勾股定理逆定理(第二课时)教学案
勾股定理的逆定理数学教案
勾股定理的逆定理数学教案
标题:勾股定理的逆定理数学教案
一、教学目标
1. 知识与技能目标:理解并掌握勾股定理的逆定理,并能运用它解决实际问题。
2. 过程与方法目标:通过探究、讨论、练习等活动,提高学生的观察力、思维能力和解决问题的能力。
3. 情感态度价值观目标:激发学生对数学的兴趣,培养他们的合作精神和实事求是的科学态度。
二、教学内容与过程
1. 引入新课:通过一些简单的实例,让学生感受到直角三角形中边长之间的关系,引出勾股定理的逆定理。
2. 新课讲解:首先回顾勾股定理的内容,然后提出问题:如果一个三角形的三条边满足a²+b²=c²,那么这个三角形一定是直角三角形吗?引导学生思考这个问题,从而引入勾股定理的逆定理。
3. 例题解析:给出几个具体的例子,让学生通过计算验证勾股定理的逆定理是否成立。
4. 练习巩固:设计一些习题,让学生自己动手计算,进一步理解和掌握勾股定理的逆定理。
三、教学反思
在本节课的教学过程中,要注意引导学生主动思考,积极参与课堂活动。
同时,要注重理论联系实际,使学生能够将所学知识应用到实际生活中去。
《17.2勾股定理的逆定理》教学设计(第2课时)
《17.2勾股定理的逆定理》教学设计(第2课时)一、内容和内容解析1.内容应用勾股定理及勾股定理的逆定理解决实际问题.2.内容解析运用勾股定理的逆定理可以从三角形边的数量关系来识别三角形的形状,它是用代数方法来研究几何图形,也是向学生渗透“数形结合”这一数学思想方法的很好素材.综合运用勾股定理及其逆定理能帮助我们解决实际问题.基于以上分析,可以确定本课的教学重点是灵活运用勾股定理的逆定理解决实际问题.二、目标和目标解析1.目标(1)灵活应用勾股定理及逆定理解决实际问题.(2)进一步加深性质定理与判定定理之间关系的认识.2.目标解析达成目标(1)的标志是学生通过合作、讨论、动手实践等方式,在应用题中建立数学模型,准确画出几何图形,再熟练运用勾股定理逆定理判断三角形状及求边长、面积、角度等;目标(2)能先用勾股定理的逆定理判断一个三角形是直角三角形,再用勾股定理及直角三角形的性质进行有关的计算和证明.三、教学问题诊断分析对于大部分学生将实际问题抽象成数学模型并进行解析与应用,有一定的困难,所以在教学时应该注意启发引导学生从实际生活中所遇到的问题出发,鼓励学生以勾股定理及逆定理的知识为载体建立数学模型,利用数学模型去解决实际问题.本课的教学难点是灵活运用勾股定理及逆定理解决实际问题.四、教学过程设计1.复习反思,引出课题问题1 通过前面的学习,我们对勾股定理及其逆定理的知识有一定的了解,请说出勾股定理及其逆定理的内容.师生活动:学生回答勾股定理的内容“如果直角三角形的两条直角边长分别为,斜边长为,那么;勾股定理的逆定理“如果三角形的三边长满足,那么这个三角形是直角三角形.追问:你能用勾股定理及逆定理解决哪些问题?师生活动:学生通过思考举手回答,教师板书课题.【设计意图】通过复习勾股定理及其逆定理来引入本课时的学习任务——应用勾股定理及逆定理解决有关实际问题.2. 点击范例,以练促思问题2 某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一个半小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?师生活动:学生读题,理解题意,弄清楚已知条件和需解决的问题,教师通过梯次性问题的展示,适时点拨,学生尝试画图、估测、交流中分化难点完成解答.追问1:请同学们认真审题,弄清已知是什么?解决的问题是什么?师生活动:学生通过思考举手回答,教师在黑板上列出:已知两种船的航速,它们的航行时间以及相距的路程,“远航”号的航向——东北方向;解决的问题是“海天”号的航向.追问2:你能根据题意画出图形吗?师生活动:学生尝试画图,教师在黑板上或多媒体中画出示意图.追问3:在所画的图中哪个角可以表示“海天”号的航向?图中知道哪个角的度数?师生活动:学生小组讨论交流回答问题“海天”号的航向只要能确定∠QPR的大小即可.组内讨论解答,小组代表展示解答过程,教师适时点评,多媒体展示规范解答过程.解:根据题意,因为,即,所以由“远航”号沿东北方向航行可知.因此,即“海天”号沿西北方向航行.课堂练习1. 课本33页练习第3题.课堂练习2. 在港有甲、乙两艘渔船,若甲船沿北偏东方向以每小时8海里速度前进,乙船沿南偏东某方向以每小时15海里速度前进,1小时后甲船到达岛,乙船到达岛,且岛与岛相距17海里,你能知道乙船沿哪个方向航行吗?【设计意图】学生在规范化的解答过程及练习中,提升对勾股定理逆定理的认识以及实际应用的能力.3. 补充训练,巩固新知问题3 实验中学有一块四边形的空地,如图所示,学校计划在空地上种植草皮,经测量,,,,,若每平方米草皮需要200元,问学校需要投入多少资金购买草皮?师生活动:先由学生独立思考.若学生有想法,则由学生先说思路,然后教师追问:你是怎么想到的?对学生思路中的合理成分进行总结;若学生没有思路,教师可引导学生分析:从所要求的结果出发是要知道四边形的面积,而四边形被它的一条对角线分成两个三角形,求出两个三角形的面积和即可.启发学生形成思路,最后由学生演板完成.【设计意图】引导学生利用辅助线解决问题,进一步养成利用勾股定理的逆定理解决实际问题的意识.4. 反思小结,观点提炼教师引导学生参照下面两个方面,回顾本节课所学的主要内容,进行相互交流:(1)知识总结:勾股定理以及逆定理的实际应用;(2)方法归纳:数学建模的思想.【设计意图】通过小结,梳理本节课所学内容,总结方法,体会思想.5.布置作业教科书34页习题17.2第3题,第4题,第5题,第6题.五、目标检测设计1.小明在学校运动会上负责联络,他先从检录处走了75米到达起点,又从起点向东走了100米到达终点,最后从终点走了125米,回到检录处,则他开始走的方向是(假设小明走的每段都是直线) ( )A.南北B.东西C.东北D.西北【设计意图】考查运用勾股定理的逆定理解决实际生活问题.2.甲、乙两船同时从港出发,甲船沿北偏东的方向,以每小时9海里的速度向岛驶去,乙船沿另一个方向,以每小时12海里的速度向岛驶去,3小时后两船同时到达了目的地.如果两船航行的速度不变,且两岛相距45海里,那么乙船航行的方向是南偏东多少度?【设计意图】考查建立数学模型,准确画出几何图形,运用勾股定理的逆定理解决实际生活问题.3.如图是一块四边形的菜地,已知,,,,,求这块菜地的面积.一般说来,“教师”概念之形成经历了十分漫长的历史。
