一元二次方程根的判别式

合集下载

一元二次方程的根的判别式

一元二次方程的根的判别式

一元二次方程的根的判别式一元二次方程的根的判别式是指b²-4ac,它可以用来判断方程的根的情况。

当b²-4ac>0时,方程有两个不相等的实数根;当b²-4ac=0时,方程有两个相等的实数根;当b²-4ac<0时,方程没有实数根。

判别式的应用包括不解方程判断根的情况、确定方程待定系数的取值范围、证明方程根的性质以及解决综合题。

正确理解判别式的性质并熟练灵活地运用它是本节的重点和难点。

举例来说,对于方程2x²-5x+10=0,其判别式为b²-4ac=(-5)²-4×2×10=-550,因此该方程有两个不相等的实数根。

对于方程x²-2kx+4(k-1)=0,其判别式为b²-4ac=(-2k)²-4×1×4(k-1)=4(k-2)²≥0,因此该方程有实数根。

对于方程2x²-(4m-1)x+(m-1)=0,其判别式为b²-4ac=(-(4m-1))²-4×2×(m-1)=4(2m-1)²+5>0,因此该方程有两个不相等实根。

对于方程4x²+2nx+(n²-2n+5)=0,其判别式为b²-4ac=(2n)²-4×4(n²-2n+5)=-12(n-4/3)²-176/33<0,因此该方程没有实数根。

解这类题目时,一般先求出判别式Δ=b^2-4ac,然后对XXX进行化简或变形,使其符号明朗化,进而说明Δ的符号情况,得出结论。

对判别式进行变形的基本方法有因式分解、配方法等。

在解题前,首先应将关于x的方程整理成一般形式,再求Δ=b^2-4ac。

当Δ≥0时,方程有实数根,反之也成立。

例2已知关于x的方程x-(m-2)x+m^2=0,求解以下问题:1)有两个不相等实根,求m的范围。

一元二次方程根的判别式

一元二次方程根的判别式

9 8
时,方程有两个相
(2)当△=8m+9>0,即m> 等的实根;
(3)当△=8m+9<0,即m< -
9 8 9 8
时,方程有两个不
时,方程没有实根。
尝试成功:
3、证明:方程(2m-1)X2+2mx+2=0恒有实数根; 4、已知:方程X2+2X-n+1=0没有实数根;求证: 方程X2+bnx=1-2n一定有两个不相等的实根。
2


所以,不论m为何值,这个方程总有两个不相等的实 数根
典型例题解析 例6.一元二次方程 m 1x 2mx m 2 0
2
有两个实数根,求m的取值范围.
解 2m 4m 1m 2 2 2 4m 4m 4m 8
2

4m 8 0 m 2 又 m 1 0即m 1
我们把 b 4ac 叫做一元二次方程
2
ax bx c 0 a 0 的根的判别式,
2
用符号“ ”表示,即 b 4ac
2
记住了, 别搞错!
即一元二次方程:ax 当 当 当
2
bx c 0 a 0
0 时,方程有两个不相等的实数根; 0 时,方程有两个相等的实数根; 0
知识运用:
例3.已知一元二次方程kx2+(2k-1)x+k+2=0
有两个不相等的实数根,求k的取值范围。
解: (2k 1) 2 4k (k 2) 12k 1
∵方程有两个不相等的实数根
0, 即 12k 1 0 1 k 12
又k 0

一元二次方程的根与判别式

一元二次方程的根与判别式

一元二次方程的根与判别式一元二次方程是数学中的经典问题,它的解析式可表示为ax^2 + bx + c = 0,其中a、b、c为实数且a ≠ 0。

而求解一元二次方程的根则需要使用判别式,下面将详细介绍一元二次方程的根和判别式。

1. 一元二次方程根的定义一元二次方程的根是指满足方程成立的未知数值。

对于一元二次方程ax^2 + bx + c = 0而言,若存在实数x1和x2使得将x1和x2代入方程后方程成立,则称x1和x2是一元二次方程的根。

2. 一元二次方程的解法(1) 因式分解法当一元二次方程的系数a、b、c满足一定条件时,可以使用因式分解法来求解方程的根。

例如,对于方程x^2 + 5x + 6 = 0,我们可以将其进行因式分解为(x + 2)(x + 3) = 0,从而得到方程的两个根为x = -2和x = -3。

(2) 完全平方法当一元二次方程的系数a、b、c满足一定条件时,可以使用完全平方法来求解方程的根。

例如,对于方程x^2 - 4x + 4 = 0,我们可以将其改写为(x - 2)^2 = 0,从而得到方程的根为x = 2。

(3) 公式法对于一元二次方程ax^2 + bx + c = 0,我们可以使用求根公式来求解方程的根。

公式如下:x = (-b ± √(b^2 - 4ac)) / (2a)其中,±表示两个根,分别称为x1和x2。

3. 一元二次方程的判别式判别式是指用来判断一元二次方程的根的性质的一项数学公式。

对于一元二次方程ax^2 + bx + c = 0而言,其判别式的计算公式为Δ =b^2 - 4ac,即Δ等于系数b的平方减去4ac。

判别式Δ的值有以下三种情况:(1) 当Δ > 0时,方程有两个不相等的实数根。

此时,方程的根可以通过求根公式求解。

(2) 当Δ = 0时,方程有两个相等的实数根。

此时,方程的根可以通过求根公式求解,并且两个根是相等的。

(3) 当Δ < 0时,方程没有实数根,而是有两个共轭复数根。

一元二次方程根的判别式

一元二次方程根的判别式

17.3一元二次方程根的判别式【知识梳理】1.一元二次方程根的判别式我们把24b ac -叫做20(ax bx c a ++=≠0)的根的判别式,用符号∆来表示。

对于一元二次方程20(ax bx c a ++=≠0),其根的情况与判别式的关系是:当240b ac ∆=->时,方程有两个不相等的实数根;当240b ac ∆=-=时,方程有两个相等的实数根;当240b ac ∆=-<时,方程没有实数根.特别的:当240b ac ∆=-≥时,方程有两个实数根.上述判断反过来说,也是正确的。

即当方程有两个实数根时,240b ac ∆=->;当方程有两个相等的实数根时,240b ac ∆=-=;当方程没有实数根时,240b ac ∆=-<;2.一元二次方程的根的判别式的应用①不解方程判别方程根的情况,即先把方程化为一般形式,然后求出判别式24b ac ∆=-的值,最后根据∆的符号来确定根的情况;②根据一元二次方程根的情况确定方程中字母系数的取值范围,即先把方程化成一般形式并求出它的判别式,然后根据根的情况列出判别式的方程或不等式,最后解这个不等式或方程,但要去掉使方程二次项系数为零的字母的值。

