高中数学教材选修2-3知识点
高中排列组合知识点 高二数学选修2-3排列组合易错知识点总结
《高中排列组合知识点高二数学选修2-3排列组合易错知识点总结》摘要:()()()(+)!()!(规定0!),()()!!(()!!);()();,()(+);!()!(!是阶乘);(两分别上标和下标)!;0!;(下标上标)排列组合是高二数学选修3教学重要容了助高二学生掌握排列组合容下面编给带高二数学选修3排列组合易错知识希望对你有助高二数学排列组合错知识排列组合问题依据是分类相加分步相乘有序排列无序组合排列组合问题规律是相邻问题捆绑法;不邻问题插空法;多排问题单排法;定位问题优先法;定序问题倍缩法;多元问题分类法;有序分配问题法;选取问题先排排法;至多至少问题接法二项式系数与展开式某项系数易混r+项二项式系数二项式系数项与展开式系数项易混二项式系数项项或两项;展开式系数项法要用不等式组确定r3你掌握了三种常见概率公式吗?(①等可能事件概率公式;②斥事件有发生概率公式;③相独立事件发生概率公式)分布列答题你能把步骤写全吗?5如何对总体分布进行估计?(用样估计总体是研究统计问题基思想方法般地样容量越这种估计就越精确要能画出频率分布表和频率分布直方图;理频率分布直方图矩形面积几何义)6你还记得般正态总体如何化标准正态总体吗?(对任正态总体说取值x概率其表示标准正态总体取值概率)高二数学选修3知识排列及计算公式从不元素任取()元素按照定顺序排成列叫做从不元素取出元素排列;从不元素取出()元素所有排列数叫做从不元素取出元素排列数用()表示()()()(+)!()!(规定0!)组合及计算公式从不元素任取()元素并成组叫做从不元素取出元素组合;从不元素取出()元素所有组合数叫做从不元素取出元素组合数用()表示()()!!(()!!);()();3其他排列与组合公式从元素取出r元素循环排列数(r)r!r(r)!元素被分成k类每类数分别是k这元素全排列数!(!!k!)k类元素每类数无限从取出元素组合数(+k)排列((下标上标))()(+);!()!(!是阶乘);(两分别上标和下标)!;0!;(下标上标)组合((下标上标));!!()!;(两分别上标和下标);(下标上标);公式是指排列从元素取R进行排列公式是指组合从元素取R不进行排列元素总数R参与选择元素数!阶乘如9!987653从倒数r表达式应该()()(r+);因从到(r+)数(r+)r高二数学学习方法()记数学笔记特别是对概念理不侧面和数学规律教师课堂拓展课外知识记录下你觉得有价值思想方法或例题以及你还存问题以便今将其补上()建立数学纠错把平容易出现错误知识或推理记下以防再犯争取做到错、析错、改错、防错达到能从反面入手深入理正确东西;能由朔因把错误原因弄水落石出、以便对症下药;答问题完整、推理严密(3)熟记些数学规律和数学结论使己平运算技能达到了动化或半动化熟练程()常对知识结构进行梳理形成板块结构实行整体集装如表格化使知识结构目了然;常对习题进行类化由例到类由类到多类由多类到统;使几类问题归纳知识方法(5)数学课外籍与报刊参加数学学科课外活动与讲座多做数学课外题加学力拓展己知识面(6)及复习强化对基概念知识体系理与记忆进行适当反复巩固消灭前学忘(7)学会从多角、多层次地进行总结归类如①从数学思想分类②从题方法归类③从知识应用上分类等使所学知识系统化、条理化、专题化、络化(8)常做题进行定反思思考下题所用基础知识数学思想方法是什么什么要这样想是否还有别想法和法题分析方法与法其它问题是否也用到(9)无论是作业还是测验都应把准确性放位通法放位而不是味地追速或技巧这是学数学重要问题猜你感兴趣高二数学排列与组合知识总结高二数学选修知识总结3高二上学期数学复习知识归纳高二数学排列组合题技巧5高二上数学知识总结607高二数学排列组合公式知识总结。
人教版高中数学选修2-3知识点汇总
人教版高中数学必修2-3知识点第一章计数原理1.1分类加法计数与分步乘法计数分类加法计数原理:完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法。
分类要做到“不重不漏”。
分步乘法计数原理:完成一件事需要两个步骤。
做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法。
分步要做到“步骤完整”。
n元集合A={a1,a2⋯,a n}的不同子集有2n个。
1.2排列与组合1.2.1排列一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列(arrangement)。
从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,用符号表示。
排列数公式:n个元素的全排列数规定:0!=11.2.2组合一般地,从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合(combination)。
从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号或表示。
组合数公式:∴规定:组合数的性质:(“构建组合意义”——“殊途同归”)1.3二项式定理1.3.1二项式定理(binomial theorem)*注意二项展开式某一项的系数与这一项的二项式系数是两个不同的概念。
1.3.2“杨辉三角”与二项式系数的性质*表现形式的变化有时能帮助我们发现某些规律!(1)对称性(2)当n 是偶数时,共有奇数项,中间的一项取得最大值;当n 是奇数时,共有偶数项,中间的两项,同时取得最大值。
(3)各二项式系数的和为(4)二项式展开式中,奇数项二项式系数之和等于偶数项二项式系数之和:(5)一般地,第二章随机变量及其分布2.1离散型随机变量及其分布(n ∈N *)其中各项的系数(k ∈{0,1,2,⋯,n})叫做二项式系数(binomial coefficient);2.1.1离散型随机变量随着试验结果变化而变化的变量称为随机变量(random variable)。
高中数学选修2-3知识点汇编
高中数学必修2知识点第3章 直线与方程 (1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0°≤α<180° (2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k 表示。
即tan k α=。
斜率反映直线与轴的倾斜程度。
当[)90,0∈α时,0≥k ; 当()180,90∈α时,0<k ; 当90=α时,k 不存在。
②过两点的直线的斜率公式:)(211212x x x x y y k ≠--=注意下面四点:(1)当21x x =时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)直线方程①点斜式:)(11x x k y y -=-直线斜率k ,且过点()11,y x 注意:当直线的斜率为0°时,k=0,直线的方程是y =y 1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x 1,所以它的方程是x =x 1。
②斜截式:b kx y +=,直线斜率为k ,直线在y 轴上的截距为b③两点式:112121y y x x y y x x --=--(1212,x x y y ≠≠)直线两点()11,y x ,()22,y x④截矩式:1x y a b+= 其中直线l 与x 轴交于点(,0)a ,与y 轴交于点(0,)b ,即l 与x 轴、y 轴的截距分别为,a b 。
⑤一般式:0=++C By Ax (A ,B 不全为0)注意:○1各式的适用范围 ○2特殊的方程如:平行于x 轴的直线:b y =(b 为常数); 平行于y 轴的直线:a x =(a 为常数); (5)直线系方程:即具有某一共同性质的直线 (一)平行直线系平行于已知直线0000=++C y B x A (00,B A 是不全为0的常数)的直线系:000=++C y B x A (C 为常数)(二)过定点的直线系 (ⅰ)斜率为k 的直线系:()00x x k y y -=-,直线过定点()00,y x ;(ⅱ)过两条直线0:1111=++C y B x A l ,0:2222=++C y B x A l 的交点的直线系方程为()()0222111=+++++C y B x A C y B x A λ(λ为参数),其中直线2l 不在直线系中。
人教版高中数学知识点总结:新课标人教A版高中数学选修2-3知识点总结
高中数学必修1知识点总结第一章 集合与函数概念 【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集交集A B{|,x x A ∈且}x B ∈(1)A A A = (2)A ∅=∅ (3)AB A ⊆ A B B ⊆ BA并集A B{|,x x A ∈或}x B ∈(1)A A A = (2)A A ∅= (3)A B A ⊇ AB B ⊇BA补集U A{|,}x x U x A ∈∉且1()U A A =∅ 2()U A A U =【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集||(0)x a a <> {|}x a x a -<< ||(0)x a a >>|x x a <-或}x a >||,||(0)ax b c ax b c c +<+>>把ax b+看成一个整体,化成||x a<,||(0)x a a >>型不等式来求解(2)一元二次不等式的解法判别式24b ac ∆=-0∆> 0∆= 0∆<二次函数2(0)y ax bx c a =++>的图象O一元二次方程20(0)ax bx c a ++=>的根21,242b b ac x a-±-=(其中12)x x <122b x x a==-无实根20(0)ax bx c a ++>>的解集1{|x x x <或2}x x >{|x }2b x a≠-R20(0)ax bx c a ++<>的解集12{|}x x x x <<∅ ∅()()()U U U A B A B =()()()UU U A B A B =〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a xa xb x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法: ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值. ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题. ⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f)叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法yxo 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)yxox x 2f(x )f(x )211(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减) (4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数. ③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()ug x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、(0,]a 上为减函数.(3)最大(小)值定义 ①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M≤;(2)存在0x I ∈,使得0()f x M=.那么,我们称M 是函数()f x 的最大值,记作max ()f x M=.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法函数的 性 质定义图象判定方法 函数的 奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函..