最新八年级下册17.2勾股定理的逆定理第2课时勾股定理的逆定理的应用教案新版新人教【优选】
第2课时勾股定理的逆定理的应用1.进一步理解勾股定理的逆定理;(重点)2.灵活运用勾股定理及逆定理解决实际问题.(难点)一、情境导入某港口位于东西方向的海岸线上,“远望号”“海天号”两艘轮船同时离开港口,各自沿一固定的方向航行,“远望号”每小时航行16海里,“海天号”每小时航行12海里,它们离开港口1个半小时后相距30海里,如果知道“远望号”沿东北方向航行,能知道“海天号”沿哪个方向航行吗?二、合作探究探究点:勾股定理的逆定理的应用【类型一】运用勾股定理的逆定理求角度如图,已知点P是等边△ABC内一点,PA=3,PB=4,PC=5,求∠APB的度数.解析:将△BPC绕点B逆时针旋转60°得△BEA,连接EP,判断△APE为直角三角形,且∠APE=90°,即可得到∠APB的度数.解:∵△ABC为等边三角形,∴BA=BC.可将△BPC绕点B逆时针旋转60°得△BEA,连EP,∴BE=BP=4,AE=PC=5,∠PBE=60°,∴△BPE 为等边三角形,∴PE=PB=4,∠BPE=60°.在△AEP中,AE=5,AP=3,PE=4,∴AE2=PE2+PA2,∴△APE为直角三角形,且∠APE=90°,∴∠APB=90°+60°=150°.方法总结:本题考查了等边三角形的判定与性质以及勾股定理的逆定理.解决问题的关键是根据题意构造△APE为直角三角形.【类型二】运用勾股定理的逆定理求边长在△ABC中,D为BC边上的点,AB=13,AD=12,CD=9,AC=15,求BD的长.解析:根据勾股定理的逆定理可判断出△ACD为直角三角形,即∠ADC=∠ADB=90°.在Rt△ABD中利用勾股定理可得出BD的长度.解:∵在△ADC中,AD=12,CD=9,AC=15,∴AC2=AD2+CD2,∴△ADC是直角三角形,∠ADC =∠ADB=90°,∴△ADB是直角三角形.在Rt△ADB中,∵AD=12,AB=13,∴BD=AB2-AD2=5,∴BD的长为5.方法总结:解题时可先通过勾股定理的逆定理证明一个三角形是直角三角形,然后再进行转化,最后求解,这种方法常用在解有公共直角或两直角互为邻补角的两个直角三角形的图形中.【类型三】勾股定理逆定理的实际应用如图,是一农民建房时挖地基的平面图,按标准应为长方形,他在挖完后测量了一下,发现AB=DC=8m,AD=BC=6m,AC=9m,请你运用所学知识帮他检验一下挖的是否合格?解析:把实际问题转化成数学问题来解决,运用直角三角形的判别条件,验证它是否为直角三角形.解:∵AB=DC=8m,AD=BC=6m,∴AB2+BC2=82+62=64+36=100.又∵AC2=92=81,∴AB2+BC2≠AC2,∴∠ABC≠90°,∴该农民挖的不合格.方法总结:解答此类问题,一般是根据已知的数据先运用勾股定理的逆定理判断一个三角形是否是直角三角形,然后再作进一步解答.【类型四】运用勾股定理的逆定理解决方位角问题如图,南北向MN为我国领海线,即MN 以西为我国领海,以东为公海,上午9时50分,我国反走私A艇发现正东方有一走私艇以13海里/时的速度偷偷向我领海开来,便立即通知正在MN线上巡逻的我国反走私艇B密切注意.反走私艇A和走私艇C的距离是13海里,A、B两艇的距离是5海里;反走私艇B测得距离C艇12海里,若走私艇C的速度不变,最早会在什么时候进入我国领海?解析:已知走私船的速度,求出走私船所走的路程即可得出走私船所用的时间,即可得出走私船何时能进入我国领海.解题的关键是得出走私船所走的路程,根据题意,CE 即为走私船所走的路程.由题意可知,△ABE 和△ABC 均为直角三角形,可分别解这两个直角三角形即可得出.解:设MN 与AC 相交于E ,则∠BEC =90°.∵AB 2+BC 2=52+122=132=AC 2,∴△ABC 为直角三角形,且∠ABC =90°.∵MN ⊥CE ,∴走私艇C 进入我国领海的最短距离是CE .由S △ABC=12AB ·BC =12AC ·BE ,得BE =6013海里.由CE 2+BE 2=122,得CE =14413海里,∴14413÷13=144169≈0.85(小时)=51(分钟),9时50分+51分=10时41分.答:走私艇C 最早在10时41分进入我国领海.方法总结:用数学几何知识解决实际问题的关键是建立合适的数学模型,注意提炼题干中的有效信息,并转化成数学语言.三、板书设计1.利用勾股定理逆定理求角的度数 2.利用勾股定理逆定理求线段的长 3.利用勾股定理逆定理解决实际问题在本节课的教学活动中,尽量给学生充足的时间和空间,让学生以平等的身份参与到学习活动中去,教师要帮助、指导学生进行实践活动,这样既锻炼了学生的实践、观察能力,又在教学中渗透了人文和探究精神,体现了“数学源于生活、寓于生活、用于生活”的教育思想.。
18.2 勾股定理的逆定理(二)
八数教学案一、课时学习目标1.灵活应用勾股定理及逆定理解决实际问题。
2.进一步加深性质定理与判定定理之间关系的认识。
重点、难点1.重点:灵活应用勾股定理及逆定理解决实际问题。
2.难点:灵活应用勾股定理及逆定理解决实际问题。
二、课前预习导学1.填空题。
⑴任何一个命题都有 ,但任何一个定理未必都有 。
⑵“两直线平行,内错角相等。
”的逆定理是 。
⑶在△ABC 中,若a 2=b 2-c 2,则△ABC 是 三角形, 是直角; 若a 2<b 2-c 2,则∠B 是 。
