高中数学章末评估验收(二)(含解析)新人教A版选修23
高中数学 章末质量评估3 新人教A版选修22

2016-2017学年高中数学 章末质量评估3 新人教A 版选修2-2一、选择题(本大题共12小题.每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设z 1=3-4i ,z 2=-2+3i ,则z 1-z 2在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析: z 1-z 2=5-7i. 答案: D2.复数1-7i1+i 的虚部为( )A .0B . 2C .4D .-4解析: ∵1-7i 1+i =1-7i1-i 1+i1-i =-6-8i2=-3-4i ,∴复数1-7i1+i 的虚部为-4,选D.答案: D3.在下列命题中,正确命题的个数是( ) ①两个复数不能比较大小;②z 1,z 2,z 3∈C ,若(z 1-z 2)2+(z 2-z 3)2=0,则z 1=z 3; ③若(x 2-1)+(x 2+3x +2)i 是纯虚数,则实数x =±1; ④若a ,b 是两个相等的实数,则(a -b )+(a +b )i 是纯虚数. A .0个 B .1个 C .2个D .3个解析: 两个复数当它们都是实数时,是可以比较大小的,故①是不正确的; 假设z 1=i ,z 2=0,z 3=1,若(i -0)2+(0-1)2=0,则i =1,显然是错误的,故②是不正确的;假设x =-1,则x 2+3x +2=0,故③是不正确的;假设a =b =0,则(a -b )+(a +b )i =0是实数,故④是不正确的. 综上可知:①②③④均不正确,故选A. 答案: A4.已知z1+i =2+i ,则复数z =( )A .-1+3iB .1-3iC .3+iD .3-i解析: 由题意知z =(1+i)(2+i)=2-1+3i =1+3i , 从而z =1-3i ,选B. 答案: B5.在复平面内,复数z =i 2(1+2i)对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析: 复数z =i 2+2i 3=-1-2i ,复数对应的点为(-1,-2),则复数z 对应的点在第三象限,选C.答案: C6.复数z =(a 2-2a -3)+(a +1)i 为纯虚数,实数a 的值是( ) A .-1 B .3 C .1D .-1或3解析: 由题意知⎩⎪⎨⎪⎧a 2-2a -3=0,a +1≠0,解得a =3,选B.答案: B7.已知复数z =1+i ,则z 2-2zz -i等于( )A .2iB .-2iC .2D .-2解析: z 2-2z z -i =1+i 2-21+i 1+i -i =2i -2-2i1=-2,选D.答案: D8.复数z =(a 2-2a )+(a 2-a -2)i(a ∈R )对应的点在虚轴上,则( ) A .a ≠2或a ≠1 B .a ≠2且a ≠1 C .a =0D .a =2或a =0解析: 由点Z 在虚轴上可知,点Z 对应的复数是纯虚数和0,故a 2-2a =0,解得a =0或2.故选D.答案: D9.已知a ,b ∈R ,命题甲:a +b i 是纯虚数;命题乙:a =0,则甲是乙成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析: 若a +b i 是纯虚数,则a =0,b ≠0,于是甲是乙的充分但不必要条件,选A. 答案: A10.已知复数z 1=-1+2i ,z 2=1-i ,z 3=3-4i ,它们在复平面上所对应的点分别为A ,B ,C ,若OC →=λOA →+μOB →(λ,μ∈R ),则λ+μ的值是( )A .1B .2C .3D .4解析: 依题意3-4i =λ(-1+2i)+μ(1-i)=μ-λ+(2λ-μ)i , ∴⎩⎪⎨⎪⎧μ-λ=32λ-μ=-4,∴⎩⎪⎨⎪⎧λ=-1μ=2,∴λ+μ=1.答案: A11.复数z =x +y i(x ,y ∈R )满足条件|z -4i|=|z +2|,则|2x+4y|的最小值为( ) A .2 B .4 C .4 2D .16解析: 由|z -4i|=|z +2|得x +2y =3. 则2x +4y ≥22x +2y=2·23=4 2.答案: C12.已知f (n )=i n -i -n (i 2=-1,n ∈N ),集合{f (n )}的元素个数是( ) A .2个 B .3个 C .4个D .无数个解析: f (0)=i 0-i 0=0,f (1)=i -i -1=i -1i=2i ,f (2)=i 2-i -2=0, f (3)=i 3-i -3=-2i.∴{f (n )}={0,-2i,2i}. 答案: B二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上) 13.若复数z =(m -1)+(m +2)i 对应的点在直线y =2x 上,则实数m 的值是________. 解析: 由已知得2(m -1)-(m +2)=0,∴m =4. 答案: 414.设复数z 满足i(z +1)=-3+2i(i 是虚数单位),则z 的实部是________. 解析: 设z =a +b i(a ,b ∈R ),则i(z +1)=i(a +1+b i)=-b +(a +1)i =-3+2i , 所以a =1,b =3,复数z 的实部是1. 答案: 115.在复平面内,复数1+i 与-1+3i 分别对应向量OA →和OB →,其中O 为坐标原点,则|AB →|=________.解析: ∵AB →=(-1+3i)-(1+i)=-2+2i , ∴|AB →|=2 2. 答案: 2 216.设i 是虚数单位,若复数a -103-i(a ∈R )是纯虚数,则a 的值为________. 解析: 先利用复数的运算法则将复数化为x +y i(x ,y ∈R )的形式,再由纯虚数的定义求a .因为a -103-i =a -103+i 3-i 3+i=a -103+i10=(a -3)-i ,由纯虚数的定义,知a -3=0,所以a =3.答案: 3三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)计算⎣⎢⎡⎦⎥⎤1+2i ·i 100+⎝ ⎛⎭⎪⎫1-i 1+i 52-⎝ ⎛⎭⎪⎫1+i 220.解析: ⎣⎢⎡⎦⎥⎤1+2i ·i 100+⎝ ⎛⎭⎪⎫1-i 1+i 52-⎝ ⎛⎭⎪⎫1+i 220 =[(1+2i)·1+(-i)5]2-i 10=(1+i)2-i 10=1+2i.18.(本小题满分12分)实数m 分别取什么值时,复数z =(m 2+5m +6)+(m 2-2m -15)i (1)与复数2-12i 相等;(2)与复数12+16i 互为共轭复数; (3)对应的点在x 轴上方?解析: (1)由题意得⎩⎪⎨⎪⎧m 2+5m +6=2,m 2-2m -15=-12,解得m =-1.(2)由题意得⎩⎪⎨⎪⎧m 2+5m +6=12,m 2-2m -15=-16,解得m =1.(3)由题意知,m 2-2m -15>0,解得m >5,或m <-3.19.(本小题满分12分)在复平面上,正方形ABCD 的两个顶点A ,B 对应的复数分别为1+2i,3-5i.求另外两个顶点C ,D 对应的复数.解析: 设D (x ,y ),A ,B ,C ,D 对应的复数分别为z 1,z 2,z 3,z 4,则z 4-z 1=x -1+(y -2)i ,z 2-z 1=2-7i.在正方形ABCD 中,AD ⊥AB ,且|AD |=|AB |,z 4-z 1表示AD →,z 2-z 1表示AB →,∴|z 4-z 1|=|z 2-z 1|,即x 2+y 2-2x -4y -48=0.①(x -1)·2-7(y -2)=0, 即2x -7y +12=0.②①②联立解得⎩⎪⎨⎪⎧x =-6,y =0,或⎩⎪⎨⎪⎧x =8,y =4.又BC →=AD →, 则z 3-z 2=z 4-z 1,z 3=z 4+z 2-z 1=(x +2)+(y -7)i.综上可得⎩⎪⎨⎪⎧z 3=-4-7i ,z 4=-6,或⎩⎪⎨⎪⎧z 3=10-3i ,z 4=8+4i.20.(本小题满分12分)已知z 是复数,z +2i ,z2-i 均为实数(i 为虚数单位),对于复数w =(z +a i)2,当a 为何值时,w 为(1)实数;(2)虚数;(3)纯虚数. 解析: 设z =x +y i(x ,y ∈R ),z +2i =x +(y +2)i ,由题意得y =-2,z2-i =x -2i 2-i =15(x -2i)(2+i)=15(2x +2)+15(x -4)i. 由题意得x =4,∴z =4-2i.∵w =(z +a i)2=(12+4a -a 2)+8(a -2)i , (1)w 为实数,则a -2=0,∴a =2, 即w =12+4×2-22=16.(2)w 为虚数,只要a -2≠0,∴a ≠2.(3)w 为纯虚数,只要12+4a -a 2=0且a -2≠0, ∴a =-2或a =6.21.(本小题满分13分)已知复数z =3+b i(b ∈R ),且(1+3i)·z 为纯虚数. (1)求复数z ; (2)若ω=z2+i,求复数ω的模|ω|.解析: (1)(1+3i)·(3+b i)=(3-3b )+(9+b )i ∵(1+3i)·z 是纯虚数, ∴3-3b =0,且9+b ≠0, ∴b =1,∴z =3+i.(2)ω=3+i2+i =3+i ·2-i2+i ·2-i=7-i 5=75-15i ∴|ω|=⎝ ⎛⎭⎪⎫752+⎝ ⎛⎭⎪⎫-152= 2. 22.(本小题满分13分)已知复数z 满足|z |=2,z 2的虚部为2,z 所对应的点A 在第一象限.(1)求z ;(2)若 z ,z 2,z -z 2在复平面上对应的点分别为A ,B ,C ,求cos ∠ABC . 解析: (1)令z =x +y i(x ,y ∈R ). ∵|z |=2, ∴x 2+y 2=2.①又∵z 2=(x +y i)2=x 2-y 2+2xy i , ∴2xy =2, ∴xy =1.②由①②可解得⎩⎪⎨⎪⎧x =1,y =1或⎩⎪⎨⎪⎧x =-1,y =-1.∴z =1+i ,或z =-1-i. 又∵x >0,y >0,∴z =1+i. (2)z 2=(1+i)2=2i ,z -z 2=1+i -2i =1-i.如图所示,∴A (1,1),B (0,2),C (1,-1), ∴BA →=(1,-1),BC →=(1,-3), ∴cos ∠ABC =BA →·BC →|BA →||BC →|=1+32·10=425=255.。
高中数学 第二章 随机变量及其分布章末复习课练习(含解析)新人教A版高二选修2-3数学试题

章末复习课[整合·网络构建][警示·易错提醒]1.“互斥事件”与“相互独立事件”的区别.“互斥事件”是说两个事件不能同时发生,“相互独立事件”是说一个事件发生与否对另一个事件发生的概率没有影响.2.对独立重复试验要准确理解.(1)独立重复试验的条件:第一,每次试验是在同样条件下进行;第二,任何一次试验中某事件发生的概率相等;第三,每次试验都只有两种结果,即事件要么发生,要么不发生.(2)独立重复试验概率公式的特点:关于P(X=k)=C k n p k(1-p)n-k,它是n次独立重复试验中某事件A恰好发生k次的概率.其中n是重复试验次数,p是一次试验中某事件A发生的概率,k是在n次独立试验中事件A恰好发生的次数,弄清公式中n,p,k的意义,才能正确运用公式.3.(1)准确理解事件和随机变量取值的意义,对实际问题中事件之间的关系要清楚.(2)认真审题,找准关键字句,提高解题能力.如“至少有一个发生”“至多有一个发生”“恰有一个发生”等.(3)常见事件的表示.已知两个事件A、B,则A,B中至少有一个发生为A∪B;都发生为A·B;都不发生为—A ·—B ;恰有一个发生为(—A ·B)∪(A·—B );至多有一个发生为(—A ·—B )∪(—A ·B)∪(A·—B ).4.对于条件概率,一定要区分P(AB)与P(B|A).5.(1)离散型随机变量的期望与方差若存在则必唯一,期望E (ξ)的值可正也可负,而方差的值则一定是一个非负值.它们都由ξ的分布列唯一确定.(2)D (ξ)表示随机变量ξ对E (ξ)的平均偏离程度.D (ξ) 越大表明平均偏离程度越大,说明ξ的取值越分散;反之D (ξ)越小,ξ的取值越集中.(3)D (aξ+b )=a 2D (ξ),在记忆和使用此结论时,请注意D (aξ+b )≠aD (ξ)+b ,D (aξ+b )≠aD (ξ).6.对于正态分布,要特别注意N (μ,σ2)由μ和σ唯一确定,解决正态分布问题要牢记其概率密度曲线的对称轴为x =μ.专题一 条件概率的求法条件概率是高考的一个热点,常以选择题或填空题的形式出现,也可能是大题中的一个部分,难度中等.[例1] 坛子里放着7个大小、形状相同的鸭蛋,其中有4个是绿皮的,3个是白皮的.如果不放回地依次拿出2个鸭蛋,求:(1)第1次拿出绿皮鸭蛋的概率;(2)第1次和第2次都拿出绿皮鸭蛋的概率;(3)在第1次拿出绿皮鸭蛋的条件下,第2次拿出绿皮鸭蛋的概率.解:设“第1次拿出绿皮鸭蛋”为事件A ,“第2次拿出绿皮鸭蛋”为事件B ,则“第1次和第2次都拿出绿皮鸭蛋”为事件AB .(1)从7个鸭蛋中不放回地依次拿出2个的事件数为n (Ω)=A 27=42, 根据分步乘法计数原理,n (A )=A 14×A 16=24. 于是P (A )=n (A )n (Ω)=2442=47.(2)因为n (AB )=A 24=12, 所以P (AB )=n (AB )n (Ω)=1242=27.(3)法一 由(1)(2)可得,在第1次拿出绿皮鸭蛋的条件下,第2次拿出绿皮鸭蛋的概率为P (B |A )=P (AB )P (A )=27÷47=12. 法二 因为n (AB )=12,n (A )=24, 所以P (B |A )=n (AB )n (A )=1224=12.归纳升华解决概率问题的步骤.第一步,确定事件的性质:古典概型、互斥事件、独立事件、独立重复试验、条件概率,然后把所给问题归结为某一种.第二步,判断事件的运算(和事件、积事件),确定事件至少有一个发生还是同时发生,分别运用相加或相乘事件公式.第三步,利用条件概率公式求解:(1)条件概率定义:P (B |A )=P (AB )P (A ).(2)针对古典概型,缩减基本事件总数P (B |A )=n (AB )n (A ).[变式训练] 已知100件产品中有4件次品,无放回地从中抽取2次每次抽取1件,求下列事件的概率:(1)第一次取到次品,第二次取到正品; (2)两次都取到正品.解:设A ={第一次取到次品},B ={第二次取到正品}.(1)因为100件产品中有4件次品,即有正品96件,所以第一次取到次品的概率为P (A )=4100,第二次取到正品的概率为P (B |A )=9699,所以第一次取到次品,第二次取到正品的概率为P (AB )=P (A )P (B |A )=4100×9699=32825. (2)因为A ={第一次取到次品},且P (A )=1-P (A )=96100, P (B |A )=9599,所以P (AB )=P (A )P (B |A )=96100×9599=152165. 专题2 独立事件的概率要正确区分互斥事件与相互独立事件,准确应用相关公式解题,互斥事件是不可能同时发生的事件,相互独立事件是指一个事件的发生与否对另一个事件没有影响.[例2] 某射击小组有甲、乙两名射手,甲的命中率为P 1=23,乙的命中率为P 2,在射击比赛活动中每人射击两发子弹则完成一次检测,在一次检测中,若两人命中次数相等且都不少于一发,则称该射击小组为“先进和谐组”.(1)若P 2=12,求该小组在一次检测中荣获“先进和谐组”的概率.(2)计划在2018年每月进行1次检测,设这12次检测中该小组获得“先进和谐组”的次数为ξ,如果E (ξ)≥5,求P 2的取值X 围.解析:(1)因为P 1=23,P 2=12,根据“先进和谐组”的定义可得,该小组在一次检测中荣获“先进和谐组”的包括两人两次都射中,两人恰好各射中一次,所以该小组在一次检测中荣获“先进和谐组”的概率P =⎝⎛⎭⎪⎫C 12·23·13·⎝ ⎛⎭⎪⎫C 12·12·12+⎝ ⎛⎭⎪⎫23·23⎝ ⎛⎭⎪⎫12·12=13.(2)该小组在一次检测中荣获“先进和谐组”的概率P =⎝⎛⎭⎪⎫C 12·23·13[C 12·P 2·(1-P 2)]+⎝ ⎛⎭⎪⎫23·23()P 2·P 2=89P 2-49P 22, 又ξ~B (12,P ),所以E (ξ)=12P , 由E (ξ)≥5知,⎝ ⎛⎭⎪⎫89P 2-49P 22·12≥5,解得34≤P 2≤1.[变式训练] 甲、乙两射击运动员分别对一目标射击1次,甲射中的概率为0.8,乙射中的概率为0.9,求:(1)2人都射中目标的概率. (2)2人中恰有1人射中目标的概率. (3)2人中至少有1人射中目标的概率.解:记“甲射击1次,击中目标”为事件A ,“乙射击1次,击中目标”为事件B ,则A 与B ,与B , A 与B ,与为相互独立事件.(1)2人都射中目标的概率为P (AB )=P (A )·P (B )=0.8×0.9=0.72.(2)“2人中恰有1人射中目标”包括两种情况:一种是甲射中、乙未射中(事件A 发生),另一种是甲未射中、乙射中(事件B 发生).根据题意,知事件A 与B 互斥,所求的概率为P =P (A )+P (B )=P (A )P ()+P ()P (B )=0.8×(1-0.9)+(1-0.8)×0.9=0.08+0.18=0.26.(3)“2人中至少有1人射中目标”包括“2人都射中”和“2人中有1人射中”2种情况,其概率为P =P (AB )+[P (A )+P (B )]=0.72+0.26=0.98.专题三 独立重复试验与二项分布二项分布是高考考查的重点,要准确理解、熟练运用其概率公式P n (k )=C kn ·p k(1-p )n -k,k =0,1,2,…,n ,高考以解答题为主,有时也用选择题、填空题形式考查.[例3] 现有10道题,其中6道甲类题,4道乙类题,X 同学从中任取3道题解答. (1)求X 同学所取的3道题至少有1道乙类题的概率;(2)已知所取的3道题中有2道甲类题,1道乙类题.设X 同学答对每道甲类题的概率都是35,答对每道乙类题的概率都是45,且各题答对与否相互独立.用X 表示X 同学答对题的个数,求X 为1和3的概率.解:(1)设事件A =“ X 同学所取的3道题至少有1道乙类题”,则有A =“X 同学所取的3道题都是甲类题”.因为P (— A )=C 36C 310=16,所以P (A )=1-P (— A )=56.(2)P (X =1)=C 12⎝ ⎛⎭⎪⎫351·⎝ ⎛⎭⎪⎫251·15+C 02⎝ ⎛⎭⎪⎫350·⎝ ⎛⎭⎪⎫252·45=28125; P (X =3)=C 22⎝ ⎛⎭⎪⎫352·⎝ ⎛⎭⎪⎫25·45=36125. 归纳升华解决二项分布问题必须注意: (1)对于公式P n (k )=C k n ·p k (1-p )n -k,k =0,1,2,…,n 必须在满足“独立重复试验”时才能运用,否则不能应用该公式.(2)判断一个随机变量是否服从二项分布,关键有两点:一是对立性,即一次试验中,事件发生与否两者必有其一;二是重复性,即试验独立重复地进行了n 次.[变式训练] 口袋中装有大小、轻重都无差别的5个红球和4个白球,每一次从袋中摸出2个球,若颜色不同,则为中奖.每次摸球后,都将摸出的球放回口袋中,则3次摸球恰有1次中奖的概率为()A.80243B.100243C.80729D.100729解析:每次摸球中奖的概率为C 14C 15C 29=2036=59,由于是有放回地摸球,故3次摸球相当于3次独立重复实验, 所以3次摸球恰有1次中奖的概率P =C 13×59×⎝ ⎛⎭⎪⎫1-592=80243.答案:A专题四 离散型随机变量的期望与方差离散型随机变量的均值和方差在实际问题中具有重要意义,也是高考的热点内容. [例4] (2016·某某卷)某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4.现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A 为事件“选出的2人参加义工活动次数之和为4”,求事件A 发生的概率; (2)设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列和数学期望.解:(1)由已知,有P (A )=C 13C 14+C 23C 210=13. 所以,事件A 发生的概率为13.(2)随机变量X 的所有可能取值为0,1,2. P (X =0)=C 23+C 23+C 24C 210=415, P (X =1)=C 13C 13+C 13C 14C 210=715, P (X =2)=C 13C 14C 210=415.所以随机变量X 的分布列为:X 0 1 2 P415715415随机变量X 的数学期望E (X )=0×415+1×715+2×415=1.归纳升华(1)求离散型随机变量的分布列有以下三个步骤:①明确随机变量X 取哪些值;②计算随机变量X 取每一个值时的概率;③将结果用表格形式列出.计算概率时要注意结合排列组合知识.(2)均值和方差的求解方法是:在分布列的基础上利用E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 求出均值,然后利用D (X )=∑i =1n[x i -E (X )]2p i 求出方差.[变式训练] 根据以往的经验,某工程施工期间的降水量X (单位:mm)对工期的影响如下表:0.3,0.7,0.9,求:(1)工期延误天数Y 的均值与方差.(2)在降水量至少是300的条件下,工期延误不超过6天的概率.解:(1)由已知条件有P (X <300)=0.3,P (300≤X <700)=P (X <700)-P (X <300)=0.7-0.3=0.4,P (700≤X <900)=P (X <900)-P (X <700)=0.9-0.7=0.2. P (X ≥900)=1-P (X <900)=1-0.9=0.1.所以Y 的分布列为于是,E (Y )=0×0.3D (Y )=(0-3)2×0.3+(2-3)2×0.4+(6-3)2×0.2+(10-3)2×0.1=9.8.故工期延误天数Y 的均值为3,方差为9.8.(2)由概率的加法公式,P (X ≥300)=1-P (X <300)=0.7, 又P (300≤X <900)=P (X <900)-P (X <300)=0.9-0.3=0.6. 由条件概率,得P (Y ≤6|X ≥300)=P (X <900|X ≥300)=P (300≤X <900)P (X ≥300)=0.60.7=67.故在降水量X 至少是300的条件下,工期延误不超过6天的概率是67.专题五 正态分布及简单应用高考主要以选择题、填空题形式考查正态曲线的形状特征与性质,抓住其对称轴是关键. [例5] 某市去年高考考生成绩服从正态分布N (500,502),现有25 000名考生,试确定考生成绩在550~600分的人数.解:因为考生成绩X ~N (500,502),所以μ=500,σ=50,所以P (550<X ≤600)=12[P (500-2×50<X ≤500+2×50)-P (500-50<X ≤500+50)]=12(0.954 4-0.682 6)=0.135 9.故考生成绩在550~600分的人数为25 000×0.135 9≈3 398(人). 归纳升华正态分布概率的求法1.注意3σ原则,记住正态总体在三个区间内取值的概率.2.注意数形结合.由于正态分布密度曲线具有完美的对称性,体现了数形结合的重要思想,因此运用对称性结合图象解决某一区间内的概率问题成为热点问题.[变式训练] 某镇农民年收入服从μ=5 000元,σ=200元的正态分布.则该镇农民平均收入在5 000~5 200元的人数的百分比是________.解析:设X 表示此镇农民的平均收入,则X ~N (5 000,2002). 由P (5 000-200<X ≤5 000+200)=0.682 6. 得P (5 000<X ≤5 200)=0.682 62=0.341 3.故此镇农民平均收入在5 000~5 200元的人数的百分比为34.13%. 答案:34.13% 专题六 方程思想方程思想是解决概率问题中的重要思想,在求离散型随机变量的分布列,求两个或三个事件的概率时常会用到方程思想.即根据题设条件列出相关未知数的方程(或方程组)求得结果.[例6] 甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为14,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为112,甲、丙两台机床加工的零件都是一等品的概率为29.(1)分别求甲、乙、丙三台机床各自加工的零件是一等品的概率;(2)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率. 解:记A ,B ,C 分别为甲、乙、丙三台机床各自加工的零件是一等品的事件. 由题设条件有⎩⎪⎨⎪⎧P (A — B )=14,P (B — C )=112,P (AC )=29,即⎩⎪⎨⎪⎧P (A )[1-P (B )]=14, ①P (B )[1-P (C )]=112,②P (A )P (C )=29. ③由①③得P (B )=1-98P (C ),代入②得27[P (C )]2-51P (C )+22=0.解得P (C )=23或P (C )=119(舍去).将P (C )=23分别代入②③可得P (A )=13,P (B )=14.故甲、乙、丙三台机床各自加工的零件是一等品的概率分别是13,14,23.(2)记D 为从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的事件.则P (D )=1-P (— D )=1-[1-P (A )][1-P (B )][1-P (C )]=1-23×34×13=56.故从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的概率为56.归纳升华(1)在求离散型随机变量的分布列时,常利用分布列的性质:①p 1≥0,i =1,2,3,…,n ;②∑i =1np i =1,列出方程或不等式求出未知数.(2)在求两个或多个概率时,常根据不同类型的概率公式列出方程或方程组求出未知数. [变式训练] 若离散型随机变量ξ的分布列为:ξ 0 1 P9a 2-a3-8a求常数a 解:由离散型随机变量的性质得⎩⎪⎨⎪⎧9a 2-a +3-8a =1,0≤9a 2-a ≤1,0≤3-8a ≤1,解得a =23(舍去)或a =13.所以,随机变量的分布列为:ξ 0 1 P2313。
高中数学人教A版选修2-3 章末综合测评1 Word版含答案.doc

