高一数学第一次月考答案
高一上学期第一次月考数学试卷(含答案解析)
高一上学期第一次月考数学试卷(含答案解析)考试时间:120分钟;总分:150分学校:___________姓名:___________班级:___________考号:___________第I 卷(选择题)一、单选题(本大题共8小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1. 若集合A ={x|x >2},B ={x|−2⩽x ⩽3},则A ∩B =( )A. (2,3)B. (2,3]C. [2,3]D. [−2,3]2. 如图所示的Venn 图中,已知A ,B 是非空集合,定义A ∗B 表示阴影部分的集合.若A ={x |0≤x <3},B ={y |y >2},则A ∗B =( )A. {x |x >3}B. {x |2≤x ≤3}C. {x |2<x <3}D. {x |x ≥3}3. 中国清朝数学家李善兰在859年翻译《代数学》中首次将“function ”译做“函数”,沿用至今.为什么这么翻译,书中解释说“凡此变数中函彼变数者,则此为彼之函数.”这个解释说明了函数的内涵:只要有一个法则,使得取值范围中的每一个值x ,有一个确定的y 和它对应就行了,不管这个对应的法则是公式、图象、表格还是其它形式.已知函数f(x)由如表给出,则f(f(−2)+1)的值为( )A. 1B. 2C. 3D. 44. 命题“∀x >1,x −1>lnx ”的否定为( )A. ∀x ≤1,x −1≤lnxB. ∀x >1,x −1≤lnxC. ∃x ≤1,x −1≤lnxD. ∃x >1,x −1≤lnx5. 设M =2a(a −2)+7,N =(a −2)(a −3),则M 与N 的大小关系是( )A. M >NB. M =NC. M <ND. 无法确定6. f(2x −1)的定义域为[0,1),则f(1−3x)的定义域为( )A. (−2,4]B. (−2,12]C. (0,23]D. (0,16] 7. 已知x ∈R ,则“(x −2)(x −3)≤0成立”是“|x −2|+|x −3|=1成立”的条件.( )A. 充分不必要B. 必要不充分C. 充分必要D. 既不充分也不必要 8. 已知集合A ={x|3−x x ≥2)},则∁R A =( ) A. {x|x >1}B. {x|x ≤0或x >1}C. {x|0<x <1}D. {x|x <0或x >1}二、多选题(本大题共4小题,共20.0分。
高一数学必修1第一次月考试卷(含答案解析)
高一数学必修1第一次月考试卷(含答案解析)高一数学必修1第一次月考试卷(含答案解析)一、选择题1. 若集合A={2,4,6,8},集合B={1,3,5,7},则A∪B=()A. {1, 2, 3, 4, 5, 6, 7, 8}B. {1, 2, 3, 4, 5, 6, 7}C. {2, 4, 6, 8}D. {1, 3, 5, 7}解析:集合的并就是包含所有元素的集合,所以A∪B={1, 2, 3, 4, 5, 6, 7, 8},选项A正确。
2. 已知二次函数y=ax²+bx+c的顶点坐标为(1,2),则a+b+c的值为()A. 3B. 4C. 5D. 6解析:二次函数的顶点坐标为(h,k),所以a+b+c=a(h²)+b(h)+c=a(1²)+b(1)+c=a+b+c=k=2,选项B正确。
3. 若点P(3,4)在直线5x-ky=3上,则k的值为()A. 1B. 2C. 3D. 4解析:点P(3,4)在直线5x-ky=3上,代入坐标得到5(3)-k(4)=3,化简得15-4k=3,解得k=3,选项C正确。
二、填空题4. 根据等差数列的通项公式an=a1+(n-1)d,已知a1=3,a4=9,求公差d为_____。
解析:代入已知条件,9=3+(4-1)d,化简得3=3d,解得d=1。
公差d为1。
5. 在△ABC中,∠A=60°,BC=8,AB=4,则∠B=_____。
解析:根据三角形内角和为180°,∠B+60°+∠C=180°,化简得∠B+∠C=120°。
由已知BC=8,AB=4,利用正弦定理sinB=BC/AB=8/4=2,所以∠B=30°。
三、解答题6. 已知集合A={x|2x+1<5},求A的解集。
解析:将不等式2x+1<5移项得到2x<4,再除以2得到x<2。
所以集合A的解集为{x|x<2}。
高一上学期第一次月考数学试卷(含答案解析)
高一上学期第一次月考数学试卷(含答案解析)第I 卷(选择题)一、单选题(本大题共10小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1. 若集合{0,1}A =,{|0}B x x =,则下列结论正确的是( ) A. {0}B ∈B. A B ⋂=∅C. A B ⊆D. A B R ⋃=2. 已知集合,{2,1,0,1,2,4}B =--,则A B ⋂=( ) A. {1,0,1,2}-B. {2,0,4}-C. {0,1,2}D. {0,1}3. 已知命题p :x R ∃∈,2 1.x x +则命题p 的否定是( ) A. x R ∃∈,21x x >+ B. x R ∃∈,21x x + C. x R ∀∈,21x x +D. x R ∀∈,21x x >+4. 已知a R ∈,则“2a >”是“4a >”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件D. 既不充分也不必要条件5. “A B ⊆“是“A B B ⋂=“的( ) A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件D. 既不充分也不必要条件6. 如果0a <,0b >,那么下列不等式中正确的是( )A.11a b< B. <C. 22a b <D. ||||a b >7. 已知集合M 满足{1,2}{1,2,3}M ⋃=,则集合M 的个数是( ) A. 1B. 2C. 3D. 48. 对于任意实数x ,不等式2(2)2(2)40m x m x ---+>恒成立,则m 的取值范围是( ) A. {|22}m m -<< B. {|22}m m -< C. {|2m m <-或2}m >D. {|2m m <-或2}m9. 已知a ,b R ∈,且0ab ≠,则在下列四个不等式中,不恒成立的是( )A.222a b ab +B.2b a a b+ C. 2()2a b ab +D. 222()22a b a b ++10. 设S 为实数集R 上的非空子集.若对任意x ,y S ∈,都有x y +,x y -,xy S ∈,则称S 为封闭集.下面是关于封闭集的4个判断:(1)自然数集N 为封闭集; (2)整数集Z 为封闭集;(3)若S 为封闭集,则一定有0S ∈; (4)封闭集一定是无限集.则其中正确的判断是( )A. (2)(3)B. (2)(4)C. (3)(4)D. (1)(2)第II 卷(非选择题)二、填空题(本大题共5小题,共25.0分)11. 已知函数21()ln log f x a x b x =+,若(2017)1f =,则1()2017f =______ . 12. 若0x >,则12x x+的最小值为______,此时x 的取值为______. 13. 一元二次不等式220ax bx ++>的解集是11(,)23-,则a b +的值是__________.14. 设2{|340}A x x x =+-=,{|10}.B x ax =-=若B A ⊆,则a 的值为______.15. 某公司购买一批机器投入生产,据市场分析每台机器生产的产品可获得的总利润(y 万元)与机器运转时间(x 年数,*)x N ∈的关系为21825.y x x =-+-则当每台机器运转______ 年时,年平均利润最大,最大值是______ 万元.三、解答题(本大题共6小题,共85.0分。
高一数学上学期第一次月考试卷含解析试题
智才艺州攀枝花市创界学校实验二零二零—二零二壹第一学期第一次月考试题高一数学第一卷〔客观题〕一、选择题〔本大题一一共10小题,每一小题4分,一共40分,在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的〕,那么S T为〔〕A. B. C. D.【答案】D【解析】【分析】集合是一次不等式的解集,分别求出再求交集即可【详解】,,那么应选【点睛】此题主要考察了一次不等式的解集以及集合的交集运算,属于根底题。
表示同一函数的是〔〕A. B.C. D.【答案】D【解析】【分析】逐个分析各个选项里面的2个函数的定义域,值域和对应关系,是否完全一样,只有完全一样才能表示同一函数。
【详解】,,两个函数的定义域不同,不是同一函数,,,两个函数的定义域不同,不是同一函数,,,两个函数的定义域不同,对应关系也不同,不是同一函数,,,即,是同一函数应选【点睛】此题主要考察的知识点是两个函数是同一函数必须满足的条件,即:定义域,值域和对应法那么都一样,属于根底题。
3.如下列图,不可能表示函数的是〔〕A. B.C. D.【解析】【分析】由函数的定义即可判断出答案【详解】根据函数的定义,对于定义域内的任意一个值都有唯一的值与其对应,从图像上看,作一条直线它与函数的图象最多有一个交点,因此不满足此条件,故的图像不表示函数。
应选【点睛】此题主要考察了函数的概念及其构成要素,纯熟掌握函数定义中自变量任取一个值,都有唯一的值与其对应,属于根底题。
的定义域是〔〕A. B. C. D.【答案】C【解析】【分析】由限制条件求出函数定义域【详解】根据题意可得:,,即定义域为即应选【点睛】此题主要考察了函数的定义域及其求法,找出题目中的限制条件是关键,属于根底题。
且,那么实数的取值范围是〔〕A. B. C. D.【解析】【分析】根据条件求出,再求即可得到答案【详解】,,那么应选【点睛】此题主要考察了集合的交集,并集以及补集的混合运算,此题比较简单。
重庆市中学2024~2025学年高一上学期第一次月考数学试题含答案
重庆市2024~2025学年高一上学期第一次月考数学试题(命题人:)(答案在最后)考试说明:1.考试时间120分钟2.试题总分150分3.试卷页数2页一、单项选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U =R ,3{|ln}3x M x y x -==+,}2{|2,1xx y y N =≤≤=,如图阴影部分所表示的集合为()A.{}23x x ≤< B.{}34x x <≤C.{|2x x ≤或3}x > D.{}33x x -≤≤【答案】B 【解析】【分析】由题意知,阴影部分表示的为M N ⋂,算出集合,M N 表示的范围,根据集合的交集的运算,即可得到本题答案.【详解】全集U =R ,集合M 中函数满足303x x ->+,解得3x <-或3x >,M ={|3x x <-或3}x >,集合N 中指数函数2x y =在上单调递增,则24222=x ≤≤,}|24{y N y =≤≤,由图可得阴影部分所表示的集合为{|34}M N x x ⋂=<≤,故选:B.2.若函数()y f x =的一个正零点用二分法计算,零点附近函数值的参考数据如下:(1)2f =-,(1.25)0.984f =-,(1.375)0.260f =-,(1.40625)0.054f =-,(1.4375)0.162f =,(1.6)0.625f =,那么方程()0f x =的一个近似根(精确度0.1)为()A.1.2 B.1.3C.1.4D.1.5【答案】C【解析】【分析】由参考数据可得(1.4375)(1.375)0f f <,区间(1.375,1.4375)满足题干要求精确到0.1,结合选项可得答案.【详解】因为1.6 1.43750.16250.1-=>,所以不必考虑端点1.6;因为1.40625 1.250.156250.1-=>,所以不必考虑端点1.25和1;因为(1.4375)0f >,(1.375)0f <,所以(1.4375)(1.375)0f f <,所以函数()f x 在(1.375,1.4375)内有零点,因为1.4375 1.3750.06250.1-=<,所以满足精确度0.1;所以方程()0f x =的一个近似根(精确度0.1)是区间(1.375,1.4375)内的任意一个值(包括端点值),根据四个选项可知:1.4[1.375,1.4375]∈.故选:C.3.“1sin 2x =”是“2()6x k k Z ππ=+∈”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】首先根据1sin 2x =可得:2()6x k k Z ππ=+∈或52()6x k k Z ππ=+∈,再判断即可得到答案.【详解】由1sin 2x =可得:2()6x k k Z ππ=+∈或52()6x k k Z ππ=+∈,即2()6x k k Z ππ=+∈能推出1sin 2x =,但1sin 2x =推不出2()6x k k Z ππ=+∈“1sin 2x =”是“2()6x k k Z ππ=+∈”的必要不充分条件故选:B【点睛】本题主要考查必要不充分条件的判断,同时考查根据三角函数值求角,属于简单题.4.函数21π()sin 212x xf x x -⎛⎫=⋅+ ⎪+⎝⎭在区间ππ,22⎡⎤-⎢⎥⎣⎦上的图象大致为()A.B.C.D.【答案】D 【解析】【分析】先得到函数的奇偶性,再计算出当π0,2x ⎛⎫∈ ⎪⎝⎭时,()0f x >,判断出答案.【详解】化简函数()f x 解析式可得21()cos 21x x f x x -=⋅+,定义域为R ,112121212()()cos cos()cos cos 121212112xxxx x x x x f x f x x x x x------+-=⋅+-=⋅+⋅++++ 01212cos 11cos 22x x x x x x -=⋅+⋅+=+-,()f x ∴为奇函数,AC 错误;又因为当π0,2x ⎛⎫∈ ⎪⎝⎭时,21()cos 021x x f x x -=⋅>+,B 错误,D 正确.故选:D.5.已知π0,4α⎛⎫∈ ⎪⎝⎭,π,02β⎛⎫∈- ⎪⎝⎭,πsin 43α⎛⎫+= ⎪⎝⎭,πsin 423β⎛⎫-= ⎪⎝⎭,则sin 2βα⎛⎫+ ⎪⎝⎭的值为()A.9 B.69-C.9D.9【答案】A 【解析】【分析】先根据已知条件及同角三角函数基本关系求出π1cos 43α⎛⎫+= ⎪⎝⎭,π3cos 423β⎛⎫-= ⎪⎝⎭;再利用已知角π4α+和π42β-来配凑2βα+;最后利用两角差的正弦公式即可求解.【详解】π0,4α⎛⎫∈ ⎪⎝⎭ ,π,02β⎛⎫∈- ⎪⎝⎭,πππ,442α⎛⎫∴+∈ ⎪⎝⎭,πππ,4242β⎛⎫-∈ ⎪⎝⎭,πsin 43α⎛⎫+=⎪⎝⎭,πsin 423β⎛⎫-= ⎪⎝⎭,π1cos 43α⎛⎫∴+= ⎪⎝⎭,πcos 423β⎛⎫-= ⎪⎝⎭.ππsin sin 2442ββαα⎡⎤⎛⎫⎛⎫⎛⎫∴+=+-- ⎪ ⎪ ⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ππππsin cos cos sin 442442ββαα⎛⎫⎛⎫⎛⎫⎛⎫=+--+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭13333=⨯-⨯9=.故选:A.6.酒驾是严重危害交通安全的违法行为,为了保障安全,根据国家规定,驾驶人员每100毫升血液酒精含量大于或等于20毫克,并每100毫升血液酒精含量小于80毫克为饮酒后驾车;每100毫升血液酒精含量大于或等于80毫克为醉酒驾车.某驾驶员喝了一定量的酒后,其血液中酒精含量上升到了每毫升血液含酒精0.8毫克,如果停止饮酒后,他的血液中的酒精会以每小时25%的速度减少,那么他想要驾车至少要经过(参考数据:lg 20.301≈,lg 30.477≈)()A.3hB.4hC.5hD.7h【答案】C 【解析】【分析】先根据题意表示出经过t 小时后,该驾驶员体内的酒精含量;再列出不等式求解即可.【详解】经过t 小时后,该驾驶员体内的酒精含量为:30.8mg /ml 4t⎛⎫⨯ ⎪⎝⎭.