⑷若在△ABC 中,a=m 2-n 2,b=2mn ,c= m 2+n 2,则△ABC 是 三角形。
2.下列四条线段不能组成直角三角形的是( )A .a=8,b=15,c=17B .a=9,b=12,c=15C .a=5,b=3,c=2D .a :b :c=2:3:43.已知:在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,分别为下列长度,判断该三角形是否是直角三角形?并指出那一个角是直角?⑴a=3,b=22,c=5; ⑵a=5,b=7,c=9;⑶a=2,b=3,c=7; ⑷a=5,b=62,c=1。
4.若三角形的三边是 ⑴1、3、2; ⑵51,41,31; ⑶32,42,52⑷9,40,41; ⑸(m +n )2-1,2(m +n ),(m +n )2+1;则构成的是直角三角形的有( ) A .2个 B .3个 C.4个 D.5个 5.叙述下列命题的逆命题,并判断逆命题是否正确。
⑴如果a 3>0,那么a 2>0;⑵如果三角形有一个角小于90°,那么这个三角形是锐角三角形; ⑶如果两个三角形全等,那么它们的对应角相等; ⑷关于某条直线对称的两条线段一定相等。
三、课堂学习研讨例1(P75例2)在军事和航海上经常要确定方向和位置, 从而使用一些数学知识和数学方法。
分析:⑴了解方位角,及方位名词;⑵依题意画出图形;⑶依题意可得PR= ,PQ= ,QR= ;小结:让学生养成“已知三边求角,利用勾股定理的逆定理”的意识。
第2课时 勾股定理的逆定理(二)教案
第2课时勾股定理的逆定理(二)●学习目标1.能运用勾股定理的逆定理解决实际问题.2.加深对勾股定理及其逆定理之间关系的认识.●学习重点勾股定理的逆定理的应用.●学习难点综合应用勾股定理和它的逆定理解决问题.教学设计一师一优课一课一名师(设计者:)教学过程设计一、创设情景明确目标如果一个三角形的三边分别为30、40、50,则这个三角形中最大的角是多少度?要解决这个问题,需要用到什么知识?今天我们就学习用勾股定理的逆定理解决实际问题.二、自主学习指向目标阅读教材第33页例2,思考下列问题:1.在地图上方向规定为:上__北__下__南__,__左西右东__.不看例2的图形,读题目尝试画一画图形.2.在例2中用到的数学定理是__勾股定理的逆定理__.三、合作探究达成目标探究点一勾股定理逆定理的实际运用活动1:阅读并解答教材第33页中的例2.展示点评:题目中告知了“远航号”和“海天号”的航行速度与时间,根据s=vt可以求出它们各自航行的路程分别为__24海里、18海里__;(2)“远航号”和“海天号”航行一个半小时后二者相距30海里,在此题目中的三个数据18、24、30__是__(填“是”或“不是”)一组勾股数.因此可以发现该题目中的△PRQ__是__直角三角形,从而求出∠RPQ=__90°__;(3)已知“远航号”沿东北方向航行可以知道∠QPN=__45°__,于是可以求出∠RPN =__45°__.所以“海天”号沿__西北__方向航行.小组讨论:结合例题,说一说勾股定理有什么用途?反思小结:根据题意构建几何图形,从而建立几何模型解决实际问题是常用的数学思想方法.知道三角形的三边长时可以尝试用勾股定理的逆定理判断三角形是否为直角三角形.针对训练1.A、B、C三地的两两距离如图所示,A地在B地的正东方向,C地在B地的什么方向?答案:正北方向.探究点二勾股定理和它的逆定理的综合运用活动2:如图,在四边形ABCD中,AB=2,BC=5,CD=5,DA=4,∠B=90°,求四边形ABCD的面积.分析:(1)此四边形是梯形吗?能否用梯形的面积公式计算其面积?(答案:不是梯形,不能.)(2)根据已知条件,结合图形,应该将这个四边形转化成两个三角形后计算面积较合适,你知道应该怎样作辅助线吗?(答案:连接AC.)(3)转化后的一个三角形是直角三角形,△ACD是直角三角形吗?为什么?(答案:直角三角形,可以用勾股定理的逆定理证明.)请写出详细的解答过程.展示点评:连接AC.在Rt△ABC中,AC=AB2+BC2=22+(5)2=3;在△ACD中,AC2+AD2=32+42=25,CD2=52=25∴AC2+AD2=CD2∴△ACD是直角三角形,即∠CAD=90°.则S四边形ABCD=S△ABC+S△ACD=12×2×5+12×3×4=5+6.小组讨论:如何灵活运用勾股定理及其逆定理?反思小结:有直角时可以联想到勾股定理;知道三边长度时,可以联想到勾股定理的逆定理.针对训练2.一块耕地形状如图,若AB⊥BC,AB=7,BC=24,AD=15,CD=20,求这块地的面积.答案:234.3.如图,每个小正方形的边长为1.(1)求四边形ABCD的面积与周长;(周长的结果精确到0.01)答案:面积为14.5,周长为15.93.(2)∠BCD是直角吗?答案:是.四、总结梳理内化目标1.利用勾股定理的逆定理可以判定直角三角形;2.直角三角形的判定方法有:用定义判定(找一个直角);用边判定——勾股定理的逆定理.五、达标检测反思目标1.一直角三角形有两边长为4和5,则第三边长为__3或41__.2.命题“若||a=||b,则a2=b2”的逆题是__若a2=b2__,则__||a=||b__,它是__真__命题(填“真”或“假”).3.等腰三角形的周长为36,其底边上的高为6,则其面积为( C )A.216B.96C.48D.724.一块钝角三角形草坪ABC,AB=40m,BC=60m,∠B=120°,若这种草坪每平方米需要m元,则这种草坪共需( B )A.8003元B.6003m元C.12003元D.1200m元5.在△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长是( C )A.42 B.32 C.42或32 D.37或336.如图,在△ABC中,AD⊥BC,AD=12,BD=16,CD=5.(1)求△ABC的周长.(2)判断△ABC是否是直角三角形.答案:(1)54;(2)不是.作业练习深化目标上交作业:教材第34页习题17.2第3题,第4题课后作业:见学生用书部分.●教学反思本节课完成了两个任务:一是利用勾股定理的逆定理解决方位角问题,二是综合利用勾股定理及其逆定理解决有关几何图形面积问题.。
