法讲解利用导数符号变化判断极值的方法,包括导数单调性和零点存在性定理。

第四章:多元函数的极值4.1 多元函数极值的概念引入多元函数极值的概念,让学生了解多元函数在不同维度上的极值问题。

4.2 多元函数极值的判定讲解多元函数极值的判定方法,包括拉格朗日乘数法和海森矩阵。

第五章:实际应用中的极值问题5.1 应用背景介绍通过实际例子介绍极值在各个领域中的应用,如优化问题、物理学、经济学等。

5.2 实际应用案例分析分析具体案例,让学生了解如何运用极值理论和方法解决问题。

第六章:利用极值解决实际问题6.1 优化问题概述介绍优化问题的概念,解释最小值和最大值在优化问题中的作用。

举例说明优化问题在工程、经济等领域的应用。

6.2 利用极值解决优化问题讲解如何利用函数的极值解决优化问题,包括确定最优解的方法和步骤。

通过实际案例分析,让学生掌握优化问题的解决技巧。

第七章:函数极值的存在性定理7.1 拉格朗日中值定理复习拉格朗日中值定理的内容,解释其在函数极值存在性判断中的应用。

利用拉格朗日中值定理证明函数极值的存在性。

7.2 罗尔定理与极值存在性讲解罗尔定理的内容及其在函数极值存在性判断中的应用。

结合罗尔定理和拉格朗日中值定理,证明函数极值的存在性。

函数的极值与导数(公开课)

函数的极值与导数(公开课)

单调性与极值
单调性
函数在某区间内单调增加或单调减少 的性质。
单调性与极值的关系
单调性可以用来判断函数是否存在极 值,以及极值的类型(极大值或极小 值)。
02 导数与极值的关系
导数的定义与性质
导数的定义
导数是函数在某一点的变化率,表示 函数在该点的切线斜率。
导数的性质
导数具有连续性、可导性、可积性等 性质,这些性质在研究函数的极值时 非常重要。
在量子力学中,极值理论也被广泛应 用于描述微观粒子的行为。通过求解 薛定谔方程,可以找到微观粒子的波 函数和能量状态。
在光学中,极值理论可以用于研究光 的传播和干涉现象。通过分析光波的 振幅和相位变化,可以解释光的干涉 和衍射等现象。
极值在工程领域的应用
在工程设计中,极值理论被广泛应用于结构分析和优 化设计。通过分析结构的应力和应变分布,可以找到3Fra bibliotek极大值
当函数在某点的值大于其邻近点的值时,该点为 函数的极大值点,函数在该点的值为极大值。
极值的条件
一阶导数测试
若一阶导数在某点的左右两侧由正变负或由负变正, 则该点可能是函数的极值点。
二阶导数测试
若二阶导数在某点的值为零,且一阶导数在该点的左 右两侧变号,则该点可能是函数的极值点。
凹凸性判断
若函数在某点的凹凸性发生改变,则该点可能是函数 的极值点。
总结词
导数可以用于计算函数的极值点,通过求 导并令导数为0,可以找到函数的极值点。
VS
详细描述
在极值点处,函数的导数由正变负或由负 变正,即一阶导数为0。通过求解一阶导 数等于0的点,可以找到函数的极值点, 并进一步计算极值。
导数在函数图像绘制中的应用
总结词

函数的极值与导数----说课课件

函数的极值与导数----说课课件
高中数学说课课件
函数的极值与导数
条目
1 2 3 4 5 6 7 教材分析 学情分析 目标定位 教法、学法 教学过程 板书设计
教学反思
一、教材分析:教材的背景、地位及作用
说教材
《函数极值》是高中数学人教A版选修2-2第一章第
三节导数应用中的第二节(第一节是利用导数知识 判断函数的单调性),在此之前我们已经学习了导 数,学生们已经了解了导数的一些用途,思想中已 有了一点运用导数的基本思想去分析和解决实际问 题的意识,本节课将继续加强这方面的意识和能力 的培养——利用导数知识求可导函数的极值。其后 Company Logo 还有利用导数求函数的最值问题、曲线的切线