章末综合测评(一) 计数原理(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2016·银川一中检测)C910+C810等于()A.45B.55C.65 D.以上都不对【解析】C910+C810=C110+C210=55,故选B.【答案】 B2.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有()A.10种B.20种C.25种D.32种【解析】5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有25=32种,故选D.【答案】 D3.在(x2+3x+2)5的展开式中x的系数为()A.140 B.240C.360 D.800【解析】由(x2+3x+2)5=(x+1)5(x+2)5,知(x+1)5的展开式中x的系数为C45,常数项为1,(x+2)5的展开式中x的系数为C45·24,常数项为25.因此原式中x 的系数为C45·25+C45·24=240.【答案】 B4.某外商计划在4个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有()A.16种B.36种C.42种D.60种【解析】分两类.第一类:同一城市只有一个项目的有A34=24种;第二类:一个城市2个项目,另一个城市1个项目,有C23·C24·A22=36种,则共有36+24=60种.【答案】 D5.(2016·广州高二检测)5人站成一排,甲乙之间恰有一个人的站法有() A.18种B.24种C.36种D.48种【解析】首先把除甲乙之外的三人中随机抽出一人放在甲乙之间,有3种可能,甲乙之间的人选出后,甲乙的位置可以互换,故甲乙的位置有2种可能,最后,把甲乙及其中间的那个人看作一个整体,与剩下的两个人全排列是A33=6,所以3×2×6=36(种),故答案为C.【答案】 C6.关于(a-b)10的说法,错误的是()A.展开式中的二项式系数之和为1 024B.展开式中第6项的二项式系数最大C.展开式中第5项和第7项的二项式系数最大D.展开式中第6项的系数最小【解析】由二项式系数的性质知,二项式系数之和为210=1 024,故A正确;当n为偶数时,二项式系数最大的项是中间一项,故B正确,C错误;D也是正确的,因为展开式中第6项的系数是负数且其绝对值最大,所以是系数中最小的.【答案】 C7.图1(2016·潍坊高二检测)如图1,用五种不同的颜色给图中的A,B,C,D,E,F 六个不同的点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同的颜色,则不同的涂色方法共()A.1 240种B.360种C.1 920种D.264种【解析】由于A和E或F可以同色,B和D或F可以同色,C和D或E可以同色,所以当五种颜色都选择时,选法有C13C12A55种;当五种颜色选择四种时,选法有C45C13×3×A44种;当五种颜色选择三种时,选法有C35×2×A33种,所以不同的涂色方法共C13C12A55+C45C13×3×A44+C35×2×A33=1 920.故选C.【答案】 C8.某计算机商店有6台不同的品牌机和5台不同的兼容机,从中选购5台,且至少有品牌机和兼容机各2台,则不同的选购方法有() 【导学号:97270029】A.1 050种B.700种C.350种D.200种【解析】分两类:(1)从6台不同的品牌机中选3台和从5台不同的兼容机中选2台;(2)从6台不同的品牌机中选2台和从5台不同的兼容机中选3台.所以不同的选购方法有C36C25+C26C35=350种.【答案】 C9.设(1-3x)9=a0+a1x+a2x2+…+a9x9,则|a0|+|a1|+|a2|+…+|a9|的值为()A.29B.49C.39D.59【解析】由于a0,a2,a4,a6,a8为正,a1,a3,a5,a7,a9为负,故令x=-1,得(1+3)9=a0-a1+a2-a3+…+a8-a9=|a0|+|a1|+…+|a9|,故选B.【答案】 B10.(2016·山西大学附中月考)如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”,在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是()A.60 B.48C.36 D.24【解析】在长方体中,对每一条棱都有两个面(侧面或底面)和一个对角面(对不在同一个面上的一对互相平行的棱的截面)与它平行,可构成3×12=36个“平行线面组”,对每一条面对角线,都有一个面与它平行,可组成12个“平行线面组”,所以“平行线面组”的个数为36+12=48,故选B.【答案】 B11.(2016·吉林一中高二期末)某同学忘记了自己的QQ号的后六位,但记得QQ号后六位是由一个1,一个2,两个5和两个8组成的,于是用这六个数随意排成一个六位数,输入电脑尝试,那么他找到自己的QQ号最多尝试次数为() A.96 B.180C.360 D.720【解析】由这6个数字组成的六位数个数为A66A22A22=180,即最多尝试次数为180.故选B.【答案】 B12.设(1+x)n=a0+a1x+…+a n x n,若a1+a2+…+a n=63,则展开式中系数最大项是()A.15x3B.20x3C.21x3D.35x3【解析】令x=0,得a0=1,再令x=1,得2n=64,所以n=6,故展开式中系数最大项是T4=C36x3=20x3.故选B.【答案】 B二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上)13.某科技小组有女同学2名、男同学x名,现从中选出3名去参加展览.若恰有1名女生入选时的不同选法有20种,则该科技小组中男生的人数为________.【解析】由题意得C12·C2x=20,解得x=5.【答案】 514.(1.05)6的计算结果精确到0.01的近似值是________.【解析】(1.05)6=(1+0.05)6=C06+C16×0.05+C26×0.052+C36×0.053+…=1+0.3+0.037 5+0.002 5+…≈1.34.【答案】 1.3415.(2015·山东高考)观察下列各式:C01=40;C03+C13=41;C 05+C 15+C 25=42;C 07+C 17+C 27+C 37=43;……照此规律,当n ∈N *时,C 02n -1+C 12n -1+C 22n -1+…+C n -12n -1=________.【解析】 观察每行等式的特点,每行等式的右端都是幂的形式,底数均为4,指数与等式左端最后一个组合数的上标相等,故有C 02n -1+C 12n -1+C 22n -1+…+C n -12n -1=4n -1.【答案】 4n -1 16.(2014·安徽高考)设a ≠0,n 是大于1的自然数,⎝ ⎛⎭⎪⎫1+x a n 的展开式为a 0+a 1x +a 2x 2+…+a n x n .若点A i (i ,a i )(i =0,1,2)的位置如图2所示,则a =________.图2【解析】 由题意知A 0(0,1),A 1(1,3),A 2(2,4).故a 0=1,a 1=3,a 2=4.由⎝ ⎛⎭⎪⎫1+x a n 的展开式的通项公式知T r +1=C r n ⎝ ⎛⎭⎪⎫x a r (r =0,1,2,…,n ).故C 1n a =3,C 2n a 2=4,解得a =3.【答案】 3三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知⎩⎪⎨⎪⎧ C x n =C 2x n ,C x +1n =113C x -1n ,试求x ,n 的值. 【导学号:97270030】【解】 ∵C x n =C n -x n =C 2x n ,∴n -x =2x 或x =2x (舍去),∴n =3x .由C x +1n =113C x -1n ,得n !(x +1)!(n -x -1)!=113·n !(x -1)!(n -x +1)!, 整理得3(x -1)!(n -x +1)!=11(x +1)!(n -x -1)!,3(n -x +1)(n -x )=11(x +1)x .将n =3x 代入,整理得6(2x +1)=11(x +1),∴x =5,n =3x =15.18.(本小题满分12分)利用二项式定理证明:49n +16n -1(n ∈N *)能被16整除.【证明】 49n +16n -1=(48+1)n +16n -1=C 0n ·48n +C 1n ·48n -1+…+C n -1n ·48+C n n +16n -1=16(C 0n ·3×48n -1+C 1n ·3×48n -2+…+C n -1n ·3+n ). 所以49n +16n -1能被16整除.19.(本小题满分12分)一个口袋内有4个不同的红球,6个不同的白球,(1)从中任取4个球,红球的个数不比白球少的取法有多少种?(2)若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种?【解】 (1)将取出4个球分成三类情况:①取4个红球,没有白球,有C 44种;②取3个红球1个白球,有C 34C 16种;③取2个红球2个白球,有C 24C 26种,故有C 44+C 34C 16+C 24C 26=115种.(2)设取x 个红球,y 个白球,则⎩⎨⎧ x +y =5,0≤x ≤4,2x +y ≥7,0≤y ≤6,故⎩⎨⎧ x =2,y =3或⎩⎨⎧ x =3,y =2或⎩⎨⎧x =4,y =1. 因此,符合题意的取法共有C 24C 36+C 34C 26+C 44C 16=186种. 20.(本小题满分12分)设(2x -1)10=a 0+a 1x +a 2x 2+…+a 10x 10,求下列各式的值:(1)a0+a1+a2+…+a10;(2)a6.【解】(1)令x=1,得a0+a1+a2+…+a10=(2-1)10=1.(2)a6即为含x6项的系数,T r+1=C r10(2x)10-r·(-1)r=C r10(-1)r210-r·x10-r,所以当r=4时,T5=C410(-1)426x6=13 440x6,即a6=13 440.21.(本小题满分12分)有3名男生、4名女生,在下列不同条件下,求不同的排列方法总数.(1)排成前后两排,前排3人,后排4人;(2)全体站成一排,甲不站排头也不站排尾;(3)全体站成一排,女生必须站在一起;(4)全体站成一排,男生互不相邻.【解】(1)共有A77=5 040种方法.(2)甲为特殊元素.先排甲,有5种方法,其余6人有A66种方法,故共有5×A66=3 600种方法.(3)(捆绑法)将女生看成一个整体,与3名男生在一起进行全排列,有A44种方法,再将4名女生进行全排列,有A44种方法,故共有A44×A44=576种方法.(4)(插空法)男生不相邻,而女生不做要求,所以应先排女生,有A44种方法,再在女生之间及首尾空出的5个空位中任选3个空位排男生,有A35种方法,故共有A44×A35=1 440种方法.22.(本小题满分12分)已知集合A={x|1<log2x<3,x∈N*},B={4,5,6,7,8}.(1)从A∪B中取出3个不同的元素组成三位数,则可以组成多少个?(2)从集合A中取出1个元素,从集合B中取出3个元素,可以组成多少个无重复数字且比4 000大的自然数?【解】由1<log2x<3,得2<x<8,又x∈N*,所以x为3,4,5,6,7,即A={3,4,5,6,7},所以A∪B={3,4,5,6,7,8}.(1)从A∪B中取出3个不同的元素,可以组成A36=120个三位数.(2)若从集合A中取元素3,则3不能作千位上的数字,有C35·C13·A33=180个满足题意的自然数;若不从集合A中取元素3,则有C14C34A44=384个满足题意的自然数.所以,满足题意的自然数的个数共有180+384=564.。
高中数学 模块综合检测2(含解析)新人教A版选择性必修第二册-新人教A版高二选择性必修第二册数学试题

模块综合检测(二)(满分:150分 时间:120分钟)一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知f (x )=ln x 2x ,则lim Δx →0f ⎝ ⎛⎭⎪⎫12-f ⎝ ⎛⎭⎪⎫12+Δx Δx =( ) A .-2-ln 2B .-2+ln 2C .2-ln 2D .2+ln 2A [由题意,函数f (x )=ln x 2x , 则f ′(x )=1x ·2x -(2x )′ln x (2x )2=2x -12⎝ ⎛⎭⎪⎫1-12ln x 2x , 则lim Δx →0f ⎝ ⎛⎭⎪⎫12-f ⎝ ⎛⎭⎪⎫12+Δx Δx =-f ′⎝ ⎛⎭⎪⎫12=-2+ln 22×12=-2-ln 2,故选A.] 2.等比数列{a n }是递减数列,前n 项的积为T n ,若T 13=4T 9,则a 8a 15=( )A .±2B .±4C .2D .4C [∵T 13=4T 9,∴a 1a 2…a 9a 10a 11a 12a 13=4a 1a 2…a 9,∴a 10a 11a 12a 13=4.又∵a 10·a 13=a 11·a 12=a 8·a 15,∴(a 8·a 15)2=4,∴a 8a 15=±2.又∵{a n }为递减数列,∴q >0,∴a 8a 15=2.]3.已知公差不为0的等差数列{a n }的前23项的和等于前8项的和.若a 8+a k =0,则k =( )A .22B .23C .24D .25C [等差数列的前n 项和S n 可看做关于n 的二次函数(图象过原点).由S 23=S 8,得S n 的图象关于n =312对称,所以S 15=S 16,即a 16=0,所以a 8+a 24=2a 16=0,所以k =24.]4.已知函数f (x )=(x +a )e x 的图象在x =1和x =-1处的切线相互垂直,则a =( )A .-1B .0C .1D .2A [因为f ′(x )=(x +a +1)e x ,所以f ′(1)=(a +2)e ,f ′(-1)=a e -1=a e ,由题意有f (1)f ′(-1)=-1,所以a =-1,选A.]5.设S n 是公差不为0的等差数列{a n }的前n 项和,S 3=a 22,且S 1,S 2,S 4成等比数列,则a 10=( )A .15B .19C .21D .30B [由S 3=a 22得3a 2=a 22,故a 2=0或a 2=3.由S 1,S 2,S 4成等比数列可得S 22=S 1·S 4,又S 1=a 2-d ,S 2=2a 2-d ,S 4=4a 2+2d ,故(2a 2-d )2=(a 2-d )(4a 2+2d ),化简得3d 2=2a 2d ,又d ≠0,∴a 2=3,d =2,a 1=1,∴a n =1+2(n -1)=2n -1,∴a 10=19.]6.若函数f (x )=ax -ln x 的图象上存在与直线x +2y -4=0垂直的切线,则实数a 的取值X 围是( )A .(-2,+∞)B .⎝ ⎛⎭⎪⎫12,+∞ C .⎝ ⎛⎭⎪⎫-12,+∞ D .(2,+∞)D [因为函数f (x )=ax -ln x 的图象上存在与直线x +2y -4=0垂直的切线,所以函数f (x )=ax -ln x 的图象上存在斜率为2的切线,故k =f ′(x )=a -1x =2有解,所以a =2+1x ,x >0有解,因为y =2+1x ,x >0的值域为(2,+∞).所以a ∈(2,+∞).]7.已知等差数列{}a n 的前n 项为S n ,且a 1+a 5=-14,S 9=-27,则使得S n 取最小值时的n 为( )A .1B .6C .7D .6或7B [由等差数列{a n }的性质,可得a 1+a 5=2a 3=-14⇒a 3=-7,又S 9=9(a 1+a 9)2=-27⇒a 1+a 9=-6⇒a 5=-3,所以d =a 5-a 35-3=2,所以数列{a n }的通项公式为a n =a 3+(n -3)d =-7+(n -3)×2=2n -13,令a n ≤0⇒2n -13≤0,解得n ≤132,所以数列的前6项为负数,从第7项开始为正数,所以使得S n 取最小值时的n 为6,故选B.]8.若方底无盖水箱的容积为256,则最省材料时,它的高为( )A .4B .6C .4.5D .8A [设底面边长为x ,高为h ,则V (x )=x 2·h =256,∴h =256x 2.∴S (x )=x 2+4xh =x 2+4x ·256x 2=x 2+4×256x ,∴S ′(x )=2x -4×256x 2. 令S ′(x )=0,解得x =8,∴当x =8时,S (x )取得最小值.∴h =25682=4.]二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.设数列{}a n 是等差数列,S n 是其前n 项和,a 1>0,且S 6=S 9,则( )A .d <0B .a 8=0C .S 5>S 6D .S 7或S 8为S n 的最大值ABD [根据题意可得a 7+a 8+a 9=0⇒3a 8=0⇒a 8=0,∵数列{}a n 是等差数列,a 1>0,∴公差d <0,所以数列{}a n 是单调递减数列, 对于A 、B ,d <0,a 8=0,显然成立;对于C ,由a 6>0,则S 5<S 6,故C 不正确;对于D ,由a 8=0,则S 7=S 8,又数列为递减数列,则S 7或S 8为S n 的最大值,故D 正确.故选ABD.]10.如图是y =f (x )导数的图象,对于下列四个判断,其中正确的判断是( )A .f (x )在(-2,-1)上是增函数B .当x =-1时,f (x )取得极小值C .f (x )在(-1,2)上是增函数,在(2,4)上是减函数D .当x =3时,f (x )取得极小值BC [根据图象知当x ∈(-2,-1),x ∈(2,4)时,f ′(x )<0,函数单调递减; 当x ∈(-1,2),x ∈(4,+∞)时,f ′(x )>0,函数单调递增.故A 错误;故当x =-1时,f (x )取得极小值,B 正确;C 正确;当x =3时,f (x )不是取得极小值,D 错误.故选BC.]11.已知等比数列{}a n 的公比q =-23,等差数列{}b n 的首项b 1=12,若a 9>b 9且a 10>b 10,则以下结论正确的有( )A .a 9a 10<0B .a 9>a 10C .b 10>0D .b 9>b 10AD [∵等比数列{}a n 的公比q =-23,∴a 9和a 10异号,∴a 9a 10<0 ,故A 正确;但不能确定a 9和a 10的大小关系,故B 不正确;∵a 9和a 10异号,且a 9>b 9且a 10>b 10,∴b 9和b 10中至少有一个数是负数, 又∵b 1=12>0 ,∴d <0,∴b 9>b 10 ,故D 正确,∴b 10一定是负数,即b 10<0 ,故C 不正确. 故选AD.]12.已知函数f (x )=x ln x ,若0<x 1<x 2,则下列结论正确的是( )A .x 2f (x 1)<x 1f (x 2)B .x 1+f (x 1)<x 2+f (x 2)C .f (x 1)-f (x 2)x 1-x 2<0 D .当ln x >-1时,x 1f (x 1)+x 2f (x 2)>2x 2f (x 1)AD [设g (x )=f (x )x =ln x ,函数单调递增,则g (x 2)>g (x 1),即f (x 2)x 2>f (x 1)x 1,∴x 1f (x 2)>x 2f (x 1),A 正确; 设h (x )=f (x )+x ∴h ′(x )=ln x +2不是恒大于零,B 错误;f (x )=x ln x ,∴f ′(x )=ln x +1不是恒小于零,C 错误;ln x >-1,故f ′(x )=ln x +1>0,函数单调递增.故(x 2-x 1)(f (x 2)-f (x 1))=x 1f (x 1)+x 2f (x 2)-x 2f (x 1)-x 1f (x 2)>0,即x 1f (x 1)+x 2f (x 2)>x 2f (x 1)+x 1f (x 2).f (x 2)x 2=ln x 2>f (x 1)x 1=ln x 1,∴x 1f (x 2)>x 2f (x 1),即x 1f (x 1)+x 2f (x 2)>2x 2f (x 1),D 正确.故选AD.]三、填空题(本题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.数列{a n }的前n 项和为S n ,若a n +1=11-a n(n ∈N *),a 1=2,则S 50=________. 25[因为a n +1=11-a n (n ∈N *),a 1=2,所以a 2=11-a 1=-1,a 3=11-a 2=12,a 4=11-a 3=2,∴数列{a n }是以3为周期的周期数列,且前三项和S 3=2-1+12=32, ∴S 50=16S 3+2-1=25.]14.将边长为1 m 的正三角形薄铁皮,沿一条平行于某边的直线剪成两块,其中一块是梯形,记s =(梯形的周长)2梯形的面积,则s 的最小值是________. 3233[设AD =x (0<x <1),则DE =AD =x ,∴梯形的周长为x+2(1-x )+1=3-x .又S △ADE =34x 2,∴梯形的面积为34-34x 2,∴s =433×x 2-6x +91-x 2(0<x <1), 则s ′=-833×(3x -1)(x -3)(1-x 2)2. 令s ′=0,解得x =13.当x ∈⎝ ⎛⎭⎪⎫0,13时,s ′<0,s 为减函数;当x ∈⎝ ⎛⎭⎪⎫13,1时,s ′>0,s 为增函数.故当x =13时,s 取得极小值,也是最小值,此时s 的最小值为3233.]15.设公比为q (q >0)的等比数列{a n }的前n 项和为S n .若S 2=3a 2+2,S 4=3a 4+2,则q =________.32[由S 2=3a 2+2,S 4=3a 4+2相减可得a 3+a 4=3a 4-3a 2,同除以a 2可得2q 2-q -3=0,解得q =32或q =-1.因为q >0,所以q =32.]16.已知函数f (x )是定义在R 上的偶函数,当x >0时,xf ′(x )>f (x ),若f (2)=0,则2f (3)________3f (2)(填“>”“<”)不等式x ·f (x )>0的解集为________.(本题第一空2分,第二空3分)> (-2,0)∪(2,+∞)[由题意,令g (x )=f (x )x ,∵x >0时,g ′(x )=xf ′(x )-f (x )x 2>0.∴g (x )在(0,+∞)单调递增,∵f (x )x 在(0,+∞)上单调递增,∴f (3)3>f (2)2即2f (3)>3f (2).又∵f (-x )=f (x ),∴g (-x )=-g (x ),则g (x )是奇函数,且g (x )在(-∞,0)上递增,又g (2)=f (2)2=0,∴当0<x <2时,g (x )<0,当x >2时,g (x )>0;根据函数的奇偶性,可得当-2<x <0时,g (x )>0,当x <-2时,g (x )<0. ∴不等式x ·f (x )>0的解集为{x |-2<x <0或x >2}.]四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)在等差数列{}a n 中,已知a 1=1,a 3=-5.(1)求数列{}a n 的通项公式;(2)若数列{}a n 的前k 项和S k =-25,求k 的值.[解](1)由题意,设等差数列{}a n 的公差为d ,则a n =a 1+()n -1d ,因为a 1=1,a 3=-5,可得1+2d =-5,解得d =-3,所以数列{}a n 的通项公式为a n =1+()n -1×()-3=4-3n .(2)由(1)可知a n =4-3n ,所以S n =n [1+(4-3n )]2=-32n 2+52n ,又由S k =-25,可得-32k 2+52k =-25,即3k 2-5k -50=0,解得k =5或k =-103,又因为k ∈N *,所以k =5.18.(本小题满分12分)已知函数f (x )=a ln x +12x 2.(1)求f (x )的单调区间;(2)函数g (x )=23x 3-16(x >0),求证:a =1时f (x )的图象不在g (x )的图象的上方.[解](1)f ′(x )=a x +x (x >0),若a ≥0,则f ′(x )>0,f (x )在 (0,+∞)上单调递增;若a <0,令f ′(x )=0,解得x =±-a ,由f ′(x )=(x --a )(x +-a )x >0,得x >-a ,由f ′(x )<0,得0<x <-a .从而f (x )的单调递增区间为(-a ,+∞),单调递减区间为(0,-a ). (2)证明:令φ(x )=f (x )-g (x ),当a =1时,φ(x )=ln x +12x 2-23x 3+16(x >0),则φ′(x )=1x +x -2x 2=1+x 2-2x 3x =(1-x )(2x 2+x +1)x. 令φ′(x )=0,解得x =1.当0<x <1时,φ′(x )>0,φ(x )单调递增;当x >1时,φ′(x )<0,φ(x )单调递减.∴当x =1时,φ(x )取得最大值φ(1)=12-23+16=0,∴φ(x )≤0,即f (x )≤g (x ).故a =1时f (x )的图象不在g (x )的图象的上方.19.(本小题满分12分)已知数列{}a n 的前n 项和为S n ,且2S n =3a n -1.(1)求数列{}a n 的通项公式;(2)若数列{}b n 满足b n =log 3a n +1,求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1b n b n +1的前n 项和T n .[解](1)由2S n =3a n -1()n ∈N +得,2S n -1=3a n -1-1()n ≥2.两式相减并整理得,a n =3a n -1()n ≥2.令n =1,由2S n =3a n -1()n ∈N +得,a 1=1.故{}a n 是以1为首项,公比为3的等比数列,因此a n =3n -1()n ∈N +.(2)由b n =log 3a n +1,结合a n =3n -1得,b n =n .则1b n b n +1=1n ()n +1=1n -1n +1 故T n =1b 1b 2+1b 2b 3+…+1b n b n +1=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+1n -1n +1=n n +1. 20.(本小题满分12分)某旅游景点预计2019年1月份起前x 个月的旅游人数的和p (x )(单位:万人)与x 的关系近似地满足p (x )=12x (x +1)(39-2x )(x ∈N *,且x ≤12).已知第x 个月的人均消费额q (x )(单位:元)与x 的近似关系是q (x )=⎩⎪⎨⎪⎧ 35-2x (x ∈N *,且1≤x ≤6),160x (x ∈N *,且7≤x ≤12).(1)写出2019年第x 个月的旅游人数f (x )(单位:万人)与x 的函数关系式;(2)问2019年第几个月旅游消费总额最大?最大月旅游消费总额为多少元?[解](1)当x =1时,f (1)=p (1)=37,当2≤x ≤12,且x ∈N *时,f (x )=p (x )-p (x -1)=12x (x +1)(39-2x )-12(x -1)x (41-2x )=-3x 2+40x ,验证x =1也满足此式,所以f (x )=-3x 2+40x (x ∈N *,且1≤x ≤12).(2)第x 个月旅游消费总额(单位:万元)为g (x )=⎩⎨⎧ (-3x 2+40x )(35-2x )(x ∈N *,且1≤x ≤6),(-3x 2+40x )·160x (x ∈N *,且7≤x ≤12),即g (x )=⎩⎪⎨⎪⎧6x 3-185x 2+1 400x (x ∈N *,且1≤x ≤6),-480x +6 400(x ∈N *,且7≤x ≤12). (i)当1≤x ≤6,且x ∈N *时,g ′(x )=18x 2-370x +1 400,令g ′(x )=0,解得x =5或x =1409(舍去).当1≤x <5时,g ′(x )>0,当5<x ≤6时,g ′(x )<0,∴当x =5时,g (x )max =g (5)=3 125.(ii)当7≤x ≤12,且x ∈N *时,g (x )=-480x +6 400是减函数,∴当x =7时,g (x )max =g (7)=3 040.综上,2019年5月份的旅游消费总额最大,最大旅游消费总额为3 125万元.21.(本小题满分12分)已知数列{a n }的通项公式为a n =3n -1,在等差数列{b n }中,b n >0,且b 1+b 2+b 3=15,又a 1+b 1,a 2+b 2,a 3+b 3成等比数列.(1)求数列{a n b n }的通项公式;(2)求数列{a n b n }的前n 项和T n .[解](1)∵a n =3n -1,∴a 1=1,a 2=3,a 3=9.∵在等差数列{b n }中,b 1+b 2+b 3=15,∴3b 2=15,则b 2=5.设等差数列{b n }的公差为d ,又a 1+b 1,a 2+b 2,a 3+b 3成等比数列,∴(1+5-d )(9+5+d )=64,解得d =-10或d =2.∵b n >0,∴d =-10应舍去,∴d =2,∴b 1=3,∴b n =2n +1.故a n b n=(2n+1)·3n-1.(2)由(1)知T n=3×1+5×3+7×32+…+(2n-1)3n-2+(2n+1)3n-1,①3T n=3×3+5×32+7×33+…+(2n-1)3n-1+(2n+1)3n,②①-②,得-2T n=3×1+2×3+2×32+2×33+…+2×3n-1-(2n+1)×3n =3+2×(3+32+33+…+3n-1)-(2n+1)×3n=3+2×3-3n1-3-(2n+1)×3n=3n-(2n+1)×3n=-2n·3n.∴T n=n·3n.22.(本小题满分12分)设函数f (x)=x3-6x+5,x∈R.(1)求f (x)的极值点;(2)若关于x的方程f (x)=a有3个不同实根,某某数a的取值X围;(3)已知当x∈(1,+∞)时,f (x)≥k(x-1)恒成立,某某数k的取值X围.[解](1)f ′(x)=3(x2-2),令f ′(x)=0,得x1=-2,x2= 2.当x∈(-∞,-2)∪(2,+∞)时,f ′(x)>0,当x∈(-2,2) 时,f ′(x)<0,因此x1=-2,x2=2分别为f (x)的极大值点、极小值点.(2)由(1)的分析可知y=f (x)图象的大致形状及走向如图所示.要使直线y=a 与y=f (x)的图象有3个不同交点需5-42=f (2)<a<f (-2)=5+4 2.则方程f (x)=a有3个不同实根时,所某某数a的取值X围为(5-42,5+42).(3)法一:f (x)≥k(x-1),即(x-1)(x2+x-5)≥k(x-1),因为x>1,所以k≤x2+x-5在(1,+∞)上恒成立,令g(x)=x2+x-5,由二次函数的性质得g(x)在(1,+∞)上是增函数,所以g(x)>g(1)=-3,所以所求k的取值X围是为(-∞,-3].法二:直线y=k(x-1)过定点(1,0)且f (1)=0,曲线f (x)在点(1,0)处切线斜率f ′(1)=-3,由(2)中图知要使x∈(1,+∞)时,f (x)≥k(x-1)恒成立需k≤-3.故实数k的取值X围为(-∞,-3].。
2017-2018学年高中新课标数学人教A版选修2-2:第三章

解析:因为z2=(cosθ-isinθ)2=cos2θ-isin2θ,又z2=-1,所以 再由选择项验证得θ= .
答案:B
二、填空题:本大题共4小题,每小题5分,共20分.
13.已知复数z=1+i,则 -z=__________.
解析: -z= -1-i= × -1-i=-2i.
C.- - i D. - i
解析:z= = = = =- + i.
答案:A
10.已知i为虚数单位,a为实数,复数z=(a-2i)(1+i)在复平面内对应的点为M,则“a=1”是“点M在第四象限”的()
A.充分而不必要条件
B.必要而不充分条件
C.充要条件
D.既不充分也不必要条件
解析:z=(a-2i)(1+i)=(a+2)+(a-2)i,则点M的坐标为(a+2,a-2),当a=1时,坐标为(3,-1),即点M在第四象限,若点M在第四象限,而a=1却不一定成立,故“a=1”是“点M在第四象限”的充分而不必要条件.
18.(本小题满分12分)已知虚数z满足|z|=1,z2+2z+ <0,求z.
解析:设z=x+yi(x,y∈R且y≠0),所以x2+y2=1,
则z2+2z+ =(x+yi)2+2(x+yi)+
=(x2-y2+3x)+y(2x+1)i.
因为z2+2z+ <0且y≠0,
所以 又x2+y2=1,
解得 故z=- ± i.
答案:C
5.复数 2的共轭复数是()
A.-3-4i B.-3+4i
C.3-4i D.3+4i
解析: 2= = =-3+4i,所以 2的共轭复数为-3-4i.
答案:A
6.已知下列命题:
①复数a+bi不是实数;
高中数学第一章计数原理章末检测新人教A版选修2-3(2021年整理)

