高中数学选修2-3答案
高中数学选修2-3答案
高中数学选修2-3答案【篇一:高中数学选修2-3所有试卷含答案】每章分三个等级:[基础训练a组], [综合训练b组], [提高训练c 组] 建议分别适用于同步练习,单元自我检查和高考综合复习。
(数学选修2--3) 第一章计数原理[基础训练a组]一、选择题1.将3个不同的小球放入4个盒子中,则不同放法种数有()a.81 b.64c.12d.142.从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机各1台,则不同的取法共有()a.140种 b.84种 c.70种 d.35种3.5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有() a.a3 b.4a3 c.a5?a3a3 d.a2a3?a2a3a3 4.a,b,c,d,e共5个人,从中选1名组长1名副组长,但a不能当副组长,不同的选法总数是()a.20 b.16 c.10 d.65.现有男、女学生共8人,从男生中选2人,从女生中选1人分别参加数学、物理、化学三科竞赛,共有90种不同方案,那么男、女生人数分别是() a.男生2人,女生6人 b.男生3人,女生5人 c.男生5人,女生3人 d.男生6人,女生2人. ?x6.在??的展开式中的常数项是() ?283352323113a.7 b.?7 c.28 d.?287.(1?2x)(2?x)的展开式中x3的项的系数是() a.120 b.?120 c.100 d.?100 ?8.??2??2?展开式中只有第六项二项式系数最大,则展开式中的常数项是() x?n5a.180 b.90 c.45 d.360二、填空题1.从甲、乙,??,等6人中选出4名代表,那么(1)甲一定当选,共有种选法.(2)甲一定不入选,共有种选法.(3)甲、乙二人至少有一人当选,共有种选法.2.4名男生,4名女生排成一排,女生不排两端,则有. 3.由0,1,3,5,7,9这六个数字组成_____个没有重复数字的六位奇数.4.在(x?的展开式中,x的系数是1062205.在(1?x)展开式中,如果第4r项和第r?2项的二项式系数相等,则r?,t4r?6.在1,2,3,...,9的九个数字里,任取四个数字排成一个首末两个数字是奇数的四位数,这样的四位数有_________________个?7.用1,4,5,x四个不同数字组成四位数,所有这些四位数中的数字的总和为288,则x. 8.从1,3,5,7,9中任取三个数字,从0,2,4,6,8中任取两个数字,组成没有重复数字的五位数,共有________________个?三、解答题1.判断下列问题是排列问题还是组合问题?并计算出结果.(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?(2)高二年级数学课外小组10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?2.7个排成一排,在下列情况下,各有多少种不同排法?(1)甲排头,(2)甲不排头,也不排尾,(3)甲、乙、丙三人必须在一起,(4)甲、乙之间有且只有两人,(5)甲、乙、丙三人两两不相邻,(6)甲在乙的左边(不一定相邻),(7)甲、乙、丙三人按从高到矮,自左向右的顺序,(8)甲不排头,乙不排当中。
高中数学选修2-3 离散型随机变量导学案加课后作业及答案
§2.1.1 离散型随机变量【学习要求】1.理解随机变量及离散型随机变量的含义.2.了解随机变量与函数的区别与联系.【学法指导】引进随机变量的概念,就可以用数字描述随机现象,建立连接数和随机现象的桥梁,通过随机变量和函数类比,可以更好地理解随机变量的定义,随机变量是函数概念的推广.【知识要点】1.随机试验:一般地,一个试验如果满足下列条件:(1)试验可以在相同的情形下重复进行;(2)试验所有可能的结果是明确的,并且不只一个;(3)每次试验总是恰好出现这些可能结果中的一个,但在一次试验之前却不能肯定这次试验的结果会出现哪一个.这种试验就是一个随机试验.2.随机变量:在随机试验中,随着变化而变化的变量称为随机变量.3.离散型随机变量:所有取值可以的随机变量,称为离散型随机变量.【问题探究】探究点一随机变量的概念问题1掷一枚骰子,出现的点数可以用数字1,2,3,4,5,6来表示,那么掷一枚硬币的结果是否也可以用数字来表示呢?问题2随机变量和函数有类似的地方吗?例1下列变量中,哪些是随机变量,哪些不是随机变量?并说明理由.(1)上海国际机场候机室中2013年10月1日的旅客数量;(2)2013年某天济南至北京的D36次列车到北京站的时间;(3)2013年某天收看齐鲁电视台《拉呱》节目的人数;(4)体积为1 000 cm3的球的半径长.小结随机变量从本质上讲就是以随机试验的每一个可能结果为自变量的一个函数,即随机变量的取值实质上是试验结果对应的数,但这些数是预先知道所有可能的值,而不知道究竟是哪一个值.跟踪训练1指出下列变量中,哪些是随机变量,哪些不是随机变量,并说明理由.(1)某人射击一次命中的环数;(2)任意掷一枚均匀硬币5次,出现正面向上的次数;(3)投一颗质地均匀的骰子两次出现的点数(最上面的数字)中的最小值;(4)某个人的属相.探究点二离散型随机变量的判定问题1什么是离散型随机变量?问题2非离散型随机变量和离散型随机变量有什么区别?例2①某座大桥一天经过的中华牌轿车的辆数为ξ;②某网站中歌曲《爱我中华》一天内被点击的次数为ξ;③一天内的温度为ξ;④射手对目标进行射击,击中目标得1分,未击中目标得0分,用ξ表示该射手在一次射击中的得分.上述问题中的ξ是离散型随机变量的是()A.①②③④B.①②④C.①③④D.②③④小结该题主要考查离散型随机变量的定义,判断时要紧扣定义,看是否能一一列出.跟踪训练2指出下列随机变量是否是离散型随机变量,并说明理由.(1)白炽灯的寿命ξ;(2)某加工厂加工的一批某种钢管的外径与规定的外径尺寸之差ξ;(3)江西九江市长江水位监测站所测水位在(0,29]这一范围内变化,该水位站所测水位ξ;(4)一个袋中装有5个白球和5个黑球,从中任取3个,其中所含白球的个数.探究点三离散型随机变量的应用例3(1)一袋中装有5只同样大小的白球,编号为1,2,3,4,5.现从该袋内随机取出3只球,被取出的球的最大号码数ξ.写出随机变量ξ可能取的值,并说明随机变量所取的值表示的随机试验的结果.(2)抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ,试问:“ξ>4”表示的试验结果是什么?小结解答此类问题的关键在于明确随机变量的所有可能的取值,以及其取每一个值时对应的意义,即一个随机变量的取值可能对应一个或多个随机试验的结果,解答过程中不要漏掉某些试验结果.跟踪训练3下列随机试验的结果能否用离散型随机变量表示?若能,请写出各随机变量可能的取值并说明这些值所表示的随机试验的结果.(1)盒中装有6支白粉笔和2支红粉笔,从中任意取出3支,其中所含白粉笔的支数ξ,所含红粉笔的支数η.(2)从4张已编有1~4的卡片中任意取出2张,被取出的卡片号数之和ξ.(3)离开天安门的距离η.(4)袋中有大小完全相同的红球5个,白球4个,从袋中任意取出一球,若取出的球是白球,则过程结束;若取出的球是红球,则将此红球放回袋中,然后重新从袋中任意取出一球,直至取出的球是白球,此规定下的取球次数ξ.【当堂检测】1.下列变量中,不是随机变量的是()A.一射击手射击一次命中的环数B.标准状态下,水沸腾时的温度C.抛掷两枚骰子,所得点数之和D.某电话总机在时间区间(0,T)内收到的呼叫次数2.10件产品中有3件次品,从中任取2件,可作为随机变量的是()A.取到产品的件数B.取到正品的概率C.取到次品的件数D.取到次品的概率3.抛掷2枚骰子,所得点数之和记为ξ,那么“ξ=4”表示的随机试验的结果是()A.2枚都是4点B.1枚是1点,另1枚是3点C.2枚都是2点D.1枚是1点,另1枚是3点,或者2枚都是2点4.一袋中装有6个同样大小的黑球,编号为1,2,3,4,5,6.现从中随机取出2个球,以ξ表示取出的球的最大号码,则“ξ=6”表示的试验结果是___________________.【课堂小结】1.所谓的随机变量就是试验结果和实数之间的一个对应关系,随机变量是将试验的结果数量化,变量的取值对应于随机试验的某一个随机事件.2.写随机变量表示的结果,要看三个特征:(1)可用数来表示;(2)试验之前可以判断其可能出现的所有值;(3)在试验之前不能确定取值.【课后作业】一、基础过关1.袋中有2个黑球6个红球,从中任取两个,可以作为随机变量的是() A.取到的球的个数B.取到红球的个数C.至少取到一个红球D.至少取到一个红球的概率2.①某电话亭内的一部电话1小时内使用的次数记为X;②某人射击2次,击中目标的环数之和记为X;③测量一批电阻,在950 Ω~1 200 Ω之间的阻值记为X;④一个在数轴上随机运动的质点,它在数轴上的位置记为X.其中是离散型随机变量的是()A.①②B.①③C.①④D.①②④3.袋中装有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在在有放回取出的条件下依次取出两个球,设两个球号码之和为随机变量ξ,则ξ所有可能取值的个数是()A.5 B.9C.10 D.254.某人射击的命中率为p(0<p<1),他向一目标射击,当第一次射中目标则停止射击,射击次数的取值是()A.1,2,3,…,n B.1,2,3,…,n,…C.0,1,2,…,n D.0,1,2,…,n,…5.某人进行射击,共有5发子弹,击中目标或子弹打完就停止射击,射击次数为ξ,则“ξ=5”表示的试验结果是()A.第5次击中目标B.第5次未击中目标C.前4次均未击中目标D.第4次击中目标6.一木箱中装有8个同样大小的篮球,编号为1,2,3,4,5,6,7,8,现从中随机取出3个篮球,以ξ表示取出的篮球的最大号码,则ξ=8表示的试验结果有________种.二、能力提升7.如果X是一个离散型随机变量且η=aX+b,其中a,b是常数且a≠0,那么η() A.不一定是随机变量B.一定是随机变量,不一定是离散型随机变量C.一定是连续型随机变量D.一定是离散型随机变量8.在8件产品中,有3件次品,5件正品,从中任取一件,取到次品就停止,抽取次数为ξ,则ξ=3表示的试验结果是__________________9.在一次考试中,某位同学需回答三个问题,考试规则如下:每题回答正确得100分,回答不正确得-100分,则这名同学回答这三个问题的总得分ξ的所有可能取值是________.10.一用户在打电话时忘记了最后3个号码,只记得最后3个数两两不同,且都大于5.于是他随机拨最后3个数(两两不同),设他拨到正确号码的次数为X,随机变量X的可能值有________个.11.设一汽车在开往目的地的道路上需经过5盏信号灯,ξ表示汽车首次停下时已通过的信号灯的盏数,写出ξ所有可能取值并说明这些值所表示的试验结果.12.某车间两天内每天生产10件某产品,其中第一天、第二天分别生产了1件、2件次品,而质检部门每天要在生产的10件产品中随机抽取4件进行检查,若发现有次品,则当天的产品不能通过.若厂内对车间生产的产品采用记分制,两天全不通过检查得0分,通过一天、两天分别得1分、2分,设该车间在这两天内总得分为ξ,写出ξ的可能取值.三、探究与拓展13.小王钱夹中只剩有20元、10元、5元、2元和1元的人民币各一张.他决定随机抽出两张,用来买晚餐,用X表示这两张金额之和.写出X的可能取值,并说明所取值表示的随机试验结果§2.1.2离散型随机变量的分布列(一)【学习要求】1.在对具体问题的分析中,理解取有限值的离散型随机变量及其分布列的概念.认识分布列对于刻画随机现象的重要性.2.掌握离散型随机变量分布列的表示方法和性质.【学法指导】离散型随机变量的分布列可以完全描述随机变量所刻画的随机现象,利用分布列可以计算随机变量所表示的事件的概率.【知识要点】1.定义:一般地,若离散型随机变量X可能取的不同值为x1,x2,…,x i,…,x n,X取每一个值x i (i=1,2,…,n)的概率此表称为离散型随机变量X的概率分布列,简称为X的.2.离散型随机变量的分布列的性质:(1)p i 0,i =1,2,3,…,n ;(2)∑ni =1p i = .【问题探究】探究点一 离散型随机变量的分布列的性质问题1 对于一个随机试验,仅知道试验的可能结果是不够的,还要能把握每一个结果发生的概率.请问抛掷一枚骰子,朝上的一面所得点数有哪些值?取每个值的概率是多少?问题2 离散型随机变量X 的分布列刻画的是一个函数关系吗?有哪些表示法? 问题3 离散型随机变量的分布列有哪些性质?例1 设随机变量X 的分布列P ⎝⎛⎭⎫X =k5=ak (k =1,2,3,4,5). (1)求常数a 的值; (2)求P ⎝⎛⎭⎫X ≥35; (3)求P ⎝⎛⎭⎫110<X <710. 小结 离散型随机变量的分布列的性质可以帮助我们求题中参数a ,然后根据互斥事件的概率加法公式求得概率.跟踪训练1 (1试说明该同学的计算结果是否正确.(2)设ξ①求q 的值;②求P (ξ<0),P (ξ≤0).探究点二 求离散型随机变量的分布列例2 将一颗骰子掷两次,求两次掷出的最大点数ξ的分布列.小结 (1)求离散型随机变量的分布列关键是搞清离散型随机变量X 取每一个值时对应的随机事件,然后利用排列、组合知识求出X 取每个值的概率,最后列出分布列.(2)求离散型随机变量X 的分布列的步骤是:首先确定X 的所有可能的取值;其次,求相应的概率P (X =x i )=p i ;最后列成表格的形式.跟踪训练2 将一颗骰子掷2次,求下列随机事件的分布列. (1)两次掷出的最小点数Y ;(2)第一次掷出的点数减去第二次掷出的点数之差ξ.【当堂检测】1.下列表中可以作为离散型随机变量的分布列的是( )ABCD2.设随机变量ξ的分布列为P (ξ=i )=a ⎝⎛⎭⎫13i,i =1,2,3,则a 的值为 ( ) A .1B .913C .2713D .11133.将一枚硬币扔三次,设X 为正面向上的次数,则P (0<X <3)=________.4.一盒中放有大小相同的红色、绿色、黄色三种小球,已知红球个数是绿球个数的两倍,黄球个数是绿球个数的一半.现从该盒中随机取出一个球,若取出红球得1分,取出黄球得0分,取出绿球得-1分,试写出从该盒中取出一球所得分数ξ的分布列.【课堂小结】1.离散型随机变量的分布列,不仅能清楚地反映其所取的一切可能的值,而且能清楚地看到每一个值的概率的大小,从而反映了随机变量在随机试验中取值的分布情况.2.一般地,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.【课后作业】一、基础过关1.若随机变量X( )A .1B .12C .13D .162.设随机变量X 的分布列为P (X =k )=m ⎝⎛⎭⎫23k,k =1,2,3,则m 的值为( )A .1718B .2738C .1719D .27193.抛掷2颗骰子,所得点数之和ξ是一个随机变量,则P (ξ≤4)等于( ) A .16 B .13 C .12D .234.袋中有大小相同的红球6个,白球5个,从袋中每次任意取出1个球,直到取出的球是白球为止,所需要的取球次数为随机变量ξ,则ξ的可能取值为( )A .1,2,3,…,6B .1,2,3,…,7C .0,1,2,…,5D .1,2,…,5 5.随机变量ξ的所有可能取值为1,2,…,n ,若P (ξ<4)=0.3,则 ( ) A .n =3B .n =4C .n =10D .不能确定6.抛掷两次骰子,两次点数的和不等于8的概率为 ( )A .1112B .3136C .536D .1127.设随机变量X 的分布列为P (X =k )=Ck (k +1),k =1,2,3,C 为常数,则P (0.5<X <2.5)=________.二、能力提升8.已知随机变量ξ只能取三个值x 1,x 2,x 3,其概率依次成等差数列,则该等差数列公差的取值范围是( )A .⎣⎡⎦⎤0,13B .⎣⎡⎦⎤-13,13C .[-3,3]D .[0,1]9.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,其分布列为P (X ),则P (X =4)的值为( )A .1220B .2755C .27220D .212510.盒中装有大小相等的10个球,编号分别是0,1,2,…,9,从中任取1个,观察号码是“小于5”“等于5”“大于5”三类情况之一,求其概率分布列.11.已知随机变量ξ(1)求η1=12ξ的分布列;(2)求η2=ξ2的分布列.12.从4张已编号(1~4号)的卡片中任意取出2张,取出的卡片号码数之和为X .求随机变量X 的分布列.三、探究与拓展13.安排四名大学生到A ,B ,C 三所学校支教,设每名大学生去任何一所学校是等可能的.(1)求四名大学生中恰有两人去A 校支教的概率; (2)设有大学生去支教的学校的个数为ξ,求ξ的分布列.§2.1.2 离散型随机变量的分布列(二)【学习要求】1.进一步理解离散型随机变量的分布列的求法、作用.2.理解两点分布和超几何分布.【学法指导】两点分布是常见的离散型随机变量的概率分布,如某队员在比赛中能否胜出,某项科学试验是否成功,都可用两点分布来研究.在产品抽样检验中,一般采用不放回抽样,则抽到次品数服从超几何分布;在实际工作中,计算次品数为k 的概率,由于涉及产品总数,计算比较复杂,因而,当产品数较大时,可用后面即将学到的二项分布来代替.【知识要点】1则称离散型随机变量X 服从2.一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n -k N -MC nN,k =0,1,2,…,m ,其中*为 .如果随机变量X 的分布列为超几何分布列,则称随机变量X 服从【问题探究】探究点一 两点分布问题1 利用随机变量研究一类问题,如抽取的奖券是否中奖,买回的一件产品是否为正品,新生婴儿的性别,投篮是否命中等,这些有什么共同点?问题2 只取两个不同值的随机变量是否一定服从两点分布?例1 袋中有红球10个,白球5个,从中摸出2个球,如果只关心摸出两个红球的情形,问如何定义随机变量X ,才能使X 满足两点分布,并求分布列.小结 两点分布中只有两个对应的结果,因此在解答此类问题时,应先分析变量是否满足两点分布的条件,然后借助概率的知识,给予解决.跟踪训练1 设某项试验成功率是失败率的2倍,用随机变量ξ描述1次试验的成功次数,则P (ξ=0)等于 ( ) A .0B .12C .13D .23探究点二 超几何分布问题 超几何分布适合解决什么样的概率问题?例2 从一批含有13件正品、2件次品的产品中,不放回任取3 件,求取得次品数为ξ的分布列.跟踪训练2 某校高三年级某班的数学课外活动小组中有6名男生,4名女生,从中选出4人参加数学竞赛考试,用X 表示其中的男生人数. (1)求X 的分布列;(2)求至少有2名男生参加数学竞赛的概率. 探究点三 实际应用例3 在一次购物抽奖活动中,假设某10张奖券中有一等奖券1张,可获得价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖,某顾客从这10张中任抽2张,求: (1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X (元)的分布列.小结 此类题目中涉及的背景多数是生活、生产实践中的问题,如产品中的正品和次品,盒中的白球和黑球,同学中的男生和女生等,分析题意,判断其中的随机变量是否服从超几何分布是解决此类题目的关键. 跟踪训练3 交5元钱,可以参加一次摸奖,一袋中有同样大小的球10个,其中8个标有1元钱,2个标有5元钱,摸奖者只能从中任取2个球,他所得奖励是所抽2球的钱数之和,求抽奖人所得钱数的分布列.【当堂检测】1.今有电子元件50个,其中一级品45个,二级品5个,从中任取3个,出现二级品的概率为 ( ) A .C 35C 350B .C 15+C 25+C 35C 350 C .1-C 345C 350D .C 15C 25+C 25C 145C 3502.一个箱内有9张票,其号数分别为1,2,3,…,9,从中任取2张,其号数至少有一个为奇数的概率是 ( )A .13B .12C .16D .563.在掷一枚图钉的随机试验中,令X =⎩⎪⎨⎪⎧1,针尖向上0,针尖向下,如果针尖向上的概率为0.8,试写出随机变量X 的分布列为___________4.袋中有4只红球3只黑球,从袋中任取4只球,取到1只红球得1分,取到1只黑球得3分,设得分为随机变量ξ,则P (ξ≤6)=________【课堂小结】1.两点分布两点分布是很简单的一种概率分布,两点分布的试验结果只有两种可能,要注意成功概率的值指的是哪一个量.2.超几何分布超几何分布在实际生产中常用来检验产品的次品数,只要知道N 、M 和n 就可以根据公式:P (X =k )=C k M C n -k N -MC nN求出X 取不同值k 时的概率.学习时,不能机械地去记忆公式,而要结合条件以及组合知识理解M 、N 、n 、k 的含义.【课后作业】一、基础过关1.在100张奖券中,有4张能中奖,从中任取2张,则2张都能中奖的概率是 ( )A .150B .125C .1825D .14 9502.从一副不含大、小王的52张扑克牌中任意抽出5张,则至少有3张是A 的概率为( )A .C 34C 248C 552B .C 348C 24C 552 C .1-C 148C 44C 552D .C 34C 248+C 44C 148C 5523.一个盒子里装有相同大小的10个黑球,12个红球,4个白球,从中任取2个,其中白球的个数记为X ,则下列概率等于C 122C 14+C 22C 226的是 ( )A .P (0<X ≤2)B .P (X ≤1)C .P (X =1)D .P (X =2) 4.在3双皮鞋中任意抽取两只,恰为一双鞋的概率为( )A .15B .16C .115D .135.在5件产品中,有3件一等品和2件二等品,从中任取2件,那么以710为概率的事件是( )A .都不是一等品B .恰有一件一等品C .至少有一件一等品D .至多有一件一等品 6.若离散型随机变量X 的分布列为:则c =________. 二、能力提升7.从只有3张中奖的10张彩票中不放回随机逐张抽取,设X 表示直至抽到中奖彩票时的次数,则P (X =3)等于( )A .310B .710C .2140D .7408.若随机变量X 服从两点分布,且P (X =0)=0.8,P (X =1)=0.2.令Y =3X -2,则P (Y =-2)=____. 9.有同一型号的电视机100台,其中一级品97台,二级品3台,从中任取4台,则二级品不多于1台的概率为________.(用式子表示)10.老师要从10篇课文中随机抽3篇让学生背诵,规定至少要背出其中2篇才能及格.某同学只能背诵其中的6篇,试求:(1)抽到他能背诵的课文的数量的分布列; (2)他能及格的概率.11.