《勾股定理的逆定理(第2课时)》教案 人教数学八年级下册
17.2 勾股定理的逆定理第2课时一、教学目标【知识与技能】1.进一步理解勾股定理的逆定理;2.灵活运用勾股定理及逆定理解决实际问题.【过程与方法】1.通过对勾股定理的逆定理应用的探索,经历知识发生、发展和形成的过程.2.通过用三角形的三边的数量关系来判断三角形的形状的应用,体验数形结合方法的应用.【情感态度与价值观】1.通过用三边之间的数量关系来判断三角形的形状的应用,体验数与形的内在联系,感受定理与逆定理之间的和谐辩证统一的关系.2.在对勾股定理的逆定理的探索中,培养了学生的交流、合作的意识和严谨的学习态度,同时感悟勾股定理和逆定理的应用价值.二、课型新授课三、课时第2课时共2课时四、教学重难点【教学重点】灵活应用勾股定理及其逆定理解决实际问题.【教学难点】将实际问题转化成用勾股定理的逆定理解决的数学问题.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔、练习本.六、教学过程(一)导入新课(出示课件2-3)工厂生产的产品都有一定的规格要求,如图所示:该模板中的AB、BC 相交成直角才符合规定.你能测出这个零件是否合格呢?(身边只有刻度尺)观察课件图片,引出本课知识点。
(二)探索新知1.出示课件5,利用勾股定理的逆定理解答角度问题教师问:如图,某港口P位于东西方向的海岸线上. “远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一个半小时后分别位于点Q,R处,且相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?学生答:就是求∠1的大小,因为题目中没有角度,感到无从下手解答问题.教师问:认真读题,找已知是什么?学生讨论后回答:“远航”号的航向、两艘船的一个半小时后的航程及距离已知,如下图.教师问:需要解决的问题是什么?学生回答:求出两艘船航向所成角.教师问:由于我们现在所能得到的都是线段长,要求角,由此我们想到利用什么思想?师生一起解答:转化的思想.教师问:知道线段长度,通过线段长度来求角的度数,我们可以利用什么转化呢?学生回答:勾股定理逆定理.教师问:你能写出解答过程吗?师生一起解答:解:根据题意得:PQ=16×1.5=24(海里),PR=12×1.5=18(海里),QR=30海里.∵242+182=302,即PQ2+PR2=QR2,∴∠QPR=90°.由“远航”号沿东北方向航行可知∠1=45°.∴∠2=45°,即“海天”号沿西北方向航行.总结点拨:解决实际问题的步骤:①标注有用信息,明确已知和所求;②构建几何模型(从整体到局部);③应用数学知识求解.出示课件8,学生自主练习后口答,教师订正.2.利用勾股定理的逆定理解答面积问题如图,四边形ABCD中,AB⊥AD,已知AD=3cm,AB=4cm,CD=12cm,BC=13cm,求四边形ABCD 的面积.(出示课件10)师生共同讨论解答如下:解:连接BD.在Rt△ABD 中,由勾股定理得 BD 2=AB 2+AD 2,∴BD=5cm.又∵ CD=12cm,BC=13cm,∴ BC 2=CD 2+BD 2,∴△BDC 是直角三角形.∴S 四边形ABCD =S Rt△BCD -S Rt△ABD =12BD•CD-12AB•AD =12×(5×12-3×4)=24 (cm 2). 出示课件11,学生自主练习后口答,教师订正.3.利用勾股定理的逆定理解答检测问题如图,是一农民建房时挖地基的平面图,按标准应为长方形,他在挖完后测量了一下,发现AB =DC =8m ,AD =BC =6m ,AC =9m ,请你运用所学知识帮他检验一下挖的是否合格?(出示课件12)学生独立思考后,师生共同解答.解:∵AB =DC =8m ,AD =BC =6m ,∴AB2+BC2=82+62=64+36=100.又∵AC2=92=81,∴AB2+BC2≠AC2,∴∠ABC≠90°,∴该农民挖的不合格.出示课件13,学生自主练习后口答,教师订正.教师:学了前面的知识,接下来做几道练习题看看你掌握的怎么样吧。
湘教版数学八年级下册1.2《勾股定理的逆定理》教学设计
湘教版数学八年级下册1.2《勾股定理的逆定理》教学设计一. 教材分析《勾股定理的逆定理》是湘教版数学八年级下册第1章第2节的内容。
这部分内容是在学生已经掌握了勾股定理的基础上进行教学的,主要是让学生了解并证明勾股定理的逆定理,能够运用逆定理判断一个三角形是否为直角三角形。
教材通过引入生活中的实例,激发学生的学习兴趣,培养学生解决实际问题的能力。
二. 学情分析学生在学习本节课之前,已经学习了勾股定理,对直角三角形的性质有一定的了解。
但部分学生对证明过程的理解可能还不够深入,对勾股定理的逆定理的应用还需要进一步巩固。
此外,学生的学习兴趣和动机对学习效果有很大影响,因此,教师在教学过程中需要注重启发学生思考,激发学生的学习兴趣。
三. 教学目标1.知识与技能:让学生掌握勾股定理的逆定理,能够运用逆定理判断一个三角形是否为直角三角形。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的逻辑思维能力和空间想象能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生解决实际问题的能力,培养学生的团队合作精神。
四. 教学重难点1.重点:勾股定理的逆定理的内容和证明过程。
2.难点:如何判断一个三角形是否为直角三角形,以及如何运用逆定理解决实际问题。
五. 教学方法1.引导法:教师通过提问、引导,让学生主动思考,发现问题,解决问题。
2.互动法:教师与学生进行互动,让学生在交流中学习,提高学生的表达能力。
3.实践法:让学生通过实际操作,加深对知识的理解和记忆。
六. 教学准备1.教材、教案、课件等教学资料。