2017-2018学年高中数学第一章计数原理章末检测新人教A版选修2-3 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018学年高中数学第一章计数原理章末检测新人教A版选修2-3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018学年高中数学第一章计数原理章末检测新人教A版选修2-3的全部内容。
第一章计数原理章末检测时间:120分钟满分: 150分一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法有( )A.24种B.18种C.12种D.6种解析:因为黄瓜必须种植,在余下的3种蔬菜品种中再选出两种进行排列,共有C2,3A错误!=18种.故选B。
答案:B2.若A3,n=12C错误!,则n等于()A.8 B.5或6C.3或4 D.4解析:A3n=n(n-1)(n-2),C错误!=错误!n(n-1),∴n(n-1)(n-2)=6n(n-1),又n∈N*,且n≥3,解得n=8.答案:A3.关于(a-b)10的说法,错误的是( )A.展开式中的二项式系数之和为1 024B.展开式中第6项的二项式系数最大C.展开式中第5项和第7项的二项式系数最大D.展开式中第6项的系数最小解析:由二项式系数的性质知,二项式系数之和为210=1 024,故A正确;当n为偶数时,二项式系数最大的项是中间一项,故B正确,C错误;D也是正确的,因为展开式中第6项的系数是负数且其绝对值最大,所以是系数中最小的.答案:C4.某铁路所有车站共发行132种普通客票,则这段铁路共有车站数是()A.8 B.122017-2018学年高中数学第一章计数原理章末检测新人教A版选修2-3C.16 D.24解析:∵A错误!=n(n-1)=132,∴n=12(n=-11舍去).故选B。
高中数学 章末检测卷(二)点、直线、平面之间的位置关系 新人教A版必修2-新人教A版高一必修2数学试

章末检测卷(二)(时间:120分钟满分:150分)一、选择题1.在正方体ABCD-A1B1C1D1中,直线AC与直线BC1所成的角为( )A.30°B.60°C.90°D.45°解析连接A1C1,A1B,则AC∥A1C1,因为△A1BC1是正三角形,所以∠A1C1B=60°,即直线AC 与直线BC1所成的角为60°.答案 B2.设a、b为两条直线,α、β为两个平面,下列四个命题中,正确的命题是( )A.若a、b与α所成的角相等,则a∥bB.若a∥α,b∥β,α∥β,则a∥bC.若a⊂α,b⊂β,a∥b,则a∥βD.若a⊥α,b⊥β,α⊥β,则a⊥b解析A中a、b可以平行、相交或异面;B中a、b可以平行、相交或异面;C中的α、β可以平行或相交.答案 D3.设m,n是两条不同的直线,α,β是两个不同的平面( )A.若m∥α,n∥α,则m∥nB.若m∥α,m∥β,则α∥βC.若m∥n,m⊥α,则n⊥αD.若m∥α,α⊥β,则m⊥β解析A项,当m∥α,n∥α时,m,n可能平行,可能相交,也可能异面,故错误;B项,当m∥α,m∥β时,α,β可能平行也可能相交,故错误;C项,当m∥n,m⊥α时,n⊥α,故正确;D项,当m∥α,α⊥β时,m可能与β平行,可能在β内,也可能与β相交,故错误.故选C.答案 C4.如图,三棱柱ABC-A1B1C1中,侧棱AA1⊥底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC中点,则下列叙述正确的是( )1与B1E是异面直线B.AC⊥平面ABB1A1C.AE,B1C1为异面直线,且AE⊥B1C1D.A1C1∥平面AB1E解析由已知AC=AB,E为BC中点,故AE⊥BC,又∵BC∥B1C1,∴AE⊥B1C1,C正确.答案 C5.设l为直线,α,β是两个不同的平面.下列命题中正确的是( )A.若l∥α,l∥β,则α∥βB.若l⊥α,l⊥β,则α∥βC.若l⊥α,l∥β,则α∥βD.若α⊥β,l∥α,则l⊥β解析选项A,若l∥α,l∥β,则α和β可能平行也可能相交,故错误;选项B,若l⊥α,l⊥β,则α∥β,故正确;选项C,若l⊥α,l∥β,则α⊥β,故错误;选项D,若α⊥β,l∥α,则l与β的位置关系有三种可能:l⊥β,l∥β,l⊂β,故错误.故选B.答案 B6.(2015·某某高考)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面解析对于A,α,β垂直于同一平面,α,β关系不确定,A错;对于B,m,n平行于同一平面,m,n关系不确定,可平行、相交、异面,故B错;对于C,α,β不平行,但α内能找出平行于β的直线,如α中平行于α,β交线的直线平行于β,故C错;对于D,若假设m,n垂直于同一平面,则m∥n,其逆否命题即为D选项,故D正确.答案 D7.(2014·某某高考)设m,n是两条不同的直线,α,β是两个不同的平面.( )A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α解析选项A,若m⊥n,n∥α,则m⊂α或m∥α或m与α相交,错误;选项B,若m∥β,β⊥α,则m⊂α或m∥α或m与α相交,错误;选项C,若m⊥β,n⊥β,可得m∥n,又n⊥α,则m⊥α,正确;选项D,若m⊥n,n⊥β,β⊥α,则m与α相交或m⊂α或m ∥α,错误.答案 C8.如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为m,n,那么m+n=( )A.8B.9C.10D.11解析取CD的中点H,连接EH,HF.在四面体CDEF中,CD⊥EH,CD⊥FH,所以CD⊥平面EFH,所以AB⊥平面EFH,所以正方体的左、右两个侧面与EF平行,其余4个平面与EF相交,即n=4.又因为CE与AB在同一平面内,所以CE与正方体下底面共面,与上底面平行,与其余四个面相交,即m=4,所以m+n=4+4=8.答案 A9.正方体ABCD-A1B1C1D1中,过点A作平面A1BD的垂线,垂足为点H.以下结论中,错误的是( )A.点H是△A1BD的垂心B.AH⊥平面CB1D1C.AH的延长线经过点C1D.直线AH和BB1所成的角为45°解析因为AH⊥平面A1BD,BD⊂平面A1BD,所以BD⊥AH.又BD⊥AA1,且AH∩AA1=A.所以BD⊥平面AA1H.又A1H⊂平面AA1H.所以A1H⊥BD,同理可证BH⊥A1D,所以点H是△A1BD的垂心,A正确;因为平面A 1BD ∥平面CB 1D 1, 所以AH ⊥平面CB 1D 1,B 正确;易证AC 1⊥平面A 1BD .因为过一点有且只有一条直线与已知平面垂直,所以AC 1和AH 重合.故C 正确;因为AA 1∥BB 1,所以∠A 1AH 为直线AH 和BB 1所成的角. 因为∠AA 1H ≠45°,所以∠A 1AH ≠45°,故D 错误. 答案 D10.已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为94,底面是边长为3的正三角形.若P为底面A 1B 1C 1的中心,则PA 与平面ABC 所成角的大小为( ) A.5π12B.π3C.π4D.π6解析 如图所示,P 为正三角形A 1B 1C 1的中心,设O 为△ABC 的中心,由题意知:PO ⊥平面ABC ,连接OA ,则∠PAO 即为PA 与平面ABC 所成的角.在正三角形ABC 中,AB =BC =AC =3,则S =34×(3)2=334, V ABC -A 1B 1C 1=S ×PO =94,∴PO = 3.又AO =33×3=1,∴tan ∠PAO =PO AO =3,∴∠PAO =π3. 答案 B二、填空题11.矩形ABEF 和正方形ABCD 有公共边AB ,且它们所在的平面互相垂直,AB =BC =2a ,BE =a ,则DE =________,DE 与平面ABEF 所成的线面角的正弦值为________. 解析 如图,在Rt △DBE 中,BD =22a ,BE =a ,∴DE =(22a )2+a 2=3a ,∵DA ⊥平面ABEF ,∴∠DEA 即为DE 与平面ABEF 所成的角, 在Rt △DAE 中,sin ∠DEA =DA DE =23. 答案 3a 2312.如图所示为一个正方体的一种表面展开图,图中的四条线段AB ,CD ,EF ,GH 在原正方体中互为异面直线的有________对,成60°角的有________对.解析 正方体如图AB 与CD ,AB 与GH ,GH 与EF 互为异面直线,AB 与CD ,AB 与EF ,AB 与GH ,CD 与GH ,EF 与GH 成60°角.答案 3 513.如图所示,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是棱AA 1和AB 上的点,若∠B 1MN 是直角,则∠C 1MN 等于________.解析 ∵B 1C 1⊥平面A 1ABB 1,MN ⊂平面A 1ABB 1, ∴B 1C 1⊥MN ,又∠B 1MN 为直角. ∴B 1M ⊥MN 而B 1M ∩B 1C 1=B 1.∴MN ⊥平面MB 1C 1又MC 1⊂平面MB 1C 1 ∴MN ⊥MC 1,∴∠C 1MN =90°. 答案 90°14.已知平面α∥平面β,点A ,C ∈α,点B ,D ∈β,直线AB ,CD 交于点S ,且SA =8,SB =9,CD =34.(1)若点S 在平面α,β之间,则SC =________. (2)若点S 不在平面α,β之间,则SC =________. 解析 根据题意得AS SB =SCSD.当点S 在α,β之间时,有89=CS 34-CS ,即CS =16;当点S 在α,β之外时,有89-8=SC34,即SC =272. 答案 16 27215.如图所示,已知矩形ABCD 中,AB =3,BC =a ,若PA ⊥平面AC ,在BC 边上取点E ,使PE ⊥DE ,则满足条件的E 点有两个时,a 的取值X 围是________.解析 由题意知:PA ⊥DE , 又PE ⊥DE ,PA ∩PE =P , 所以DE ⊥面PAE ,∴DE ⊥AE .易证△ABE ∽△ECD .设BE =x ,则AB CE =BE CD, 即3a -x =x 3.∴x 2-ax +9=0,由Δ>0,解得a >6. 答案 a >616.在正方体ABCD -A ′B ′C ′D ′中,E 为A ′D ′中点,则异面直线EC 与BC ′所成角的余弦值为________,二面角A ′-BC ′-D 的平面角的正切值为________.解析 如图,取BC ,CC ′中点F ,H ,连A ′F ,FH ,A ′H .∵A ′F ∥EC ,FH ∥BC ′,∴∠A ′FH 即为异面直线EC 与BC ′所成的角. 设正方体的棱长为2,FH =2,A ′F =3,A ′H =3, cos ∠A ′FH =223=26,取BC ′的中点O ,连A ′O ,DO ,则A ′O ⊥BC ′,DO ⊥BC ′,∠A ′OD 即为二面角A ′-BC ′-D 的平面角, A ′O =DO =6,A ′D =22,cos ∠A ′OD =6+6-826×6=13,tan ∠A ′OD =2 2.答案262 2 17.已知四棱锥P -ABCD 的底面ABCD 是矩形,PA ⊥底面ABCD ,点E 、F 分别是棱PC 、PD 的中点,则①棱AB 与PD 所在直线垂直; ②平面PBC 与平面ABCD 垂直; ③△PCD 的面积大于△PAB 的面积; ④直线AE 与直线BF 是异面直线.以上结论正确的是________.(写出所有正确结论的编号) 解析 由条件可得AB ⊥平面PAD , ∴AB ⊥PD ,故①正确;若平面PBC ⊥平面ABCD ,由PB ⊥BC ,得PB ⊥平面ABCD ,从而PA ∥PB ,这是不可能的,故②错;S △PCD =12CD ·PD ,S △PAB =12AB ·PA ,由AB =CD ,PD >PA 知③正确; 由E 、F 分别是棱PC 、PD 的中点, 可得EF ∥CD ,又AB ∥CD ,∴EF∥AB,故AE与BF共面,④错.答案①③三、解答题18.如图,三棱柱ABC-A1B1C1的侧棱与底面垂直,AC=9,BC=12,AB=15,AA1=12,点D 是AB的中点.(1)求证:AC⊥B1C;(2)求证:AC1∥平面CDB1.证明(1)∵C1C⊥平面ABC,AC⊂平面ABC,∴C1C⊥AC.∵AC=9,BC=12,AB=15,∴AC2+BC2=AB2,∴AC⊥BC.又BC∩C1C=C,∴AC⊥平面BCC1B1,而B1C⊂平面BCC1B1,∴AC⊥B1C.(2)连接BC1交B1C于O点,连接OD.如图,∵O,D分别为BC1,AB的中点,∴OD∥AC1.又OD⊂平面CDB1,AC1⊄平面CDB1.∴AC1∥平面CDB1.19.如图所示,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=22,M 为BC的中点.(1)证明:AM⊥PM;(2)求二面角P-AM-D的大小.(1)证明 如图所示,取CD 的中点E ,连接PE ,EM ,EA ,∵△PCD 为正三角形,∴PE ⊥CD ,PE =PD sin ∠PDE =2sin 60°= 3.∵平面PCD ⊥平面ABCD ,平面PCD ∩平面ABCD =CD ,PE ⊂平面PCD , ∴PE ⊥平面ABCD ,而AM ⊂平面ABCD ,∴PE ⊥AM .∵四边形ABCD 是矩形,∴△ADE ,△ECM ,△ABM 均为直角三角形. 由勾股定理可求得EM =3,AM =6,AE =3, ∴EM 2+AM 2=AE 2.∴AM ⊥EM .又PE ∩EM =E ,∴AM ⊥平面PEM ,而PM ⊂平面PEM ,∴AM ⊥PM . (2)解 由(1)可知EM ⊥AM ,PM ⊥AM , ∴∠PME 是二面角P -AM -D 的平面角. ∴tan ∠PME =PE EM=33=1,∴∠PME =45°.∴二面角P -AM -D 的大小为45°.20.(2016·全国Ⅲ)如图,四棱锥P -ABCD 中,PA ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,PA =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明:MN ∥平面PAB ; (2)求四面体N -BCM 的体积.(1)证明 由已知得AM =23AD =2.取BP 的中点T ,连接AT ,TN ,由N 为PC 中点知TN ∥BC ,TN =12BC =2.又AD ∥BC ,故TN 綊AM ,四边形AMNT 为平行四边形,于是MN ∥AT . 因为AT ⊂平面PAB ,MN ⊄平面PAB ,所以MN ∥平面PAB .(2)解 因为PA ⊥平面ABCD ,N 为PC 的中点,所以N 到平面ABCD 的距离为12PA .取BC 的中点E ,连接AE .由AB =AC =3得AE ⊥BC ,AE =AB 2-BE 2= 5. 由AM ∥BC 得M 到BC 的距离为5, 故S △BCM =12×4×5=2 5.所以四面体N -BCM 的体积 V N -BCM =13×S △BCM ×PA 2=453.21.(2016·全国卷Ⅱ)如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E ,F 分别在AD ,CD 上,AE =CF ,EF 交BD 于点H ,将△DEF 沿EF 折到△D ′EF 的位置.(1)证明:AC ⊥HD ′;(2)若AB =5,AC =6,AE =54,OD ′=22,求五棱锥D ′-ABCFE 的体积.(1)证明 由已知得AC ⊥BD ,AD =CD ,又由AE =CF 得AE AD =CF CD,故AC ∥EF ,由此得EF ⊥HD ,折后EF 与HD 保持垂直关系,即EF ⊥HD ′,所以AC ⊥HD ′.(2)解 由EF ∥AC 得OH DO =AE AD =14.由AB =5,AC =6得DO =BO =AB 2-AO 2=4,所以OH =1,D ′H =DH =3,于是OD ′2+OH 2=(22)2+12=9=D ′H 2,故OD ′⊥OH .由(1)知AC ⊥HD ′,又AC ⊥BD ,BD ∩HD ′=H ,所以AC ⊥平面DHD ′,于是AC ⊥OD ′,又由OD ′⊥OH ,AC ∩OH =O ,所以OD ′⊥平面ABC .又由EF AC =DH DO 得EF =92. 五边形ABCFE 的面积S =12×6×8-12×92×3=694. 所以五棱锥D ′-ABCFE 的体积 V =13×694×22=2322. 22.(2016·某某高考)如图,在四棱锥P -ABCD 中,PA ⊥CD ,AD ∥BC ,∠ADC =∠PAB =90°,BC =CD =12AD . (1)在平面PAD 内找一点M ,使得直线CM ∥平面PAB ,并说明理由.(2)证明:平面PAB ⊥平面PBD .(1)解取棱AD 的中点M (M ∈平面PAD ),点M 即为所求的一个点,理由如下:因为AD ∥BC ,BC =12AD .所以BC ∥AM ,且BC =AM . 所以四边形AMCB 是平行四边形,从而CM ∥AB .又AB ⊂平面PAB .CM ⊄平面PAB .所以CM ∥平面PAB .(说明:取棱PD 的中点N ,则所找的点可以是直线MN 上任意一点)(2)证明 由已知,PA ⊥AB ,PA ⊥CD .因为AD ∥BC ,BC =12AD ,所以直线AB 与CD 相交, 所以PA ⊥平面ABCD .从而PA ⊥BD .因为AD ∥BC ,BC =12AD ,所以BC ∥MD ,且BC =MD .所以四边形BCDM 是平行四边形, 所以BM =CD =12AD ,所以BD ⊥AB .又AB ∩AP =A ,所以BD ⊥平面PAB . 又BD ⊂平面PBD ,所以平面PAB ⊥平面PBD .。
高中数学 阶段质量评估3 新人教A版选修23

2016-2017学年高中数学 阶段质量评估3 新人教A 版选修2-3一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.分析人的身高与体重的关系,可以用( ) A .残差分析 B .回归分析 C .等高条形图D .独立性检验解析: 因为身高与体重是两个具有相关关系的变量,所以要用回归分析来解决. 答案: B2.设(x 1,y 1),(x 2,y 2),…,(x n ,y n )是变量x 和y 的n 个样本点,直线l 是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论中正确的是( )A .x 和y 的相关系数为直线l 的斜率B .x 和y 的相关系数在0到1之间C .当n 为偶数时,分布在l 两侧的样本点的个数一定相同D .直线l 过点(x ,y )解析: 线性回归直线必过样本点中心(x ,y ),故选D. 答案: D3.下列关于回归分析与独立性检验的说法正确的是( ) A .回归分析和独立性检验没有什么区别B .回归分析是对两个变量准确关系的分析,而独立性检验是分析两个变量之间的不确定关系C .回归分析研究两个变量之间的相关关系,独立性检验是对两个变量是否具有某种关系的一种检验D .独立性检验可以100%确定两个变量之间是否具有某种关系解析: 回归分析是对两个变量之间的相关关系的一种分析,而相关关系是一种不确定的关系,通过回归分析可以确定两个变量之间具有的近似关系;而独立性检验是对两个变量之间是否具有某种关系的分析,并且可以分析这两个变量在多大程度上具有这种关系,但不能100%肯定这种关系.故选C.答案: C4.(2015·蚌埠市高二第二学期期末学业水平检测)已知回归直线的斜率的估计值是1.23,样本中心为(4,5),则回归直线方程为( )A.y ∧=1.23x +4 B.y ∧=1.23x +5C.y ∧=1.23x +0.08 D.y ∧=1.23x -2.15解析: 设回归直线方程为y ∧=b ∧x +a ∧,由已知知b ∧=1.23,即y ∧=1.23x +a ∧,又回归直线过样本中心(4,5),代入得a ∧=0.08. 故选C. 答案: C5.对于回归分析,下列说法错误的是( )A .在回归分析中,变量间的关系若是非确定关系,那么因变量不能由自变量唯一确定B .线性相关系数可以是正的,也可以是负的C .回归分析中,如果r 2=1,说明x 与y 之间完全相关 D .样本相关系数r ∈(-1,1)解析: 由回归分析和r 的意义可知选D. 答案: D6.甲、乙、丙、丁四个研究性学习小组分别对x ,y 两个变量的线性相关性做试验,并用回归分析的方法求得相关系数r 和残差平方和Q (a ∧,b ∧)的值如下表:( ) A .甲 B .乙 C .丙D .丁解析: 乙小组试验结果的相关系数r 最大,残差平方和最小,故选B. 答案: B7.为了探究患慢性支气管炎是否与吸烟有关,调查了409名50岁以上的人,现已将得到的数据进行计算得K 2=12.58,则下列说法正确的是( )A .50岁以上的人患慢性支气管炎与吸烟无关B .在100个50岁以上的患慢性支气管炎的人中一定有95人有吸烟习惯C .在100个50岁以上的患慢性支气管炎的人中一定有99人有吸烟习惯D .我们有99.9%的把握认为50岁以上的患慢性支气管炎与吸烟习惯有关 解析: 因K 2=12.58>10.828,所以我们有99.9%的把握认为患慢性支气管炎与吸烟习惯有关.故选D.答案: D8.下列关于残差图的描述错误的是( )A.残差图的横坐标可以是编号B.残差图的横坐标可以是解释变量和预报变量C.残差点分布的带状区域的宽度越窄相关指数越小D.残差点分布的带状区域的宽度越窄残差平方和越小解析:由于残差图纵坐标为残差,横坐标可以选用样本编号或样本数据或估计值,∴A,B正确,又由残差图的性质知D正确,故选C.答案: C9.如图所示,图中有5组数据,去掉哪组数据后(填字母代号),剩下的4组数据的线性相关性最大( )A.E B.CC.D D.A解析:由题图中五个点的分布易知选A.答案: A10.甲、乙两个班级进行一门考试,按照学生考试成绩优秀和不优秀统计成绩后,得到如下列联表:( ) A.0.3~0.4 B.0.4~0.5C.0.5~0.6 D.0.6~0.7解析:∵K2=-2 45×45×17×73=90×1352 2513025≈0.652 7>0.455P(K2≥0.455)=0.5,答案: B11.以下是两个变量x和y的一组数据:则这两个变量间的线性回归方程为( )A.y ∧=x 2B.y ∧=xC.y ∧=9x -15 D.y ∧=15x -9解析: 根据数据可得x =4.5,y =25.5,∑i =1nx 2i =204,∑i =1ny 2i =877 2,∑i =1nx i y i =1 296.b ∧=∑i =1nx i y i -n x y∑i =1nx 2i -n x 2=1 296-8×4.5×25.5204-8×4.52=9, a ∧=y -b ∧x =25.5-9×4.5=-15.∴y ∧=9x -15. 故选C. 答案: C12.变量x ,y 具有线性相关关系,当x 取值为16,14,12,8时,通过观测得到y 的值分别为11,9,8,5.若在实际问题中,y 最大取值是10,则x 的最大取值不能超过( )A .14B .15C .16D .17解析: 根据题意y 与x 呈正相关关系,由最小二乘法或计算器求得回归系数a ∧≈-0.857,b ∧≈0.729,所以线性回归方程为y ∧=0.729x -0.857.当y ∧=10时,得x ≈15.答案: B二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上)13.对于回归直线方程y ∧=4.75x +257,当x =28时,y 的估计值为________.解析: y ∧=4.75×28+257=390. 答案: 39014.(2015·福州市高二期末联考)下面是一个2×2列联表:则b-d=________.解析:∵a=70-21=49,c=30-5=25,∴b=49+5=54,d=21+25=46,∴b-d=8.答案:815.(2015·湖北省重点中学高二上学期期末考试)下列命题:①用相关系数r来刻画回归的效果时,r的值越大,说明模型拟合的效果越好;②对分类变量X与Y的随机变量的K2观测值来说,K2越小,“X与Y有关系”可信程度越大;③两个随机变量相关性越强,则相关系数的绝对值越接近1;其中正确命题的序号是________.(写出所有正确命题的序号)解析:正确的是③,①是由于r可能是负值,②中K2越大,“X与Y有关系”可信程度越大.答案:③16.为考察高中生的性别与是否喜欢数学课程之间的关系,在某高中的学生中随机地抽取300名学生,得到下表:则可求得K2解析:由公式K2=n ad-bc2a+b c+d a+c b+d=-2 122×178×72×228≈4.514.答案: 4.514三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)调查在2~3级风的海上航行中男、女乘客的晕船情况,结果如下表所示:解析: K 2=-222×49×37×34≈0.08.因为0.08<2.706,所以我们没有理由说晕船与男、女性别有关.18.(本小题满分12分)某单位为了了解用电量y (度)与气温x (℃)之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表,由表中数据得线性回归方程y ∧=b ∧x +a ∧,其中b ∧=-2.现预测当气温为-4 ℃时,用电量的度数约为多少?解析: x =14(18+13+10-1)=10,y =14(24+34+38+64)=40,b ∧=-2.又回归方程y ∧=-2x +a ∧过点(10,40),故a ∧=60.所以当x =-4时,y ∧=-2×(-4)+60=68. 故当气温为-4 ℃时,用电量的度数约为68度.19.(本小题满分12分)在日常生活中,我们发现多数老年人喜欢早睡早起,而年轻人则喜欢晚睡晚起,究竟年龄与休息时间有没有关系呢?某校研究性学习小组调查了200名小区居民,调查情况如下:年龄50岁以上的80人中,60人在晚上10点前休息,20人在10点以后休息;年龄在50岁以下的120人中,40人在晚上10点以前休息,80人在10点以后休息.(1)作出2×2列联表;(2)试判断年龄与休息时间是否有关. 解析: (1)列联表如下:(2)K 2=80×100×100×120≈33.333>10.828, 故年龄与休息时间有关.20.(本小题满分12分)为了研究男羽毛球运动员的身高x (单位:cm)与体重y (单位:kg)的关系,通过随机抽样的方法,抽取5名运动员测得他们的身高与体重关系如下表:(1)从这5 2 kg 的概率;(2)求回归直线方程y ∧=bx +a .解析: (1)抽取的2个人的体重为:(74,73),(74,76),(74,75),(74,77);(73,76),(73,75),(73,77);(76,75),(76,77);(75,77).满足条件的有6种情况,故:2个人体重之差的绝对值不小于2 kg 的概率610=35.(2)x =15(172+174+176+178+180)=176,y =15(74+73+76+75+77)=75b =4+4+0+0+816+4+0+4+16=0.4∴a =75-0.4×176=4.6,∴y ∧=0.4x +4.6.21.(本小题满分13分)(2013·重庆卷)从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑i =110x i =80,∑i =110y i =20,∑i =110x i y i =184,∑i =110x 2i =720. (1)求家庭的月储蓄y 对月收入x 的线性回归方程y ∧=b ∧x +a ∧; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.附:线性回归方程y ∧=b ∧x +a ∧中,b ∧=∑i =1nx i y i -n x y∑i =1nx 2i -n x 2,a ∧=y -b ∧x ,其中x ,y 为样本平均值.线性回归方程也可写为y ∧=b ∧x +a ∧.解析: (1)由题意知n =10,x =1n ∑i =1nx i =8010=8,y =1n ∑i =1n y i =2010=2,又∑i =1nx 2i -n x 2=720-10×82=80,∑i =1nx i y i -n x y =184-10×8×2=24,由此得b ∧=∑i =1nx i y i -n x y∑i =1nx 2i -n x2=2480=0.3,a ∧=y -b ∧x =2-0.3×8=-0.4, 故所求回归方程为y ∧=0.3x -0.4.(2)由于变量y 的值随x 的值增加而增加(b ∧=0.3>0),故x 与y 之间是正相关.(3)将x =7代入回归方程可以预测该家庭的月储蓄为y ∧=0.3×7-0.4=1.7(千元). 22.(本小题满分13分)假设一个人从出生到死亡,在每个生日都测量身高,并作出这些数据散点图,则这些点将不会落在一条直线上,但在一段时间内的增长数据有时可以用线性回归来分析.下表是一位母亲给儿子作的成长记录:(2)求出这些数据的回归方程;(3)对于这个例子,你如何解释回归系数的含义? (4)解释一下回归系数与每年平均增长的身高之间的联系. 解析: (1)数据的散点图如下:(2)用y 表示身高,x 表示年龄,则数据的回归方程为y ∧=6.317x +71.984;(3)在该例子中,回归系数6.317表示该人在一年中增加的高度; (4)回归系数与每年平均增长的身高之间近似相等.。
高中数学章末综合测评2含解析人教A版选修2_3.doc