已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,取出一个黑球得1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出此3球所得分数之和.求X的分布列.三、探究与拓展12.袋中装着标有数字1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,用X表示取出的3个小球上的最大数字,求:(1)取出的3个小球上的数字互不相同的概率;(2)随机变量X的分布列;(3)计算介于20分到40分之间的概率.§2.2.1条件概率【学习要求】1.理解条件概率的定义.2.掌握条件概率的计算方法.3.利用条件概率公式解决一些简单的实际问题.【学法指导】理解条件概率可以以简单事例为载体,先从古典概型出发求条件概率,然后再进行推广;计算条件概率可利用公式P(B|A)=P(AB)P(A),也可以利用缩小样本空间的观点计算.【知识要点】1.条件概率的概念设A,B为两个事件,且P(A)>0,称P(B|A)=为在事件发生的条件下,事件发生的条件概率.P(B|A)读作发生的条件下发生的概率.2.条件概率的性质(1)P(B|A)∈.(2)如果B与C是两个互斥事件,则P(B∪C|A)=.【问题探究】探究点一条件概率问题13张奖券中只有1张能中奖,现分别由3名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比其他同学小?问题2如果已知第一名同学没有抽到中奖奖券,那么最后一名同学抽到中奖奖券的概率是多少?问题3怎样计算条件概率?问题4若事件A、B互斥,则P(B|A)是多少?例1在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,求:(1)第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率.小结利用P(B|A)=n ABn A解答问题的关键在于明确B中的基本事件空间已经发生了质的变化,即在A事件必然发生的前提下,B事件包含的样本点数即为事件AB包含的样本点数.跟踪训练1一个盒子中有6个白球、4个黑球,每次从中不放回地任取1个,连取两次,求第一次取到白球的条件下,第二次取到黑球的概率.探究点二条件概率的性质及应用问题条件概率满足哪些性质?例2一张储蓄卡的密码共有6位数字,每位数字都可从0~9中任选一个.某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求:(1)任意按最后一位数字,不超过2次就按对的概率;(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率.小结本题条件多,所设事件多,要分清楚事件之间的关系及谁是条件,同时利用公式P(B∪C|A)=P(B|A)+P(C|A)可使有些条件概率的计算较为简捷,但应注意这个性质在“B与C互斥”这一前提下才成立.跟踪训练2在某次考试中,从20道题中随机抽取6道题,若考生至少能答对其中的4道即可通过;若至少能答对其中5道就获得优秀.已知某考生能答对其中10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率.【当堂检测】1.从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)等于()A.18B.14C.25D.122.某人一周晚上值班2次,在已知他周日一定值班的条件下,则他在周六晚上值班的概率为________ 3.设某种动物能活到20岁的概率为0.8,能活到25岁的概率为0.4,现有一只20岁的这种动物,问它能活到25岁的概率是_______4.考虑恰有两个小孩的家庭.若已知某家有男孩,求这家有两个男孩的概率;若已知某家第一个是男孩,求这家有两个男孩(相当于第二个也是男孩)的概率.(假定生男生女为等可能)【课堂小结】1.条件概率:P(B|A)=P(AB)P(A)=n(AB)n(A).2.概率P(B|A)与P(AB)的区别与联系:P(AB)表示在样本空间Ω中,计算AB发生的概率,而P(B|A)表示在缩小的样本空间ΩA中,计算B发生的概率.用古典概型公式,则P(B|A)=AB中样本点数ΩA中样本点数,P(AB)=AB中样本点数Ω中样本点数.【课后作业】一、基础过关1.若P (A )=34,P (B |A )=12,则P (AB )等于( )A .23B .38C .13D .582.盒中装有10只乒乓球,其中6只新球,4只旧球,不放回地依次取出2只球使用,在第一次摸出新球的条件下,第二次也取到新球的概率为( ) A .59 B .110C .35D .253.某地区气象台统计,该地区下雨的概率是415,刮风的概率为215,既刮风又下雨的概率为110,则在下雨天里,刮风的概率为( )A .8225B .12C .38D .344.某人忘记了一个电话号码的最后一个数字,只好任意去试拨,他第一次失败、第二次成功的概率是 ( )A .110B .210C .810D .9105.某地一农业科技实验站,对一批新水稻种子进行试验,已知这批水稻种子的发芽率为0.8,出芽后的幼苗成活率为0.9,在这批水稻种子中,随机地抽取一粒,则这粒水稻种子能成长为幼苗的概率为 ( ) A .0.02B .0.08C .0.18D .0.726.有一匹叫Harry 的马,参加了100场赛马比赛,赢了20场,输了80场.在这100场比赛中,有30场是下雨天,70场是晴天.在30场下雨天的比赛中,Harry 赢了15场.如果明天下雨,Harry 参加赛马的赢率是 ( )A .15B .12C .34D .3107.从混有5张假钞的20张百元钞票中任意抽出2张,将其中1张放到验钞机上检验发现是假钞,则第2张也是假钞的概率为( )A .119B .1738C .419D .217二、能力提升8.一个袋中装有7个大小完全相同的球,其中4个白球,3个黄球,从中不放回地摸4次,一次摸一球,已知前两次摸得白球,则后两次也摸得白球的概率为________.9.以集合A ={2,4,6,7,8,11,12,13}中的任意两个元素分别为分子与分母构成分数,已知取出的一个数是12,则取出的数构成可约分数的概率是________.10.抛掷红、蓝两枚骰子,设事件A 为“蓝色骰子的点数为3或6”,事件B 为“两枚骰子的点数之和大于8”.(1)求P (A ),P (B ),P (AB );(2)当已知蓝色骰子点数为3或6时,问两枚骰子的点数之和大于8的概率为多少?11.把外形相同的球分装三个盒子,每盒10个.其中,第一个盒子中有7个球标有字母A,3个球标有字母B ;第二个盒子中有红球和白球各5个;第三个盒子中则有红球8个,白球2个.试验按如下规则进行:先在第一个盒子中任取一个球,若取得标有字母A 的球,则在第二个盒子中任取一个球;若第一次取得标有字母B 的球,则在第三个盒子中任取一个球.如果第二次取出的是红球,则称试验为成功.求试验成功的概率.三、探究与拓展12.某生在一次口试中,共有10题供选择,已知该生会答其中6题,随机从中抽5题供考生回答,答对3题及格,求该生在第一题不会答的情况下及格的概率.§2.2.2 事件的相互独立性【学习要求】1.在具体情境中,了解两个事件相互独立的概念.2.能利用相互独立事件同时发生的概率公式解决一些简单的实际问题.【学法指导】相互独立事件同时发生的概率可以和条件概率对比理解,事件独立可以简化概率计算,学习中要结合实例理解.【知识要点】1.相互独立的概念设A ,B 为两个事件,若P (AB )= ,则称事件A 与事件B 相互独立. 2.相互独立的性质如果事件A 与B 相互独立,那么A 与 , 与B , 与 也都相互独立.【问题探究】探究点一 相互独立事件的概念问题1 3张奖券只有1张能中奖,3名同学有放回地抽取.事件A 为“第一名同学没有抽到中奖奖券”,事件B 为“第三名同学抽到中奖奖券”,事件A 的发生是否会影响B 发生的概率?问题2 在问题1中求P (A )、P (B )及P (AB ),观察它们有何关系?总结相互独立事件的定义. 问题3 互斥事件与相互独立事件有什么区别?问题4 若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立,如何证明?例1 (1)甲、乙两名射手同时向一目标射击,设事件A :“甲击中目标”,事件B :“乙击中目标”,则事件A 与事件B ( )A .相互独立但不互斥B .互斥但不相互独立C .相互独立且互斥D .既不相互独立也不互斥(2)掷一颗骰子一次,设事件A :“出现偶数点”,事件B :“出现3点或6点”,则事件A ,B 的关系是 ( )A .互斥但不相互独立B .相互独立但不互斥。
高中数学选修2-3课后习题答案[人教版]
高中数学人教版选修2-3课本习题答案1. <n曝完建的井事tr是“选岀t人完成工惟”,不同的选法种敷是5+4二刘<2)密完臨的**一件耶情”是“从人村经H村flCH去”,不同路线条3X2-6,2. <1)耍完曲的“一井UtT是“选出I人参加活动J不同的选崔种*^3+5-1-4-12,忆)蜃完底啊亠一悴耶情”屋4■从3牛聊级的学主中各选I人罢加洁动“,干同的选誌种敦足3X5X4=60. 3-因为要确足的見这荊同孑的专业选择.并不要考匡学狡的差异*所以应当>6+^1-9 (种)可範的专业选择.竦习10^)1”婆完陵的亠一件痢tiT是“碍別展开式的一项二由于毎一项都是□就门的形点*所以吨以井二.母完A t第一步,取爲.有』种方法F第二步「取知.有3种方法多第三步,叽.奋5种方浚”根器井步乘祛计数原贻展开式共有3X3X5 = 45帧L氐婴立底的“一杵事tr是”鞘定一卞电恬号购的后怨位:分四步绕酸出拇一歩那是从。
〜9 ii 10 个效字中耻1个. 10X10X10X10=10 000 (个九玄婆完建的"一仲事nr是"从5名同学中选出正*副组檢各1名二分钢步完氤第一绘选正组长' 有5种方法*第二歩选副纽忙*冇4种方槌・共有选^5X4 = 30 £种hA.要完威的"一件事悄”是”从*j个门中的一个进人并从男一个口出強二分创歩完成;先从£匸门中选-牛进人.评从其余5个门中逢一亍出去+扰有进出方SfefiX5-30 <种1.习SIU ($ 1135)AiML •一杵事情“是"买一台果型号的电视机”*弟同朗选^+7=tl <^L2* M一理事悄”是“从甲地籃乙地或證丙地別丁地去”.所以左"先分类、后分歩=不何的聲绥It有2X3+#冥2 = M (条人3. 对于第亠问,r帝事悄” & •■构成亠牛分数二由于L 5・趴13虽奇数* 4・S. 12, 16是偶数* 肿以以1・5・h】3中ff意一牛为分子.都可以与氣乳12, 16^的任意一牛梅成甘数・宙此町以分两步桌构成分数:第-涉.选分子,有4种选达*第二步「选分毋'也疔彳种逸迭.共有革同的分*4X4^16仆对于第二『叭”一杵舉ffC是”枸成一牛真分ST.分匹类’分子为1时,分母町以从4. 8・1签16 中任选-个,有4个』分于为5时*分柿从氛12, 16中选一个*有3 t*分于为9时*分母从1签倍屮选一个,有2个*分子为曲时•分母只髄迭卜粘有I仁所以共有真分散4+3十2+1 = 10 (“4JJ榔髀悄”是“喪通线*ST・眾据电路的肴戋知识.容彌到不間的接通线路有3 + 1+2X 2*8 f条紅5, U)“一件事箭**丛円用坐杯硝定一个点巴曲于横、纵坐标可以相同,因此可堆井两母完遵:第一步.从A中选榄坐标.冇6个选择工葡二步从人中选纵塑怖’也有&伞选抄.所以共有世拆6X6 = 36 (个人]■ ()) abt act titii &・、be * bd « ca r 触 tci tde 、(,2) Qd* ar* ad T u+, ba 、be r txf , he 、rc T 匸打、・ f*> da ■ db, de. df* ea 卅,ec, "+ 監 CBA1t = J5X 14X1.1X12=32 Mg (2> A —5 0401(3> AJ-2J \5~8X7X6X5~2XSX7"1N2456 7 KZ224 120720 5 040 io 33a4. <D 略 t(2) Aj-8Af 4-7AJ -8AJ —&Aj-hAj = A?, 5* A? —&0(种人缶甩=刘<1f).It 穷 <W 25®)1. (I)甲*乙、甲、闪.甲.丁.乙,丙-乙、丁,丙* Ti ⑵甲'!■甲T乙«乙T\H TL甲丙即TT再乙T乙T丙么2蹴二△A#。
高中数学选修2-3二项式定理讲义含答案
二项式定理公式(a+b)n=C0n a n+C1n a n-1b+C2n a n-2b2+…+C r n a n-r b r所表示的规律叫做二项式定理.2、相关概念(1)公式右边的多项式叫做(a+b)n的二项展开式.(2)各项的系数C r n(r=0,1,2,…,n)叫做展开式的二项式系数.(3)展开式中的C r n a n-r b r叫做二项展开式的通项,记作:T r+1,它表示展开式的第r+1项.(4)在二项式定理中,如果设a=1,b=x,则得到公式(1+x)n=C0n+C1n x+C2n x2+…+C r n x r+…+C n n x n3、展开式具有以下特点(1)项数:共有n+1项;(2)二项式系数:依次为C0n,C1n,C2n,…,C r n,…,C n n;(3)每一项的次数是一样的,即为n次,展开式依a的降幂、b的升幂排列展开;(4)通项是第r+1项.[例1](1)用二项式定理展开(2x-32x2)5.(2)化简:C0n(x+1)n-C1n(x+1)n-1+C2n(x+1)n-2-…+(-1)r C r n(x+1)n-r+…+(-1)n C n n.[思路点拨](1)二项式的指数为5,可直接按二项式定理展开;(2)可先把x+1看成一个整体,分析结构形式,逆用二项式定理求解.[答案](1)(2x-32x2)5=C05(2x)5+C15(2x)4·(-32x2)+…+C55(-32x2)5=32x5-120x2+180x-135x4+4058x7-24332x10.(2)原式=C0n(x+1)n+C1n(x+1)n-1(-1)+C2n(x+1)n-2(-1)2+…+C r n(x+1)n-r(-1)r+…+C n n(-1)n=[(x +1)+(-1)]n=x n.1.求(3x+1x)4的展开式.解:法一:(3x+1x)4=C04(3x)4+C14(3x)3·1x+C24(3x)2·(1x)2+C34(3x)(1x)3+C44(1x)4=81x2+108x+54+12x+1x2.法二:(3x +1x)4=(3x +1)4x 2=1x 2(81x 4+108x 3+54x 2+12x +1)=81x 2+108x +54+12x +1x 2. 2.求C 26+9C 36+92C 46+93C 56+94C 66的值.解:原式=192(92C 26+93C 36+94C 46+95C 56+96C 66) =192(C 06+91C 16+92C 26+93C 36+94C 46+95C 56+96C 66)-192(C 06+91C 16) =192(1+9)6-192(1+6×9)=192(106-55)=12 345. [例2] (1)(x +12 x)8的展开式中常数项为( ) A.3516 B.358 C.354D .105(2)设二项式(x -a x)6(a >0)的展开式中x 3的系数为A ,常数项为B .若B =4A ,则a 的值是________. [答案] (1)二项展开式的通项为 T r +1=C r 8(x )8-r (12 x)r =C r 8(12)r x 4-r. 当4-r =0时,r =4,所以展开式中的常数项为 C 48(12)4=358.故选B. (2)由题意得T r +1=C r 6x6-r (-a x)r =(-a )r C r 6x 36-2r, ∴A =(-a )2C 26,B =(-a )4C 46.又∵B =4A ,∴(-a )4C 46=4(-a )2C 26,解之得a 2=4.又∵a >0,∴a =2. 3.在(2x 2-1x )5的二项展开式中,x 的系数为( )4.A .10B .-10C .40D .-40解析:二项式(2x 2-1x )5的展开式的第r +1项为T r +1=C r 5(2x 2)5-r (-1x)r =C r 5·25-r ×(-1)r x 10-3r .当r =3时含有x ,其系数为C 35·22×(-1)3=-40.4.(1+3x )n (其中n ∈N 且n ≥6)的展开式中,若x 5与x 6的系数相等,则n = ( )A .6B .7C .8D .9解析:二项式(1+3x )n 的展开式的通项是T r +1=C r n 1n -r ·(3x )r =C r n ·3r ·x r.依题意得C 5n ·35=C 6n·36,即n (n -1)(n -2)(n -3)(n -4)5! =3×n (n -1)(n -2)(n -3)(n -4)(n -5)6!(n ≥6),解得n =7.5.在(32x -12)20的展开式中,系数是有理数的项共有( )A .4项B .5项C .6项D .7项解析:T r +1=C r 20(32x )20-r (-12)r =(-22)r ·(32)20-r C r 20·x 20-r . ∵系数为有理数,∴(2)r与20r 32-均为有理数,∴r 能被2整除,且20-r 能被3整除. 故r 为偶数,20-r 是3的倍数,0≤r ≤20, ∴r =2,8,14,20.引入:nb)+(a 的展开式的二次项系数,当n 取正整数时可以表示成如下形式:二项式系数的性质(1)每一行的两端都是1,其余每个数都等于它“肩上”两个数的和.即C 0n =C n n =1,C m n +1=C m -1n +C m n . (2)每一行中,与首末两端“等距离”的两个数相等,即C m n =C n -mn.(3)如果二项式的幂指数n 是偶数,那么其展开式中间一项12+n T 的二项式系数最大;如果n 是奇数,那么其展开式中间两项12121++++n n T T 的二项式系数相等且最大.(4)二项展开式的各二项式系数的和等于2n .即C 0n +C 1n +C 2n +…+C n n =2n .且C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2n -1.[例1] 如图,在“杨辉三角”中,斜线AB 的上方,从1开始箭头所示的数组成一个锯齿形数列:1,2,3,3,6,4,10,5,….记其前n 项和为Sn ,求S19的值.[思路点拨] 由图知,数列中的首项是C 22,第2项是C 12,第3项是C 23,第4项是C 13,…,第17项是C 210,第18项是C 110,第19项是C 211.[答案] S 19=(C 22+C 12)+(C 23+C 13)+(C 24+C 14)+…+(C 210+C 110)+C 211=(C 12+C 13+C 14+…+C 110)+(C 22+C 23+…+C 210+C 211)=(2+3+4+…+10)+C 312=(2+10)×92+220=274.n 行的首尾两个数均为________.解析:由1,3,5,7,9,…可知它们成等差数列,所以an =2n -1.答案:2n -12.如图,由二项式系数构成的杨辉三角中,第________行从左到右第14个数与第15个数之比为2∶3.解析:设第n 行从左至右第14与第15个数之比为2∶3,则3C 13n =2C 14n ,即3n !13!(n -13)!=2n !14!(n -14)!.解得n =34. [例2] 设)(2x )-(12012201222102012R x x a x a x a a ∈++++=(1)求2012210a a a a ++++ 的值. (2)求2011531a a a a ++++ 的值. (3)求||||||||2012210a a a a ++++ 的值.[思路点拨] 先观察所要求的式子与展开式各项的特点,用赋值法求解.[答案] (1)令x =1,得a 0+a 1+a 2+…+a 2 012=(-1)2 012=1.①(2)令x =-1,得a 0-a 1+a 2-…+a 2 012=32 012.② ①-②得2(a 1+a 3+…+a 2 011)=1-32 012, ∴a 1+a 3+a 5+…+a 2 011=1-32 0122.(3)∵T r +1=C r 2 012(-2x )r =(-1)r ·C r 2 012·(2x )r,∴a 2k -1<0(k ∈N +),a 2k >0(k ∈N). ∴|a 0|+|a 1|+|a 2|+|a 3|+…+|a 2 012| =a 0-a 1+a 2-a 3+…+a 2 012 =32 012.[总结] 赋值法是解决二项展开式中项的系数问题的常用方法.根据题目要求,灵活赋给字母不同值是解题的关键.一般地,要使展开式中项的关系变为系数的关系,令x =0可得常数项,令x =1可得所有项的和,令x =-1可得偶次项系数之和与奇次项系数之和的差.3.()()()nx x x ++++++1112的展开式中各项系数的和为( )A .12+n B .12-n C .121-+nD .221-+n解析:令x =1,则222222132-=+++++n n答案:D4.已知14141313221072)21x a x a x a x a a x x +++++=-+ a14x14.(1)求1413210a a a a a +++++ (2)求13531a a a a +++ 解:(1)令x =1,则1413210a a a a a +++++ =72=128. ①(2)令x =-1,则14133210a a a a a a +-+-+- =7)2(-=-128.②①-②得2(13531a a a a ++++ )=256,∴13531a a a a ++++ =128.[例3] (10分)已知(23x+3x 2)n 的展开式中,各项系数和与它的二项式系数和的比为32.(1)求展开式中二项式系数最大的项; (2)求展开式中系数最大的项.[思路点拨] 根据已知条件求出n ,再根据n 为奇数或偶数确定二项式系数最大的项和系数最大的项.[答案] 令x =1,则展开式中各项系数和为(1+3)n =22n .(1分)又展开式中二项式系数和为2n , ∴22n 2n =2n=32,n =5. (2分)(1)∵n =5,展开式共6项,∴二项式系数最大的项为第三、四两项, (3分) ∴T 3=C 25(23x)3(3x 2)2=90x 6,(4分) T 4=C 35(23x)2(3x 2)3=270223x.(5分)(2)设展开式中第k +1项的系数最大, 则由T k +1=C k 5(23x)5-k (3x 2)k =3k C k51043k x+,(6分)得⎩⎪⎨⎪⎧3k C k 5≥3k -1C k -15,3k C k 5≥3k +1C k +15,,∴72≤k ≤92,∴k =4, (8分)即展开式中系数最大的项为T 5=C 45(23x)(3x 2)4=405263x.(10分)[总结] (1)求二项式系数最大的项,根据二项式系数的性质,当n 为奇数时,中间两项的二项式系数最大;当n 为偶数时,中间一项的二项式系数最大.