若问题中没有这个限制条件,就要对二次项系数(含字母)是否为零进行讨论;③证明一元二次方程根的情况,可先把原方程化为一般形式,求出根的判别式,然后用配方法或因式分解法确定判别式的符号,并由此得出结论.3.利用根的判别式解题时的几点注意:①运用“∆”时必须把方程化为一般式;②不解方程判定方程的根的情况要由“∆”的符号判定;③运用判别式解题时,方程二次项系数一定不能为零;【典型例题】例1:不解方程,判别下列方程的根的情况(1)221150x x +-=(2)232x +=(3)(1)(2)8x x --=-【思路分析:一元二次方程根的情况是由根的判别式的符号决定的,所以在判别方程的根的情况时,要先把方程化为一般式,写出方程的a b c 、、,计算出∆的值,判断∆的符号】【答案:(1)221150x x +-=2,11,5a b c ===- 2241142(5)121401610b ac ∴∆=-=-⨯⨯-=+=>即∆>0∴方程有两个不相等的实数根.(2)232x +=将方程整理为一般式:2320x -+=3,2a b c ==-=224(4320b ac ∆=-=--⨯⨯=即0∆=∴方程有两个相等的实数根.(3)(1)(2)8x x --=-将方程化为一般式:23280x x -++=1,3,10a b c ==-=224(3)4110940310b ac ∆=-=--⨯⨯=-=-<即0∆<∴方程没有实数根】【小结:运用根的判别式判断方程的根的情况时,必须把方程化为一般式,然后正确地确定各项系数,再代入判别式进行计算,得出判别式的符号】课堂练习1:如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是()A .k >14-B .k >14-且0k ≠C .k <14-D .14k ≥-且0k ≠课堂练习2:如果关于x 的方程:2320x x k -+=有实数根,那么k 的取值范围是_____.例2:求证方程2(1)310(0)m x mx m m -+++=≠必有两个不相等的实数根.【思路分析:欲证明此方程必有两个不相等的实数根,只需要证明不论m 取任何实数,都有0∆>即可】【答案:1m ≠ 10m ∴-≠∴此方程是关于x 的一元二次方程2222(3)4(1)(1)94454m m m m m m ∆=--+=-+=+ 不论m 取任何不为1的值时都有25m ≥024m ∴5+>0即2540m ∆=+>∴方程必有两个不相等的实根】【小结:证明时应先说明二次项系数不为零,也即保证方程是一元二次方程的前提下判别式的符号才有意义】课堂练习3:关于x 的方程220x kx k -+-=的根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .不能确定例3:当m 为何值时,关于x 的方程222(41)210x m m -++-=(1)有两个不相等的实根?(2)有两个相等的实根?(3)无实数根?【思路分析:根据一元二次方程根的情况,确定方程中字母系数的取值范围,是一元二次方程的根本判别式的另一类典型运用。