只需30.80.24t⎛⎫⨯< ⎪⎝⎭,即3144t⎛⎫< ⎪⎝⎭,341log 43344t ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭.因为函数34x y ⎛⎫= ⎪⎝⎭在R 上为减函数,所以341lg 42lg 20.602log 4.8164lg 4lg 32lg 2lg 30.6020.477t >==≈=---,故他至少要经过5个小时后才能驾车.故选:C.7.定义在R 上的奇函数()f x 满足,当(0,2)x ∈时,()cos((1))2f x x π=-,且2x ≥时,有1()(2)2f x f x =-,则函数2()()F x x f x x =-在[2,5]-上的零点个数为A.9B.8C.7D.6【答案】B 【解析】【分析】先由奇函数性质求出函数()f x 在[]2,2-上的解析式,再利用1()(2)2f x f x =-.得到[2,5]-的图象,2()()F x x f x x =-的零点个数,等价于求1()f x x =的解的个数.根据两函数交点个数即可求解.【详解】当(0,2)x ∈时,()cos((1))cos(sin()2222f x x x x ππππ=-=-=,()f x 是奇函数,()00f ∴=,当2x ≥时,有1()(2)2f x f x =-,()()12002f f ∴==,()()14202f f ==,若()2,0x ∈-,则()0,2x -∈,则()sin()(in ()22)s x f x f x x ππ-=-=-=-,即()sin()2f x x π=,()2,0x ∈-即当22x -≤≤时,()sin()2f x x π=,当24x ≤≤时,022x ≤-≤,此时1111()(2)sin[(2)]sin()sin()2222222f x f x x x x ππππ=-=-=-=-,当45x ≤≤时,223x ≤-≤,此时1111()(2)sin[(2)]sin()sin(44)24222f x f x x x x ππππ=-=--=--=,由2()()0F x x f x x =-=,得:当0x =时,由(0)0F =,即0x =是()F x 的一个零点,当0x ≠时,由2()0f x xx -=得1()xf x =,即1()f x x=,作出函数()f x 与1()g x x=在,[2,5]-上的图象如图:由图象知两个函数在[2,5]-上共有7个交点,加上一个0x =,故函数2()()F x x f x x =-在[2,5]-上的零点个数为8个,故选:B.【点睛】本题主要考查函数与方程的应用.判断函数零点个数的方法:直接法:即直接求零点,令()0f x =,如果能求出解,则有几个不同的解就有几个零点定理法:即利用零点存在性定理,不仅要求函数的图象在区间[]a b ,上是连续不断的曲线,且()()0f a f b < ,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点图象法:即利用图象交点的个数,画出函数()f x 的图象,函数()f x 的图象与x 轴交点的个数就是函数()f x 的零点个数;将函数()f x 拆成两个函数()h x 和()g x 的差,根据()0()()f x h x g x Û==,则函数f(x)的零点个数就是函数()y h x =和()y g x =的图象的交点个数性质法:即利用函数性质,若能确定函数的单调性,则其零点个数不难得到;若所考查的函数是周期函数,则只需解决在一个周期内的零点的个数.8.已知()f x 是定义在R 上的奇函数,若对任意120x x <<,均有()()2112120x f x x f x x x ->-且(3)3f =,则不等式()0f x x ->的解集为()A.(3,0)(3,)-⋃+∞B.()3,3-C.(,3)(3,)-∞-⋃+∞D.(3,0)(0,3)-⋃【答案】A 【解析】【分析】先变形得到()()1212f x f x x x <,令()()f x g x x =,得到()()f x g x x=在(0,)+∞上单调递增,结合(3)(3)13f g ==,得到3x >,再结合函数的奇偶性和单调性得到30x -<<,从而求出答案.【详解】因为120x x <<,所以()()21120x f x x f x -<,所以()()1212f x f x x x <.设函数()()f x g x x =,则函数()()f x g x x =在(0,)+∞上单调递增,且(3)(3)13f g ==.当0x >时,不等式()0f x x ->等价于()f x x >,即()1f x x>,即()(3)g x g >,解得3x >,又因为()f x 是定义在上的奇函数,所以(0)0f =,所以,当0x =时,不等式()0f x x ->无解.因为()f x 是定义在上的奇函数,所以−=−,()()f x g x x=的定义域为()(),00,∞∞-⋃+,又()()()()()f x f x f x g x g x x x x---====--,故()()f x g x x=为偶函数,且在(,0)-∞单调递减,当0x <时,不等式()0f x x ->等价于()f x x >,即()1f x x<,因为(3)(3)13f g --==-,故()(3)g x g <-,解得30x -<<,综上,不等式()0f x x ->的解集为(3,0)(3,)-⋃+∞.故选:A.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.对于实数a ,b ,c ,下列说法正确的是()A.若1a b <<,则11b a< B.若22ac bc >,则a b>C.若0a b >>,0c >,则b b c a a c+<+ D.若c a b >>,a b c a c b<--【答案】ABC 【解析】【分析】AB 选项,可利用不等式性质进行判断;CD 选项,利用作差法比较出大小.【详解】A 选项,若1a b <<,则0ab >,不等式两边同除以ab 得11b a<,A 正确;B 选项,若22ac bc >,则0c ≠,故20c >,不等式两边同除以2c 得a b >,B 正确;C 选项,()()()b a cb bc ab bc ab ac a a c a a c a a c -++---==+++,因为0a b >>,0c >,所以0,0b a a c -<+>,故()()0b a c b b c a a c a a c -+-=<++,所以b b ca a c+<+,C 正确;D 选项,()()()a b c a b c a c b c a c b --=----,因为c a b >>,所以0c a ->,0c b ->,0a b ->,但c 的正负不确定,故无法判断()()()c a b c a c b ---的正负,从而无法判断a c a -与bc b-的大小关系,D 错误.故选:ABC.10.已知函数()sin()f x x ωϕ=+(0ω>,π2ϕ<)的最小正周期为π,将该函数的图象向左平移π3个单位后,得到的图象对应的函数为偶函数,则下列说法正确的是()A.函数()y f x =的图象关于直线π6x =对称B.函数()y f x =在区间5π4π,63⎛⎫⎪⎝⎭上单调递增C.1(0)2f =-D.函数()y f x =的图象关于点π,012⎛⎫⎪⎝⎭对称【答案】BCD 【解析】【分析】由三角函数的周期性与奇偶性,结合三角函数图象平移法则求得,ωϕ,再利用代入检验法与整体代入法逐一分析各选项即可得解.【详解】因为函数()sin()f x x ωϕ=+的最小正周期为2ππω=,则2ω=,故()sin(2)f x x ϕ=+,将该函数的图象向左平移π3个单位后,得到2πsin 23y x ϕ⎛⎫=++ ⎪⎝⎭的图象,因为得到的图象对应的函数2πsin 23y x ϕ⎛⎫=++ ⎪⎝⎭为偶函数,所以2πππ(Z)32k k ϕ+=+∈,即ππ(Z)6k k ϕ=-+∈,因为π2ϕ<,所以π6ϕ=-,故π()sin 26f x x ⎛⎫=- ⎪⎝⎭,对于A ,当π6x =时,则πππ1sin 6362f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,故A 错误;对于B ,令πππ2π22π262k x k -+<-<+,Z k ∈,得ππππ(Z)63k x k k -+<<+∈,当1k =时,()y f x =在区间5π4π,63⎛⎫⎪⎝⎭上单调递增,故B 正确;对于C ,π1(0)sin 62f ⎛⎫=-=- ⎪⎝⎭,故C 正确;对于D ,πππsin 01266f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,故D 正确.故选:BCD.11.设函数()()12,1log 1,1x x f x x x ⎧≤⎪=⎨->⎪⎩,若()()()()1234f x f x f x f x ===,且1234x x x x <<<,则()1243412x x x x ++++的值可以是()A.4B.5C.163D.6【答案】AB 【解析】【分析】画出函数图象,数形结合得到120x x +=,3322x ≤<,423x <≤,结合交点关系得到()12344444222111x x x x x x +++=++++-,构造函数42()2(23)11g x x x x =++<≤+-,根据函数单调性得到取值范围,求出答案.【详解】函数()f x的图象如图所示,设()()()()1234f x f x f x f x t ====,由图可知,当01t <≤时,直线y t =与函数()f x 的图象有四个交点,交点的横坐标分别为1234,,,x x x x ,且1234x x x x <<<,1x >时,令12()log (1)1f x x =-=,解得32x =或3x =.由图可知,120x x +=,3322x ≤<,423x <≤,由()()34f x f x =,可得34111x x -=-,则有34111x x =+-,所以()1233444444422221111x x x x x x x x +++=+=+++++-.令42()2(23)11g x x x x =++<≤+-,易知()g x 在(2,3]上为减函数,且16(2)3g =,(3)4g =,故()12344164213x x x x ≤+++<+,且1644,3⎡⎫∈⎪⎢⎣⎭,1654,3⎡⎫∈⎪⎢⎣⎭,AB 正确;又1616164,,64,333⎡⎫⎡⎫∉∉⎪⎪⎢⎢⎣⎭⎣⎭,CD 错误.故选:AB.【点睛】将函数零点问题或方程解的问题转化为两函数的图象交点问题,将代数问题几何化,借助图象分析,大大简化了思维难度,首先要熟悉常见的函数图象,包括指数函数,对数函数,幂函数,三角函数等,还要熟练掌握函数图象的变换,包括平移,伸缩,对称和翻折等,涉及零点之和问题,通常考虑图象的对称性进行解决.三、填空题:本题共3小题,每小题5分,共15分.12.若1()2xf x ⎛⎫= ⎪⎝⎭的反函数为1()f x -,且11()()4f a f b --+=-,则11a b +的最小值为__________.【答案】12【解析】【分析】先利用指、对数式的互化得到函数1()2xf x ⎛⎫= ⎪⎝⎭的反函数,再利用对数的运算性质化简11()()4f a f b --+=-,最后由基本不等式求得最值即可.【详解】因为x y a =和log a y x =(0a >,1a ≠)互为反函数,若1()2xf x ⎛⎫= ⎪⎝⎭,则112()log f x x -=,又因为11()()4f a f b --+=-,所以111222log log log ()4a b ab +==-,所以16ab =,且0a >,0b >,又11116162a b a b a b ab +++==≥=,当且仅当4a b ==时等号成立,所以11a b +的最小值为12.故答案为:12.13.如果函数()f x 的图象可以通过()g x 的图象平移得到,则称函数()f x 为函数()g x 的“同形函数”,下面几对函数是“同形函数”的是__________.(填上正确选项的序号即可)①()sin f x x =,()cos g x x =;②()2sin cos f x x x =,()cos 2g x x =;③44()sin cos f x x x =-,()cos 2g x x =;④()sin 2tan f x x x =⋅,()cos 2g x x =.【答案】①②③【解析】【分析】①②③,结合三角恒等变换及平移变换法则求出答案;④由两函数定义域不同,故④错误.【详解】①()cos g x x =的图象向右平移π2个单位得到()sin f x x =的图象,①正确;②π()2sin cos sin 2cos 22f x x x x x ⎛⎫===-⎪⎝⎭,故()f x 的图象可由()cos 2g x x =的图象向右平移π4个单位得到,故②正确;③()()44222222()sin cos sin cos sincos sin cos f x x x x xx x x x =-=-+=-cos 2cos(2π)x x =-=+,故()f x 的图象可由()cos 2g x x =的图象向左平移π2个单位得到,故③正确;④2sin ()sin 2tan 2sin cos 2sin 1cos 2cos(2)1co πs xf x x x x x x x x x=⋅=⋅==-=++,因为()sin 2tan f x x x =⋅的定义域不是,而()cos 2g x x =的定义域是,所以不可能由()cos 2g x x =的图象平移得到()sin 2tan 2f x x x =⋅的图象,故④错误.故答案为:①②③14.定义域为R 的函数()f x 的图象关于直线1x =对称,当[0,1]x ∈时,()f x x =,且对任意x ∈R ,有(2)()f x f x +=-,2024(),0()log (),0f x xg x x x ≥⎧=⎨--<⎩,则方程()()0g x g x --=实数根的个数为__________.【答案】2027【解析】【分析】由于题意可得函数()f x 以4为周期,分0x >,0x <,0x =三种情况讨论,把问题转化函数图象交点个数问题,作出函数图象,结合函数的周期性即可得解.【详解】对任意∈有(2)()f x f x +=-,得(4)(2)()f x f x f x +=-+=,则函数()f x 以4为周期,由于函数()f x 的图象关于直线1x =对称,则()(2)f x f x =-,又(2)()f x f x +=-,所以(2)(2)0f x f x ++-=,则函数()f x 的图象关于(2,0)对称.当0x >时,0x -<,由()()0g x g x --=得()()g x g x =-,则2024()log f x x =-,作出()y f x =与2024log y x =-的大致图象如图,令2024log 1x -=-,则2024x =,而20244506=⨯,由图可知,在第一个周期内有三个交点,后面每个周期内有两个交点,所以()y f x =与2024log y x =-的图象在(0,)+∞上有350521013+⨯=个交点;当0x <时,0x ->,由()()g x g x =-得:2024log ()()x f x --=-,令x t -=,0t >,得2024()log f t t =-,由上述可知,()y f t =与2024log y t =-的图象在(0,)+∞上有1013个交点,故()y f x =-与2024log ()y x =--的图象在(,0)-∞上有1013个交点,又0x =时,()()0g x g x --=成立,所以方程()()0g x g x --=实数根的个数为2101312027⨯+=.故答案为:2027.【点睛】思路点睛:由题分析可得函数()f x 以4为周期,图象关于(2,0)中心对称,把问题转化函数图象交点个数问题,数形结合可得解.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.设集合{}11ee x A x -=≤≤,若关于x 的不等式20x mx n ++≤的解集为A .