(2)求展开式中系数最大项与二项式系数最大项是不同的,需根据各项系数的正、负变化情况,一般采用列不等式组、解不等式的方法求得.变式训练5.若(x 3+1x 2)n 的展开式中第6项系数最大,则不含x 的项是( )A .210B .120C .461D .416解析:由题意知展开式中第6项二项式系数最大, n2+1=6,∴n =10, T r +1=C r 10x3(10-r )(1x2)r =C r 10x 30-5r . ∴30-5r =0.∴r =6.常数项为C 610=210. 答案:A 5.已知()nx 31+的展开式中,末三项的二项式系数的和等于121,求展开式中二项式系数最大的项.解:由题意知C n n +C n -1n +C n -2n =121, 即C 0n +C 1n +C 2n =121,∴1+n+n(n-1)2=121,即n2+n-240=0,解得n=15或-16(舍).∴在(1+3x)15的展开式中二项式系数最大的项是第八、九两项,且T8=C715(3x)7=C71537x7,T9=C815(3x)8=C81538x8.1.二项式展开式中的常数项是()A.180B.90C.45D.3602.二项式的展开式中x3 的系数是()A.84B. -84C.126D. -1263.设,则=()A.﹣2014B.2014C.﹣2015D.20154.的展开式中含有常数项为第( )项A.4B.5C.6D.75.若对于任意的实数x ,有x3=a0+a1(x-2)+a2(x-2)2+a3(x-2)3,则a2的值为()A.3B.6C.9D.126.在二项式的展开式中,含x4 的项的系数是()A.﹣10B.10C.﹣5D.57.展开式中不含x4项的系数的和为( )A.-1B.0C.1D.28.812014 除以100的余数是()A.1B.79C.21D.819.除以9的余数为( )A.8B.7C.6D.510.二项式展开式中的常数项是()A.第7项B.第8项C.第9项D.第10项11.在二项式的展开式中,前三项的系数成等差数列,则该二项式展开式中x-2项的系数为()A.1B.4C.8D.1612.将二项式的展开式按x的降幂排列,若前三项系数成等差数列,则该展开式中x的指数是整数的项共有()个A.3B.4C.5D.613.已知展开式中,各项系数的和与其各项二项式系数的和之比为64,则n等于()A.4B.5C.6D.714.展开式中x3的系数为10,则实数a等于()A. -1B.C.1D.215.在的二项式展开式中,只有第5项的二项式系数最大,则n= ()A.6B.7C.8D.9二、填空题16.设的展开式的各项系数之和为M ,二项式系数之和为N ,若M-N=240 ,则n =________.17.的展开式中各项系数的和为2,则该展开式中常数项为________.18.(a+2x+3x2)(1+x)5的展开式中一次项的系数为-3 ,则x5的系数为________19.已知的展开式中的常数项为T ,f(x) 是以T 为周期的偶函数,且当时,f(x)=x ,若在区间[-1,3] 内,函数g(x)=f(x)-kx-k有4个零点,则实数k 的取值范围是________20.对任意实数x ,有,则a3 的值为________.三、解答题21.求的二项展开式中的第5项的二项式系数和系数.22.在二项式的展开式中:(1)求展开式中含x3项的系数;(2)如果第3k项和第k+2项的二项式系数相等,试求k的值.23.已知(+3x2)n的展开式中,各项系数和比它的二项式系数和大992,求:(1)展开式中二项式系数最大的项;(2)展开式中系数最大的项.24.已知,且.(1)求n的值;(2)求的值25.已知的展开式的二项式系数之和为32,且展开式中含x3项的系数为80.(1)求m和n的值;(2)求展开式中含x2项的系数.课堂运用答案解析一、选择题1.【答案】A【考点】二项式定理【解析】【解答】二项式展开式的通项为令得r=2所以二项式展开式中的常数项是.故选A.【分析】本题主要考查了二项式定理,解决问题的关键是根据二项式通项计算即可.2.【答案】B【考点】二项式系数的性质【解析】【解答】由于二项式的通项公式为,令9-2r=3,解得r=3,∴展开式中x3的系数是(−1)3• ,故答案为B.【分析】本题主要考查了二项式系数的性质,解决问题的关键是根据二项式系数的性质计算即可.3.【答案】D【考点】二项式定理的应用【解析】【解答】由题意可得即为展开式第2015项的系数,再根据通项公式可得第2015项的系数为:,故选D.【分析】本题主要考查了二项式定理的应用,解决问题的关键是根据二项式定理的性质分析计算即可.4.【答案】B【考点】二项式定理【解析】【解答】由二项展开式公式:,当8-2r=0,即r=4时,T5为常数项,所以常数项为第5项.故选B【分析】本题主要考查了二项式定理,解决问题的关键是根据二项式计算即可.5.【答案】B【考点】二项式定理的应用【解析】【解答】因为,所以,故选择B.【分析】本题主要考查了二项式定理的应用,解决问题的关键是根据二项式的性质计算即可.6.【答案】B【考点】二项式系数的性质【解析】【解答】由二项式定理知,二项式的展开式通项为:,令,得,则的项的系数为:.【分析】本题主要考查了二项式系数的性质,解决问题的关键是根据二项式定理的性质计算即可.7.【答案】B【考点】二项式系数的性质【解析】【解答】由二项式定理知,展开式中最后一项含x4,其系数为1,令x=1得,此二项展开式的各项系数和为,故不含x4项的系数和为1-1=0,故选B.【分析】本题主要考查了二项式系数的性质,解决问题的关键是根据二项式的特征计算即可.8.【答案】C【考点】二项式定理的应用【解析】【解答】== 4,即除以100的余数为21.【分析】本题主要考查了二项式定理的应用,解决问题的关键是根据二项式性质分析计算即可.9.【答案】B【考点】二项式定理的应用【解析】【解答】依题意S=++…+=227-1=89-1=(9-1)9-1=×99-×98+…+×9--1=9( ×98-×97+…+)-2.∴ ×98-×97+…+是正整数,∴S被9除的余数为7.选B.【分析】本题主要考查了二项式定理的应用,解决问题的关键是根据二项式展开性质计算即可.10.【答案】C【考点】二项式定理【解析】【解答】根据二项式定理可得的第项展开式为,要使得为常数项,要求,所以常数项为第9项.【分析】本题主要考查了二项式定理,解决问题的关键是根据二项式定理的性质分析计算即可.11.【答案】A【考点】二项式系数的性质【解析】【解答】由题意可得,成等差数列,∴ ,解得n=8.故展开式的通项公式为,令,求得r=8,故该二项式展开式中项的系数为,故选:A.【分析】本题主要考查了二项式系数的性质,解决问题的关键是二项式性质计算即可.12.【答案】A【考点】二项式系数的性质【解析】【解答】展开式的通项为∴前三项的系数分别是,∴前三项系数成等差数列∴∴∴当时,∴,展开式中x 的指数是整数,故共有3个,答案为A.【分析】本题主要考查了二项式系数的性质,解决问题的关键是根据实际问题结合二项式系数的性质计算即可.13.【答案】C【考点】二项式系数的性质【解析】【解答】展开式中各项系数和为x取时式子的值,所以各项系数和为,而二项式系数和为,因此,所以,答案选C.【分析】本题主要考查了二项式系数的性质,解决问题的关键是根据二项式系数的性质分析计算即可. 14.【答案】D【考点】二项式定理【解析】【解答】二项式的展开式的通项,当5-2r=3 时,r=1,系数,解得a=2,答案选D.【分析】本题主要考查了二项式定理,解决问题的关键是根据二项式定理分析其通项计算即可.15.【答案】C【考点】二项式系数的性质【解析】【解答】因为在的二项式展开式中,只有第5项的二项式系数最大所以由此可得:,即所以即.【分析】本题主要考查了二项式系数的性质,解决问题的关键是根据二项式系数的单调性计算即可.二、填空题16.【答案】4【考点】二项式系数的性质【解析】【解答】由题设知:,解得:,所以答案应填:4.【分析】本题主要考查了二项式系数的性质,解决问题的关键是根据二项式系数的性质计算即可.17.【答案】40【考点】二项式系数的性质【解析】【解答】由题意,,解得:,所以的展开式中常数项为:所以答案应填:40.【分析】本题主要考查了二项式系数的性质,解决问题的关键是二项式系数的性质计算即可.18.【答案】39【考点】二项式系数的性质【解析】【解答】由题意:,解得:,所以,展开式中的系数为,所以答案应填:39【分析】本题主要考查了二项式系数的性质,解决问题的关键是根据二项式性质计算即可.19.【答案】""【解析】【解答】∴ 的常数项为∴f(x)是以2为周期的偶函数∴区间[-1,3]是两个周期∴区间[-1,3]内,函数有4个零点可转化为f(x)与有四个交点当k=0时,两函数图象只有两个交点,不合题意,当k≠0时,∴ ,两函数图象有四个交点,必有解得,故填:.【分析】本题主要考查了二项式定理的应用,解决问题的关键是根据二项式定理的性质结合函数性质计算即可.20.【答案】8【考点】二项式系数的性质【解析】【解答】,所以.【分析】本题主要考查了二项式系数的性质,解决问题的关键是要配成指定形式,再展开三、解答题21.【答案】【解答】解:,所以二项式系数为,系数为.【考点】二项式系数的性质【解析】【分析】本题主要考查了二项式系数的性质,解决问题的关键是利用二项式定理的通项公式写出,再求出二项式系数与系数.22.【答案】(1)【解答】解:展开式第r+1项:令,解得r=2,∴展开式中含x3项的系数为(2)【解答】解:∴第3k项的二项式系数为,第k+2项的二项式系数∴故3k-1=k+1或3k-1+k+1=12 解得k=1或k=3【解析】【分析】本题主要考查了二项式系数的性质,解决问题的关键是(1)写出二项式的展开式的特征项,当x的指数是3时,把3代入整理出k 的值,就得到这一项的系数的值.(2)根据上一问写出的特征项和第3k项和第k+2项的二项式系数相等,表示出一个关于k的方程,解方程即可.23.【答案】(1)解:令x=1,则展开式中各项系数和为(1+3)n=22n.又展开式中二项式系数和为2n,∴22n-2n=992,n=5∴n=5,展开式共6项,二项式系数最大的项为第3、4两项,∴T3=C52 ( )3(3x2)2=90x6,T4=C53 ( )2(3x2)3=(2)解:设展开式中第r+1项系数最大,则T r+1=C5r ( )5-r(3x2)r=3r C5r,∴ ,则,∴r=4,即展开式中第5项系数最大,T5=C54 ( )(3x2)4=405.【考点】二项式系数的性质【解析】【分析】本题主要考查了二项式系数的性质,解决问题的关键是(1)利用赋值法求出各项系数和,与二项式系数和求出值,利用二项式系数的性质求展开式中二项式系数最大的项;(2)设出展开式中系数最大的项,利用进行求解即可.24.【答案】(1)【解答】解:由已知得:,由于, 所以(2)【解答】解:当x=1时,当x=0时,所以,【考点】二项式系数的性质,二项式定理的应用【解析】【分析】本题主要考查了二项式系数的性质;二项式定理的应用,解决问题的关键是:(1)首先注意等式中n的取值应满足:且n为正整数,其次是公式和的准确使用,将已知等式转化为n的方程,解此方程即得;(2)应用赋值法:注意观察已知二项式及右边展开式,由于要求,所以首先令x=1,得;然后就只要求出a0的值来即可,因此需令x=0,得,从而得结果25.【答案】(1)【解答】解:由题意,,则n=5,由通项公式,则r=3,所以,所以m=2(2)【解答】解:=,所以展开式中含x2项的系数为.【考点】二项式系数的性质,二项式定理的应用【解析】【分析】本题主要考查了二项式系数的性质;二项式定理的应用,解决问题的关键是(1)二项式系数之和为:,令易求得n,其次利用二项展开式的通项公式中令r=3,易求得m;(2)在前小题已求得的m,n的基础上,要求展开式中求特定项(含x2项)的系数,只需把两个二项式展开,对于展开式中的常数项与展开式中的x2项的系数乘,一次项系数与其一次项系数乘,二次项系数与其常数项乘,再把所得值相加即为所求.一、选择题1.二项式展开式中的系数为()A.5B.16C.80D.2.在的展开式中,含的项的系数是()A.60B.160C.180D.2403.展开式的各项系数之和大于8,小于32,则展开式中系数最大的项是()A. B. C. D.或4.设,那么的值为()A. B. C. D.5.的展开式中含项的系数为()A. B. C. D.6.的展开式中,的系数为()A.15B.C.60D.7.的展开式中常数项为()A. B. C. D.8.的展开式中,各项系数之和为,各项的二项式系数之和为,且,则展开式中常数项为()A.6B.9C.12D.18二、填空题9.若的展开式中第三项与第五项的系数之比为,则展开式中常数项是________.10.在的展开式中,项的系数为________.(结果用数值表示)11.二项式的展开式中,前三项的系数依次成等差数列,则此展开式中有理项有________项.三、解答题12.已知在的展开式中,第6项为常数项.(1)求;(2)求含项的系数;(3)求展开式中所有的有理项.13.已知二项式.(1)若它的二项式系数之和为.①求展开式中二项式系数最大的项;②求展开式中系数最大的项;(2)若,求二项式的值被除的余数.14.已知在的展开式中,第5项的系数与第3项的系数之比是14∴1.(1)求展开式中的系数;(2)求展开式中系数绝对值最大的项;(3)求的值.课后作业答案解析1.【答案】C【考点】二项式定理,二项式系数的性质【解析】【解答】二项展开式的通项公式为,则当时,其展开式中的的系数为.故答案为:C.【分析】先求出二项的展开式的通项,然后令x的指数为1,求出r,从而可求出x的系数.2.【答案】D【考点】二项式定理的应用【解析】【解答】展开式的通项为,令,则,则含的项的系数为.故答案为:D.【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为7得含x7项的系数.3.【答案】A【考点】二项式定理的应用【解析】【解答】令,可得各项系数的之和为,则,解得,中间一项的系数最大,则,故答案为:A.【分析】令x=1,可求出展开式中的各项系数之和,通过各项系数之和大于8,小于32由已知求出n,即可求解中间项系数最大.4.【答案】B【考点】二项式系数的性质【解析】【解答】时,;时,,∴ ,,∴ ,故答案为:B.【分析】利用展开式,分别令x=1与-1,两式相加或相减可得结论.5.【答案】A【考点】二项式定理的应用【解析】【解答】∴ ,故展开式中含项的系数为.故答案为:A.【分析】把(1+x)5 按照二项式定理展开,可得展开式中含x3项的系数.6.【答案】C【考点】二项式系数的性质【解析】【解答】,系数为.故答案为:C.【分析】根据二项式展开式的通项公式,利用展开式中x4y2,即可求出对应的系数.7.【答案】B【考点】二项式系数的性质,二项式定理的应用【解析】【解答】因为,常数项为,中常数项为,故展开式中常数项为,故答案为:B.【分析】把所给的三项式变为二项式,利用二项式展开式的通项公式,求得展开式中常数项.8.【答案】B【考点】二项式系数的性质【解析】【解答】由二项展开式的性质,可得,所以,所以.展开式的通项为,令可得,常数项为,故答案为:B.【分析】通过给x 赋值1得各项系数和,据二项式系数和公式求出B,列出方程求出n,利用二项展开式的通项公式求出第r+1项,令x的指数为0得常数项.9.【答案】【考点】二项式定理的应用【解析】【解答】的展开式中第三项的系数为,第五项的系数为,由题意有,解得. 的展开式的通项为,由得,所以展开式的常数项为.【分析】利用二项展开式的通项公式求出展开式中第三项与第五项的系数,列出方程求出n;利用二项展开式的通项公式求出第r+1项,令x的指数为0求出常数项.10.【答案】【考点】二项式定理的应用【解析】【解答】,令,得,,的展开式的通项为,则项的系数为.【分析】先把三项式写成二项式,求得二项式展开式的通项公式,再求一次二项式的展开式的通项公式,令x的幂指数等于4,求得r、m的值,即可求得x4项的系数.11.【答案】3【考点】二项式系数的性质,二项式定理的应用【解析】【解答】由题意可得成等差数列,即,化简可得,解得n=8,或n=1(舍去).二项式的展开式的通项公式为,为整数,可得r=0,4,8,故此展开式中有理项的项数是3.【分析】利用二项展开式的通项公式求出展开式的通项,求出前三项的系数,利用等差数列得到关于n的等式,求出n的值,将n的值代入通项,令x的指数为整数,得到r的值,得到展开式中有理项的项数.12.【答案】(1)解:的展开式的通项为= ,又第6项为常数项,则当r=5时,,即=0,可得n=10.(2)解:由(1)可得,,令,可得r=2,所以含x2项的系数为(3)解:由(1)可得,,若T r+1为有理项,则,且0≤r≤10,所以r=2,5,8,则展开式中的有理项分别为,,【考点】二项式系数的性质【解析】【分析】(1)利用通项公式即可得出.(2)根据通项公式,由题意得x的指数是整数,通过取值即可得出.13.【答案】(1)解:,通项为.①二项式系数最大的项为第项,.② ,则展开式中系数最大的项为第项,(2)解:,转化为被除的余数,,即余数为【考点】二项式系数的性质,二项式定理的应用【解析】【分析】(1)根据二项式系数之和为2n=128 求得n的值,可得二项式系数最大的项为第四项和第五项,利用二项展开式的通项公式求出这2项.(2)假设第r+1项的系数最大,列出不等式组求得r的值,可得结论.14.【答案】(1)解:由题意得,解得.通项为,令,得,于是系数为(2)解:设第项系数的绝对值最大,则解得,于是只能为6,所以系数绝对值最大的项为(3)解:原式【考点】二项式系数的性质,二项式定理的应用【解析】【分析】(1)利用二项展开式的通项公式求出展开式的通项,求出展开式中第3项与第5项的系数列出方程求出n的值.(2)设出第r+1项为系数的绝对值最大的项,即可列出关于r的不等式,解得即可,(3)利用二项式定理求得结果.。
高中数学选修2-3习题及答案
[基础训练A 组] 一、选择题1.将3个不同的小球放入4个盒子中,则不同放法种数有( ) A .81 B .64 C .12 D .142.从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机 各1台,则不同的取法共有( )A .140种 B.84种 C.70种 D.35种3.5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有( )A .33AB .334AC .523533A A A -D .2311323233A A A A A +4.,,,,a b c d e 共5个人,从中选1名组长1名副组长,但a 不能当副组长, 不同的选法总数是( )A.20 B .16 C .10 D .65.现有男、女学生共8人,从男生中选2人,从女生中选1人分别参加数学、 物理、化学三科竞赛,共有90种不同方案,那么男、女生人数分别是( ) A .男生2人,女生6人 B .男生3人,女生5人 C .男生5人,女生3人 D .男生6人,女生2人.6.在82x ⎛ ⎝的展开式中的常数项是( )A.7 B .7- C .28 D .28-7.5(12)(2)x x -+的展开式中3x 的项的系数是( ) A.120 B .120- C .100 D .100-8.22nx ⎫⎪⎭展开式中只有第六项二项式系数最大,则展开式中的常数项是( )A .180B .90C .45D .360二、填空题1.从甲、乙,……,等6人中选出4名代表,那么(1)甲一定当选,共有 种选法.(2)甲一定不入选,共有 种选法.(3)甲、乙二人至少有一人当选,共有 种选法.2.4名男生,4名女生排成一排,女生不排两端,则有 种不同排法. 3.由0,1,3,5,7,9这六个数字组成_____个没有重复数字的六位奇数.4.在10(x 的展开式中,6x 的系数是 .5.在220(1)x -展开式中,如果第4r 项和第2r +项的二项式系数相等,则r = ,4r T = .6.在1,2,3,...,9的九个数字里,任取四个数字排成一个首末两个数字是奇数的四位数,这样的四位数有_________________个?7.用145,x 四个不同数字组成四位数,所有这些四位数中的数字的总和为288,则x . 8.从1,3,5,7,9中任取三个数字,从0,2,4,6,8中任取两个数字,组成没有重复数字的五位数,共有________________个? 三、解答题1.判断下列问题是排列问题还是组合问题?并计算出结果.(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?(2)高二年级数学课外小组10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积? 2.7个排成一排,在下列情况下,各有多少种不同排法? (1)甲排头,(2)甲不排头,也不排尾,(3)甲、乙、丙三人必须在一起, (4)甲、乙之间有且只有两人, (5)甲、乙、丙三人两两不相邻, (6)甲在乙的左边(不一定相邻),(7)甲、乙、丙三人按从高到矮,自左向右的顺序, (8)甲不排头,乙不排当中。
高中数学选修2-3 第二章随机变量及其分布 2-1-1离散型随机变量
一区间内的一切值,无法一一列出,故不是离散型随机变
量.
答案: B
2.某人练习射击,共有5发子弹,击中目标或子弹打完 则停止射击,射击次数为X,则“X=5”表示的试验结果为 ()
A.第5次击中目标 B.第5次未击中目标 C.前4次均未击中目标 D.前5次均未击中目标 解析: 射击次数X是一随机变量,“X=5”表示试验 结果“前4次均未击中目标”. 答案: C
(4)体积为64 cm3的正方体的棱长. [思路点拨] 要根据随机变量的定义考虑所有情况.
(1)接到咨询电话的个数可能是0,1,2,…出现 哪一个结果都是随机的,因此是随机变量.
(2)该运动员在某场比赛的上场时间在[0,48]内,是随机 的,故是随机变量.
(3)获得的奖次可能是1,2,3,出现哪一个结果都是随机 的,因此是随机变量.
人教版高中数学选修2-3 第二章 随机变量及其分布
第二章 随机变量及其分布
2.1 离散型随机变量及其分布列 2.1.1 离散型随机变量
课前预习
1.在一块地里种下10颗树苗,成活的树苗棵树为X. [问题1] X取什么数字? [提示] X=0,1,2…10.
2.掷一枚硬币,可能出现正面向上,反面向上两种结 果.
3.一个袋中装有5个白球和5个红球,从中任取3个.其 中所含白球的个数记为ξ,则随机变量ξ的值域为________.
解析: 依题意知,ξ的所有可能取值为0,1,2,3,故ξ的 值域为{0,1,2,3}.
答案: {0,1,2,3}
4.写出下列随机变量ξ可能取的值,并说明随机变量ξ =4所表示的随机试验的结果.
[问题2] 这种试验的结果能用数字表示吗? [提示] 可以,用数1和0分别表示正面向上和反面向 上. [问题3] 10件产品中有3件次品,从中任取2件,所含次 品个数为x,试写出x的值. [提示] x=0,1,2.