一元二次方程根的判别式

一元二次方程根的判别式

2.1 一元二次方程2.1.1根的判别式我们知道,对于一元二次方程ax 2+bx +c =0(a ≠0),用配方法可以将其变形为2224()24b b ac x a a-+=. ① 因为a ≠0,所以,4a 2>0.于是(1)当b 2-4ac >0时,方程①的右端是一个正数,因此,原方程有两个不相等的实数根x 1,2;(2)当b 2-4ac =0时,方程①的右端为零,因此,原方程有两个等的实数根 x 1=x 2=-2b a; (3)当b 2-4ac <0时,方程①的右端是一个负数,而方程①的左边2()2b x a+一定大于或等于零,因此,原方程没有实数根.由此可知,一元二次方程ax 2+bx +c =0(a ≠0)的根的情况可以由b 2-4ac 来判定,我们把b 2-4ac 叫做一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式,通常用符号“Δ”来表示.综上所述,对于一元二次方程ax 2+bx +c =0(a ≠0),有 (1) 当Δ>0时,方程有两个不相等的实数根x 1,2;(2)当Δ=0时,方程有两个相等的实数根 x 1=x 2=-2b a; (3)当Δ<0时,方程没有实数根.例1 判定下列关于x 的方程的根的情况(其中a 为常数),如果方程有实数根,写出方程的实数根. (1)x 2-3x +3=0; (2)x 2-ax -1=0; (3) x 2-ax +(a -1)=0; (4)x 2-2x +a =0.解:(1)∵Δ=32-4×1×3=-3<0,∴方程没有实数根.(2)该方程的根的判别式Δ=a 2-4×1×(-1)=a 2+4>0,所以方程一定有两个不等的实数根1x =2x = (3)由于该方程的根的判别式为Δ=a 2-4×1×(a -1)=a 2-4a +4=(a -2)2,所以, ①当a =2时,Δ=0,所以方程有两个相等的实数根 x 1=x 2=1; ②当a ≠2时,Δ>0, 所以方程有两个不相等的实数根 x 1=1,x 2=a -1.(3)由于该方程的根的判别式为Δ=22-4×1×a =4-4a =4(1-a ), 所以①当Δ>0,即4(1-a ) >0,即a <1时,方程有两个不相等的实数根11x = 21x =②当Δ=0,即a =1时,方程有两个相等的实数根 x 1=x 2=1;③当Δ<0,即a >1时,方程没有实数根.2.1.2 根与系数的关系(韦达定理)若一元二次方程ax 2+bx +c =0(a ≠0)有两个实数根1x =2x =,则有1222b bx x a a-+===-;221222(4)42244b b b b ac ac cx x a a a a a----=⋅===.所以,一元二次方程的根与系数之间存在下列关系:如果ax 2+bx +c =0(a ≠0)的两根分别是x 1,x 2,那么x 1+x 2=b a -,x 1·x 2=ca.这一关系也被称为韦达定理.特别地,对于二次项系数为1的一元二次方程x 2+px +q =0,若x 1,x 2是其两根,由韦达定理可知x 1+x 2=-p ,x 1·x 2=q ,即 p =-(x 1+x 2),q =x 1·x 2, 所以,方程x 2+px +q =0可化为 x 2-(x 1+x 2)x +x 1·x 2=0,由于x 1,x 2是一元二次方程x 2+px +q =0的两根,所以,x 1,x 2也是一元二次方程x 2-(x 1+x 2)x +x 1·x 2=0.因此有 以两个数x 1,x 2为根的一元二次方程(二次项系数为1)是x 2-(x 1+x 2)x +x 1·x 2=0. 例2 已知方程2560x kx +-=的一个根是2,求它的另一个根及k 的值.分析:由于已知了方程的一个根,可以直接将这一根代入,求出k 的值,再由方程解出另一个根.但由于我们学习了韦达定理,又可以利用韦达定理来解题,即由于已知了方程的一个根及方程的二次项系数和常数项,于是可以利用两根之积求出方程的另一个根,再由两根之和求出k 的值.解法一:∵2是方程的一个根,∴5×22+k ×2-6=0,∴k =-7.所以,方程就为5x 2-7x -6=0,解得x 1=2,x 2=-35. 所以,方程的另一个根为-35,k 的值为-7. 解法二:设方程的另一个根为x 1,则 2x 1=-65,∴x 1=-35. 由 (-35)+2=-5k,得 k =-7. 所以,方程的另一个根为-35,k 的值为-7.例3 已知关于x 的方程x 2+2(m -2)x +m 2+4=0有两个实数根,并且这两个实数根的平方和比两个根的积大21,求m 的值.分析: 本题可以利用韦达定理,由实数根的平方和比两个根的积大21得到关于m 的方程,从而解得m 的值.但在解题中需要特别注意的是,由于所给的方程有两个实数根,因此,其根的判别式应大于零.解:设x 1,x 2是方程的两根,由韦达定理,得 x 1+x 2=-2(m -2),x 1·x 2=m 2+4. ∵x 12+x 22-x 1·x 2=21, ∴(x 1+x 2)2-3 x 1·x 2=21,即 [-2(m -2)]2-3(m 2+4)=21,化简,得 m 2-16m -17=0, 解得 m =-1,或m =17.当m =-1时,方程为x 2+6x +5=0,Δ>0,满足题意;当m =17时,方程为x 2+30x +293=0,Δ=302-4×1×293<0,不合题意,舍去. 综上,m =17.说明:(1)在本题的解题过程中,也可以先研究满足方程有两个实数根所对应的m 的范围,然后再由“两个实数根的平方和比两个根的积大21”求出m 的值,取满足条件的m 的值即可.(1)在今后的解题过程中,如果仅仅由韦达定理解题时,还要考虑到根的判别式Δ是否大于或大于零.因为,韦达定理成立的前提是一元二次方程有实数根.例4 已知两个数的和为4,积为-12,求这两个数.分析:我们可以设出这两个数分别为x ,y ,利用二元方程求解出这两个数.也可以利用韦达定理转化出一元二次方程来求解.解法一:设这两个数分别是x ,y , 则 x +y =4, ①xy =-12. ② 由①,得 y =4-x , 代入②,得x (4-x )=-12,即 x 2-4x -12=0, ∴x 1=-2,x 2=6.∴112,6,x y =-⎧⎨=⎩ 或226,2.x y =⎧⎨=-⎩因此,这两个数是-2和6.解法二:由韦达定理可知,这两个数是方程 x 2-4x -12=0 的两个根.解这个方程,得x 1=-2,x 2=6. 所以,这两个数是-2和6. 说明:从上面的两种解法我们不难发现,解法二(直接利用韦达定理来解题)要比解法一简捷. 例5 若x 1和x 2分别是一元二次方程2x 2+5x -3=0的两根. (1)求| x 1-x 2|的值;(2)求221211x x +的值; (3)x 13+x 23.解:∵x 1和x 2分别是一元二次方程2x 2+5x -3=0的两根,∴1252x x +=-,1232x x =-.(1)∵| x 1-x 2|2=x 12+ x 22-2 x 1x 2=(x 1+x 2)2-4 x 1x 2=253()4()22--⨯-=254+6=494,∴| x 1-x 2|=72. (2)22221212122222221212125325()2()3()2113722439()9()24x x x x x x x x x x x x --⨯-+++-+=====⋅-.(3)x 13+x 23=(x 1+x 2)( x 12-x 1x 2+x 22)=(x 1+x 2)[ ( x 1+x 2) 2-3x 1x 2]=(-52)×[(-52)2-3×(32-)]=-2158. 说明:一元二次方程的两根之差的绝对值是一个重要的量,今后我们经常会遇到求这一个量的问题,为了解题简便,我们可以探讨出其一般规律:设x 1和x 2分别是一元二次方程ax 2+bx +c =0(a ≠0),则1x=2x =, ∴| x 1-x 2|===. 于是有下面的结论:若x 1和x 2分别是一元二次方程ax 2+bx +c =0(a ≠0),则| x 1-x 2|Δ=b 2-4ac ). 今后,在求一元二次方程的两根之差的绝对值时,可以直接利用上面的结论. 例6 若关于x 的一元二次方程x 2-x +a -4=0的一根大于零、另一根小于零,求实数a 的取值范围. 解:设x 1,x 2是方程的两根,则x 1x 2=a -4<0, ① 且Δ=(-1)2-4(a -4)>0.② 由①得 a <4,由②得 a <174.∴a 的取值范围是a <4.练 习 1.选择题:(1)方程2230x k -+=的根的情况是 ( ) (A )有一个实数根 (B )有两个不相等的实数根(C )有两个相等的实数根 (D )没有实数根(2)若关于x 的方程mx 2+ (2m +1)x +m =0有两个不相等的实数根,则实数m 的取值范围是( ) (A )m <14 (B )m >-14 (C )m <14,且m ≠0 (D )m >-14,且m ≠02.填空:(1)若方程x 2-3x -1=0的两根分别是x 1和x 2,则1211x x += . (2)方程mx 2+x -2m =0(m ≠0)的根的情况是. (3)以-3和1为根的一元二次方程是 .3|1|0b -=,当k 取何值时,方程kx 2+ax +b =0有两个不相等的实数根? 4.已知方程x 2-3x -1=0的两根为x 1和x 2,求(x 1-3)( x 2-3)的值.习题2.1 A 组1.选择题:(1)已知关于x 的方程x 2+kx -2=0的一个根是1,则它的另一个根是( )(A )-3 (B )3 (C )-2 (D )2 (2)下列四个说法:①方程x 2+2x -7=0的两根之和为-2,两根之积为-7; ②方程x 2-2x +7=0的两根之和为-2,两根之积为7;③方程3 x 2-7=0的两根之和为0,两根之积为73-; ④方程3 x 2+2x =0的两根之和为-2,两根之积为0.其中正确说法的个数是 ( ) (A )1个 (B )2个 (C )3个 (D )4个(3)关于x 的一元二次方程ax 2-5x +a 2+a =0的一个根是0,则a 的值是( )(A )0 (B )1 (C )-1 (D )0,或-12.填空:(1)方程kx 2+4x -1=0的两根之和为-2,则k = .(2)方程2x 2-x -4=0的两根为α,β,则α2+β2= .(3)已知关于x 的方程x 2-ax -3a =0的一个根是-2,则它的另一个根是 .(4)方程2x 2+2x -1=0的两根为x 1和x 2,则| x 1-x 2|= .3.试判定当m 取何值时,关于x 的一元二次方程m 2x 2-(2m +1) x +1=0有两个不相等的实数根?有两个相等的实数根?没有实数根?4.求一个一元二次方程,使它的两根分别是方程x 2-7x -1=0各根的相反数.B 组1.选择题:若关于x 的方程x 2+(k 2-1) x +k +1=0的两根互为相反数,则k 的值为( )(A )1,或-1 (B )1 (C )-1 (D )0 2.填空:(1)若m ,n 是方程x 2+2005x -1=0的两个实数根,则m 2n +mn 2-mn 的值等于 .(2)如果a ,b 是方程x 2+x -1=0的两个实数根,那么代数式a 3+a 2b +ab 2+b 3的值是 .3.已知关于x 的方程x 2-kx -2=0.(1)求证:方程有两个不相等的实数根;(2)设方程的两根为x 1和x 2,如果2(x 1+x 2)>x 1x 2,求实数k 的取值范围. 4.一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1和x 2.求: (1)| x 1-x 2|和122x x +; (2)x 13+x 23.5.关于x 的方程x 2+4x +m =0的两根为x 1,x 2满足| x 1-x 2|=2,求实数m 的值.C 组1.选择题:(1)已知一个直角三角形的两条直角边长恰好是方程2x 2-8x +7=0的两根,则这个直角三角形的斜边长等于 ( )(A(B )3 (C )6 (D )9 (2)若x 1,x 2是方程2x 2-4x +1=0的两个根,则1221x x x x +的值为 ( ) (A )6 (B )4 (C )3 (D )32(3)如果关于x 的方程x 2-2(1-m )x +m 2=0有两实数根α,β,则α+β的取值范围为( ) (A )α+β≥12 (B )α+β≤12(C )α+β≥1 (D )α+β≤1(4)已知a ,b ,c 是ΔABC 的三边长,那么方程cx 2+(a +b )x +4c=0的根的情况是 ( )(A )没有实数根 (B )有两个不相等的实数根 (C )有两个相等的实数根 (D )有两个异号实数根 2.填空:若方程x 2-8x +m =0的两根为x 1,x 2,且3x 1+2x 2=18,则m = . 3. 已知x 1,x 2是关于x 的一元二次方程4kx 2-4kx +k +1=0的两个实数根.(1)是否存在实数k ,使(2x 1-x 2)( x 1-2 x 2)=-32成立?若存在,求出k 的值;若不存在,说明理由; (2)求使1221x x x x +-2的值为整数的实数k 的整数值; (3)若k =-2,12xx λ=,试求λ的值.4.已知关于x 的方程22(2)04m x m x ---=. (1)求证:无论m 取什么实数时,这个方程总有两个相异实数根;(2)若这个方程的两个实数根x 1,x 2满足|x 2|=|x 1|+2,求m 的值及相应的x 1,x 2. 5.若关于x 的方程x 2+x +a =0的一个大于1、零一根小于1,求实数a 的取值范围.。