(1)求函数()2f x x mx n =++的解析式;(2)求关于x 的不等式()()2322f x x λλ+>-+的解集,其中λ∈R .【答案】(1)详见解析;(2){|x x λ<-或}3x λ>-.【解析】【分析】(1)先化简集合A ,再根据关于x 的不等式20x mx n ++≤的解集为A ,利用根与系数的关系求解;(2)由(1)化简不等式为()()30x x λλ++->求解.【小问1详解】解:集合{}11ee x A x -=≤≤{}|12x x =≤≤,因为关于x 的不等式20x mx n ++≤的解集为A ,所以3,2m n =-=,则()232f x x x =-+;【小问2详解】由(1)知:关于x 的不等式()()2322f x x λλ+>-+即为:()2232322x x x λλ-++>-+,即为()222330x x λλλ+-+->,即为()()30x x λλ++->,解得:3x λ>-或x λ<-,所以不等式的解集为:{|x x λ<-或}3x λ>-.16.若函数()y f x =对任意实数x ,y 都有()()()f xy f x f y =,则称其为“保积函数”.现有一“保积函数”()f x 满足(1)1f -=-,且当01x <<时,()(0,1)f x ∈.(1)判断“保积函数”()f x 的奇偶性;(2)若“保积函数”()f x 在区间(0,)+∞上总有()0f x >成立,试证明()f x 在区间(0,)+∞上单调递增;(3)在(2)成立的条件下,若(2)2f =,求()211log sin 2f x +≤,[0,2π]x ∈的解集.【答案】(1)()f x 为奇函数(2)证明见解析(3)π3π0,,π44⎛⎤⎡⎫⎪⎥⎢⎝⎦⎣⎭【解析】【分析】(1)赋值,结合(1)1f -=-,进而得到()f x 为奇函数;(2)()f x 在(0,)+∞上单调递增,利用定义法得到函数的单调性;(3)赋值法得到1122f ⎛⎫=⎪⎝⎭,结合函数单调性得到211log sin 2x +≤,[0,2π]x ∈,数形结合,结合定义域,得到不等式,求出解集.【小问1详解】()f x 为奇函数,理由如下:根据题意,令1y =-,得()()(1)f x f x f -=-,因为(1)1f -=-,所以()()f x f x -=-,故结合定义域可知,()f x 为奇函数.【小问2详解】证明:任取1x ∀,2(0,)x ∈+∞,且12x x >,则2101x x <<,因此()()()()()2212111111x x f x f x f x f x f x f x f x x ⎛⎫⎛⎫-=-⋅=- ⎪ ⎪⎝⎭⎝⎭()2111x f x f x ⎛⎫⎛⎫=-⎪ ⎪ ⎪⎝⎭⎝⎭,因为2101x x <<,且当01x <<时,()(0,1)f x ∈,所以2110x f x ⎛⎫-> ⎪⎝⎭,因为(0,)∀∈+∞x ,()0f x >恒成立,所以()10f x >,所以()()()2121110x f x f x f x f x ⎛⎫⎛⎫-=-> ⎪ ⎪⎪⎝⎭⎝⎭,即()()12f x f x >,又因为120x x >>,所以()f x 在(0,)+∞上单调递增;【小问3详解】(1)1f -=-Q ,又()f x 为奇函数,(1)(1)1f f ∴=--=,()()()f xy f x f y = ,112(2)22f f f⎛⎫⎛⎫∴⨯= ⎪ ⎪⎝⎭⎝⎭,(2)2f = ,1122f ⎛⎫∴= ⎪⎝⎭,故原不等式等价于()211log sin 2f x f ⎛⎫+≤⎪⎝⎭,[0,2π]x ∈,()f x 在(0,)+∞上单调递增且(0,)∀∈+∞x ,()0f x >恒成立,又()f x 为奇函数,()f x ∴在上单调递增,故211log sin 2x +≤,[0,2π]x ∈,则221log sin log 22x ≤-=,[0,2π]x ∈,∴sin 0sin 2x x >⎧⎪⎨≤⎪⎩,解得π04x <≤或3ππ4x ≤<,综上,()211log sin 2f x +≤,[0,2π]x ∈的解集为π3π0,,π44⎛⎤⎡⎫⋃ ⎪⎥⎢⎝⎦⎣⎭.17.已知函数())f x x =ω+ϕ(0ω>,ππ22ϕ-≤≤)的图象关于直线π3x =对称,且图象上相邻两个最高点的距离为π.(1)求ω和ϕ的值;(2)当π0,2⎡⎤∈⎢⎥⎣⎦x 时,求函数()y f x =的最大值和最小值;(3)设()()(0)g x f cx c =>,若()g x 图象的任意一条对称轴与x 轴的交点的横坐标不属于区间(π,2π),求c 的取值范围.【答案】(1)2ω=,π6ϕ=-(22-(3)1150,,6312⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦【解析】【分析】(1)根据最小正周期求出ω,再根据对称轴求出ϕ;(2)由(1)可得()f x 解析式,再由x 的取值范围求出π26x -的范围,最后由正弦函数的性质计算可得;(3)首先得到()g x 的解析式,由12ππ22c⨯≥求出c 的大致范围,再求出()g x 图象的某一条对称轴与x 轴的交点的横坐标属于区间(π,2π)时c 的取值范围,即可得解.【小问1详解】因为()f x 的图象上相邻两个最高点的距离为π,所以()f x 的最小正周期πT =,所以2π2Tω==,又因为()f x 的图象关于直线π3x =对称,所以232ππkπϕ⨯+=+,k ∈Z ,所以ππ6k ϕ=-,k ∈Z ,又ππ22ϕ-≤≤,所以π6ϕ=-,综上可得2ω=,π6ϕ=-.【小问2详解】由(1)知π()26f x x ⎛⎫=- ⎪⎝⎭,当π0,2⎡⎤∈⎢⎥⎣⎦x 时,ππ5π2666x -≤-≤,所以当ππ262x -=(即π3x =)时,max ()f x =当ππ266x -=-(即0x =)时,min 3()2f x =-,所以函数()y f x =在π0,2⎡⎤∈⎢⎣⎦x 2-.【小问3详解】由题意π()()26g x f cx cx ⎛⎫==- ⎪⎝⎭()0c >,()g x 图象的任意一条对称轴与x 轴的交点的横坐标都不属于区间(π,2π),12ππ22c ∴⨯≥且0c >,解得102c <≤,令ππ2π62cx k -=+,k ∈Z ,解得ππ23k x c c=+,k ∈Z ,若()g x 图象的某一条对称轴与x 轴的交点的横坐标属于区间(π,2π),则πππ2π23k c c <+<,解得114623k k c +<<+,当1k =-时,112c -<且16c <-(矛盾),故解集为空集;当0k =时,1163c <<;当1k =时,55126c <<,故c 的取值范围为1150,,6312⎛⎤⎡⎤⋃ ⎥⎢⎥⎝⎦⎣⎦.18.已知函数2()43f x x x =-+,()(4)3g x a x =+-,a ∈R .(1)若[1,0]x ∃∈-,使得方程()20m f x -=有解,求实数m 的取值范围;(2)若对任意的1[1,5]x ∈-,总存在2[1,5]x ∈-,使得()()12f x g x ≤,求实数a 的取值范围;(3)设()()()h x f x g x =+,记()M a 为函数()h x 在[0,1]上的最大值,求()M a 的最小值.【答案】(1)[]2log 3,3(2){15a a ≤-或9}5a ≥-(3)3-【解析】【分析】(1)根据二次函数的单调性,结合存在性的定义、对数的单调性进行求解即可;(2)根据存在性和任意性的定义,结合函数的对称性分类讨论进行求解即可;(3)根据函数的对称性、单调性分类讨论进行求解即可.【小问1详解】[1,0]x ∃∈-,2()20243m m f x x x -=⇔=-+,因为函数2()43f x x x =-+的图象的对称轴是直线2x =,所以()y f x =在[1,0]-上为减函数,max ()(1)8f x f =-=,min ()(0)3f x f ==,故2[3,8]m ∈,所以m 的取值范围为[]2log 3,3.【小问2详解】对任意的1[1,5]x ∈-,总存在2[1,5]x ∈-,使得()()12f x g x ≤,∴即在区间[1,5]-上,()()12max max f x g x ≤,函数2()43f x x x =-+图象的对称轴是直线2x =,又[1,5]x ∈-,∴当5x =时,函数()f x 有最大值为2(5)54538f =-⨯+=,①当4a =-时,()3g x =-,不符合题意,舍去;②当4a >-时,()g x 在[1,5]-上的值域为[7,517]a a --+,5178a ∴+≥,得95a ≥-;③当4a <-时,()g x 在[1,5]-上的值域为[517,7]a a +--,78a ∴--≥,得15a ≤-,综上,a 的取值范围为{15a a ≤-或9}5a ≥-;【小问3详解】函数2()h x x ax =+图象的对称轴为2a x =-,①当2a ≤-或0a ≥时,()h x 在[0,1]上单调递增,则()(1)|1|M a f a ==+;②当20a -<<时,2()max ,(1)max ,124a a M a ff a ⎧⎫⎧⎫⎛⎫=-=+⎨⎬⎨⎬ ⎪⎝⎭⎩⎭⎩⎭,解不等式组22014a a a -<<⎧⎪⎨>+⎪⎩,得(221a -<<-,故当20a -<<,()((2,22141,210a a M a a a ⎧-<<-⎪=⎨⎪+-≤<⎩,综上,()((2,22141,221a a M a a a a ⎧-<<-⎪=⎨⎪+≤-≥-⎩或,()M a ∴在((),21∞--上单调递减,在()21,∞⎡+⎣上单调递增,(21a ∴=-时,()M a取最小值为(2113+=-.【点睛】关键点睛:本题的关键是根据函数的对称轴与所给区间的相位位置进行分类讨论.19.已知()()()sin22sin cos 8f m θθθθ=---+.(1)当1m =时,求π12f ⎛⎫⎪⎝⎭的值;(2)若()fθ的最小值为7-,求实数m 的值;(3)对任意的π,π4θ⎛⎫∈⎪⎝⎭,不等式()816sin cos m f θθθ->-恒成立.求m 的取值范围.【答案】(1)172+(2)5m =或1m =-(3)722,6⎛⎫++∞ ⎪ ⎪⎝⎭【解析】【分析】(1)利用辅助角公式,化简函数,再代入求π12f ⎛⎫⎪⎝⎭;(2)首先设sin cos t θθ=-,利用三角恒等变换,将函数表示成关于t 的二次函数,讨论对称轴,结合定义域求函数的最小值,列式求解m ;(3)根据(2)的结果,不等式参变分离为128m t t t->+-,在(t ∈恒成立,转化为判断函数的单调性,求函数的最值,即可求解m 的取值范围.【小问1详解】()()())πsin22sin cos 8sin22sin 84f m m θθθθθθ⎛⎫=---+=--+ ⎪⎝⎭,当1m =时,ππππ1ππsin 881261242124f ⎛⎫⎛⎫⎛⎫=-+=--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1178262π+=+=;【小问2详解】设πsin cos 4t θθθ⎛⎫=-=- ⎪⎝⎭,则t ⎡∈⎣,22sin cos 1=-+t θθ,()()()229,f Q t t m t t θ⎡==---+∈⎣,其对称轴为12m t =-+,当102m-+≥,即2m ≥时,()f θ的最小值为(77Q =+=-,则5m =;当102m-+<,即2m <时,()f θ的最小值为77Q =-=-1m =-;综上,5m =或1m =-;【小问3详解】由()816sin cos m f θθθ->-,对所有π,π4θ⎛⎫∈ ⎪⎝⎭都成立.设πsin cos 4t θθθ⎛⎫=-=- ⎪⎝⎭,则(t ∈,()281629m t m t t-∴>---+,(t ∈恒成立,280t -> ,128m t t t∴-+->,在(t ∈恒成立,当(t ∈时,8t t -递减,则18t t t+-在(递增,t ∴=时18t t t +-取得最大值726得2m ->2∴>m 所以存在符合条件的实数m ,且m的取值范围为2,6∞⎛⎫++ ⎪ ⎪⎝⎭.【点睛】关键点点睛:本题的关键利用公式()22sin cos 1sin cos θθθθ=--,从而利用换元法转化为关于t 的函数问题.。
高一数学必修第一次月考试卷含答案解析
高一上学期第一次月考数学试卷(时间:120分钟总分:150分)一.选择题:(本大题共10小题;每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.集合{1,2,3}的真子集共有()A 、5个B 、6个C 、7个D 、8个 2.图中的阴影表示的集合中是( )A .BC A u ⋂ B .A C B u ⋂C .)(B A C u ⋂D .)(B A C u ⋃ 3.以下五个写法中:①{0}∈{0,1,2};②⊆∅{1,2};③{0,1,2}={2,0,1};④∅∈0;⑤A A =∅⋂,正确的个数有( ) A .1个 B .2个 C .3个 D .4个 4.下列从集合A 到集合B 的对应f 是映射的是()ABABABAB ABCD5.函数5||4--=x x y 的定义域为( ) A .}5|{±≠x x B }|{≥x x C .}54|{<<x D .}554|{><≤x x x 或6.若函数()1,(0)()(2),0x x f x f x x +≥⎧=⎨+<⎩,则)3-f 的值为( )A .5B .-1C .-7D .27.已知函数()x f y =,[]b a x ,∈,那么集合()()[]{}(){}2,,,,=∈=x y x b a x x f y y x I 中元素的个数为………………………………………………………() A .1B .0C .1或0D .1或28.给出函数)(),(x g x f 如下表,则f 〔g (x )〕的值域为()A.{4,2}B.{1,3}C.{1,2,3,4}D.以上情况都有可能9.设集合}|{,}21|{a x x B x x A <=<≤-=,若A ∩B ≠∅,则a 的取值范围是( )A .1-≥aB .2>aC .1->aD .21≤<-a10.设}4,3,2,1{=I ,A 与B 是I 的子集,若A ∩B =}3,1{,则称(A ,B )为一个“理想配集”.那么符合此条件的“理想配集”的个数是(规定(A ,B )与(B ,A )是两个不同的“理想配集”)二.填空题(本大题共5个小题,每小题4分,共20分)x 1 2 3 4133x1 2 3 4 f(x)4321A BU1 2 3 4 3 5 1 2 3 4 5 6 a bcd 1 2 3 4 3 4 5 1 211.已知集合{}12|),(-==x y y x A ,}3|),{(+==x y y x B 则A B I = 12.若函数1)1(2-=+x x f ,则)2(f =____________13.若函数)(x f 的定义域为[-1,2],则函数)23(x f -的定义域是14.函数2()2(1)2f x x a x =+-+在区间(,4]-∞上递减,则实数a 的取值范围是______ 15.对于函数()y f x =,定义域为]2,2[-=D ,以下命题正确的是(只要求写出命题的序号) ①若(1)(1),(2)(2)f f f f -=-=,则()y f x =是D 上的偶函数;②若对于]2,2[-∈x ,都有0)()(=+-x f x f ,则()y f x =是D 上的奇函数; ③若函数)(x f y =在D 上具有单调性且)1()0(f f >则()y f x =是D 上的递减函数; ④若(1)(0)(1)(2)f f f f -<<<,则()y f x =是D 上的递增函数。
高一数学上学期第一次月考试题含解析