高中数学选修2-3 第一章 计数原理 章末检测题 附答案解析
高中数学选修2-3第一章计数原理章末检测题(满分150分,时间120分钟)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.从n 个人中选出2个,分别从事两项不同的工作,若选派方案的种数为72,则n 的值为()A .6B .8C .9D .122.一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为()A .3×3!B .3×(3!)3C .(3!)4D .9!3.从10名大学毕业生中选3人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为()A .85B .56C .49D .284.从集合{0,1,2}到集合{1,2,3,4}的不同映射的个数是()A .81B .64C .24D .125.(2012·重庆卷)82x x 的展开式中常数项为()A.3516B.358C.354D .1056.若(2x +3)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则(a 0+a 2+a 4)2-(a 1+a 3)2的值为()A .2B .-1C .0D .17.某次文艺汇演,要将A 、B 、C 、D 、E 、F 这六个不同节目编排成节目单,如下表:序号123456节目如果A 、B 两个节目相邻且都不排在3号位置,那么节目单上不同的排序方式有()A .144种B .192种C .96种D .72种8.(x +1)4(x -1)5的展开式中x 4的系数为()A .-40B .10C .40D .459.已知集合A ={5},B ={1,2},C ={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为()A .33B .34C .35D .3610.如图,要给①,②,③,④四块区域分别涂上五种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同颜色,则不同的涂色方法种数为()A .320B .160C .96D .6011.6位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,则不同的演讲次序共有()A .240种B .360种C .480种D .720种12.绍兴臭豆腐闻名全国,一外地学者来绍兴旅游,买了两串臭豆腐,每串3颗(如图).规定:每串臭豆腐只能自左向右一颗一颗地吃,且两串可以自由交替吃.请问:该学者将这两串臭豆腐吃完,不同的吃法有()A .6种B .12种C .20种D .40种二、填空题(本大题共4个小题,每小题4分,共16分.请把正确的答案填写在题中的横线上)13.84x x 展开式中含x 的整数次幂的项的系数之和为___________________.(用数字作答)14.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有________种.15.已知(1+x )6(1-2x )5=a 0+a 1x +a 2x 2+…+a 11x 11,那么a 1+a 2+a 3+…+a 11=________.16.如图是由12个小正方形组成的3×4矩形网格,一质点沿网格线从点A 到点B 的不同路径之中,最短路径有________条.三、解答题(本大题共6个小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)有0,1,2,3,4,5共六个数字.(1)能组成多少个没有重复数字的四位偶数;(2)能组成多少个没有重复数字且为5的倍数的五位数.18.(本小题满分12分)已知3241nx x 展开式中的倒数第三项的系数为45,求:(1)含x 3的项;(2)系数最大的项.19.(本小题满分12分)(1)一条长椅上有9个座位,3个人坐,若相邻2人之间至少有2个空椅子,共有几种不同的坐法?(2)一条长椅上有7个座位,4个人坐,要求3个空位中,恰有2个空位相邻,共有多少种不同的坐法?20.(本小题满分12分)设a >0,若(1+ax 12)n 的展开式中含x 2项的系数等于含x 项的系数的9倍,且展开式中第3项等于135x ,那么a 等于多少?21.(本小题满分13分)带有编号1、2、3、4、5的五个球.(1)全部投入4个不同的盒子里;(2)放进不同的4个盒子里,每盒一个;(3)将其中的4个球投入4个盒子里的一个(另一个球不投入);(4)全部投入4个不同的盒子里,没有空盒;各有多少种不同的放法?22.(本小题满分13分)杨辉是中国南宋末年的一位杰出的数学家、教育家.杨辉三角是杨辉的一项重要研究成果,它的许多性质与组合数的性质有关,杨辉三角中蕴藏了许多优美的规律.如图是一个11阶杨辉三角:(1)求第20行中从左到右的第4个数;(2)若第n行中从左到右第14与第15个数的比为23,求n的值;(3)求n阶(包括0阶)杨辉三角的所有数的和.参考答案一、选择题1.【解析】∵A2n=72,∴n=9.【答案】C2.【解析】把一家三口看作一个排列,然后再排列这3家,所以有(3!)4种.【答案】C3.【解析】分两类计算,C22C17+C12C27=49,故选C.【答案】C4.【解析】利用可重复的排列求幂法可得答案为43=64(个).【答案】B5.【解析】T r+1=C r8(x)8-r2rx=12rC r8x4-r2-r2=12rC r8x4-r,令4-r=0,则r=4,∴常数项为T5=124C48=116×70=358.【答案】B6.【解析】(a0+a2+a4)2-(a1+a3)2=(a0+a1+a2+a3+a4)(a0-a1+a2-a3+a4)=(2+3)4×(-2+3)4=1.【答案】D7.【解析】第一步,将C、D、E、F全排,共有A44种排法,产生5个空,第二步,将A、B捆绑有2种方法,第三步,将A、B插入除2号空位和3号空位之外的空位,有C13种,所以一共有144种方法.【答案】A8.【解析】(x+1)4(x-1)5=(x-1)5(x2+4x x+6x+4x+1),则x4的系数为C35×(-1)3+C25×6+C15×(-1)=45.【答案】D9.【解析】①所得空间直角坐标系中的点的坐标中不含1的有C12A33=12个;②所得空间直角坐标系中的点的坐标中含有1个1的有C12A33+A33=18个;③所得空间直角坐标系中的点的坐标中含有2个1的有C13=3个.故共有符合条件的点的个数为12+18+3=33,故选A.【答案】A10.【解析】不同的涂色方法种数为5×4×4×4=320种.【答案】A11.【解析】利用分步计数原理求解.第一步先排甲,共有A 14种不同的排法;第二步再排其他人,共有A 55种不同的排法,因此不同的演讲次序共有A 14·A 55=480(种).【答案】C12.【解析】方法一(树形图):如图所示,先吃A 的情况,共有10种,如果先吃D ,情况相同,所以不同的吃法有20种.方法二:依题意,本题属定序问题,所以有A 66A 33·A 33=20种.【答案】C 二、填空题13.【解析】∵384418841rrr r r r T Cx C xx --+==,当r =0,4,8时为含x 的整数次幂的项,所以展开式中含x 的整数次幂的项的系数之和为C 08+C 48+C 88=72.【答案】7214.【解析】满足题设的取法分三类:①四个奇数相加,其和为偶数,在5个奇数中任取4个,有C 45=5(种);②两个奇数加两个偶数其和为偶数,在5个奇数中任取2个,再在4个偶数中任取2个,有C 25·C 24=60(种);③四个偶数相加,其和为偶数,4个偶数的取法有1种.所以满足条件的取法共有5+60+1=66(种).【答案】6615.【解析】令x =0,得a 0=1;令x =1,得a 0+a 1+a 2+…+a 11=-64;∴a 1+a 2+…+a 11=-65.【答案】-6516.【解析】把质点沿网格线从点A 到点B 的最短路径分为七步,其中四步向右,三步向下,不同走法的区别在于哪三步向下,因此,本题的结论是:C 37=35.【答案】35三、解答题17.【解析】(1)符合要求的四位偶数可分为三类:第一类,0在个位时有A 35个;第二类,2在个位时有A 14A 24个;第三类,4在个位时有A 14A 24个.由分类加法计数原理知,共有四位偶数A 35+A 14A 24+A 14A 24=156个.(2)五位数中5的倍数可分为两类:第一类,个位上的数字是0的五位数有A 45个,第二类,个位上的数字是5的五位数有A 14A 34个.故满足条件的五位数有A 45+A 14A 34=216(个).18.【解析】(1)由题设知C n -2n =45,即C 2n =45,∴n =10.则21011130341211010r r r r r r T C x x C x ---+⎛⎫⎛⎫=⋅= ⎪ ⎪⎝⎭⎝⎭,令11r -3012=3,得r =6,含x 3的项为T 7=C 610x 3=C 410x 3=210x 3.(2)系数最大的项为中间项,即T 6=C 510x55-3012=252x 2512.19.【解析】(1)先将3人(用×表示)与4张空椅子(用□表示)排列如图(×□□×□□×),这时共占据了7张椅子,还有2张空椅子,一是分开插入,如图中箭头所示(↓×□↓□×□↓□×↓),从4个空当中选2个插入,有C 24种插法;二是2张同时插入,有C 14种插法,再考虑3人可交换有A 33种方法.所以,共有A 33(C 24+C 14)=60(种).(2)可先让4人坐在4个位置上,有A 44种排法,再让2个“元素”(一个是两个作为一个整体的空位,另一个是单独的空位)插入4个人形成的5个“空当”之间,有A 25种插法,所以所求的坐法为A 44·A 25=480(种).20.【解析】T r +1=C r n (ax 12)r =C r n a r x r 2,∴4422229135nnn C a C a C a x x⎧=⎪⎨=⎪⎩,∴()()()()()22123914!211352n n n n n n a n n a ⎧----=⎪⎪⎨-⎪=⎪⎩,即()()()22231081270n n a n n a ⎧--=⎪⎨-=⎪⎩,∴(n -2)(n -3)n (n -1)=25.∴3n 2-23n +30=0.解得n =53(舍去)或n =6,a2=27030=9,又a>0,∴a=3.21.【解析】(1)由分步计数原理知,五个球全部投入4个不同的盒子里共有45种放法.(2)由排列数公式知,五个不同的球放进不同的4个盒子里(每盒一个)共有A45种放法.(3)将其中的4个球投入一个盒子里共有C45C14种放法.(4)全部投入4个不同的盒子里(没有空盒)共有C25A44种不同的放法.22.【解析】(1)C320=1140.(2)C13nC14n=23⇒14n-13=23,解得n=34.(3)1+2+22+…+2n=2n+1-1.。
高二数学选修2-3第一章测试题(含答案)
高中数学选修2-3第一章测试题一.选择题(每题5分,满分60分)1.四个同学,争夺三项冠军,冠军获得者可能有的种类是( ) A .4 B .24 C .43D .34[答案] C[解析] 依分步乘法计数原理,冠军获得者可能有的种数是4×4×4=43.故选C.2.210所有正约数的个数共有( ) A .12个 B .14个 C .16个 D .20个[答案] C[解析] 由210=2·3·5·7知正约数的个数为2·2·2·2=16.∴选C. 3.设m ∈N *,且m <15,则(15-m )(16-m )…(20-m )等于( ) A .A 615-m B .A 15-m20-mC .A 620-mD .A 520-m[答案] C[解析] 解法1:(15-m )(16-m )…(20-m )=(20-m )(19-m )……[(20-m )-6+1]=A 620-m .解法2:特值法.令m =14得1×2×3×4×5×6=A 66.∴选C.4.A 、B 、C 、D 、E 五人站成一排,如果A 必须站在B 的左边(A 、B 可以不相邻),则不同排法有( )A .24种B .60种C .90种D .120种[答案] B[解析] 5个人全排列有5!=120种、A 在B 左边和A 在B 右边的情形一样多,∴不同排法有12×120=60种.5.在(x -3)10的展开式中,x 6的系数是( ) A .-27C 610B .27C 410 C .-9C 610D .9C 410[答案] D[解析] ∵T r +1=C r 10x 10-r(-3)r .令10-r =6, 解得r =4.∴系数为(-3)4C 410=9C 410.6.用1、2、3、4、5这五个数字,组成没有重复数字的三位数,其中奇数的个数为( )A .36B .30C .40D .60[答案] A[解析] 奇数的个位数字为1、3或5,偶数的个位数字为2、4.故奇数有35A 35=36个.7.6人站成一排,甲、乙、丙3人必须站在一起的所有排列的总数为( ) A .A 66B .3A 33C .A 33·A 33D .4!·3! [答案] D[解析] 甲、乙、丙三人站在一起有A 33种站法,把3人作为一个元素与其他3人排列有A 44种,∴共有A 33·A 44种.故选D. 8.6人站成一排,甲、乙、丙3个人不能都站在一起的排法种数为( ) A .720 B .144 C .576D .684[答案] C[解析] “不能都站在一起”与“都站在一起”是对立事件,由间接法可得A 66-A 33A 44=576.[点评] 不能都站在一起,与都不相邻应区分.9.C 9798+2C 9698+C 9598等于( )A .C 9799B .C 97100C .C 9899D .C 98100[答案] B[解析] 原式=C 9798+C 9698+C 9698+C 9598=C 9799+C 9699=C 97100,故选B.10.已知集合A ={1,2,3,4,5,6},B ={1,2},若集合M 满足B M A ,则不同集合M的个数为( )A .12B .13C .14D .15[答案] C[解析] ∵B M ,∴M 中必含有1、2且至少含有3、4、5、6中的一个元素,又M A ,∴M ≠A ,∴M 的个数为C 14+C 24+C 34=14个.11.某年级有6个班,分别派3名语文教师任教,每个教师教2个班,则不同的任课方法种数为( )A .C 26·C 24·C 22 B .A 26·A 24·A 22 C .C 26·C 24·C 22·C 33 D.A 26·C 24·C 22A 33[答案] A12.1+(1+x )+(1+x )2+…+(1+x )n 的展开式的各项系数之和为( ) A .2n -1B .2n -1C .2n +1-1 D .2n [答案] C[解析] 解法一:令x =1得,1+2+22+…+2n =1×(2n +1-1)2-1=2n +1-1.解法二:令n =1,知各项系数和为3,排除A 、B 、D ,选C.二.填空题(每小题5分,满分20分)13.三个人坐在一排八个座位上,若每人的两边都要有空位,则不同的坐法种数为________.[答案] 24[解析] “每人两边都有空位”是说三个人不相邻,且不能坐两头,可视作5个空位和3个人满足上述两要求的一个排列,只要将3个人插入5个空位形成的4个空档中即可.∴有A 34=24种不同坐法.14.方程C x 17-C x 16=C 2x +216的解集是________.[答案] {5}[解析] 因为C x 17=C x 16+C x -116,所以C x -116=C 2x +216,由组合数公式的性质,得x -1=2x +2或x -1+2x +2=16,得x 1=-3(舍去),x 2=5.15.方程组⎩⎪⎨⎪⎧x 2+y 2=3,y 2+z 2=4,z 2+x 2=5.有________组解.[答案] 8[解析] 由方程组⎩⎪⎨⎪⎧x 2+y 2=3,y 2+z 2=4,z 2+x 2=5.可得⎩⎪⎨⎪⎧x 2=2,y 2=1,z 2=3.因此在{2,-2},{1,-1},{3,-3}中各取一个即可构成方程组的一组解,由分步乘法计数原理共有2×2×2=8组解.16.(2010·湖北文,11)在(1-x 2)10的展开式中,x 4的系数为________. [答案] 45[解析] 本题主要考查二项式定理.(1-x 2)10的展开式中,只有两个括号含x 2的项,则x 4的系数为C 210(-1)2=45三、解答题17.(满分12分)求和:12!+23!+34!+…+n(n +1)!.[解析] ∵k (k +1)!=k +1-1(k +1)!=k +1(k +1)!-1(k +1)!=1k !-1(k +1)!,∴原式=⎝⎛⎭⎫11-12!+⎝⎛⎭⎫12!-13!+⎝⎛⎭⎫13!-14!+…+⎝⎛⎭⎫1n !-1(n +1)!=1-1(n +1)!.18.(满分10分)用1、2、3、4、5、6、7这7个数字组成没有重复数字的四位数. (1)这些四位数中偶数有多少个?能被5整除的有多少个? (2)这些四位数中大于6500的有多少个?[解析] (1)偶数的个位数只能是2、4、6有A 13种排法,其它位上有A 36种排法,由分步乘法计数原理知共有四位偶数A 13·A 36=360个;能被5整除的数个位必须是5,故有A 36=120个.(2)最高位上是7时大于6500,有A 36种,最高位上是6时,百位上只能是7或5,故有2×A 25种.∴由分类加法计数原理知,这些四位数中大于6500的共有A 36+2A 25=160个.19.(满分12分)一场晚会有5个演唱节目和3个舞蹈节目,要求排出一个节目单. (1)3个舞蹈节目不排在开始和结尾,有多少种排法?(2)前四个节目要有舞蹈节目,有多少种排法?(以上两个题只列出算式)[解析](1)先从5个演唱节目中选两个排在首尾两个位置有A25种排法,再将剩余的3个演唱节目,3个舞蹈节目排在中间6个位置上有A66种排法,故共有A25A66种排法.(2)先不考虑排列要求,有A88种排列,其中前四个节目没有舞蹈节目的情况,可先从5个演唱节目中选4个节目排在前四个位置,然后将剩余四个节目排列在后四个位置,有A45A44种排法,所以前四个节目要有舞蹈节目的排法有(A88-A45A44)种.20.(满分12分)六人按下列要求站一横排,分别有多少种不同的站法?(1)甲不站右端,也不站左端;(2)甲、乙站在两端;(3)甲不站左端,乙不站右端.[解析](1)解法一:因甲不站左右两端,故第一步先从甲以外的5个人中任选二人站在左右两端,有A25种不同的站法;第二步再让剩下的4个人站在中间的四个位置上,有A44种不同的站法,由分步乘法计数原理共有A25·A44=480种不同的站法.解法二:因甲不站左右两端,故第一步先让甲排在左右两端之间的任一位置上,有A14种不同的站法;第二步再让余下的5个人站在其他5个位置上,有A55种不同的站法,故共有A14·A55=480种不同的站法.解法三:我们对6个人,不考虑甲站位的要求,做全排列,有A66种不同的站法;但其中包含甲在左端或右端的情况,因此减去甲站左端或右端的排列数2A55,于是共有A66-2A55=480种不同的站法.(2)解法一:首先考虑特殊元素,让甲、乙先站两端,有A22种不同的站法;再让其他4个人在中间4个位置做全排列,有A44种不同的站法,根据分步乘法计数原理,共有A22·A44=48种不同的站法.解法二:“位置分析法”,首先考虑两端2个位置,由甲、乙去站,有A22种站法,再考虑中间4个位置,由剩下的4个人去站,有A44种站法,根据分步乘法计数原理,共有A22·A44=48种不同的站法.(3)解法一:“间接法”,甲在左端的站法有A55种,乙在右端的站法有A55种,而甲在左端且乙在右端的站法有A44种,故共有A66-2A55+A44=504种不同的站法.解法二:“直接法”,以元素甲的位置进行考虑,可分两类:a.甲站右端有A55种不同的站法;b.甲在中间4个位置之一,而乙不在右端,可先排甲后排乙,再排其余4个,有A14·A14·A44种不同的站法,故共有A55+A14·A14·A44=504种不同的站法.21.(满分12分)有9本不同的课外书,分给甲、乙、丙三名同学,求在下列条件下,各有多少种分法?(1)甲得4本,乙得3本,丙得2本; (2)一人得4本,一人得3本,一人得2本; (3)甲、乙、丙各得3本.[分析] 由题目可获取以下主要信息: ①9本不同的课外书分给甲、乙丙三名同学; ②题目中的3个问题的条件不同.解答本题先判断是否与顺序有关,然后利用相关的知识去解答. [解析] (1)分三步完成:第一步:从9本不同的书中,任取4本分给甲,有C 49种方法; 第二步:从余下的5本书中,任取3本给乙,有C 35种方法; 第三步:把剩下的书给丙有C 22种方法,∴共有不同的分法有C 49·C 35·C 22=1260(种).(2)分两步完成:第一步:将4本、3本、2本分成三组有C 49·C 35·C 22种方法;第二步:将分成的三组书分给甲、乙、丙三个人,有A 33种方法,∴共有C 49·C 35·C 22·A 33=7560(种).(3)用与(1)相同的方法求解,得C 39·C 36·C 33=1680(种).22.(满分12分)已知在(3x -123x )n 的展开式中,第6项为常数项.(1)求n ;(2)求含x 2的项的系数; (3)求展开式中所有的有理项. [解析] (1)T r +1=C r n ·(3x )n -r ·(-123x )r =C r n ·(x 13)n -r ·(-12·x -13)r =(-12)r ·C r n ·x n -2r 3. ∵第6项为常数项,∴r =5时有n -2r3=0,∴n =10.(2)令n -2r 3=2,得r =12(n -6)=2,∴所求的系数为C 210(-12)2=454. (3)根据通项公式,由题意得:⎩⎪⎨⎪⎧10-2r3∈Z0≤r ≤10r ∈Z令10-2r3=k (k ∈Z ),则10-2r =3k , 即r =10-3k 2=5-32k .∵r ∈Z ,∴k 应为偶数,∴k 可取2,0,-2, ∴r =2,5,8,∴第3项、第6项与第9项为有理项. 它们分别为C 210·(-12)2·x 2,C 510(-12)5, C 810·(-12)8·x -2.。
人教A版高中数学选修2-3全册同步练习及单元检测含答案
⼈教A版⾼中数学选修2-3全册同步练习及单元检测含答案⼈教版⾼中数学选修2~3 全册章节同步检测试题⽬录第1章《计数原理》同步练习 1.1测试1第1章《计数原理》同步练习 1.1测试2第1章《计数原理》同步练习 1.1测试3第1章《计数原理》同步练习 1.2排列与组合第1章《计数原理》同步练习 1.3⼆项式定理第1章《计数原理》测试(1)第1章《计数原理》测试(2)第2章同步练习 2.1离散型随机变量及其分布列第2章同步练习 2.2⼆项分布及其应⽤第2章测试(1)第2章测试(2)第2章测试(3)第3章练习 3.1回归分析的基本思想及其初步应⽤第3章练习 3.2独⽴性检验的基本思想及其初步应⽤第3章《统计案例》测试(1)第3章《统计案例》测试(2)第3章《统计案例》测试(3)1. 1分类加法计数原理与分步乘法计数原理测试题⼀、选择题1.⼀件⼯作可以⽤2种⽅法完成,有3⼈会⽤第1种⽅法完成,另外5⼈会⽤第2种⽅法完成,从中选出1⼈来完成这件⼯作,不同选法的种数是()A.8 B.15C.16 D.30答案:A2.从甲地去⼄地有3班⽕车,从⼄地去丙地有2班轮船,则从甲地去丙地可选择的旅⾏⽅式有()A.5种B.6种C.7种D.8种答案:B3.如图所⽰为⼀电路图,从A 到B 共有()条不同的线路可通电()A.1 B.2 C.3 D.4答案:D4.由数字0,1,2,3,4可组成⽆重复数字的两位数的个数是()A.25 B.20 C.16 D.12答案:C5.李芳有4件不同颜⾊的衬⾐,3件不同花样的裙⼦,另有两套不同样式的连⾐裙.“五⼀”节需选择⼀套服装参加歌舞演出,则李芳有()种不同的选择⽅式()A.24 B.14 C.10 D.9答案:B 6.设A ,B 是两个⾮空集合,定义{}()A B a b a A b B *=∈∈,,|,若{}{}0121234P Q ==,,,,,,,则P *Q 中元素的个数是()A.4 B.7 C.12 D.16答案:C⼆、填空题7.商店⾥有15种上⾐,18种裤⼦,某⼈要买⼀件上⾐或⼀条裤⼦,共有种不同的选法;要买上⾐,裤⼦各⼀件,共有种不同的选法.答案:33,2708.⼗字路⼝来往的车辆,如果不允许回头,共有种⾏车路线.答案:129.已知{}{}0341278a b ∈∈,,,,,,,则⽅程22()()25x a y b -+-=表⽰不同的圆的个数是.答案:1210.多项式123124534()()()()a a a b b a a b b ++++++··展开后共有项.答案:1011.如图,从A →C ,有种不同⾛法.答案:612.将三封信投⼊4个邮箱,不同的投法有种.答案:34三、解答题 13.⼀个⼝袋内装有5个⼩球,另⼀个⼝袋内装有4个⼩球,所有这些⼩球的颜⾊互不相同.(1)从两个⼝袋内任取⼀个⼩球,有多少种不同的取法?(2)从两个⼝袋内各取⼀个⼩球,有多少种不同的取法?解:(1)549N =+=种;(2)5420N =?=种.14.某校学⽣会由⾼⼀年级5⼈,⾼⼆年级6⼈,⾼三年级4⼈组成.(1)选其中1⼈为学⽣会主席,有多少种不同的选法?(2)若每年级选1⼈为校学⽣会常委,有多少种不同的选法?(3)若要选出不同年级的两⼈参加市⾥组织的活动,有多少种不同的选法?解:(1)56415N =++=种;(2)564120N =??=种;(3)56644574N =?+?+?=种15.已知集合{}321012()M P a b =---,,,,,,,是平⾯上的点,a b M ∈,.(1)()P a b ,可表⽰平⾯上多少个不同的点?(2)()P a b ,可表⽰多少个坐标轴上的点?解:(1)完成这件事分为两个步骤:a 的取法有6种,b 的取法也有6种,∴P 点个数为N =6×6=36(个);(2)根据分类加法计数原理,分为三类:①x 轴上(不含原点)有5个点;②y 轴上(不含原点)有5个点;③既在x 轴,⼜在y 轴上的点,即原点也适合,∴共有N =5+5+1=11(个).1. 1分类加法计数原理与分步乘法计数原理测试题⼀、选择题 1.从集合{ 0,1,2,3,4,5,6}中任取两个互不相等的数a ,b 组成复数a bi +,其中虚数有() A .30个 B .42个 C .36个 D .35个答案:C2.把10个苹果分成三堆,要求每堆⾄少1个,⾄多5个,则不同的分法共有() A .4种 B .5种 C .6种 D .7种答案:A3.如图,⽤4种不同的颜⾊涂⼊图中的矩形A ,B ,C ,D 中,要求相邻的矩形涂⾊不同,则不同的涂法有() A .72种 B .48种 C .24种 D .12种答案:A4.