章末综合测评(二)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设离散型随机变量X 的分布列为:则p 的值为( ) A.12 B.14 C.13D.16 C [由16+13+16+p =1得p =13.故选C.]2.P (AB )=110,P (A )=13,则P (B |A )等于( )A.130 B.310 C.15D.115B [P (B |A )=P (AB )P (A )=11013=310,故选B.]3.已知随机变量X ~B ⎝⎛⎭⎫6,12,则D (2X +1)等于( ) A .6 B .4 C .3D .9A [∵X ~B ⎝⎛⎭⎫6,12,∴D (X )=6×12×12=32, ∴D (2X +1)=4D (X )=4×32=6.故选A.]4.已知甲投球命中的概率是12,乙投球命中的概率是35.假设他们投球命中与否相互之间没有影响.如果甲、乙各投球1次,那么恰有1人投球命中的概率为( )A.16 B.14 C.23D.12D [记“甲投球1次命中”为事件A ,“乙投球1次命中”为事件B .根据互斥事件的概率公式和相互独立事件的概率公式,得所求的概率为P (A B )+P (A B )=P (A )P (B )+P (A )P (B )=12×⎝⎛⎭⎫1-35+⎝⎛⎭⎫1-12×35=12.] 5.在每次比赛中,如果运动员A 胜运动员B 的概率都是23,那么在五次比赛中,运动员A 恰有三次获胜的概率是( )A.40243B.80243C.110243D.20243 B [运动员A 恰有三次获胜的概率P =C 35⎝⎛⎭⎫233×⎝⎛⎭⎫1-232=80243.故选B.]6.设X ~N ⎝⎛⎭⎫-2,14,则X 落在(-3.5,-0.5]内的概率是( ) A .95.44% B .99.73% C .4.56%D .0.26%B [由X ~N ⎝⎛⎭⎫-2,14知μ=-2,σ=12,P (-3.5<X ≤-0.5)=P (-2-3×0.5<X ≤-2+3×0.5)=0.997 3.]7.已知10件产品中有3件是次品,任取2件,若X 表示取到次品的件数,则E (X )等于( )A.35 B.815 C.1415D .1A [由题意知,随机变量X 的分布列为∴E (X )=0×715+1×715+2×115=915=35.]8.对标有不同编号的6件正品和4件次品的产品进行检测,不放回地依次摸出2件.在第一次摸到正品的条件下,第二次也摸到正品的概率是( )A.35 B.25 C.110D.59D [记“第一次摸到正品”为事件A ,“第二次摸到正品”为事件B ,则P (A )=C 16C 19C 110C 19=35,P (AB )=C 16C 15C 110C 19=13.故P (B |A )=P (AB )P (A )=59.] 9.盒中有10只螺丝钉,其中有3只是坏的,现从盒中随机地抽取4个,那么概率是310的事件为( )A .恰有1只是坏的B .4只全是好的C .恰有2只是好的D .至多有2只是坏的C [X =k 表示取出的螺丝钉恰有k 只为好的,则P (X =k )=C k 7C 4-k 3C 410(k =1,2,3,4).∴P (X =1)=130,P (X =2)=310,P (X =3)=12,P (X =4)=16,故310表示恰好有2个是好的.]10.已知甲、乙两人独立地对同一目标各射击一次,其命中率分别为0.6,0.5,若目标被击中,则它是被甲击中的概率是( )A .0.45B .0.6C .0.65D .0.75D [令事件A ,B 分别表示甲、乙两人各射击一次击中目标,由题意可知P (A )=0.6,P (B )=0.5,令事件C 表示目标被击中,则C =A ∪B ,则P (C )=1-P (A )P (B )=1-0.4×0.5=0.8, 所以P (A |C )=P (AC )P (C )=0.60.8=0.75.]11.某地区高二女生的体重X (单位:kg)服从正态分布N (50,25),若该地区有高二女生2 000人,则体重在50 kg ~65 kg 间的女生约有( )A .683人B .954人C .997人D .994人C [由题意知,μ=50,σ=5, ∴P (50-3×5<X ≤50+3×5)≈0.997 3. ∴P (50<X ≤65)=12×0.997 3=0.498 65,∴体重在50 kg ~65 kg 的女生大约有2 000×0.498 65≈997(人).]12.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“--”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是( )A.516B.1132C.2132D.1116A [由6个爻组成的重卦种数为26=64,在所有重卦中随机取一重卦,该重卦恰有3个阳爻的种数为C 36=20.根据古典概型的概率计算公式得,所求概率P =2064=516.故选A.] 二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.已知随机变量ξ~B ⎝⎛⎭⎫5,13,随机变量η=2ξ-1,则E (η)=________. 73 [ξ~B ⎝⎛⎭⎫5,13,∴E (ξ)=5×13=53, ∴E (η)=E (2ξ-1)=2E (ξ)-1=2×53-1=73.]14.某灯泡厂生产大批灯泡,其次品率为1.5%,从中任意地陆续取出100个,则其中正品数X 的均值为________个,方差为________.98.5 1.477 5 [由题意可知X ~B (100,98.5%), ∴E (X )=np =100×98.5%=98.5,D (X )=np (1-p )=100×98.5%×1.5%=1.477 5.]15.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是________.0.18 [记事件M 为甲队以4∶1获胜,则甲队共比赛五场,且第五场甲队获胜,前四场甲队胜三场负一场,所以P (M )=0.6×(0.62×0.52×2+0.6×0.4×0.52×2)=0.18.]16.一袋中有大小相同的4个红球和2个白球,给出下列结论: ①从中任取3球,恰有一个白球的概率是35;②从中有放回的取球6次,每次任取一球,则取到红球次数的方差为43;③现从中不放回的取球2次,每次任取1球,则在第一次取到红球后,第二次再次取到红球的概率为25;④从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为2627.其中所有正确结论的序号是________.①②④ [①所求概率P =C 12C 24C 36=2×620=35,故①正确;②取到红球的次数X ~B ⎝⎛⎭⎫6,23,其方差为6×23×⎝⎛⎭⎫1-23=43,故②正确;③设A ={第一次取到红球},B ={第二次取到红球},则P (A )=23,P (AB )=4×36×5=25,所以P (B |A )=P (AB )P (A )=35,故③错;④每次取到红球的概率P =23,所以至少有一次取到红球的概率为1-⎝⎛⎭⎫1-233=2627,故④正确.]三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)甲、乙两名跳高运动员一次试跳2米高度成功的概率分别是0.7、0.6,且每次试跳成功与否相互之间没有影响,求:(1)甲试跳三次,第三次才成功的概率;(2)甲、乙两人在第一次试跳中至少有一人成功的概率.[解] 记“甲第i 次试跳成功”为事件A i ,“乙第i 次试跳成功”为事件B i ,依题意得P (A i )=0.7,P (B i )=0.6,且A i ,B i (i =1,2,3)相互独立.(1)“甲第三次试跳才成功”为事件A 1 A 2A 3,且三次试跳相互独立,则P (A 1A 2A 3)=P (A 1)P (A 2)P (A 3)=0.3×0.3×0.7=0.063.所以甲第三次试跳才成功的概率为0.063.(2)设“甲、乙两人在第一次试跳中至少有一人成功”为事件C .法一:(直接法)因为C =A 1B 1+A 1B 1+A 1B 1,且A 1B 1,A 1B 1,A 1B 1彼此互斥, 所以P (C )=P (A 1B 1)+P (A 1B 1)+P (A 1B 1)=P (A 1)P (B 1)+P (A 1)P (B 1)+P (A 1)P (B 1)=0.7×0.4+0.3×0.6+0.7×0.6=0.88.法二:(间接法)P (C )=1-P (A 1)P (B 1)=1-0.3×0.4=0.88. 所以甲、乙两人在第一次试跳中至少有一人成功的概率为0.88.18.(本小题满分12分)甲\乙两名工人加工同一种零件,两人每天加工的零件数相同,所得次品数分别为X ,Y ,X 和Y 的分布列如下表.试对这两名工人的技术水平进行比较.[解] 工人甲生产出次品数X 的数学期望和方差分别为E (X )=0×610+1×110+2×310=0.7,D (X )=(0-0.7)2×610+(1-0.7)2×110+(2-0.7)2×310=0.81.工人乙生产出次品数Y 的数学期望和方差分别为 E (Y )=0×510+1×310+2×210=0.7,D (Y )=(0-0.7)2×510+(1-0.7)2×310+(2-0.7)2×210=0.61.由E (X )=E (Y )知,两人生产出次品的平均数相同,技术水平相当,但D (X )>D (Y ),可见乙的技术比较稳定.19.(本小题满分12分)某班有6名班干部,其中男生4人,女生2人,任取3人参加学校的义务劳动.(1)设所选3人中女生人数为X ,求X 的分布列; (2)求男生甲或女生乙被选中的概率;(3)设“男生甲被选中”为事件A ,“女生乙被选中”为事件B ,求P (B )和P (B |A ). [解] (1)X 的所有可能取值为0,1,2. 依题意得P (X =0)=C 34C 36=15,P (X =1)=C 24C 12C 36=35,P (X =2)=C 14C 22C 36=15.∴X 的分布列为(2)设“甲、乙都不被选中”为事件C ,则P (C )=C 34C 36=15,∴所求概率为P (C )=1-P (C )=1-15=45.(3)P (B )=C 25C 36=1020=12,P (B |A )=P (AB )P (A )=C 14C 36C 25C 36=410=25.20.(本小题满分12分)某迷宫有三个通道,进入迷宫的每个人都要经过一扇智能门.首次到达此门,系统会随机(即等可能)为你打开一个通道,若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门.再次到达智能门时,系统会随机打开一个你未到过的通道,直至走出迷宫为止.令ξ表示走出迷宫所需的时间.(1)求ξ的分布列; (2)求ξ的数学期望.[解] (1)必须要走到1号门才能走出,ξ可能的取值为1,3,4,6. P (ξ=1)=13.P (ξ=3)=13×12=16.P (ξ=4)=13×12=16.P (ξ=6)=2×⎝⎛⎭⎫13×12×1=13. ∴ξ的分布列为:ξ 1 3 4 6 P13 16 16 13(2)E (ξ)=1×13+3×16+4×16+6×13=72(小时).21.(本小题满分12分)进货商当天以每份1元的进价从报社购进某种报纸,以每份2元的价格售出.若当天卖不完,剩余报纸以每份0.5元的价格被报社回收.根据市场统计,得到这个月的日销售量X (单位:份)的频率分布直方图(如图所示),将频率视为概率.(1)求频率分布直方图中a 的值;(2)若进货量为n (单位:份),当n ≥X 时,求利润Y 的表达式; (3)若当天进货量n =400,求利润Y 的分布列和数学期望E (Y ).[解] (1)由题图可得,100a +0.002×100+0.003×100+0.003 5×100=1,解得a =0.001 5.(2)因为n ≥X ,所以Y =(2-1)X -0.5(n -X )=1.5X -0.5n .(3)销售量X 的所有可能取值为200,300,400,500,由第(2)问知对应的Y 分别为100,250,400. 由频率分布直方图可得 P (Y =100)=P (X =200)=0.20, P (Y =250)=P (X =300)=0.35, P (Y =400)=P (X ≥400)=0.45. 利润Y 的分布列为所以E (Y )=0.20×100+22.(本小题满分12分)甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率都是23.假设各局比赛结果相互独立.(1)分别求甲队以3∶0,3∶1,3∶2胜利的概率;(2)若比赛结果为3∶0或3∶1,则胜利方得3分,对方得0分;若比赛结果为3∶2,则胜利方得2分,对方得1分.求乙队得分X 的分布列及数学期望.[解] (1)记“甲队以3∶0胜利”为事件A 1,“甲队以3∶1胜利”为事件A 2,“甲队以3∶2胜利”为事件A 3,由题意知,各局比赛结果相互独立, 故P (A 1)=⎝⎛⎭⎫233=827, P (A 2)=C 23⎝⎛⎭⎫232⎝⎛⎭⎫1-23×23=827,P (A 3)=C 24⎝⎛⎭⎫232⎝⎛⎭⎫1-232×12=427.所以甲队以3∶0胜利、以3∶1胜利的概率都为827,以3∶2胜利的概率为427.(2)设“乙队以3∶2胜利”为事件A 4, 由题意知,各局比赛结果相互独立, 所以P (A 4)=C 24⎝⎛⎭⎫1-232⎝⎛⎭⎫232×⎝⎛⎭⎫1-12=427. 由题意知,随机变量X 的所有可能的取值为0,1,2,3,根据事件的互斥性得 P (X =0)=P (A 1+A 2)=P (A 1)+P (A 2)=1627.又P (X =1)=P (A 3)=427,P (X =2)=P (A 4)=427,P (X =3)=1-P (X =0)-P (X =1)-P (X =2)=327,故X 的分布列为所以E (X )=0×1627+1×427+2×427+3×327=79.。
[精品]新人教A版选修2-3高中数学章末综合测评3和答案
![[精品]新人教A版选修2-3高中数学章末综合测评3和答案](https://img.taocdn.com/s3/m/a9daef5b5acfa1c7aa00ccbc.png)
章末综合测评(三) 统计案例(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法中错误的是( )A.如果变量x与y之间存在着线性相关关系,则我们根据试验数据得到的点(x i,y i)(i=1,2,…,n)将散布在某一条直线的附近B.如果两个变量x与y之间不存在着线性关系,那么根据它们的一组数据(x i,y i)(i=1,2,…,n)不能写出一个线性方程C.设x,y是具有相关关系的两个变量,且y关于x的线性回归方程为y^=b^x+a^,b^叫做回归系数D.为使求出的线性回归方程有意义,可用统计检验的方法来判断变量y与x之间是否存在线性相关关系【解析】任何一组(x i,y i)(i=1,2,…,n)都能写出一个线性方程,只是有的不存在线性关系.【答案】 B2.如图1所示,有5组数据,去掉哪组数据后(填字母代号),剩下的4组数据的线性相关性最大( )图1A.E B.CC.D D.A【解析】由题图易知A,B,C,D四点大致在一条直线上,而E 点偏离最远,故去掉E 点后剩下的数据的线性相关性最大.【答案】 A3.在一次试验中,当变量x 的取值分别为1,12,13,14时,变量y 的值分别为2,3,4,5,则y 与1x的回归曲线方程为( ) 【导学号:97270064】A.y ^=1x +1B.y ^=2x+3C.y ^=2x +1D.y ^=x -1【解析】 由数据可得,四个点都在曲线y ^=1x+1上.【答案】 A 4.有下列说法:①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适;②用相关指数R 2来刻画回归的效果,R 2值越大,说明模型的拟合效果越好;③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好.其中正确命题的个数是( ) A .0 B .1 C .2D .3【解析】 ①选用的模型是否合适与残差点的分布有关;对于②③,R 2的值越大,说明残差平方和越小,随机误差越小,则模型的拟合效果越好.【答案】 D5.观察下列各图,其中两个分类变量x ,y 之间关系最强的是( )A BC D【解析】 在四幅图中,D 图中两个深色条的高相差最明显,说明两个分类变量之间关系最强.【答案】 D6.在2×2列联表中,下列哪两个比值相差越大,两个分类变量有关系的可能性就越大( )A.a a +b 与c c +d B.a c +d 与c a +b C.aa +d 与cb +cD.ab +d 与ca +c【解析】 当ad 与bc 相差越大,两个分类变量有关系的可能性越大,此时aa +b 与cc +d相差越大.【答案】 A7.如图2,5个(x ,y )数据,去掉D (3,10)后,下列说法错误的是( )图2A.相关系数r变大B.残差平方和变大C.相关指数R2变大D.解释变量x与预报变量y的相关性变强【解析】由散点图知,去掉D后,x与y的相关性变强,且为正相关,所以r变大,R2变大,残差平方和变小.【答案】 B8.(2016·安庆一中期中)在一次对性别与是否说谎有关的调查中,得到如下数据,根据表中数据判断如下结论中正确的是( )A.B.在此次调查中有99%的把握认为是否说谎与性别有关C.在此次调查中有99.5%的把握认为是否说谎与性别有关D.在此次调查中没有充分证据显示说谎与性别有关【解析】由表中数据得k=-214×16×13×17≈0.00242<3.841.因此没有充分证据认为说谎与性别有关,故选D.【答案】 D9.某地财政收入x与支出y满足线性回归方程y^=b^x+a^+e(单位:亿元),其中b^=0.8,a^=2,|e|<0.5,如果今年该地区财政收入10亿元,年支出预计不会超过( )A.10亿 B.9亿C.10.5亿 D.9.5亿【解析】代入数据得y=10+e,∵|e|<0.5,∴|y|<10.5,故不会超过10.5亿.【答案】 C10.(2016·合肥高二检测)废品率x%和每吨生铁成本y(元)之间的回归直线方程为y^=256+3x,表明( )A.废品率每增加1%,生铁成本增加259元B.废品率每增加1%,生铁成本增加3元C.废品率每增加1%,生铁成本平均每吨增加3元D.废品率不变,生铁成本为256元【解析】回归方程的系数b^表示x每增加一个单位,y^平均增加b^个单位,当x为1时,废品率应为1%,故当废品率增加1%时,生铁成本平均每吨增加3元.【答案】 C11.已知x与y之间的几组数据如下表:假设根据上表数据所得线性回归直线方程为y=b^x+a^,若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y=b′x+a′,则以下结论正确的是( )A.b^>b′,a^>a′B.b^>b′,a^<a′C.b^<b′,a^>a′D.b^<b′,a^<a′【解析】 由两组数据(1,0)和(2,2)可求得直线方程为y =2x -2,b ′=2,a ′=-2.而利用线性回归方程的公式与已知表格中的数据,可求得b ^=∑i =16x i y i -6x -y -∑i =16x 2i -6x -2=58-6×72×13691-6×⎝ ⎛⎭⎪⎫722=57,a ^=y --b ^x -=136-57×72=-13,所以b ^<b ′,a ^>a ′. 【答案】 C12.两个分类变量X 和Y ,值域分别为{x 1,x 2}和{y 1,y 2},其样本频数分别是a =10,b =21,c +d =35.若X 与Y 有关系的可信程度不小于97.5%,则c 等于( )A .3B .4C .5D .6 附:【解析】故K 2的观测值k =]2+c -c≥5.024.把选项A,B,C,D代入验证可知选A.【答案】 A二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上)13.已知一回归直线方程为y^=1.5x+45,x∈{1,5,7,13,19},则y=________. 【导学号:97270065】【解析】因为x=15(1+5+7+13+19)=9,且y=1.5x+45,所以y=1.5×9+45=58.5.【答案】58.514.某大型企业人力资源部为了研究企业员工工作积极性和对企业改革态度的关系,随机抽取了189名员工进行调查,所得数据如下表所示:________.【解析】根据列联表中的数据,得到k=-294×95×86×103≈10.76.【答案】10.7615.(2016·深圳高二检测)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据收集到的数据(如下表),由最小二乘法求得回归方程y ^=0.67x +54.9.________.【解析】 由表知x =30,设模糊不清的数据为m ,则y =15(62+m +75+81+89)=307+m5,因为y =0.67x +54.9,即307+m5=0.67×30+54.9, 解得m =68. 【答案】 6816.某地区恩格尔系数Y (%)与年份x 的统计数据如下表:从散点图可以看出Y 与x 线性相关,且可得回归方程为y ^=b ^x +4 055.25,据此模型可预测2017年该地区的恩格尔系数Y (%)为________.【解析】 由表可知x =2 007.5,y =44.25. 因为y =b ^ x +4 055.25, 即44.25=2 007.5b ^+4 055.25,所以b ^≈-2,所以回归方程为y ^=-2x +4 055.25,令x =2 017,得y^=21.25.【答案】21.25三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)以下是某地区不同身高的未成年男性的体重平均值表.①y=0.429 4x-25.318,②y=2.004e0.019 7x.通过计算,得到它们的相关指数分别是:R21=0.9311,R22=0.998.试问哪个回归方程拟合效果更好?(2)若体重超过相同身高男性平均值的1.2倍为偏胖,低于0.8为偏瘦,那么该地区某中学一男生身高为175 cm,体重为78 kg,他的体重是否正常?【解】(1)∵R22>R21,∴选择第二个方程拟合效果更好.(2)把x=175代入y=2.004e0.019 7x,得y=62.97,由于7862.97=1.24>1.2,所以这名男生偏胖.18.(本小题满分12分)关于x与y有如下数据:为了对x,y甲模型y^=6.5x+17.5,乙模型y^=7x+17,试比较哪一个模型拟合的效果更好.【解】R21=1-∑5i=1y i-y^i2∑5i=1y i-y2=1-1551 000=0.845,R22=1-∑5i=1y i-y^i2∑5i=1y i-y2=1-1801 000=0.82.又∵84.5%>82%,∴甲选用的模型拟合效果更好.19.(本小题满分12分)为了调查某生产线上质量监督员甲对产品质量好坏有无影响,现统计数据如下:质量监督员甲在生产现场时,990件产品中合格品有982件,次品有8件;甲不在生产现场时,510件产品中合格品有493件,次品有17件.试分别用列联表、独立性检验的方法分析监督员甲是否在生产现场对产品质量好坏有无影响?【解】(1)2×2列联表如下:,相差较大,可在某种程度上认为“质量监督员甲是否在生产现场与产品质量有关系”.(2)由2×2列联表中数据,计算得到K2的观测值为k=-2990×510×1 475×25≈13.097>6.635,所以在犯错误的概率不超过0.01的前提下,认为质量监督员甲是否在生产现场与产品质量有关系.20.(本小题满分12分)有两个分类变量x与y,其一组观测值如下面的2×2列联表所示:其中a,15-a在犯错误的概率不超过0.1的前提下认为x与y之间有关系?【解】查表可知,要使在犯错误的概率不超过0.1的前提下认为x与y之间有关系,则k≥2.706,而k=65×[a+a--a-a220×45×15×50=a-220×45×15×50=a-260×90.故k≥2.706,得a≥7.19或a≤2.04.又a>5且15-a>5,a∈Z,解得a=8或9,故a为8或9时,在犯错误的概率不超过0.1的前提下认为x与y 之间有关系.21.(本小题满分12分)某地区2007年至2013年农村居民家庭人均纯收入y (单位:千元)的数据如下表:(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘法估计公式分别为: b ^=∑ni =1 t i -t y i -y -∑ni =1t i -t 2,a ^=y --b ^t . 【解】 (1)由所给数据计算得t =17(1+2+3+4+5+6+7)=4,y -=17(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3, ∑7i =1 (t i -t )2=9+4+1+0+1+4+9=28, ∑7i =1(t i -t )(y i -y -)=(-3)×(-1.4)+(-2)×(-1)+(-1)×(-0.7)+0×0.1+1×0.5+2×0.9+3×1.6=14,b ^=∑7i =1 t i -t y i -y -∑7i =1t i -t 2=1428=0.5,a^=y--b^t=4.3-0.5×4=2.3,所求回归方程为y^=0.5t+2.3.(2)由(1)知,b=0.5>0,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.将2015年的年份代号t=9代入(1)中的回归方程,得y^=0.5×9+2.3=6.8,故预测该地区2015年农村居民家庭人均纯收入为6.8千元.22.(本小题满分12分)电视传媒公司为了解某地区观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:图3将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.(1)根据已知条件完成下面的2×2列联表,并据此资料判断“体育迷”与性别是否有关?(2)育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率.附:K2=n ad-bc2a+b c+d a+c b+d,【解】(1)100人中,“体育迷”有25人,从而完成2×2列联表如下:将2×2k=n ad-bc2a+b c+d a+c b+d=-2 75×25×45×55=10033≈3.030.因为 3.030<3.841,所以我们没有理由认为“体育迷”与性别有关.(2)由频率分布直方图可知,“超级体育迷”为5人,其中女生为2人.记:从“超级体育迷”中取2人,至少有1名女性为事件A.则P(A)=C22C03+C12C13C25=710,即从“超级体育迷”中任意选取2人,至少有1名女性观众的概率为710.。
高中数学人教A版选修2-3 章末综合测评2 Word版含答案