智才艺州攀枝花市创界学校内蒙古锡林郭勒盟第HY 学二零二零—二零二壹高一数学上学期第一次月考试题〔含解析〕一、单项选择题〔本大题一一共12小题,每一小题5分,一共60分〕 1.集合2{|}A x x x ==,{1,,2}B m =,假设A B ⊆,那么实数m 的值是〔〕A.2B.0C.0或者2D.1【答案】B 【解析】 【分析】 求得集合{0,1}A =,根据A B ⊆,即可求解,得到答案.【详解】由题意,集合2{|}{0,1}A x x x ===,因为A B ⊆,所以0m =,应选B.【点睛】此题主要考察了集合交集运算,其中解答中熟记集合的包含关系的运算是解答的关键,着重考察了运算与求解才能,属于根底题.2.在区间(0,+∞)上不是增函数的函数是〔〕 A.21y x =+B.231y x =+C.2y x=D.221y x x =++【答案】C 【解析】 【详解】A 选项在R 上是增函数;B选项在(],0-∞是减函数,在[)0,+∞是增函数;C选项在(),0,(0,)-∞+∞是减函数;D选项221721248y x x x ⎛⎫=++=++ ⎪⎝⎭在1,4⎛⎤-∞- ⎥⎝⎦是减函数,在1,4⎡⎫-+∞⎪⎢⎣⎭是增函数;应选C. 【点睛】对于二次函数断定单调区间通常要先化成2()(0)y a x m n a =-+≠形式再断定.当0a >时,单调递减区间是(],m -∞,单调递减区间是[),m +∞;0a <时,单调递减区间是[),m +∞,单调递减区间是(],m -∞.3.以下哪一组函数相等〔〕A.()f x x =与()2x g x x=B.()2f x x =与()4g x =C.()f x x =与()2g x =D.()2f x x =与()g x =【答案】D 【解析】 【分析】根据相等函数的要求依次判断两个函数的定义域和解析式是否一样,从而可求得结果. 【详解】A 选项:()f x 定义域为R ;()g x 定义域为:{}0x x ≠∴两函数不相等B 选项:()f x 定义域为R ;()g x 定义域为:{}0x x ≥∴两函数不相等C 选项:()f x 定义域为R ;()g x 定义域为:{}0x x ≥∴两函数不相等D 选项:()f x 与()g x 定义域均为R ,且()()2g x x f x ===∴两函数相等此题正确选项:D【点睛】此题考察相等函数的判断,关键是明确两函数相等要求定义域和解析式都一样,属于根底题. 4.集合{}2|3280Mx x x =--≤,{}2|60N x xx =-->,那么M N ⋂为〔〕A.{|42x x -≤<-或者37}x <≤B.{|42x x -<≤-或者37}x ≤<C.{|2x x ≤-或者3}x >D.{|2x x <-或者3}x ≥【答案】A 【解析】 【分析】利用一元二次不等式的解法化简集合{}2|3280M x x x =--≤,{}2|60N x xx =-->,根据集合交集的定义求解即可. 【详解】∵由{}2|3280Mx x x =--≤,所以{}|47M x x =-≤≤, 因为{}2|60N x x x =-->,所以{|2N x x =<-或者3}x >,∴{}|47{|2MN x x x x ⋂=-≤≤⋂<-或者3}x >{|42x x =-≤<-或者37}x <≤.应选A .点睛:研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,此题本质求满足属于集合M 且属于集合N 的元素的集合.5.2,0()(1),0x x f x f x x >⎧=⎨+≤⎩,那么44()()33f f +-的值等于〔〕A.2-B.4C.2D.4-【答案】B 【解析】【详解】2,0()(1),0x x f x f x x >⎧=⎨+≤⎩,448()2333f ∴=⨯=,44112()(1)()(1)()33333f f f f f ∴-=-+=-=-+=24233=⨯=,4484()()43333f f ∴+-=+=,应选B.考点:分段函数.6.()f x =A.3(,]2-∞ B.3[,)2+∞ C.(,1]-∞ D.[2,)+∞【答案】D 【解析】 【分析】先求解定义域,然后结合二次函数的对称轴判断增区间. 【详解】因为2320x x -+≥,所以(][),12,x ∈-∞+∞;又因为232y x x =-+的对称轴为:32x =,且322<,所以增区间为[)2,+∞, 应选:D.【点睛】此题考察复合函数的单调性,难度一般.对于复合函数的单调性问题,在利用“同増异减〞的方法判断的同时也要注意到定义域问题. 7.以下对应关系是A 到B 的函数的是()A.A=R,B={x|x>0}.f:x y=|x|→B.2,,:A Z B N f x y x +==→=C.A=Z,B=Z,f:x y →=D.[]{}1,1,0,:0A B f x y =-=→=【答案】D 【解析】 【分析】根据函数的定义,即可得出结论.【详解】对于A 选项:A =R ,B ={x |x >0},按对应关系f :x →y =|x |,A 中的元素0在B 中无像,∴f :x →y =|x |不是从A 到B 的函数;对于B 选项:A =Z ,B N +=,f :x →y =x 2,A 中的元素0在B 中无像,∴f :x →y =|x |不是从A 到B 的函数;对于C 选项:A =Z ,B =Z ,f :x →y =f :x →y =A 到B 的函数;对于D 选项:A =[﹣1,1],B ={0},f :x →y =0,A 中的任意元素在B 中有唯一元素对应,∴f :x →y =0是从A 到B 的函数. 应选D.【点睛】此题考察函数的定义,考察学生分析解决问题的才能,正确理解函数的定义是关键.8.函数()212f x x =+,那么f 〔x 〕的值域是 A.1{|}2y y ≤ B.1{|}2y y ≥C.1{|0}2y y <≤D.{|0}y y >【答案】C 【解析】 【分析】根据不等式的性质,求得函数的值域.【详解】由于220,22xx ≥+≥,故211022x <≤+,故函数的值域为1|02y y ⎧⎫<≤⎨⎬⎩⎭,应选C. 【点睛】本小题主要考察函数值域的求法,考察不等式的性质,属于根底题. 9.函数(1)f x +的定义域为[2,3]-,那么(21)f x -的定义域为〔〕A.[]-1,4B.5[0,]2C.[5,5]-D.[3,7]-【答案】B 【解析】 【分析】 由函数(1)f x +的定义域为[2,3]-,得到1[1,4]x +∈-,令1214x -≤-≤,即可求解函数(21)f x -的定义域,得到答案.【详解】由题意,函数(1)f x +的定义域为[2,3]-,即[2,3]x ∈-,那么1[1,4]x +∈-,令1214x -≤-≤,解得502x ≤≤,即函数(21)f x -的定义域为5[0,]2,应选B.【点睛】此题主要考察了抽象函数的定义域的计算,其中解答中熟记抽象函数的定义域的求解方法是解答的关键,着重考察了推理与运算才能,属于根底题. 10.不等式20ax x c -+>的解集为{}21,x x -<<那么函数2y ax x c =++的图像大致为〔〕A. B.C. D.【答案】C 【解析】 【分析】利用根与系数的关系x 1+x 2=−b a ,x 1•x 2=c a结合二次函数的图象可得结果【详解】由题知-2和1是ax 2-x+c=0的两根, 由根与系数的关系知-2+1=1a ,,−2×1=c a,∴a=-1,c=2, ∴2y ax x c =++=-x 2+x+2=-〔x-12〕2+94,应选C【点睛】此题考察了一元二次不等式的解法和二次函数的图象,以及一元二次方程根与系数的关系.一元二次不等式,一元二次方程,与一元二次函数的问题之间可互相转化,也表达了数形结合的思想方法. 11.函数2228(0)y x ax a a =-->,记0y ≤的解集为A ,假设()1,1A -⊆,那么a 的取值范围〔〕A.1,2⎡⎫+∞⎪⎢⎣⎭ B.1,4⎡⎫+∞⎪⎢⎣⎭C.11,42⎛⎫⎪⎝⎭D.11,42⎡⎤⎢⎥⎣⎦【答案】A 【解析】 【分析】因为2228(2)(4)--=+-x ax a x a x a ,且24a a -<,所以解集[]2,4A a a =-;然后根据()1,1A -⊆,得不等式组2141a a -≤-⎧⎨≥⎩,可得a 的取值范围。
高一数学第一次月考试题(含解析)
所以CC1⊥BC.
因为AC=BC=2, ,
所以由勾股定理的逆定理知BC⊥AC.
又因为AC∩CC1=C,
所以BC⊥平面ACC1A1.
因为AM 平面ACC1A1,
所以BC⊥AM.
(Ⅱ)过N作NP∥BB1交AB1于P,连结MP,则NP∥CC1.
A. 30°B. 60°C. 120°D. 150°
【答案】A
【解析】
试题分析:先利用正弦定理化简 得 ,再由 可得 ,然后利用余弦定理表示出 ,把表示出的关系式分别代入即可求出 的值,根据A的范围,利用特殊角的三角函数值即可求出A的值.
由 及正弦定理可得 ,
故选A.
考点:正弦、余弦定理
4.如图, 是水平放置的 的直观图,则 的面积为
二、填空题(每题5分,满分20分,将答案填在答题纸上)
13.在 中,角 的对边分别为 ,若 ,则角 的值为________.
【答案】
【解析】
【分析】
根据余弦定理得到 由特殊角的三角函数值得到角B.
【详解】根据余弦定理得到 进而得到角B= .
故答案为: .
【点睛】在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说,当条件中同时出现 及 、 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.
A. 6B.
C. D. 12
【答案】D
【解析】
△OAB是直角三角形,OA=6,OB=4,∠AOB=90°,∴S△OAB= ×6×4=12.
(新)高一数学必修1第一次月考试卷(含答案解析)
高一上学期第一次月考数学试卷(时间:120分钟 总分:150分)一.选择题:(本大题共10小题;每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.集合{1,2,3}的真子集共有( )A 、5个B 、6个C 、7个D 、8个 2.图中的阴影表示的集合中是( )A .BC A u ⋂ B .A C B u ⋂ C .)(B A C u ⋂D .)(B A C u ⋃ ={2,0,3. 以下五个写法中:①{0}∈{0,1,2};②⊆∅{1,2};③{0,1,2}1};④∅∈0;⑤A A =∅⋂,正确的个数有( )A .1个B .2个C .3个D .4个 4.下列从集合A 到集合B 的对应f 是映射的是( )A B A B B A BA B C D 5.函数5||4--=x x y 的定义域为( )A .}5|{±≠x xB .}4|{≥x xC .}54|{<<x xD .}554|{><≤x x x 或6.若函数()1,(0)()(2),0x x f x f x x +≥⎧=⎨+<⎩,则)3(-f 的值为( )A .5B .-1C .-7D .2 7.已知函数()x f y =,[]b a x ,∈,那么集合()()[]{}(){}2,,,,=∈=x y x b a x x f y y x 中元素的个数为………………………………………………………( ) A . 1 B .0 C .1或0 D . 1或2 8.给出函数)(),(x g x f 如下表,则f 〔g (x )〕的值域为( )A.{4,2}B.{1,3}C. {1,2,3,4}D. 以上情况都有可能9.设集合}|{,}21|{a x x B x x A <=<≤-=,若A ∩B ≠∅,则a 的取值范围是( )A .1-≥aB .2>aC .1->aD .21≤<-a10.设}4,3,2,1{=I , A 与B 是I 的子集, 若A ∩B =}3,1{,则称(A ,B )为一个“理想配集”.那么符合此条件的“理x1 2 3 4 1 3 3x 1 2 3 4 f(x) 4 3 2 1 ABU1 2 3 4 3 5 1 2 3 4 5 6 a b c d1 2 3 43 4 5 1 2想配集”的个数是 (规定(A ,B )与(B ,A )是两个不同的“理想配集”) A. 4 B. 8 C. 9 D. 16 二.填空题(本大题共5个小题,每小题4分,共20分)11.已知集合{}12|),(-==x y y x A ,}3|),{(+==x y y x B 则A B =12.若函数1)1(2-=+x x f ,则)2(f =_____ __ _____13.若函数)(x f 的定义域为[-1,2],则函数)23(x f -的定义域是 14.函数2()2(1)2f x x a x =+-+在区间(,4]-∞上递减,则实数a 的取值范围是____ __15.对于函数()y f x =,定义域为]2,2[-=D ,以下命题正确的是(只要求写出命题的序号) ①若(1)(1),(2)(2)f f f f -=-=,则()y f x =是D 上的偶函数;②若对于]2,2[-∈x ,都有0)()(=+-x f x f ,则()y f x =是D 上的奇函数; ③若函数)(x f y =在D 上具有单调性且)1()0(f f >则()y f x =是D 上的递减函数; ④若(1)(0)(1)(2)f f f f -<<<,则()y f x =是D 上的递增函数。
高一(上)第一次月考数学试卷(附答案解析)
高一(上)第一次月考数学试卷(附答案解析)班级:___________姓名:___________考号:____________一、单选题(本大题共8小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1. 已知集合A={2,3,4,5,6},B={x|x2−8x+12≥0},则A∩∁RB=()A. {2,3,4,5}B. {2,3,4,5,6}C. {3,4,5}D. {3,4,5,6}2. 命题“∀x>0,都有x2−x≤0”的否定是()A. ∃x>0,使得x2−x≤0B. ∃x>0,使得x2−x>0C. ∀x>0,都有x2−x>0D. ∀x≤0,都有x2−x>03. 已知a是实数,则“a<−1”是“a+1a<−2”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4. 下列各组函数中,表示同一个函数的是()A. y=1,y=xxB. y=x,y=3x3C. y=x−1×x+1,y=x2−1D. y=|x|,y=(x)25. 若集合A={1,2,3,4,5},集合B={x|(x+2)(x−3)<0},则图中阴影部分表示()A. {3,4,5}B. {1,2,3}C. {1,4,5}D. {1,2}6. 已知不等式ax2−5x+b>0的解集为{x|−3<x<2},则不等式bx2−5x+a>0的解集为()A. {x|−13<x<12}B. {x|x<−13或x>12}C. {x|−3<x<2}D. {x|x<−3或x>2}7. 函数f(x)=ex+ln(2x+1)的定义域为()A. (−∞,+∞)B. (0,+∞)C. (−12,+∞)D. (12,+∞)8. 设函数f(x)=x+2,g(x)=x2−x−1.用M(x)表示f(x),g(x)中的较大者,记为M(x)=max{f(x),g(x)},则M(x)的最小值是()A. 1B. 3C. 0D. −54二、多选题(本大题共4小题,共20.0分。
高一数学上学期第一次月考试题附答案
已知 A = {x | x ∈ R, x2 + (m + 2)x + 1 = 0} , B={x|x 是正实数},若 A B = ∅ ,求实数 m 的取值范围.
(22)(本小题满分 10 分) 已知 p:|1- x − 1 |≤2,q:x2-2x+1-m2≤0(m>0)的解集依次为 A、B,
3 且(CUB) (CUA)。求实数 a 的取值范围。
(18)(本小题满分 8 分)
已知集合 P = {y | y = −x2 + 2x + 5, x ∈ R} , Q = {y | y = 3x − 4, x ∈ R} , 求PQ,PQ.
(19)(本小题满分 10 分)
已知 A= {x | −2 < x ≤ 5} ,=B {x | 2m −1 ≤ x ≤ m +1},且 A B = B ,
-N)等于( ).
A. M N
B. M N
C.M
D.N
第Ⅱ卷(非选择题 共 72 分)
考生注意事项: 请在.答.题.纸.上.书.写.作.答.,.在.试.题.卷.上.书.写.作.答.无.效...
二、填空题:本大题共 4 小题,每小题 4 分,共 16 分.把答案填在答题纸的相应
位置.
(13)设集合 A = {x | (x − 2)2 ≤ 4} ,B={1,2,3,4},则 A B =__________.