Company Logo
(一)复习引入 教学过程 设计意图
通过回顾 复习:利用函数的导数求函数单调性的 知识造成学生 步骤是什么? 的认知冲突, 引入:从图象我们可以看得出什么结论? 引发学生的好 奇心和求知欲, 推动问题进一 步探究。通过 具体函数图像 2 引出函数极值 0 x 定义,提出本 节课主要内容, 点明本节课的 课题 。
四、教法、学法分析
(二)学法分析
学 法 分 析
1. 采用体验学习及问题探究的学习 方式,通过学生亲历教师预设的各种 问题情境,引导学生开展创造性的学 习活动,不但使学生主动掌握知识, 而且要培养的独立探究能力和态度。 2.初步树立起数形结合的意识,并 从此出发,通过教师创设的问题情境, 再通过实例的确认与体验。经观察、 发现、讨论、探究、归纳和动手尝试 相结合的方式来获取知识,让学生成 为学习的主人。
而,当x=2时有极小值,并且,y极小值= 4
.
3
(四)反馈练习 教学过程
1、求出引例函数的极值,并给出答案 2、P24练习(2)、(4)可仿例题1做 并给出答案 其中(2)为二次函数,也可由二次函数 图像看出其极值

高中数学教案函数的极值和导数

高中数学教案函数的极值和导数

高中数学教案——函数的极值和导数教案内容:一、教学目标1. 理解导数的概念,掌握导数的计算方法。

2. 掌握函数的单调性,能够判断函数的单调区间。

3. 理解函数的极值概念,能够求出函数的极值。

二、教学重点与难点1. 重点:导数的计算方法,函数的单调性,函数的极值。

2. 难点:导数的应用,函数的极值的求法。

三、教学方法采用讲解法、例题解析法、学生自主探究法。

四、教学准备1. 教学课件。

2. 相关例题及练习题。

五、教学过程1. 导入:回顾初中阶段学习的函数图像,引导学生思考函数的增减性。

2. 讲解导数的概念:定义域内的函数在某一点的导数,即为该点的切线斜率。

引导学生理解导数的几何意义。

3. 导数的计算:讲解基本函数的导数公式,引导学生掌握导数的计算方法。

4. 函数的单调性:通过例题,讲解函数单调性的判断方法,引导学生掌握如何判断函数的单调区间。

5. 函数的极值:讲解函数极值的概念,通过例题,引导学生掌握求函数极值的方法。

6. 课堂练习:布置相关练习题,让学生巩固所学知识。

7. 总结:对本节课的内容进行总结,强调重点知识点。

8. 课后作业:布置适量作业,巩固所学知识。

注意:在教学过程中,要注重引导学生主动思考,培养学生的动手能力及解决问题的能力。

要及时解答学生的疑问,确保学生能够掌握所学知识。

六、教学内容与要求1. 理解曲线的切线与函数导数的关系。

2. 掌握基本函数的导数求解方法。

3. 能够运用导数判断函数的单调性。

七、教学过程1. 复习导入:通过回顾上节课的内容,引导学生复习导数的基本概念和计算方法。

2. 讲解导数的几何意义:通过图形演示,解释导数表示曲线在某点的切线斜率。

3. 导数的计算:详细讲解和练习基本函数的导数求解,包括幂函数、指数函数、对数函数等。

4. 函数单调性的判断:利用导数的概念,解释如何判断函数的单调性。

5. 例题解析:通过具体例题,演示如何运用导数判断函数的单调区间和求极值。

八、教学策略1. 采用互动式教学,鼓励学生提问和参与讨论。

函数的极值说课稿

函数的极值说课稿

函数的极值说课稿尊敬的各位评委老师:大家好!今天我说课的题目是“函数的极值”。

下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。

一、教材分析“函数的极值”是高中数学选修 1-1 第三章《导数及其应用》中的重要内容。

函数的极值是函数单调性的一个重要应用,它反映了函数在某一点附近的局部性质。

通过对函数极值的学习,学生能够更深入地理解导数与函数的关系,进一步提高运用导数解决实际问题的能力。

本节课在教材中的地位和作用主要体现在以下几个方面:1、承上启下:函数的极值是在学生已经学习了函数的单调性和导数的基础上进行的,它是对导数应用的进一步深化,同时也为后续学习函数的最值奠定了基础。