章末综合测评(二)随机变量及其分布(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法不正确的是()A.某辆汽车一年中发生事故的次数是一个离散型随机变量B.正态分布随机变量等于一个特定实数的概率为0C.公式E(X)=np可以用来计算离散型随机变量的均值D.从一副扑克牌中随机抽取5张,其中梅花的张数服从超几何分布2.若在甲袋内装有8个白球、4个红球,在乙袋内装有6个白球、5个红球,现从两袋内各任意取出1个球,设取出的白球个数为X,则下列概率中等于C18C15+C14C16C112C111的是()A.P(X=0)B.P(X≤2)C.P(X=1) D.P(X=2)3.(2016·长沙高二检测)若X的分布列为X 0 1P 15a则E(X)=()A.45 B.12C.25 D.154.甲、乙、丙三人参加某项测试,他们能达到标准的概率分别是0.8,0.6,0.5,则三人中至少有一人达标的概率是()A.0.16 B.0.24C.0.96 D.0.045.如果随机变量X~N(4,1),则P(X≤2)等于() (注:P(μ-2σ<X≤μ+2σ)=0.954 4)A.0.210 B.0.022 8C.0.045 6 D.0.021 56.某同学通过计算机测试的概率为13,他连续测试3次,其中恰有1次通过的概率为()【导学号:97270056】A.49 B.29C.427 D.2277.校园内移栽4棵桂花树,已知每棵树成活的概率为45,那么成活棵数X的方差是()A.165 B.6425C.1625 D.6458.对标有不同编号的6件正品和4件次品的产品进行检测,不放回地依次摸出2件.在第一次摸到正品的条件下,第二次也摸到正品的概率是()A.35 B.25C.110 D.599.某市组织一次高三调研考试,考试后统计的数学成绩服从正态分布,其密度函数为f(x)=1102πe-(x-80)2200,则下列命题中不正确的是()A.该市在这次考试的数学平均成绩为80分B.分数在120分以上的人数与分数在60分以下的人数相同C.分数在110分以上的人数与分数在50分以下的人数相同D.该市这次考试的数学成绩标准差为1010.设随机变量ξ等可能地取1,2,3,4,…,10,又设随机变量η=2ξ-1,则P(η<6)=()A.0.3 B.0.5C.0.1 D.0.211.甲、乙两个工人在同样的条件下生产,日产量相等,每天出废品的情况如下表所示,则有结论()A.B.乙的产品质量比甲的产品质量好一些C.两人的产品质量一样好D.无法判断谁的产品质量好一些12.某计算机程序每运行一次都随机出现一个五位的二进制数A=a1a2a3a4a5,其中A的各位数中a1=1,a k(k=2,3,4,5)出现0的概率为13,出现1的概率为23,记ξ=a1+a2+a3+a4+a5,当程序运行一次时,ξ的数学期望为()A.827 B.113C.1681 D.6581二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上)13.袋中有4只红球,3只黑球,从袋中任取4只球,取到1只红球得1分,取到1只黑球得3分,设得分为随机变量X,则P(X≤6)=________.14.一只蚂蚁位于数轴x=0处,这只蚂蚁每隔一秒钟向左或向右移动一个单位,设它向右移动的概率为23,向左移动的概率为13,则3秒后,这只蚂蚁在x=1处的概率为________.15.一个正方形被平均分成9个小正方形,向大正方形区域随机地投掷一个点(每次都能投中).设投中最左侧3个小正方形区域的事件记为A,投中最上面3个小正方形或正中间的1个小正方形区域的事件记为B,则P(A|B)=________.16.一袋中有大小相同的4个红球和2个白球,给出下列结论:①从中任取3球,恰有一个白球的概率是3 5;②从中有放回的取球6次,每次任取一球,则取到红球次数的方差为4 3;③现从中不放回的取球2次,每次任取1球,则在第一次取到红球后,第二次再次取到红球的概率为2 5;④从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为26 27.其中所有正确结论的序号是________. 【导学号:97270057】三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,问:(1)从1号箱中取出的是红球的条件下,从2号箱取出红球的概率是多少?(2)从2号箱取出红球的概率是多少?18.(本小题满分12分)在某次数学考试中,考生的成绩ξ服从一个正态分布,即ξ~N(90,100).(1)试求考试成绩ξ位于区间(70,110)上的概率是多少?(2)若这次考试共有2 000名考生,试估计考试成绩在(80,100)的考生大约有多少人?19.(本小题满分12分)甲,乙两名工人加工同一种零件,两人每天加工的零件数相同,所得次品数分别为X,Y,X和Y的分布列如下表.试对这两名工人的技术水平进行比较.20.(本小题满分12分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3.从盒中任取3张卡片.(1)求所取3张卡片上的数字完全相同的概率;(2)X表示所取3张卡片上的数字的中位数,求X的分布列与数学期望.(注:若三个数a,b,c满足a≤b≤c,则称b为这三个数的中位数)21.(本小题满分12分)某公司有10万元资金用于投资,如果投资甲项目,根据市场分析知道一年后可能获利10%,可能损失10%,可能不赔不赚,这三种情况发生的概率分别为12,14,14;如果投资乙项目,一年后可能获利20%,也可能损失20%,这两种情况发生的概率分别为α和β(α+β=1).(1)如果把10万元投资甲项目,用ξ表示投资收益(收益=回收资金-投资资金),求ξ的分布列及E(ξ);(2)要使10万元资金投资乙项目的平均收益不低于投资甲项目的平均收益,求α的取值范围.22.(本小题满分12分)一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X,求X的分布列;(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比.分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.章末综合测评(二)随机变量及其分布(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法不正确的是()A.某辆汽车一年中发生事故的次数是一个离散型随机变量B.正态分布随机变量等于一个特定实数的概率为0C.公式E(X)=np可以用来计算离散型随机变量的均值D.从一副扑克牌中随机抽取5张,其中梅花的张数服从超几何分布【解析】公式E(X)=np并不适用于所有的离散型随机变量的均值的计算,适用于二项分布的均值的计算.故选C.【答案】 C2.若在甲袋内装有8个白球、4个红球,在乙袋内装有6个白球、5个红球,现从两袋内各任意取出1个球,设取出的白球个数为X,则下列概率中等于C18C15+C14C16C112C111的是()A.P(X=0)B.P(X≤2)C.P(X=1) D.P(X=2)【解析】由已知易知P(X=1)=C18C15+C14C16C112C111.【答案】 C3.(2016·长沙高二检测)若X的分布列为则E(X)=()A.45 B.12C.25 D.15【解析】由15+a=1,得a=45,所以E(X)=0×15+1×45=45.【答案】 A4.甲、乙、丙三人参加某项测试,他们能达到标准的概率分别是0.8,0.6,0.5,则三人中至少有一人达标的概率是()A.0.16 B.0.24C.0.96 D.0.04【解析】三人都不达标的概率是(1-0.8)×(1-0.6)×(1-0.5)=0.04,故三人中至少有一人达标的概率为1-0.04=0.96.【答案】 C5.如果随机变量X~N(4,1),则P(X≤2)等于()(注:P(μ-2σ<X≤μ+2σ)=0.954 4)A.0.210 B.0.022 8C.0.045 6 D.0.021 5【解析】P(X≤2)=(1-P(2<X≤6))×12=[1-P(4-2<X≤4+2)]×12=(1-0.954 4)×12=0.022 8.【答案】 B6.某同学通过计算机测试的概率为13,他连续测试3次,其中恰有1次通过的概率为()【导学号:97270056】A.49 B.29C.427 D.227【解析】连续测试3次,其中恰有1次通过的概率为P=C13×13×⎝⎛⎭⎪⎫1-132=49.【答案】 A7.校园内移栽4棵桂花树,已知每棵树成活的概率为45,那么成活棵数X的方差是()A.165 B.6425C.1625D.645【解析】 由题意知成活棵数X ~B ⎝ ⎛⎭⎪⎫4,45,所以成活棵数X 的方差为4×45×⎝ ⎛⎭⎪⎫1-45=1625.故选C. 【答案】 C8.对标有不同编号的6件正品和4件次品的产品进行检测,不放回地依次摸出2件.在第一次摸到正品的条件下,第二次也摸到正品的概率是( )A.35B.25C.110D.59【解析】 记“第一次摸到正品”为事件A ,“第二次摸到正品”为事件B ,则P (A )=C 16C 19C 110C 19=35,P (AB )=C 16C 15C 110C 19=13.故P (B |A )=P (AB )P (A )=59. 【答案】 D9.某市组织一次高三调研考试,考试后统计的数学成绩服从正态分布,其密度函数为f (x )=1102πe -(x -80)2200,则下列命题中不正确的是( )A .该市在这次考试的数学平均成绩为80分B .分数在120分以上的人数与分数在60分以下的人数相同C .分数在110分以上的人数与分数在50分以下的人数相同D .该市这次考试的数学成绩标准差为10【解析】 利用正态密度函数的表达式知μ=80,σ=10.故A ,D 正确,利用正态曲线关于直线x =80对称,知P (ξ>110)=P (ξ<50),即分数在110分以上的人数与分数在50分以下的人数相同,故C 正确,故选B.【答案】 B10.设随机变量ξ等可能地取1,2,3,4,…,10,又设随机变量η=2ξ-1,则P (η<6)=( )A .0.3B .0.5C .0.1D .0.2【解析】 因为P (ξ=k )=110,k =1,2,…,10,又由η=2ξ-1<6,得ξ<72,即ξ=1,2,3,所以P (η<6)=P (ξ=1)+P (ξ=2)+P (ξ=3)=310=0.3.【答案】 A11.甲、乙两个工人在同样的条件下生产,日产量相等,每天出废品的情况如下表所示,则有结论( )A.B .乙的产品质量比甲的产品质量好一些 C .两人的产品质量一样好 D .无法判断谁的产品质量好一些【解析】 ∵E (X 甲)=0×0.4+1×0.3+2×0.2+3×0.1=1, E (X 乙)=0×0.3+1×0.5+2×0.2+3×0=0.9. ∵E (X 甲)>E (X 乙),∴乙的产品质量比甲的产品质量好一些. 【答案】 B12.某计算机程序每运行一次都随机出现一个五位的二进制数A =a 1a 2a 3a 4a 5,其中A 的各位数中a 1=1,a k (k =2,3,4,5)出现0的概率为13,出现1的概率为23,记ξ=a 1+a 2+a 3+a 4+a 5,当程序运行一次时,ξ的数学期望为( )A.827B.113C.1681D.6581【解析】 记a 2,a 3,a 4,a 5位上出现1的次数为随机变量η,则η~B ⎝ ⎛⎭⎪⎫4,23,E (η)=4×23=83.因为ξ=1+η,E (ξ)=1+E (η)=113.故选B. 【答案】 B二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上)13.袋中有4只红球,3只黑球,从袋中任取4只球,取到1只红球得1分,取到1只黑球得3分,设得分为随机变量X ,则P (X ≤6)=________.【解析】 P (X ≤6)=P (X =4)+P (X =6)=C 44+C 34C 13C 47=1335.【答案】 133514.一只蚂蚁位于数轴x =0处,这只蚂蚁每隔一秒钟向左或向右移动一个单位,设它向右移动的概率为23,向左移动的概率为13,则3秒后,这只蚂蚁在x =1处的概率为________.【解析】 由题意知,3秒内蚂蚁向左移动一个单位,向右移动两个单位,所以蚂蚁在x =1处的概率为C 23⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫131=49. 【答案】 4915.一个正方形被平均分成9个小正方形,向大正方形区域随机地投掷一个点(每次都能投中).设投中最左侧3个小正方形区域的事件记为A ,投中最上面3个小正方形或正中间的1个小正方形区域的事件记为B ,则P (A |B )=________.【解析】如图,n (Ω)=9,n (A )=3,n (B )=4,所以n (AB )=1, P (A |B )=n (AB )n (B )=14. 【答案】 1416.一袋中有大小相同的4个红球和2个白球,给出下列结论:①从中任取3球,恰有一个白球的概率是35;②从中有放回的取球6次,每次任取一球,则取到红球次数的方差为43; ③现从中不放回的取球2次,每次任取1球,则在第一次取到红球后,第二次再次取到红球的概率为25;④从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为2627. 其中所有正确结论的序号是________. 【导学号:97270057】【解析】 ①恰有一个白球的概率P =C 12C 24C 36=35,故①正确;②每次任取一球,取到红球次数X ~B ⎝ ⎛⎭⎪⎫6,23,其方差为6×23×⎝ ⎛⎭⎪⎫1-23=43,故②正确; ③设A ={第一次取到红球},B ={第二次取到红球}. 则P (A )=23,P (AB )=4×36×5=25,∴P (B |A )=P (AB )P (A )=35,故③错; ④每次取到红球的概率P =23, 所以至少有一次取到红球的概率为 1-⎝ ⎛⎭⎪⎫1-233=2627, 故④正确. 【答案】 ①②④三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,问:(1)从1号箱中取出的是红球的条件下,从2号箱取出红球的概率是多少? (2)从2号箱取出红球的概率是多少?【解】 记事件A :最后从2号箱中取出的是红球;事件B:从1号箱中取出的是红球.P(B)=42+4=23.P(B)=1-P(B)=1 3.(1)P(A|B)=3+18+1=49.(2)∵P(A|B)=38+1=13,∴P(A)=P(A∩B)+P(A∩B) =P(A|B)P(B)+P(A|B)P(B)=49×23+13×13=1127.18.(本小题满分12分)在某次数学考试中,考生的成绩ξ服从一个正态分布,即ξ~N(90,100).(1)试求考试成绩ξ位于区间(70,110)上的概率是多少?(2)若这次考试共有2 000名考生,试估计考试成绩在(80,100)的考生大约有多少人?【解】因为ξ~N(90,100),所以μ=90,σ=100=10.(1)由于正态变量在区间(μ-2σ,μ+2σ)内取值的概率是0.954 4,而该正态分布中,μ-2σ=90-2×10=70,μ+2σ=90+2×10=110,于是考试成绩ξ位于区间(70,110)内的概率就是0.954 4.(2)由μ=90,σ=10,得μ-σ=80,μ+σ=100.由于正态变量在区间(μ-σ,μ+σ)内取值的概率是0.682 6,所以考试成绩ξ位于区间(80,100)内的概率是0.682 6.一共有2 000名学生,所以考试成绩在(80,100)的考生大约有2 000×0.682 6≈1 365(人).19.(本小题满分12分)甲,乙两名工人加工同一种零件,两人每天加工的零件数相同,所得次品数分别为X,Y,X和Y的分布列如下表.试对这两名工人的技术水平进行比较.【解】 E (X )=0×610+1×110+2×310=0.7,D (X )=(0-0.7)2×610+(1-0.7)2×110+(2-0.7)2×310=0.81. 工人乙生产出次品数Y 的数学期望和方差分别为 E (Y )=0×510+1×310+2×210=0.7,D (Y )=(0-0.7)2×510+(1-0.7)2×310+(2-0.7)2×210=0.61.由E (X )=E (Y )知,两人生产出次品的平均数相同,技术水平相当,但D (X )>D (Y ),可见乙的技术比较稳定.20.(本小题满分12分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3.从盒中任取3张卡片.(1)求所取3张卡片上的数字完全相同的概率;(2)X 表示所取3张卡片上的数字的中位数,求X 的分布列与数学期望. (注:若三个数a ,b ,c 满足a ≤b ≤c ,则称b 为这三个数的中位数) 【解】 (1)由古典概型的概率计算公式知所求概率为p =C 34+C 33C 39=584.(2)X 的所有可能值为1,2,3,且P (X =1)=C 24C 15+C 34C 39=1742, P (X =2)=C 13C 14C 12+C 23C 16+C 33C 39=4384, P (X =3)=C 22C 17C 39=112.故X 的分布列为从而E(X)=1×1742+2×4384+3×112=4728.21.(本小题满分12分)某公司有10万元资金用于投资,如果投资甲项目,根据市场分析知道一年后可能获利10%,可能损失10%,可能不赔不赚,这三种情况发生的概率分别为12,14,14;如果投资乙项目,一年后可能获利20%,也可能损失20%,这两种情况发生的概率分别为α和β(α+β=1).(1)如果把10万元投资甲项目,用ξ表示投资收益(收益=回收资金-投资资金),求ξ的分布列及E(ξ);(2)要使10万元资金投资乙项目的平均收益不低于投资甲项目的平均收益,求α的取值范围.【解】(1)依题意,ξ可能的取值为1,0,-1.ξ的分布列为E(ξ)=12-14=14.(2)设η表示10万元投资乙项目的收益,则η的分布列为E(η)=2α-2β=4α-2.依题意得4α-2≥1 4,故916≤α≤1.22.(本小题满分12分)一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X ,求X 的分布列; (2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比.分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.【解】 (1)X 可能的取值为10,20,100,-200. 根据题意,有P (X =10)=C 13×⎝ ⎛⎭⎪⎫121×⎝ ⎛⎭⎪⎫1-122=38, P (X =20)=C 23×⎝ ⎛⎭⎪⎫122×⎝ ⎛⎭⎪⎫1-121=38, P (X =100)=C 33×⎝ ⎛⎭⎪⎫123×⎝ ⎛⎭⎪⎫1-120=18, P (X =-200)=C 03×⎝⎛⎭⎪⎫120×⎝ ⎛⎭⎪⎫1-123=18. 所以X 的分布列为(2)设“第i i P (A 1)=P (A 2)=P (A 3)=P (X =-200)=18.所以“三盘游戏中至少有一次出现音乐”的概率为 1-P (A 1A 2A 3)=1-⎝ ⎛⎭⎪⎫183=1-1512=511512.因此,玩三盘游戏至少有一盘出现音乐的概率是511512. (3)X 的数学期望为EX =10×38+20×38+100×18-200×18=-54. 这表明,获得的分数X 的均值为负, 因此,多次游戏之后分数减少的可能性更大.。
高中数学 模块综合评价(二)(含解析)新人教A版选修1-2-新人教A版高二选修1-2数学试题

模块综合评价(二)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:(1+i )3(1-i )2等于()A .1+iB .-1+iC .1-iD .-1-i解析:(1+i )3(1-i )2=(1+i )2(1+i )(1-i )2=-1-i. 答案:D2.如图所示的框图是结构图的是( ) A.P ⇒Q 1→Q 1⇒Q 2→Q 2⇒Q 3→…→Q n ⇒Q B.Q ⇐P 1→P 1⇐P 2→P 2⇐P 3→…→得到一个明显成立的条件C.D.入库→找书→阅览→借书→出库→还书 解析:选项C 为组织结构图,其余为流程图. 答案:C3.若大前提:任何实数的平方都大于0,小前提:a ∈R ,结论:a 2>0,那么这个演绎推理出错在()A .大前提B .小前提C .推理形式D .没有出错 答案:A4.演绎推理“因为对数函数y =log a x (a >0且a ≠1)是增函数,而函数y =log 12x 是对数函数,所以y =log 12x 是增函数”所得结论错误的原因是()A .大前提错误B .小前提错误C .推理形式错误D .大前提和小前提都错误解析:对数函数y =log a x (a >0,且a ≠1),当a >1时是增函数,当0<a <1时是减函数,故大前提错误.答案:A5.观察按下列顺序排列的等式:9×0+1=1,9×1+2=11,9×2+3=21,9×3+4=31,…,猜想第n (n ∈N *)个等式应为()A .9(n +1)+n =10n +9B .9(n -1)+n =10n -9C .9n +(n -1)=10n -9D .9(n -1)+(n -1)=10n -10解析:易知等式的左边是两项和,其中一项为序号n ,另一项为序号n -1的9倍,等式右边是10n -9.猜想第n 个等式应为9(n -1)+n =10n -9. 答案:B6.已知(1-i )2z=1+i(i 为虚数单位),则复数z =( )A .1+iB .1-iC .-1+iD .-1-i解析:因为(1-i )2z=1+i ,所以z =(1-i )21+i =(1-i )2(1-i )(1+i )(1-i )=(1+i 2-2i )(1-i )1-i 2=-2i (1-i )2=-1-i.答案:D7.根据如下样本数据得到的回归方程为y ^=bx +a ,则( )A.a >0,b C .a <0,b >0D .a <0,b <0解析:作出散点图如下:观察图象可知,回归直线y ^=bx +a 的斜率b <0, 当x =0时,y ^=a >0.故a >0,b <0. 答案:B8.下列推理正确的是( )A .如果不买彩票,那么就不能中奖,因为你买了彩票,所以你一定中奖B .因为a >b ,a >c ,所以a -b >a -cC .若a ,b 均为正实数,则lg a +lg b ≥2lg a ·lg bD .若a 为正实数,ab <0,则a b +b a=-⎝⎛⎭⎪⎫-a b +-b a ≤-2⎝ ⎛⎭⎪⎫-a b ·⎝ ⎛⎭⎪⎫-b a =-2解析:A 中推理形式错误,故A 错;B 中b ,c 关系不确定,故B 错;C 中lg a ,lg b 正负不确定,故C 错.D 利用基本不等式,推理正确.答案:D9.下面的等高条形图可以说明的问题是()A .“心脏搭桥”手术和“血管清障”手术对“诱发心脏病”的影响是绝对不同的B .“心脏搭桥”手术和“血管清障”手术对“诱发心脏病”的影响没有什么不同C .此等高条形图看不出两种手术有什么不同的地方D .“心脏搭桥”手术和“血管清障”手术对“诱发心脏病”的影响在某种程度上是不同的,但是没有100%的把握解析:由等高条形图知,D 正确. 答案:D10.实数a ,b ,c 满足a +2b +c =2,则( ) A .a ,b ,c 都是正数B .a ,b ,c 都大于1C .a ,b ,c 都小于2D .a ,b ,c 中至少有一个不小于12解析:假设a ,b ,c 中都小于12,则a +2b +c <12+2×12+12=2,与a +2b +c =2矛盾所以a ,b ,c 中至少有一个不小于12.答案:D11.已知直线l ,m ,平面α,β且l ⊥α,m ⊂β,给出下列四个命题:①若α∥β,则l ⊥m ;②若l ⊥m ,则α∥β;③若α⊥β,则l ⊥m ;④若l ∥m ,则α⊥β.其中正确命题的个数是() A .1B .2C .3D .4解析:若l ⊥α,m ⊂β,α∥β,则l ⊥β,所以l ⊥m ,①正确; 若l ⊥α,m ⊂β,l ⊥m ,α与β可能相交,②不正确; 若l ⊥α,m ⊂β,α⊥β,l 与m 可能平行或异面,③不正确; 若l ⊥α,m ⊂β,l ∥m ,则m ⊥α,所以α⊥β,④正确. 答案:B12.执行如图所示的程序框图,如果输入的x =0,y =1,n =1,则输出x ,y 的值满足( )A .y =2xB .y =3xC .y =4xD .y =5x解析:输入x =0,y =1,n =1,得x =0,y =1,x 2+y 2=1<36,不满足条件;执行循环:n =2,x =12,y =2,x 2+y 2=14+4<36,不满足条件;执行循环:n =3,x =32,y =6,x 2+y 2=94+36>36,满足条件,结束循环,输出x =32,y =6,所以满足y =4x . 答案:C二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.(2017·某某卷)已知a ∈R ,i 为虚数单位,若a -i2+i 为实数,则a 的值为________.解析:a -i 2+i =15(a -i)(2-i)=2a -15-a +25i依题意a +25=0,所以a =-2.答案:-214.已知圆的方程是x 2+y 2=r 2,则经过圆上一点M (x 0,y 0)的切线方程为x 0x +y 0y =r 2.类比上述性质,可以得到椭圆x 2a 2+y 2b2=1类似的性质为______________________________________________.解析:圆的性质中,经过圆上一点M (x 0,y 0)的切线方程就是将圆的方程中的一个x 与y分别用M (x 0,y 0)的横坐标与纵坐标替换.故可得椭圆x 2a 2+y 2b 2=1类似的性质为:过椭圆x 2a 2+y 2b2=1上一点P (x 0,y 0)的切线方程为x 0x a 2+y 0yb 2=1. 答案:经过椭圆x 2a 2+y 2b 2=1上一点P (x 0,y 0)的切线方程为x 0x a 2+y 0yb2=115.(2017·卷)某学习小组由学生和教师组成,人员构成同时满足以下三个条件: (1)男学生人数多于女学生人数; (2)女学生人数多于教师人数; (3)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为________; ②该小组人数的最小值为________.解析:设男学生人数、女学生人数、教师人数分别为a ,b ,c ,则有2c >a >b >c ,且a ,b ,c ∈Z.①当c =4时,b 的最大值为6;②当c =3时,a 的值为5,b 的值为4,此时该小组人数的最小值为12.答案:①6②1216.已知线性回归直线方程是y ^=a ^+b ^x ,如果当x =3时,y 的估计值是17,x =8时,y 的估计值是22,那么回归直线方程为______.解析:首先把两组值代入回归直线方程得⎩⎨⎧3b ^+a ^=17,8b ^+a ^=22,解得⎩⎨⎧b ^=1,a ^=14. 所以回归直线方程是y ^=x +14. 答案:y ^=x +14三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)复数z =1+i ,某某数a ,b ,使az +2b z -=(a +2z )2. 解:因为z =1+i ,所以az +2b z -=(a +2b )+(a -2b )i ,(a +2z )2=(a +2)2-4+4(a +2)i =(a 2+4a )+4(a +2)i , 因为a ,b 都是实数,所以⎩⎪⎨⎪⎧a +2b =a 2+4a ,a -2b =4(a +2),解得⎩⎪⎨⎪⎧a =-2,b =-1,或⎩⎪⎨⎪⎧a =-4,b =2.所以a =-2,b =-1或a =-4,b =2.18.(本小题满分12分)设a ,b ,c 为一个三角形的三边,S =12(a +b +c ),且S 2=2ab ,求证:S <2a .证明:因为S 2=2ab ,所以要证S <2a ,只需证S <S 2b,即b <S .因为S =12(a +b +c ),只需证2b <a +b +c ,即证b <a +c .因为a ,b ,c 为三角形三边, 所以b <a +c 成立,所以S <2a 成立. 19.(本小题满分12分)观察以下各等式:tan 30°+tan 30°+tan 120°=tan 30°·tan 30°·tan 120°, tan 60°+tan 60°+tan 60°=tan 60°·tan 60°·tan 60°, tan 30°+tan 45°+tan 105°=tan 30°·tan 45°·tan 105°. 分析上述各式的共同特点,猜想出表示一般规律的等式,并加以证明. 解:表示一般规律的等式是:若A +B +C =π,则tan A +tan B +tan C =tan A ·tan B ·tan C . 证明:由于tan(A +B )=tan A +tan B1-tan A tan B ,所以tan A +tan B =tan(A +B )(1-tan A tan B ). 而A +B +C =π,所以A +B =π-C .于是tan A +tan B +tan C =tan(π-C )(1-tan A tan B )+tan C =-tan C +tan A tanB tanC +tan C =tan A ·tan B ·tan C .故等式成立.20.(本小题满分12分)已知关于x 的方程x a +b x=1,其中a ,b 为实数. (1)若x =1-3i 是该方程的根,求a ,b 的值;(2)当a >0且b a >14时,证明该方程没有实数根.解:(1)将x =1-3i 代入x a +bx=1, 化简得⎝ ⎛⎭⎪⎫1a +b 4+⎝ ⎛⎭⎪⎫34b -3a i =1,所以⎩⎪⎨⎪⎧1a +b 4=1,34b -3a =0,解得a =b =2.(2)证明:原方程化为x 2-ax +ab =0, 假设原方程有实数解,那么Δ=(-a )2-4ab ≥0,即a 2≥4ab .因为a >0,所以b a ≤14,这与题设b a >14相矛盾,故原方程无实数根.21.(本小题满分12分)等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2. (1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S n n(n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列. (1)解:设等差数列{a n }的公差为d ,则⎩⎨⎧a 1=1+2,3a 1+3d =9+32,联立得d =2,故a n =2n -1+2,S n =n (n +2). (2)证明:由(1)得b n =S nn=n + 2.假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r 互不相等)成等比数列,则b 2q =b p b r , 从而(q +2)2=(p +2)(r +2), 所以(q 2-pr )+(2q -p -r )2=0. 因为p ,q ,r ∈N *,所以⎩⎪⎨⎪⎧q 2-pr =0,2q -p -r =0,所以⎝ ⎛⎭⎪⎫p +r 22=pr ,(p -r )2=0, 所以p =r ,这与p ≠r 矛盾.所以数列{b n }中任意不同的三项都不可能成为等比数列.22.(本小题满分12分)从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得.(1)求家庭的月储蓄y 对月收入x 的线性回归方程y ^=b ^x +a ^; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.解:(1)由题意知n =10,x -=110i=8010=8,=2-0.3×8=-0.4,故所求回归方程为y ^=0.3x -0.4.(2)由于变量y 的值随x 值的增加而增加(b ^=0.3>0),故x 与y 之间是正相关. (3)将x =7代入回归方程可以预测该家庭的月储蓄为y ^=0.3×7-0.4=1.7(千元).。
高中数学 模块综合评价(二)(含解析)新人教A版选修2-2-新人教A版高二选修2-2数学试题