教学⼤楼共有五层,每层均有两个楼梯,由⼀层到五层的⾛法有() A .10种 B .52种C.25种D.42种答案:D5.已知集合{}{}023A B x x ab a b A ===∈,,,,,|,则B 的⼦集的个数是()A.4 B.8 C.16 D.15答案:C6.三边长均为正整数,且最⼤边长为11的三⾓形的个数为()A.25 B.26 C.36 D.37答案:C⼆、填空题7.平⾯内有7个点,其中有5个点在⼀条直线上,此外⽆三点共线,经过这7个点可连成不同直线的条数是.答案:128.圆周上有2n 个等分点(1n >),以其中三个点为顶点的直⾓三⾓形的个数为.答案:2(1)n n -9.电⼦计算机的输⼊纸带每排有8个穿孔位置,每个穿孔位置可穿孔或不穿孔,则每排可产⽣种不同的信息.答案:25610.椭圆221x y m n+=的焦点在y 轴上,且{}{}123451234567m n ∈∈,,,,,,,,,,,,则这样的椭圆的个数为.答案:20 11.已知集合{}123A ,,ü,且A 中⾄少有⼀个奇数,则满⾜条件的集合A 分别是.答案:{}{}{}{}{}13122313,,,,,,,12.整数630的正约数(包括1和630)共有个.答案:24三、解答题 13.⽤0,1,2,3,4,5六个数字组成⽆重复数字的四位数,⽐3410⼤的四位数有多少个?解:本题可以从⾼位到低位进⾏分类.(1)千位数字⽐3⼤.(2)千位数字为3:①百位数字⽐4⼤;②百位数字为4: 1°⼗位数字⽐1⼤;2°⼗位数字为1→个位数字⽐0⼤.所以⽐3410⼤的四位数共有2×5×4×3+4×3+2×3+2=140(个).14.有红、黄、蓝三种颜⾊旗⼦各(3)n n >⾯,任取其中三⾯,升上旗杆组成纵列信号,可以有多少种不同的信号?若所升旗⼦中不允许有三⾯相同颜⾊的旗⼦,可以有多少种不同的信号?若所升旗⼦颜⾊各不相同,有多少种不同的信号?解: 1N =3×3×3=27种; 227324N =-=种; 33216N =??= 种.15.某出版社的7名⼯⼈中,有3⼈只会排版,2⼈只会印刷,还有2⼈既会排版⼜会印刷,现从7⼈中安排2⼈排版,2⼈印刷,有⼏种不同的安排⽅法.解:⾸先分类的标准要正确,可以选择“只会排版”、“只会印刷”、“既会排版⼜会印刷”中的⼀个作为分类的标准.下⾯选择“既会排版⼜会印刷”作为分类的标准,按照被选出的⼈数,可将问题分为三类:第⼀类:2⼈全不被选出,即从只会排版的3⼈中选2⼈,有3种选法;只会印刷的2⼈全被选出,有1种选法,由分步计数原理知共有3×1=3种选法.第⼆类:2⼈中被选出⼀⼈,有2种选法.若此⼈去排版,则再从会排版的3⼈中选1⼈,有3种选法,只会印刷的2⼈全被选出,有1种选法,由分步计数原理知共有2×3×1=6种选法;若此⼈去印刷,则再从会印刷的2⼈中选1⼈,有2种选法,从会排版的3⼈中选2⼈,有3种选法,由分步计数原理知共有2×3×2=12种选法;再由分类计数原理知共有6+12=18种选法.第三类:2⼈全被选出,同理共有16种选法.所以共有3+18+16=37种选法.1. 1 分类加法计数原理与分步乘法计数原理综合卷⼀.选择题:1.⼀个三层书架,分别放置语⽂书12本,数学书14本,英语书11本,从中取出⼀本,则不同的取法共有()(A ) 37种(B ) 1848种(C ) 3种(D ) 6种2.⼀个三层书架,分别放置语⽂书12本,数学书14本,英语书11本,从中取出语⽂、数学、英语各⼀本,则不同的取法共有()(A ) 37种(B ) 1848种(C ) 3种(D ) 6种3.某商业⼤厦有东南西3个⼤门,楼内东西两侧各有2个楼梯,从楼外到⼆楼的不同⾛法种数是()(A ) 5 (B )7 (C )10 (D )124.⽤1、2、3、4四个数字可以排成不含重复数字的四位数有()(A )265个(B )232个(C )128个(D )24个5.⽤1、2、3、4四个数字可排成必须含有重复数字的四位数有()(A )265个(B )232个(C )128个(D )24个6.3科⽼师都布置了作业,在同⼀时刻4名学⽣都做作业的可能情况有()(A )43种(B )34种(C )4×3×2种(D ) 1×2×3种7.把4张同样的参观券分给5个代表,每⼈最多分⼀张,参观券全部分完,则不同的分法共有()(A )120种(B )1024种(C )625种(D )5种8.已知集合M={l ,-2,3},N={-4,5,6,7},从两个集合中各取⼀个元素作为点的坐标,则这样的坐标在直⾓坐标系中可表⽰第⼀、⼆象限内不同的点的个数是()(A )18 (B )17 (C )16 (D )109.三边长均为整数,且最⼤边为11的三⾓形的个数为()(A )25 (B )36 (C )26 (D )3710.如图,某城市中,M 、N 两地有整齐的道路⽹,若规定只能向东或向北两个⽅向沿途中路线前进,则从M 到N 不同的⾛法共有()(A )25 (B )15 (C)13 (D )10 ⼆.填空题:11.某书店有不同年级的语⽂、数学、英语练习册各10本,买其中⼀种有种⽅法;买其中两种有种⽅法.12.⼤⼩不等的两个正⽅形玩具,分别在各⾯上标有数字1,2,3,4,5,6,则向上的⾯标着的两个数字之积不少于20的情形有种.13.从1,2,3,4,7,9中任取不相同的两个数,分别作为对数的底数和真数,可得到个不同的对数值.14.在连结正⼋边形的三个顶点组成的三⾓形中,与正⼋边形有公共边的有个.15.某班宣传⼩组要出⼀期向英雄学习的专刊,现有红、黄、⽩、绿、蓝五种颜⾊的粉笔供选⽤,要求在⿊板中A 、B 、C 、D 每⼀部分只写⼀种颜⾊,如图所⽰,相邻两块颜⾊不同,则不同颜⾊的书写⽅法共有种.三.解答题:16.现由某校⾼⼀年级四个班学⽣34⼈,其中⼀、⼆、三、四班分别为7⼈、8⼈、9⼈、10⼈,他们⾃愿组成数学课外⼩组.(1)选其中⼀⼈为负责⼈,有多少种不同的选法?(2)每班选⼀名组长,有多少种不同的选法?(3)推选⼆⼈做中⼼发⾔,这⼆⼈需来⾃不同的班级,有多少种不同的选法?17.4名同学分别报名参加⾜球队,蓝球队、乒乓球队,每⼈限报其中⼀个运动队,不同的报名⽅法有⼏种?[探究与提⾼]1.甲、⼄两个正整数的最⼤公约数为60,求甲、⼄两数的公约数共有多个?2.从{-3,-2,-1,0,l,2,3}中,任取3个不同的数作为抛物线⽅程y=ax2+bx+c(a≠0)的系数,如果抛物线过原点,且顶点在第⼀象限,这样的抛物线共有多少条?3.电视台在“欢乐今宵”节⽬中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的群众来信,甲信箱中有30封,⼄信箱中有20封.现由主持⼈抽奖确定幸运观众,若先确定⼀名幸运之星,再从两信箱中各确定⼀名幸运伙伴,有多少种不同的结果?综合卷1.A 2.B 3.D 4.D 5.B 6.B 7.D 8.B 9.B 10.B11.30;300 12.513.17 14.40 15.1801. 2排列与组合1、排列综合卷1.90×9l ×92×……×100=()(A )10100A (B )11100A (C )12100A (D )11101A 2.下列各式中与排列数mn A 相等的是()(A )!(1)!-+n n m (B )n(n -1)(n -2)……(n -m) (C )11m n nA n m --+ (D )111m n n A A --3.若 n ∈N 且 n<20,则(27-n )(28-n)……(34-n)等于()(A )827n A - (B )2734nn A -- (C )734n A - (D )834n A -4.若S=123100123100A A A A ++++,则S 的个位数字是()(A )0 (B )3 (C )5 (D )85.⽤1,2,3,4,5这五个数字组成没有重复数字的三位数,其中偶数共有()(A )24个(B )30个(C )40个(D )60个6.从0,l ,3,5,7,9中任取两个数做除法,可得到不同的商共有()(A )20个(B )19个(C )25个(D )30个7.甲、⼄、丙、丁四种不同的种⼦,在三块不同⼟地上试种,其中种⼦甲必须试种,那么不同的试种⽅法共有()(A )12种(B )18种(C )24种(D )96种8.某天上午要排语⽂、数学、体育、计算机四节课,其中体育不排在第⼀节,那么这天上午课程表的不同排法共有()(A )6种(B )9种(C )18种(D )24种9.有四位司机、四个售票员组成四个⼩组,每组有⼀位司机和⼀位售票员,则不同的分组⽅案共有()(A )88A 种(B )48A 种(C )44A ·44A 种(D )44A 种10.有4位学⽣和3位⽼师站在⼀排拍照,任何两位⽼师不站在⼀起的不同排法共有()(A )(4!)2种(B )4!·3!种(C )34A ·4!种(D )3 5A ·4!种11.把5件不同的商品在货架上排成⼀排,其中a ,b 两种必须排在⼀起,⽽c ,d 两种不能排在⼀起,则不同排法共有()(A )12种(B )20种(C )24种(D )48种⼆.填空题::12.6个⼈站⼀排,甲不在排头,共有种不同排法.13.6个⼈站⼀排,甲不在排头,⼄不在排尾,共有种不同排法.14.五男⼆⼥排成⼀排,若男⽣甲必须排在排头或排尾,⼆⼥必须排在⼀起,不同的排法共有种.15.将红、黄、蓝、⽩、⿊5种颜⾊的⼩球,分别放⼊红、黄、蓝、⽩、⿊5种颜⾊的⼝袋中,但红⼝袋不能装⼊红球,则有种不同的放法.16.(1)有5本不同的书,从中选3本送给3名同学,每⼈各⼀本,共有种不同的送法;(2)有5种不同的书,要买3本送给3名同学,每⼈各⼀本,共有种不同的送法.三、解答题:17.⼀场晚会有5个唱歌节⽬和3个舞蹈节⽬,要求排出⼀个节⽬单(1)前4个节⽬中要有舞蹈,有多少种排法?(2)3个舞蹈节⽬要排在⼀起,有多少种排法?(3)3个舞蹈节⽬彼此要隔开,有多少种排法?18.三个⼥⽣和五个男⽣排成⼀排.(1)如果⼥⽣必须全排在⼀起,有多少种不同的排法?(2)如果⼥⽣必须全分开,有多少种不同的排法?(3)如果两端都不能排⼥⽣,有多少种不同的排法?(4)如果两端不能都排⼥⽣,有多少种不同的排法?(5)如果三个⼥⽣站在前排,五个男⽣站在后排,有多少种不同的排法?综合卷1.B 2.D 3.D 4.C 5.A 6.B 7.B 8.C 9.D 10.D 11.C12.600 13.504 14.480 15.9616.(1) 60;(2) 12517.(1) 37440;(2) 4320;(3) 1440018.(1) 4320;(2) 14400;(3) 14400;(4) 36000;(5) 7202、组合综合卷⼀、选择题:1.下列等式不正确的是()(A )!!()!mn n C m n m =- (B )11mm n n m C C n m++=- (C )1111m m n n m C C n +++=+ (D )11m m n n C C ++= 2.下列等式不正确的是()(A )m n m n n C C -= (B )11m m mm m m C C C -++=(C )123455555552C C C C C ++++= (D )11 111m m m m n n n n C C C C --+--=++3.⽅程2551616x x x C C --=的解共有()(A )1个(B )2个(C )3个(D )4个4.若372345n n n C A ---=,则n 的值是()(A )11 (B )12 (C )13 (D )145.已知7781n n n C C C +-=,那么n 的值是()(A )12 (B )13 (C )14 (D )15 6.从5名男⽣中挑选3⼈,4名⼥⽣中挑选2⼈,组成⼀个⼩组,不同的挑选⽅法共有()(A )3254C C 种(B ) 3254C C 55A 种(C ) 3254A A 种(D ) 3254A A 55A 种7.从4个男⽣,3个⼥⽣中挑选4⼈参加智⼒竞赛,要求⾄少有⼀个⼥⽣参加的选法共有()(A )12种(B )34种(C )35种(D )340种8.平⾯上有7个点,除某三点在⼀直线上外,再⽆其它三点共线,若过其中两点作⼀直线,则可作成不同的直线()(A )18条(B )19条(C )20条(D )21条9.在9件产品中,有⼀级品4件,⼆级品3件,三级品2件,现抽取4个检查,⾄少有两件⼀级品的抽法共有()(A )60种(B )81种(C )100种(D )126种10.某电⼦元件电路有⼀个由三节电阻串联组成的回路,共有6个焊点,若其中某⼀焊点脱落,电路就不通.现今回路不通,焊点脱落情况的可能有()(A )5种(B )6种(C )63种(D )64种⼆.填空题:11.若11m m n n C xC --=,则x= .12.三名教师教六个班的课,每⼈教两个班,分配⽅案共有种。
高中数学选修2-3(人教A版)第二章随机变量及其分布2.2知识点总结含同步练习及答案
第二章随机变量及其分布 2.2二项分布及其应用
一、学习任务 1. 了解条件概率的定义及计算公式,并会利用条件概率解决一些简单的实际问题. 2. 能通过实例理解相互独立事件的定义及概率计算公式,并能综合利用互斥事件的概率加法公 式即对立事件的概率乘法公式. 3. 理解独立重复试验的概率及意义,理解事件在 n 次独立重复试验中恰好发生 k 次的概率 公式,并能利用 n 次独立重复试验的模型模拟 n 次独立重复试验. 二、知识清单
(2)设事件“甲、乙两人在罚球线各投球二次均不命中”的概率为 P1 ,则
¯ ∩ ¯¯ ¯ ∩ ¯¯ ¯ ∩ ¯¯ ¯) P1 = P (¯¯ A A B B ¯ ) ⋅ P (¯¯ ¯ ) ⋅ P (¯¯ ¯ ) ⋅ P (¯¯ ¯) = P (¯¯ A A B B 1 2 = (1 − )2 (1 − )2 2 5
n−k k P (X = k) = Ck , k = 0, 1, 2, ⋯ , n. n p (1 − p)
此时称随机变量 X 服从二项分布(binnomial distribution),记作 X ∼ B(n, p)),并称 p 为 成功概率. 例题: 下列随机变量 X 的分布列不属于二项分布的是( ) A.投掷一枚均匀的骰子 5 次,X 表示点数 6 出现的次数 B.某射手射中目标的概率为 p ,设每次射击是相互独立的,X 为从开始射击到击中目标所需要 的射击次数 C.实力相等的甲、乙两选手举行了 5 局乒乓球比赛,X 表示甲获胜的次数 D.某星期内,每次下载某网站数据后被病毒感染的概率为 0.3,X 表示下载 n 次数据后电脑被 病毒感染的次数 解:B 选项 A,试验出现的结果只有两个:点数为 6 和点数不为 6 ,且点数为 6 的概率在每一次试验 都为
人教A版高中数学选修2-3 模块综合评价(一)(含答案解析)
模块综合评价(一)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题意的)1.某一随机变量ξ的概率分布如下表,且m +2n =1.2,则m -n2的值为( )A .-0.2B .0.2C .0.1D .-0.1解析:由离散型随机变量分布列的性质,可得m +n +0.2=1, 又m +2n =1.2,所以m =0.4,n =0.4, 所以m -n2=0.2.答案:B2.某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是( )A.y ^=-10x +200 B.y ^=10x +200 C.y ^=-10x -200D.y ^=10x -200解析:由于销售量y 与销售价格x 负相关,故排除B ,D.又当x =10时,A 中的y =100,而C 中y =-300,故C 不符合题意.3.从A,B,C,D,E5名学生中选出4名分别参加数学、物理、化学、外语竞赛,其中A不参加物理、化学竞赛,则不同的参赛方案种数为()A.24 B.48 C.72 D.120解析:A参加时参赛方案有C34A12A33=48(种),A不参加时参赛方案有A44=24(种),所以不同的参赛方案共72种,故选C.答案:C4.两个分类变量X和Y,值域分别为{x1,x2}和{y1,y2},其样本频数分别是a=10,b=21,c+d=35,若X与Y有关系的可信程度为90%,则c=()A.4 B.5 C.6 D.7解析:列2×2列联表可知:当c=5时,K2=66×(10×30-5×21)215×51×31×35≈3.024>2.706,所以c=5时,X与Y有关系的可信程度为90%,而其余的值c=4,c=6,c=7皆不满足.5.⎝⎛⎭⎪⎫x +12x 8的展开式中常数项为( ) A.3516 B.358 C.354D .105 解析:二项展开式的通项为T k +1=C k 8(x )8-k ⎝ ⎛⎭⎪⎫12x k =⎝ ⎛⎭⎪⎫12k C k 8x 4-k,令4-k =0,解得k =4,所以T 5=⎝ ⎛⎭⎪⎫124C 48=358.答案:B6.ξ,η为随机变量,且η=aξ+b ,若E (ξ)=1.6,E (η)=3.4,则a ,b 可能的值为( )A .2,0.2B .1,4C .0.5,1.4D .1.6,3.4解析:由E (η)=E (aξ+b )=aE (ξ)+b =1.6a +b =3.4,把选项代入验证,只有A 满足.答案:A7.已知随机变量ξ的分布列为ξ=-1,0,1,对应P =12,16,13,且设η=2ξ+1,则η的期望为( )A .-16 B.23 C.2936D .1解析:E (ξ)=-1×12+0×16+1×13=-16,所以E (μ)=E (2ξ+1)=2E (ξ)+1=23.8.若随机变量ξ~N (-2,4),ξ在下列区间上取值的概率与ξ在区间(-4,-2]上取值的概率相等的是( )A .(2,4]B .(0,2]C .[-2,0)D .(-4,4]解析:此正态曲线关于直线x =-2对称,所以ξ在区间(-4,-2]上取值的概率等于ξ在[-2,0)上取值的概率.答案:C9.设随机变量X 服从二项分布B ⎝⎛⎭⎪⎫5,12,则函数f (x )=x 2+4x +X 存在零点的概率是( )A.56B.45C.2021D.3132解析:函数f (x )=x 2+4x +X 存在零点, 所以Δ=16-4X ≥0,所以X ≤4,因为随机变量X 服从二项分布B ⎝⎛⎭⎪⎫5,12, 所以P (X ≤4)=1-P (X =5)=1-125=3132.答案:D10.通过随机询问72名不同性别的大学生在购买食物时是否看营养说明,得到如下列联表:) A.99%的可能性B.99.75%的可能性C.99.5%的可能性D.97.5%的可能性解析:由题意可知a=16,b=28,c=20,d=8,a+b=44,c +d=28,a+c=36,b+d=36,n=a+b+c+d=72.代入公式K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),得K2=72×(16×8-28×20)244×28×36×36≈8.42.由于K2≈8.42>7.879,我们就有99.5%的把握认为性别和读营养说明之间有关系,即性别和读营养说明之间有99.5%的可能是有关系的.答案:C11.某日A,B两个沿海城市受台风袭击的概率相同,已知A市或B市至少有一个受台风袭击的概率为0.36,若用X表示这一天受台风袭击的城市个数,则E(X)=()A.0.1 B.0.2 C.0.3 D.0.4解析:设A,B两市受台风袭击的概率均为p,则A市或B市都不受台风袭击的概率为(1-p)2=1-0.36,解得p=0.2或p=1.8(舍去).法一 P (X =0)=1-0.36=0.64.P (X =1)=2×0.8×0.2=0.32, P (X =2)=0.2×0.2=0.04,所以E (X )=0×0.64+1×0.32+2×0.04=0.4.法二 X ~B (2,0.2),E (X )=np =2×0.2=0.4. 答案:D12.设函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫x -1x 6,x <0,-x ,x ≥0,则当x >0时,f (f (x ))表达式的展开式中常数项为( )A .-20B .20C .-15D .15解析:当x >0时,f (f (x ))=⎝ ⎛⎭⎪⎫-x +1x 6=⎝ ⎛⎭⎪⎫1x -x 6,则展开式中常数项为C 36⎝⎛⎭⎪⎫1x 3(-x )3=-20. 答案:A二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.抽样调查表明,某校高三学生成绩(总分750分)X 近似服从正态分布,平均成绩为500分.已知P (400<X <450)=0.3,则P (550<X <600)=________.解析:由下图可以看出P (550<X <600)=P (400<X <450)=0.3.答案:0.314.已知随机变量ξ~B (36,p ),且E (ξ)=12,则D (ξ)=________. 解析:由E (ξ)=36p =12,得p =13,所以D (ξ)=36×13×23=8.答案:815.欧阳修《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿.”可见“行行出状元”,卖油翁的技艺让人叹为观止,如图铜钱是直径为4 cm 的圆形,正中间有边长为1 cm 的正方形孔,若随机向铜钱上滴一滴油(油滴是直径为0.2 cm 的球),记“油滴不出边界”为事件A ,“油滴整体正好落入孔中”为事件B .则P (B |A )________(不作近似值计算).解析:因为铜钱的有效面积S =π·(2-0.1)2,能够滴入油的图形为边长为1-2×110=45的正方形,面积为1625, 所以P (B |A )=64361π.答案:64361π16.某射手对目标进行射击,直到第一次命中为止,每次射击的命中率为0.6,现共有子弹4颗,命中后剩余子弹数目的数学期望是________.解析:设ξ为命中后剩余子弹数目,则P (ξ=3)=0.6,P (ξ=2)=0.4×0.6=0.24,P (ξ=1)=0.4×0.4×0.6=0.096,E (ξ)=3×0.6+2×0.24+0.096=2.376.答案:2.376三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知f (x )=(1+x )m +(1+x )n (m ,n ∈N *)展开式中x 的系数为19,求f (x )的展开式中x 2的系数的最小值.解:f (x )=1+C 1m x +C 2m x 2+…+C m m x m +1+C 1n x +C 2n x 2+…+C nnx n ,由题意知m +n =19,m ,n ∈N *, 所以x2项的系数为C 2m +C 2n =m (m -1)2+n (n -1)2=⎝ ⎛⎭⎪⎫m -1922+19×174.因为m ,n ∈N *,所以当m =9或m =10时,上式有最小值. 所以当m =9,n =10或m =10,n =9时,x 2项的系数取得最小值,最小值为81.18.(本小题满分12分)某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A 饮料,另外4杯为B 饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A 饮料.若4杯都选对,则月工资定为3 500元;若4杯选对3杯,则月工资定为2 800元,否则月工资定为2 100元,令X 表示此人选对A 饮料的杯数,假设此人对A 和B 两种饮料没有鉴别能力.(1)求X 的分布列; (2)求此员工月工资的期望.解:(1)X 的所有可能取值为:0,1,2,3,4,P (X =i )=C i 4C 4-i 4C 48(i =0,1,2,3,4),故X 的分布列为:(2)令Y 表示新录用员工的月工资,则Y 的所有可能取值为2 100,2 800,3 500,则P (Y =3 500)=P (X =4)=170,P (Y =2 800)=P (X =3)=835,P (Y =2 100)=P (X ≤2)=5370, E (Y )=3 500×170+2 800×835+2 100×5370=2 280.所以新录用员工月工资的期望为2 280元.19.(本小题满分12分)某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定.小王到银行取钱时,发现自己忘记了银行卡的密码,但是可以确定该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码次数为X ,求X 的分布列和数学期望.解:(1)设“当天小王的该银行卡被锁定”的事件为A , 则P (A )=56×45×34=12.(2)依题意得,X 所有可能的取值是1,2,3, 又P (X =1)=16,P (X =2)=56×15=16,P (X =3)=56×45×1=23.所以X 的分布列为:所以E (X )=1×16+2×16+3×23=52.19.(本小题满分12分)某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定,小王到银行取钱时,发现自己忘记了银行卡的密码,但是可以确定该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码次数为X ,求X 的分布列和数学期望.解:(1)设“当天小王的该银行卡被锁定”的事件为A , 则P (A )=56×45×34=12.(2)依题意得,X 所有可能的取值是1,2,3,又P (X =1)=16,P (X=2)=56×15=16,P (X =3)=56×45×1=23.所以X 的分布列为:所以E (X )=1×16+2×16+3×23=52.20.(本小题满分12分)从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑10i =1 x i =80,∑10i =1 y i =20,∑10i =1 x i y i =184,∑10i =1 x 2i =720.(1)求家庭的月储蓄y 对月收入x 的线性回归方程y ^=b ^x +a ^; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄. 附:线性回归方程y ^=b ^x +a ^中,b =∑ni =1 x i y i -n x y∑n i =1 x 2i -nx 2,a ^=y -b ^x ,其中x ,y 为样本平均值. 解:(1)由题意知n =10,x =1n ∑n i =1 x i =8010=8,y=1n∑ni=1y i=2010=2,又l xx=∑ni=1x2i-nx2=720-10×82=80,l xy=∑ni=1x i y i-nxy=184-10×8×2=24,由此得b^=l xyl xx=2480=0.3,a^=y-b^x=2-0.3×8=-0.4.故所求线性回归方程为y=0.3x-0.4.(2)由于变量y的值随x值的增加而增加(b=0.3>0),故x与y之间是正相关.(3)将x=7代入回归方程可以预测该家庭的月储蓄为y=0.3×7-0.4=1.7(千元).21.(本小题满分12分)为了研究“教学方式”对教学质量的影响,某高中老师分别用两种不同的教学方式对入学数学平均分数和优秀率都相同的甲、乙两个高一新班进行教学(勤奋程度和自觉性都一样).以下茎叶图为甲、乙两班(每班均为20人)学生的数学期末考试成绩.(1)现从甲班数学成绩不低于80分的同学中随机抽取两名同学,求成绩为87分的同学至少有一名被抽中的概率;(2)学校规定:成绩不低于75分的为优秀.请填写下面的2×2列联表,并判断有多大把握认为“成绩优秀与教学方式有关”.⎝⎭⎪参考公式:K 2=(a +b )(c +d )(a +c )(b +d )解:(1)甲班成绩为87分的同学有2个,其他不低于80分的同学有3个“从甲班数学成绩不低于80分的同学中随机抽取两名同学”的一切可能结果组成的基本事件有C 25=10(个),“抽到至少有一个87分的同学”所组成的基本事件有C 13C 12+C 22=(7个),所以P =710. (2)2×2列联表如下:K 2=40×(6×6-14×14)220×20×20×20=6.4>5.024.因此,我们有97.5%的把握认为成绩优秀与教学方式有关. 22.(本小题满分12分)在一个圆锥体的培养房内培养了40只蜜蜂,准备进行某种实验,过圆锥高的中点有一个不计厚度且平行于圆锥底面的平面把培养房分成两个实验区,其中小锥体叫第一实验区,圆台体叫第二实验区,且两个实验区是互通的.假设蜜蜂落入培养房内任何位置是等可能的,且蜜蜂落入哪个位置相互之间是不受影响的.(1)求蜜蜂落入第二实验区的概率.(2)若其中有10只蜜蜂被染上了红色,求恰有一只红色蜜蜂落入第二实验区的概率.(3)记X 为落入第一实验区的蜜蜂数,求随机变量X 的数学期望E (X ).解:(1)记“蜜蜂落入第一实验区”为事件A ,“蜜蜂落入第二实验区”为事件B ,依题意得:P (A )=V 小锥体V 圆锥体=13·14·S 圆锥底面·12h 圆锥13·S 圆锥底面·h 圆锥=18,所以P (B )=1-P (A )=78,所以蜜蜂落入第二实验区的概率为78.(2)记“蜜蜂被染上红色”为事件C ,则事件B ,C 为相互独立事件,又P (C )=1040=14,P (B )=78.则P (BC )=P (B )P (C )=14×78=732,所以恰有一只红色蜜蜂落入第二实验区的概率为732.(3)因为蜜蜂落入培养房内任何位置是等可能的,且蜜蜂落入哪个位置相互之间是不受影响的,所以变量X 服从二项分布,即X ~B ⎝⎛⎭⎪⎫40,18,所以随机变量X 的数学期望E (X )=40×18=5.。