数..(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y 轴对称) ②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象. ①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章 基本初等函数(Ⅰ) 〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1nx a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n n a表示;当n是偶数时,正数a的正的n n次方根用符号表示;0的n次方根是0;负数a 没有n次方根.n叫做根指数,a叫做被开方数.当n为奇数时,a为任意实数;当n为偶数时,0a≥.③根式的性质:n a=;当n a=;当n为偶数时,(0)||(0)a aaa a≥⎧==⎨-<⎩.(2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,mna a m n N+=>∈且1)n>.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:1()0,,,m mn na a m n Na-+==>∈且1)n>.0的负分数指数幂没有意义.注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)r s r sa a a a r s R+⋅=>∈②()(0,,)r s rsa a a r s R=>∈③()(0,0,)r r rab a b a b r R=>>∈【2.1.2】指数函数及其性质(4)指数函数〖2.2〗对数函数 【2.2.1】对数与对数运算(1)对数的定义 ①若(0,1)xaN a a =>≠且,则x 叫做以a 为底N 的对数,记作log a xN =,其中a 叫做底数,N叫做真数.②负数和零没有对数. ③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…).(4)对数的运算性质 如果0,1,0,0aa M N >≠>>,那么①加法:log log log ()aa a M N MN += ②减法:log log log a a aMM N N-=③数乘:log log ()n aa n M M n R =∈ ④log a N a N =⑤loglog (0,)bn a anM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a =>≠且【2.2.2】对数函数及其性质(5)对数函数过定点 图象过定点(1,0),即当1x =时,0y =.奇偶性 非奇非偶单调性在(0,)+∞上是增函数在(0,)+∞上是减函数函数值的 变化情况log 0(1)log 0(1)log 0(01)a a a x x x x x x >>==<<<log 0(1)log 0(1)log 0(01)a a a x x x x x x <>==><<a 变化对 图象的影响在第一象限内,a 越大图象越靠低;在第四象限内,a 越大图象越靠高.(6)反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()xf y -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质 ①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义 一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限. ②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). ③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当q pα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x =是奇函数,若p 为奇数q 为偶数时,则q py x =是偶函数,若p 为偶数q 为奇数时,则qpy x =是非奇非偶函数. ⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x=上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式 ①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a --.②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a -+∞上递增,当2bx a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2b a-+∞上递减,当2bx a =-时,2max 4()4ac b f x a -=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x轴有两个交点11221212(,0),(,0),||||||M x M x M M x x a =-=. (4)一元二次方程20(0)axbx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布. 设一元二次方程20(0)axbx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a =-③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔②x 1≤x 2<k ⇔③x1<k <x 2 ⇔ af (k )<0④k 1<x 1≤x 2<k 2 ⇔⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出. (5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a>时(开口向上)①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a=- ③若2bq a ->,则()m f q =02a )q ()f p)M = ②若q ≤ ③若2b q a ->,则()M f q =xxxx0x x(q)0x①若02b x a -≤,则()m f q = ②02b x a->,则()m f p =.第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。
高中数学选修2-3知识点
高中数学选修2-3知识点高中数学选修2-3知识点第一章:计数原理1.分类加法计数原理:完成一件事情,有N类方法,第一类方法有M1种不同的方法,第二类方法有M2种不同的方法,以此类推,第N类方法有MN种不同的方法。
那么完成这件事情共有M1+M2+。
+MN种不同的方法。
2.分步乘法计数原理:完成一件事情需要分成N个步骤,第一步有m1种不同的方法,第二步有M2种不同的方法,以此类推,第N步有MN种不同的方法。
那么完成这件事情共有XXX种不同的方法。
3.排列:从n个不同的元素中任取m(m≤n)个元素,按照一定顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
4.排列数:从n个不同元素中取出m(m≤n)个元素排成一列,称为从n个不同元素中取出m个元素的m个排列。
从n个不同元素中取出m个元素的一个排列数,用符号An表示。
An=m!/(n-m)!(m≤n,n,m∈N)。
5.公式:A(n+m)=An+Am*m!(m≤n,n,m∈N);An=m*(m-1)*。
*(n-m+1)=n!/(n-m)。
6.组合:从n个不同的元素中任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合。
7.公式:C(m,n)=C(n,n-m)=m!/[(n-m)!*m!];C(m,n)=C(n-1,m-1)+C(n-1,m);C(n,m)=C(n-1,m-1)*(n-m+1)/m。
8.二项式定理:(a+b)^n=C(n,0)*a^n*b^0+C(n,1)*a^(n-1)*b^1+。
+C(n,n)*a^0*b^n。
9.二项式通项公式展开式的通项公式:T=C(n,r)*a^(n-r)*b^r (r=0,1.n),其中C(n,r)为二项式系数。
10.二项式系数Cn:C(n,r)=C(n,n-r)=n!/(r!(n-r)!),其中r为从n个元素中取出的元素个数。
11.杨辉三角:杨辉三角是一种数学图形,由二项式系数构成,XXX的数为C(n,0),C(n,1)。
高中数学选修2-3知识点总结[1]
第一章(直打版)高中数学选修2-3知识点总结(word版可编辑修改)第二章第三章第四章编辑整理:第五章第六章第七章第八章第九章尊敬的读者朋友们:第十章这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)高中数学选修2-3知识点总结(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
第十一章本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)高中数学选修2-3知识点总结(word版可编辑修改)的全部内容。
第十二章第十三章 计数原理1、分类加法计数原理:做一件事情,完成它有N 类办法,在第一类办法中有M 1种不同的方法,在第二类办法中有M 2种不同的方法,……,在第N 类办法中有M N 种不同的方法,那么完成这件事情共有M 1+M 2+……+M N 种不同的方法。
2、分步乘法计数原理:做一件事,完成它需要分成N 个步骤,做第一 步有m1种不同的方法,做第二步有M 2不同的方法,……,做第N 步有M N 不同的方法。
那么完成这件事共有 N=M 1M 2。
M N 种不同的方法。
3、排列:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列4、排列数: ),,()!(!)1()1(N m n n m m n n m n n n A m∈≤-=+--= 5、组合:从n 个不同的元素中任取m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.6、组合数:)!(!!!)1()1(m n m n C m m n n n A A C m n mm m n mn-=+--== )!(!!!)1()1(m n m n C m m n n n A A C m n m m m n m n -=+--==;mn n m n C C -=mn m n m n C C C 11+-=+7、二项式定理:()a b C a C a b C a b C a b C b n n n n n n n n r n r r n n n+=++++++---011222…… 8、二项式通项公式展开式的通项公式:,……T C a b r n r n r n r r+-==101() 9.二项式系数的性质:()n a b +展开式的二项式系数是0n C ,1n C ,2n C ,…,n n C .r n C 可以看成以r 为自变量的函数()f r ,定义域是{0,1,2,,}n ,(1)对称性.与首末两端“等距离”的两个二项式系数相等(∵m n m n n C C -=). (2)增减性与最大值:当n 是偶数时,中间一项2n nC 取得最大值;当n 是奇数时,中间两项12n nC-,12n nC+取得最大值.(3)各二项式系数和:∵1(1)1n r rn n n x C x C x x +=+++++,令1x =,则0122n rnn nn n n C C C C C =++++++第二章 随机变量及其分布 知识点:(3)随机变量:如果随机试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化,那么这样的变量叫做随机变量. 随机变量常用大写字母X 、Y 等或希腊字母 ξ、η等表示。