2、培养能力:通过对函数极值的探究,有助于培养学生的观察能力、分析问题和解决问题的能力,以及数学思维能力。

3、实际应用:函数的极值在实际生活中有着广泛的应用,如优化问题、经济问题等,能够让学生体会到数学与实际生活的紧密联系。

二、学情分析授课对象为高二年级的学生,他们已经掌握了函数的单调性和导数的基本概念和运算,但对于函数极值的概念和求法还比较陌生。

在思维能力方面,高二学生具备了一定的抽象思维和逻辑推理能力,但对于复杂问题的分析和解决还需要进一步的引导和训练。

此外,学生在学习过程中可能会遇到以下困难:1、对极值概念的理解不够准确,容易与最值概念混淆。

2、在运用导数求极值的过程中,可能会出现计算错误或忽略定义域等问题。

三、教学目标基于以上对教材和学情的分析,我制定了以下教学目标:1、知识与技能目标(1)理解函数极值的概念,能够区分极值与最值。

(2)掌握利用导数求函数极值的方法和步骤。

2、过程与方法目标(1)通过观察函数图象,引导学生发现函数极值的存在,培养学生的观察能力和归纳能力。

(2)通过求解函数的极值,让学生体会导数在研究函数性质中的作用,提高学生运用导数解决问题的能力。

高中数学 第一章 导数及其应用 1.3.2 函数的极值与导

高中数学 第一章 导数及其应用 1.3.2 函数的极值与导

1.3.2 函数的极值与导数一、教材分析《函数极值>>是高中数学人教版版新教材选修2-2第一章第三节,在此之前我们已经学习了导数,这为我们学习这一节起着铺垫作用。

二、教学目标 1. 教学目标(1) 知识技能目标:掌握函数极值的定义,会从几何图形直观理解函数的极值与其导数的关系,增强学生的数形结合意识,提升思维水平;掌握利用导数求可导函数的极值的一般方法及步骤;了解可导函数极值点0x 与)(0x f '=0的逻辑关系;培养学生运用导数的基本思想去分析和解决实际问题的能力. (2)过程与方法目标:培养学生观察、分析、探究、归纳得出数学概念和规律的学习能力。

(3)情感与态度目标:培养学生层层深入、一丝不苟研究事物的科学精神; 体会数学中的局部与整体的辨证关系. 2.教学重点和难点重点:掌握求可导函数的极值的一般方法. 难点:(1)0x 为函数极值点与)(0x f '=0的逻辑关系 (2)函数的导数与函数最值的区别及联系。

3.教学方法与教学手段师生互动探究式教学,遵循“教师为主导、学生为主体”的原则,结合高中学生的求知心理和已有的认知水平开展教学。

由于学生对极限和导数的知识学习还十分的有限(大学里还将继续学习),因此教学中更重视的是从感性认识到理性认识的探索过程,而略轻严格的理论证明,教师的主导作用和学生的主体作用都必须得到充分发挥.利用多媒体辅助教学.电脑演示动画图形,直观形象,便于学生观察.幻灯片打出重要结论,清楚明了,节约时间,提高课堂效率. 4、教学过程1.引入情景创设学生活动教师活动设计理由利用学生们熟悉的海边体育运动—冲浪,直观形象地引入函数极值的定义.学生感性认识运动员的运动过程,体会函数极值的定义.引导学生想象冲浪的过程引入极值的现象。