模块综合评价(二)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求)1.(1+i)16-(1-i)16=() A .-256B .256i C .0 D .256解析:(1+i)16-(1-i)16=[(1+i)2]8-[(1-i)2]8=(2i)8-(-2i)8=0. 答案:C2.已知函数f (x )=ln x -x ,则函数f (x )的单调递减区间是() A .(-∞,1) B .(0,1)C .(-∞,0),(1,+∞)D .(1,+∞)解析:f ′(x )=1x -1=1-xx,x >0.令f ′(x )<0,解得x >1.答案:D3.设f (x )=10x+lg x ,则f ′(1)等于( ) A .10 B .10ln 10+lg e C.10ln 10+ln 10 D .11ln 10解析:f ′(x )=10x ln 10+1x ln 10,所以f ′(1)=10ln 10+1ln 10=10ln 10+lg e. 答案:B4.若函数f (x )满足f (x )=e xln x +3xf ′(1)-1,则f ′(1)=() A .-e 2B .-e3C .-eD .e解析:由已知可得f ′(x )=e xln x +exx+3f ′(1),令x =1,则f ′(1)=0+e +3f ′(1),解得f ′(1)=-e2.答案:A5.用反证法证明命题:“若a ,b ∈N ,ab 能被3整除,那么a ,b 中至少有一个能被3整除”时,假设应为( )A .a ,b 都能被3整除B .a ,b 都不能被3整除C .a ,b 不都能被3整除D .a 不能被3整除解析:因为“至少有一个”的否定为“一个也没有”. 答案:B6.若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,则ab 的最大值等于( )A .2B .3C .6D .9解析:因为f ′(x )=12x 2-2ax -2b ,又因为在x =1处有极值,所以a +b =6,因为a >0,b >0,所以ab ≤⎝⎛⎭⎪⎫a +b 22=9,当且仅当a =b =3时取等号,所以ab 的最大值等于9.答案:D7.观察数列1,2,2,3,3,3,4,4,4,4,…的特点,按此规律,则第100项为( ) A .10B .14C .13D .100解析:设n ∈N *,则数字n 共有n 个,所以n (n +1)2≤100,即n (n +1)≤200,又因为n ∈N *,所以n =13,到第13个13时共有13×142=91项,从第92项开始为14,故第100项为14.答案:B8.某工厂要建造一个长方体的无盖箱子,其容积为48 m 3,高为3 m ,如果箱底每平方米的造价为15元,箱侧面每平方米的造价为12元,则箱子的最低总造价为()A .900元B .840元C .818元D .816元解析:设箱底一边的长度为x m ,箱子的总造价为l 元,根据题意,得l =15×483+12×2⎝ ⎛⎭⎪⎫3x +48x =240+72⎝ ⎛⎭⎪⎫x +16x (x >0),l ′=72⎝ ⎛⎭⎪⎫1-16x 2.令l ′=0,解得x =4或x =-4(舍去).当0<x <4时,l ′<0;当x >4时,l ′>0.故当x =4时,l 有最小值816.因此,当箱底是边长为4 m 的正方形时,箱子的总造价最低,最低总造价为816元.故选D.答案:D8.某工厂要建造一个长方体的无盖箱子,其容积为48 m 3,高为3 m ,如果箱底每平方米的造价为15元,箱侧面每平方米的造价为12元,则箱子的最低总造价为()A .900元B .840元C .818元D .816元解析:设箱底一边的长度为x m ,箱子的总造价为l 元,根据题意,得l =15×483+12×2⎝ ⎛⎭⎪⎫3x +48x =240+72⎝ ⎛⎭⎪⎫x +16x (x >0),l ′=72⎝ ⎛⎭⎪⎫1-16x 2.令l ′=0,解得x =4或x =-4(舍去).当0<x <4时,l ′<0;当x >4时,l ′>0.故当x =4时,l 有最小值816.因此,当箱底是边长为4 m 的正方形时,箱子的总造价最低,最低总造价为816元.答案:D10.证明不等式n 2+n ≤n +1(n ∈N *),某学生的证明过程如下: (1)当n =1时,12+1≤1+1,不等式成立;(2)假设n =k (k ∈N *且k ≥1)时,不等式成立,即 k 2+k ≤k +1,则当n =k +1时,(k +1)2+(k +1)= k 2+3k +2≤k 2+3k +2+(k +2)=(k +2)2=(k +1)+1.所以当n =k +1时,不等式成立.上述证法( ) A .过程全都正确 B .n =1时验证不正确 C .归纳假设不正确D .从n =k 到n =k +1的推理不正确解析:验证及归纳假设都正确,但从n =k 到n =k +1的推理中没有使用归纳假设,而是通过不等式的放缩法直接证明,不符合数学归纳法的证题要求.故应选D.答案:D11.已知函数f (x )满足f (0)=0,导函数f ′(x )的图象如图所示,则f (x )的图象与x 轴围成的封闭图形的面积为( )A.13B.43 C .2D.83解析:由f ′(x )的图象知,f ′(x )=2x +2, 设f (x )=x 2+2x +c ,由f (0)=0知,c =0, 所以f (x )=x 2+2x ,由x 2+2x =0得x =0或x =-2. 故所求面积S =-∫0-2(x 2+2x )d x =-⎝ ⎛⎭⎪⎫13x 3+x 2|0-2=43.答案:B12.已知定义在R 上的奇函数f (x ),设其导数为f ′(x ),当x ∈(-∞,0]时,恒有xf ′(x )<f (-x ),令F (x )=xf (x ),则满足F (3)>F (2x -1)的实数x 的取值X 围为()A .(-1,2) B.⎝⎛⎭⎪⎫-1,12C.⎝ ⎛⎭⎪⎫12,2D .(-2,1) 解析:因为f (x )是奇函数,所以不等式xf ′(x )<f (-x )等价于xf ′(x )<-f (x ),即xf ′(x )+f (x )<0,即F ′(x )<0.当x ∈(-∞,0]时,函数F (x )单调递减;由于F (x )=xf (x )为偶函数,所以F (x )在[0,+∞)上单调递增.所以F (3)>F (2x -1)等价于F (3)>F (|2x -1|), 即3>|2x -1|,解得-1<x <2. 答案:A二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.复数z =(1+2i)(3-i),其中i 为虚数单位,则z 的实部是________. 解析:因为z =(1+2i)(3-i)=3-i +6i -2i 2=5+5i ,所以z 的实部是5. 答案:514.在△ABC 中,D 为边BC 的中点,则AO →=12(AB →+AC →).将上述命题类比到四面体中去,得到一个类比命题:_______________.解析:将“△ABC ”类比为“四面体A BCD ”,将“D 为边BC 的中点”类比为“△BCD 的重心”,于是有类比结论:在四面体A BCD 中,G 为△BCD 的重心,则AG →=12(AB →+AC →+AD →).答案:在四面体A BCD 中,G 为△BCD 的重心,则AG →=12(AB →+AC →+AD →)15.若函数f (x )=x 2+ax +1在x =1处取得极值,则a =____________.解析:f ′(x )=2x (x +1)-(x 2+a )(x +1)2=x 2+2x -a (x +1)2,令f ′(x )=0,则x 2+2x -a =0,x ≠-1.又f (x )在x =1处取得极值,所以x =1是x 2+2x -a =0的根,所以a =3.答案:316.下列四个命题中,正确的为________(填上所有正确命题的序号). ①若实数a ,b ,c 满足a +b +c =3,则a ,b ,c 中至少有一个不小于1; ②若z 为复数,且|z |=1,则|z -i|的最大值等于2; ③对任意x ∈(0,+∞),都有x >sin x ; ④定积分∫π0π-x 2d x =π24.解析:①若实数a ,b ,c 满足a +b +c =3,则用反证法证明,假设a ,b ,c 都小于1,则a +b +c <3,与已知矛盾,故可得a ,b ,c 中至少有一个不小于1,故①正确;②若z 为复数,且|z |=1,则由|z -i|≤|z |+|-i|=2,可得|z -i|的最大值等于2,故②正确;③令y =x -sin x ,其导数为y ′=1-cos x ,y ′≥0,所以y =x -sin x 在R 上为增函数,当x =0时,x -sin x =0,所以对任意x ∈(0,+∞),都有x -sin x >0,故③正确.④定积分∫π0π-x 2d x 表示以原点为圆心,π为半径的圆的面积的四分之一,故④正确.答案:①②③④三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知a ∈R,问复数z =(a 2-2a +4)-(a 2-2a +2)i 所对应的点在第几象限?复数z 对应点的轨迹是什么?解:由a 2-2a +4=(a -1)2+3≥3. -(a 2-2a +2)=-(a -1)2-1≤-1. 知z 的实部为正数,虚部为负数, 所以复数z 的对应点在第四象限.设z =x +y i(x ,y ∈R),则⎩⎪⎨⎪⎧x =a 2-2a +4,y =-(a 2-2a +2), 因为a 2-2a =(a -1)2-1≥-1, 所以x =a 2-2a +4≥3,消去a 2-2a ,得y =-x +2(x ≥3), 所以复数z 对应点的轨迹是一条射线, 其方程为y =-x +2(x ≥3). 18.(本小题满分12分)设函数f (x )=1x +2,a ,b ∈(0,+∞). (1)用分析法证明:f ⎝ ⎛⎭⎪⎫a b +f ⎝ ⎛⎭⎪⎫b a ≤23;(2)设a +b >4,求证:af (b ),bf (a )中至少有一个大于12.证明:(1)要证明f ⎝ ⎛⎭⎪⎫a b +f ⎝ ⎛⎭⎪⎫b a ≤23,只需证明1a b+2+1b a+2≤23, 只需证明b a +2b +ab +2a ≤23,即证b 2+4ab +a 22a 2+5ab +2b 2≤23,即证(a -b )2≥0,这显然成立,所以f ⎝ ⎛⎭⎪⎫a b +f ⎝ ⎛⎭⎪⎫b a ≤23.(2)假设af (b ),bf (a )都小于或等于12,即a b +2≤12,b a +2≤12,所以2a ≤b +2,2b ≤a +2,两式相加得a +b ≤4, 这与a +b >4矛盾,所以af (b ),bf (a )中至少有一个大于12.19.(本小题满分12分)已知函数f (x )=ex +2(x 2-3).(1)求曲线y =f (x )在点(0,f (0))处的切线方程; (2)求函数y =f (x )的极值. 解:(1)函数f (x )=e x +2(x 2-3),则f ′(x )=ex +2(x 2+2x -3)=ex +2(x +3)(x -1),故f ′(0)=-3e 2,又f (0)=-3e 2,故曲线y =f (x )在点(0,f (0))处的切线方程为y +3e 2=-3e 2(x -0),即3e 2x +y +3e 2=0.(2)令f ′(x )=0,可得x =1或x =-3, 如下表:↗↘↗所以当x =-3时,函数取极大值,极大值为f (-3)=e ,当x =1时,函数取极小值,极小值为f (1)=-2e 3.20.(本小题满分12分)已知函数f (x )=12x 2+ln x .(1)求函数f (x )在[1,e]上的最大值,最小值;(2)求证:在区间[1,+∞)上,函数f (x )的图象在函数g (x )=23x 3图象的下方.解:(1)由f (x )=12x 2+ln x 有f ′(x )=x +1x ,当x ∈[1,e]时,f ′(x )>0,所以f (x )max =f (e)=12e 2+1.f (x )min =f (1)=12.(2)设F (x )=12x 2+ln x -23x 3,则F ′(x )=x +1x -2x 2=(1-x )(1+x +2x 2)x,当x ∈[1,+∞)时,F ′(x )<0,且F (1)=-16<0故x ∈[1,+∞)时F (x )<0,所以12x 2+ln x <23x 3,得证.21.(本小题满分12分)已知函数f (x )=12x 2+(1-a )x -a ln x .(1)讨论f (x )的单调性;(2)设a >0,证明:当0<x <a 时,f (a +x )<f (a -x ); (3)设x 1,x 2是f (x )的两个零点,证明:f ′⎝ ⎛⎭⎪⎫x 1+x 22>0.解:(1)f (x )的定义域为(0,+∞),由已知,得f ′(x )=x +1-a -a x =x 2+(1-a )x -ax=(x +1)(x -a )x.若a ≤0,则f ′(x )>0,此时f (x )在(0,+∞)上单调递增. 若a >0,则令f ′(x )=0,得x =a .当0<x <a 时,f ′(x )<0;当x >a 时,f ′(x )>0.此时f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增.综上,当a ≤0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增.(2)令g (x )=f (a +x )-f (a -x ),则g (x )=12(a +x )2+(1-a )(a +x )-a ln(a +x )- [12(a -x )2+(1-a )(a -x )-a ln(a -x )]=2x -a ln(a +x )+a ln(a -x ).所以g ′(x )=2-a a +x -aa -x =2x2x 2-a 2.当0<x <a 时,g ′(x )<0,所以g (x )在(0,a )上是减函数. 而g (0)=0,所以g (x )<g (0)=0.故当0<x <a 时,f (a +x )<f (a -x ).(3)由(1)可知,当a ≤0时,函数f (x )至多有一个零点, 故a >0,从而f (x )的最小值为f (a ),且f (a )<0. 不妨设0<x 1<x 2,则0<x 1<a <x 2,所以0<a -x 1<a . 由(2)得f (2a -x 1)<f (x 1)=0=f (x 2), 从而x 2>2a -x 1,于是x 1+x 22>a .由(1)知,f ′⎝⎛⎭⎪⎫x 1+x 22>0.22.(本小题满分12分)已知数列{a n }的前n 项和为S n ,且a 1=1,S n =n 2a n (n ∈N *). (1)试求出S 1,S 2,S 3,S 4,并猜想S n 的表达式; (2)用数学归纳法证明你的猜想,并求出a n 的表达式. 解:(1)因为a n =S n -S n -1(n ≥2) 所以S n =n 2(S n -S n -1),所以S n =n 2n 2-1S n -1(n ≥2) 因为a 1=1,所以S 1=a 1=1. 所以S 2=43,S 3=32=64,S 4=85,猜想S n =2n n +1(n ∈N *). (2)①当n =1时,S 1=1成立.②假设n =k (k ≥1,k ∈N *)时,等式成立,即S k =2k k +1, 当n =k +1时,S k +1=(k +1)2·a k +1=a k +1+S k =a k +1+2k k +1, 所以a k +1=2(k +2)(k +1),所以S k +1=(k +1)2·a k +1=2(k +1)k +2=2(k +1)(k +1)+1.所以n =k +1时等式也成立,得证.所以根据①、②可知,对于任意n ∈N *,等式均成立. 由S n =n 2a n ,得2n n +1=n 2a n ,所以a n =2n (n +1).。
数学·高二选修2-3(人教a版)练习:章末评估验收(二) 含解析

数学·高二选修2-3(人教a 版)练习:章末评估验收(二) 含解析章末评估验收(二)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求)1.设随机变量ξ等可能取值1,2,3,…,n ,如果P (ξ<6)=13,那么n =( )A .8B .9C .10D .15 解析:因为P (ξ<6)=5n =13,所以n =15.答案:D2.两个实习生每人加工一个零件.加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( )A.512B.12C.14D.16解析:根据相互独立事件与互斥、对立事件的概率公式得P =23×⎝ ⎛⎭⎪⎫1-34+⎝⎛⎭⎪⎫1-23×34=512.答案:A3.已知某离散型随机变量X 服从的分布列如下表所示,则随机变量X 的方差D (X )等于( )A.19B.29C.13D.23解析:由m +2m =1得m =13,所以E (X )=0×13+1×23=23,D (X )=⎝ ⎛⎭⎪⎫0-232×13+⎝ ⎛⎭⎪⎫1-232×23=29. 答案:B4.投掷3枚硬币,至少有一枚出现正面的概率是( ) A.38 B.12 C.58 D.78解析:P (至少有一枚正面)=1-P (三枚均为反面)=1-⎝ ⎛⎭⎪⎫123=78.答案:D5.某产品40件,其中有次品数3件,现从中任取2件,则其中至少有一件次品的概率是( )A .0.146 2B .0.153 8C .0.996 2D .0.853 8解析:所求的概率为1-C 237C 240=1-37×3640×39=0.146 2.答案:A6.在比赛中,如果运动员A 胜运动员B 的概率是23,那么在五次比赛中运动员A 恰有三次获胜的概率是( )A.40243B.80243C.110243D.20243解析:所求概率为C 35⎝ ⎛⎭⎪⎫233×⎝⎛⎭⎪⎫1-232=80243. 答案:B7.已知随机变量ξ服从正态分布N (3,4),则E (2ξ+1)与D (2ξ+1)的值分别为()A.13,4 B.13,8 C.7,8 D.7,16解析:由已知E(ξ)=3,D(ξ)=4,得E(2ξ+1)=2E(ξ)+1=7,D(2ξ+1)=4D(ξ)=16.答案:D8.有编号分别为1、2、3、4、5的5个红球和5个黑球,从中取出4个,则取出的编号互不相同的概率为()A.521 B.27 C.13 D.8 21解析:从10个球中任取4个,取法有C410=210(种),取出的编号互不相同的取法有C45·24=80(种),所以所求概率P=80210=821.答案:D9.如果随机变量ξ表示抛掷一个各面分别有1,2,3,4,5,6的均匀的正方体向上面的数字,那么随机变量ξ的均值为()A.2.5 B.3 C.3.5 D.4解析:P(ξ=k)=16(k=1,2,3,…,6),所以E(ξ)=1×16+2×16+ (6)16=(1+2+…+6)×16=3.5.答案:C10.盒中有10只螺丝钉,其中有3只是坏的,现从盒中随机地抽取4个,那么概率是310的事件为()A.恰有1只是坏的B.4只全是好的C.恰有2只是好的D.至多有2只是坏的解析:X=k表示取出的螺丝钉恰有k只为好的,则P(X=k)=C k7C4-k3C410(k=1,2,3,4).所以P (X =1)=130,P (X =2)=310,P (X =3)=12,P (X =4)=16.答案:C11.将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在下落的过程中,将3次遇到黑色障碍物,最后落入A 袋或B 袋中.已知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是12,则小球落入A 袋中的概率为()A.18B.14C.38D.34解析:小球落入B 袋中的概率为P 1=⎝ ⎛⎭⎪⎫12×12×12×2=14,所以小球落入A 袋中的概率为P =1-P 1=34.答案:D12.某次国际象棋比赛规定,胜一局得3分,平一局得1分,负一局得0分,某参赛队员比赛一局胜的概率为a ,平局的概率为b ,负的概率为c (a ,b ,c ∈[0,1)),已知他比赛一局得分的数学期望为1,则ab 的最大值为( )A.13B.12C.112D.16解析:由条件知,3a +b =1,所以ab =13(3a )·b ≤13⎝ ⎛⎭⎪⎪⎫3a +b 22=112,等号在3a=b =12,即a =16,b =12时成立.答案:C二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.如果随机变量ξ服从N (μ,σ),且E (ξ)=3,D (ξ)=1,那么μ=________,σ=________.解析:因为ξ~N (μ,σ),所以E (ξ)=μ=3,D (ξ)=σ2=1, 所以σ=1. 答案:3 114.甲、乙同时炮击一架敌机,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5,敌机被击中的概率为________.解析:P (敌机被击中)=1-P (甲未击中敌机)P (乙未击中敌机)=1-(1-0.6)(1-0.5)=1-0.2=0.8.答案:0.815.一盒子中装有4只产品,其中3只一等品,1只二等品,从中取产品两次,每次任取1只,做不放回抽样.设事件A 为“第一次取到的是一等品”,事件B 为“第二次取到的是一等品”,则P (B |A )=________.解析:由条件知,P (A )=34,P (AB )=C 23C 24=12,所以P (B |A )=P (AB )P (A )=23.答案:2316.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于________.解析:此选手恰好回答4个问题就晋级下一轮,说明此选手第2个问题回答错误,第3、第4个问题均回答正确,第1个问题答对答错都可以.因为每个问题的回答结果相互独立,故所求的概率为1×0.2×0.82=0.128.答案:0.128三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)一个口袋中有5个同样大小的球,编号为3,4,5,6,7,从中同时取出3个小球,以ξ表示取出的球的最小号码,求ξ的分布列.解:ξ的取值分别为3,4,5,P(ξ=3)=C24C35=35,P(ξ=4)=C23C35=310,P(ξ=5)=C22C35=110,所以ξ的分布列为:18.(本小题满分12分4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3.从盒中任取3张卡片.(1)求所取3张卡片上的数字完全相同的概率;(2)X表示所取3张卡片上的数字的中位数,求X的分布列与数学期望.(注:若三个数a,b,c满足a≤b≤c,则称b为这三个数的中位数)解:(1)由古典概型的概率计算公式知所求概率为P=C34+C33C39=584.(2)X的所有可能值为1,2,3,且P(X=1)=C24C15+C34C39=1742;P(X=2)=C13C14C12+C23C16+C33C39=4384;P (X =3)=C 22C 17C 39=112.故X 的分布列为:从而E (X )=1×1742+2×4384+3×112=4728.19.(本小题满分12分)某校从学生会宣传部6名成员(其中男生4人,女生2人)中,任选3人参加某省举办的“我看中国改革开放三十年”演讲比赛活动.(1)设所选3人中女生人数为ξ,求ξ的分布列; (2)求男生甲或女生乙被选中的概率;(3)设“男生甲被选中”为事件A ,“女生乙被选中”为事件B ,求P (B )和P (B |A ).解:(1)ξ的所有可能取值为0,1,2,依题意得P (ξ=0)=C 34C 36=15,P (ξ=1)=C 24C 12C 36=35, P (ξ=2)=C 14C 22C 36=15.所以ξ的分布列为:(2)设“甲、乙都不被选中”为事件C , 则P (C )=C 34C 36=420=15.所以所求概率为P (C )=1-P (C )=1-15=45.(3)P (B )=C 25C 36=1020=12;P (B |A )=C 14C 25=410=25.20.(本小题满分12分)某城市有甲、乙、丙3个旅游景点,一位游客浏览这3个景点的概率分别是0.4,0.5,0.6,且游客是否浏览哪个景点互不影响,用X 表示该游客离开该城市时游览的景点数与没有游览和景点数之差的绝对值.(1)求X 的分布列及期望;(2)记“f (x )=2Xx +4在[-3,-1]上存在x 0,使f (x 0)=0”为事件A ,求事件A 的概率.解:(1)设游客游览甲、乙、丙景点分别为事件A 1,A 2,A 3,已知A 1,A 2,A 3相互独立,且P (A 1)=0.4,P (A 2)=0.5,P (A 3)=0.6.游客游览的景点数可能取值为0,1,2,3,相应的游客没有游览的景点数可能取值为3,2,1,0,所以X 的可能取值为1,3,则P (X =3)=P (A 1A 2A 3)+=P (A 1)·P (A 2)·P (A 3)+P ()·P ()·P ()=2×0.4×0.5×0.6=0.24.P (X =1)=1-0.24=0.76. 所以分布列为:所以E (X )=1×0.76+3×0.24=1.48.(2)因为f (x )=2Xx +4在[-3,-1]上存在x 0, 使得f (x 0)=0,所以f (-3)·f (-1)≤0,即(-6X +4)(-2X +4)≤0, 解得23≤X ≤2.所以P (A )=P ⎝ ⎛⎭⎪⎫23≤X ≤2=P (X =1)=0.76.21.(本小题满分12分)甲、乙两射击运动员进行射击比赛,射击相同的次数,已知两运动员射击的环数X 稳定在7,8,9,10环.他们的这次成绩画成频率分布直方图分别如图1和图2所示:(1)根据这次比赛的成绩频率分布直方图推断乙击中8环的概率P (X 乙=8),并求甲、乙同时击中9环以上(包括9环)的概率;(2)根据这次比赛的成绩估计甲、乙谁的水平更高. 解:(1)由題图2可知:P (X 乙=7)=0.2,P (X 乙=9)=0.2,P (X 乙=10)=0.35. 所以P (X 乙=8)=1-0.2-0.2-0.35=0.25.同理P (X 甲=7)=0.2,P (X 甲=8)=0.15,P (X 甲=9)=0.3. 所以P (X 甲=10)=1-0.2-0.15-0.3=0.35. 因为P (X 甲≥9)=0.3+0.35=0.65, P (X 乙≥9)=0.2+0.35=0.55.所以甲、乙同时击中9环以上(包含9环)的概率为P =P (X 甲≥9)·P (X 乙≥9)=0.65×0.55=0.357 5.(2)因为E (X 甲)=7×0.2+8×0.15+9×0.3+10×0.35=8.8, E (X 乙)=7×0.2+8×0.25+9×0.2+10×0.35=8.7, E (X 甲)>E (X 乙),所以估计甲的水平更高.22.(本小题满分12分)红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A 、乙对B 、丙对C 各一盘,已知甲胜A 、乙胜B 、丙胜C 的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立.(1)求红队至少两名队员获胜的概率;(2)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望E (ξ). 解:(1)设甲胜A 的事件为D ,乙胜B 的事件为E ,丙胜C 的事件为F , 则— D ,— E ,—F 分别表示甲不胜A 、乙不胜B 、丙不胜C 的事件. 因为P (D )=0.6,P (E )=0.5,P (F )=0.5,由对立事件的概率公式知P (— D )=0.4,P (— E )=0.5,P (—F )=0.5. 红队至少两人获胜的事件有:DEF ,DFE ,—D EF ,DEF . 由于以上四个事件两两互斥且各盘比赛的结果相互独立, 因此红队至少两人获胜的概率为P =P (DE — F )+P (D — E F )+P (—D EF )+P (DEF )=0.6×0.5×0.5+0.6×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.55.(2)由题意知ξ可能的取值为0,1,2,3.又由(1)知— D — E — F ,— D E — F ,D —EF 是两两互斥事件,且各盘比赛的结果相第11页 共11页 互独立,因此,P (ξ=0)=P (— D — E — F )=0.4×0.5×0.5=0.1, P (ξ=1)=P (— D — E F )+P (— D E — F )+P (D — E — F )=0.4×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.35.P (ξ=3)=P (DEF )=0.6×0.5×0.5=0.15.由对立事件的概率公式得P (ξ=2)=1-P (ξ=0)-P (ξ=1)-P (ξ=3)=0.4. 所以ξ的分布列为:因此E (ξ)=0×0.1+1×0.35+2×0.4+3×0.15=1.6.。
最新精编高中人教A版选修2-3高中数学章末综合测评3(1)和答案