最新人教版高中数学选修2-3《离散型随机变量的均值与方差》教材梳理
庖丁巧解牛知识·巧学一、离散型随机变量的均值 若离散型随机变量X 的分布列为X x 1 x 2 … x i … x n P p 1 p 2 … p i … p n 则称EX=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望.随机变量的均值反映的是离散型随机变量的平均取值水平.由定义可知,离散型随机变量的均值与它本身有相同的单位.知识拓展 上述问题推广到一般有:假设随机试验进行了n次,根据X 的分布列,在n次试验中,有p 1n 次出现了x 1,p 2n 次出现了x 2,…,p n n 次出现了x n ,在n次试验中,X 出现的总次数为p 1nx 1+p 2nx 2+…+p n nx n .因此n次试验中,X 出现的平均值=nnx p nx p nx p nn i +++ 221=EX ,即EX=p 1x 1+p 2x 2+…+p n x n .辨析比较 随机变量的均值与样本的平均值的关系:随机变量的均值是一个常数,它不依赖于样本的抽取,而样本平均值是一个随机变量,它随样本抽取的不同而变化.对于简单随机抽样,随着样本容量的增加,样本平均值越来越接近于总体的均值. 二、随机变量函数的数学期望对随机变量X ,若Y=aX +b,其中a,b是常数,则Y 是随机变量,且有E(aX+b)=aEX+b.对上述公式,特别地:(1)当a=0时,E (b )=b ,即常数的数学期望就是这个常数本身;(2)当a=1时,E (X +b )=EX +b ,即随机变量X 与常数之和的期望等于X 的期望与这个常数的和; (3)当b=0时,E(aX)=aEX ,即常数与随机变量乘积的期望等于这个常数与随机变量期望的乘积.三、常见的离散型随机变量的均值1.两点分布:若X 服从两点分布,则EX=p.事实上,假设在一次试验中某事件发生的概率为p ,X 是一次试验中此事件发生的次数,令q=1-p ,则有P (X=0)=q ,P (X=1)=p ,可得: EX=0×q +1×p=p.2.二项分布:若随机变量X 服从二项分布,即X —B (n,p ),则EX=np.在一次试验中该事件平均发生p次,我们可以猜想,在n 次独立重复试验中,该事件平均发生np次,也就是若X —B(n,p),则Eξ=np.这就是X 的二项分布的期望的特点. 四、离散型随机变量的方差设离散型随机变量X 的分布列为X x 1 x 2 … x i … x n P p 1 p 2 … p i … p n 则(x i -EX )2描述了x i (i=1,2,…,n)相对于均值EX 的偏离程度,而DX=∑=-ni iEX x12)(p i为这些偏离程度的加权平均,刻画了随机变量X 与其均值EX 的平均偏离程度.我们称DX 为随机变量X 的方差.其算术平方根DX 为随机变量X 的标准差,记作σX.随机变量X 的方差与标准差都反映了随机变量ξ取值的稳定与波动、集中与离散的程度.DX 越小,稳定性越高,波动越小.显然DX≥0,校准差与随机变量本身有相同单位. 辨析比较 随机变量的方差即为总体方差,它是一个常数,不随着抽样样本而客观存在;样本方差则是随机变量,它是随样本不同而变化的.对于简单随机样本,随着样本容易的增加,样本方差越来越接近于总体方差.联想发散 方差是随机变量另一个重要的数字特征,它表现了随机变量所取的值相对于它的均值的集中与离散的程度,因此二者的关系是十分密切的.由方差的定义DX=∑=-ni iEX x12)(p i 可知,计算方差DX 必须先求均值EX ,并且由此定义进一步可得到公式DX=EX 2-(EX)2. 随机变量函数的方差当a ,b 均为常数时,随机变量函数η=aξ+b 的方差D(η)=D(aξ+b)=a 2Dξ. 特别地:(1)当a=0时,D (b )=0,即常数的方差等于0;(2)当a=1时,D(ξ+b)=Dξ,即随机变量与常数之积的方差等于这个随机变量的方差本身; (3)当b=0时,D(aξ)=a 2Dξ,即随机变量与常数之积的方差,等于这常数的平方与这个随机变量方差的乘积.五、两点分布及二项分布的方差1.两点分布:若X 服从两点分布,则DX=p(1-p).证明:由于X 服从两点分布,即P(X=0)=1-p,P(X=1)=p , ∴EX=p,EX 2=0×(1-p)+1×p=p, ∴DX=EX 2-(EX)2=p-p 2=p(1-p).2.二项分布:若X —B(n,p),则DX=np(1-p).证明:由X —B(n,p),令q=1-p,则P(x=i)=i n X p i q n-i,∴EX 2=∑=-ni in i qp i22=∑∑∑==--=-=+-ni ni in iin ini i i qip qp i i 0)1()1(+EX=n(n-1)p2)2()2(2222-+--=--∑n n i ni i n qpC+EX=n(n-1)p2∑-=-22n j i n Cp j q (n-2)-j +EX=n(n-1)p 2(p+q)n-2+EX=n(n-1)p 2+EX=n(n-1)p 2+np. ∴DX=EX 2-(EX)2=n(n-1)p 2+np-np 2=np-np 2=np(1-p). 故DX=np(1-p). 问题·探究问题1 如果X —B(n,p),你能求出x 的均值吗?思路:如果X —B(n,p),则有P(x=k)=k n C p k(1-p)n-k ,由均值定义有EX=∑=nk k kn p kC0(1-p)n-k ,又由组合数性质有k k n C =n 11--k n C .EX=∑=--nk k n npC111(1-p)n-1-(k-1)=k n k nk k n p p Cnp--=--∑111)1(=np.探究:均值这一概率是建立在分布列的基础之上的,分布列中随机变量X 的一切可能值x i 与对应的概率P (ξ=x i )的乘积的和就是随机变量X 的均值.离散型随机变量的分布列和均值虽然都是从整体和全局上刻画随机变量的,但二者大有不同,分布列只给出了随机变量取所有可能值的概率,而均值却反映了随机变量取值的平均水平. 问题2 移动公司在某地区共有客户3 000人,若该地区的办事处准备了100份小礼品,邀请客户在指定时间来领取.假设任一客户去领奖的概率为4%.问该办事处能否向每一位客户都发出领奖邀请?若能使每一位领奖人都得到礼品,办事处至少应准备多少份礼品?思路:可能来多少人,是一个随机变量,由于每人是否去领奖,相互间是独立的,因而随机变量服从二项分布,用数学期望来反映平均领奖人数,即能说明是否可行.探究:如问题2,我们可以设来领奖的人数为一个随机变量ξ=k(k=0,1,2,…,3 000),所以P(ξ=k )=kC 3000(0.04)k (1-0.04)3 000-k ,则可以得出ξ—(3 000,0.04),那么Eξ=3 000×0.04=120(人)>100(人).所以办事处不能向每一位客户都发出领奖邀请.若能使每一位领奖人都得到礼品,办事处至少应准备120份礼品. 典题·热题例1某份英语竞赛试题共有100道选择题,每题有4个选项,只有一个答案正确.选对得1分,否则得0分.学生甲会其中的20题,学生乙会其中的80题,不会的均随机选择.求甲、乙在这次竞赛中得分的期望.思路分析: 数学期望反映了随机变量取值的平均水平,要求数学期望首先要得到分布列,由题意可知,本题为二项分布问题.解:设甲和乙不会的题的得分分别为随机变量X 和Y ,由题意知X —B(80,0.25),Y —B(20,0.25),∴EX=80×0.25=20,EY=20×0.25=5.故甲、乙在这次竞赛中得分的期望分别为40分和85分. 拓展延伸设15 000件产品中有1 000件次品,从中抽取150件进行检查,则查得次品数的数学期望为( )A.15B.10C.20D.5 思路分析:次品率为P=151150001000 ,且该题服从二项分布,由公式,得EX=nP=150×151=10.故选B. 答案:B方法归纳 通常情况下,在n次独立重复试验中事件发生的次数X 服从二项分布,直接代入公式即可求得期望.例2(2005湖南高考)某城市有甲、乙、丙3个旅游景点,一位客人游览这三个景点的概率分别是0.4,0.5,0.6,且客人是否游览哪个景点互不影响,设ξ表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值. (1)求ξ的分布及数学期望;(2)记“函数f(x)=x 2-3ξx +1在区间[2,+∞)上单调递增”为事件A ,求事件A 的概率. 思路分析: (1)写出ξ的可能取值,利用相互独立事件的概率公式求出P (ξ=k )(k=1,3),写出ξ的分布列,求出Eξ.(2)利用二次函数的单调性求解. 解:(1)分别记“客人游览甲景点”“客人游览乙景点”“客人游览丙景点”.为事件A 1,A 2,A 3.由已知A 1,A 2,A 3相互独立,P (A 1)=0.4,P (A 2)=0.5,P (A 3)=0.6. 客人游览的景点数的可能取值为0,1,2,3.相应地,客人没有游览的景点数的可能取值为3,2,1,0,所以ξ的可能取值为1,3.P (ξ=3)=P (A 1·A 2·A 3)+P (321A A A ∙∙)=P (A 1)P (A 2)P (A 3)+P (1A )P (2A )P (3A )=2×0.4×0.5×0.6=0.24, P (ξ=1)=1-0.24=0.76. 所以ξ的分布列为Ξ 1 3 P0.76 0.24Eξ=1×0.76+3×0.24=1.48. (2)解法一:因为f(x)=(x-23ξ)2+1-49ξ2, 所以函数f(x)=x 2-3ξx+1在区间[23ξ,+∞)上单调递增,要使f(x)在[2,+∞)上单调递增,当且仅当23ξ≤2,即ξ≤34.从而P(A)=P(ξ≤34)=P(ξ=1)=0.76.解法二:ξ的可能取值为1,3.当ξ=1时,函数f(x)=x 2-3x+1在区间[2,+∞)上单调递增, 当ξ=3时,函数f(x)=x 2-9x+1在区间[2,+∞)上不单调递增. 所以P(A)=P(ξ=1)=0.76.深化升华 本题主要考查离散型随机变量分布列、数学期望和事件的概率等问题.一般解法是先由题意求出分布列,再由随机变量的数学期望公式代入求解即可.这一知识点应是未来高考中的一个热点.例3(2005全国高考)9粒种子分种在3个坑内,每坑3粒,每粒种子发芽的概率为0.5,若一个坑内至少有1粒种子发芽,则这个坑不需要补种,若一个坑里的种子都没发芽,则这个坑需要补种,假定每个坑至多补种一次,每补种1个坑需10元,用ξ表示补种费用,写出ξ的分布列并求ξ的数学期望.(精确到0.01)思路分析: 首先要求出单个坑不需要补种的概率,然后三个坑认为是三次独立重复试验,然后利用公式求解.解:因为甲坑内的3粒种子都不发芽的概率为(1-0.5)3=81, 所以甲坑不需要补种的概率为1-8781=. 3个坑都不需要补种的概率3003)87()81(⨯⨯C =0.670;恰有1个坑需要补种的概率为213)87(81⨯⨯C =0.287;恰有2个坑需要补种的概率为87)81(223⨯⨯C 8=0.041;3个坑都需要补种的概率为0333)87()81(⨯⨯C =0.002.补种费用ξ的分布列为Ξ 0 10 20 30 P 0.670 0.287 0.041 0.002ξ的数学期望为Eξ=0×0.670+10×0.287+20×0.041+30×0.002=3.75.方法归纳 本题主要考查计算随机事件发生概率的能力,包括互斥事件有一个发生的概率的计算方法,考查随机变量、数学期望等知识以及利用概率知识解决实际问题的能力.本题解决的关键有两点:一是单坑是否需要补种的概率;二是独立重复试验.首先,一个坑内的3粒种子是否发芽是独立重复试验,据此可得到单坑需要补种的概率;然后,3个坑是否需要补种也是独立重复试验,据此可得需要补种的坑的数目的分布列.例4交5元钱,可以参加一次摸奖,一袋中有完全相同的球10个,其中有8个标有1元钱,2个标有5元钱,摸奖者只能从中任取2个球,他所得奖励是所抽2球的钱数之和.求抽奖人获利的数学期望.