2.三角板、直尺等学习工具。
3.相关的生活实例图片或视频。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的实例,如建筑物、家具等,引导学生观察其中的直角三角形,让学生感受到直角三角形在生活中的重要性。
然后提出问题:“如何判断一个三角形是否为直角三角形?”引发学生的思考,激发学生的学习兴趣。
2.呈现(10分钟)教师介绍勾股定理的逆定理的内容,并通过几何画板或实物模型展示逆定理的证明过程,让学生理解并掌握逆定理。
17.2勾股定理的逆定理(优质课)教学设计
17.2勾股定理的逆定理(优质课)优秀教学设计1000字教学设计:勾股定理的逆定理教学目标:1. 理解勾股定理的逆定理。
2. 能够使用逆定理解决三角形直角问题。
3. 培养学生自信心和解决问题的能力。
教学过程:一、导入:老师可以让学生回顾一下勾股定理,强调直角三角形的特征和斜边平方等于两条直角边平方和的关系。
二、新知:老师让学生学习勾股定理的逆定理。
首先,老师列出勾股定理的公式:a²+b²=c²。
然后,老师强调因为右边的平方和等于左边的平方和,所以如果c²=a²+b²那么这个三角形是直角三角形。
三、讲解:老师为学生讲解勾股定理的逆定理。
勾股定理的逆定理是:如果一个三角形的三边中,某两边的平方和等于第三边的平方,那么这个三角形就是直角三角形。
四、练习:老师让学生完成以下练习,巩固勾股定理的逆定理的运用能力。
1、在图中,AB=25,BC=24,AC=7,则△ABC是什么三角形?2、在图中,AB=10,AC=6,BC=8,则△ABC是什么三角形?3、在图中,AB=13,AC=12,则BC的值是多少?五、展示:老师通过学生的练习,展示勾股定理的逆定理的应用。
六、总结:老师总结课程,让学生复习并归纳勾股定理和勾股定理的逆定理,以及它们在解决直角三角形问题中的应用。
七、作业:老师布置勾股定理和勾股定理的逆定理的作业,要求学生在完成作业的同时,运用勾股定理和勾股定理的逆定理解决问题。
教学方法:讲解、练习、展示、总结教学工具:黑板、彩色粉笔、PPT评估方法:学生完成的课堂练习和作业,以及他们在课堂上所展示的应用。
教学反思:教师需要注意在讲解中,既要强调勾股定理的逆定理的概念和公式,也要注重其实际应用。
在练习和布置作业中,老师需要注意难易程度的掌控,要让学生既能够完成,又能够得到提高。
在展示中,老师应该强调问题的解决方法,并及时纠正错误。
在总结时,老师需要重点强调勾股定理和勾股定理的逆定理的区别和应用,以及怎样能够更好地运用勾股定理和逆定理解决问题。
18.2勾股定理的逆定理(2)
变式3:如图,在四边形ABCD中,∠B=∠D=90°,AB=2,CD=1,
求四边形的面积
三、本课知识能力提升训练
提升能力点
灵活运用“勾股定理的逆定理”解决实际图形问题
学生层面
数形结合能力的培养,数学建模思想的渗透
提升容
在正方形ABCD中,F是DC的中点,E为BC上一点,
且 如图
四、课堂梳理小结作业说明
小结具体内容
1、典型例题的解题方法2、变式的灵活处理
详细分层作业
布置要求说明
必做:书76页习题18.2 3导航34页第二课时随堂练习
选作:书76页习题18.2 5学案课后提升题
例2某小区有一块草坪如图,已知AB=3 m,BC=4m,CD=12m,DA=13m,且AB BC,则这块草坪的面积是多少?
针对性练习:如图,在四边形ABCD中,∠B=90°,AB=2,BC=CD=1,AD= ,试求四边形ABCD的面积。
变式1:如图,在四边形ABCD中,AB=20,BC=15,CD=7,AD=24,若∠B=90°,猜想∠A与∠C的关系,并证明你的猜想
初二学案记录学科八下数学时间月日
课题
18.2勾股定理的逆定理(2)
课型
新授
课时
2-2
一、课堂导入知识点衔接
复习内容重点
1、勾股定理的逆定理2、命题与逆命题
具体衔接点
1、勾股定理成立的条件
2、勾股定理逆定理的成立条件3.进一步加深性质定理与判定定理之间关系的认识
二、本课知识点强调说明
本课重点难点
重点:灵活应用勾股定理及逆定理解决实际问题
八年级数学下册 18.2 勾股定理逆定理(第2课时)学案2(无答案) 新人教版
勾股定理逆定理班级 姓名【学习目标】1.掌握勾股逆定理的内容.2. 能应用勾股逆定理解决实际问题【学习重难点】会结合勾股定理及直角三角形相关知识解决问题(一)【复习回顾】1.已知△ABC 的三边长a ,b ,c 分别为6,8,10,则△ABC__ ____(•填“是”或“不是”)直角三角形.2.△ABC 中,AB=7,AC =24,BC=25,则∠A=_____ _.3.△ABC 中,BC=n 2-1,AC=2n ,AB=n 2+1(n>1),则∠______=9004.如果三角形的三边长为1.5,2,2.5,那么这个三角形最短边上的高为______.(二)合作探究例2.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?(三)学以致用1.已知两条线段的长为3cm 和4c m,当第三条线段的长为 c m 时,这三条线段能组成一个直角三角形.2. 在Rt △ABC 中,∠C=90°,(1)若a=5,b=12,则c= ;(2)b=8,c=17 ,则ABC S =3. 等边三角形的边长为6,则它的高是________4. 在△ABC 中,点D 为BC 的中点,BD=3,AD=4,AB=5,则AC=____5.已知甲、乙两人从同一处出发,甲往东走了4km ,乙往南走了3km ,这时甲、乙两人相距 千米.6.下列各组数中,以它们为边的三角形不是直角三角形的是( )A .1.5,2,3 B. 7,24,25 C .6,8,10 D. 3,4,5 7.下列命题中是假命题的是( )A. △ABC 中,若∠B =∠C -∠A ,则△ABC 是直角三角形.B. △ABC 中,若a 2=(b +c )(b -c ),则△ABC 是直角三角形.C. △ABC 中,若∠A ∶∠B ∶∠C =3∶4∶5则△ABC 是直角三角形.D. △ABC 中,若a ∶b ∶c =5∶4∶3则△ABC 是直角三角形.8.