直观形象,立即抓住学生.2函数极值的定义掌握函数极值的定义.着重理解:“在点x附近”的含义。

体会:极大值与极小值没有必然关系,极大值可能比极小值还小.教师给出函数极值的定义:一般地,设函数)(xf在点x附近有定义,如果对x附近的所有的点,都有)(xf﹤)(xf,我们就说)(xf是函数)(xf的一个极大值,记作y极大值=)(xf;如果对x附近的所有的点,都有)(xf﹥)(xf,我们就说)(xf是函数)(xf的一个极小值,记作y极小值=)(xf.强调:极值是某一点附近的小区间而言的,是函数的局部性质,在整个定义区间内可能有多个极大值和极小值.左侧切线的斜率为负,右侧为正. (巩固导数与函数单调性之间的关系)右侧()f x'﹤0,那么,)(xf'是极大值; (左正右负为极大)(2) 如果在x附近的左侧()f x'﹤0, 右侧()f x'﹥0,那么,)(xf'是极小值. (右正左负为极小)3 x附 教学设计说明本节课是导数应用中的第二节(第一节是利用导数知识判断函数的单调性),学生们已经了解了导数的一些用途,思想中已有了一点运用导数的基本思想去分析和解决实际问题的意识,本节课将继续加强这方面的意识和能力的培养——利用导数知识求可导函数的极值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学情分析
在前面的学习中,学生已经学习了导数,了解 了导数的一些用途,思想中也有了一点运用导数的基 本思想去分析和解决实际问题的意识,本节课利用导 数知识求可导函数的极值,将继续加强这方面的意识 和能力的培养。不过鉴于学生在导数的应用方面水平 普遍偏低,理解和应用知识的能力还是不足,所以在 教学中,有必要从基础入手,指导学生先做到对解题 方法和步骤的机械模仿,在此基础上,努力提升认识 水平,力争让尽可能多的学生达到知识的融会贯通。
教学目标
知识与技能
1.掌握函数极值的定义,会从几何图形直观理解函数的 极值与其导数的关系,增强学生的数形结合意识,提 升思维水平;
2.掌握利用导数求可导函数的极值的一般方法及步骤.
过程与方法
1.培养学生运用导数的基本思想去分析和解决实际问 题的能力; 2.培养学生观察、分析、探究、归纳得出数学概念和 规律的学习能力.
2.函数的极大值一定大于极小值吗? 3.在区间内可导函数的极大值和极小值是唯一的吗?
小组讨论,解疑合探
(一)小组合探
小组内讨论解决自探中未解决的问题.
(二)小组展示
教师选择一个小组的同学展示讨论结果.
(三)评价
1.学生评价; 2.教师评价.
Hale Waihona Puke 深入学习,质疑再探对于刚才的学习内容,谁还有什么问题或 不明白的地方,请提出来,大家一起来解决!
为了提高课堂教学效率,我采用多媒体辅助教学.本节课的 学习效果主要通过学生回答问题和展示探究结果来检验,还要 通过做相应的练习题进行巩固.
创设情境,设疑自探 小组讨论,解疑合探 深入学习,质疑再探 练习巩固,运用拓展 课堂小结,课后作业
教 学 过 程 与 设 计
创设情境,设疑自探
观察图象中,点a和点b处的函数值与它们 附近点的函数值有什么的大小关系?
情感、态度与价值观
1.培养学生层层深入、一丝不苟研究事物的科学精神;
2.体会数学中的局部与整体的辨证关系.
教学重难点
重点:理解极值的概念,掌握求可导函数的极值的 一般方法; 难点:求可导函数的极值及函数有极值的条件问题.
教学方法与手段
本节课主要采用“疑探教学法”,即通过疑问和探究相结合 的方式,促使学生主动提出问题,独立思考问题,合作探究问 题,有助于学生形成敢于质疑,善于表达,认真倾听,勇于评 价和不断反思的良好学习习惯.学习过程采用问题驱动的形式, 激发学生的求知欲望;学生通过探究发现问题,发展探索能力 和创造能力.
谢谢观赏
3
思考
(1)导数值为0的点一定是函数的极值点吗? (2)函数在一点的导数值为0是函数在这点 取极值的什么条件?
课堂练习
求下列函数的极值:
(1) f (x) x3 27x
(2)f(x)3xx3
(3)f (x) lnx1 x
课堂小结
哪位同学帮我们总结一下,本节课我们主要学习 了哪些内容?
一.极大值和极小值的定义.
本节课我 们将进一步研究 导数的符号与函 数图像变化的一 些规律.
y yfx
a ob x
(一)学生提问
关于本节课,你认为应该掌握哪些内容或者解 决哪些问题,请提出来 (根据课本93至94页内容提出你的问题).
(二)自探提示
老师将大家提出的问题归纳、整理、补充为下 面的自探提示:
1.什么是极小值,什么是极大值?各有什么特点?
二.求函数极值的步骤.
作业
1.作业本:课本96页练习1; 2.《优化方案》56页例1及跟踪训练.
板书设计
函数的极值与导数
一.极值的定义 二.求函数极值的步骤
例题与练习
以上是我对

这节课的教学预 设,具体的教学
谢! 过程还要根据学
生在课堂中的具
体情况适当调整,
向生成性课堂进
行转变.不妥之处,
敬请批评指正.
求根
当 x 变化时, f (x)和f (x) 的变化情况如下表:
列表
x (–∞, –2) –2 (–2, 2)
2 ( 2, +∞)
f ( x) +
0

0
+
f (x) 单调递增 所以, 当 x = –2 时,
28 单调递减
4 单调递增
f
3
3
(x)有极大值,极大值为 f
2
结2论8
3
当 x = 2 时, f (x)有极小值,极小值为 f 2 4 .
函数的极值与导数(说课)
一.教材分析 二.学情分析 三.教学目标 四.教学重难点 五.教学方法与手段
六.教学过程与设计
教材分析
《函数的极值与导数》是高中数学人教A版选修11第三章第三节第2小节的内容.在此之前学生已经学习 了导数,并且学习了用导数解决曲线的切线问题和函 数的单调性问题,本节课将利用导数知识求可导函数 的极值。其后还有利用导数求函数的最值问题、不等 式恒成立问题、方程根的讨论和函数图像交点等问题, 因此本节课在学习中起到承上启下的作用。从高考角 度分析,本节课的知识考查以中高难度的题为主,所 以本节内容是非常重要的知识。
练习巩固,运用拓展
例1 求函数 f (x) 1 x3 4x 4的极值. 3
例1 求函数 f ( x) 1 x 3 4 x 4 的极值.
3
求导
解: 因为 f ( x) 1 x 3 4 x 4, 所以 f ( x ) x 2 4 .
3
令 f ( x ) 0 , 解得 x 2 , 或 x 2 .
相关文档
最新文档