思路分析: 抽到的2个球上的钱数之和ξ是个随机变量,其中每一个ξ取值时所代表的随机事件的概率值是容易获得的,本题的目标是求参加摸奖的人获利η的数学期望.由ξ与η的关系η=ξ-5,利用公式Eη=Eξ-5可得.解:设ξ为抽到的2个球上的钱数之和,则ξ的取值如下: ξ=2(抽到2个1元),ξ=6(抽到1个1元,1个5元),ξ=10(抽到2个5元).所以,由题意:P(ξ=2)=452821028=C C ,P(ξ=6)=45162101218=C C C , P(ξ=10)=45121022=C C ,Eξ=2×4516245110451664528=⨯+⨯+,又设η为抽奖者获利可能值,则η=ξ-5. 所以抽奖者获利的期望为:Eη=Eξ-5=57545162-=-=-1.4. 误区警示 要分清是谁获利,不能忽视了条件是先交5元钱才能参加这一抽奖.因此,不能只计算Eξ,最终Eη的结果出现负值,说明摸奖者若重复这种抽奖,平均每摸一次要亏1.4元.例5甲、乙两名工人加工同一种零件,两人每天加工的零件数相等,所得次品数分别为ξ,η,ξ和η的分布列如下:Ξ 0 1 2P106101 103η 012P105 103 102 试对这两名工人的技术水平进行比较.思路分析:一是要比较两名工人在加工零件数相等的条件下出次品数的平均值,即期望;二是要看出次品数的波动情况,即方差的大小.解:工人甲生产出次品数ξ的期望和方差分别为: Eξ=0×106+1×101+2×103=0.7,Dξ=(0-0.7)2×106+(1-0.7)2×101+(2-0.7)2×103=0.81; 工人乙生产出次品数ξ的期望和方差分别为:Eξ=0×105+1×103+2×102=0.7; Dξ=(0-0.7)2×105+(1-0.7)2×103+(2-0.7)2×102=0.61.由Eξ=Eη知,两人出次品的平均数相同,技术水平相当,但Dξ>Dη,可见乙的技术比较稳定.深化升华 均值仅体现了随机变量取值的平均大小,但有时仅知道均值的大小还不够.如果两个随机变量的均值相等,还要看随机变量的取值如何在均值周围变化,即计算方差.方差大说明随机变量取值较分散,方差小说明取值比较集中与稳定.即不要误认为均值相等时,水平就一样好,还要看一下相对于均值的偏离程度,也就是看哪一个相对稳定.例6设一次试验的成功率为p,进行100次独立重复试验,求当p为何值时,成功次数的标准差的值最大,并求最大值.思路分析: 解决本题的关键就是根据题目所给出的条件,找出几个变量之间的关系. 解:设成功次数为随机变量ξ,由题意可知ξ—B(100,p). 那么σξ=)1(100p p D -=ξ, 即Dξ=100p(1-p)=100p-100p 2.把上式看作一个以p为自变量的一元二次函数,易知当p=21时,Dξ有最大值为25.所以最大ξD 值为5. 故当21时,成功次数的标准差的最大值为5. 方法归纳 对求离散型随机变量的均值与方差的综合问题,首先应仔细地分析题意,当概率分布是一些熟知的类型(如两点分布、二项分布等)时,应全面地分析各个随机变量所包含的各种事件,并准确判断各事件的相互关系,再由此求出各随机变量相应的概率.本例中正是利用二项分布快速地得到方差,从而建立了关于p的目标函数,进而求其最值. 此级HS5的大图若接排前加,若另面则不加。
高中数学选修2-2-2-3知识点
高中数学选修2----2知识点第一章 导数及其应用 知识点:一.导数概念的引入1. 导数的物理意义:瞬时速率。
一般的,函数()y f x =在0x x =处的瞬时变化率是000()()lim x f x x f x x∆→+∆-∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =', 即0()f x '=000()()limx f x x f x x∆→+∆-∆2. 导数的几何意义:曲线的切线.通过图像,我们可以看出当点n P 趋近于P 时,直线PT 与曲线相切。
容易知道,割线n PP 的斜率是00()()n n n f x f x k x x -=-,当点n P 趋近于P 时,函数()y f x =在0x x =处的导数就是切线PT 的斜率k ,即000()()lim()n x n f x f x k f x x x ∆→-'==-3. '4.导函数:当x 变化时,()f x '便是x 的一个函数,我们称它为()f x 的导函数. ()y f x =的导函数有时也记作y ',即0()()()limx f x x f x f x x∆→+∆-'=∆考点:无 知识点:二.导数的计算1)基本初等函数的导数公式:1若()f x c =(c 为常数),则()0f x '=;2 若()f x x α=,则1()f x x αα-'=;3 若()sin f x x =,则()cos f x x '=,4 若()cos f x x =,则()sin f x x '=-;5 若()xf x a =,则()ln xf x a a '=6 若()x f x e =,则()xf x e '=7 若()log xa f x =,则1()ln f x x a '=8 若()ln f x x =,则1()f x x'=2)导数的运算法则1. [()()]()()f x g x f x g x '''±=±2. [()()]()()()()f x g x f x g x f x g x '''•=•+•<3. 2()()()()()[]()[()]f x f x g x f x g x g x g x ''•-•'=3)复合函数求导()y f u =和()u g x =,称则y 可以表示成为x 的函数,即(())y f g x =为一个复合函数 (())()y f g x g x '''=•考点:导数的求导及运算★1、已知()22sin f x x x π=+-,则()'0f =★2、若()sin x f x e x =,则()'f x =★3.)(x f =ax 3+3x 2+2 ,4)1(=-'f ,则a=( )~319.316.313.310.D C B A ★★4.过抛物线y=x 2上的点M )41,21(的切线的倾斜角是() ° ° ° ° ★★5.如果曲线2932y x =+与32y x =-在0x x =处的切线互相垂直,则0x =三.导数在研究函数中的应用知识点:1.函数的单调性与导数:一般的,函数的单调性与其导数的正负有如下关系:!在某个区间(,)a b内,如果()0f x'>,那么函数()y f x=在这个区间单调递增;如果()0f x'<,那么函数()y f x=在这个区间单调递减.2.函数的极值与导数极值反映的是函数在某一点附近的大小情况.求函数()y f x=的极值的方法是:(1)如果在x附近的左侧()0f x'>,右侧()0f x'<,那么()f x是极大值;(2)如果在x附近的左侧()0f x'<,右侧()0f x'>,那么()f x是极小值;4.函数的最大(小)值与导数`函数极大值与最大值之间的关系.求函数()y f x=在[,]a b上的最大值与最小值的步骤(1)求函数()y f x=在(,)a b内的极值;(2)将函数()y f x=的各极值与端点处的函数值()f a,()f b比较,其中最大的是一个最大值,最小的是最小值.四.生活中的优化问题利用导数的知识,,求函数的最大(小)值,从而解决实际问题考点:1、导数在切线方程中的应用2、导数在单调性中的应用<3、导数在极值、最值中的应用4、导数在恒成立问题中的应用一、题型一:导数在切线方程中的运用★1.曲线3xy=在P点处的切线斜率为k,若k=3,则P点为()A.(-2,-8)B.(-1,-1)或(1,1)C.(2,8)D.(-21,-81)★2.曲线53123+-=xxy,过其上横坐标为1的点作曲线的切线,则切线的倾斜角为()A.6πB.4πC.3πD.π43*二、题型二:导数在单调性中的运用★1.(05广东卷)函数32()31f x x x=-+是减函数的区间为( )A.(2,)+∞ B.(,2)-∞ C.(,0)-∞ D.(0,2)★2.关于函数762)(23+-=xxxf,下列说法不正确的是()A.在区间(∞-,0)内,)(xf为增函数B.在区间(0,2)内,)(xf为减函数C.在区间(2,∞+)内,)(xf为增函数D.在区间(∞-,0)),2(+∞⋃内,)(xf为增函数★★3.(05江西)已知函数()y xf x'=的图象如右图所示(其中'()f x是函数()f x的导函数),下面四个图象中()y f x=的图象大致是()(★★★4、(2010年山东21)(本小题满分12分)已知函数).(111)(Raxaaxnxxf∈--+-={(Ⅰ)当处的切线方程;在点时,求曲线))2(,2()(1fxfya=-=(Ⅱ)当12a≤时,讨论()f x的单调性.A B C D三、导数在最值、极值中的运用:★1.(05全国卷Ⅰ)函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =( ) A .2B. 3C. 4★2.函数5123223+--=x x x y 在[0,3]上的最大值与最小值分别是( ) , - 15 , 4 4 , - 15 , - 16★★★3.(根据04年天津卷文21改编)已知函数)0()(3≠++=a d cx ax x f 是R 上的奇函数,当1=x 时)(x f 取得极值-2.、(1)试求a 、c 、d 的值;(2)求)(x f 的单调区间和极大值;★★★4.(根据山东2008年文21改编)设函数2312)(bx ax e x x f x ++=-,已知12=-=x x 和为)(x f 的极值点。
高中数学选修2-3知识点清单-精编
(4) 二项式展开式中,奇数项二项式系数之和等于偶数项二项式系数之和: Cn0 + Cn2 + Cn4 + ⋯ = Cn1 + Cn3 + Cn5 + ⋯
(5) 一般地,
Crr + Crr+1 + Crr+2 + ⋯ + Cnr−1 = Cnr+1 (n > ������)
第二章 随机变量及其分布
一般地,设 A,B 为两个事件,且 P(A)>0,称 P(AB)
P(B|A) = P(A) 为在事件 A 发生的条件下,事件 B 发生的条件概率(conditional probability)。 如果 B 和 C 是两个互斥事件,则
P(B ∪ C|A) = P(B|A) + P(C|A)
2.2.2 事件的相互独立性
一般地,在相同条件下重复做的 n 次试验称为 n 次独立重复试验(independent and repeated trials)。
P(A1A2 ⋯ An) = P(A1)P(A2) ⋯ P(An) 其中 Ai (i=1,2,⋯,n)是第 i 次试验的结果。
一般地,在 n 次独立重复试验中,用 X 表示事件 A 发生的次数,设每次试验 中事件 A 发生的概率为 p,则
X
x1
x2
⋯
xi
⋯
xn
P
p1
p2
⋯
pi
⋯
pn
也可用等式表示:
P(X = xi) = pi ,i = 1,2, ⋯ ,n
根据概率的性质,离散型随机变量的分布列具有如下性质: (1) pi≥0,i=1,2,⋯,n; (2) ∑ni=1 pi = 1
高中数学选修2-3知识点总结
高中数学选修2-3知识点总结Mathematics Elective 2-3 Chapter 1 Counting Principles Must-Know1.What is the principle of n n counting?Answer: To do something。
there are n ways to complete it。
In the first way。
there are m1 different methods。
in the second way。
there are m2 different methods。
in the nth way。
there are mn different methods。
Then there are N=m1+m2+。
+mn different ways to XXX.2.What is the principle of step-by-step n counting?Answer: To do something。
it requires n steps。