高中数学选修2-3n次独立重复试验和二项分布精选题目(附答案)
高中数学选修2-3n次独立重复试验和二项分布精选题目(附答案)(1)n次独立重复试验一般地,在相同条件下重复做的n次试验称为n次独立重复试验.(2)二项分布一般地,在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则P(X=k)=C k n p k(1-p)n-k,k=0,1,2,…,n.此时称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率.一、n次独立重复试验1.某气象站天气预报的准确率为80%,计算:(结果保留到小数点后面第2位)(1)5次预报中恰有2次准确的概率;(2)5次预报中至少有2次准确的概率;(3)5次预报中恰有2次准确,且其中第3次预报准确的概率.解:(1)记预报一次准确为事件A,则P(A)=0.8.5次预报相当于5次独立重复试验,2次准确的概率为C25×0.82×0.23=0.051 2≈0.05,因此5次预报中恰有2次准确的概率约为0.05.(2)“5次预报中至少有2次准确”的对立事件是“5次预报全部不准确或只有1次准确”,其概率为C05×0.25+C15×0.8×0.24=0.006 72.∴所求概率为1-0.006 72=0.993 28≈0.99.(3)说明第1,2,4,5次中恰有1次准确.∴所求概率为C14×0.8×0.23×0.8=0.020 48≈0.02.故5次预报中恰有2次准确,且其中第3次预报准确的概率约为0.02.注:(1)运用n次独立重复试验的概率公式求概率,首先要分析问题中涉及的试验是否为n次独立重复试验,若不符合条件,则不能应用公式求解.(2)解决实际问题时往往需要把所求概率的事件分拆为若干个事件,而每个事件均为独立重复试验.2.已知两名射击运动员的射击水平:甲击中目标靶的概率是0.7,乙击中目标靶的概率是0.6.若让甲、乙两人各自向目标靶射击3次,则(1)甲恰好击中目标2次的概率是________;(2)两名运动员都恰好击中目标2次的概率是________.(结果保留两位有效数字)解析:由题意,甲向目标靶射击1次,击中目标靶的概率为0.7,乙向目标靶射击1次,击中目标靶的概率为0.6,两人射击均服从二项分布.(1)甲向目标靶射击3次,恰好击中2次的概率是C 23×0.72×(1-0.7)≈0.44. (2)甲、乙两人各向目标靶射击3次,恰好都击中2次的概率是[C 23×0.72×(1-0.7)]×[C 23×0.62×(1-0.6)]≈0.19.答案:(1)0.44 (2)0.193.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了ξ次球,则P (ξ=12)等于( )A .C 1012⎝⎛⎭⎪⎫3810⎝ ⎛⎭⎪⎫582 B .C 911⎝ ⎛⎭⎪⎫3810⎝ ⎛⎭⎪⎫582C .C 911⎝ ⎛⎭⎪⎫589⎝ ⎛⎭⎪⎫382D .C 911⎝ ⎛⎭⎪⎫389⎝ ⎛⎭⎪⎫582 解析:选B 当ξ=12时,表示前11次中取到9次红球,第12次取到红球,所以P (ξ=12)=C 911·⎝ ⎛⎭⎪⎫389·⎝ ⎛⎭⎪⎫582·38=C 911⎝ ⎛⎭⎪⎫3810⎝ ⎛⎭⎪⎫582. 4.箱中装有标号分别为1,2,3,4,5,6的六个球(除标号外完全相同),从箱中一次摸出两个球,记下号码并放回,如果两球的号码之积是4的倍数,则获奖.现有4人参与摸球,恰好有3人获奖的概率是( )A.16625B.4625 C.624625 D.96625解析:选D 依题意得获奖的概率为1+5C 26=25(注:当摸出的两个球中有标号为4的球时,两球的号码之积是4的倍数,有5种情况;当摸出的两个球中没有标号为4的球时,要使两球的号码之积是4的倍数,只有1种情况,即摸出的两个球的标号为2,6),因此所求概率为C 34×⎝ ⎛⎭⎪⎫253×⎝ ⎛⎭⎪⎫1-25=96625.故选D.5.某学生参加一次选拔考试,有5道题,每题10分.已知他解题的正确率为35,若40分为最低分数线,则该学生被选中的概率是( )A .C 45×⎝ ⎛⎭⎪⎫354×25 B .C 55×⎝ ⎛⎭⎪⎫355C .C 45×⎝⎛⎭⎪⎫354×25+C 55×⎝ ⎛⎭⎪⎫355D .1-C 35×⎝⎛⎭⎪⎫353×⎝ ⎛⎭⎪⎫252解析:选C 该学生被选中包括“该学生做对4道题”和“该学生做对5道题”两种情形.故所求概率为C 45×⎝ ⎛⎭⎪⎫354×25+C 55×⎝ ⎛⎭⎪⎫355. 6.在等差数列{a n }中,a 4=2,a 7=-4.现从{a n }的前10项中随机取数,每次取出一个数,取后放回,连续抽取3次,假定每次取数互不影响,那么在这三次取数中,取出的数恰好为两个正数和一个负数的概率为________.(用数字作答)解析:由已知可求通项公式为a n =10-2n (n =1,2,3,…),其中a 1,a 2,a 3,a 4为正数,a 5=0,a 6,a 7,a 8,a 9,a 10为负数,∴从中取一个数为正数的概率为410=25,取得负数的概率为12.三次取数相当于三次独立重复试验.∴取出的数恰为两个正数和一个负数的概率为C 23×⎝ ⎛⎭⎪⎫252×⎝ ⎛⎭⎪⎫121=625. 答案:625二、二项分布1.加工某种零件需经过三道工序.设第一、二、三道工序的合格率分别为910,89,78,且各道工序互不影响,(1)加工一个零件是否是独立重复事件?求该零件的合格率;(2)从该种零件中任取3件,恰好取到X 件合格品,X 是否服从二项分布? (3)在(2)的条件下,求恰好取到1件合格品的概率.解:(1)加工一个零件需经过三道工序,各道工序互不影响,它们是独立的,但三道工序的合格率不同,因此不是独立重复试验.由事件的独立性知,该种零件的合格率P =910×89×78=710.(2)从该种零件中任取3件,相当于3次独立重复试验,恰好取到X 件合格品,即随机变量X 的取值是取到合格品的事件发生的次数,因此X 服从二项分布.(3)由二项分布的概率公式得,恰好取到1件合格品的概率P (X =1)=C 13×710×⎝ ⎛⎭⎪⎫3102=0.189. 注:利用二项分布来解决实际问题的关键是在实际问题中建立二项分布的模型,也就是看它是否是n 次独立重复试验,随机变量是否为在这n 次独立重复试验中某事件发生的次数,满足这两点的随机变量才服从二项分布,否则就不服从二项分布.2.在一次数学考试中,第14题和第15题为选做题.规定每位考生必须且只需在其中选做一题.设4名考生选做这两题的可能性均为12.(1)求其中甲、乙2名考生选做同一道题的概率;(2)设这4名考生中选做第15题的考生人数为X ,求X 的分布列.解:(1)设事件A 表示“甲选做第14题”,事件B 表示“乙选做第14题”,则甲、乙2名考生选做同一道题的事件为“AB ∪A B ”,且事件A ,B 相互独立.所以P (AB ∪A B )=P (A )P (B )+P (A )P (B )=12×12+⎝ ⎛⎭⎪⎫1-12×⎝ ⎛⎭⎪⎫1-12=12.(2)随机变量X 的可能取值为0,1,2,3,4.且X ~B ⎝ ⎛⎭⎪⎫4,12.所以P (X =k )=C k 4⎝ ⎛⎭⎪⎫12k ⎝ ⎛⎭⎪⎫1-124-k =C k 4⎝ ⎛⎭⎪⎫124(k =0,1,2,3,4). 所以变量X 的分布列为3.某学生在上学路上要经过4个路口,假设在各个路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,遇到红灯时停留的时间都是2 min.(1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率; (2)求这名学生在上学路上因遇到红灯停留的总时间至多是4 min 的概率. 解: (1)第三个路口首次遇到红灯,表示前2个路口是绿灯,第3个路口是红灯.(2)中事件指这名学生在上学路上最多遇到2次红灯.(1)设“这名学生在上学路上到第三个路口时首次遇到红灯”为事件A .因为事件A 等价于事件“这名学生在第一个和第二个路口没有遇到红灯,在第三个路口遇到红灯”,所以事件A 的概率为P (A )=⎝ ⎛⎭⎪⎫1-13×⎝ ⎛⎭⎪⎫1-13×13=427.(2)设“这名学生在上学路上因遇到红灯停留的总时间至多是4 min ”为事件B ,“这名学生在上学路上遇到k 次红灯”为事件B k (k =0,1,2,3,4).由题意得P (B 0)=⎝ ⎛⎭⎪⎫234=1681,P (B 1)=C 14×⎝ ⎛⎭⎪⎫131×⎝ ⎛⎭⎪⎫233=3281, P (B 2)=C 24×⎝ ⎛⎭⎪⎫132×⎝ ⎛⎭⎪⎫232=2481. 所以事件B 的概率为P (B )=P (B 0)+P (B 1)+P (B 2)=89. 注:(1)二项分布的简单应用是求n 次独立重复试验中事件A 恰好发生k 次的概率.解题的一般思路是:根据题意设出随机变量→分析出随机变量服从二项分布→找到参数n ,p →写出二项分布的分布列→将k 值代入求解概率.(2)二项分布求解随机变量涉及“至少”“至多”问题的取值概率,其实质是求在某一取值范围内的概率,一般转化为几个互斥事件发生的概率的和,或者利用对立事件求概率.4.某公司安装了3台报警器,它们彼此独立工作,且发生险情时每台报警器报警的概率均为0.9,求发生险情时,下列事件的概率.(1)3台都未报警;(2)恰有1台报警;(3)恰有2台报警;(4)3台都报警;(5)至少有2台报警;(6)至少有1台报警.解:令X为发生险情时3台报警器报警的台数,那么X~B(3,0.9),则X的分布列为P(X=k)=C k30.9k(1-0.9)3-k(k=0,1,2,3).(1)3台都未报警的概率P(X=0)=C03×0.90×0.13=0.001;(2)恰有1台报警的概率P(X=1)=C13×0.91×0.12=0.027;(3)恰有2台报警的概率P(X=2)=C23×0.92×0.1=0.243;(4)3台都报警的概率P(X=3)=C33×0.93×0.10=0.729;(5)至少有2台报警的概率P(X≥2)=P(X=2)+P(X=3)=0.243+0.729=0.972;(6)至少有1台报警的概率P(X≥1)=1-P(X=0)=1-0.001=0.999.5.下列随机变量X不服从二项分布的是()A.投掷一枚均匀的骰子5次,X表示点数为6出现的次数B.某射手射中目标的概率为p,设每次射击是相互独立的,X为从开始射击到击中目标所需要的射击次数C.实力相等的甲、乙两选手进行了5局乒乓球比赛,X表示甲获胜的次数D.某星期内,每次下载某网站数据被病毒感染的概率为0.3,X表示下载n 次数据电脑被病毒感染的次数解析:选B选项A,试验出现的结果只有两种:点数为6和点数不为6,且点数为6的概率在每一次试验中都为16,每一次试验都是独立的,故随机变量X服从二项分布;选项B,虽然随机变量在每一次试验中的结果只有两种,每一次试验事件相互独立且概率不发生变化,但随机变量的取值不确定,故随机变量X不服从二项分布;选项C,甲、乙的获胜率相等,进行5次比赛,相当于进行了5次独立重复试验,故X服从二项分布;选项D,由二项分布的定义,可知被感染次数X ~B (n,0.3).6.将一枚硬币连掷7次,如果出现k 次正面向上的概率等于出现k +1次正面向上的概率,那么k 的值为( )A .0B .1C .2D .3解析:选D 由题意,知C k 7⎝⎛⎭⎪⎫12k ⎝ ⎛⎭⎪⎫127-k =C k +17⎝ ⎛⎭⎪⎫12k +1·⎝ ⎛⎭⎪⎫127-k -1,∴C k 7=C k +17,∴k +(k +1)=7,∴k =3.7.从学校乘汽车到火车站的途中有三个交通灯,假设在各个交通灯遇到红灯的事件为相互独立的,并且概率都是25,设ξ为途中遇到红灯的次数,求随机变量ξ的分布列.解:由题意ξ~B ⎝ ⎛⎭⎪⎫3,25,则P (ξ=0)=C 03⎝ ⎛⎭⎪⎫250⎝ ⎛⎭⎪⎫353=27125, P (ξ=1)=C 13⎝ ⎛⎭⎪⎫251⎝ ⎛⎭⎪⎫352=54125, P (ξ=2)=C 23⎝ ⎛⎭⎪⎫252⎝ ⎛⎭⎪⎫351=36125, P (ξ=3)=C 33⎝ ⎛⎭⎪⎫253=8125. 所以随机变量ξ的分布列为8.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生2次的概率,则事件A 在一次试验中发生的概率p 的取值范围是( )A .[0.4,1)B .(0,0.4]C .(0,0.6]D .[0.6,1)解析:选A 由题意,知C 14p (1-p )3≤C 24p 2(1-p )2,解得p ≥0.4,所以0.4≤p <1,故选A.9.设随机变量ξ~B (2,p ),η~B (4,p ),若P (ξ≥1)=59,则P (η≥2)的值为( )A.3281B.1127C.6581D.1681解析:选B 因为随机变量ξ~B (2,p ) ,所以P (ξ≥1)=1-P (ξ=0)=1-(1-p )2=59,解得p =13,所以η~B ⎝ ⎛⎭⎪⎫4,13.则P (η≥2)=1-P (η=0)-P (η=1)=1-⎝ ⎛⎭⎪⎫1-134-C 14⎝ ⎛⎭⎪⎫1-133·⎝ ⎛⎭⎪⎫131=1127.故选B. 10.如图,一个圆形游戏转盘被分成6个均匀的扇形区域,用力旋转转盘,转盘停止转动时,箭头A 所指区域的数字就是每次游戏所得的分数(箭头指向两个区域的边界时重新转动),且箭头A 指向每个区域的可能性都是相等的.在一次家庭抽奖的活动中,要求每位家庭派一名儿童和一位成年人先后分别转动一次游戏转盘,得分情况记为(a ,b )(假设儿童和成年人的得分互不影响,且每个家庭只能参加一次活动).若规定:一个家庭的得分为参与游戏的两人得分之和,且得分大于等于8的家庭可以获得一份奖品.(1)求某个家庭获奖的概率;(2)若共有5个家庭参加家庭抽奖活动,记获奖的家庭数为X ,求X 的分布列.解:(1)某个家庭在游戏中获奖记为事件A ,则符合获奖条件的得分包括(5,3),(5,5),(3,5),共3种情况,∴P (A )=13×13+13×13+13×13=13. ∴某个家庭获奖的概率为13.(2)由(1)知每个家庭获奖的概率都是13,5个家庭参加游戏相当于5次独立重复试验.∴X ~B ⎝ ⎛⎭⎪⎫5,13.∴P (X =0)=C 05×⎝ ⎛⎭⎪⎫130×⎝ ⎛⎭⎪⎫235=32243, P (X =1)=C 15×⎝⎛⎭⎪⎫131×⎝ ⎛⎭⎪⎫234=80243, P (X =2)=C 25×⎝ ⎛⎭⎪⎫132×⎝ ⎛⎭⎪⎫233=80243,P (X =3)=C 35×⎝ ⎛⎭⎪⎫133×⎝ ⎛⎭⎪⎫232=40243,P (X =4)=C 45×⎝ ⎛⎭⎪⎫134×⎝ ⎛⎭⎪⎫231=10243,P (X =5)=C 55×⎝ ⎛⎭⎪⎫135×⎝ ⎛⎭⎪⎫230=1243.∴X 的分布列为1.有n 位同学参加某项选拔测试,每位同学能通过测试的概率都是p (0<p <1),假设每位同学能否通过测试是相互独立的,则至少有1位同学能通过测试的概率为( )A .(1-p )nB .1-p nC .p nD .1-(1-p )n解析:选D 所有同学都不能通过测试的概率为(1-p )n ,则至少有1位同学能通过测试的概率为1-(1-p )n .2.计算机程序每运行一次都随机出现一个五位的二进制数A =a 1a 2a 3a 4a 5,其中A 的各位数中,a 1=1,a k (k =2,3,4,5)出现0的概率为13,出现1的概率为23.记X =a 1+a 2+a 3+a 4+a 5,当程序运行一次时,则X =3的概率为( )A.6581B.2527C.827D.79解析:选C 已知a 1=1,要使X =3,只需后四位数中出现2个1和2个0,∴P (X =3)=C 24×⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫132=827.3.已知某班有6个值日小组,每个值日小组中有6名同学,并且每个小组中男生的人数相等,现从每个小组中各抽一名同学参加托球跑比赛,若抽出的6人中至少有1名男生的概率为728729,则该班的男生人数为( )A .24B .18C .12D .6解析:选A 设每个小组抽一名同学为男生的概率为p ,则由已知得1-(1-p )6=728729,即(1-p )6=1729,解得p =23,所以每个小组有6×23=4名男生,该班共有4×6=24名男生.4.箱子里有5个黄球,4个白球,每次随机取出1个球,若取出黄球,则放回箱中重新取球,若取出白球,则停止取球,那么在4次取球之后停止取球的概率为( )A.35×14B.⎝ ⎛⎭⎪⎫593×49C .C 14×⎝ ⎛⎭⎪⎫593×49 D .C 14×⎝ ⎛⎭⎪⎫493×59解析:选B 取球次数X 是一个随机变量,X =4表明前3次取出的球都是黄球,第4次取出白球.这4次取球,取得黄球的概率相等,且每次取球是相互独立的,所以这是独立重复试验.设A 表示“取出的1个球是白球”,则P (A )=C 14C 19=49,P (A -)=1-49=59,故P (X =4)=P (A -A -A -A )=[P (A -)]3·P (A )=⎝ ⎛⎭⎪⎫593×49.5.一只蚂蚁位于数轴x =0处,这只蚂蚁每隔一秒钟向左或向右移动一个单位长度,设它向右移动的概率为23,向左移动的概率为13,则3秒后,这只蚂蚁在x =1处的概率为________.解析:由题意知,3秒内蚂蚁向左移动一个单位长度,向右移动两个单位长度,所以蚂蚁在x =1处的概率为C 23×⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫131=49. 答案:496.如果X ~B ⎝ ⎛⎭⎪⎫20,13,Y ~B ⎝ ⎛⎭⎪⎫20,23,那么当X ,Y 变化时,下面关于P (X =x k )=P (Y =y k )成立的(x k ,y k )的个数为________.解析:根据二项分布的特点可知,(x k ,y k )分别为(0,20),(1,19),(2,18),…,(20,0),共21个.答案:217.某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和B 在任意时刻发生故障的概率分别为110和p .(1)若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值;(2)设系统A 在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的概率分布列.解:(1)设“至少有一个系统不发生故障”为事件C ,那么1-P (C )=1-110p =4950,解得p =15.(2)由题意,ξ的可能取值为0,1,2,3.P (ξ=0)=C 03⎝ ⎛⎭⎪⎫1103=11 000, P (ξ=1)=C 13⎝ ⎛⎭⎪⎫1-1101⎝ ⎛⎭⎪⎫1102=271 000, P (ξ=2)=C 23⎝ ⎛⎭⎪⎫1-1102⎝ ⎛⎭⎪⎫1101=2431 000, P (ξ=3)=C 33⎝ ⎛⎭⎪⎫1-1103⎝ ⎛⎭⎪⎫1100=7291 000,所以随机变量ξ的概率分布列为8.甲、乙两人各射击一次,击中目标的概率分别是23和34.假设两人射击是否击中目标,相互之间没有影响;每人各次射击是否击中目标相互之间也没有影响.(1)求甲射击4次,至少有1次未击中目标的概率;(2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率;(3)假设某人连续2次未击中目标,则中止其射击.问:甲恰好射击5次后,被中止射击的概率是多少?解:设A ={甲射击一次击中目标},B ={乙射击一次击中目标},则A ,B相互独立,且P (A )=23,P (B )=34.(1)设C ={甲射击4次,至少有1次未击中目标},则P (C )=1-⎝ ⎛⎭⎪⎫234=6581. (2)设D ={两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次},∴P (D )=C 24·⎝ ⎛⎭⎪⎫232·⎝ ⎛⎭⎪⎫132·C 34·⎝ ⎛⎭⎪⎫343·14=18. (3)甲恰好射击5次,被中止射击,说明甲第4,5次未击中目标,第3次击中目标,第1,2两次至多一次未击中目标,故所求概率P =⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫132×23×⎝ ⎛⎭⎪⎫132=16243.。
(压轴题)高中数学高中数学选修2-3第一章《计数原理》测试题(包含答案解析)