A. −16 ≤ a < 0
B. a > −16 C. −16 < a ≤ 0
)
D. a < 0
(9)已知 M 有 3 个真子集,集合 N 有 7 个真子集,那么 M∪N 的元素个数为( )
A.有 5 个元素
2024-2025学年河北省保定市保定一中高一(上)第一次月考数学试卷(含答案)
2024-2025学年河北省保定一中高一(上)第一次月考数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.若集合A={x∈Z|4x−x2>0},则满足A⋃B={1,2,3,4,5}的集合B的个数为( )A. 2B. 4C. 8D. 162.设函数f(x)={x+2,(x<0)3x+1,(x≥0),则f[f(−2)]=( )A. 3B. 1C. 0D. 133.已知a>0,b>0,则“a+b=1”是“1a +4b≥9”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4.下列图象中,表示定义域、值域均为[0,1]的函数是( )A. B.C. D.5.已知a<0,−1<b<0,则有( )A. ab>ab2>aB. ab2>ab>aC. ab>a>ab2D. a>ab>ab26.已知命题p:a−4a≤0,命题q:不等式ax2+ax+1≤0的解集为⌀,则p成立是q成立的( ) A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件7.已知1≤a≤2,3≤b≤5,则下列结论错误的是( )A. a+b的取值范围为[4,7]B. b−a的取值范围为[2,3]C. ab的取值范围为[3,10]D. ab 的取值范围为[15,23]8.关于x的不等式x2−(a+1)x+a<0的解集中恰有2个整数,则实数a的取值范围是( )A. [−2,−1)∪(3,4]B. [−2,−1]∪[3,4]C. (−1,0)∪(2,3)D. [−1,0]∪[2,3]二、多选题:本题共3小题,共18分。
在每小题给出的选项中,有多项符合题目要求。
9.下列各组函数中,是相同函数的是( )A. f(x)=x 2,x ∈{−1,0,1}与g(x)={0,x =0,1,x =±1B. f(x)=x ⋅|x|与g(x)={x 2,x ≥0,−x 2,x <0C. f(x)=x 与g(x)= x 2D. f(x)=1x (x >0)与g(x)=x +1x 2+x (x >0)10.下列说法中正确的有( )A. 命题p :∃x 0∈R,x 20+2x 0+2<0,则命题p 的否定是∀x ∈R ,x 2+2x +2≥0B. “|x|>|y|”是“x >y ”的必要条件C. 命题“∀x ∈Z ,x 2>0”的是真命题D. “m <0”是“关于x 的方程x 2−2x +m =0有一正一负根”的充要条件11.若函数f(x)={x 2−2x,x ≥a,−x,x <a,存在最小值,则实数a 的可能取值为( )A. −1B. 1C. 2D. 3三、填空题:本题共3小题,每小题5分,共15分。
2024-2025学年高一上第一次月考数学试卷附答案解析(9月份)
2024-2025学年高一上第一次月考数学试卷(9月份)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x∈N|1<x<6},B={x|4﹣x>0},则A∩B=()A.{2,3,4}B.{2,3}C.{2}D.{3}2.(5分)下列说法正确的是()A.∅∈{0}B.0⊆N C.D.{﹣1}⊆Z3.(5分)命题“∀x∈(0,1),x3<x2”的否定是()A.∀x∈(0,1),x3>x2B.∀x∉(0,1),x3≥x2C.∃x0∈(0,1),D.∃x0∉(0,1),4.(5分)“a>b”是“a2>b2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.(5分)若集合A={x|2mx﹣3>0,m∈R},其中2∈A且1∉A,则实数m的取值范围是()A.B.C.D.6.(5分)满足集合{1,2}⫋M⊆{1,2,3,4,5}的集合M的个数是()A.6B.7C.8D.157.(5分)设集合A={x|1<x≤2},B={x|x<a},若A⊆B,则实数a的取值范围是()A.{a|a<1}B.{a|a≤1}C.{a|a>2}D.{a|a≥2}8.(5分)已知集合A={1,2},B={0,2},若定义集合运算:A*B={z|z=xy,x∈A,y∈B},则集合A*B 的所有元素之和为()A.6B.3C.2D.0二、选择题:本题共3小题,每小题6分,共18分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得6分,有选错的得0分,部分选对的得部分分。
(多选)9.(6分)已知命题p:x2﹣4x+3<0,那么命题p成立的一个充分不必要条件是()A.x≤1B.1<x<2C.x≥3D.2<x<3(多选)10.(6分)集合A={x|ax2﹣x+a=0}只有一个元素,则实数a的取值可以是()A.0B.C.1D.(多选)11.(6分)设S是实数集R的一个非空子集,如果对于任意的a,b∈S(a与b可以相等,也可以不相等),都有a+b∈S且a﹣b∈S,则称S是“和谐集”,则下列命题中为真命题的是()A.存在一个集合S,它既是“和谐集”,又是有限集B.集合{x|x=3k,k∈Z}是“和谐集”C.若S1,S2都是“和谐集”,则S1∩S2≠∅D.对任意两个不同的“和谐集”S1,S2,总有S1∪S2=R三、填空题:本题共3小题,每小题5分,共15分。
湖北省武汉市2023-2024学年高一上学期第一次月考数学试题含答案
武汉高一年级第一次月考(数学)(答案在最后)第Ⅰ卷一、单选题(本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}43A x x =∈-≤≤Z ,{}13B x x =∈+<N ,则A B = ()A.{}0,1 B.{}0,1,2 C.{}1,2 D.{}1【答案】A 【解析】【分析】化简集合,根据交集运算求解.【详解】根据题意,得{}{}=4,3,2,1,0,1,2,30,1A B ----=,,所以{}0,1A B = ,故选:A.2.设{}{}2712|0,0|2A x x x B x ax =-+==-=,若A B B = ,求实数a 组成的集合的子集个数有()A.2B.3C.4D.8【答案】D 【解析】【分析】先解方程得集合A ,再根据A B B = 得B A ⊆,根据包含关系求实数a ,根据子集的定义确定实数a 的取值组成的集合的子集的个数.【详解】{}{}271203,4|A x x x =-+==因为A B B = ,所以B A ⊆,因此B =∅或{}3B =或{}4B =,当B =∅时,=0a ,当{}3B =时,23a =,当{}4B =时,12a =,实数a 的取值组成的集合为210,,32⎧⎫⎨⎬⎩⎭,其子集有∅,{}0,23⎧⎫⎨⎬⎩⎭,12⎧⎫⎨⎬⎩⎭,20,3⎧⎫⎨⎬⎩⎭,10,2⎧⎫⎨⎬⎩⎭,21,32⎧⎫⎨⎬⎩⎭,210,,32⎧⎫⎨⎬⎩⎭,共8个,故选:D .3.下列结论中正确的个数是()①命题“所有的四边形都是矩形”是存在量词命题;②命题“2,10x R x ∀∈+<”是全称量词命题;③命题“2,210x R x x ∃∈++≤”的否定为“2,210x R x x ∀∈++≤”;④命题“a b >是22ac bc >的必要条件”是真命题;A.0 B.1C.2D.3【答案】C 【解析】【分析】根据存在量词命题、全称量词命题的概念,命题的否定,必要条件的定义,分析选项,即可得答案.【详解】对于①:命题“所有的四边形都是矩形”是全称量词命题,故①错误;对于②:命题“2R 10x x ∀∈+<,”是全称量词命题;故②正确;对于③:命题2:R,210p x x x ∃∈++≤,则2:R,210p x x x ⌝∀∈++>,故③错误;对于④:22ac bc >可以推出a b >,所以a b >是22ac bc >的必要条件,故④正确;所以正确的命题为②④,故选:C4.“0m >”是“x ∃∈R ,2(1)2(1)30m x m x -+-+≤是假命题”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】由命题“x ∃∈R ,2(1)2(1)30m x m x -+-+≤是假命题”,利用二次函数的性质,求得实数m 的取值范围,结合充分、必要条件的判定方法,即可求解.【详解】由题意,命题“x ∃∈R ,2(1)2(1)30m x m x -+-+≤是假命题”可得命题“x ∀∈R ,2(1)2(1)30m x m x -+-+>是真命题”当10m -=时,即1m =时,不等式30>恒成立;当10m -≠时,即1m ≠时,则满足()()210214130m m m ->⎧⎪⎨⎡⎤---⨯<⎪⎣⎦⎩,解得14m <<,综上可得,实数14m ≤<,即命题“x ∃∈R ,2(1)2(1)30m x m x -+-+≤是假命题”时,实数m 的取值范围是[1,4),又由“0m >”是“14m ≤<”的必要不充分条件,所以“0m >”是“x ∃∈R ,2(1)2(1)30m x m x -+-+≤是假命题”的必要不充分条件,故选:B.【点睛】理解全称命题与存在性命题的含义时求解本题的关键,此类问题求解的策略是“等价转化”,把存在性命题为假命题转化为全称命题为真命题,结合二次函数的性质求得参数的取值范围,再根据充分、必要条件的判定方法,进行判定.5.已知()f x =+,则函数(1)()1f xg x x +=-的定义域是()A.[2,1)(1,2]-⋃B.[0,1)(1,4]U C.[0,1)(1,2]⋃ D.[1,1)(1,3]-⋃【答案】A 【解析】【分析】先求出()f x 的定义域,结合分式函数分母不为零求出()g x 的定义域.【详解】()f x = ,10330x x x +≥⎧∴∴≤≤⎨-≥⎩,-1,()f x ∴的定义域为[]1,3x ∈-.又(1)()1f x g x x +=- ,1132210x x x -≤+≤⎧∴∴-≤≤⎨-≠⎩,且1x ≠.(1)()1f xg x x +∴=-的定义域是[2,1)(1,2]-⋃.故选:A6.已知0a >,0b >,且12111a b+=++,那么a b +的最小值为()A.1-B.2C.1+ D.4【答案】C 【解析】【分析】由题意可得()1211211a b a b a b ⎛⎫+=++++-⎪++⎝⎭,再由基本不等式求解即可求出答案.【详解】因为0a >,0b >,12111a b+=++,则()1211211211a b a b a b a b ⎛⎫+=+++-=++++- ++⎝⎭()2113211a b b a ++=++-++()21111111a b ba ++=++≥+=+++.当且仅当()2111112111a b b a a b⎧++=⎪⎪++⎨⎪+=⎪++⎩即2a b ⎧=⎪⎨⎪=⎩时取等.故选:C .7.若两个正实数x ,y 满足141x y +=,且不等式234y x m m +<-有解,则实数m 的取值范围是()A.{14}mm -≤≤∣ B.{0mm <∣或3}m >C .{41}mm -<<∣ D.{1mm <-∣或4}m >【答案】D 【解析】【分析】首先不等式转化为2min34y m m x ⎛⎫->+⎪⎝⎭,再利用基本不等式求最值,即可求解.【详解】若不等式234y x m m +<-有解,则2min 34y m m x ⎛⎫->+ ⎪⎝⎭,因为141x y +=,0,0x y >>,所以144224444y y x y x x x y y x ⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪⎝⎭⎝⎭,当44x y y x =,即4y x =时,等号成立,4y x +的最小值为4,所以234m m ->,解得:4m >或1m <-,所以实数m 的取值范围是{1m m <-或4}m >.故选:D8.已知函数222,2,()366,2,x ax x f x x a x x ⎧--≤⎪=⎨+->⎪⎩若()f x 的最小值为(2)f ,则实数a 的取值范围为()A.[2,5]B.[2,)+∞C.[2,6]D.(,5]-∞【答案】A 【解析】【分析】分别求解分段函数在每一段定义区间内的最小值,结合函数在整体定义域内的最小值得到关于a 的不等式组,解不等式组得到a 的取值范围.【详解】当2x >时,3666126x a a a x +-≥=-,当且仅当6x =时,等号成立,即当2x >时,函数()f x 的最小值为126a -;当2x ≤时,2()22f x x ax =--,要使得函数()f x 的最小值为(2)f ,则满足2,(2)24126,a f a a ≥⎧⎨=-≤-⎩解得25a ≤≤.故选:A .二、多选题(本题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对得5分,部分选对得2分,有选错的得0分)9.下列函数在区间(2,)+∞上单调递增的是()A.1y x x=+B.1y x x =-C.14y x=- D.y =【答案】AB 【解析】【分析】求函数的单调区间,首先要确定函数的定义域,若存在定义域之外的元素,则不符合条件;对其他选项可根据特殊函数的单调性得出.【详解】由“对勾”函数的单调性可知,函数1y x x=+在(2,)+∞单调递增,A 正确;由y x =在(2,)+∞单调递增,1y x =在(2,)+∞单调递减,知1y x x=-在(2,)+∞单调递增,B 正确;函数14y x=-在4x =处无定义,因此不可能在(2,)+∞单调递增,C 错误;函数y =的定义域为(,1][3,)-∞⋃+∞,因此在(2,3)上没有定义,故不可能在(2,)+∞单调递增,D 错误.故选:AB.10.已知函数()221f x x x =++在区间[],6a a +上的最小值为9,则a 可能的取值为()A.2B.1C.12D.10-【答案】AD 【解析】【分析】根据二次函数的对称轴和开口方向进行分类讨论,即可求解.【详解】因为函数()221f x x x =++的对称轴为=1x -,开口向上,又因为函数()221f x x x =++在区间[],6a a +上的最小值为9,当16a a ≤-≤+,即71a -≤≤-时,函数()221f x x x =++的最小值为min ()(1)0f x f =-=与题干不符,所以此时不成立;当1a >-时,函数()221f x x x =++在区间[],6a a +上单调递增,所以2min ()()219f x f a a a ==++=,解得:2a =或4a =-,因为1a >-,所以2a =;当61a +<-,也即7a <-时,函数()221f x x x =++在区间[],6a a +上单调递减,所以2min ()(6)14499f x f a a a =+=++=,解得:10a =-或4a =-,因为7a <-,所以10a =-;综上:实数a 可能的取值2或10-,故选:AD .11.若0,0a b >>,且4a b +=,则下列不等式恒成立的是()A.228a b +≤B.114ab ≤ C.≤ D.111a b+≤【答案】C 【解析】【分析】利用重要不等式的合理变形可得()()2222a b a b +≥+,即可知A 错误;由基本不等式和不等式性质即可计算B 错误;由()22a b +≥即可求得C 正确;根据不等式中“1”的妙用即可得出111a b+≥,即D 错误.