There are m1 different methods for the first step。
m2 different methods for the second step。
and mn different methods for the nth step。
Then there are N=m1×m2×。
×mn different ways to XXX.3.What is the n of n?Answer: Generally。
taking m (m≤n) different elements from n different elements。
XXX order。
is called a n of taking m elements from n different XXX.4.What is the n of n?Answer: Generally。
最新人教版高中数学选修2-3《正态分布》教材梳理
庖丁巧解牛知识·巧学一、正态曲线与正态分布曲线1.正态曲线如果随机变量X 的概率密度函数为φu ,σ(x)=222)(21σπσu x e --,x ∈(-∞,+∞)其中实数u 和σ(σ>0)为参数.我们称φu ,σ(x)的图象为正态分布密度曲线,简称正态曲线.要点提示 高尔顿板试验中,当试验次数越多,也就是放入小球的个数越多,实验就越接近正态曲线.2.正态分布一般地,如果对于任何实数a<b ,随机变量X 满足P(a<X≤b)=⎰ba dx x )(,σμϕ,则称X 的分布为正态分布.正态分布完全由参数μ和σ确定,因此正态分布常记作N(μ,σ2).如果随机变量X 服从正态分布,则记为X —N(μ,σ2).参数μ是反映随机变量取值的平均水平的特征数,可以用样本均值去估计;σ是衡量随机变量总体波动大小的特征数,可以用样本标准差去估计.把μ=0,σ=1的正态分布叫做标准正态分布.方法归纳 一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.热点聚焦 正态分布是客观存在的规律,高尔顿板试验只不过是验证了这一规律而已.在现实生活中,很多随机变量都服从或近似地服从正态分布.例如长度测量误差;某一地区同年龄人群的身高、体重、肺活量等;一定条件下生长的小麦株高、穗长、单位面积产量等;正常生产条 件下各种产品的质量指标(如零件的尺寸、纤维的纤度、电容器的电容量、电子管的使用寿命等);某地每年七月份的平均气温、平均湿度、降雨量等,一般都服从正态分布.所以,正态分布广泛存在于自然现象、生产和生活实际之中.3.正态曲线的特点(1)曲线位于x轴上方,与x轴不相交;(2)曲线是单峰的.它关于直线x=μ对称;(3)曲线在x=μ处达到峰值πσ21;(4)曲线与x轴之间的面积为1;(5)当σ一定时,曲线随着μ的变化而沿x轴平移;(6)当μ一定时,曲线的形状由σ确定.σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散.特点(1):说明函数的值域为正实数集的子集,且以x轴为渐近线;特点(2):是曲线的对称性,关于直线x=μ对称;特点(3):说明函数x=μ时取得最大值;特点(4):说明正态变量在(-∞,+∞)内取值的概率为1;特点(5):说明当均值一定时,σ变化时总体分布的集中、离散程度.知识拓展 若标准正态分布N (0,1)总体取值小于x 0的概率用φ(x 0)表示,即φ(x 0)=P(x<x 0),则φ(x 0)+φ(-x 0)=1;对一般正态总体N (μ,σ2)来说,可通过线性代换y=σμ-x 转化为标准正态总体N (0,1).二、3σ原则1.正态分布在区间(μ-a,μ+a ]上的概率若X —N (μ,σ2),则对于任何实数a>0,概率P(μ-a<X≤μ+a)=⎰+-αμαμσμϕdx x )(,为直线x=μ-a,x=μ+a 与正态曲线和x轴所围成的图形的面积.对于固定的μ和a 而言,该面积随着σ的减少而变大.这说明σ越小,X 落在区间(μ-a,μ+a ]的概率越大,即X 集中在μ周围的概率越大.上述规律是通过正态曲线的形象直观地得到的,也就是通过定性分析得到的,事实上我们也可以利用定量计算得到,即通过对定积分⎰+-αμαμσμϕdx x )(,计算得到. 深化升华 几个特殊结论:P(μ-a<X≤μ+a)=0.682 6,P(μ-2a<X≤μ+2a)=0.954 4,P(μ-3a<X≤μ+3a)=0.997 4.2.3σ原则由于正态总体几乎总取值于区间(μ-3a,μ+3a)之内,而在此区间以外的取值的概率只有0.002 6,通常认为这种情况在一次试验中几乎不可能发生.在实际应用中,通常认为服从于正态分布N(μ,σ2)的随机变量X 只取(μ-3a,μ+3a)之间的值,并简称之为3σ原则.深化升华 从理论上可以证明,正态变量在(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)内,取值的概率分别约是68.3%,95.4%,99.7%.由于正态变量在(-∞,+∞)内取值的概率是1,容易得出,它在(μ-3σ,μ+3σ)之外取值的概率是0.3%.于是正态变量的取值几乎都在距x=μ三倍的标准差之内,这就是正态分布的3σ原则.问题·探究问题 1 在高尔顿板试验中,小球第一次与高尔顿板的底部接触时的坐标X 服从正态分布吗?思路:一个随机变量如果是众多的,互不相干的,不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.在高尔顿板试验中,小球到达底部的坐标X 是众多随机碰撞的结果,所以它近似服从正态分布.探究:判断一个变量是不是服从正态分布,就是看是否为随机变量,并且是否符合正态分布的定义及条件.尽管我们是利用高尔顿板试验近似地得到正态曲线,进而得到正态分布.但正态分布是客观存在的规律,这一试验只是验证了这一问题.而且当试验的次数越多,也就是放入的小于的个数越多,试验就越接近正态曲线.问题2 某厂生产的圆柱形零件的外直径X 服从正态分布N(4,0.52),质检人员从该厂生产的1 000件零件中随机抽查一件,测得它的外直径为5.7 cm,试求该厂生产的这批零件是否合格?思路:由X 服从正态分布N(4,0.52),由正态分布性质可知,正态分布N(4,0.52),在(4-3×0.5,4+3×0.5)之外的取值概率只有0.03,而5.7 (2.5,5.5).这说明在一次试验中,出现了几乎不可能发生的小概率事件,据此认为这批零件不合格.探究:解决此类问题可以用假设检验的思想方法来解决,其基本步骤可分为三步.一是提出统计假设,统计假设里的变量服从正态分布N (μ,σ2);二是确定一次试验中的取值σ是否落入范围(μ-3σ,μ+3σ);三是作出判断,如果a ∈(μ-3σ,μ+3σ),则接受统计假设,如果a (μ-3σ,μ+3σ)则拒绝统计假设.要注意小概率事件原理是假设检验的基础.运用小概率事件原理时须注意:这里的“几乎不可能发生”是针对“一次试验”来说的;运用“小概率事件原理”进行推断时,我们也有5%的犯错误的可能.典题·热题例1设ξ服从标准正态分布,则(1)P(ξ<1.8)=___________;(2)P(-1<ξ<1.5)=___________;(3)P(ξ>-1.5)=___________;(4)P(|ξ|<2)=___________.思路分析: 由标准正态分布的性质直接代入求解:(1)P(ξ<1.8)=φ(1.8)=0.964 1;(2)P(-1<ξ<1.5)=φ(1.5)-φ(-1)=0.993 2-1+φ(1)=0.993 2-1+0.841 3=0.774 5;(3)P(ξ>-1.5)=1-P(ξ≤-1.5)=1-φ(-1.5)=φ(1.5)=0.993 2;(4)P(|ξ|<2)=φ(2)-φ(-2)=2φ(2)-1=2×0.977 2-1=0.954 4.答案:(1)0.964 1 (2)0.774 5 (3)0.993 2 (4)0.954 4.方法归纳 利用公式φ(x)=1-φ(-x)及标准正态分布的几何意义(即其概率为相应的曲边多边形的面积),是将求服从正态分布的随机变量的概率转化为求φ(x 0)的值的关键,进而通过查标准正态分布表即可求出相关的概率.同样,利用公式P (X<x )=φ(σμ-x )可将非标准正态分布问题转化为标准正态分布问题,应熟练掌握.例2假设某省今年高考考生成绩ξ服从正态分布N(500,1002).现有考生25 000名,计划招生10 000名,试估计录取分数线.思路分析: 这是一个实际问题,通过数学建模可知,其本质就是一个“正态分布下求随机变量在某一范围内取值的概率”问题.解:设分数线为μ,那么分数超过μ的概率应为录取率,即P(ξ≥μ)=2500010000=0.4, 因为ξ—N(500,1002),所以P(ξ≥μ)=P(100500100500-≥-μξ=1-p(100500100500-<-μξ) =1-φ(100500-μ). 于是有φ(100500-μ)=1-P(ξ≥μ)=1-0.4=0.6. 从标准正态分布表中查得φ(0.25)=0.598 7≈0.6,故φ(100500-μ)≈0.6, 即μ≈525.由此可以估计录取分数线为525分.方法归纳 本题关键是由录取人数(计划招生人数)与考生总数之比求得录取率(即超过录取分数线的概率),从而成功地建立数学模型.例3正态总体N (0,1)的概率密度函数是f(x)=2221x e -π,x ∈R .(1)求证:f(x)是偶函数;(2)求f(x)的最大值;(3)利用指数函数的性质说明f(x)的增减性.思路分析: 对给出的标准正态分布的概率密度函数,可以利用函数的相关知识来研究它的相关性质.解:(1)对于任意的x ∈R ,f(-x)=2)(221x e --π=2221x e -πf(x).所以f(x)是偶函数;(2)令z=22x ,当x=0时,z=0,e x =1, ∵e x 是关于z的增函数,当x≠0时,z>0,e x >1,∴当x=0,即z=0时,22x e =e x 取得最小值,当x=0时,f(x)=2221x e -π取得最大值π21(3)任取x 1<0,x 2<0,且x 1<x 2,有x 12>x 22, ∴2222212221,2x x e e x x x --<-<- 所以2222212121x x e e --<ππ,即f(x 1)<f(x 2).这表明当x<0时,f(x)是递增的.同理可得,对于任取的x 1>0,x 2>0,且x 1<x 2,有f (x 1)>f(x 2),即当x>0时,f(x)是递减的.拓展延伸 已知正态总体的数据落在区间(-3,-1)里的概率和落在区间(3,5)里的概率相等,那么这个正态总体的数学期望为______________.思路分析: 正态总体的数据落在这两个区间的概率相等,说明在这两个区间上位于正态曲线正方的面积相等,另外,因为区间(-3,-1)和区间(3,5)的长度相等,说明正态曲线在这两个区间上是对称的,我们需要找出对称轴.由于正态曲线关于直线x=μ对称, μ的概率意义是期望,我们也就找到了正态分布的数学期望了.因为区间(-3,-1)和区间(3,5)关于x=1对称,所以正态分布的数学期望是1.答案:1深化升华 通过例题的解决总结标准正态分步的概率密度函数的一些性质并注意应用. 例4已知某车间正常生产某种零件的尺寸满足正态分布N(27.45,0.052),质量检验员随机抽查了10个零件,测量得到他们的尺寸如下:27.327.49 27.55 27.23 27.40 27.46 27.38 27.58 27.54 27.68,请你根据正态分布的3σ原则,帮助质量检验员确定哪些应该判定为非正常状态下生产的.思路分析: 正态变量的取值几乎都在距x=μ三倍标准之内,所以对落在区间(27.45-3×0.05,27.45+3×0.05)之外的零件尺寸做出拒绝接受零件是正常状态下生产的假说.解:有两个零件不符合落在区间(27.45-3×0.05,27.453×0.05)内,尺寸为27.23和尺寸27.68的两个零件,它们就是在非正常状态下生产的.深化升华 本例是统计中假设检验的一个实例,依据的准则是正态总体N(μ,σ2)在区间(μ-3σ,μ+3σ)之外取值的概率很小(大约只有0.3%),所以几乎不可能发生.此级HS5的大图若接排前加,若另面则不加。
高中数学选修2-3(人教B版)第二章随机变量及其分布2.2知识点总结含..