若△ABC 的三边a 、b 、c 满足(a-b)(a 2+b 2-c 2)=0,则△ABC 是 ( )A. 等腰三角形B. 等边三角形C. 等腰直角三角形D. 等腰三角形或直角三角形9.一个直角三角形,有两边长分别为6和8,下列说法正确的()A. 第三边一定为10B. 三角形的周长为25C. 三角形的面积为48D. 第三边可能为1010.直角三角形的斜边为20cm ,两条直角边之比为3∶4,那么这个直角三角形的周长为( ) A . 27cm B. 30cm C. 40cm D. 48cm11.已知,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )cm 2A 6B 8C 10D 1212.已知,如图,一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距()A .25海里 B. 30海里 C. 35海里 D. 40海里13. 如图所示,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,求A B 的长.14.已知:如图,在△ABC 中,AB =15,BC =14,AC =13.求△ABC 的面积.F 第11题 北南 A 东第12题15.如图所示,在△ABC中,AB:BC:CA=3:4:5,且周长为36,点P从点A开始沿AB边向B 点以每秒1cm的速度移动;点Q从点B沿BC边向点C以每秒2cm的速度移动,如果同时出发,问过3秒时,△BPQ的面积为多少?。
勾股定理的逆定理(第二课时)
教学重点:勾股定理的逆定理及其实际应用.
教学难点:勾股定理逆定理的灵活应用
教法提示
启发式教学
教学过程设计(含作业安排)
一、复习提问
1、勾股定理的逆定理?
2、已知三角形三边长,如何判断三角形是否是直角三角形?来自3、勾股数?4、互逆命题?
练习
二、新课
例1、某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?
分析:“远航”号航行方向已知,只要求出“海天”号与它的航向的夹角就可以知道“海天”号的航行方向.
解:根据题意画出示意图:
PQ=16×1.5=24
PR=12×1.5=18
QR=30
∵在△RPQ中,
,
∴
∴∠QPR=90°(勾股定理的逆定理)
∵∠1=45°
∴∠2=45°
即“海天”号沿西北方向航行
注意:若此题没有“某港口位于东西方向的海岸线上”这个条件,则应有两解.即“西北方向”和“东南方向”.注意对方向的分类讨论.
练习:P33练习第3题、P34习题第3题
例2一个零件的形状如左图所示,按规定这个零件中∠A和∠DBC都应为直角。工人师傅量得这个零件各边尺寸如右图所示,这个零件符合要求吗?(图见课件)
练习:已知:如图,四边形ABCD中,∠B=900,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积?(图见课件)
练习、如图,有一块地,已知,AD=4m,CD=3m,∠ADC=90°,AB=13m,
BC=12m。求这块地的面积。(图见课件)
陕西省安康市紫阳县紫阳中学八年级数学下册 17.2 勾股定理逆定理(第2课时)教案(新人教版)
17.2 勾股定理逆定理(第2课时)课题: 17.2 勾股定理逆定理(第2课时)教学目标知识与能力:1.说出证明勾股定理逆定理的方法。
2.叙述逆定理,互逆定理的概念。
过程与方法:1.经历证明勾股定理逆定理的过程,发展逻辑思维能力和空间想象能力。
2.经历互为逆定理的讨论,树立严谨的治学态度和实事求是求学精神。
情感态度价值观:1.经历探索勾股定理逆定理证明的过程,树立克服困难的勇气和坚强的意志。
2.树立与人合作、交流的团队意识。
教学重、难点重点:勾股定理逆定理的证明,及互逆定理的概念。
难点:互逆定理的概念学情分析本节主要学习勾股定理逆定理的证明,经历证明勾股定理逆定理的过程,得出命题2是正确的,引出勾股定理的逆定理的概念,最后是利用勾股定理的逆定理解决实际问题的例子,可以进一步理解勾股定理的逆定理,体会数学与现实世界的联系。
课前准备多媒体教学过程教师活动学生活动设计意图创设问题情境,引入新课二、讲授新课活动 1 以下列各组线段为边长,能构成三角形的是____________(填序号),能构成直角三角形的是____________.①3,4,5 ②1,3,4 ③4,4,6 ④6,8,10 ⑤5,7,2 ⑥13,5,12 ⑦7,25,24活动2 问题:命题2是命题1的逆命题,命题1我们已证明过它的正确性,命题2正确吗?如何证明呢?△ABC的三边长a,b,c满足a2+b2=c2.如果△ABC是直角三角形,它应与直角边是a,b的直角三角形全等,实际情况是这样吗?我们画一个直角三角形A'B'C',使B'C'=a,A'C'=b,∠C'=90°(如下图)由学生自己独立完成,教师巡视学生填的结果.在此活动中,教师应重点关注:①学生是否熟练地完成填空;②学生是否积极主动地完成任务.生:能构成三角形的是:①③④⑥⑦,能构成直角三角形的是;①④⑥⑦让学生试着寻找解题思路;教师可引导学生发现证明的思路.本活动中,教师应重点关注学生:①能否在教师的引导下,理清思路.②能否积极主动地思考问题,参与交流、讨论.我们所画的Rt△A'B'C',A'B'=a2+b2,又因为c2=a2+b2,所以A'B'2=c2,即帮助学生回忆构成三角形的条件和判定一个三角形为直角三角形的条件.由特例猜想得到的结论,会让一些同学产生疑虑,我们的猜想是否正确,必须有严密的推理证明过程,才能让大家用的放心.通过对命题2的证明,还可以提高学生的逻辑推理能力把画好的△A'B'C'剪下,放在△ABC上,它们重合吗?1.如果三条线段长a,b,c 满足a2=c2-b2.这三条线段组成的三角形是不是直角三角形?为什么?2.说出下列命题的逆命题.