一元二次方程的根系关系

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程的根的判别式(一)

二、教学重点、难点、疑点及解决方法

1.重点:会用判别式判定根的情况.

2.难点:正确理解“当b2-4ac<0时,方程ax2+bx+c=0(a≠0)无实数根.”

3.疑点:如何理解一元二次方程ax2+bx+c=0在实数范围内,当b2-4ac<0时,无解.在高中讲复数时,会学习当b2-4ac<0时,实系数的一元二次方程有两个虚数根.

三、教学步骤

(二)整体感知:在推导一元二次方程求根公式时,得到b2-4ac决定了一元二次方程的根的情况,称b2-4ac为根的判别式.一元二次方程根的判别式是比较重要的,用它可以判断一元二次方程根的情况,有助于我们顺利地解一元二次方程,也有利于进一步学习函数的有关内容,并且可以解决许多其它问题.在探索一元二次方程根的情况是由谁决定的过程中,从中体会转化的思想方法以及分类的思想方法,对思维全面性的考察起到了一个积极的渗透作用.

(三)重点、难点的学习及目标完成过程

1.复习提问(1)平方根的性质是什么?(2)解下列方程:

①x2-3x+2=0;②x2-2x+1=0;③x2+3=0.

问题(1)为本节课结论的得出起到了一个很好的铺垫作用.问题(2)通过自己亲身感受的根的情况,对本节课的结论的得出起到了一个推波助澜的作用.

2.任何一个一元二次方程ax2+bx+c=0(a≠0)用配方法将

(1)当b2-4ac>0时,方程有两个不相等的实数根.

(3)当b2-4ac<0时,方程没有实数根.

教师通过引导之后,提问:究竟谁决定了一元二次方程根的情况?答:b2-4ac.

3.①定义:把b2-4ac叫做一元二次方程ax2+bx+c=0的根的判别式,通常用符号“△”表示.

②一元二次方程ax2+bx+c=0(a≠0).

当△>0时,有两个不相等的实数根;当△=0时,有两个相等的实数根;

当△<0时,没有实数根.

注意以下几个问题:

(1)∵ a≠0,∴ 4a2>0这一重要条件在这里起了“承上启下”的作用,即对上式开平方,随后有下面三种情况.正确得出三种情况的结论,需对平方根的概念有一个深刻的、正确的理解,所以,在课前进行了铺垫.在这里应渗透转化和分类的思想方法.(2)当b2-4ac<0,说“方程ax2+bx+c=0(a≠0)没有实数根”比较好.有时,也说“方程无解”.这里的前提是“在实数范围内无解”,也就是方程无实数根”的意思.4.例1 不解方程,判别下列方程的根的情况:

(1)2x2+3x-4=0;(2)16y2+9=24y;(3)5(x2+1)-7x=0.

解:(1)∵△=32-4×2×(-4)=9+32>0,∴原方程有两个不相等的实数根.(2)原方程可变形为16y2-24y+9=0.∵△=(-24)2-4×16×9=576-576=0,∴原方程有两个相等的实数根.

(3)原方程可变形为5x2-7x+5=0.∵△=(-7)2-4×5×5=49-100<0,

∴原方程没有实数根.

总结步骤,(1)化方程为一般形式,确定a、b、c的值;(2)计算b2-4ac的值;(3)判别根的情况.强调两点:(1)只要能判别△值的符号就行,具体数值不必计算出.(2)判别根的情况,不必求出方程的根.

练习.不解方程,判别下列方程根的情况:

(1)3x2+4x-2=0;(2)2y2+5=6y;(3)4p(p-1)-3=0;

4)(x-2)2+2(x-2)-8=0;

(4)题可去括号,化一般式进行判别,也可设y=x-2,判别方程y2+2y-8=0根的情况,由此判别原方程根的情况.

又∵不论k取何实数,△≥0,

∴原方程有两个实数根.

教师板书,引导学生回答.此题是含有字母系数的一元二次方程.注意字母的取值范围,从而确定b2-4ac的取值.

练习:不解方程,判别下列方程根的情况.

(1)a2x2-ax-1=0(a≠0);

(3)(2m2+1)x2-2mx+1=0.

学生板演、笔答、评价.教师渗透、点拨.

(3)解:△=(-2m)2-4(2m2+1)×1=4m2-8m2-4=-4m2-4.

∵不论m取何值,-4m2-4<0,即△<0.∴方程无实数解.

由数字系数,过渡到字母系数,使学生体会到由具体到抽象,并且注意字母的取值.

一元二方程的根的判别式(二)

二、教学重点、难点、疑点及解决方法

1.教学重点:运用判别式求出符合题意的字母的取值范围.

2.教学难点:教科书上的黑体字“一元二次方程ax2+bx+c=0(a≠0),当△>0时,有两个不相等的实数根;当△=0时,有两个相等的实数根;当△<0时,没有实数根”可看作一个定理,书上的“反过来也成立”,实际上是指它的逆命题也成立.对此的正确理解是本节课的难点.可以把这个逆命题作为逆定理.

三、教学步骤

(二)整体感知:本节课是上节课的延续和深化,主要是在“明确目标”中所提的逆定理的应用.通过本节课的内容的学习,更加深刻体会到“定理”与“逆定理”的灵活应用.不但不求根就可以知道根的情况,而且知道根的情况,还可以确定待定的未知数系数的取值,本节课内容对学生严密的逻辑思维及思维全面性进行恰如其分的训练.1.复习提问

(1)一元二次方程的一般形式?说出二次项系数,一次项系数及常数项.

(2)一元二次方程的根的判别式是什么?用它怎样判别根的情况?

2.将复习提问中的问题(2)的正确答案板书,反之,即此命题的逆命题也成立,即“一元二次方程ax2+bx+c=0,如果方程有两个不相等的实数根,则△>0;如果方程有两个相等的实数根,则△=0;如果方程没有实数根,则△<0.”即根据方程的根的情况,可以决定△值的符号,‘△’的符号,可以确定待定的字母的取值范围.请看下面的例题:例1 已知关于x的方程2x2-(4k+1)x+2k2-1=0,k取什么值时

(1)方程有两个不相等的实数根;(2)方程有两个相等的实数根;

(1)方程无实数根.

解:∵ a=2, b=-4k-1,c=2k2-1,∴ b2-4ac=(-4k-1)2-4×2×(2k2-1)=8k+9.

相关文档
最新文档