一元二次方程的根的判别式

一元二次方程的根的判别式

一元二次方程的根的判别式Ting Bao was revised on January 6, 20021一元二次方程的根的判别式学习指导一、基本知识点:1.根的判别式:对于任何一个一元二次方程ax2+bx+c=0(a≠0)可以用配方法将其变形为:(x+)2=因为a≠0,所以4a2>0,这样一元二次方程ax2+bx+c=0的根的情况可由b2-4ac来判定。

我们把b2-4ac叫做一元二次方程ax2+bx+c=0的根的判别式,用希腊字母⊿来表示,即⊿=b2-4ac。

一元二次方程ax2+bx+c=0(a≠0),当⊿=b2-4ac>0时,有两个不相等的实数根;当⊿=b2-4ac=0时,有两个相等的实数根;当⊿=b2-4ac<0时,没有实数根。

上述性质反过来也成立。

2.判别式的应用(1)不解方程,判断方程的根的情况;(2)根据方程的根情况确定方程的待定系数的取值范围;(3)证明方程的根的性质;(4)运用于解综合题。

二、重点与难点一元二次方程的根的判别式的性质是初中数学中的一个重要内容,在高中数学中也有重要应用。

正确理解判别式的性质,熟练灵活地运用它,是本节的重点,同时也是难点。

三、例题解析例1不解方程,判断下列方程根的情况(1)2x2-5x+10=0(2)16x2-8x+3=0(3)(-)x2-x+=0(4)x2-2kx+4(k-1)=0(k为常数)(5)2x2-(4m-1)x+(m-1)=0(m为常数)(6)4x2+2nx+(n2-2n+5)=0(n为常数)解:(1)⊿=(-5)2-4×2×10=-55<0∴方程没有实数根(2)⊿=(-8)2-4×16×3=0∴方程有两个相等的实数根(3)⊿=(-)2-4(-)×=5-4+8>0∴方程有两个不相等实根(4)⊿=(-2k)2-4×1×4(k-1)=4k2-16k+16=4(k2-4k+4)=4(k-2)2≥0∴方程有实数根(5)⊿=〔-(4m-1)〕2-4×2×(m-1)=16m2-8m+1-8m+8=16m2-16m+9=4(2m-1)2+5>0∴方程有两个不相等实根(6)⊿=(2n)2-4×4(n2-2n+5)=4n2-16n2+32n-80=-12n2+32n-80=-12(n-)2-<0∴方程没有实数根说明:①解这类题目时,一般要先求出⊿=b2-4ac,然后对⊿=b2-4ac进行化简或变形,使⊿=b2-4ac的符号明朗化,进而说明⊿=b2-4ac的符号情况,得出结论。

一元二次方程根的判别式、根与系数关系

一元二次方程根的判别式、根与系数关系

四、不解方程,求与根有关的代数式的值 例2 若a、b为互不相等的实数,且a 2-3a+1=0,b 2-3b+1=0 求a 2-ab+b 2的值 分析:要求一个含字母a、b的代数式的值,常规的解法就是 先求出a、b的值,然后代入求解.本题若按这个思路计算将 会涉及到解一元二次方程及二次根式的运算,运算量非常 大.但如果考虑a、b的关系,把a、b看作某个一元二次方程 的两个根,利用根与系数的关系得到a、b的关系式,再利用 a、b的关系式整体代入,问题将会变得简便. 解:根据题意知a、b是方程x 2-3x+1=0的两个根由根 与系数关系得a+b=3,ab=1. 点评:本题的解题关键是把a、b看作一元二次方程x 2-3x+1=0的 两根,利用根与系数关系得a+b=3,ab=1,再通过运用整体代换 的思想代入运算,问题可求.利用根与系数的关系求与根有关的代数 式的值,
例3:当m为何值时,方程(m-1)x² +2mx+m+3=0 ①﹑无实根 ②﹑有实根 ③﹑只有一个实根 ④﹑有两个实根 ⑤﹑有两个不等实根 ⑥﹑有两个相等实根
分析
(1)﹑只需△<0 (2)、分情况讨论 ① m-1=0 (3)﹑当m-1=0时 (4)、 △≥0 且 m-1≠0 (5)、△>0 且 m-1≠0 (6)、 △=0 且 m-1≠0 ② △≥0 且m-1≠0
;企业老板电话名单 企业老板电话名单 ; 2019.1 ;
们大意了,可恶,俺们被戮申殿算计了.”阔怜元老低沉の声音嘶吼.如果无暇善尊一直留在城市之内,那么就算戮申殿攻打无暇城,可要破开无暇城の防御也需要事间.再不济,无暇城の守护大阵也能顶一点事间.就算可能仍然等不到玄月商楼の救援,但也起码会比现在强.在城市之外, 戮申殿直接就能够对无暇善尊动手.“阔怜元老,现在俺们该怎么办?无暇善尊此事