【详解】对于A ,由222a b ab +≥可得()()2222222a bab ab a b +≥++=+,又4a b +=,所以()()222216a ba b +≥+=,即228a b +≥,当且仅当2a b ==时等号成立,故A 错误;对于B ,由4a b +=可得4a b +=≥,即04<≤ab ,所以114ab ≥,当且仅当2a b ==时等号成立,即B 错误;对于C ,由a b +≥可得()22a b a b +≥++=,所以可得28≥+,即≤,当且仅当2a b ==时等号成立,即C 正确;对于D ,易知()11111111121444a b a b a b a b b a ⎛⎛⎫⎛⎫+=++=+++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝,即111a b +≥;当且仅当2a b ==时等号成立,可得D 错误;故选:C12.公元3世纪末,古希腊亚历山大时期的一位几何学家帕普斯发现了一个半圆模型(如图所示),以线段AB 为直径作半圆ADB ,CD AB ⊥,垂足为C ,以AB 的中点O 为圆心,OC 为半径再作半圆,过O 作OE OD ⊥,交半圆于E ,连接ED ,设BC a =,,(0)AC b a b =<<,则下列不等式一定正确的是().A.2a b+< B.2a b+<C.b >D.2a b+>【答案】AD 【解析】【分析】先结合图象,利用垂直关系和相似关系得到大圆半径2a b R +=,小圆半径2b ar -=,AD =,BD ==,再通过线段大小判断选项正误即可.【详解】因为AB 是圆O 的直径,则90ADB DAB DBA ∠=︒=∠+∠,因为CD AB ⊥,则=90ACD ∠︒,所以90DAB ADC ∠+∠=︒,故DBA ADC ∠=∠,易有ADC DBC ,故AC DCCD BC=,即2CD AC BC ab =⋅=,大圆半径2a b R +=,小圆半径22a b b ar a +-=-=,90ACD ∠=︒ ,222AC CD AD ∴+=,故AD ==,同理BD ==.选项A 中,,显然当0a b <<时AOD ∠是钝角,在AD 上可截取DM DO =,故OD AD <,即大圆半径R OD AD =<,故2a b+<,正确;选项B 中,当60BOD ∠=︒时,大圆半径R OD OB BD ===,有2a b+=选项C 中,Rt BCD △中,BD =,而AC b =,因为,AC BD 大小关系无法确定,故错误;选项D 中,大圆半径2a b R OD +==,小圆半径2b ar OC -==,=OD >2a b+>,故正确.故选:AD.【点睛】本题解题关键在于将选项中出现的数式均与图中线段长度对应相等,才能通过线段的长短比较反馈到数式的大小关系,突破难点.第Ⅱ卷三、填空题(本题共4小题,每小题5分,共20分)13.若一个集合是另一个集合的子集,则称两个集合构成“鲸吞”;若两个集合有公共元素,且互不为对方子集,则称两个集合构成“蚕食”,对于集合{}1,2A =-,{}22,0B x ax a ==≥,若这两个集合构成“鲸吞”或“蚕食”,则a 的取值集合为_____.【答案】10,,22⎧⎫⎨⎬⎩⎭【解析】【分析】分“鲸吞”或“蚕食”两种情况分类讨论求出a 值,即可求解【详解】当0a =时,B =∅,此时满足B A ⊆,当0a >时,B ⎧⎪=⎨⎪⎩,此时,A B 集合只能是“蚕食”关系,所以当,A B 集合有公共元素1=-时,解得2a =,当,A B 集合有公共元素2=时,解得12a =,故a 的取值集合为10,,22⎧⎫⎨⎬⎩⎭.故答案为:10,,22⎧⎫⎨⎬⎩⎭14.一家物流公司计划建立仓库储存货物,经过市场了解到下列信息:每月的土地占地费1y (单位:万元)与仓库到车站的距离x (单位:km )成反比,每月库存货物费2y (单位:万元)与x 成正比.若在距离车站10km 处建立仓库,则1y 与2y 分别为4万元和16万元.则当两项费用之和最小时x =______(单位:km ).【答案】5【解析】【分析】由已知可设:11k y x=,22y k x =,根据题意求出1k 、2k 的值,再利用基本不等式可求出12y y +的最小值及其对应的x 值,即可得出结论.【详解】由已知可设:11k y x=,22y k x =,且这两个函数图象分别过点()10,4、()10,16,得110440k =⨯=,2168105k ==,从而140y x=,()2805xy x =>,故12408165x y y x +=+≥=,当且仅当4085x x =时,即5x =时等号成立.因此,当5x =时,两项费用之和最小.故答案为:5.15.函数()f x 是定义在()0,∞+上的增函数,若对于任意正实数,x y ,恒有()()()f xy f x f y =+,且()31f =,则不等式()()82f x f x +-<的解集是_______.【答案】()8,9【解析】【分析】根据抽象函数的关系将不等式进行转化,利用赋值法将不等式进行转化结合函数单调性即可得到结论.【详解】()()()f xy f x f y =+ ,(3)f 1=,22(3)(3)(3)(33)(9)f f f f f ∴==+=⨯=,则不等式()(8)2f x f x +-<等价为(8)[](9)f x x f <-,函数()f x 在定义域(0,)+∞上为增函数,∴不等式等价为080(8)9x x x x >⎧⎪->⎨⎪-<⎩,即0819x x x >⎧⎪>⎨⎪-<<⎩,解得89x <<,∴不等式的解集为(8,9),故答案为:()8,9.16.已知1:123x p --≤,22:210q x x m -+-≤,若p ⌝是q ⌝的必要不充分条件,则实数m 的取值范围是______.【答案】(][),99,-∞-⋃+∞【解析】【分析】先分别求出命题p 和命题q 为真命题时表示的集合,即可求出p ⌝和q ⌝表示的集合,根据必要不充分条件所表示的集合间关系即可求出.【详解】对于命题p ,由1123x --≤可解出210x -≤≤,则p ⌝表示的集合为{2x x <-或}10x >,设为A ,对于命题q ,22210x x m -+-≤,则()()110x m x m 轾轾---+£臌臌,设q ⌝表示的集合为B , p ⌝是q ⌝的必要不充分条件,B∴A ,当0m >时,()()110x m x m 轾轾---+£臌臌的解集为{}11x m x m -≤≤+,则{1B x x m =<-或}1x m >+,12110m m -≤-⎧∴⎨+≥⎩,解得9m ≥;当0m =时,{}1B x x =≠,不满足题意;当0m <时,()()110x m x m 轾轾---+£臌臌的解集为{}11x m x m +≤≤-,则{1B x x m =<+或}1x m >-,12110m m +≤-⎧∴⎨-≥⎩,解得9m ≤-,综上,m 的取值范围是(][),99,-∞-⋃+∞.故答案为:(][),99,-∞-⋃+∞.【点睛】本题考查命题间关系的集合表示,以及根据集合关系求参数范围,属于中档题.四、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.已知集合{0A x x =<或{}2},32x B x a x a >=≤≤-.(1)若A B = R ,求实数a 的取值范围;(2)若B A ⊆R ð,求实数a 的取值范围.【答案】(1)(],0-∞(2)12a ≥【解析】【分析】(1)根据集合的并集运算即可列不等式求解,(2)根据包含关系列不等式求解.【小问1详解】因为{0A x x =<或{}2},32,,x B x a x a A B >=≤≤-⋃=R 所以320322a a a a -≥⎧⎪≤⎨⎪-≥⎩,解得0a ≤,所以实数a 的取值范围是(],0-∞.【小问2详解】{0A x x =<或{}2},02x A x x >=≤≤R ð,由B A ⊆R ð得当B =∅时,32-<a a ,解得1a >;当B ≠∅时,32a a -≥,即1a ≤,要使B A ⊆,则0322a a ≥⎧⎨-≤⎩,得112a ≤≤.综上,12a ≥.18.已知关于x 的不等式2320ax x -+>的解集为{1x x <或}x b >(1b >).(1)求a ,b 的值;(2)当0x >,0y >,且满足1a b x y +=时,有222x y k k +≥++恒成立,求k 的取值范围.【答案】(1)1a =,2b =(2)[]3,2-【解析】【分析】(1)方法一:根据不等式2320ax x -+>的解集为{1x x <或}x b >,由1和b 是方程2320ax x -+=的两个实数根且0a >,利用韦达定理求解;方法二:根据不等式2320ax x -+>的解集为{1x x <或}x b >,由1和b 是方程2320ax x -+>的两个实数根且0a >,将1代入2320ax x -+=求解.(2)易得121x y+=,再利用“1”的代换,利用基本不等式求解.【小问1详解】解:方法一:因为不等式2320ax x -+>的解集为{1x x <或}x b >,所以1和b 是方程2320ax x -+=的两个实数根且0a >,所以3121b a b a ⎧+=⎪⎪⎨⎪⋅=⎪⎩,解得12a b =⎧⎨=⎩方法二:因为不等式2320ax x -+>的解集为{1x x <或}x b >,所以1和b 是方程2320ax x -+>的两个实数根且0a >,由1是2320ax x -+=的根,有3201a a -+=⇒=,将1a =代入2320ax x -+>,得23201x x x -+>→<或2x >,∴2b =;【小问2详解】由(1)知12a b =⎧⎨=⎩,于是有121x y +=,故()12422448y x x y x y x y x y ⎛⎫+=++=++>+ ⎪⎝⎭,当且仅当24x y =⎧⎨=⎩时,等号成立,依题意有()2min 22x y k k +≥++,即282k k ≥++,得26032k k k +-≤→-≤≤,所以k 的取值范围为[]3,2-.19.已知函数()212f x x x =+.(1)试判断函数()f x 在区间(]0,1上的单调性,并用函数单调性定义证明;(2)若(]0,1x ∃∈,使()2f x m <+成立,求实数m 的范围.【答案】(1)单调递减;证明见解析(2)()1,+∞【解析】【分析】(1)运用定义法结合函数单调性即可;(2)将能成立问题转化为最值问题,结合单调性求解最值.【小问1详解】()212f x x x=+在区间(]0,1上单调递减,证明如下:设1201x x <<≤,则()()()()2212121212222212121122x x f x f x x x x x x x x x ⎛⎫--=-+-=-- ⎪⎝⎭()()12121222221212121122x x x x x x x x x x x x ⎡⎤⎛⎫⎛⎫+=--=--+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦∵1201x x <<≤,∴120x x -<,21211x x >,21211x x >,∴2212121120x x x x ⎛⎫-+< ⎪⎝⎭,∴()()120f x f x ->所以,()212f x x x =+在区间(]0,1上单调递减.【小问2详解】由(1)可知()f x 在(]0,1上单调递减,所以,当1x =时,()f x 取得最小值,即()min ()13f x f ==,又(]0,1x ∃∈,使()2f x m <+成立,∴只需min ()2f x m <+成立,即32m <+,解得1m <.故实数m 的范围为()1,+∞.20.已知函数()21ax b f x x +=+是定义在()1,1-上的函数,()()f x f x -=-恒成立,且12.25f ⎛⎫= ⎪⎝⎭(1)确定函数()f x 的解析式并判断()f x 在()1,1-上的单调性(不必证明);(2)解不等式()()10f x f x -+<.【答案】(1)()21x f x x=+,在(1,1)-上单调递增(2)1(0,)2【解析】【分析】(1)根据奇函数的性质,以及代入条件,即可求解,并判断函数的单调性;(3)根据函数是奇函数,以及函数的单调性,即可求解不等式.【小问1详解】由题意可得()001225f f ⎧=⎪⎨⎛⎫= ⎪⎪⎝⎭⎩,解得01b a =⎧⎨=⎩所以()21x f x x =+,经检验满足()()f x f x -=-,设1211x x -<<<,()()()()()()121212122222121211111x x x x x x f x f x x x x x ---=-=++++,因为1211x x -<<<,所以120x x -<,1210x x ->,221210,10x x +>+>,所以()()120f x f x -<,即()()12f x f x <,所以函数()f x 在区间()1,1-单调递增;【小问2详解】(1)()0f x f x -+< ,(1)()()f x f x f x ∴-<-=-,()f x 是定义在(1,1)-上的增函数,∴111111x x x x -<-<⎧⎪-<<⎨⎪-<-⎩,得102x <<,所以不等式的解集为1(0,)2.21.2022年某企业整合资金投入研发高科技产品,并面向全球发布了首批17项科技创新重大技术需求榜单,吸引清华大学、北京大学等60余家高校院所参与,实现企业创新需求与国内知名科技创新团队的精准对接,最终该公司产品研发部决定将某项高新技术应用到某高科技产品的生产中,计划该技术全年需投入固定成本6200万元,每生产x 千件该产品,需另投入成本()F x 万元,且()210100,060810090121980,60x x x F x x x x ⎧+<<⎪=⎨+-≥⎪⎩,假设该产品对外销售单价定为每件0.9万元,且全年内生产的该产品当年能全部售完.(1)求出全年的利润()G x 万元关于年产量x 千件的函数关系式;(2)试求该企业全年产量为多少千件时,所获利润最大,并求出最大利润.【答案】(1)()2108006200,060810015780,60x x x G x x x x ⎧-+-<<⎪=⎨⎛⎫-++≥ ⎪⎪⎝⎭⎩;(2)该企业全年产量为90千件时,所获利润最大为15600万元【解析】【分析】(1)利用分段函数即可求得全年的利润()G x 万元关于年产量x 千件的函数关系式;(2)利用二次函数求值域和均值定理求值域即可求得该企业全年产量为90千件时,所获利润最大为15600万元.【小问1详解】当060x <<时,()()22900101006200108006200G x x x x x x =-+-=-+-,当60x ≥时,()8100810090090121980620015780G x x x x x x ⎛⎫⎛⎫=-+--=-++ ⎪ ⎪⎝⎭⎝⎭,所以()2108006200,060810015780,60x x x G x x x x ⎧-+-<<⎪=⎨⎛⎫-++≥ ⎪⎪⎝⎭⎩.【小问2详解】若060x <<,则()()210409800G x x =--+,当40x =时,()max 9800G x =;若60x ≥,()8100157801578015600G x x x ⎛⎫=-++≤-= ⎪⎝⎭,当且仅当8100x x=,即90x =时,等号成立,此时()max 15600G x =.因为156009800>,所以该企业全年产量为90千件时,所获利润最大为15600万元.22.在以下三个条件中任选一个,补充在下面问题中,并解答此题.①()()()f x y f x f y +=+,()24f =.当0x >时,()0f x >;②()()()2f x y f x f y +=+-,()15f =.当0x >时,()2f x >;③()()()f x y f x f y +=⋅,()22f =.且x ∀∈R ,()0f x >;当0x >时,()1f x >.问题;对任意,x y ∈R ,()f x 均满足___________.(填序号)(1)判断并证明()f x 的单调性;(2)求不等式()148f a +≤的解集.注;如果选择多个条件分别解答,按第一个解答计分.【答案】(1)增函数(2)答案见解析【解析】【分析】(1)根据单调性的定义法,证明单调性即可;(2)根据单调性,列出相应的不等式,解不等式方程可得答案.【小问1详解】若选①:设12,(,)x x ∈-∞+∞,且12x x <,则210x x ->,所以21()0f x x ->.由()()()f x y f x f y +=+得()()()f x y f x f y +-=,所以,2121()()()0f x f x f x x -=->,所以,21()()f x f x >,所以()f x 在(,)-∞+∞上是增函数;若选②:设12,(,)x x ∈-∞+∞,且12x x <.则210x x ->,所以21()2f x x ->.由()()()2+=+-f x y f x f y 得()()()2f x y f x f y +-=-,所以2121()()()20f x f x f x x -=-->,所以21()()f x f x >,所以f (x )在(,)-∞+∞上是增函数;若选③:设12,(,)x x ∈-∞+∞,且12x x <,则210x x ->,所以21()1f x x ->.由()()()f x y f x f y +=⋅得()()()f x y f y f x +=,2211()()1()f x f x x f x =->,又1()0>f x ,所以2()f x >1()f x ,所以函数()f x 为R 上的增函数;【小问2详解】若选①:由(2)4f =得(4)(2)(2)8f f f =+=,所以,(14)8f a +≤可化为(14)(4)f a f +≤,根据()f x 的单调性,得144a +≤,解得34a ≤,所以不等式(14)8f a +≤的解集为3,4⎛⎤-∞ ⎥⎝⎦.若选②:令1x y ==,则(2)2(1)28f f =-=,所以(14)8f a +≤可化为(14)(2)f a f +≤,根据()f x 的单调性,得142a +≤,解得14a ≤,所以不等式(14)8f a +≤的解集为1,4⎛⎤-∞ ⎥⎝⎦.若选③:由(2)2f =得(4)(2)(2)4f f f =⋅=,(6)(4)(2)8f f f =⋅=,所以(14)8f a +≤可化为(14)(6)f a f +≤,根据()f x 的单调性,得146a +≤,解得54a ≤,所以不等式(14)8f a +≤的解集为5,4⎛⎤-∞ ⎥⎝⎦.。