这些命题的逆命题成立吗?(1)两条直线平行,内错角相等.(2)如果两个实数相等,那么它们的绝对值相等.(3)全等三角形的对应角相等.(4)在角的平分线上的点到角的两边的距离相等.[例1]一个零件的形状如下图所示,按规定这个零件中∠A和∠D BC都应为直角.工人师傅量出了这个零件各边尺寸,那么这个零件符合要求吗?[例2](1)判断以a=A'B'=c △ABC和△A'B'C'三边对应相等,所以两个三角形全等,∠C=∠C'=90°.△ABC为直角三角形.即命题2是正确的.学生独立思考,自主完成;教师巡视完成练习的情况,以不同层次的学生给予辅导.在此活动中,教师应重点关注学生.①学生对勾股定理的逆定理的理解.②学生对互为逆命题的掌握情况.③学生面对困难,是否有克服困难的勇气.学生只要能用自己的语言表达清楚解决问题的过程即可.先由学生独立完成,然后小组交流,讨论;教师巡视学生完成问题的情况,及时给予指导.在此活动中,教师应重点关注学生:①能否进一步理解勾股定理的逆定进一步理解和掌握勾股定理的逆定理的本质特征,以及互为逆命题的关系及正确性;提高学生的数学应用意识和逻辑推理能力.这是利用勾股定理的逆定理解决实际问题的例子,可以使学生进一步理解勾股定理的逆定理,体会数学与现实世界的联系.10,b=8,c=6为边组成的三角形是不是直角三角形.解:因为a2+b2=100+64=164≠c2,即a2+b2≠c2,所以由a,b,c不能组成直角三角形.请问:上述解法对吗?为什么?(2)已知:在△ABC中,AB=13cm,BC=10cm,BC 边上的中线AD=12cm.求证:AB=AC.你对本节的内容有哪些认识,掌握勾股定理的逆定理及其应用,熟记几组勾股数.理,②能否用语言比较规范地书写过程,说明理由.③能否从中体验到学习的乐趣。
17.2.12勾股定理逆定理(教案)
4.培养学生团队合作精神,提高沟通交流能力,增强数学课堂互动。
5.激发学生对数学学科的兴趣,树立正确的数学观念,培育数学美感。
三、教学难点与重点
1.教学重点
(1)理解和掌握勾股定理逆定理的内容,即一个三角形的两边长的平方和等于第三边的平方,则这个三角形是直角三角形。
(2)对于特殊情况的判断,如:一个三角形的两边长分别为1.5和2,第三边长为3.5,判断这个三角形是否为直角三角形(1.5^2 + 2^2 = 2.25 + 4 = 6.25,3.5^2 = 12.25,不是直角三角形)。
(3)解决实际问题,如:一个直角三角形的两个直角边长分别为6和8,求斜边长。将勾股定理逆定理与勾股定理相结合,得出斜边长为10。
17.2.12勾股定理逆定理(教案)
一、教学内容
本节课选自人教版八年级数学下册第17章第2节,主要教学内容为勾股定理逆定理。具体内容包括:
1.理解并掌握勾股定理逆定理的概念:如果一个三角形的两边长的平方和等于第三边的平方,那么这个三角形是直角三角形。
2.学会运用勾股定理逆定理判断一个三角形是否为直角三角形。
此外,我在课堂上观察到,学生们对于自己发现问题和解决问题的过程非常感兴趣。在小组讨论环节,他们积极思考,互相交流,提出了很多有趣的观点和解决方案。这让我意识到,在今后的教学中,应该多设计一些开放性的问题和实践活动,激发学生的创新思维和探究欲望。
最后,今天的课堂总结环节,学生们提出了不少疑问,这说明他们在课堂学习中还有未完全理解的地方。在今后的教学中,我要更加关注学生的反馈,及时解答他们的疑问,确保他们对知识点有全面、深入的理解。
勾股定理逆定理教学案
勾股定理教学案(2)课型:新授 主备人:严红伟 时间:2011年3月25日【教学目标】1、能运用勾股定理及直角三角形的判定条件解决实际问题。
2、在运用勾股定理解决实际问题的过程中,感受数学的“转化”思想(把解斜三 角形问题转化为解直角三角形的问题),进一步发展有条理思考和有条理表达的能力,体会数学的应用价值。
【教学重点】实际问题转化成数学问题再转化为直角三角形中求边和角【教学难点】“转化”思想的应用课前预习:1. 勾股定理的内容是2.在数轴上你能画出长度为2,3,5、6、7的线段吗?3.已知:如图,在△ABC 中,D 为边BC 上的一点,AB=13,AD=12,AC=15,BD=5.求△ABC的面积.2.在平静的湖面上,有一支红莲,高出水面1m,一阵风吹来,红莲吹到一边,花朵齐及水面,已知红莲移动的水平距离为2m,求这里的水深是多少米?B A DC 2X X+1D C BA3. 已知等腰△ABC 的周长为26,AB=AC,且AB=BC+4,求:⑴底边BC 上的高。
⑵△ABC 的面积和一腰上的高。
随堂反馈:1. 如图,一个高18m ,周长5m 的圆柱形水塔,现制造一个螺旋形登梯,为了减小坡度,要求登梯绕塔环绕一周半到达顶端,问登梯至少多长?(建议:拿一张白纸动手操作,你一定会发现其中的奥妙)2. 如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm ,3dm ,2dm ,A 和B 是这个台阶两相对的端点,A 点有一只昆虫想到B 点去吃可口的食物,则昆虫沿着台阶爬到B 点的最短路程是多少dm ?3.如图 ,为了求出湖两岸的A 、B 两点之间的距离,一个观测者在点C 设桩,使三角形ABC 恰好为直角三角形.通过测量,得到AC 长160米,BC 长128米.问从点A 穿过湖到点B 有多远?A · ·B 3 2 20C B A4.如图,A 、B 两个村子在河CD 的同侧,A 、B 两村到河的距离分别为AC=1km ,BD=3km ,CD=3km ,现在河边CD 上建一水厂向A 、B 两村输送自来水,铺设水管的费用为20000元/千米,请你在CD 选择水厂位置O ,使铺设水管的费用最省,并求出铺设水管的总费用F 。
《勾股定理的逆定理(2)》教学案
1 / 3八年级数学(下)教学案 第5课时课题:17.2勾股定理的逆定理(2) 课型:新授课 编写: 审核: 讲学时间:【学习目标】:1、勾股定理的逆定理的实际应用;2、通过用三角形三边的数量关系来判断三角形的形状,体验数形结合.【学习重点】:勾股定理的逆定理及其实际应用。