一元二次方程根的判别式

一元二次方程根的判别式
20 45 m 16 22
典型例题解析
【例3】 (2003年· 黑龙江)关于x的方程 kx2+(k+1)x+k/4=0有两个不相等的实数根. (1)求k的取值范围;k>-1/2,且k≠0. (2)是否存在实数k,使方程的两个实数根的倒数和等于 0?若存在,求出k的值;若不存在,说明理由. 不存在,理由略。
课时训练
4.(2003年· 湖北黄冈)关于x的方程k2x2+(2k-1)x+1=0有 实数根,则下列结论正确的是 ( D ) A.当k=1/2时,方程两根互为相反数 B.当k=0时,方程的根是x=-1 C.当k=±1时,方程两根互为倒数 D.当k≤1/4时,方程有实数根 5.若一元二次方程 n 那么 m 的值为 A.-4 B.4
例1.不解方程,判别方程 5x 1 x 0
2
的根的情况______________ 方程要先化 2 解 : 5x x 5 0 为一般形式 2 再求判别式 1 4 5 5 101 0
原方程有两个不相等的实数根
例2.在一元二次方程
【例4】 已知:a、b、c是△ABC的三边,若方程
ax 2 b c x 2 ( b c ) 2 a
2 2 2
有两个等根,试判断△ABC的形状. 解:利用Δ =0,得出a=b=c. ∴△ABC为等边三角形.
m 1x 2 2mx m 2 0 例6.一元二次方程 二次三项式
一元二次方程根 的判别式
初三备课组 高明
一元二方程根的判别式: b 2 4ac
当. 0时 方程有两个不相等的实数根 当. 0时 方程有两个相等的实数根 当. 0时 方程没有实数根

一元二次方程根的判别式

一元二次方程根的判别式

一、一元二次方程根的判别式的定义运用配方法解一元二次方程过程中得到 2224()24b b acx a a -+=,显然只有当240b ac -≥时,才能直接开平方得:22424b b acx a a-+=±.也就是说,一元二次方程20(0)ax bx c a ++=≠只有当系数a 、b 、c 满足条件240b ac ∆=-≥时才有实数根.这里24b ac -叫做一元二次方程根的判别式.二、判别式与根的关系在实数范围内,一元二次方程20(0)ax bx c a ++=≠的根由其系数a 、b 、c 确定,它的根的情况(是否有实数根)由24b ac ∆=-确定.设一元二次方程为20(0)ax bx c a ++=≠,其根的判别式为:24b ac ∆=-,则: ①0∆>⇔方程20(0)ax bx c a ++=≠有两个不相等的实数根21,242b b acx a-±-=.②0∆=⇔方程20(0)ax bx c a ++=≠有两个相等的实数根122b x x a==-. ③0∆<⇔方程20(0)ax bx c a ++=≠没有实数根.若a ,b ,c 为有理数,且∆为完全平方式,则方程的解为有理根;若∆为完全平方式,同时24b b ac -±-是2a 的整数倍,则方程的根为整数根. 说明:(1)用判别式去判定方程的根时,要先求出判别式的值:上述判定方法也可以反过来使用,当方程有 两个不相等的实数根时,0∆>;有两个相等的实数根时,0∆=;没有实数根时,0∆<. (2)在解一元二次方程时,一般情况下,首先要运用根的判别式24b ac ∆=-判定方程的根的情况(有两个不相等的实数根,有两个相等的实数根,无实数根).当240b ac ∆=-=时,方程有两个相等的实数根(二重根),不能说方程只有一个根.三、习题类型①一元二次方程实数根个数的判定②利用判别式建立不等式或等式,求解参数取值 ③证明题④与三角形三边关系结合一元二次方程根的判别式知识精讲1. 不解方程,判别一元二次方程2261x x -=的根的情况是( )A .有两个不相等的实数根B .没有实数根C .有两个相等的实数根D .无法确定 2. 不解方程,判断方程20ax bx +=(0a ≠)的根的情况。

一元二次方程根的判别式、根与系数关系

一元二次方程根的判别式、根与系数关系

之差的绝对值.因而应用此类关系式可以确定抛物线的解析式.
思考题:1、已知x 1,x 2是一元二次方程2x 2-2x+m+1=0的两个实数根, (1)、求m的取值范围 (2)、如果x 1,x 2满足7+4 x 1﹒x 2>x 1 2+x 2 2 且m为整数,求m的
值。
2、已知x 1,x 2是关于x的一元二次方程x 2+2mx+m-1=0的两个负实数根, 且 X 1 2+x 2 2 =8。求m的值
分析:本题要求已知一元二次方程x 2+px+q=0中的字母系数p、q的值,只要 利用题目的条件,把p、q的关系式列出,再通过变形得到关于p、q的方程组, 解此方程组即可求出p、q.
解:设方程的两实数根分别为x 1、x 2则由根与系数的关系,得
X 1+x 2=-p,x 1·x 2=q, ……① 又由题意得(x 1+x 2) 2=x 1·x 2+7 ……②
三:以两个数为根作一元二次方程
以两个数x 1,x 2为根的一元二次方程(二次项系数为1)是x 2-(x 1+x 2)x+x 1x 2=0
例3:分别以x 2+3x-2=0的两根和与两根积为根的一元二次方程是: 分析:本题求一个已知两个根的一元二次方程,关键是要求出两个根的和与两根的积。
四、不解方程,求与根有关的代数式的值
例2:m为何实数时,方程4x 2+(m-2)x+m-5=0的根都小于零? 分析:要使原方程的根都小于零,必需Δ ≥0, x 1+x 2<0 , x 1·x 2>0
例3:如果两圆圆心距等于2,半径分别为R,r,且R,r是方程4x 2-20x+ 21=0的两个根,判断两圆的位置关系.
综合应用,主要是与三角、几何和函数等知识综合应用