章末综合测评(三) 统计案例(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法中错误的是( )A.如果变量x与y之间存在着线性相关关系,则我们根据试验数据得到的点(x i,y i)(i=1,2,…,n)将散布在某一条直线的附近B.如果两个变量x与y之间不存在着线性关系,那么根据它们的一组数据(x i,y)(i=1,2,…,n)不能写出一个线性方程iC.设x,y是具有相关关系的两个变量,且y关于x的线性回归方程为y^=b^x +a^,b^叫做回归系数D.为使求出的线性回归方程有意义,可用统计检验的方法来判断变量y与x 之间是否存在线性相关关系【解析】任何一组(x i,y i)(i=1,2,…,n)都能写出一个线性方程,只是有的不存在线性关系.【答案】 B2.如图1所示,有5组数据,去掉哪组数据后(填字母代号),剩下的4组数据的线性相关性最大( )图1A.E B.CC.D D.A【解析】由题图易知A,B,C,D四点大致在一条直线上,而E点偏离最远,故去掉E点后剩下的数据的线性相关性最大.【答案】 A3.在一次试验中,当变量x 的取值分别为1,12,13,14时,变量y 的值分别为2,3,4,5,则y 与1x的回归曲线方程为( ) 【导学号:97270064】A.y ^=1x +1B.y ^=2x+3C.y ^=2x +1D.y ^=x -1【解析】 由数据可得,四个点都在曲线y ^=1x+1上.【答案】 A 4.有下列说法:①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适;②用相关指数R 2来刻画回归的效果,R 2值越大,说明模型的拟合效果越好; ③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好.其中正确命题的个数是( ) A .0 B .1 C .2D .3【解析】 ①选用的模型是否合适与残差点的分布有关;对于②③,R 2的值越大,说明残差平方和越小,随机误差越小,则模型的拟合效果越好.【答案】 D5.观察下列各图,其中两个分类变量x ,y 之间关系最强的是( )A BC D【解析】在四幅图中,D图中两个深色条的高相差最明显,说明两个分类变量之间关系最强.【答案】 D6.在2×2列联表中,下列哪两个比值相差越大,两个分类变量有关系的可能性就越大( )A.aa+b与cc+d B.ac+d与ca+bC.aa+d与cb+c D.ab+d与ca+c【解析】当ad与bc相差越大,两个分类变量有关系的可能性越大,此时aa+b与cc+d相差越大.【答案】 A7.如图2,5个(x,y)数据,去掉D(3,10)后,下列说法错误的是( )图2A.相关系数r变大B.残差平方和变大C.相关指数R2变大D.解释变量x与预报变量y的相关性变强【解析】由散点图知,去掉D后,x与y的相关性变强,且为正相关,所以r变大,R2变大,残差平方和变小.【答案】 B8.(2016·安庆一中期中)在一次对性别与是否说谎有关的调查中,得到如下数据,根据表中数据判断如下结论中正确的是( )A.在此次调查中有B.在此次调查中有99%的把握认为是否说谎与性别有关C.在此次调查中有99.5%的把握认为是否说谎与性别有关D.在此次调查中没有充分证据显示说谎与性别有关【解析】由表中数据得k=-214×16×13×17≈0.002 42<3.841.因此没有充分证据认为说谎与性别有关,故选D.【答案】 D9.某地财政收入x与支出y满足线性回归方程y^=b^x+a^+e(单位:亿元),其中b^=0.8,a^=2,|e|<0.5,如果今年该地区财政收入10亿元,年支出预计不会超过( )A.10亿B.9亿C.10.5亿D.9.5亿【解析】代入数据得y=10+e,∵|e|<0.5,∴|y|<10.5,故不会超过10.5亿.【答案】 C10.(2016·合肥高二检测)废品率x%和每吨生铁成本y(元)之间的回归直线方程为y^=256+3x,表明( )A.废品率每增加1%,生铁成本增加259元B.废品率每增加1%,生铁成本增加3元C .废品率每增加1%,生铁成本平均每吨增加3元D .废品率不变,生铁成本为256元【解析】 回归方程的系数b ^表示x 每增加一个单位,y ^平均增加b ^个单位,当x 为1时,废品率应为1%,故当废品率增加1%时,生铁成本平均每吨增加3元.【答案】 C11.已知x 与y 之间的几组数据如下表:假设根据上表数据所得线性回归直线方程为y =b x +a ,若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y =b ′x +a ′,则以下结论正确的是( )A.b ^>b ′,a ^>a ′B.b ^>b ′,a ^<a ′C.b ^<b ′,a ^>a ′D.b ^<b ′,a ^<a ′【解析】 由两组数据(1,0)和(2,2)可求得直线方程为y =2x -2,b ′=2,a ′=-2.而利用线性回归方程的公式与已知表格中的数据,可求得b ^=∑i =16x i y i -6x - y -∑i =16x 2i -6x-2=58-6×72×13691-6×⎝ ⎛⎭⎪⎫722=57,a ^=y --b ^x -=136-57×72=-13,所以b ^<b ′,a ^>a ′.【答案】 C12.两个分类变量X 和Y ,值域分别为{x 1,x 2}和{y 1,y 2},其样本频数分别是a =10,b =21,c +d =35.若X 与Y 有关系的可信程度不小于97.5%,则c 等于( )A .3B .4C .5D .6 附:【解析】2×2故K2的观测值k=+c-c≥5.024.把选项A,B,C,D代入验证可知选A.【答案】 A二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上)13.已知一回归直线方程为y^=1.5x+45,x∈{1,5,7,13,19},则y=________. 【导学号:97270065】【解析】因为x=15(1+5+7+13+19)=9,且y=1.5x+45,所以y=1.5×9+45=58.5.【答案】58.514.某大型企业人力资源部为了研究企业员工工作积极性和对企业改革态度的关系,随机抽取了189名员工进行调查,所得数据如下表所示:.【解析】根据列联表中的数据,得到k=-294×95×86×103≈10.76.【答案】10.7615.(2016·深圳高二检测)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据收集到的数据(如下表),由最小二乘法求得回归方程y^=0.67x+54.9..【解析】由表知x=30,设模糊不清的数据为m,则y=15(62+m+75+81+89)=307+m5,因为y=0.67x+54.9,即307+m5=0.67×30+54.9,解得m=68.【答案】6816.某地区恩格尔系数Y(%)与年份x的统计数据如下表:从散点图可以看出Y与x线性相关,且可得回归方程为y=b x+4 055.25,据此模型可预测2017年该地区的恩格尔系数Y(%)为________.【解析】由表可知x=2 007.5,y=44.25.因为y=b^x+4 055.25,即44.25=2 007.5b^+4 055.25,所以b^≈-2,所以回归方程为y^=-2x+4 055.25,令x=2 017,得y^=21.25.【答案】21.25三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)以下是某地区不同身高的未成年男性的体重平均值表.(1)①y=0.429 4x-25.318,②y=2.004e0.019 7x.通过计算,得到它们的相关指数分别是:R21=0.9311,R22=0.998.试问哪个回归方程拟合效果更好?(2)若体重超过相同身高男性平均值的1.2倍为偏胖,低于0.8为偏瘦,那么该地区某中学一男生身高为175 cm,体重为78 kg,他的体重是否正常?【解】(1)∵R22>R21,∴选择第二个方程拟合效果更好.(2)把x=175代入y=2.004e0.019 7x,得y=62.97,由于7862.97=1.24>1.2,所以这名男生偏胖.18.(本小题满分12分)关于x与y有如下数据:为了对x,y两个变量进行统计分析,现有以下两种线性模型:甲模型y^=6.5x +17.5,乙模型y^=7x+17,试比较哪一个模型拟合的效果更好.【解】 R 21=1-∑5i =1y i -y ^i 2∑5i =1y i -y2=1-1551 000=0.845,R 22=1-∑5i =1y i -y ^i 2∑5i =1y i -y2=1-1801 000=0.82.又∵84.5%>82%,∴甲选用的模型拟合效果更好.19.(本小题满分12分)为了调查某生产线上质量监督员甲对产品质量好坏有无影响,现统计数据如下:质量监督员甲在生产现场时,990件产品中合格品有982件,次品有8件;甲不在生产现场时,510件产品中合格品有493件,次品有17件.试分别用列联表、独立性检验的方法分析监督员甲是否在生产现场对产品质量好坏有无影响?【解】 (1)2×2列联表如下:度上认为“质量监督员甲是否在生产现场与产品质量有关系”.(2)由2×2列联表中数据,计算得到K 2的观测值为k =982×17-2990×510×1 475×25≈13.097>6.635,所以在犯错误的概率不超过0.01的前提下,认为质量监督员甲是否在生产现场与产品质量有关系.20.(本小题满分12分)有两个分类变量x 与y ,其一组观测值如下面的2×2列联表所示:其中a,15-a均为大于0.1的前提下认为x与y之间有关系?【解】查表可知,要使在犯错误的概率不超过0.1的前提下认为x与y之间有关系,则k≥2.706,而k=65×[a+a--a-a220×45×15×50=a-220×45×15×50=a-260×90.故k≥2.706,得a≥7.19或a≤2.04.又a>5且15-a>5,a∈Z,解得a=8或9,故a为8或9时,在犯错误的概率不超过0.1的前提下认为x与y之间有关系.21.(本小题满分12分)某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如下表:(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘法估计公式分别为:b^=∑ni=1ti-t y i-y-∑ni=1ti-t2,a^=y--b^t.【解】(1)由所给数据计算得t=17(1+2+3+4+5+6+7)=4,y-=17(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3,∑7i=1(t i-t)2=9+4+1+0+1+4+9=28,∑7i=1(t i-t)(y i-y-)=(-3)×(-1.4)+(-2)×(-1)+(-1)×(-0.7)+0×0.1+1×0.5+2×0.9+3×1.6=14,b^=∑7i=1ti-t y i-y-∑7i=1ti-t2=1428=0.5,a^=y--b^t=4.3-0.5×4=2.3,所求回归方程为y^=0.5t+2.3.(2)由(1)知,b=0.5>0,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.将2015年的年份代号t=9代入(1)中的回归方程,得y^=0.5×9+2.3=6.8,故预测该地区2015年农村居民家庭人均纯收入为6.8千元.22.(本小题满分12分)电视传媒公司为了解某地区观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:图3将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.(1)根据已知条件完成下面的2×2列联表,并据此资料判断“体育迷”与性别是否有关?(2)“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率.附:K2=n ad-bc2,【解】(1)“体育迷”有25人,从而完成2×2列联表如下:将2×2k=n ad-bc2a+b c+d a+c b+d=-275×25×45×55=10033≈3.030.因为3.030<3.841,所以我们没有理由认为“体育迷”与性别有关.(2)由频率分布直方图可知,“超级体育迷”为5人,其中女生为2人.记:从“超级体育迷”中取2人,至少有1名女性为事件A.则P(A)=C22C03+C12C13C25=710,7 10.即从“超级体育迷”中任意选取2人,至少有1名女性观众的概率为。
高中数学 章末质量评估(二)新人教A版选修23

章末质量评估(二)(时间:100分钟 满分:120分)一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.设随机变量X 的概率分布列为则E (X +2) ). A.113 B .9 C.133 D.73解析 ∵E (X )=1×16+2×13+3×12=16+23+32=146=73.∴E (X +2)=E (X )+2=73+2=133.答案 C2.某一供电网络,有n 个用电单位,每个单位在一天中使用电的机会是p ,供电网络中一天平均用电的单位个数是 ( ). A .np (1-p ) B .np C .n D .p (1-p ) 解析 供电网络中一天用电的单位个数服从B (n ,p ),故所求为np . 答案 B3.口袋中有5只白色乒乓球,5只黄色乒乓球,从中任取5次,每次取1只后又放回,则5次中恰有3次取到白球的概率是 ( ). A.12 B.35 C.C 35C 510D .C 35·0.55解析 任意取球5次,取得白球3次的概率为C 35·0.53·(1-0.5)2=C 350.55. 答案 D4.设随机变量X 的分布列为P (X =k )=17(k =0,1,2,…,7),则E (X )为 ( ).A.17B.57 C .1 D .4 解析 依分布列特点知E (X )=17(1+2+3+4+5+6+7)=4.答案 D5.对标有不同编号的6件正品和4件次品的产品进行检测,不放回地依次摸出2件.在第一次摸出正品的条件下,第二次也摸到正品的概率是 ( ).A.35B.25C.110D.59解析 记“第一次摸出正品”为事件A ,“第二次摸到正品”为事件B ,则 P (A )=C 16C 19C 110C 19=35,P (AB )=C 16C 15C 110C 19=13.故P (B |A )=P (AB )P (A )=59.答案 D6.设随机变量ξ服从正态分布N (0,1),P (ξ>1)=p ,则P (-1<ξ<0)等于 ( ).A.12p B .1-p C .1-2p D.12-p 解析 本题主要考查了正态分布及随机变量的 概率问题.由随机变量服从正态分布N (0,1), 由标准正态分布图可得P (-1<ξ<0) =12-P (ξ<-1)=12-P (ξ>1) =12-p . 答案 D7.甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜.根据经验,每局比赛中甲获胜的概率为0.6,则本次比赛甲获胜的概率是 ( ).A .0.216B .0.36C .0.432D .0.648 解析 甲获胜有两种情况,一是甲以2∶0获胜,此时p 1=0.62=0.36;二是 甲以2∶1获胜,此时p 2=C 12·0.6×0.4×0.6=0.288,故甲获胜的概率为p 1 +p 2=0.648. 答案 D8.已知一次考试共有60名同学参加,考生成绩X ~N (110,52),据此估计,大约有57人的分数所在的区间为 ( ). A .(90,100] B .(95,125] C .(100,120] D .(105,115] 解析 ∵X ~N (110,52), ∴μ=110,σ=5,又5760=0.95≈P (μ-2σ<X ≤μ+2σ) =P (100<X ≤120). 答案 C9.将三颗骰子各掷一次,记事件A 表示“三个点数都不相同”,事件B 表示“至少出现一个3点”,则概率P (A |B )等于 ( ). A.91216 B.518 C.6091 D.12解析 三颗骰子各掷一次,点数共有6×6×6=216种,事件B -表示“三次 都没有出现3点”,共有5×5×5=125种,则P (B )=1-P (B -)=1-125216=91216,P (AB )=5×4×C 13216=518, 所以P (A |B )=P (AB )P (B )=6091.答案 C10.一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c (a ,b ,c ∈(0,1)),已知他投篮一次得分的均值为2(不计其他得分情况),则ab 的最大值为 ( ). A.148 B.124 C.112 D.16解析 由已知,得3a +2b +0×c =2,得3a +2b =2, 所以ab =16×3a ×2b ≤16⎝ ⎛⎭⎪⎫3a +2b 22=16.答案 D二、填空题(本大题共4小题,每小题4分,共16分,把答案填在题中横线上)11.某大厦的一部电梯从底层出发后只能在第18、19、20层停靠,若该电梯在底层载有5位乘客,且每位乘客在这三层的每一层下电梯的概率均为13,用X 表示这5位乘客在第20层下电梯的人数,则P (X =4)=________.解析 考察一位乘客是否在第20层下电梯为一次试验,这是5次独立重复试验,故X ~B ⎝ ⎛⎭⎪⎫5,13, 即有P (X =k )=C k5⎝ ⎛⎭⎪⎫13k×⎝ ⎛⎭⎪⎫235-k,k =0,1,2,3,4,5.∴P (X =4)=C 45⎝ ⎛⎭⎪⎫134×⎝ ⎛⎭⎪⎫231=10243.答案1024312.两个人射击,甲,乙各射击一次中靶的概率分别是p 1,p 2,且1p 1,1p 2是关于x 的方程x2-5x +m =0(m ∈R )的两个根,若两人各射击5次,甲射击5次中靶的期望是2.5.则p 1=________.p 2=________. 解析 由题意知甲服从X ~B (5,p 1), ∴E (X )=5p 1=2.5 ∴p 1=12,又∵1p 1+1p 2=5.∴p 2=13.答案 12 1313.若100件零件中包含10件废品,现从中任取两件,已知取出的两件中有废品,则两件都是废品的概率为________.解析 设事件A 为“取出的两件中有废品”,事件B 为“取出的两件都是 废品”,由题意,显然,A ∩B =B , 而P (A )=C 110·C 190+C 210C 2100,P (B )=C 210C 2100,故P (B |A )=P (B )P (A )=C 210C 210+C 110·C 190=121. 答案12114.设l 为平面上过点(0,1)的直线,l 的斜率等可能的取-22,-3,-52,0,52,3,2 2.用ξ表示坐标原点到l 的距离,则随机变量ξ的数学期望E (ξ)=________. 解析 设直线l 的方程为y =kx +1. 则原点到直线l 的距离d =1k 2+1.当k =0时,d =1;当k =±52时,d =23;当k =±3时,d =12;当k =±22时,d =13.所以ξ的分布列为E (ξ)=3×7+2×7+3×7+1×7=7.答案 47三、解答题(本大题共5小题,共54分.解答应写出文字说明、证明过程或演算步骤) 15.(10分)某同学参加科普知识竞赛需回答3个问题,竞赛规则规定:答对第1、2、3个问题分别得100分、100分、200分,答错得零分.假设这名同学答对第1、2、3个问题的概率分别为0.8、0.7、0.6.且各题答对与否相互之间没有影响. (1)求这名同学得300分的概率; (2)求这名同学至少得300分的概率.解 记“这名同学答对第i 个问题”为事件A i (i =1,2,3),则P (A 1)=0.8,P (A 2)=0.7,P (A 3)=0.6.(1)这名同学得300分的概率为:P 1=P (A 1A -2A 3)+P (A -1A 2A 3)=P (A 1)P (A -2)P (A 3)+P (A -1)P (A 2)P (A 3) =0.8×0.3×0.6+0.2×0.7×0.6=0.228. (2)这名同学至少得300分的概率为:P 2=P 1+P (A 1A 2A 3)=P 1+P (A 1)P (A 2)P (A 3)=0.228+0.8×0.7×0.6=0.564.16.(10分)一张储蓄卡的密码共6位数字,每位数字都可从0~9中任选一个.某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求: (1)任意按最后一位数字,不超过2次就按对的概率;(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率.解 设第i 次按对密码为事件A i (i =1,2),则A =A 1∪(A -1A 2)表示不超过2次就按对密码.(1) 因为事件A 1与事件A -1A 2互斥,由概率的加法公式得P (A )=P (A 1)+P (A -1A 2)=110+9×110×9=15. (2)用B 表示最后一位按偶数的事件,则P (A |B )=P (A 1|B )+P (A -1A 2|B )=15+4×15×4=25.17.(10分)(2012·江南十校联考)某仪表厂从供应商处购置元器件20件,双方协商的验货规则是:从中任取3件进行质量检测,若3件中无不合格品,则这批元器件被接受,否则就要重新对这批元器件逐个检查.(1)若该批元器件的不合格率为10%,求需对这批元器件逐个检查的概率;(2)若该批元器件的不合格率为20%,求3件中不合格元器件个数的分布列与期望. 解 记3件元器件中有X 件为不合格品. (1)P =1-P (X =0)=1-C 318C 320=2795;(2)X 的可能取值为:0、1、2、3, P (X =0)=C 316C 320=2857,P (X =1)=C 14C 216C 320=819,P (X =2)=C 24C 116C 320=895,P (X =3)=C 34C 320=1285,∴X 的分布列如下:E (X )=0×57+1×19+2×95+3×285=285=5. 18.(12分)在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似地服从正态分布N (70,100).已知成绩在90分以上(含90分)的学生有12人. (1)试问此次参赛学生的总数约为多少人?(2)若成绩在80分以上(含80分)为优,试问此次竞赛成绩为优的学生约为多少人? 解 (1)设参赛学生的成绩为X ,因为X ~N (70,100),所以μ=70,σ=10. 则P (X ≥90)=P (X ≤50)=12[1-P (50<X <90)]=12[1-P (μ-2σ<X <μ+2σ)]=12×(1-0.954 4)=0.022 8,12÷0.022 8≈526(人).因此,此次参赛学生的总数约为526人. (2)由P (X ≥80)=P (X ≤60)=12[1-P (60<X <80)]=12[1-P (μ-σ<X <μ+σ)]=12×(1-0.682 6) =0.158 7,得526×0.158 7≈83.因此,此次竞赛成绩为优的学生约为83人.19.(12分)(2012·承德高二检测)市环保局举办2011年“六·五”世界环境日宣传活动,进行现场抽奖.抽奖规则是:盒中装有10张大小相同的精美卡片,卡片上分别印有“环保会徽”或“绿色环保标志”图案.参加者每次从盒中抽取卡片两张,若抽到两张都是“绿色环保标志”卡即可获奖.(1)活动开始后,一位参加者问:盒中有几张“绿色环保标志”卡?主持人笑说:我只知道若从盒中抽两张都不是“绿色环保标志”卡的概率是13.求抽奖者获奖的概率;(2)现有甲乙丙丁四人依次抽奖,抽后放回,另一人再抽.用ξ表示获奖的人数.求ξ的分布列及E (ξ),D (ξ).解 (1)设“环保会徽”卡有n 张,由C 2n C 210=13,得n =6.故“绿色环保标志”卡有4张.抽奖者获奖的概率为C 24C 210=215.(2)ξ~B ⎝ ⎛⎭⎪⎫4,215,ξ的分布列为P (ξ=k )=C k 4⎝ ⎛⎭⎪⎫215k·⎝ ⎛⎭⎪⎫13154-k(k =0,1,2,3,4)∴E (ξ)=4×215=815,D (ξ)=4×215×⎝ ⎛⎭⎪⎫1-215=104225.。
【人教A版】高中数学:选修2-3全集模块综合评价(二)

模块综合评价(二)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题意的)1.若A 3m =6C 4m ,则m 的值为( )A .6B .7C .8D .9 解析:由m (m -1)(m -2)=6·m (m -1)(m -2)(m -3)4×3×2×1,解得m =7. 答案:B2.已知随机变量ξ服从正态分布N (3,σ2),则P (ξ<3)等于( ) A.15 B.14 C.13D.12解析:由正态分布的图象知,x =μ=3为该图象的对称轴, 则P (ξ<3)=12.答案:D3.下表是某厂1~4月份用水量(单位:百吨)的一组数据:其线性回归方程是y ^=-0.7x +a ,则a =( )A .10.5B .5.15C .5.2D .5.25解析:— x=2.5,— y=3.5,b ^=0.7,所以a ^=3.5+0.7×2.5=5.25. 答案:D4.(2015·陕西卷)二项式(x +1)n (n ∈N *)的展开式中x 2的系数为15,则n =( )A .4B .5C .6D .7解析:二项式的展开式的通项是T r +1=C r n x r,令r =2,得x 2的系数为C 2n ,所以C 2n=15,即n 2-n -30=0,解得n =-5(舍去)或n =6.答案:C5.已知离散型随机变量X 的分布列如下:由此可以得到期望( ) A .E (X )=1.4,D (X )=0.2 B .E (X )=0.44,D (X )=1.4 C .E (X )=1.4,D (X )=0.44 D .E (X )=0.44,D (X )=0.2 解析:由x +4x +5x =1得x =0.1,E (X )=0×0.1+1×0.4+2×0.5=1.4,D (X )=(0-1.4)2×0.1+(1-1.4)2×0.4+(2-1.4)2×0.5=0.44. 答案:C6.若随机变量X ~B (n ,0.6),且E (X )=3,则P (X =1)的值是( )A .2×0.44B .2×0.45C .3×0.44D .3×0.64解析:因为X ~B (n ,0.6),所以E (X )=np =0.6n =3,所以n =5,所以P (X =1)=C 15×0.61×0.44=3×0.44.答案:C7.设A =37+C 27·35+C 47·33+C 67·3,B =C 17·36+C 37·34+C 57·32+1,则A -B 的值为( )A .128B .129C .47D .0解析:A -B =37-C 17·36+C 27·35-C 37·34+C 47·33-C 57·32+C 67·3-1=(3-1)7=27=128,故选A.答案:A8.有三箱粉笔,每箱中有100盒,其中有一盒是次品,从这三箱粉笔中各抽出一盒,则这三盒中至少有一盒是次品的概率是( )A .0.01×0.992B .0.012×0.99C .C 130.01×0.992D .1-0.993解析:设A =“三盒中至少有一盒是次品”,则— A =“三盒中没有次品”,又P (— A)=0.993,所以P (A )=1-0.993.答案:D9.为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取了60名高中生,通过问卷调查,得到以下数据:以下说法正确的是( )A .没有充足的理由认为课外阅读量大与作文成绩优秀有关B .有0.5%的把握认为课外阅读量大与作文成绩优秀有关C .有99.9%的把握认为课外阅读量大与作文成绩优秀有关D .有99.5%的把握认为课外阅读量大与作文成绩优秀有关 解析:根据临界值表,9.643>7.879,在犯错误的概率不超过0.005的前提下,认为课外阅读量大与作文成绩优秀有关,即有99.5%的把握认为课外阅读量大与作文成绩优秀有关.答案:D10.某商场开展促销抽奖活动,摇奖摇出的一组中奖号码是8,2,5,3,7,1,参加抽奖的每位顾客从0,1,2,…,9这10个号码中任意抽出6个组成一组,如果顾客抽出6个号码中至少有5个与中奖号码相同(不计顺序)就可以得奖,那么得奖的概率为( )A.17B.132C.434D.542解析:设A 表示“至少有5个与摇出的号码相同”,A 1表示“恰有5个与摇出的号码相同”,A 2表示“恰有6个与摇出的号码相同”,得A =A 1+A 2,且A 1,A 2互斥,P (A )=P (A 1)+P (A 2)=C 56·C 14C 610+1C 610=542.答案:D11.在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C 为正态分布N (0,1)的密度曲线)的点的个数的估计值为( )(附:若X ~N (μ,σ2),则P (μ,σ<X ≤μ+σ)=0.682 6,(P (μ-2σ <X ≤μ+2σ)=0.954 4)A .2 386B .2 718C .3 413D .4 772解析:设X 服从标准正态分布N (0,1),则P (0<X =1)=12P (-1<X ≤1)=0.341 3,故所投点落入阴影部分的概率P =S 阴S 正方形=0.341 31=n10 000,得n =3 413. 答案:C12.有10件产品,其中3件是次品,从中任取两件,若X 表示取得次品的个数,则P (X <2)等于( )A.715B.815C.1415D .1 解析:由题意,知X 取0,1,2,X 服从超几何分布,它取每个值的概率都符合等可能事件的概率公式,即P (X =0)=C 27C 210=715,P (X=1)=C 17·C 13C 210=715,P (X =2)=C 23C 210=115,于是P (X <2)=P (X =0)+P (X=1)=715+715=1415.答案:C二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知随机变量ξ的分布列如下表,则x =________.解析:由随机变量概率分布列的性质可知:x 2+x +14=1且0≤x ≤1,解得x =12.答案:1214.一台机器生产某种产品,如果生产出一件甲等品可获利50元,生产出一件乙等品可获利30元,生产出一件次品,要赔20元,已知这台机器生产出甲等品、乙等品和次品的概率分别为0.6,0.3,和0.1,则这台机器每生产一件产品平均预期可获利________元.解析:50×0.6+30×0.3-20×0.1=37(元).答案:3715.小明和小勇在五种课外读物中各自选购两种,则他们两人所选购的课外读物中至少有一种不相同的选法种数为________.解析:小明和小勇都有C 25种选购方法,根据乘法原理,选购方法总数是C 25C 25=100.选购的两本读物都相同的方法数是C 25=10.故所求的选法种数为100-10=90.答案:9016.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程y ^=3-5x ,变量x 增加一个单位时,y 平均增加5个单位;③线性回归方程y ^=b ^x +a ^必过(— x ,— y );④曲线上的点与该点的坐标之间具有相关关系;⑤在一个2×2列联表中,由计算得K 2=13.079,则其两个变量之间有关系的可能性是90%.其中错误的个数是________.解析:由方差的性质知①正确;由线性回归方程的特点知③正确;②④⑤均错误.答案:3三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)两台车床加工同一种机械零件如下表:(1)取得合格品的概率;(2)取得零件是第一台车床加工的合格品的概率.解:(1)记在100个零件中任取一个零件,取得合格品记为A ,因为在100个零件中,有85个为合格品,则P (A )=85100=0.85. (2)从100个零件中任取一个零件是第一台加工的概率为P 1=40100=25,第一台车床加工的合格品的概率为P 2=3540=78, 所以取得零件是第一台车床加工的合格品的概率P =P 1·P 2=25×78=720. 18.(本小题满分12分)已知⎝ ⎛⎭⎪⎫x -2x n展开式中第三项的系数比第二项系数大162,求:(1)n 的值;(2)展开式中含x 3的项.解:(1)因为T 3=C 2n (x )n -2⎝ ⎛⎭⎪⎫-2x 2=4C 2n x n -62, T 2=C 1n (x )n -1⎝ ⎛⎭⎪⎫-2x =-2C 1n x n -32,依题意得4C 2n +2C 1n =162,所以2C 2n +C 1n =81.所以n 2=81,n =9. (2)设第r +1项含x 3项,则T r +1=C r 9(x )9-r ⎝ ⎛⎭⎪⎫-2x r=(-2)r C r 9x 9-3r 2,所以9-3r 2=3,r =1.所以第二项为含x 3的项:T 2=-2C 19x 3=-18x 3.19.(本小题满分12分)一个商场经销某种商品,根据以往资料统计,每位顾客采用的分期付款次数ξ的分布列为:200元;采用2期或3期付款,其利润为250元;采用4期或5期付款,其利润为300元.η表示经销一件该商品的利润.(1)求购买该商品的3位顾客中,恰有2位采用1期付款的概率; (2)求η的分布列及期望E (η).解:(1)因为服从ξ~B (3,0.4),运用概率公式P =C k 3(0.4)k (1-0.4)3-k ,所以P =C 23(0.4)2×(1-0.4)=0.288.(2)因为采用1期付款,其利润为200元;采用2期或3期付款,其利润为250;采用4期或5期付款,其利润为300元,η表示经销一件该商品的利润.所以可以取值为200元,250元,300元.根据表格知识得出:P(η=200)=P(ξ=1)=0.4,P(η=250)=P(ξ=2)+P(ξ=3)=0.2+0.2=0.4,P(η=300)=1-P(η=200)-P(η=250)=1-0.4-0.4=0.2.故η的分布列为:E(η)=200×0.4+250×0.4+300×0.2=240(元).20.(本题满分12分)设甲、乙两家灯泡厂生产的灯泡寿命表1X(单位:小时)和Y的分布列分别如表1和表2所示:解:由期望的定义,得E(X)=900×0.1+1 000×0.8+1 100×0.1=1 000,E(Y)=950×0.3+1 000×0.4+1 050×0.3=1 000.两家灯泡厂生产的灯泡寿命的期望值相等,需进一步考查哪家工厂灯泡的质量比较稳定,即比较其方差.由方差的定义,得D(X)=(900-1 000)2×0.1+(1 000-1 000)2×0.8+(1 100-1 000)2×0.1=2 000,D(Y)=(950-1 000)2×0.3+(1 000-1 000)2×0.4+(1 050-1 000)2×0.3=1 500.因为D(X)>D(Y),所以乙厂生产的灯泡质量比甲厂稳定,即乙厂生产的灯泡质量较好.21.(本小题满分12分)某5名学生的总成绩与数学成绩如下表:(1)(2)求数学成绩对总成绩的回归方程;(3)如果一个学生的总成绩为450分,试预测这个学生的数学成绩.(参考数据:4822+3832+4212+3642+3622=819 794,482×78+383×65+421×71+364×64+362×61=137 760)解:(1)散点图如图所示:(2)设回归方程为≈0.132,a ^=— y -b ^— x ≈3395-0.132×2 0125=14.683 2, 所以回归方程为y ^=0.132x +14.683 2.(3)当x =450时,y ^=0.132×450+14.683 2=74.083 2≈74,即数学成绩大约为74分.22.(本小题满分12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;(2)若要求P(X≤n)≥0.5,确定n的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n=19与n =20之中选其一,应选用哪个?解:(1)由柱形图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2,从而P(X=16)=0.2×0.2=0.04;P(X=17)=2×0.2×0.4=0.16;P(X=18)=2×0.2×0.2+0.4×0.4=0.24;P(X=19)=2×0.2×0.2+2×0.4×0.2=0.24;P(X=20)=2×0.2×0.4+0.2×0.2=0.2;P(X=21)=2×0.2×0.2=0.08;P(X=22)=0.2×0.2=0.04.所以X的分布列为:(2)由(1)知P(X≤18)=0.44,P(X≤19)=0.68,故n的最小值为19.(3)记Y表示2台机器在购买易损零件上所需的费用(单位:元).当n=19时,E(Y)=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040.当n=20时,E(Y)=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080.可知当n=19时所需费用的期望值小于n=20时所需费用的期望值,故应选n=19.。
高中数学模块综合评价(二)新人教A版选修2-3(2021年整理)