一、选择题1.甲、乙、丙三台机床是否需要维修相互之间没有影响.在一小时内甲、乙、丙三台机床需要维修的概率分别是0.1,0.2,0.4,则一小时内恰有一台机床需要维修的概率是( ) A .0.444B .0.008C .0.7D .0.2332.两个实习生每人加工一个零件.加工为一等品的概率分别为56和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( ) A .12B .13C .512D .163.西大附中为了增强学生对传统文化的继承和发扬,组织了一场类似《诗词大会》的PK 赛,A 、B 两队各由4名选手组成,每局两队各派一名选手PK ,除第三局胜者得2分外,其余各胜者均得1分,每局的负者得0分.假设每局比赛A 队选手获胜的概率均为23,且各局比赛结果相互独立,比赛结束时A 队的得分高于B 队的得分的概率为( ) A .2027B .5281C .1627D .794.已知,a b 为实数,随机变量X ,Y 的分布列如下:若()(1)E Y P Y ==-,随机变量ξ满足XY ξ=,其中随机变量X ,Y 相互独立,则()E ξ取值范围的是( )A .3,14⎡⎤-⎢⎥⎣⎦B .1,018⎡⎤-⎢⎥⎣⎦C .1,118⎡⎤⎢⎥⎣⎦D .3,14⎡⎤⎢⎥⎣⎦5.将三枚质地均匀的骰子各掷一次,设事件A =“三个点数之和等于15”,B =“至少出现一个5点”,则概率()|P A B 等于( ) A .5108B .113C .17D .7106.从装有除颜色外完全相同的3个白球和m 个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数为X ,已知()3E X =,则()(D X = )A .85B .65C .45D .257.体育课上定点投篮项目测试规则:每位同学有3次投篮机会,一旦投中,则停止投篮,视为合格,否则一直投3次为止.每次投中与否相互独立,某同学一次投篮投中的概率为p ,若该同学本次测试合格的概率为0.784,则p =( )A . 0.4B .0.6C .0.1D .0.28.据统计,连续熬夜48小时诱发心脏病的概率为0.055 ,连续熬夜72小时诱发心脏病的概率为0.19 . 现有一人已连续熬夜48小时未诱发心脏病,则他还能继续连续熬夜24小时不诱发心脏病的概率为( ) A .67B .335C .1135D .0.199.若随机变量X 的分布列为:已知随机变量Y aX b =+(,,0)a b R a ∈>,且()10,()4E Y D Y ==,则a 与b 的值为( ) A .10,3a b ==B .3,10a b ==C .5,6a b ==D .6,5a b ==10.甲、乙两名同学参加一项射击比赛游戏,其中任何一人每射击一次击中目标得2分,未击中目标得0分.若甲、乙两人射击的命中率分别为0.6和P ,且甲、乙两人各射击一次得分之和为2的概率为0.45.假设甲、乙两人射击互不影响,则P 值为( ) A .0.8B .0.75C .0.6D .0.2511.已知随机变量X 的分布列如表,其中a ,b ,c 为等差数列,若1()3E X =,则()D X 等于( )X 1- 0 1PabcA .49B .59C .13D .2312.小明的妈妈为小明煮了 5 个粽子,其中两个腊肉馅三个豆沙馅,小明随机取出两个,事件‘‘"A 取到的两个为同一种馅,事件‘‘"B =取到的两个都是豆沙馅,则()P B A =∣ ( )A .14B .34C .110D .310二、填空题13.甲、乙两人被随机分配到,,A B C 三个不同的岗位(一个人只能去一个工作岗位).记分配到A 岗位的人数为随机变量X ,则随机变量X 的数学期望()E X =_____. 14.一只青蛙从数轴的原点出发,当投下的硬币正面向上时,它沿数轴的正方向跳动两个单位;当投下的硬币反面向上时,它沿数轴的负方向跳动一个单位,若青蛙跳动4次停止,设停止时青蛙在数轴上对应的坐标为随机变量X ,则()E X =______. 15.在一个袋中放入四种不同颜色的球,每种颜色的球各两个,这些球除颜色外完全相同.现玩一种游戏:游戏参与者从袋中一次性随机抽取4个球,若抽出的4个球恰含两种颜色,获得2元奖金;若抽出的4个球恰含四种颜色,获得1元奖金;其他情况游戏参与者交费1元.设某人参加一次这种游戏所获得奖金为X ,则()E X =________. 16.测量某一目标的距离时,所产生的随机误差X 服从正态分布()220,10N ,如果独立测量3次,至少一次测量误差在()0,30内的概率是__________.附参考数据:()0.68P X μδμδ-<≤+=,()220.95P X μδμδ-<≤+=,()330.99P X μδμδ-<≤+=,20.1850.03=,30.1850.006=,20.8150.66=,30.8150.541=.17.设平面上的动点P(1,y)的纵坐标y 等可能地取-用ξ表示点P 到坐标原点的距离,则随机变量ξ的数学期望Eξ=_________18.已知随机变量X 服从正态分布()2,1N . 若()130.6826P X ≤≤=,则()3P X >等于______________.19.甲、乙两人投篮命中的概率分别为p,q,他们各投2次,若p=12,且甲比乙投中次数多的概率为736,则q 的值为____. 20.给出下列命题:①函数()π4cos 23f x x ⎛⎫=+ ⎪⎝⎭的一个对称中心为5π,012⎛⎫- ⎪⎝⎭;②若命题:p “2,10x R x x ∃∈-->”,则命题p 的否定为:“2,10x R x x ∀∈--<”;③设随机变量~(,)B n p ξ,且()2,()1E D ξξ==,则(1)p ξ==14;④函数sin 2y x =的图象向左平移π4个单位长度,得到πsin 24y x ⎛⎫=+ ⎪⎝⎭的图象.其中正确命题的序号是_____________(把你认为正确的序号都填上).三、解答题21.已知一个袋子里有形状一样仅颜色不同的6个小球,其中白球2个,黑球4个.现从中随机取球,每次只取一球.()1若每次取球后都放回袋中,求事件“连续取球四次,至少取得两次白球”的概率;()2若每次取球后都不放回袋中,且规定取完所有白球或取球次数达到五次就终止游戏,记游戏结束时一共取球X 次,求随机变量X 的分布列与期望.22.某市教育部门规定,高中学生三年在校期间必须参加不少于80小时的社区服务.教育部门在全市随机抽取200位学生参加社区服务的数据,按时间段[)75,80,[)80,85,[)85,90,[)90,95,[]95,100(单位:小时)进行统计,其频率分布直方图如图所示.(1)求抽取的200位学生中,参加社区服务时间不少于90小时的学生人数,并估计从全市高中学生中任意选取一人,其参加社区服务时间不少于90小时的概率;(2)从全市高中学生(人数很多)中任意选取3位学生,记X 为3位学生中参加社区服务时间不少于90小时的人数.试求随机变量X 的分布列和数学期望EX .23.2019年以来,全国发生多起较大煤矿生产安全事故,事故给人民群众的财产和生命造成重大损失.尽管国务院安委办要求对事故责任人从严查处.但是有的煤矿企业领导人仍然不能够对安全生产引起足够重视.不久前,某煤矿发生瓦斯爆炸事故,作业区有若干矿工人员被困.若救援队从入口进入之后有1L ,2L 两条巷道通往作业区如下图所示,其中1L 巷道有1A ,2A ,3A 三个易堵塞点,且各易堵塞点被堵塞的概率都是12;2L 巷道有1B ,2B 两个易堵塞点,且1B ,2B 易堵塞点被堵塞的概率分别为14,35,不同易堵塞点被堵塞或不被堵塞互不影响.(1)求1L 巷道中的三个易堵塞点至少有两个被堵塞的概率;(2)若2L 巷道中两个易堵塞点被堵塞个数为X ,求X 的分布列及数学期望; (3)若1L 巷道中三个易堵塞点被堵塞的个数为Y ,求Y 的数学期望.24.在一次猜灯谜活动中,共有20道灯谜,两名同学独立竞猜,甲同学猜对了12个,乙同学猜对了8个,假设猜对每道灯谜都是等可能的,试求:(1)任选一道灯谜,恰有一个人猜对的概率;(2)任选一道灯谜,甲、乙都没有猜对的概率.25.甲,乙两人进行定点投篮活动,已知他们每投篮一次投中的概率分别是23和35,每次投篮相互独立互不影响.(Ⅰ)甲乙各投篮一次,记“至少有一人投中”为事件A,求事件A发生的概率;(Ⅱ)甲乙各投篮一次,记两人投中次数的和为X,求随机变量X的分布列及数学期望;(Ⅲ)甲投篮5次,投中次数为ξ,求ξ=2的概率和随机变量ξ的数学期望.26.超市为了防止转基因产品影响民众的身体健康,要求产品在进入超市前必须进行两轮转基因检测,只有两轮都合格才能销售,否则不能销售.已知某产品第一轮检测不合格的概率为14,第二轮检测不合格的概率为19,两轮检测是否合格相互没有影响.(1)求该产品不能销售的概率;(2)如果产品可以销售,则每件产品可获利50元;如果产品不能销售,则每件产品亏损60元.已知一箱中有产品4件,记一箱产品获利X元,求X的分布列,并求出均值()E X.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】直接利用对立事件和独立事件的概率求解.【详解】因为在一小时内甲、乙、丙三台机床需要维修的概率分别是0.1,0.2,0.4,所以一小时内恰有一台机床需要维修的概率是:()()()()0.110.210.40.210.110.4p=⨯-⨯-+⨯-⨯-,()()0.410.210.10.444+⨯-⨯-=.故选:A【点睛】本题主要考查独立事件和对立事件的概率,属于中档题.2.B解析:B【分析】根据题意,分析可得,这两个零件中恰有一个一等品包含仅第一个实习生加工一等品与仅第二个实习生加工一等品两种互斥的事件,而两个零件是否加工为一等品相互独立,进而由互斥事件与独立事件的概率计算可得答案. 【详解】记两个零件中恰好有一个一等品的事件为A , 即仅第一个实习生加工一等品为事件1A , 仅第二个实习生加工一等品为事件2A 两种情况, 则()()()125113164643P A P A P A =+=⨯+⨯=, 故选:B . 【点睛】本题考查了相互独立事件同时发生的概率与互斥事件的概率加法公式,解题前,注意区分事件之间的相互关系,属于基础题.3.A解析:A 【分析】比赛结束时A 队的得分高于B 队的得分的情况有3种:A 全胜;A 三胜一负、A 第三局胜,另外三局一胜两负.利用独立重复试验的概率公式可求得所求事件的概率. 【详解】比赛结束时A 队的得分高于B 队的得分的情况有3种:A 全胜;A 三胜一负、A 第三局胜,另外三局一胜两负.所以,比赛结束时A 队的得分高于B 队的得分的概率为43232432212122033333327P C C ⎛⎫⎛⎫⎛⎫=+⋅⋅+⋅⋅=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故选:A. 【点睛】本题考查概率的求解,考查独立重复试验概率的求解,考查计算能力,属于中等题.4.B解析:B 【分析】由()(1)E Y P Y ==-及1a b c ++=,可知13b a =-,2c a =;又因为0,,1a b c ≤≤,可求出103a ≤≤;由题意知1()6E a ξ=-,从而可求出()E ξ取值范围.【详解】解:由()(1)E Y P Y ==-知,a c a -+= ,即2c a = ,又1a b c ++= ,所以13b a =-;因为0,,1a b c ≤≤ ,所以0131021a a ≤-≤⎧⎨≤≤⎩ ,解得103a ≤≤.又()1110366E X =-++=- ,且X ,Y 相互独立,XY ξ=,所以()()()11(),0618E E XY E X E Y a ξ⎡⎤===-∈-⎢⎥⎣⎦. 故选:B. 【点睛】本题考查了数学期望,考查了分布列的性质,考查了推理能力和计算能力.本题的关键是由条件求出a 的取值范围.5.B解析:B 【分析】根据条件概率的计算公式即可得出答案. 【详解】3311166617()216A P AB C C C +==,11155561116691()1216C C C P B C C C =-= ()()()72161|2169113P AB P A B P B ∴==⨯= 故选:B 【点睛】本题主要考查了利用条件概率计算公式计算概率,属于中档题.6.B解析:B 【分析】由题意知,3~(5,)3X B m +,由3533EX m =⨯=+,知3~(5,)5X B ,由此能求出()D X .【详解】由题意知,3~(5,)3X B m +, 3533EX m ∴=⨯=+,解得2m =, 3~(5,)5X B ∴,336()5(1)555D X ∴=⨯⨯-=.故选:B . 【点睛】本题考查离散型随机变量的方差的求法,解题时要认真审题,仔细解答,注意二项分布的灵活运用.7.A解析:A 【解析】 【分析】根据合格的情况列方程:()()2110.784p p p p p +-+-=,解方程求出结果. 【详解】由题意可得:()()2110.784p p p p p +-+-= 整理可得:()()22212330.784p p p p p pp -+-+=-+=解得:0.4p = 本题正确选项:A 【点睛】本题考查概率的求法,考查对立事件概率计算公式、相互独立事件概率乘法公式等基础知识,考查运算求解能力,是基础题.8.A解析:A 【解析】分析:首先设出题中的事件,然后由题意结合条件概率公式整理计算即可求得最终结果. 详解:设事件A 为48h 发病,事件B 为72h 发病, 由题意可知:()()0.055,0.19P A P B ==, 则()()0.945,0.81P A P B ==, 由条件概率公式可得:()()()()()0.816|0.9457P AB P B P B A P A P A ====. 本题选择A 选项.点睛:本题主要考查条件概率公式及其应用等知识,意在考查学生的转化能力和计算求解能力.9.C解析:C 【解析】 分析:详解:由随机变量X 的分布列可知,m 10.20.8=-=, ∴()00.210.80.8E X =⨯+⨯=,()10.20.80.16D X =⨯⨯=,∴()()()()2b 10?4E Y aE X D Y a D X =+===, ∴20.8a b 10? 0.164a +==, ∴5,6a b == 故选C点睛:本题考查了随机变量的数学期望及其方差,考查了推理能力与计算能力,属于中档题.10.B解析:B 【解析】分析:由题意知甲、乙两人射击互不影响,则本题是一个相互独立事件同时发生的概率,根据题意可设“甲射击一次,击中目标”为事件A ,“乙射击一次,击中目标”为事件B ,由相互独立事件的概率公式可得,可得关于p 的方程,解方程即可得答案. 详解:设“甲射击一次,击中目标”为事件A ,“乙射击一次,击中目标”为事件B , 则“甲射击一次,未击中目标”为事件A ,“乙射击一次,未击中目标”为事件B , 则P (A )=35,P (A )=1﹣35=25,P (B )=P ,P (B )=1﹣P , 依题意得:35×(1﹣p )+25×p=920, 解可得,p=34, 故选:B .点睛:求相互独立事件同时发生的概率的方法主要有 ①利用相互独立事件的概率乘法公式直接求解.②正面计算较繁或难以入手时,可从其对立事件入手计算.11.B解析:B 【详解】∵a ,b ,c 为等差数列,∴2b a c =+,∵1a b c ++=,1113E a c c a ξ=-⨯+⨯=-=,解得16a =,13b =,12c =,∴22215()()39DX E X EX a c ⎛⎫=-=+-= ⎪⎝⎭,故选B . 12.B解析:B 【详解】由题意,P (A )=222310C C +=410,P (AB )=2310C =310, ∴P (B|A )=()AB A)P P (=34,故选B .二、填空题13.【分析】由题意得出的可能取值以及相应的概率再计算数学期望即可【详解】由题意可得的可能取值有012则数学期望故答案为:【点睛】本题主要考查了求离散型随机变量的数学期望属于中档题解析:23【分析】由题意得出X 的可能取值以及相应的概率,再计算数学期望即可. 【详解】由题意可得X 的可能取值有0,1,2224(0)339P X ⨯===⨯,122411(1),(2)339339C P X P X ⨯======⨯⨯则数学期望4()09E X =⨯41212993+⨯+⨯=. 故答案为:23【点睛】本题主要考查了求离散型随机变量的数学期望,属于中档题.14.2【分析】列举出所有的可能出现的情况硬币4次都反面向上则青蛙停止时坐标为硬币3次反面向上而1次正面向上硬币2次反面向上而2次正面向上硬币1次反面向上而3次正面向上硬币4次都正面向上做出对应的坐标和概解析:2 【分析】列举出所有的可能出现的情况,硬币4次都反面向上,则青蛙停止时坐标为14x =-,硬币3次反面向上而1次正面向上,硬币2次反面向上而2次正面向上,硬币1次反面向上而3次正面向上,硬币4次都正面向上,做出对应的坐标和概率,算出期望. 【详解】所有可能出现的情况分别为硬币4次都反面向上,则青蛙停止时坐标为14x =-,此时概率1116p =; 硬币3次反面向上而1次正面向上,则青蛙停止时坐标为21x =-,此时概率33241141=22164p C ⎛⎫=⨯⨯= ⎪⎝⎭;硬币2次反面向上而2次正面向上,则青蛙停止时坐标为32x =,此时概率222341163=22168p C ⎛⎫⎛⎫=⨯⨯= ⎪ ⎪⎝⎭⎝⎭硬币1次反面向上而3次正面向上,则青蛙停止时坐标为45x =,此时概率341141141=22164p C ⎛⎫⎛⎫=⨯⨯= ⎪ ⎪⎝⎭⎝⎭;硬币4次都正面向上,则青蛙停止时坐标为58x =,此时标率405411216p C ⎛⎫=⨯= ⎪⎝⎭.1122334455()2E X x p x p x p x p x p ∴=++++=故答案为:2 【点睛】本题考查离散型随机变量的分布列和期望,考查学生分析问题的能力和计算求解能力,难度一般.15.【分析】首先根据题意判断出的可取值有并利用概率公式求得对应的概率最后利用离散型随机变量的期望公式求得结果【详解】由已知1又所以故答案为:【点睛】该题考查的是有关离散型随机变量的期望的求解问题涉及到的 解析:27-【分析】首先根据题意,判断出X 的可取值有2,1,1-,并利用概率公式求得对应的概率,最后利用离散型随机变量的期望公式求得结果. 【详解】由已知2X =,1,1-, 又()22242486(2)70C CP X C ===,()441424816(1)70C C P X C ===,()22114224848(1)70C C CP X C =-==,所以12164827070707EX =+-=-, 故答案为:27-. 【点睛】该题考查的是有关离散型随机变量的期望的求解问题,涉及到的知识点有古典概型概率公式,离散型随机变量的期望公式,属于简单题目.16.994【分析】根据正态分布的性质求出在一次测量中误差在内的概率再求出测量3次每次测量误差均不在内的概率根据对立事件的性质可得结果【详解】由题意可知在一次测量中误差在内满足其概率为测量3次每次测量误差解析:994【分析】根据正态分布的性质求出在一次测量中误差在()0,30内的概率,再求出测量3次,每次测量误差均不在()0,30内的概率,根据对立事件的性质可得结果. 【详解】由题意可知在一次测量中误差在()0,30内满足2X μδμδ-<<+, 其概率为()()()111220.950.680.815222p p X p X μδμδμδμδ=-<≤++-<≤+=⨯+=, 测量3次,每次测量误差均不在()0,30内的概率为:()3310.8150.1850.006-==,∴独立测量3次,至少一次测量误差在()0,30内的概率是10.0060.994-=, 故答案为:0.994. 【点睛】本题主要考查正态分布概率的求法,n 次独立重复试验的模型,利用对立事件解决问题是解题的关键,属于中档题.17.【解析】由题意随机变量ξ的的值分别为321则随机变量ξ的分布列为:所以随机变量ξ的数学期望Eξ=点睛:数学期望是离散型随机变量中重要的数学概念反映随机变量取值的平均水平求解离散型随机变量的分布列数学 解析:115【解析】由题意,随机变量ξ的的值分别为3,2,1,则随机变量ξ的分布列为:所以随机变量ξ的数学期望Eξ=122111235555⨯+⨯+⨯=. 点睛:数学期望是离散型随机变量中重要的数学概念,反映随机变量取值的平均水平.求解离散型随机变量的分布列、数学期望时,首先要分清事件的构成与性质,确定离散型随机变量的所有取值,然后根据概率类型选择公式,计算每个变量取每个值的概率,列出对应的分布列,最后求出数学期望.18.【解析】试题分析:因为随机变量服从正态分布所以因为所以考点:正态分布解析:0.1587【解析】试题分析:因为随机变量X 服从正态分布()2,1N ,所以()()31P X >=P X <,因为()()()11331P X <+P ≤X ≤+P X >=,所以()()1310.68260.15872P X >=-=. 考点:正态分布.19.【分析】由题意根据甲比乙投中次数多的可能情形有:甲投中1次乙投中0次;甲投中2次乙投中1次或0次再由概率的加法公式即可列出方程求解答案【详解】甲比乙投中次数多的可能情形有:甲投中1次乙投中0次;甲投解析:23【分析】由题意,根据甲比乙投中次数多的可能情形有:甲投中1次,乙投中0次;甲投中2次,乙投中1次或0次,再由概率的加法公式,即可列出方程,求解答案. 【详解】甲比乙投中次数多的可能情形有:甲投中1次,乙投中0次;甲投中2次,乙投中1次或0次.由题意得p(1-p)·(1-q)2+p 2[(1-q)2+q(1-q)]=,解得q=或q=(舍). 【点睛】本题主要考查了相互独立事件的概率的计算,其中认真审题,根据甲比乙投中次数多的可能情形:甲投中1次,乙投中0次;甲投中2次,乙投中1次或0次,再根据概率的加法公式求解是解答的关键,着重考查了推理与运算能力.20.①③【分析】求出判断①利用存在量词命题否定形式判断②二项分布的期望与方差判断③;三角函数图象变换判断④【详解】解:①函数的一个对称中心为故①正确;②若命题:则命题的否定为:;所以②不正确;③设随机变解析:①③ 【分析】 求出5()012f π-=判断①,利用存在量词命题否定形式判断②,二项分布的期望与方差判断③;三角函数图象变换判断④. 【详解】 解:①5()4cos()0122f ππ-=-=, ∴函数()4cos(2)3f x x π=+的一个对称中心为5(,0)12π-,故①正确;②若命题p :“x R ∃∈,210x x -->”,则命题p 的否定为:“x R ∀∈,210x x --”;所以②不正确;③设随机变量~(,)B n p ξ,且()2E ξ=,()1D ξ=,可得2np =,(1)1np p -=,可得12p =,4n =则43111(1)12412p C ξ⎛⎫==-⋅= ⎪⎝⎭;所以③正确;④函数sin 2y x =的图象向左平移4π个单位长度,得到sin 2()4y x π=+,不是sin(2)4y x π=+的图象,所以④不正确;故答案为:①③. 【点睛】本题考查命题的真假判断与应用,考查sin()y A x ωϕ=+型函数的图象和性质,命题的否定,期望与方差的求法,属于中档题.三、解答题21.(1);(2)随机变量X 的分布列见解析,期望为133. 【分析】(1)可从正面计算取得两次、三次、四次白球的概率和,也可以用1减去取得一次、两次白球的概率,而四次取球中每次是否取得白球相互独立,只需用组合数即可得到相应概率;(2)注意取出的球不放回,因此最多取5次白球就会被取完,故X =2,3,4,5,分别计算对应的概率,写出分布列,进而可求出期望. 【详解】(1)记随机变量ξ表示连续取球四次,取得白球的次数,则ξ~B (4,13) 则P (ξ>1)=1-P (ξ=0)-P (ξ=1)=1-00411344121211()()()()333327C C -=(2)随机变量X 的取值分别为2,3,4,5∴P (X =2)=2226115C C =,P (X =3)=11242612415C C C ⨯= P (X =4)=1224361135C C C ⨯=,P (X =5)=134244446635C C C C C += ∴随机变量X 的分布列为 X 2345P115 215 15 35∴随机变量X 的期望为:1313()23451515553E X =⨯+⨯+⨯+⨯= 考点:古典概型,相互独立事件,随机变量的分布列与期望 22.(1)25;(2)分布列见解析,65(1)由频率分布直方图可求出抽取的200位学生中,参加社区服务时间不少于90小时的学生人数为80人,再根据古典概型概率公式可得结果; (2)由已知得随机变量X 的可能取值为0,1,2,3,X ~B (3,25),由此能求出随机变量X 的分布列和数学期望EX . 【详解】 (1)根据题意,参加社区服务在时间段[)90,95的学生人数为2000.06560⨯⨯=人; 参加社区服务在时间段[)95,100的学生人数为2000.02520⨯⨯=人;∴抽取的200位学生中,参加社区服务时间不少于90小时的学生人数为80人. ∴从全市高中学生中任意选取一人,其参加社区服务时间不少于90小时的概率为8022005P ==. (2)由(1)可知,从全市高中学生中任意选取1人,其参加社区服务时间不少于90小时的概率为25,X ~B (3,25),由已知得,随机变量X 的可能取值为0,1,2,3, 则()03032327055125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()12132354155125P X C ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭, ()21232336255125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()333238355125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, 随机变量X 的分布列为:∴()2754368601231251251251255E X =⨯+⨯+⨯+⨯=. 【点睛】本题考查古典概型概率的求法,考查离散型随机变量二项分布的分布列和数学期望,属于中档题. 23.(1)12;(2)分布列见解析;期望为1720;(3)32. 【分析】(1)根据独立事件的概率公式计算,至少有两个被堵塞含两个被堵塞和三个被堵塞两种情形,分别计算相加可得;(2)X 的所有可能取值为0,1,2.,分别计算其概率得分布列,由期望公式得期望; (3)Y 的所有可能取值为0,1,2,3,计算出各概率,然后由期望公式计算期望.解:(1)据题设知,所求概率213233311112222p C C ⎛⎫⎛⎫⎛⎫⎛⎫=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭12=. (2)X 的所有可能取值为0,1,2.133(0)114510P X ⎛⎫⎛⎫==-⨯-= ⎪ ⎪⎝⎭⎝⎭,131311(1)11454520P X ⎛⎫⎛⎫==⨯-+-⨯= ⎪ ⎪⎝⎭⎝⎭,133(2)4520P X ==⨯=, 所以随机变量X 的分布列为所以()01210202020E X =⨯+⨯+⨯=. (3)Y 的所有可能取值为0,1,2,3.303111(0)228P Y C ⎛⎫⎛⎫==⨯⨯= ⎪ ⎪⎝⎭⎝⎭,213113(1)228P Y C ⎛⎫==⨯⨯= ⎪⎝⎭,223113(2)228P Y C ⎛⎫==⨯⨯= ⎪⎝⎭,333111(3)228P Y C ⎛⎫⎛⎫==⨯⨯= ⎪ ⎪⎝⎭⎝⎭,所以13313()012388882E Y =⨯+⨯+⨯+⨯=. 【点睛】本题考查相互独立事件的概率公式,考查随机变量的概率分布列数学期望,考查了学生的数据处理能力,运算求解能力,属于中档题. 24.(1)1325.(2)625【分析】(1)设事件A 表示“甲猜对”,事件B 表示“乙猜对”,求出()p A ,()p B ,任选一道灯谜,恰有一个人猜对的概率为:()()()()()P AB AB P A P B P A P B +=+,由此能求出结果.(2)任选一道灯谜,甲、乙都没有猜对的概率为()()()P AB P A P B =,由此能求出结果. 【详解】(1)设事件A 表示“甲猜对”,事件B 表示“乙猜对”, 则P (A )123205==,P (B )82205==, ∴任选一道灯谜,恰有一个人猜对的概率为: P (A B AB +)=P (A )P (B )+P (A )P (B )32155⎛⎫=⨯-+ ⎪⎝⎭(135)213525⨯=.(2)任选一道灯谜,甲、乙都没有猜对的概率为: P (AB )=P (A )P (B )=(135)(125-)625=【点睛】本题考查概率的求法,考查相互独立事件概率乘法公式和互斥事件概率加法公式等基础知识,考查运算求解能力,是基础题. 25.(Ⅰ)1315;(Ⅱ)分布列见解析,1915;(Ⅲ)40243,103. 【分析】(Ⅰ)先求出甲乙两人都未投中的概率,再根据对立事件的概率进行计算即可; (Ⅱ)随机变量X 的可能取值为0,1,2,然后根据相互独立事件的概率逐一求出每个X 的取值,求得相应的概率,得出分布列,进而求出数学期望; (Ⅲ)随机变量2(5,)3B ξ,根据二项分布的性质求概率和数学期望即可.【详解】(Ⅰ)设甲投中为事件B ,乙投中为事件C ,则()()1235P B P C ==,, 所以()()()1213113515P A P B P C =-=-⨯=. (Ⅱ)随机变量X 的可能取值为0,1,2, 则122(0)3515P X ==⨯=, 22137(1)353515P X ==⨯+⨯=,232(2)355P X ==⨯=, 所以随机变量X 的分布列为所以数学期望()0121515515E X =⨯+⨯+⨯=. (Ⅲ)甲投篮5次,投中次数为ξ,可得随机变量2(5,)3B ξ,所以22352140()()33(243)2C P ξ==⋅⋅=, 所以随机变量ξ数学期望()210533E ξ=⨯=. 【点睛】本题考查独立事件的概率、相互独立事件的概率、离散型随机变量的分布列与数学期望,以及二项分布的数学期望计算,考查学生灵活运用知识的能力和运算能力. 26.(1)13;(2)分布列见解析,1533.【分析】(1)记“该产品不能销售”为事件A ,则1()1(191)(1)4P A =--⨯-,计算得到答案. (2)X 的取值为-240,-130,-20,90,200,计算概率得到分布列,计算均值得到答案. 【详解】(1)记“该产品不能销售”为事件A ,则11()1(1)(1)4193P A =--⨯-=, 所以该产品不能销售的概率为13. (2)依据题意的,X 的取值为-240,-130,-20,90,200,411(240)()381P X =-== ; 134128(130)()3381P X C =-==; 22241224(20)()()3381P X C =-== ;31341232(90)()()3381P X C ===;4216(200)()381P X ===.所以X 的分布列为:1()24013020902005381818181813E X =-⨯-⨯-⨯+⨯+⨯=. 【点睛】本题考查了概率的计算,分布列,均值,意在考查学生的计算能力和应用能力.。