一元二次方程根的判别式推导

一元二次方程根的判别式推导

一元二次方程的判别式推导
Δ的公式为:Δ=b²-4ac。

一元二次方程的判别式我们通常用希腊字母Δ(读作“德塔”)来表示。

一元二次方程ax²+bx+c=0(a≠0)的根有三种情况:有两个相等的实数根、有两个不相等的实数根、没有实数根。

因为一元二次方程的根与系数之间存在特殊的关系,我们不需要解方程,也能对根的情况做出判别。

一元二次方程的一般形式为ax²+bx+c=0
那么Δ=b²-4ac。

若Δ>0,则此一元二次方程有两个不相等的实数根;
若Δ=0,则此一元二次方程有两个相等的实数根;
若Δ<0,则此一元二次方程没有实数根。

扩展资料:
根的判别式的推导:
由于一元二次方程的求根公式为:
x1,2=(-b±根号下b²-4ac)/2a,
所以当b²-4ac>0时,则此一元二次方程有两个不相等的实数根;当b²-4ac=0,则此一元二次方程有两个相等的实数根;
当b²-4ac<0,则此一元二次方程没有实数根。

一元二次方程根的判别式及根与系数的关系

一元二次方程根的判别式及根与系数的关系

一元二次方程根的判别式及根与系数的关系一、知识点:1.一元二次方程)0(02≠=++a c bx ax 根的判别式:2.一元二次方程根与系数的关系: (1)如果1x ,2x 是一元二次方程)0(02≠=++a c bx ax 的两个根,那么a b x x -=+21,ac x x =∙21 (2)如果1x ,2x 是方程02=++q px x 的两个根,那么p x x -=+21,q x x =∙21二、一元二次方程)0(02≠=++a c bx ax 根的判别式的应用:1. 不解方程,判断方程根的情况:(1);05432=--x x (2);01322=+-x x (3)26232-=+y y2. 证明方程根的情况:(1)已知关于x 的方程0)12(2)12(2=-++-k x k x .①求证:无论k 取什么实数值,这个方程总有实数根;②若等腰△ABC 中有两边的长恰好是这个方程的两个根,且这两边和为6,求△ABC 的周长.(2)小明说:“关于x 的方程)1.(0)1(4)1(222±≠=++-+m m mx x m 一定没有实数根”。

小明的说法对吗?说明你的理由.(3)求证:无论m 取何值,关于x 的方程01)32(2=++++m x m x 总有两个不相等的实数根。

(4)已知a ,b ,c 为△ABC 的三边,试判断关于x 的方程)(02)(2c b c b ax x c b ≠=-+--的根的情况.(5)已知a ,b ,c 为△ABC 的三边,且关于x 的方程0)()(2)(2=-+-+-b a x a b x b c 有两个相等的实数根,试判断△ABC 的形状.3. 已知方程根的情况,求字母系数的取值范围:(1)已知:关于x 的一元二次方程:0)1(22=+++k x k kx 有两个实数根,求k 的取值范围.(2)关于x 的一元二次方程06)4(22=+--x kx x 无实数根,求k 的最小整数值.(3)若关于x 的方程0122=--x kx 有实数根,求k 的取值范围.三、一元二次方程根与系数的关系的应用:1.已知方程一根,求方程另一根及字母系数的值:(1)已知32+是关于x 的方程042=+-c x x 的一个根,求方程的另一个根及c 的值.(2)已知方程:0422=--bx x 的一个根为1,求另一个根及b 的值.(3)已知关于x 的方程0252=++k kx x 的一个根是21,它的另一个根及k 的值.2. 已知方程两根之间的关系,求字母系数的值:(1)关于x 的方程0)1(22=+--m x m x 的两根互为相反数,求m 的值.(2)关于x 的方程02)1(2=+++-k x k x 的两个实数根的平方和等于6,求k 的值.(3)在Rt △ABC 中,∠C=90°, ∠A ,∠B ,∠C 的对边分别是a ,b ,c ,并且a ,b 是方程07822=+-x x 的两根. 求斜边c 的值.3. 不解方程,求代数式的值:(1)若1x ,2x 是方程01422=+-x x 的两个根,求下列代数式的值: ①2111x x +; ②2221x x + ③1221x x x x +;④221)x x -( ⑤)3)(3(21++x x(2)已知1x ,2x 是方程0132=+-x x 的两个根,求代数式21214x x x --的值.(3)如果实数a ,b 满足方程0172=+-a a ,0172=+-b b ,求代数式b a a b +的值.(4)关于x 的一元二次方程0122=++-k x x 的实数根是1x ,2x .(1)求k 的取值范围;(2)如果7)4)(4(21-=--x x ,求k 的值;(3)设k x x x x y 2)(22121----=,求y 的最大值.。

一元二次方程根的判别式-

一元二次方程根的判别式-
(2)当m 2 2 0, 即m 2时 原方程是一元二次方程,
2 2
2(m 1) 4( m 2) 1 4( m 2 2m 1) 4m 2 8
3 当m 且m 2 2 时方程有实数根,
3 得:m 2
8m 12 方程有实数根,
2
已知关于x的方程 有两个实数根,求m的取值范 围.
mx 2 (2m 1)x m 0
解:要使方程有两个实数根,需满 足 m 0 , 0 2 0 ∴ [(2m 1)] 4m m , 4m+1≥0, 1 .
m
1 ∴m的取值范围是 m ,且 4 m≠0.
2.下列关于x的方程中,没有 实数根的是( ) 2 2 2 x 5 6 x A . B . 3x 4x 2 0 2 2 2x mx 1 0 C. 3x 2 6x 2 0 D.
3.试说明不论k为任何实数,关
于x的方程 定有两个不相等实数根.
0,即8m 12 0
qq红包群 / qq红包群
wrg52xua
是,我才不得不相信,我和这些饰品一起,成为了陪葬品。我用尽全部是法术撞 击房间的墙壁,可整个房间都封闭的很严,石块又厚又重, 而且还被下了封印,不论我怎样进攻,石壁都是纹丝不动,没有一点裂痕。”“话说你是怎么在墓穴里看的那么清晰的?”“不要小看猫 科动物的夜视能力。”茉莉语气依旧清冷,“正当我彻底绝望的时候,突然听到一阵抓挠的声音,是从两个被压在其它陪葬品下的箱子里 发出的。我打开了那两个箱子,里面爬出了几只黑猫,从它们脖子上和耳朵上沉重而又华贵的珠宝可以看出,它们都有着和我相同的遭遇。 它们被放出来之后,也是疯狂的抓着石壁,企图挖开一条生路,我试着和它们沟通,告诉它们这种方法不可行,但他们根本不理解我的表 达,只是一味地抓着,锋利的爪子在不断磨损,殷红的血液沁透了石壁,和五彩斑斓的壁画融为一体,形成了最耀眼的一抹太阳的光 辉……随着时间的流逝和体力的消耗,饥饿最终还是降临了。在长期劳累并且没有食物和水源的情况下,一只猫产生了幻觉,居然用头撞 向石壁,一次……两次……三次……我蜷缩在一个角落里,和其他猫一样眼睁睁看着它撞向石壁,却毫无办法。终于,它的鲜血和脑浆喷 洒在石壁上渐渐凝固了,它自己则静静地趴在地上,再也不动了。所有猫都一起向后退,退到了另外一个角落,刻意与那具尸体保持距离。 时间缓慢的流啊,而我们,就像是他沙漏中的玩物,待沙漏流进之时,便是我们的离去之日。第072章 番外 劫数“不知过了多久,当我再 次醒来的时候,那具尸体已经变成残骸,只剩下了冰冷的骨架。当我把询问的目光投向那群正在整理毛发的黑猫时,它们都可以躲避了我 的目光。这个时候我突然明白了,它们只是普通的猫,而我已经修炼多年,这种程度的饥饿对于我来说还可以忍受,但它们就不行了…… 如果不去吃掉那只已死的猫,它们也会死掉……我这个样子向自己解释。我就这样胆战心惊的又度过了好多天……”“话说你是怎么知道 时间的?”慕容凌娢再次吐槽。“猫的生物钟可是很准确的!”茉莉有些不屑的反驳了柯蒂丽娅的吐槽,“ 就这样胆战心惊的又度过了好 多天,有一次,当我准备休息时,我感觉到哪一群猫正在向我靠拢,而且是呈扇形的捕猎姿势。我闭着眼睛假装不知情,实际上在暗中仔 细探查它们的动机。其中一只为首的黑猫离我最近,悄无声息的朝我扑了过来。我一跃而起,咬住了他的耳朵,和他扭打在一起。这时, 其他猫也都向我发起进攻,迫不得已,我只好先结束了那只为首黑猫的性命,很利索的咬断了他的喉咙,不会感觉到一点疼痛……就在他 血管破裂,鲜血涌出的一瞬间,我感觉到一种莫名的力量指使着我,拼命的吮 吸这还带有生命