2018-2019学年高中数学模块综合评价(二)新人教A版选修2-3 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年高中数学模块综合评价(二)新人教A版选修2-3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年高中数学模块综合评价(二)新人教A版选修2-3的全部内容。
模块综合评价(二)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题意的)1。
如图所示,A,B,C表示3种开关,若在某段时间内它们正常工作的概率分别为0.9,0.8,0.7,那么此系统正常工作的概率为()A.0.504 B.0.994C.0。
496 D.0。
06解析:A、B、C三个开关相互独立,三个中只要至少有一个正常工作即可,由间接法知P =1-(1-0。
9)×(1-0。
8)×(1-0。
7)=1-0.1×0。
2×0。
3=0.994.答案:B2.已知随机变量ξ服从正态分布N(3,σ2),则P(ξ<3)等于( )A.错误!B。
错误!C.错误!D.错误!解析:由正态分布的图象知,x=μ=3为该图象的对称轴,则P(ξ<3)=错误!。
答案:D3.一个坛子里有编号1,2,…,12的12个大小相同的球,其中1到6号球是红球,其余的是黑球,若从中任取两个球,则取到的都是红球,且至少有1个球的编号是偶数的概率为( )A.错误!B。
错误!C。
错误! D.错误!解析:从坛子中取两个红球,且至少有1个球的编号为偶数的取法可以分两类:第一类,两个球的编号均为偶数,有C错误!种取法;第二类,两个球的编号为一奇一偶,有C错误!C错误!种取法,因此所求的概率为错误!=错误!。
高中数学人教A版选修2-3模块综合测评2 Word版含解析

模块综合测评(二)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法有()A.24种B.18种C.12种D.6种【解析】种植黄瓜有3种不同的种法,其余两块地从余下的3种蔬菜中选一种种植有3×2=6种不同种法.由分步乘法计数原理知共有3×6=18种不同的种植方法.故选B.【答案】 B2.已知随机变量X+Y=8,若X~B(10,0.6),则E(Y),D(Y)分别是() 【导学号:97270068】A.6和2.4 B.2和2.4C.2和5.6 D.6和5.6【解析】由已知随机变量X+Y=8,所以有Y=8-X.因此,求得E(Y)=8-E(X)=8-10×0.6=2,D(Y)=(-1)2D(X)=10×0.6×0.4=2.4.【答案】 B3.设随机变量ξ服从正态分布N(2,9),若P(ξ>c)=P(ξ<c-2),则c的值是()A.1 B.2 C.3 D.4【解析】随机变量ξ服从正态分布N(2,9),∴曲线关于x=2对称,∵P(ξ>c)=P(ξ<c-2),∴c +c -22=2,∴c =3.故选C. 【答案】 C4.设A =37+C 27·35+C 47·33+C 67·3,B =C 17·36+C 37·34+C 57·32+1,则A -B 的值为( )A .128B .129C .47D .0【解析】 A -B =37-C 17·36+C 27·35-C 37·34+C 47·33-C 57·32+C 67·3-1=(3-1)7=27=128,故选A.【答案】 A5.若⎝ ⎛⎭⎪⎫x +1x n 展开式的二项式系数之和为64,则展开式的常数项为( )A .10B .20C .30D .120【解析】 ∵C 0n +C 1n +…+C n n =2n=64,∴n =6. T r +1=C r 6x 6-r x -r =C r 6x6-2r ,令6-2r =0,∴r =3, 常数项T 4=C 36=20,故选B. 【答案】 B6.已知某离散型随机变量X 服从的分布列如下,则随机变量X 的数学期望E (X )等于( )A.19B.29C.13D.23【解析】 由题意可知m +2m =1,所以m =13,所以E (X )=0×13+1×23=23. 【答案】 D7.12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的种数是( )A .C 28A 23B .C 28A 66 C .C 28A 26D .C 28A 25【解析】 从后排8人中选2人安排到前排6个位置中的任意两个位置即可,所以选法种数是C 28A 26,故选C.【答案】 C8.一个电路如图1所示,A ,B ,C ,D ,E ,F 为6个开关,其闭合的概率都是12,且是相互独立的,则灯亮的概率是( )图1A.164B.5564C.18D.116【解析】 开关C 断开的概率为12,开关D 断开的概率为12,开关A ,B 至少一个断开的概率为1-12×12=34,开关E ,F 至少一个断开的概率为1-12×12=34,故灯不亮的概率为12×12×34×34=964,故灯亮的概率为1-964=5564,故选B.【答案】 B9.利用下列盈利表中的数据进行决策,应选择的方案是( )自然状况概率 方案盈利(万元)S i P i A 1 A 2 A 3 A 4 S 1 0.25 50 70 -20 98 S 2 0.30 65 26 52 82 S 30.45261678-10A.A 1234【解析】 利用方案A 1,期望为 50×0.25+65×0.30+26×0.45=43.7; 利用方案A 2,期望为70×0.25+26×0.30+16×0.45=32.5;利用方案A 3,期望为-20×0.25+52×0.30+78×0.45=45.7;利用方案A 4,期望为98×0.25+82×0.30-10×0.45=44.6; 因为A 3的期望最大,所以应选择的方案是A 3,故选C. 【答案】 C10.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生2次的概率,则事件A 在一次试验中发生的概率的取值范围是( )A .[0.4,1)B .(0,0.6]C .(0,0.4]D .[0.6,1)【解析】 设事件A 发生一次的概率为p ,则事件A 的概率可以构成二项分布,根据独立重复试验的概率公式可得C 14p (1-p )3≤C 24p 2(1-p )2,即可得4(1-p )≤6p ,p ≥0.4.又0<p <1,故0.4≤p <1.【答案】 A11.有10件产品, 其中3件是次品,从中任取两件,若X 表示取得次品的个数,则P (X <2)等于( )A.715B.815C.1415 D .1【解析】 由题意,知X 取0,1,2,X 服从超几何分布,它取每个值的概率都符合等可能事件的概率公式,即P (X =0)=C 27C 210=715,P (X =1)=C 17·C 13C 210=715,P (X=2)=C 23C 210=115,于是P (X <2)=P (X =0)+P (X =1)=715+715=1415.【答案】 C12.已知0<a <1,方程a |x |=|log a x |的实根个数为n ,且(x +1)n +(x +1)11=a 0+a 1(x +2)+a 2(x +2)2+…+a 10(x +2)10+a 11(x +2)11,则a 1等于( )A .-10B .9C .11D .-12 【解析】作出y=a|x|(0<a<1)与y=|log a x|的大致图象如图所示,所以n=2.故(x+1)n+(x+1)11=(x+2-1)2+(x+2-1)11,所以a1=-2+C1011=-2+11=9.故选B.【答案】 B二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上)13.已知(1-x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则(a0+a2+a4)·(a1+a3+a5)的值等于________.【解析】令x=1,得a0+a1+a2+a3+a4+a5=0,①再令x=-1,得a0-a1+a2-a3+a4-a5=25=32,②①+②得a0+a2+a4=16,①-②得a1+a3+a5=-16,故(a0+a2+a4)·(a1+a3+a5)的值等于-256.【答案】-25614.从1,3,5,7,9这五个数中,每次取出两个不同的数分别为a,b,共可得到lg a-lg b的不同值的个数是________. 【导学号:97270069】【解析】首先从1,3,5,7,9这五个数中任取两个不同的数排列,共A25=20种排法,因为31=93,13=39,所以从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lg a-lg b的不同值的个数是20-2=18.【答案】1815.某市工商局于2016年3月份,对全市流通领域的饮料进行了质量监督抽查,结果显示,某种刚进入市场的X饮料的合格率为80%,现有甲、乙、丙3人聚会,选用6瓶X饮料,并限定每人喝2瓶.则甲喝2瓶合格的X饮料的概率是________.【解析】 “第一瓶X 饮料合格”为事件A 1,“第二瓶X 饮料合格”为事件A 2,P (A 1)=P (A 2)=0.8,A 1与A 2是相互独立事件,则“甲喝2瓶X 饮料”都合格就是事件A 1,A 2同时发生,根据相互独立事件的概率乘法公式得:P (A 1A 2)=P (A 1)·P (A 2)=0.8×0.8=0.64. 【答案】 0.6416.某单位组织4个部门的职工旅游,规定每个部门只能在韶山、衡山、张家界3个景区中任选一个,假设各部门选择每个景区是等可能的.则3个景区都有部门选择的概率是________.【解析】 根据题意,每个部门都有3种情况可选,则4个部门选择3个景区有34=81种不同的选法,记“3个景区都有部门选择”为事件A ,如果3个景区都有部门选择,则某一个景区必须有2个部门选择,其余2个景区各有1个部门选择,分2步分析:(1)从4个部门中任选2个作为1组,另外2个部门各作为1组,共3组,共有C 24=6种分法;(2)每组选择不同的景区,共有A 33=6种选法.所以3个景区都有部门选择可能出现的结果数为6×6=36种.则P (A )=3681=49.【答案】 49三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)(2016·河南周口)在二项式⎝ ⎛⎭⎪⎪⎫x +124x n 的展开式中,前三项的系数成等差数列,求展开式中的有理项和二项式系数最大的项.【解】 ∵二项展开式的前三项的系数分别是1,n 2,18n (n -1),∴2·n 2=1+18n (n -1),解得n =8或n =1(不合题意,舍去), ∴T k +1=C k 8x 8-k 2⎝ ⎛⎭⎪⎪⎫124x k =C k 82-k x 4-34k , 当4-34k ∈Z 时,T k +1为有理项. ∵0≤k ≤8且k ∈Z ,∴k =0,4,8符合要求.故有理项有3项,分别是T 1=x 4,T 5=358x ,T 9=1256x -2. ∵n =8,∴展开式中共9项.中间一项即第5项的二项式系数最大,则为T 5=358x .18.(本小题满分12分)某班从6名班干部中(其中男生4人,女生2人),任选3人参加学校的义务劳动.(1)设所选3人中女生人数为ξ,求ξ的分布列; (2)求男生甲或女生乙被选中的概率;(3)设“男生甲被选中”为事件A ,“女生乙被选中”为事件B ,求P (B )和P (B |A ).【解】 (1)ξ的所有可能取值为0,1,2,依题意,得P (ξ=0)=C 34C 36=15,P (ξ=1)=C 24C 12C 36=35,P (ξ=2)=C 14C 22C 36=15.∴ξ的分布列为(2)设“甲、乙都不被选中”为事件C ,则P (C )=C 34C 36=420=15,∴所求概率为P (C )=1-P (C )=1-15=45.(3)P (B )=C 25C 36=1020=12,P (A )=C 25C 36=12,P (AB )=C 14C 36=15,P (B |A )=P (AB )P (A )=25. 19.(本小题满分12分)从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑i =110x i =80,∑i =110y i=20,∑i =110x i y i =184,∑i =110x 2i =720.(1)求家庭的月储蓄y 对月收入x 的线性回归方程y ^=b ^x +a ^;(2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.附:线性回归方程y ^=b^x +a ^中,b =∑i =1nx i y i -n x y∑i =1nx 2i -n x 2,a^=y -b ^ x ,其中x ,y 为样本平均值.【解】 (1)由题意知n =10,x =1n ∑i =1n x i =8010=8,y =1n ∑i =1n y i =2010=2,又l xx =∑i =1nx 2i -n x 2=720-10×82=80,l xy = i =1nx i y i -n x y =184-10×8×2=24,由此得b^=l xy l xx=2480=0.3,a ^=y -b ^ x =2-0.3×8=-0.4.故所求线性回归方程为y =0.3x -0.4.(2)由于变量y 的值随x 值的增加而增加(b =0.3>0),故x 与y 之间是正相关. (3)将x =7代入回归方程可以预测该家庭的月储蓄为y =0.3×7-0.4=1.7(千元).20.(本小题满分12分)(2015·北京高考)A ,B 两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A 组:10,11,12,13,14,15,16;B 组:12,13,15,16,17,14,a .假设所有病人的康复时间相互独立,从A ,B 两组随机各选1人,A 组选出的人记为甲,B 组选出的人记为乙.(1)求甲的康复时间不少于14天的概率;(2)如果a =25,求甲的康复时间比乙的康复时间长的概率;(3)当a 为何值时,A ,B 两组病人康复时间的方差相等?(结论不要求证明) 【解】 设事件A i 为“甲是A 组的第i 个人”, 事件B i 为“乙是B 组的第i 个人”,i =1,2,…,7. 由题意知P (A i )=P (B i )=17,i =1,2, (7)(1)由题意知,事件“甲的康复时间不少于14天”等价于“甲是A 组的第5人,或者第6人,或者第7人”,所以甲的康复时间不少于14天的概率是P (A 5∪A 6∪A 7)=P (A 5)+P (A 6)+P (A 7)=37.(2)设事件C 为“甲的康复时间比乙的康复时间长”.由题意知C =A 4B 1∪A 5B 1∪A 6B 1∪A 7B 1∪A 5B 2∪A 6B 2∪A 7B 2∪A 7B 3∪A 6B 6∪A 7B 6,因此P (C )=P (A 4B 1)+P (A 5B 1)+P (A 6B 1)+P (A 7B 1)+P (A 5B 2)+P (A 6B 2)+P (A 7B 2)+P (A 7B 3)+P (A 6B 6)+P (A 7B 6)=10P (A 4B 1)=10P (A 4)P (B 1)=1049.(3)a =11或a =18.21.(本小题满分12分)(2016·广州综合测试)甲、乙、丙三人参加某次招聘会,假设甲能被聘用的概率是25,甲、丙两人同时不被聘用的概率是625,乙、丙两人同时被聘用的概率是310,且三人各自能否被聘用相互独立.(1)求乙、丙两人各自能被聘用的概率;(2)设ξ表示甲、乙、丙三人中能被聘用的人数与不能被聘用的人数之差的绝对值,求ξ的分布列与均值(数学期望). 【导学号:97270070】【解】 记甲、乙、丙各自能被聘用的事件分别为A 1,A 2,A 3,由已知A 1,A 2,A 3相互独立,且满足⎩⎪⎨⎪⎧P (A 1)=25,[1-P (A 1)][1-P (A 3)]=625,P (A 2)P (A 3)=310,解得P (A 2)=12,P (A 3)=35.所以乙、丙两人各自能被聘用的概率分别为12,35. (2)ξ的可能取值为1,3.因为P (ξ=3)=P (A 1A 2A 3)+P (A 1 A 2 A 3) =P (A 1)P (A 2)P (A 3)+ [1-P (A 1)][1-P (A 2)][1-P (A 3)] =25×12×35+35×12×25=625,所以P(ξ=1)=1-P(ξ=3)=1-625=19 25,所以ξ的分布列为E(ξ)=1×1925+3×625=3725.22.(本小题满分12分)(2016·辽宁抚顺月考)有甲、乙两个班级进行数学考试,按照大于或等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的2×2列联表.已知从全部210人中随机抽取1人为优秀的概率为2 7.(1)请完成上面的能否认为“成绩与班级有关”;(2)从全部210人中有放回地抽取3次,每次抽取1人,记被抽取的3人中的优秀人数为ξ,若每次抽取的结果是相互独立的,求ξ的分布列及数学期望E(ξ).附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),【解】(1)k≈12.2,所以按照99%的可靠性要求,能够判断成绩与班级有关.(2)ξ~B ⎝ ⎛⎭⎪⎫3,27,且P (ξ=k )=C k 3⎝ ⎛⎭⎪⎫27k ·⎝ ⎛⎭⎪⎫573-k(k =0,1,2,3),ξ的分布列为E (ξ)=0×125343+1×150343+2×60343+3×8343=67.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学章末评估验收(二)(含解析)新人教A 版选修23(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求)1.已知随机变量ξ服从正态分布N (0,σ2),P (ξ>2)=0.023,则P (-2≤ξ≤2)=( )A .0.477B .0.628C .0.954D .0.977解析:因为P (ξ>2)=0.023,所以P (ξ<-2)=0.023,故P (-2≤ξ≤2)=1-P (ξ>2)-P (ξ<-2)=0.954,故选C.答案:C2.荷花池中,有一只青蛙在成品字形的三片荷叶上跳来跳去(每次跳跃时,均从一叶跳到另一叶),而且逆时针方向跳的概率是顺时针方向跑的概率的两倍,如图所示.假设现在青蛙在A 叶上,则跳三次之后停在A 叶上的概率是( )A.13 B.29 C.49D.827解析:青蛙跳三次要回到A 只有两条途径: 第一条:按A →B →C ,P 1=23×23×23=827;第二条,按A →C →B ,P 2=13×13×13=127.所以跳三次之后停在A 叶上的概率为P =P 1+P 2=827+127=13.答案:A3.已知离散型随机变量ξ的概率分布列如下:ξ1 3 5则数学期望E (ξ)等于( A .1 B .0.6 C .2+3m D .2.4解析:由题意得m =1-0.5-0.2=0.3,所以E (ξ)=1×0.5+3×0.3+5×0.2=2.4,故选D.答案:D4.某同学通过计算机测试的概率为13,他连续测试3次,其中恰有1次通过的概率为( )A.49B.29C.427D.227解析:连续测试3次,其中恰有1次通过的概率为P =C 13⎝ ⎛⎭⎪⎫131·⎝ ⎛⎭⎪⎫1-132=49.答案:A5.已知随机变量X 的方差D (X )=m ,设Y =3X +2,则D (Y )=( ) A .9mB .3mC .mD .3m +2解析:因为D (X )=m ,所以D (Y )=D (3X +2)=32D (X )=9D (X )=9m . 答案:A6.若某校研究性学习小组共6人,计划同时参观某科普展,该科普展共有甲、乙、丙三个展厅,6人各自随机地确定参观顺序,在每个展厅参观一小时后去其他展厅,所有展厅参观结束后集合返回,设事件A 为:在参观的第一个小时时间内,甲、乙、丙三个展厅恰好分别有该小组的2个人;事件B 为:在参观的第一个小时时间内,该小组在甲展厅人数恰好为2人.则P (A |B )=( )A.38B.18C.316D.116解析:由题意,A 发生即甲,乙,丙三个展厅恰好分别有该小组的2个人的情况数有C 26C 24C 22=90种;B 发生,共有C 26·24=240,P (A |B )=90240=38.答案:A7.甲、乙、丙三位学生用计算机联网学习数学,每天上课后独立完成6道自我检测题,甲及格的概率为45,乙及格的概率为35,丙及格的概率为710,三人各答一次,则三人中只有一人及格的概率为( )A.320B.42135C.47250D .以上都不对解析:利用相互独立事件同时发生及互斥事件有一个发生的概率公式可得所求概率为45×⎝ ⎛⎭⎪⎫1-35×⎝ ⎛⎭⎪⎫1-710+⎝ ⎛⎭⎪⎫1-45×35×⎝ ⎛⎭⎪⎫1-710+⎝ ⎛⎭⎪⎫1-45×⎝ ⎛⎭⎪⎫1-35×710=47250.答案:C8.若随机变量X 服从正态分布,其正态曲线上的最高点的坐标是⎝ ⎛⎭⎪⎫10,12,则该随机变量的方差等于( )A .10B .100C.2πD.2π解析:由正态分布密度曲线上的最高点⎝ ⎛⎭⎪⎫10,12知12π·σ=12, 所以σ=2π,所以D (X )=σ2=2π.答案:C9.某班有14名学生数学成绩优秀,如果从该班随机找出5名学生,那么其中数学成绩优秀的学生数X ~B ⎝ ⎛⎭⎪⎫5,14,则E (2X +1)等于( )A.54B.52C .3D.72解析:因为X ~B ⎝ ⎛⎭⎪⎫5,14,所以E (X )=54, 则E (2X +1)=2E (X )+1=2×54+1=72.答案:D10.一批型号相同的产品,有2件次品,5件正品,每次抽一件测试,将2件次品全部区分出后停止,假定抽后不放回,则第5次测试后停止的概率是( )A.121B.521C.1021D.2021解析:P =27×56×45×34×13+57×26×45×34×13+57×46×25×34×13+57×46×35×24×13+57×46×35×24×13=521. 答案:B11.已知随机变量ξ服从正态分布N (2,σ2),P (ξ≤4)=0.84,则P (ξ<0)=( ) A .0.16 B .0.32 C .0.68D .0.84解析:因为P (ξ≤4)=0.84,μ=2,所以P (ξ<0)=P (ξ>4)=1-0.84=0.16.故选A.答案:A12.某次国际象棋比赛规定,胜一局得3分,平一局得1分,负一局得0分,某参赛队员比赛一局胜的概率为a ,平局的概率为b ,负的概率为c (a ,b ,c ∈[0,1)),已知他比赛一局得分的数学期望为1,则ab 的最大值为( )A.13B.12C.112D.16解析:由条件知,3a +b =1,所以ab =13(3a )·b ≤13⎝ ⎛⎭⎪⎫3a +b 22=112,等号在3a =b =12,即a =16,b =12时成立.答案:C二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.邮局工作人员整理邮件,从一个信箱中任取一封信,记一封信的质量为X (单位:克),如果P (X <10)=0.3,P (10≤X ≤30)=0.4,那么P (X >30)等于________.解析:根据随机变量的概率分布的性质, 可知P (X <10)+P (10≤X ≤30)+P (X >30)=1, 故P (X >30)=1-0.3-0.4=0.3. 答案:0.314.黔东南州雷山西江千户苗寨,是目前中国乃至全世界最大的苗族聚居村寨,每年来自世界各地的游客络绎不绝.假设每天到西江苗寨的游客人数ξ是服从正态分布N (2 000,10 000)的随机变量.则每天到西江苗寨的游客人数超过2 100的概率为________.解析:因为服从正态分布N (μ,σ2)的随机变量在区间(μ-σ,μ+σ)内取值的概率为0.682 6,随机变量ξ服从正态分布N (2 000,1002),所以每天到西江苗寨的游客人数超过2 100的概率为12×(1-0.682 6)=0.158 7.答案:0.158 715.一盒子中装有4只产品,其中3只一等品,1只二等品,从中取产品两次,每次任取1只,做不放回抽样.设事件A 为“第一次取到的是一等品”,事件B 为“第二次取到的是一等品”,则P (B |A )=________.解析:由条件知,P (A )=34,P (AB )=C 23C 24=12,所以P (B |A )=P (AB )P (A )=23.答案:2316.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于________.解析:此选手恰好回答4个问题就晋级下一轮,说明此选手第2个问题回答错误,第3、第4个问题均回答正确,第1个问题答对答错都可以.因为每个问题的回答结果相互独立,故所求的概率为1×0.2×0.82=0.128.答案:0.128三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)某一射手射击所得环数X 的分布列如下:(1)求m (2)求此射手“射击一次命中的环数≥7”的概率.解:(1)由分布列的性质得m =1-(0.02+0.04+0.06+0.09+0.29+0.22)=0.28. (2)P (射击一次命中的环数≥7)=0.09+0.28+0.29+0.22=0.88.18.(本小题满分12分)(2018·天津卷改编)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(1)应从甲、乙、丙三个部门的员工中分别抽取多少人?(2)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.用X 表示抽取的3人中睡眠不足的员工人数,求随机变量X 的分布列与数学期望.解:(1)由已知,甲、乙、丙三个部门的员工人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7人,因此应从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人.(2)随机变量X 的所有可能取值为0,1,2,3. P (X =k )=C k4·C 3-k3C 37(k =0,1,2,3). 所以,随机变量X 的分布列为:随机变量X 的数学期望E (X )=0×35+1×35+2×35+3×35=7.19.(本小题满分12分)某校从学生会宣传部6名成员(其中男生4人,女生2人)中,任选3人参加某省举办的“我看中国改革开放三十年”演讲比赛活动.(1)设所选3人中女生人数为ξ,求ξ的分布列; (2)求男生甲或女生乙被选中的概率;(3)设“男生甲被选中”为事件A ,“女生乙被选中”为事件B ,求P (B )和P (B |A ). 解:(1)ξ的所有可能取值为0,1,2,依题意得P (ξ=0)=C 34C 36=15,P (ξ=1)=C 24C 12C 36=35,P (ξ=2)=C 14C 22C 36=15.所以ξ的分布列为:(2)则P (C )=C 34C 36=420=15.所以所求概率为P (C )=1-P (C )=1-15=45.(3)P (B )=C 25C 36=1020=12;P (B |A )=C 14C 25=410=25.20.(本小题满分12分)某食品企业一个月内被消费者投诉的次数用ξ表示,据统计,随机变量ξ的分布列如下表:(1)求a 的值和ξ(2)假设一月份与二月份被消费者投诉的次数互不影响,求该企业在这两个月内共被消费者投诉2次的概率.解:(1)由分布列的性质得0.1+0.3+2a +a =1, 解得a =0.2, 所以ξ的分布列为:ξ012 3P 0.10.30.40.2所以E(ξ)=0×0.1+(2)设事件A表示“两个月内共被投诉2次”;事件A1表示“两个月内有一个月被投诉2次,另一个月被投诉0次”;事件A2表示“两个月均被投诉1次”.则由事件的独立性得P(A1)=C12P(ξ=2)P(ξ=0)=2×0.4×0.1=0.08,P(A2)=[P(ξ=1)]2=0.32=0.09.所以P(A)=P(A1)+P(A2)=0.08+0.09=0.17.故该企业在这两个月内共被消费者投诉2次的概率为0.17.21.(本小题满分12分)甲、乙两射击运动员进行射击比赛,射击相同的次数,已知两运动员射击的环数X稳定在7,8,9,10环.他们的这次成绩画成频率分布直方图分别如图1和图2所示:(1)根据这次比赛的成绩频率分布直方图推断乙击中8环的概率P(X乙=8),并求甲、乙同时击中9环以上(包括9环)的概率;(2)根据这次比赛的成绩估计甲、乙谁的水平更高.解:(1)由題图2可知:P(X乙=7)=0.2,P(X乙=9)=0.2,P(X乙=10)=0.35.所以P(X乙=8)=1-0.2-0.2-0.35=0.25.同理P(X甲=7)=0.2,P(X甲=8)=0.15,P(X甲=9)=0.3.所以P(X甲=10)=1-0.2-0.15-0.3=0.35.因为P(X甲≥9)=0.3+0.35=0.65,P(X乙≥9)=0.2+0.35=0.55.。