描述:例题:高中数学选修2-3(人教B版)知识点总结含同步练习题及答案第二章 随机变量及其分布 2.2 条件概率与事件的独立性一、学习任务1. 了解条件概率的定义及计算公式,并会利用条件概率解决一些简单的实际问题.2. 能通过实例理解相互独立事件的定义及概率乘法公式,并能综合利用互斥事件的概率加法公式及独立事件的概率乘法公式.3. 理解独立重复试验的概率及意义,理解事件在 次独立重复试验中恰好发生 次的概率公式,并能利用 次独立重复试验的模型模拟 次独立重复试验.二、知识清单事件的独立性与条件概率独立重复试验与二项分布三、知识讲解1.事件的独立性与条件概率条件概率的概念一般地,设 ,为两个事件,且 ,称为在事件 发生的条件下,事件 发生的条件概率(conditional probability).读作 发生的条件下 发生的概率.条件概率的性质①条件概率具有概率的性质,任何事件的条件概率都在 和 之间,即.②如果 和 是两个互斥事件,则相互独立事件的概念设 ,为两个事件,若 ,则称事件 与事件 相互独立(mutually independent).相互独立事件同时发生的概率:如果事件 ,,, 相互独立,那么这 个事件同时发生的概率等于每个事件发生概率的积,即n k n n A B P (A )>0P (B |A )=P (AB )P (A )A B P (B |A )A B 0 1 0≤P (B|A)≤1 B CP (B ∪C |A )=P (B |A )+P (C |A ).A B P (AB )=P (A )P (B )A B A 1A 2⋯A n n P (⋯)=P ()P ()⋯P ().A 1A 2A n A 1A 2A n 甲、乙两地都位于长江下游,根据一百多年气象记录,知道甲、乙两地一年中雨天占的比例分别20%18%12%为 和 ,两地同时下雨的比例为 ,问:(1)乙地为雨天时甲地也为雨天的概率是多少?(2)甲地为雨天时乙地也为雨天的概率是多少?解:设“甲地为雨天”, “ 乙地为雨天”,则根据题意有(1)乙地为雨天时甲地也为雨天的概率(2)甲地为雨天时乙地也为雨天的概率是20%18%12%A =B =P (A )=0.20,P (B )=0.18,P (AB )=0.12.P (A |B )==≈0.67.P (AB )P (B )0.120.18P (B |A )===0.60.P (AB )P (A )0.120.20如图,四边形 是以 为圆心,半径 的圆内接正方形,将一颗豆子随机地扔到该圆内,用 表示事件“豆子落在正方形 内”, 表示事件“豆子落在扇形 (阴影部分)内”,则(1)______;(2)______.解:;圆 的面积是,正方形 的面积是 ,扇形 的面积是 ,由几何概型概率公式得 ,由条件概率公式得EFGH O 1A EFGH B OHE P (A )=P (B |A )=2π14O πEF GH 2OHE π4P (A )=2πP (B |A)===.P (AB )P (A)12π2π14掷一枚正方体骰子一次,设事件 :“出现偶数点”,事件 :“出现 点或 点”,则事件 , 的关系是( )A.互斥但不相互独立 B.相互独立但不互斥 C.互斥且相互独立 D.既不相互独立也不互斥解:B事件 ,事件 ,事件 ,基本事件空间 .所以,,,即 ,因此,事件 与 相互独立.当“出现 点”,事件 , 同时发生,所以 , 不是互斥事件.A B 36A B A ={2,4,6}B ={3,6}AB ={6}Ω={1,2,3,4,5,6}P (A )==3612P (B )==2613P (AB )==×161213P (AB )=P (A )P (B )A B 6A B A B 甲、乙两人在罚球线投球命中的概率分别为与 .(1)甲、乙两人在罚球线各投球一次,求恰好命中一次的概率;(2)甲、乙两人在罚球线各投球二次,求这四次投球均不命中的概率.解:记“甲投一次命中”为事件 ,“乙投一次命中”为事件 ,则 ,1225A B P (A )=12213,,.(1)恰好命中一次的概率为(2)设事件“甲、乙两人在罚球线各投球二次均不命中”的概率为 ,则2P (B )=25P ()=A ¯¯¯12P ()=B ¯¯¯35P =P (A ⋅)+P (⋅B )B ¯¯¯A ¯¯¯=P (A )⋅P ()+P ()⋅P (B )B ¯¯¯A ¯¯¯=×+×12351225=.12P 1P 1=P (∩∩∩)A ¯¯¯A ¯¯¯B ¯¯¯B ¯¯¯=P ()⋅P ()⋅P ()⋅P ()A ¯¯¯A ¯¯¯B ¯¯¯B ¯¯¯=(1−(1−12)225)2=9100在一个选拔项目中,每个选手都需要进行 轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则被淘汰.已知某选手能正确回答第一、二、三、四轮问题的概率分别为,,,,且各轮问题能否正确回答互不影响.(1)求该选手进入第三轮才被淘汰的概率;(2)求该选手至多进入第三轮考核的概率;解:设事件 ( ,,, )表示“该选手能正确回答第 轮问题”,由已知得,,,.(1)设事件 表示“该选手进入第三轮才被淘汰”,则(2)设事件 表示“该选手至多进入第三轮考核”,则456453413A i i =1234i P ()=A 156P ()=A 245P ()=A 334P ()=A 413B P (B )=P ()A 1A 2A ¯¯¯3=P ()P ()P ()A 1A 2A ¯¯¯3=××(1−)564534=.16C P (C )=P (++)A ¯¯¯1A 1A ¯¯¯2A 1A 2A ¯¯¯3=P ()+P ()+P ()A ¯¯¯1A 1A ¯¯¯2A 1A 2A ¯¯¯3=+×+××(1−)165615564534=.12描述:例题:2.独立重复试验与二项分布独立重复试验一般地,在相同条件下重复做的 次试验,称为次独立重复试验(independent andrepeated trials).二项分布一般地,在 次独立重复试验中,用表示事件发生的次数,设每次试验中事件发生的概率为,则此时称随机变量服从二项分布(binnomial distribution),记作 ),并称为成功概率.n n n X A A p P (X =k )=(1−p ,k=0,1,2,⋯,n .C kn pk )n −k X X ∼B (n ,p ) p 下列随机变量 的分布列不属于二项分布的是( )A.投掷一枚均匀的骰子 次, 表示点数 出现的次数B.某射手射中目标的概率为 ,设每次射击是相互独立的, 为从开始射击到击中目标所需要的射击次数C.实力相等的甲、乙两选手举行了 局乒乓球比赛, 表示甲获胜的次数D.某星期内,每次下载某网站数据后被病毒感染的概率为 , 表示下载 次数据后电脑被病毒感染的次数解:B选项 A,试验出现的结果只有两个:点数为 和点数不为 ,且点数为 的概率在每一次试验都为 ,每一次试验都是独立的,故随机变量 服从二项分布;选项 B,,故随机变量 不服从二项分布;选项 C,甲、乙的获胜率都相等,举行 次比赛,相当于进行了 次独立重复试验,故 服从二项分布;选项 D,由二项分布的定义可知,被感染次数 .X 5X 6p X 5X 0.3X n 66616X P (X =1)=p ,P (X =2)=(1−p )p ,P (X =k )=(1−p p )(k −1)X 55X X ∼B (n ,0.3)口袋中有 个白色乒乓球, 个黄色乒乓球,从中选取 次,每次取 个后又放回,则 次中恰有 次取到白球的概率是( )A. B. C. D . 解:D任意取球 次,取得白球 次的概率是5551531235C 35C 510⋅C 350.5553P (X =3)=(1−0.5=⋅C 350.53)5−3C 350.55甲、乙两名同学进行三分球投篮比赛,甲每次投中的概率为 ,乙每次投中的概率为 ,每人分别进行三次投篮.(1)设甲投中的次数为 ,求 的分布列;(2)求乙至多投中 次的概率;(3)求乙恰好比甲多投中 次的概率.1312ξξ221四、课后作业 (查看更多本章节同步练习题,请到快乐学)解:(1), 的可能取值为 ,,,. 的分布列为:(2)设“乙至多投中 次”为事件 ,则(3)设“乙比甲多投中 次”为事件 ,“乙恰投中 次且甲恰投中 次”为事件,“乙恰投中 次且甲恰投中 次”为事件 ,则 ,, 为互斥事件,则所以乙恰好比甲多投中 次的概率为.ξ∼B (3,)13ξ0123P(ξ=0)=(=,C 0323)3827P (ξ=1)=()(=,C 131323)249P (ξ=2)=(()=,C 2313)22329P (ξ=3)=(=.C 3313)3127ξξP082714922931272A P (A )=1−(=.C 3312)3782A 120B 131B 2=∪A 1B 1B 2B 1B 2P (A )=P ()+P ()=×+×=.B 1B 282738491816216答案:解析:1. 某一批花生种子,如果每 粒发芽的概率为 ,那么播下 粒种子恰有 粒发芽的概率是 A .B .C .D .B 概率为 .14542()1662596625192625256625=C 24()452(1−)45296625答案:2. 某地区空气质量监测资料表明,一天的空气质量为优良的概率是 ,连续两天为优良的概率是,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是 A .B .C .D .A0.750.6()0.80.750.60.453. 某厂生产电子元件,其产品的次品率为 ,现从一批产品中任意地连续取出 件,其中次品数 的5%2ξ高考不提分,赔付1万元,关注快乐学了解详情。
高三数学选修2-3_解排列组合问题的四大原则