高一上学期第一次月考数学试卷(新题型:19题)(基础篇)(解析版)
2024-2025学年高一上学期第一次月考数学试卷(基础篇)参考答案与试题解析第I卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。
1.(5分)(24-25高一上·河北廊坊·开学考试)下列各组对象能构成集合的是()A.2023年参加“两会”的代表B.北京冬奥会上受欢迎的运动项目C.π的近似值D.我校跑步速度快的学生【解题思路】根据集合的定义依次判断各个选项即可.【解答过程】对于A:2023年参加“两会”的代表具有确定性,能构成集合,故A正确;对于B:北京冬奥会上受欢迎的运动项目,没有明确的标准,即对象不具有确定性,不能构成集合,故B 错误;对于C:π的近似值,没有明确的标准,即对象不具有确定性,不能构成集合,故C错误;对于D:我校跑步速度快的学生,没有明确的标准,即对象不具有确定性,不能构成集合,故D错误;故选:A.2.(5分)(23-24高一上·北京·期中)命题pp:∀xx>2,xx2−1>0,则¬pp是()A.∀xx>2,xx2−1≤0B.∀xx≤2,xx2−1>0C.∃xx>2,xx2−1≤0D.∃xx≤2,xx2−1≤0【解题思路】全称量词命题的否定为存在量词命题,求解即可.【解答过程】因为命题pp:∀xx>2,xx2−1>0,所以¬pp:∃xx>2,xx2−1≤0.故选:C.3.(5分)(23-24高二下·福建龙岩·阶段练习)下列不等式中,可以作为xx<2的一个必要不充分条件的是()A.1<xx<3B.xx<3C.xx<1D.0<xx<1【解题思路】利用必要不充分条件的意义,逐项判断即得.【解答过程】对于A,1<xx<3是xx<2的不充分不必要条件,A不是;对于B,xx<3是xx<2的一个必要不充分条件,B是;对于C,xx<1是xx<2的一个充分不必要条件,C不是;对于D,0<xx<1是xx<2的一个充分不必要条件,D不是.故选:B.4.(5分)(24-25高三上·山西晋中·阶段练习)下列关系中:①0∈{0},②∅ {0},③{0,1}⊆{(0,1)},④{(aa,bb)}= {(bb,aa)}正确的个数为()A.1 B.2 C.3 D.4【解题思路】根据元素与集合、集合与集合之间的关系分析判断.【解答过程】对于①:因为0是{0}的元素,所以0∈{0},故①正确;对于②:因为空集是任何非空集合的真子集,所以∅ {0},故②正确;对于③:因为集合{0,1}的元素为0,1,集合{(0,1)}的元素为(0,1),两个集合的元素全不相同,所以{0,1},{(0,1)}之间不存在包含关系,故③错误;对于④:因为集合{(aa,bb)}的元素为(aa,bb),集合{(bb,aa)}的元素为(bb,aa),两个集合的元素不一定相同,所以{(aa,bb)},{(bb,aa)}不一定相等,故④错误;综上所述:正确的个数为2.故选:B.5.(5分)(24-25高三上·江苏南通·阶段练习)若变量x,y满足约束条件3≤2xx+yy≤9,6≤xx−yy≤9,则zz=xx+2yy的最小值为()A.-7 B.-6 C.-5 D.-4【解题思路】利用整体法,结合不等式的性质即可求解.【解答过程】设zz=xx+2yy=mm(2xx+yy)+nn(xx−yy),故2mm+nn=1且mm−nn=2,所以mm=1,nn=−1,故zz=xx+2yy=(2xx+yy)−(xx−yy),由于3≤2xx+yy≤9,6≤xx−yy≤9,所以3+(−9)≤2xx+yy−(xx−yy)≤9+(−6),−6≤xx+2yy≤3,故最小值为−6,此时xx=4,yy=−5,故选:B.6.(5分)(23-24高二下·云南曲靖·期末)已知全集UU={1,3,5,7,9},MM=�xx|xx>4且xx∈UU},NN={3,7,9},则MM∩(∁UU NN)=()A.{1,5}B.{5}C.{1,3,5}D.{3,5}【解题思路】先求出MM,∁UU NN,再求MM∩(∁UU NN),【解答过程】因为UU={1,3,5,7,9},MM=�xx|xx>4且xx∈UU},所以MM={5,7,9},因为UU={1,3,5,7,9},NN={3,7,9},所以∁UU NN={1,5},所以MM∩(∁UU NN)={5}.故选:B.7.(5分)(23-24高一上·陕西渭南·期末)已知不等式aaxx2+bbxx+2>0的解集为{xx∣xx<−2或xx>−1},则不等式2xx2+bbxx+aa<0的解集为()A.�xx�−1<xx<12�B.{xx∣xx<−1或xx>12}C.�xx�−1<xx<−12�D.{xx∣xx<−2或xx>1}【解题思路】根据给定的解集求出aa,bb,再解一元二次不等式即得.【解答过程】由不等式aaxx2+bbxx+2>0的解集为{xx∣xx<−2或xx>−1},得−2,−1是方程aaxx2+bbxx+2=0的两个根,且aa>0,因此−2+(−1)=−bb aa,且−2×(−1)=2aa,解得aa=1,bb=3,不等式2xx2+bbxx+aa<0化为:2xx2+3xx+1<0,解得−1<xx<−12,所以不等式2xx2+bbxx+aa<0为{xx|−1<xx<−12}.故选:C.8.(5分)(24-25高三上·江苏徐州·开学考试)已知aa>bb≥0且6aa+bb+2aa−bb=1,则2aa+bb的最小值为()A.12 B.8√3C.16 D.8√6【解题思路】根据题意可知2aa+bb=32(aa+bb)+12(aa−bb),根据乘1法结合基本不等式运算求解. 【解答过程】因为aa>bb≥0,则aa+bb>0,aa−bb>0,且2aa+bb=32(aa+bb)+12(aa−bb),则2aa+bb=�32(aa+bb)+12(aa−bb)��6aa+bb+2aa−bb�=10+3(aa−bb)aa+bb+3(aa+bb)aa−bb≥10+2�3(aa−bb)aa+bb⋅3(aa+bb)aa−bb=16,当且仅当3(aa−bb)aa+bb=3(aa+bb)aa−bb,即aa=8,bb=0时,等号成立,所以2aa+bb的最小值为16.故选:C.二、多项选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目的要求,全部选对的得6分,部分选对的得部分分,有选错的得0分。
高一数学第一次月考试题含解析 试题
智才艺州攀枝花市创界学校蒙城县第八二零二零—二零二壹高一数学第一次月考试题〔含解析〕一、选择题〔一共12小题,每一小题5分〕1.设集合A={x∈Q|x>﹣1},那么〔〕A. B. C. D.⊈A【答案】B【解析】试题分析:A中元素为大于负一的有理数,应选B.考点:集合间的关系2.集合A到B的映射f:x→y=2x+1,那么集合A中元素2在B中的象是〔〕A.5B.2C.6D.8【答案】A【解析】因为,所以选A.3.用集合表示图中阴影局部是〔〕A.〔∁U A〕∩BB.〔∁U A〕∩〔∁U B〕C.A∩〔∁U B〕D.A∪〔∁U B〕【答案】C............4.以下函数是偶函数的是〔〕A.y=xB.y=2x2﹣3C.D.y=x2,x∈[0,1]【答案】B【解析】y=x为奇函数,y=2x2﹣3是偶函数,为奇函数,y=x2,x∈[0,1]既不是奇函数也不是偶函数,所以选B.5.在以下四组函数中,f〔x〕与g〔x〕表示同一函数的是〔〕A.f〔x〕=x﹣1,g〔x〕=B.f〔x〕=x,g〔x〕=C.f〔x〕=x+1,x∈R,g〔x〕=x+1,x∈ZD.f〔x〕=|x+1|,g〔x〕=【答案】D【解析】f〔x〕=x﹣1与g〔x〕=定义域不同,f〔x〕=x与g〔x〕=定义域不同,f〔x〕=x+1,x∈R 与g〔x〕=x+1,x∈Z定义域不同,g〔x〕=,所以f〔x〕=|x+1|与g〔x〕=为同一函数,选D.6.集合A={0,1,2},B={z|z=x+y,x∈A,y∈A},那么B=〔〕A.{0,1,2,3,4}B.{0,1,2}C.{0,2,4}D.{1,2}【答案】A【解析】因为,所以B={0,1,2,3,4},选A.7.函数f〔x〕=,那么f〔f〔﹣3〕〕=〔〕A.0B.πC.π2D.9【答案】B【解析】,选B.点睛:分段函数求值的解题思路;求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a))的形式时,应从内到外依次求值.8.全集为实数集R,M={x|﹣2≤x≤2},N={x|x<1},那么〔∁R M〕∩N=〔〕A.{x|x<﹣2}B.{x|﹣2<x<1}C.{x|x<1}D.{x|﹣2≤x<1}【答案】A【解析】〔∁R M〕∩N={x|x<﹣2},选A.9.函数f〔x〕=x2+2ax+a2﹣2a在区间〔﹣∞,3]上单调递减,那么实数a的取值范围是〔〕A.〔﹣∞,3]B.[﹣3,+∞〕C.〔﹣∞,-3]D.[3,+∞〕【答案】C【解析】由题意得,选C.10.函数f〔x〕的定义域为〔﹣1,0〕,那么函数f〔2x+1〕的定义域为〔〕A.〔﹣1,1〕B.〔,1〕C.〔﹣1,0〕D.〔﹣1,﹣〕【答案】D【解析】由题意得,选D.点睛:对于抽象函数定义域的求解(2)假设函数f(g(x))的定义域为[a,b],那么f(x)的定义域为g(x)在x∈[a,b]上的值域.11.函数y=f〔x〕在定义域〔﹣1,1〕上是减函数,且f〔2a﹣1〕<f〔1﹣a〕,那么实数a的取值范围是〔〕A. B.〔0,2〕C. D.〔0,+∞〕【答案】C【解析】解:函数y=f〔x〕在定义域〔﹣1,1〕上是减函数,那么有:,应选C.点睛:解函数不等式:首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉“〞,转化为详细的不等式(组),此时要注意与的取值应在外层函数的定义域内12.设奇函数f〔x〕在〔0,+∞〕上为增函数,且f〔1〕=0,那么不等式<0的解集为〔〕A.〔﹣1,0〕∪〔1,+∞〕B.〔﹣∞,﹣1〕∪〔0,1〕C.〔﹣∞,﹣1〕∪〔1,+∞〕D.〔﹣1,0〕∪〔0,1〕【答案】D【解析】略二.填空题〔一共4小题,每一小题5分〕13.集合A={1,2,3,4},集合B={3,4,5},那么A∩B=_____.【答案】{3,4}.【解析】A∩B={1,2,3,4}∩{3,4,5}={3,4}.14.幂函数f〔x〕=xα的图象经过点〔2,4〕,那么f〔﹣3〕的值是_____.【答案】9.【解析】由题意得15.函数f〔x〕=的单调递减区间为_____.【答案】〔﹣∞,﹣3].【解析】由题意得,即单调递减区间为〔﹣∞,﹣3].点睛:1.复合函数单调性的规那么假设两个简单函数的单调性一样,那么它们的复合函数为增函数;假设两个简单函数的单调性相反,那么它们的复合函数为减函数.即“同增异减〞.2.函数单调性的性质(1)假设f(x),g(x)均为区间A上的增(减)函数,那么f(x)+g(x)也是区间A上的增(减)函数,更进一步,即增+增=增,增-减=增,减+减=减,减-增=减;(2)假设k>0,那么kf(x)与f(x)单调性一样;假设k<0,那么kf(x)与f(x)单调性相反;(3)在公一共定义域内,函数y=f(x)(f(x)≠0)与y=-f(x),y=单调性相反;(4)在公一共定义域内,函数y=f(x)(f(x)≥0)与y=单调性一样;(5)奇函数在其关于原点对称的区间上单调性一样,偶函数在其关于原点对称的区间上单调性相反.16.函数f〔x〕满足f〔x+y〕=f〔x〕+f〔y〕〔x,y∈R〕,那么以下各式恒成立的是_____.①f〔0〕=0;②f〔3〕=3f〔1〕;③f〔〕=f〔1〕;④f〔﹣x〕f〔x〕<0.【答案】①②③【解析】解:令x=y=0得f〔0〕=2f〔0〕,所以f〔0〕=0,所以①恒成立;令x=2,y=1得f〔3〕=f〔2〕+f〔1〕=f〔1〕+f〔1〕+f〔1〕=3f〔1〕,所以②恒成立;令x=y=得f〔1〕=2f〔〕,所以f〔〕=f〔1〕,所以③恒成立;令y=﹣x得f〔0〕=f〔x〕+f〔﹣x〕,即f〔﹣x〕=﹣f〔x〕,所以f〔﹣x〕f〔x〕=﹣[f〔x〕]2≤0,所以④不恒成立.故答案为:①②③三.解答题〔一共6小题〕17.集合M={2,a,b},N={2a,2,b2}且M=N.求a、b的值.【答案】【解析】因为M=N,所以根据集合元素的互异性,可知,解出a,b值再验证是否满足互异性的要求.由M=N及集合元素的互异性得:或者解上面的方程组得,或者或者再根据集合中元素的互异性得,或者18.集合A={x|1<x﹣1≤4},B={x|x<a}.〔Ⅰ〕当a=3时,求A∩B;〔Ⅱ〕假设A⊆B,务实数a的取值范围.【答案】〔1〕{x|2<x<3}〔2〕a>5【解析】试题分析:〔1〕先解集合A,再结合数轴求交集得A∩B;〔2〕根据数轴确定满足A⊆B时实数a的取值范围.试题解析:解:〔Ⅰ〕∵1<x﹣1≤4,∴2<x≤5故A={x|2<x≤5}当a=3时,B={x|x<3}∴A∩B={x|2<x<3}〔Ⅱ〕∵A⊆B,∴a>519.f〔x〕=,g〔x〕=x2+2.〔1〕求f〔2〕,g〔2〕,f[g〔2〕];〔2〕求f[g〔x〕]的解析式.【答案】〔1〕〔2〕【解析】试题分析:〔1〕将自变量2代入f〔x〕,g〔x〕解析式即得f〔2〕,g〔2〕,将g〔2〕作为自变量代入f〔x〕即得f[g〔2〕];〔2〕将g〔x〕作为自变量代入f〔x〕即得f[g〔x〕]试题解析:解:〔1〕f〔2〕=,g〔2〕=22+2=6,把g〔2〕=22+2=6代入f〔x〕=,得f[g〔2〕]=f〔6〕=;〔2〕f[g〔x〕]=20.函数,〔Ⅰ〕证明f〔x〕在[1,+∞〕上是增函数;〔Ⅱ〕求f〔x〕在[1,4]上的最大值及最小值.【答案】〔1〕见解析〔2〕【解析】试题分析:(Ⅰ)利用函数的单调性的定义进展证明;(Ⅱ)利用前一步所证的函数的单调性确定其最值.试题解析:(Ⅰ)设,且,那么∴∴,∴∴∴,即∴在上是增函数.(Ⅱ)由(Ⅰ)可知在上是增函数∴当时,∴当时,综上所述,在上的最大值为,最小值为.21.设f〔x〕=x2﹣4x﹣4,x∈[t,t+1]〔t∈R〕,求函数f〔x〕的最小值的解析式,并作出此解析式的图象.