【学习难点】:勾股定理逆定理的灵活应用。
【学习过程】 一、课前复习1、判断由线段a 、b 、c 组成的三角形是不是直角三角形:(1)5,2,1===c b a ;(2)5.2,2,5.1===c b a (3)6,5,5===c b a2、写出下列真命题的逆命题,并判断这些逆命题是否为真命题。
(1)同旁内角互补,两直线平行;解:逆命题是: ;它是 命题。
(2)如果两个角是直角,那么它们相等;解:逆命题是: ;它是 命题。
(3)全等三角形的对应边相等;解:逆命题是: ;它是 命题。
(4)如果两个实数相等,那么它们的平方相等;解:逆命题是: ;它是 命题。
二、自主学习1、勾股定理是直角三角形的 定理;它的逆定理是直角三角形的 定理.2、请写出三组不同的勾股数: 、 、 .3、借助三角板画出如下方位角所确定的射线: ①南偏东30°;②西南方向;③北偏西60°.①②③2 / 3三、合作探究例1:某港口P 位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16 n mile ,“海天”号每小时航行12 n mile ,它们离开港口一个半小时后相距30 n mile .如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?四、课堂练习1、已知在△ABC 中,D 是BC 边上的一点,若AB =10,BD =6,AD =8,AC =17,求S △ABC .2、如图,南北向MN 为我国领域,即MN 以西为我国领海,以东为公海.上午9时50分,我反走私A 艇发现正东方向有一走私艇C 以13 n mile /h 的速度偷偷向我领海开来,便立即通知正在MN 线上巡逻的我国反走私艇B.已知A 、C 两艇的距离是13 n mile ,A 、B 两艇的距离是5 n mile ;反走私艇测得离C 艇的距离是12 n mile.若走私艇C 的速度不变,最早会在什么时间进入我国领海? 分析:为减小思考问题的“跨度”,可将原问题分解成下述“子问题”: (1)△ABC 是什么类型的三角形?(2)走私艇C 进入我领海的最近距离是多少? (3)走私艇C 最早会在什么时间进入?AB D AM ENB五、课堂小结你能搞清楚各个方向方位吗?本节课你还有哪些收获?六、课堂小测1、一根24米绳子,折成三边为三个连续偶数的三角形,则三边长分别为,此三角形的形状为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学课题:勾股定理逆定理 (第二课时) 课时规划:
教学目标:
1.灵活应用勾股定理及逆定理解决实际问题。
2.进一步加深性质定理与判定定理之间关系的认识。
教学重点:
灵活应用勾股定理及逆定理解决实际问题
教学难点:
灵活应用勾股定理及逆定理解决实际问题
教学过程
课题:勾股定理逆定理(二)
学习过程:
(一)、课堂引入
创设情境:在军事和航海上经常要确定方向和位置,从而使用一些数学知识和数学方法。
(二)、例题讲解 例1 阅读课本
分析: ⑴了解方位角,及方位名词;
⑵依题意画出图形
例2、一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状。
例3(补充)已知:如图,在△ABC 中,CD 是AB 边上的高,且CD 2=AD ·BD 。
求证:△ABC 是直角三角形。
(三)课堂练习
1. 分别以下列四组数为一个三角形的边长:(1)3,4,5;(2)5,12,13;(3)8,15,17;(4)4,5,P N E S
Q R B A C D
6.其中能构成直角三角形的有( )
A.4组
B.3组
C.2组
D.1组
2.如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的( )
A.1倍
B. 2倍
C. 3倍
D. 4倍
3. 下列各命题的逆命题不成立的是( )
A.两直线平行,同旁内角互补
B.若两个数的绝对值相等,则这两个数也相等
C.对顶角相等
D.如果a 2=b 2,那么a=b
4.五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( ) 715242520
715202425157
2520
24257202415
(A)(B)(C)(D)
A B C D 5、下列定理中,没有逆定理的是( )
A :两直线平行,内错角相等
B :直角三角形两锐角互余
C :对顶角相等
D :同位角相等,两直线平行
6、已知a 、b 、c 是三角形的三边长,如果满足2(6)810
0a b c -+-+-=,则三角形的形状是( )
A :底与边不相等的等腰三角形
B :等边三角形
C :钝角三角形
D :直角三角形
当堂检测:
1.一根24米绳子,折成三边为三个连续偶数的三角形,则三边长分别为 ,此三角形的形状为 。
2.小强在操场上向东走80m 后,又走了60m ,再走100m 回到原地。
小强在操场上向东走了80m 后,又走60m 的方向是
3. 在ΔABC 中,若AB 2+BC 2=AC 2,则∠A+∠C= 0 .
4课后练习:
2.如图,小明的爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算一下土地的面积,以便计算一下产量。
小明找了一卷米尺,测得AB=4米,BC=3米,CD=13米,DA=12米,又已知∠B=90。
3、已知在△ABC 中,AB=13, BC=10,BC 边上的中线AD=12,求证:AB= AC D
C A
B
4、已知,如图,在Rt △ABC 中,∠C=90°,∠CAD=∠BAD , CD=1.5,BD=2.5,求AC 的长.
5.如图,在操场上竖直立着一根长为CD=2米的测影竿,早晨测得它的影长为BD=4米,中午测得它的影长为AD=1米,则A 、B 、C 三点能否构成直角三角形?为什么?
C D A B 第4题图
B A
C D。