解排列组合问题的四大原则排列、组合是高中数学的重要内容,新教材中概率与统计的增加更突出了排列、组合的重要性.高考对排列组合的考查以两个基本原理——分类加法计数原理和分步乘法计数原理为出发点,侧重检测解题思想和解题技巧,因而对解题策略和思维模式的培养和提炼是平时训练的核心.下面通过具体的例题来解析排列组合问题的解题策略之“四大原则”.一、特殊优先原则该原则是指在有限制的排列组合问题中优先考虑特殊元素或特殊位置. 例1 (2003年北京市西城区一模题(文))甲、乙、丙三个同学在课余时间负责一个计算机房的周一至周六的值班工作,每天1人值班,每人值班2天,如果甲同学不值周一的班,则可以排出不同的值班表有( )A .90种B .89种C .60种D .59种解析:特殊元素优先考虑,甲同学不值周一的班,则先考虑甲,分步完成:①从除周一的5天中任取2天安排甲有25C 种;②从剩下的4天中选2天安排乙有24C 种;③仅剩2天安排丙有22C 种.由分步乘法计数原理可得一共有22254260C C C =··种,即选C .评注:特殊优先原则是解有限制的排列组合问题的总原则,对有限制的元素和有限制的位置一定要优先考虑.二、先取后排原则该原则充分体现了m m m n m n C A A =·的精神实质,先组合后排列,从而避免了不必要的重复与遗漏.例2 (2004年高考全国卷Ⅲ)将4名教师分配到3所中学任教,每所中学至少1名教师,则不同的分配方案共有( ).A .12种B .24种C .36种D .48种解析:先分组再排列:将4名教师分成3组有24C 种分法,再将这三组分配到三所学校有33A 种分法,由分步乘法计数原理知一共有234336C A =·种不同分配方案.评注:先取后排原则也是解排列组合问题的总原则,尤其是排列与组合的综合问题.若本例简单分步:先从4名教师中取3名教师分给3所学校有34A 种方法,再将剩下的1名教师分给3所学校有3种选择,则共有34372A =·种分配方案,则有明显重复(如:甲、乙、丙、丁和甲、乙、丁、丙).因此,处理多元素少位置问题时一般采用先取后排原则.三、正难则反原则若从正面直接解决问题有困难时,则考虑事件的对立事件,从不合题意要求的情况入手,再整体排除.例3 (2004年北京市春招卷)在100件产品中有6件次品,现从中任取3件产品,至少取到1件次品的不同取法的种数是( )A .12694C CB .12699C C C .3310094C C -D .3310094A C -解析:从100件次品中取3件产品,至少有1件次品的对立事件是取到3件全部是正品,即从94件正品中取3件正品有394C 种取法,所以满足条件的不同取法是3310094C C -,故选C .如果从正面考虑,则必须分取到1,2,3件次品这三类,没有应用排除法来得简单.而本例最易迷惑人的是B :12699C C ,即从6件次品中取1件确保了至少有1件次品,再从剩下的99件产品中任取2件即可.事实上这样分步并不相互独立,第一步对第二步有明显影响,设次品为ABCDEF ,正品为甲乙丙丁戊…则12699C C 可以是AB甲,也可能是BA甲,因而重复. 评注:正难则反原则也是解决排列组合问题的总原则,如果从正面考虑不易突破,一般寻找反面途径.利用正难则反原则的语境有其规律,如当问题中含有“至少”,“最多”等词语时,易用此原则.四、策略针对原则不同类型的排列、组合问题有着不同的应对策略,不同的限制条件要采用不同的解题方法.1.相邻问题捆绑法(整体法),相隔问题插空法例4 (2004年高考重庆卷(理))某校高三年级举行一次演讲比赛,共有10位同学参赛,其中一班有3位,二班有2位,其他班有5位.若采用抽签的方式确定他们的演讲顺序,则一班的3位同学恰好被安排到一起(演讲序号相连),而2班的2位同学没有被排在一起的概率为( )A .110B .120C .140D .1120解析:10人的全排列数是1010A ,即所有的演讲顺序有1010A 种.符合要求的演讲顺序有两个限制:一班的3位同学相邻,而2班的2位同学不相邻,因此分步完成:①把一班的3位同学看成一个整体,他们自身全排列有33A 种安排;②把这个整体当成1个元素与其他班5个元素一起排列有66A 种安排;③把这6个元素排定后有7个空位(包含两端),从这7个空位中任取2个空位安排2班的2位同学有27A 种排法(这样确保2位同学不相邻).满足条件的排列共有362367A A A ··种,即所求概率是3623671010120A A A A ··,故选B . 评注:处理相邻问题和不相邻问题时易采用整体法(确保相邻)和插空法(确保相隔),只是要注意是先整体后插空(相邻与不邻的综合问题)或先排后插(单纯的相隔问题),再就是要注意整体元素的排列顺序问题.2.合理分类直接分步法例5 (2004年高考全国卷Ⅱ)在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有( )个. ( )A .56B .57C .58D .60解析:所有大于23145且小于43521的数由以下几类构成:由分类加法计数原理可得,一共有234322343212222158A A A A A ++++++=个,故选C .评注:合理分类与直接分步是两个基本原理———分类加法计数原理和分步乘法计数原理最直接的体现,是解排列组合问题的最原始的方法.诸多排列组合问题总是从合理分类,直接分步得到解决的.3.顺序一定消序法(用除法)例6 (2003年北京市春招卷)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目,如果将这两个节目插入原节目中,那么不同插法的种数为( ).A .42B .30C .20D .12解析:新插入两个节目,而原来的5个节目顺序不变,从结果考虑,7个节目的全排列是77A ,而顺序不变的5个节目的全排列是55A ,不变的顺序是总体的551A ,则一共有775542A A =种不同的插入种数,故选A . 评注:某些元素顺序不变的排列用除法解决,即若共有n 个元素,其中m 个元素顺序不变,则其不同的排列数为.当然本题可以这样考虑:最终有7个节目位置,从7个位置中任选2个位置安排新增节目有27A 种方法,其他5个位置按原5个节目的固定顺序排列,因此共有2742A =种不同的插入方法.4.对象相同隔板法例7 (1)(2004年湖北省四校联考卷)高二年级要从3个班级抽取10人参加数学竞赛,每班至少1人,一共有______种不同的安排方法.(2)(2003年荆州市质检卷Ⅱ)10个相同的小球放到3个不同的盒中,每个盒不空,一共有______种不同的放法.解析:两例的实质一样,属于同一模型———对象相同,这类问题处理方式较多,但隔板法简单易操作:10个相同的小球有9个空档(确保盒子不空).从9个空档中选2个空档放入两块隔板,将小球分成三部分(每一种放档板的放法对应着10个小球分成3部分的分法),每部分一一对应着一个不同的小盒.因此一共有29C 种不同的放法,即2936C =种.而把10个竞赛名额分配给3个班,每班至少1个名额的方法与此一模一样.评注:研究的对象是不加区别的元素时,一般考虑隔板法.这是一个基本的数学模型,由此变形的问题是:10++=有多少组正整数解?而解法不变.x y z。
高中数学选修2-3(人教A版)第一章计数原理1.2知识点总结含同步练习及答案
1 6 7 12 C0 12 < C12 < ⋯ < C12 > C12 > ⋯ > C12 ,所以 2x − 3 ⩾ 5 且 2x ⩽ 12 解得 4 ⩽ x ⩽ 6.
高考不提分,赔付1万元,关注快乐学了解详情。
− A5 9
= =
8 × 7 × 6 × 5 × (8 + 7) 8 × 7 × 6 × 5 × (24 − 9) = 1.
2×8×7×6×5×4+7×8×7×6×5 8×7×6×5×4×3×2×1−9×8×7×6×5
(3)根据原方程,可得
3x(x − 1)(x − 2) = 2(x + 1)x + 6x(x − 1).
0 10 (1)计算:C5 10 ⋅ C10 − C10 ; m−1 (2)证明:mCm n = nCn−1 .
解:(1)原式= (2)证明:因为
10 × 9 × 8 × 7 × 6 × 1 − 1 = 252 − 1 = 251 ; 5×4×3×2×1
Cm n =
n! , m!(n − m)! (n − 1)! n(n − 1)! n m−1 n n! ⋅ = = . Cn−1 = m m (m − 1)!(n − m)! m ⋅ (m − 1)!(n − m)! m!(n − m)!
正整数 1 到 n 的连乘积,叫做 n 的阶乘,用 n! 表示.另外,我们规定 0! = 1 .所以排列数公 式还可以写成
Am n =
(n − m)!
n!
.
组合的定义 一般地,从 n 个不同元素中取出 m (m ⩽ n )个元素合成一组,叫做从 n 个不同元素中取出 m 个元素的一个组合(combination). 组合数及组合数的公式 从 n 个不同元素中取出 m (m ⩽ n )个元素的所有不同组合的个数,叫做从 n 个不同元素中取 出 m 个元素的组合数,用符号 Cm n 表示.
高中数学选修2-3(人教B版)第一章计数原理1.4知识点总结含同步练习题及答案
描述:例题:高中数学选修2-3(人教B版)知识点总结含同步练习题及答案第一章 计数原理 1.3计数模型(补充)一、学习任务掌握计数的几种模型,并能处理一些简单的实际问题.二、知识清单数字组成模型 条件排列模型 分组分配模型染色模型计数杂题三、知识讲解1.数字组成模型与顺序相关的数字问题,通常是计算满足某些特征的数字的个数.常见特征比如各个数位的数字不同、四位数、奇数、比某数大的数、某个数位满足某种条件的数等等,其中各个数位数字可以相同的问题通常借助乘法原理分步解决,各个数位数字不相同通常是与排列相关的问题.由 、、、、 这五个数字可组成多少个无重复数字的五位数?解:首位不能是 ,有 种,后四位数有 种排列,所以这五个数可以组成 个无重复的五位数.012340C 14A 44=96C 14A 44用数字 、 组成四位数,且数字 、 至少都出现一次,这样的四位数共有______个(用数字作答).解:因为四位数的每个数位上都有两种可能性,其中四个数字全是 或 的情况不合题意,所以符合题意的四位数有 个.23231423−2=1424从 , 中选一个数字,从 、、 中选两个数字,组成无重复数字的三位数,其中奇数的个数为( )A. B. C. D.解:B当选 时,先从 、、 中选 个数字有 种方法,然后从选中的 个数字中选 个排在末位有 种方法,剩余 个数字排在首位,共有 种方法;当选 时,先从 、、 中选 个数字有 种方法,然后从选中的 个数字中选 个排在末位有 种方法,其余 个数字全排列,共有 种方法.依分类加法计数原理知共有 个奇数.02135241812601352C 2321C 121=6C 23C 1221352C 2321C 122=12C 23C 12A 226+12=18用 , ,, , , 这 个数字,可以组成______个大于 且小于 的012345630005421描述:例题:2.条件排列模型计算满足某些限制条件的排列的个数,常见的如相邻问题、不相邻问题、某位置不能排某人、某人只能或不能排在某些位置的问题等等.不重复的四位数.解:分四类:①千位数字为 , 之一时,百十个位数只要不重复即可,有 (个);②千位数字为 ,百位数字为 ,,, 之一时,共有 (个);③千位数字是 ,百位数字是 ,十位数字是 , 之一时,共有 (个);④最后还有 也满足条件.所以,所求四位数共有 (个).175342=120A 3550123=48A 14A 245401=6A 12A 135420120+48+6+1=175 名男生, 名女生,按照不同的要求排队,求不同的排队方案的方法种数.(1)全体站成一排,其中甲只能在中间或两端;(2)全体站成一排,男生必须排在一起;(3)全体站成一排,甲、乙不能相邻.解:(1)先考虑甲的位置,有 种方法,再考虑其余 人的位置,有 种方法.故有种方法;(2)(捆绑法)男生必须站在一起,即把 名男生进行全排列,有 种排法,与 名女生组成 个元素全排列,故有 种不同的排法;(3)(插空法)甲、乙不能相邻,先把剩余的 名同学全排列,有 种排法,然后将甲、乙分别插到 个空中,有 种排法,故有 种不同的排法.34A 136A 66=2160A 13A 663A 3345=720A 33A 555A 556A 26=3600A 55A 26有甲、乙、丙在内的 个人排成一排照相,其中甲和乙必须相邻,丙不排在两头,则这样的排法共有______种.解:甲和乙必须相邻,可将甲、乙捆绑,看成一个元素,与丙除外的另三个元素构成四个元素,自由排列,有 种方法;丙不排在两头,可对丙插空,插四个元素生成的中间的三个空中的任何一个,有 种方法;最后甲、乙两人的排法有 种方法.综上,总共有 种排法.6144A 44A 13A 22=144A 44A 13A 22 把椅子摆成一排, 人随机就座,任何两人不相邻的坐法种数为( )A. B. C. D.解:D“不相邻”应该用“插空法”,三个空椅子,形成 个空,三个坐人的椅子插入空中,因为人不同,所以需排序,所以有 种不同坐法.6314412072244=24A 34某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同课程的排法?解:法一: 门课程总的排法是 种,其中不符合要求的可分为:体育排在第一节有 种排法,数学排在最后一节有 种排法,但这两种方法,都包括体育在第一节,数学排在最后一节,这种情况有 种排法,因此符合条件的排法应是: 种.法二:① 体育、数学即不排在第一节也不排在最后一节,这种情况有 种排法;② 数学6A 66A 55A 55A 44−2+=504A 66A 55A 44⋅A 24A 44⋅144种颜色可供选择,则不同的着色方法共有______种.(以数字作答)72种花,且相邻的96高考不提分,赔付1万元,关注快乐学了解详情。