一元二次方程判别式以及根与系数关系

一元二次方程判别式以及根与系数关系

一元二次方程判别式以及根与系数关系知识总结1.一元二次方程的根的判别式(1)一元二次方程ax 2+bx +c =0(a ≠0)的根的情况由b 2-4ac 来确定.我们把b 2-4ac 叫做一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式,通常用“Δ”来表示,即Δ=b 2-4ac .注意:要想利用根的判别式求解方程,首先要将方程化为一元二次方程的一般式ax 2+bx +c =0(a ≠0),以便确定a ,b ,c 并代入b 2-4ac 计算. (2)一元二次方程的根的情况与根的判别式的关系①利用根的判别式判定根的情况.一般地,方程ax 2+bx +c =0(a ≠0),当Δ>0时,有两个不相等的实数根;当Δ=0时,有两个相等的实数根;当Δ<0时,没有实数根.②根据方程根的情况,确定Δ的取值范围.当方程有两个不相等的实数根时,Δ>0;当方程有两个相等的实数根时,Δ=0;当方程没有实数根时,Δ<0.注意:①如果说一元二次方程有实数根,那么应该包括有两个不相等实数根或有两个相等的实数根两种情况,此时b 2-4ac ≥0,切勿丢掉等号.②当b 2-4ac <0时,方程在实数范围内无解(无实数根),但在复数范围内方程仍有两个解,这将在高中阶段学习.【例1】不解方程,判别下列方程的根的情况:(1)2x 2+3x -4=0;(2)3x 2+2=26x ;(3)ax 2+bx =0(a ≠0);(4)ax 2+c =0(a ≠0).(3)利用根的判别式确定方程中字母系数的取值范围若一元二次方程ax 2+bx +c =0(a ≠0)有两个不相等的实数根,则b 2-4ac >0;若一元二次方程ax 2+bx +c =0(a ≠0)有两个相等的实数根,则b 2-4ac =0.从而根据关于字母系数的方程或不等式求出字母系数的值或取值范围.在运用时应注意前提条件:必须是一元二次方程且符合其一般形式.【例2】已知关于x 的方程kx 2-4kx +k -5=0有两个相等的实数根,求k 的值,并解这个方程.【例3】当k 取何值时,关于x 的一元二次方程kx 2+9=12x ,(1)有两个不相等的实数根? (2)有两个相等的实数根? (3)没有实数根?2.一元二次方程的根与系数的关系(1)如果方程ax 2+bx +c =0(a ≠0)的两个根为x 1,x 2,那么x 1+x 2=-b a ,x 1·x 2=c a.这个关系通常称为韦达定理.(1)在实数范围内运用根与系数的关系时,必须注意两个条件: ①方程必须是一元二次方程,即二次项系数a ≠0;②方程有实数根,即Δ≥0.因此,解题时要注意分析题中隐含条件Δ≥0和a ≠0.(2)如果方程x 2+px +q =0的两根是x 1,x 2,这时韦达定理应是:x 1+x 2=-p ,x 1·x 2=q .【例4】不解方程,说明一元二次方程2x 2+4x =1必有实数根,并求出两根之和与两根之积.(2)利用根与系数的关系确定一元二次方程若x 1,x 2满足x 1+x 2=-b a ,x 1·x 2=c a,那么x 1,x 2是一元二次方程ax 2+bx +c =0的两根. 注意:(1)利用这一性质比较容易检验一元二次方程的解是否正确.(2)以x 1,x 2为根的一元二次方程(二次项系数为1)是x 2-(x 1+x 2)x +x 1x 2=0. 【例5】已知一个关于x 的一元二次方程,它的两根为2和6,请你写出这个一元二次方程.总结:已知两根求一元二次方程,其一般步骤是:①先根据两根分别求出两根之和与两根之积;②把两根之和、两根之积代入一元二次方程x 2-(x 1+x 2)x +x 1x 2=0,求出所要求的方程.【例6】求作一个一元二次方程,使它的两根分别是方程5x 2+2x -3=0各根的负倒数.(3)利用一元二次方程根与系数的关系求关于两根x 1,x 2的代数式的值已知一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1,x 2,则求含有x 1,x 2的代数式的值时,其方法是把含x 1,x 2的代数式通过转化,变为用x 1+x 2,x 1x 2的代数式进行表示,然后再整体代入求出代数式的值.解决此类问题时经常要运用到以下代数式及变形:①21x +22x =(x 1+x 2)2-2x 1x 2;②1x 1+1x 2=x 1+x 2x 1x 2;③(x 1+a )(x 2+a )=x 1x 2+a (x 1+x 2)+a 2;④|x 1-x 2|=(x 1-x 2)2=(x 1+x 2)2-4x 1x 2.【例7】已知方程2x 2+5x -6=0的两个根为x 1,x 2,求下列代数式的值.(1)(x 1-2)(x 2-2);(2)x 2x 1+x 1x 2.(4)已知含未知常数m 的一元二次方程两根关系式,求未知常数m 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