【答案】见解析【解析】试题分析:根据对称轴x=2与定义区间[t,t+1]位置关系,讨论确定最小值取法,再利用分段函数形式写最小值的解析式,最后按三段依次作出函数图像试题解析:解:f〔x〕=x2﹣4x﹣4=〔x﹣2〕2﹣8,即抛物线开口向上,对称轴为x=2,最小值为﹣8,过点〔0,﹣4〕,结合二次函数的图象可知:当t+1<2,即t<1时,f〔x〕=x2﹣4x﹣4,x∈[t,t+1]〔t∈R〕在x=t+1处取最小值f〔t+1〕=t2﹣2t﹣7,当,即1≤t≤2时,f〔x〕=x2﹣4x﹣4,x∈[t,t+1]〔t∈R〕在x=2处取最小值﹣8,当t>2时,f〔x〕=x2﹣4x﹣4,x∈[t,t+1]〔t∈R〕在x=t处取最小值f〔t〕=t2﹣4t﹣4,即最小值为g〔t〕,由以上分析可得,,作图象如下;点睛:研究二次函数单调性的思路(1)二次函数的单调性在其图象对称轴的两侧不同,因此研究二次函数的单调性时要根据其图象的对称轴进展分类讨论.(2)假设f(x)=ax2+bx+c(a>0)在区间A上单调递减(单调递增),那么A⊆〔A⊆〕即区间A一定在函数对称轴的左侧(右侧).22.定义在〔0,+∞〕上的函数f〔x〕满足对任意a,b∈〔0,+∞〕都有f〔ab〕=f〔a〕+f〔b〕,且当x>1时,f〔x〕<0.〔Ⅰ〕求f〔1〕的值;〔Ⅱ〕判断f〔x〕的单调性并证明;〔Ⅲ〕假设f〔3〕=﹣1,解不等式f〔x〕+f〔x﹣8〕>﹣2.【答案】〔1〕f〔1〕=0〔2〕见解析〔3〕〔8,9〕【解析】试题分析:〔1〕赋值法求f〔1〕的值:令a=b=1,可得f〔1〕=2f〔1〕,解得f〔1〕=0;〔2〕取两个特殊值判断函数单调性,再利用单调性定义证明,作差时利用f〔x2〕﹣f〔x1〕=f〔〕再结合当x>1时,f〔x〕<0可得差的符号.〔3〕利用及时定义可得f〔x〕+f〔x﹣8〕=f[x〔x﹣8〕],根据赋值法可得f〔9〕=2f〔3〕=﹣2,再根据单调性可得,解不等式组可得不等式解集试题解析:解:〔1〕对∀a,b∈〔0,+∞〕都有f〔ab〕=f〔a〕+f〔b〕,令a=b=1,可得f〔1〕=2f 〔1〕,解得f〔1〕=0;〔Ⅱ〕证明:设x1,x2∈〔0,+∞〕,且x1<x2,那么f〔x2〕﹣f〔x1〕=f〔〕﹣f〔x1〕=f〔〕+f〔x1〕﹣f〔x1〕=〕=f〔〕∵,∴,∴f〔x2〕﹣f〔x1〕<0,即f〔x2〕<f〔x1〕.∴f〔x〕在〔0,+∞〕上是减函数.〔Ⅲ〕令a=b=3,可得f〔9〕=2f〔3〕=﹣2,∴f〔x〕+f〔x﹣8〕>﹣2⇒f[x〔x﹣8〕]>f〔9〕⇒.不等式f〔x〕+f〔x﹣8〕>﹣2的解集为:〔8,9〕。
高一上学期第一次月考数学试卷(有答案解析)
高一上学期第一次月考数学试卷(有答案解析)班级:___________姓名:___________考号:____________一、单选题(本大题共8小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1. 已知集合A={2,3,4,5,6},B={x|x2−8x+12≥0},则A∩∁RB=()A. {2,3,4,5}B. {2,3,4,5,6}C. {3,4,5}D. {3,4,5,6}2. 已知集合A=0,1,2,4,B=xx<2,则A∩B的子集的个数为()A. 1B. 2C. 4D. 83. 若关于x的不等式|x−2|+|x+1|<a在R上无解,则实数a的取值范围为()A. (3,+∞)B. [3,+∞)C. (−∞,3)D. (−∞,3]4. 集合A={x|−2≤x≤2},B={x|−1<x<1},则()A. A∩B=BB. A∪B=BC. A∪B=RD. CR(A∪B)=R5. 已知集合A=x,yx2+y2=4,B=x,yx,y∈Z,则A∩B的子集个数为()A. 7B. 8C. 15D. 166. 命题“∀x∈R,3x2−2x−3>0”的否定为()A. ∀x∈R,3x2−2x−3≤0B. ∀x∉R,3x2−2x−3≤0C. ∃x∈R,3x2−2x−3≤0D. ∃x∉R,3x2−2x−3≤07. 命题“∀x>0,x2−x≤1”的否定是()A. ∀x≤0,x2−x≤1B. ∀x>0,x2−x>1C. ∃x≤0,x2−x≤1D. ∃x>0,x2−x>18. 设x1,x2是方程5x2−3x−2=0的两个实数根,则1x1+1x2的值为()A. 35B. −25C. −32D. 32二、多选题(本大题共4小题,共20.0分。
在每小题有多项符合题目要求)9. 设a,b,c,d∈R,且a>b,c>d,则下列命题不正确的是()A. ac>bdB. a−c>b−dC. a+c>b+dD. ad>bc10. “方程x2+x+2m=0没有实数根”的一个充分不必要条件可以是()A. m≥18B. m>2C. m>1D. m<111. 已知全集U,A,B是U的非空子集,且B⊆∁UA,则必有()A. A∩B=⌀B. A⊆∁UBC. A⊇∁UBD. A⊆B12. 图中阴影部分表示的集合可以为()A. (∁UA)∩BB. (∁UB)∩AC. ∁A(A∩B)D. ∁U(∁UA)三、填空题(本大题共4小题,共20.0分)13. 已知函数y=x2+ax+b的零点是3和−1,则a+b=______.14. 已知集合A={x|2x+5x−2<1,x∈R},B={−2,0,2},则A∩B=______.15. 已知x>2,当x+1x−2取到最小值时,x的值为______.16. 已知集合A={x|a−1≤x≤a+2},B={x|x≤0或x≥5},若A∩B=⌀,则实数a的取值范围是______.四、解答题(本大题共6小题,共70.0分。
2024-2025学年陕西省西安市高新一中高一(上)第一次月考数学试卷(含答案)
2024-2025学年陕西省西安市高新一中高一(上)第一次月考数学试卷一、单选题:本题共8小题,每小题4分,共32分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.设全集U={1,3,5,6,8},A={1,6},B={5,6,8},则(∁U A)∩B=( )A. {6}B. {5,8}C. {6,8}D. {3,5,6,8}2.已知集合M={x|x2−4<0},N={x|x−2x<0},则下列关系正确的是( )A. M=NB. M⫋NC. N⫋MD. M∩N=⌀3.命题“∃x0∈R,x3−x2+1>0”的否定是( )A. ∀x∈R,x3−x2+1≤0B. ∃x0∈R,x3−x2+1<0C. ∃x0∈R,x3−x2+1≤0D. 不存在x∈R,x3−x2+1>04.“x≥1”是“x+1x≥2”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分又不必要条件5.在R上定义运算⊙:x⊙y=x(1−y).若不等式(x−a)⊙(x+a)<1对任意实数x成立,则( )A. −1<a<1B. 0<a<2C. −12<a<32D. −32<a<126.实数a,b满足a>0,b>0且a+b=3,则1a+1+4b+2的最小值是( )A. 1B. 53C. 43D. 327.若对任意a∈[−1,1],不等式x2+(a−3)x−3a>0恒成立,则x的取值范围是( )A. 1<x<3B. −1<x<3C. x<1或x>3D. x<−1或x>38.已知a>b,二次三项式ax2+2x+b≥0对于一切实数x恒成立,又∃x0∈R,使ax20+2x0+b=0成立,则a2+b2a−b的最小值为( )A. 1B. 2C. 2D. 22二、多选题:本题共3小题,共15分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
宣威市第二中学2018年春季学期第一次月考卷
高一数学
一
、选择题 :(每小题5分,共60分)
1.下边程序执行后输出的结果是 (C ) 5n = 0s =
WHILE 15s < s s n =+ 1n n =- WEND
PRINT n +1
END
A. -1
B.0
C. 1
D. 2
2.将两个数A =9,B =15交换使得A =15,B =9下列语句正确的一组是( D ) A. B. C. D.
3.已知过点A (2,)m -、B (,4)m 的直线与直线210x y +-=平行,则m 的值为( B ) A. 0 B. -8 C. 2 D. 10
4.200辆汽车通过某一段公路时,时速的频率分布直方图如 右图所示,则时速在[50,70)的汽车大约有( D ). A.60辆 B .80辆 C.70辆 D.140辆
5.某公司生产三种型号的轿车,产量分别是1600辆、6000辆和2000辆,为检验公司的产品质量,现从这三种型号的轿车种抽取48辆进行检验,这三种型号的轿车依次应抽取(B ) A. 16,16,16 B. 8,30,10 C. 4,33,11 D. 12,27,9
6.某初级中学领导采用系统抽样方法,从该校预备年级全体800名学生中抽50名学生做牙齿健康检查。
现将800名学生从1到800进行编号,求得间隔数k 800
50
=
=16,即每16人抽取一个人。
在1~16中随机抽取一个数,如果抽到的是7,则从33 ~ 48这16个数中应取的数是( C )
A .37.
B .38.
C .39.
D .40. 7.已知圆2
2
450x y x +--=,则过点()1,2P 的最短弦所在直线l 的方程是( D )
A =
B B =A B =A
A =B
A =C C =
B B =A
C =B B =A A =C
时速(km )
0.01
0.02 0.03 0.04 频率 组距 40 50 60 70 80
A.3270x y +-=
B.240x y +-=
C.230x y --=
D.230x y -+=
8.阅读右图所示的程序框图,运行相应的程序, 若0.8p =,则输出的n 值为 ( B )
(A ) 3 (B ) 4 (C ) 5 (D ) 6
9. 在如图所示的“茎叶图”表示的数据中,众数和中位数分别 ( B )
A.23与26
B .31与26
C .24与30
D .26与30
10. 同时掷3枚硬币,至少有1枚正面向上的概率是 ( A ) A.8
7
B. 85 C.83 D.81
11、从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B ={抽到二等品},事件C ={抽到三等品},且已知P (A )=0.65 ,P(B)=0.2 ,P(C)=0.1。
则事件“抽到的不是一等品”的概率为 ( A ) A. 0.35 B. 0.65 C. 0.7 D. 0.3
12..函数()f x 是定义域为R 的奇函数,当0x >时()1f x x =-+,则当0x <时,()f x 的表达式为 ( D )
A .()1f x x =+
B .()1f x x =-
C .()1f x x =-+
D .()1f x x =-- 二、填空题:(每小题5分,共20分)
13.计算:log 3
+lg25+lg4+﹣= 4 .
14.掷两枚骰子,出现点数之和为3的概率是1/18__. 15.比较大小:403(6) > 217(8) 16.一几何体的三视图,如图,它的体积为
.
三、解答题:
1 2 4
2 0
3 5 6
3 0 1 1
4 1 2
开始
输入P
,1==S n ?p S <
n S S 2/1+=
1+=n n 输出n
结束
否 是
17.(10分)(1)用辗转相除法求840与1764的最大公约数.
(2)用秦九韶算法计算函数24532)(34=-++=x x x x x f 当时的函数值. 解:(1)1 764=840×2+84, 840=84×10+0,
所以840与1 764的最大公约数是84. (2)f(x)改写为
f(x)=(((2x +3)x +0)x +5)x -4, 所以v0=2,v1=2×2+3=7, v2=7×2+0=14, v3=14×2+5=33, v4=33×2-4=62, 所以f(2)=62.
18.(12分)甲、乙两位学生参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:
甲 82 81 79 78 95 88 93 84 乙 92 95 80 75 83 80 90 85
(Ⅰ)用茎叶图表示这两组数据并计算甲乙两人的平均数和方差。
(Ⅱ)现要从中选派一人参加数学竞赛,你认为选派哪位学生参加合适?请说明理由. 解: (1) 甲x =85;乙x =85;方差:甲35.5,乙:41
(2)选派甲同学参加
19.(12分)如图,已知四棱锥P ﹣ABCD 的底面ABCD 是菱形,PA ⊥平面ABCD ,点F 为PC 的中点. (1)求证:PA ∥平面BDF ; (2)求证:PC ⊥BD .
【解答】证明:(1)连接AC ,BD 与AC 交于点O ,连接OF . ∵ABCD 是菱形, ∴O 是AC 的中点. ∵点F 为PC 的中点, ∴OF ∥PA .
0.030.0250.015
0.010.005
分数
频率组距
∵OF ⊂平面BDF ,PA ⊄平面BDF , ∴PA ∥平面BDF . (2)∵PA ⊥平面ABCD , ∴PA ⊥BD .
又∵底面ABCD 是菱形, ∴BD ⊥AC .
又PA ∩AC=A ,PA ,AC ⊂平面PAC , ∴BD ⊥平面PAC . 又∵PC ⊂平面PAC , ∴PC ⊥BD
20.(12分)一个包装箱内有6件产品,其中4件正品,2件次品。
现随机抽出两件产品, (1)求恰好有一件次品的概率(2)求都是正品的概率。
(3)求抽到次品的概率。
解:将六件产品编号,ABCD(正品),ef (次品),从6件产品中选2件,其包含的基本事件为:(AB )(AC )(AD )(Ae )(Af )(BC )(BD )(Be )(Bf )(CD )(Ce )(Cf )(De )(Df )(ef ).共有15种,
(1)设恰好有一件次品为事件A ,事件A 中基本事件数为:8
则P (A )=15
8
(2)设都是正品为事件B ,事件B 中基本事件数为:6
则P (B )=5
2
156=
(3)设抽到次品为事件C ,事件C 与事件B 是对立事件,
则P (C )=1-P(B)=1-5
3
156=
21.(12分)某校从参加高一年级期末考试的学生中抽出60名学生,将其物理成绩(均为整数)分成六段
[)50,40,[)60,50…[]100,90后画出如下频率分布直方图.观察图形的信息,回答下列问题:
(Ⅰ)估计这次考试的众数m 与中位数n (结果保留一位小数); (Ⅱ)估计这次考试的及格率(60分及以上为及格)和平均分.
解:(Ⅰ)估计这次考试的众数是最高矩形底边的中点,m=75分,中位数n ≈73.3 (Ⅱ)估计这次考试的及格率为
1-(0.1+0.15)=0.75=75%
平均分=05.09525.0853.07515.06515.0551.045⨯+⨯+⨯+⨯+⨯+⨯=71
22.(12分)已知函数()(0,)x x
e a
f x a a R a e =
+>∈是R 上的偶函数. (1)求a 的值;
(2)证明函数()f x 在[0,)+∞上是增函数.
解:(1)()f x 是偶函数,()()f x f x ∴-=,即
x x x x e a e a a e a e --+=+, 整理得
11)()0x
x a e a
e --=(,得1
0a a
-=,又0a >,1a ∴=. (2)由(1)得1()x
x f x e e
=+.
设120x x ≤<,
∴1
2
121211()()))x x x x f x f x e e e e -=
+-+((=121212
)(1)x x x x x x e e e e ++--(; 120x x ≤<,120x x ∴+>,12120,1x x x x e e e +∴-<>,
121212
)(1)
0x x x x x x e e e e
++--∴<(,即12()()0f x f x -<, ∴12()()f x f x <;
所以函数()f x 在[0,)+∞上是增函数.。