高中数学选修2-3基础知识归纳
一.基来源理1.加法原理:做一件事有n 类方法,则达成这件事的方法数等于各种方法数相加。
2.乘法原理:做一件事分n 步达成,则达成这件事的方法数等于各步方法数相乘。
注:做一件事时,元素或地点同意重复使用,求方法数经常用基来源理求解。
二.摆列:从n 个不一样元素中,任取m(m≤n)个元素,依据必定的次序排成一列,叫做从 n 个不一样元素中拿出 m个元素的一个摆列,全部摆列的个数记为。
四.办理摆列组合应用题1. ①明确要达成的是一件什么事(审题)②有序仍是无序③分步仍是分类。
2.解摆列、组合题的基本策略( 1)两种思路:①直接法:②间接法:对有限制条件的问题,先从整体考虑,再把不切合条件的全部状况去掉。
这是解决摆列组合应用题时一种常用的解题方法。
分类办理:当问题整体不好解决时,常分红若干类,再由分类计数原理得出结论。
注意:分类不重复不遗漏。
即:每两类的交集为空集,全部各种的并集为全集。
( 3)分步办理:与分类办理近似,某些问题整体不好解决时,经常分红若干步,再由分步计数原理解决。
在办理摆列组合问题时,经常既要分类,又要分步。
其原则是先分类,后分步。
( 4)两种门路:①元素剖析法;②地点剖析法。
3.摆列应用题:( 1)穷举法(列举法):将全部知足题设条件的摆列与组合逐个列举出来;(2)特别元素优先考虑、特别地点优先考虑;例 1. 电视台连续播放 6 个广告,此中含 4 个不一样的商业广告和 2 个不一样的公益广告,要求首尾一定播放公益广告,则共有种不一样的播放方式(结果用数值表示) .种,解:分二步:首尾一定播放公益广告的有种;中间 4 个为不一样的商业广告有进而应该填=48.进而应填48.例 2. 6人排成一行,甲不排在最左端,乙不排在最右端,共有多少种排法?解一:间接法:即解二:( 1)分类求解:按甲排与不排在最右端分类.( 3)相邻问题:捆邦法:关于某些元素要求相邻的摆列问题,先将相毗邻的元素“捆绑”起来,看作一“大”元素与其余元素摆列,而后再对相邻元素内部进行摆列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学选修2-3知识点汇总
目录
第一章计数原理 (2)
分类加法计数原理 (2)
分步乘法计数原理 (2)
二项式定理 (2)
第二章随机变量及其分布 (3)
第三章统计案例 (6)
高中数学选修2-3知识点总结
第一章计数原理
知识点:
分类加法计数原理
做一件事情,完成它有N 类办法,在第一类办法中有M 1种不同的方法,在第二类办法中有M 2种不同的方法,……,在第N 类办法中有M N 种不同的方法,那么完成这件事情共有M 1+M 2+……+M N 种不同的方法。
分步乘法计数原理
做一件事,完成它需要分成N 个步骤,做第一 步有m1种不同的方法,做第二步有M 2不同的方法,……,做第N 步有M N 不同的方法.那么完成这件事共有 N=M 1M 2...M N 种不同的方法。
3、排列:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列
4、排列数:
),,()!
(!
)1()1(N m n n m m n n m n n n A m ∈≤-=
+--=Λ
5、组合:从n 个不同的元素中任取m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合。
6、组合数:)!(!!!)1()1(m n m n C m m n n n A A C m n
m m
m n m
n
-=+--==Λ )!(!!!)1()1(m n m n C m m n n n A A C m n m m m n m n -=+--==Λ
;
m
n n m n C C -=
m
n m n m n C C C 1
1+-=+
二项式定理
()a b C a C a b C a b C a b C b n n n n n n n n r n r r n n n
+=++++++---011222…… 8、二项式通项公式展开式的通项公式:,……T C a b r n r n
r n r r
+-==101()
第二章随机变量及其分布
知识点:
1、随机变量:如果随机试验可能出现的结果可以用一个变量X来表示,并且X是随着试验的结果的不同而变化,那么这样的变量叫做随机变量.随机变量常用大写字母X、Y等或希腊字母ξ、η等表示。
2、离散型随机变量:在上面的射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.
3、离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,..... ,x i ,......,x n
X取每一个值x i(i=1,2,......)的概率P(ξ=x i)=P i,则称表为离散型随机变量X 的概率分布,简称分布列
4、分布列性质①p i≥0, i =1,2,…;②p1 + p2 +…+p n= 1.
5、二点分布:如果随机变量X的分布列为:
其中0<p<1,q=1-p,则称离散型随机变量X服从参数p的二点分布
6、超几何分布:一般地, 设总数为N件的两类物品,其中一类有M件,从所有物品中任取n(n≤N)件,这n件中所含这类物品件数X是一个离散型随机变量,
则它取值为k时的概率为()(0,1,2,,)
k n k
M N M
n
N
C C
P X k k m
C
-
-
===L,
其中{}
min,
m M n
=,且*
,,,,
n N M N n M N N
∈
≤≤
7、条件概率:对任意事件A和事件B,在已知事件A发生的条件下事件B发生的概率,叫做条件概
率.记作P(B|A),读作A 发生的条件下B 的概率 8、 公式:
.0)(,)()
()|(>=
A P A P A
B P A B P
9、 相互独立事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件。
)()()(B P A P B A P ⋅=⋅
10、n 次独立重复事件:在同等条件下进行的,各次之间相互独立的一种试验
11、二项分布: 设在n 次独立重复试验中某个事件A 发生的次数,A 发生次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是p ,事件A 不发生的概率为q=1-p ,那么在n 次独立重复试验中
)(k P =ξk
n k k n q p C -=(其中 k=0,1, ……,n ,q=1-p )
于是可得随机变量ξ的概率分布如下:
这样的随机变量ξ服从二项分布,记作ξ~B(n ,p) ,其中n ,p 为参数 12、数学期望:一般地,若离散型随机变量ξ的概率分布为
则称 E ξ=x1p1+x2p2+…+xnpn +… 为ξ的数学期望或平均数、均值,数学期望又简称为期望.是离散型随机变量。
13、方差:D(ξ)=(x 1-E ξ)2·P 1+(x 2-E ξ)2·P 2 +......+(x n -E ξ)2·P n 叫随机变量ξ的均方差,简称方差。
14、集中分布的期望与方差一览:
15、正态分布:若概率密度曲线就是或近似地是函数
)
,(,21
)(2
22)(+∞-∞∈=
--
x e x f x σμσ
π
的图像,其中解析式中的实数0)μσ
σ>、(是参数,分别表示总体的平均数与标准差. 则其分布叫正态分布(,)N μσ记作:,f( x )的图象称为正态曲线。
16、基本性质:
①曲线在x 轴的上方,与x 轴不相交. ②曲线关于直线x=μ对称,且在x=
μ时位于最高点.
③当时μ<x ,曲线上升;当时μ>x ,曲线下降.并且当曲线向左、右两边无限延伸时,以x 轴为渐近线,向它无限靠近.
④当μ一定时,曲线的形状由σ确定.σ越大,曲线越“矮胖”,表示总体的分布越分散;σ越小,曲线越“瘦高”,表示总体的分布越集中.
⑤当σ相同时,正态分布曲线的位置由期望值μ来决定. ⑥正态曲线下的总面积等于1. 17、 3σ原则:
从上表看到,正态总体在 )2,2(σμσμ+- 以外取值的概率 只有4.6%,在 )3,3(σμσμ+-以外取值的概率只有0.3% 由于这些概率很小,通常称这些情况发生为小概率事件.也就是说,通常认为这些情况在一次试验中几乎是不可能发生的.
第三章 统计案例
知识点: 1. 独立性检验
假设有两个分类变量X 和Y ,它们的值域分另为{x 1, x 2}和{y 1, y 2},其样本频数列联表为:
若要推断的论述为H 1:“X 与Y 有关系”,可以利用独立性检验来考察两个变量是否有关系,并且能较精确地给出这种判断的可靠程度。
具体的做法是,由表中的数据算出随机变量K^2的值(即K 的平方) K 2 = n (ad - bc) 2 / [(a+b)(c+d)(a+c)(b+d)],其中n=a+b+c+d 为样本容量,K 2的值越大,说明“X 与Y 有关系”成立的可能性越大。
K 2≤3.841时,X 与Y 无关; K 2>3.841时,X 与Y 有95%可能性有关;K 2>6.635时X 与Y 有99%可能性有关 2. 回归分析
1、回归直线方程bx a y
+=ˆ 其中x
SS SP x x y y x x x n x y x n xy b =---=--
=
∑∑∑∑∑∑∑2
22)
())(()
(1
1
,
x b y a -= 2、检验性质:(1)︱r ︳≤1,︱r ︳并且越接近于1,线性相关程度越强,︱r ︳越接近于0,线性相关程度越弱;(2)︱r ︳>r 0.05,表明有95%的把握认为x 与Y 之间具有线性相关关系;︱r ︳≤r 0.05,我们没有理由拒绝原来的假设,这是寻找回归直线方程毫无意义!。