乐学教育学员个性化教学辅导教案
学科:数学任课教师:叶老师授课时间:2016年 9 月 10 日(星期六 )
本次课授课内容
1.用直接开平方法解一元二次方程
230
x-=2
(1)40
x--=22
(1)(21)
x x
-=+
2、用因式分解法解一元二次方程
2=
+x
x0
3
2
2=
-x
x3
6
32-
=
-x
x
3、用配方法解一元二次方程
2
312210
x x
--=(2)(3)1
x x
-+=2
(1)(1)12
x x
---= 4、用公式法解一元二次方程
24410x x -+= 25(1)70x x +-= 220x -+=
(1)说说你对解一元一次方程、二元一次方程组、一元二次方程的认识
(消元、降次、化归的思想)
(2)三种方法(配方法、公式法、因式分解法)的联系与区别:
联系①降次,即它的解题的基本思想是:将二次方程化为一次方程,即降次.
②公式法是由配方法推导而得到.
③配方法、公式法适用于所有一元二次方程,因式分解法适用于某些一元二次方程.
区别:①配方法要先配方,再开方求根.
②公式法直接利用公式求根.
③因式分解法要使方程一边为两个一次因式相乘,另一边为0, 再分别使各一次因式等于0
一元二次方程根的判别式
如果这个一元二次方程是一般形式ax 2+bx+c=0(a ≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.
问题:已知ax 2+bx+c=0(a ≠0)且b 2-4ac ≥0,试推导它的两个根x 1,x 2探索新知
请观察上表,结合b 2-4ac 的符号,归纳出一元二次方程的根的情况。

证明你的猜想。

从前面的具体问题,我们已经知道b 2-4ac>0(<0,=0)与根的情况,现在我们从求根公式的角度来分析:
求根公式:b 2-4ac>0
一次方程的x 1=242b b ac a -+-≠x 2=242b b ac a
---,即有两个不相等的实根.当b 2-4ac=0时, 根据平方根的意义24b ac -=0,所以x 1=x 2=
2b a
-,即有两个相等的实根;当b 2-4ac<0时,根据平方根的意义,负数没有平方根,所以没有实数解. 1、根的判别式
定义:把b 2-4ac 叫做一元二次方程ax 2+bx +c =0的根的判别式,通常用符号“△”表示.
一元二次方程ax 2+bx +c =0(a ≠0).
当△>0时,有两个不相等的实数根;即x 1=242b b ac
a -+-,x 2=242
b b ac
a ---
当△=0时,有两个相等的实数根;即x 1=x 2=
2b a
- 当△<0时,没有实数根. 反之亦然. 注意:
(1)再次强调:根的判别式是指Δ=b 2-4ac 。

(2)使用判别式之前一定要先把方程变化为一般形式,以便正确找出a 、b 、c 的值。

(3)如果说方程有实数根,即应当包括有两个不等实根或有两相等实根两种情况,此时b 2-4ac≥0切勿丢掉等号。

(4)根的判别式b 2-4ac 的使用条件,是在一元二次方程中,而非别的方程中,因此,要注意隐含条件a≠0
2、根的判别式有以下应用:
(1) 不解一元二次方程,判断根的情况。

例1:不解方程,判别下列方程的根的情况:
(1)2x 2+3x-4=0;(2)16y 2+9=24y ;(3)5(x 2+1)-7x =0.
【典型例题】
例2:不解方程,判别下列方程的根的情况:
02222=++k kx x
练习:不解方程,判别下列方程根的情况.
(1)a 2x 2-ax-1=0(a ≠0);
(2)根据方程根的情况,确定待定系数的取值范围。

例1.k 的何值时?关于x 的一元二次方程x2-4x+k-5=0
(1)有两个不相等的实数根;(2)有两个相等的实数根;(3)没有实数根;
例2:已知关于x 的一元二次方程01122
2=+-+x )k (x k 有两个不相等的实数根,求k 的取值范围.
总结:Δ<0时不能在实数范围内因式分解;
Δ≥0时能在实数范围内因式分解;进而当Δ为完全平方数时能在有理数范围内因式分解;
再进而当Δ=0时ax2+bx+c=a (x -x1)(x -x2)=a (x -x1)2(a ≠0),所以此时可以说它是完全平方式。

! 判定二次三项式为完全平方式
例1、若x2-2(k+1)x+k2+5是完全平方式,求k 的值。

例2、当m 为何值时,代数式(5m -1)x2-(5m+2)+3m —2是完全平方式。

一、选择题
1.以下是方程3x 2-2x=-1的解的情况,其中正确的有( ).
A .∵b 2-4ac=-8,∴方程有解
B .∵b 2-4ac=-8,∴方程无解
C .∵b 2-4ac=8,∴方程有解
D .∵b 2-4ac=8,∴方程无解
2.一元二次方程x 2-ax+1=0的两实数根相等,则a 的值为( ).
A.a=0 B.a=2或a=-2 C.a=2 D.a=2或a=0
3.已知k≠1,一元二次方程(k-1)x2+kx+1=0有根,则k的取值范围是().
A.k≠2 B.k>2 C.k<2且k≠1 D.k为一切实数
4.若a,b,c互不相等,则方程(a2+b2+c2)x2+2(a+b+c)x+3=0( ).
(A) 有两个相等的实数根 (B) 有两个不相等的实数根 (C) 没有实数根 (D) 根的情况不确定
二、填空题
1.已知方程x2+px+q=0有两个相等的实数,则p与q的关系是________.
2.不解方程,判定2x2-3=4x的根的情况是______( 填“二个不等实根”或“二个相等实根或没有实根”).3.已知b≠0,不解方程,试判定关于x的一元二次方程x2-(2a+b)x+(a+ab-2b2) =0的根的情况是________.
4.关于x一元二次方程kx2-2x-1=0有两个不相等实数根,则k的取值范围是_______.
5.当4a2<b,关于x的方程x2-ax+b=0的实情况是_______
6.若方程(k2-1)x2-6(3k-1)+72=0有两个不同的正整数根,则整数k的值是( ).
三、综合提高题
1.不解方程,试判定下列方程根的情况.
(1)2+5x=3x2(2)x2-()
2.当c<0时,判别方程x2+bx+c=0的根的情况.
3.不解方程,判别关于x的方程x2-2kx+(2k-1)=0的根的情况.
4、已知方程2x2+(k-9)x+(k2+3k+4)=0有两个相等的实数根,求k值,并求出方程的解
5、若关于x的方程x2+2(a+1)x+(a2+4a-5)=0有实数根,试求正整数a的值。

相关文档
最新文档