高中数学选修2-3各章节课时作及答案解析
1.1第1课时 分类加法计数原理与分步乘法计数原理课时作业一、选择题1.一个袋子里放有6个球,另一个袋子里放有8个球,每个球各不相同,从两袋子里各取一个球,不同取法的种数为( )A .182B .14C .48D .91[答案] C 新人教A 版选修2-3[解析] 由分步乘法计数原理得不同取法的种数为6×8=48,故选C .2.从甲地到乙地一天有汽车8班,火车3班,轮船2班,某人从甲地到乙地,他共有不同的走法数为( )A .13种B .16种C .24种D .48种[答案] A[解析] 应用分类加法计数原理,不同走法数为8+3+2=13(种).故选A .3.(2014·新课标Ⅰ理,5)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( )A .18B .38C .58D .78[答案] D[解析] 四位同学各自在周六、周日两天中选择一天参加公益活动的情况有24=16种方式,其中仅在周六或周日参加的各有一种,故所求概率P =1-1+116=78.4.定义集合A 与B 的运算A *B 如下:A *B ={(x ,y )|x ∈A ,y ∈B },若A ={a ,b ,c },B ={a ,c ,d ,e },则集合A *B 的元素个数为( )A .34B .43C .12D .24[答案] C[解析] 显然(a ,a )、(a ,c )等均为A *B 中的元素,确定A *B 中的元素是A 中取一个元素来确定x ,B 中取一个元素来确定y ,由分步计数原理可知A *B 中有3×4=12个元素.故选C .5.有四位老师在同一年级的4个班级中,各教一个班的数学,在数学考试时,要求每位老师均不在本班监考,则安排监考的方法种数是( )A.8种B.9种C.10种D.11种[答案] B[解析]设四个班级分别是A、B、C、D,它们的老师分别是a、b、c、d,并设a监考的是B,则剩下的三个老师分别监考剩下的三个班级,共有3种不同的方法;同理当a监考C、D时,剩下的三个老师分别监考剩下的三个班级也各有3种不同的方法.这样,由分类加法计数原理知共有3+3+3=9(种)不同的安排方法.另外,本题还可让a先选,可从B、C、D中选一个,即有3种选法.若选的是B,则b从剩下的3个班级中任选一个,也有3种选法,剩下的两个老师都只有一种选法,这样用分步乘法计数原理求解,共有3×3×1×1=9(种)不同的安排方法.6.从0、2中选一个数字,从1、3、5中选两个数字,组成无重复数字的三位数,其中奇数的个数为( )A.24 B.18C.12 D.6[答案] B[解析](1)当从0,2中选取2时,组成的三位奇数的个位只能奇数,只要2不排在个位即可,先排2再排1,3,5中选出的两个奇数,共有2×3×2=12(个).(2)当从0,2中选取0时,组成的三位奇数的个位只能是奇数,0必须在十位,只要排好从1,3,5中选出的两个奇数.共有3×2=6(个).综上,由分类加法计数原理知共有12+6=18(个).二、填空题7.已知直线方程Ax+By=0,若从0、1、2、3、5、7这6个数字中每次取两个不同的数作为A、B的值,则可表示不同的直线__________ ________条.[答案]22[解析]当A或B中有一个为零时,则可表示出2条不同的直线;当AB≠0时,A有5种选法,B有4种选法,则可表示出5×4=20条不同的直线.由分类加法计数原理知,共可表示出20+2=22条不同的直线.8. 三边均为整数且最大边长为11的三角形有__________ ________个.[答案]36[解析]另两边长用x、y表示,且不妨设1≤x≤y≤11.要构成三角形,需x+y≥12.当y=11时,x∈{1,2,…,11},有11个三角形;当y=10时,x∈{2,3,…,10},有9个三角形……当y=6时,x=6,有1个三角形.所以满足条件的三角形有11+9+7+5+3+1=36(个).9.5名乒乓球队员中,有2名老队员和3名新队员.现从中选出3名队员排成1、2、3号参加团体比赛,则入选的3名队员中至少有一名老队员,且1、2号中至少有1名新队员的排法有__________ ________种.(用数字作答)[答案]48[解析]本题可分为两类完成:两老一新时,有3×2×2=12(种)排法;两新一老时,有2×3×3×2=36(种)排法,即共有48种排法.三、解答题10.有不同的红球8个,不同的白球7个.(1)从中任意取出一个球,有多少种不同的取法?(2)从中任意取出两个不同颜色的球,有多少种不同的取法?[解析](1)由分类加法计数原理得,从中任取一个球共有8+7=15种;(2)由分步乘法计数原理得,从中任取两个球共有8×7=56种.一、选择题11.如下图所示,小圆圈表示网络的结点,结点之间的线段表示它们有网线相连.连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A向结点B传递信息,信息可以从分开不同的路线同时传递,则单位时间内传递的最大信息量为( )A.26 B.24C.20 D.19[答案] D[解析]因信息可以分开沿不同的路线同时传递,由分类计数原理,完成从A向B传递有四种方法:12→5→3,12→6→4,12→6→7,12→8→6,故单位时间内传递的最大信息量为四条不同网线上信息量的和:3+4+6+6=19,故选D.12.(2014·长安一中质检)用0、1、…、9十个数字,可以组成有重复数字的三位数的个数为( )A.243 B.252C.261 D.279[答案] B[解析] 用0,1,…,9十个数字,可以组成的三位数的个数为9×10×10=900,其中三位数字全不相同的为9×9×8=648,所以可以组成有重复数字的三位数的个数为900-648=252.13.(a 1+a 2)(b 1+b 2)(c 1+c 2+c 3)完全展开后的项数为( ) A .9 B .12 C .18 D .24[答案] B[解析] 每个括号内各取一项相乘才能得到展开式中的一项,由分步乘法计数原理得,完全展开后的项数为2×2×3=12.14.(2015·江西抚州市七校高二期末联考)设m ∈{1,2,3,4},n ∈{-12,-8,-4,-2},则函数f (x )=x 3+mx +n 在区间[1,2]上有零点的概率是( )A .12B .916C .1116D .1316[答案] C[解析] 根据题意,f ′(x )=3x 2+m ,又因为m >0,所以f ′(x )=3x 2+m >0; 故f (x )=x 3+mx +n 在R 上单调递增,若函数f (x )=x 3+mx +n 在区间[1,2]上有零点, 则只需满足条件f (1)≤0且f (2)≥0. ∴m +n ≤-1且2m +n ≥-8, ∴-2m -8≤n ≤-m -1, 当m =1时,n 取-2,-4,-8;m =2时,n 取-4,-8,-12; m =3时,n 取-4,-8,-12; m =4时,n 取-8,-12;共11种取法,而m 有4种选法,n 有4种选法,则函数f (x )=x 3+mx +n 情况有4×4=16种,故函数f (x )=x 3+mx +n 在区间[1,2]上有零点的概率是1116,故选C .二、填空题15.一个科技小组中有4名女同学,5名男同学,从中任选一名同学参加学科竞赛,共有不同的选派方法__________ ______种;若从中任选一名女同学和一名男同学参加学科竞赛,共有不同的选派方法________种.[答案]9 20[解析]由分类加法计数原理得从中任选一名同学参加学科竞赛共5+4=9种,由分步乘法计数原理得从中任选一名女同学和一名男同学参加学科竞赛共5×4=20种.16.圆周上有2n个等分点(n大于2),任取3点可得一个三角形,恰为直角三角形的个数为__________ ________.[答案]2n(n-1)[解析]先在圆周上找一点,因为有2n个等分点,所以应有n条直径,不过该点的直径应有n-1条,这n-1条直径都可以与该点形成直角三角形,一个点可以形成以该点为直角顶点的n-1个直角三角形,而这样的点有2n个,所以一共有2n(n-1)个符合题意的直角三角形.三、解答题17.若x、y∈N*,且x+y≤6,试求有序自然数对(x,y)的个数.[解析]按x的取值进行分类:x=1时,y=1,2,…,5,共构成5个有序自然数对;x=2时,y=1,2,…,4,共构成4个有序自然数对;…x=5时,y=1,共构成1个有序自然数对.根据分类加法计数原理,共有N=5+4+3+2+1=15个有序自然数对.18.已知集合A={a1,a2,a3,a4},集合B={b1,b2},其中a i、b j(i=1、2、3、4,j =1、2)均为实数.(1)从集合A到集合B能构成多少个不同的映射?(2)能构成多少个以集合A为定义域,集合B为值域的不同函数?[解析](1)因为集合A中的每个元素a i(i=1、2、3、4)与集合B中元素的对应方法都有2种,由分步乘法计数原理,可构成A→B的映射有N=24=16个.(2)在(1)的映射中,a1、a2、a3、a4均对应同一元素b1或b2的情形.此时构不成以集合A为定义域,以集合B为值域的函数,这样的映射有2个.所以构成以集合A为定义域,以集合B为值域的函数有M=16-2=14个.1.1第2课时两个基本原理的应用课时作业一、选择题1.把10个苹果分成三堆,要求每堆至少有1个,至多5个,则不同的分法共有( )A .4种B .5种C .6种D .7种[答案] A[解析] 分类考虑,若最少一堆是1个,那由至多5个知另两堆分别为4个、5个,只有一种分法;若最少一堆是2个,则由3+5=4+4知有2种分法;若最少一堆是3个,则另两堆为3个、4个,故共有分法1+2+1=4种.2.四个同学,争夺三项冠军,冠军获得者可能有的种类是( ) A .4 B .24 C .43D .34[答案] C[解析] 依分步乘法计数原理,冠军获得者可能有的种数是4×4×4=43.故选C . 3.已知函数y =ax 2+bx +c ,其中a 、b 、c ∈{0,1,2,3,4},则不同的二次函数的个数共有( )A .125个B .15个C .100个D .10个[答案] C[解析] 由题意可得a ≠0,可分以下几类,第一类:b =0,c ≠0,此时a 有4种选择,c 也有4种选择,共有4×4=16个不同的函数;第二类:c =0,b ≠0,此时a 有4种选择,b 也有4种选择,共有4×4=16个不同的函数;第三类:b ≠0,c ≠0,此时a ,b ,c 都各有4种选择,共有4×4×4=64个不同的函数; 第四类:b =0,c =0,此时a 有4种选择,共有4个不同的函数.由分类加法计数原理,可确定不同的二次函数共有N =16+16+64+4=100(个).故选C .4.从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是( ) A .49 B .13 C .29 D .19 [答案] D[解析] 本题考查计数原理与古典概型,∵两数之和为奇数,则两数一奇一偶,若个位数为奇数,则共有4×5=20个数,若个位数为偶数,共有5×5=25个数,其中个位为0的数共有5个,∴P =520+25=19.5.如图,某电子器件是由三个电阻组成的回路,其中共有6个焊接点A 、B 、C 、D 、E 、F ,如果某个焊接点脱落,整个电路就会不通,现在电路不通了,那么焊接点脱落的可能性共有( )A .6种B .36种C .63种D .64种[答案] C[解析] 每个焊接点都有正常与脱落两种情况,只要有一个脱落电路即不通,∴共有26-1=63种.故选C .6.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为( )A .3B .4C .6D .8[答案] D[解析] 当公比为2时,等比数列可为1、2、4,2、4、8. 当公比为3时,等比数列可为1、3、9. 当公比为32时,等比数列可为4、6、9.同时,4、2、1,8、4、2,9、3、1和9、6、4也是等比数列,共8个. 二、填空题7.(2014·杭州模拟)有一质地均匀的正四面体,它的四个面上分别标有1、2、3、4四个数字,现将它连续抛掷3次,其底面落于桌面,记三次在正四面体底面的数字和为S ,则“S 恰好为4”的概率为________.[答案]364[解析] 本题是一道古典概型问题.用有序实数对(a ,b ,c )来表示连续抛掷3次所得的3个数字,则该试验中共含4×4×4=64个基本事件,取S =a +b +c ,事件“S 恰好为4”中包含了(1,1,2),(1,2,1),(2,1,1)三个基本事件,则所求概率P =364.8.设椭圆x 2m +y 2n=1的焦点在y 轴上,m ∈{1,2,3,4,5},n ∈{1,2,3,4,5,6,7},则这样的椭圆个数为________________.[答案]20[解析]曲线是焦点在y轴上的椭圆,∴n>m.当m=1时,n有6种取法,当m=2时,n有5种取法……当m=5时n有2种取法,∴这样的椭圆共有6+5+4+3+2=20个.9.有10本不同的数学书,9本不同的语文书,8本不同的英语书,从中任取两本不同类的书,共有不同的取法________种.[答案]242[解析]取两本书中,一本数学、一本语文,根据分步乘法计数原理有10×9=90(种)不同取法;取两本书中,一本语文、一本英语,有9×8=72(种)不同取法;取两本书中,一本数学、一本英语,有10×8=80(种)不同取法.综合以上三类,利用分类加法计数原理,共有90+72+80=242(种)不同取法.三、解答题10.有三项体育运动项目,每个项目均设冠军和亚军各一名奖项.(1)学生甲参加了这三个运动项目,但只获得一个奖项,学生甲获奖的不同情况有多少种?(2)有4名学生参加了这三个运动项目,若一个学生可以获得多项冠军,那么各项冠军获得者的不同情况有多少种?[解析](1)三个运动项目,共有六个奖项,由于甲获得一个奖项且甲可获得六个奖项中的任何一个.∴甲有6种不同的获奖情况.(2)每一项体育运动项目中冠军的归属都有4种不同的情况,故各项冠军获得者的不同情况有4×4×4=64(种).一、选择题11. 元旦来临之际,某寝室四人各写一张贺卡,先集中起来,然后每人从中拿一张别人送出的贺卡,则四张贺卡不同的分配方式有( )A.6种B.9种C.11种D.23种[答案] B[解析]解法1:设四人A、B、C、D写的贺卡分别是a、b、c、d,当A拿贺卡b,则B 可拿a、c、d中的任何一张,即B拿a,C拿d,D拿c或B拿c,D拿a,C拿d或B拿d,C拿a,D拿c,所以A拿b时有三种不同的分配方式.同理,A拿c,d时也各有三种不同的分配方式.由分类加法计数原理,四张贺卡共有3+3+3=9(种)分配方式.解法2:让四人A 、B 、C 、D 依次拿一张别人送出的贺卡,如果A 先拿,有3种,此时被A 拿走的那张贺卡的人也有3种不同的取法.接下来,剩下的两个人都各只有1种取法,由分步乘法计数原理,四张贺卡不同的分配方式有3×3×1×1=9(种).12.某单位有7个连在一起的车位,现有3辆不同型号的车需停放,如果要求剩余的4个车位连在一起,则不同的停放方法的种数为( )A .16B .18C .24D .32[答案] C[解析] 若将7个车位从左向右按1~7进行编号,则该3辆车有4种不同的停放方法:(1)停放在1~3号车位;(2)停放在5~7号车位;(3)停放在1、2、7号车位;(4)停放在1、6、7号车位.每一种停放方法均有6种,故共有24种不同的停放方法.13.(2014·张家界月考)先后掷两次正方体骰子(骰子的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为m 、n ,则mn 是奇数的概率是( )A .12B .13C .14D .16 [答案] C[解析] 先后掷两次正方体骰子总共有36种可能,要使mn 是奇数,则m 、n 都是奇数,因此有以下几种可能:(1,1),(1,3),(1,5),(3,1),(3,3),(3,5),(5,1),(5,3),(5,5)共9种可能.因此P =936=14.14.若三角形的三边长均为正整数,其中一边长为4,另外两边长分别为b 、c ,且满足b ≤4≤c ,则这样的三角形有( )A .10个B .14个C .15个D .21个[答案] A[解析] 当b =1时,c =4;当b =2时,c =4,5;当b =3时,c =4,5,6;当b =4时,c =4,5,6,7.故共有10个这样的三角形.选A .[点评] 注意三角形两边之和大于第三边,两边之差小于第三边. 二、填空题15.连掷两次骰子得到的点数分别为m 和n ,向量a =(m ,n )和向量b =(1,-1)的夹角为θ,则θ为锐角的概率是________.[答案]512[解析] cos θ=a ·b |a ||b |=m -n2·m 2+n2, ∵θ∈(0,π2),∴⎩⎪⎨⎪⎧a ·b >0,a ∥\ b .∴⎩⎪⎨⎪⎧m -n >0,m -n2m 2+2n2<1.∴m >n ,则m =2时,n =1;m =3时,n =1,2;m =4时,n =1,2,3;m =5时,n =1,2,3,4;m =6时,n =1,2,3,4,5.则这样的向量a 共有1+2+3+4+5=15(个),而第一次投掷骰子得到的点数m 有6种情形,同样n 也有6种情形,∴不同的向量a =(m ,n ),共有6×6=36个,因此所求概率P =1536=512.16.从集合{1,2,3,4,5,6}中任取两个元素作为双曲线x 2a -y 2b=1中的几何量a 、b 的值,则“双曲线渐近线的斜率k 满足|k |≤1”的概率为________.[答案] 12[解析] 所有可能取法有6×5=30种,由|k |=ba≤1知b ≤a ,满足此条件的有(2,1),(3,2),(3,1),(4,3),(4,2),(4,1),(5,4),(5,3),(5,2),(5,1),(6,5),(6,4),(6,3),(6,2),(6,1)共15种,∴所求概率P =1530=12.三、解答题17.现有高三四个班的学生共34人,其中一、二、三、四班分别有7人、8人、9人、10人,他们自愿组成数学课外小组.(1)选其中一人为负责人,有多少种不同的选法? (2)每班选一名组长,有多少种不同的选法?(3)推选二人作发言,这二人需来自不同的班级,有多少种不同的选法?[解析] (1)分四类:第一类,从一班学生中选1人,有7种选法;第二类,从二班学生中选1人,有8种选法;第三类,从三班学生中选1人,有9种选法;第四类,从四班学生中选1人,有10种选法,所以,共有不同的选法N =7+8+9+10=34(种).(2)分四步:第一、二、三、四步分别为从一、二、三、四班的学生中选一人任组长,所以共有不同的选法N =7×8×9×10=5040(种).(3)分六类:每类又分两步,从一、二班的学生中各选1人,有7×8种不同的选法;从一、三班的学生中各选1人,有7×9种不同的选法;从一、四班的学生中各选1人,有7×10种不同的选法;从二、三班的学生中各选1人,有8×9种不同的选法;从二、四班的学生中各选1人,有8×10种不同的选法:从三、四班的学生中各选1人,有9×10种不同的选法;所以共有不同的选法N=7×8+7×9+7×10+8×9+8×10+9×10=431(种).18.用1、2、3、4四个数字(可重复)排成三位数,并把这些三位数由小到大排成一个数列{a n}.(1)写出这个数列的前11项;(2)这个数列共有多少项?(3)若a n=341,求n.[解析](1)111,112,113,114,121,122,123,124,131,132,133.(2)这个数列的项数就是用1、2、3、4排成的三位数,每个位上都有4种排法,则共有4×4×4=64项.(3)比a n=341小的数有两类:①;②.共有2×4×4+1×3×4=44∴n=44+1=45(项).1.2.1第1课时排列(一)课时作业一、选择题1.从1、2、3、4中,任取两个不同数字组成平面直角坐标系中一个点的坐标,则组成不同点的个数为( )A.2 B.4C.12 D.24[答案] C[解析]本题相当于从4个元素中取2个元素的排列,即A24=12.2.停车站划出一排12个停车位置,今有8辆不同的车需要停放,若要求剩余的4个空车位连在一起,则不同的停车方法有( )A.A812种B.2A88A44种C.8A88种D.9A88种[答案] D[解析]将4个空车位视为一个元素,与8辆车共9个元素进行全排列,共有A99=9A88种.3.从4名男生和3名女生中选出3人,分别从事三项不同的工作,若这3人中至少有1名女生,则选派方案共有( )A.108种B.186种C.216种D.270种[答案] B[解析]从全部方案中减去只选派男生的方案数,所有不同的选派方案共有A37-A34=186(种),选B.4.有4名司机、4名售票员分配到4辆汽车上,使每辆汽车上有一名司机和一名售票员,则可能的分配方案有( )A.A88B.A48C.A44A44D.2A44[答案] C[解析]安排4名司机有A44种方案,安排4名售票员有A44种方案.司机与售票员都安排好,这件事情才算完成,由分步乘法计数原理知共有A44A44种方案.5.沪宁铁路线上有六个大站:上海、苏州、无锡、常州、镇江、南京,铁路部门应为沪宁线上的这六个大站(这六个大站间)种准备不同的火车票种数为( ) A.30种B.15种C.81种D.36种[答案] A[解析]对于两个大站A和B,从A到B的火车票与从B到A的火车票不同,因为每张车票对应于一个起点站和一个终点站.因此,每张火车票对应于从6个不同元素(大站)中取出2个元素(起点站和终点站)的一种排列.所以问题归结为求从6个不同元素中每次取出2个不同元素的排列数A26=6×5=30种.故选A.6.某校某班2015年元旦晚会计划有8个声乐节目和3个舞蹈节目,若3个舞蹈在节目单中要隔开,则不同节目单的种数为( )A.A88B.A811C.A88A39D.A88A38[答案] C[解析]先排8个声乐节目共有A88种排法,产生9个空隙,再插入3个舞蹈节目有A39,据分步乘法计数原理,共有A88·A39种.7.将A 、B 、C 、D 、E 、F 六个字母排成一排,且A 、B 均在C 的同侧,则不同的排法共有________种(用数字作答).[答案] 480[解析] A 、B 两个字母与C 的位置关系仅有3种:同左、同右或两侧,各占13,∴排法有23A 66=480.8.某校园有一椭圆型花坛,分成如图四块种花,现有4种不同颜色的花可供选择,要求每块地只能种一种颜色,且有公共边界的两块不能种同一种颜色,则不同的种植方法共有________种.[答案] 48[解析] 由于相邻两块不能种同一种颜色,故至少应当用三种颜色,故分两类.第一类,用4色有A 44种,第二类,用3色有4A 33种,故共有A 44+4A 33=48种.9.用0、1、2、3、4、5可以排出没有重复数字且大于3240的四位数________个. [答案] 149[解析] 当首位为4或5时,有2×A 35种;当首位为3,百位为4或5时,有2×A 24种;当首位为3,百位为2,十位为5时,有3种,最后还有3245和3241满足,因此没有重复数字且大于3240的四位数共有2A 35+2A 24+3+2=149个.三、解答题10.用1、2、3、4、5、6、7这7个数字组成没有重复数字的四位数. (1)这些四位数中偶数有多少个?能被5整除的有多少个? (2)这些四位数中大于6500的有多少个?[解析] (1)偶数的个位数只能是2、4、6有A 13种排法,其它位上有A 36种排法,由分步乘法计数原理知共有四位偶数A 13·A 36=360个;能被5整除的数个位必须是5,故有A 36=120个.(2)最高位上是7时大于6500,有A 36种,最高位上是6时,百位上只能是7或5,故有2×A 25种.∴由分类加法计数原理知,这些四位数中大于6500的共有A 36+2A 25=160个.11.摄影师要为5名学生和2位老师拍照,要求排成一排,2位老师相邻且不排在两端,不同的排法共有( )A .1440种B .960种C .720种D .480种[答案] B[解析] 2位老师作为一个整体与5名学生排队,相当于6个元素排在6个位置,且老师不排两端,先安排老师,有4A 22=8种排法,5名学生排在剩下的5个位置,有A 55=120种,由分步乘法计数原理得4A 22×A 55=960种排法.[点评] 因为两位老师相邻,故可作为一个元素,因此可先将5名同学排好,在5名学生形成的4个空位中选1个,将两位老师排上,共有A 55·(4A 22)种不同排法.12.从集合{1,2,3,…,11}中任选两个元素作为椭圆方程x 2m 2+y 2n2=1中的m 和n ,则能组成落在矩形区域B ={(x ,y )||x |<11,且|y |<9}内的椭圆个数为( )A .43B .72C .86D .90[答案] B[解析] 在1、2、3、4、…、8中任取两个作为m 、n ,共有A 28=56种方法;可在9、10中取一个作为m ,在1、2、…、8中取一个作为n ,共有A 12A 18=16种方法,由分类加法计数原理,满足条件的椭圆的个数为:A 28+A 12A 18=72.13.将字母a ,a ,b ,b ,c ,c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有( )A .12种B .18种C .24种D .36种[答案] A[解析] 先排第一列,因为每列的字母互不相同,因此共有A 33种不同的排法;再排第二列,第二列第一行的字母有2种排法,排好此位置后,其他位置只有一种排法.因此共有2A 33=12种不同的排法.14.一植物园参观路径如图所示,若要全部参观并且路线不重复,则不同的参观路线种数共有( )A .6种B .8种C .36种D .48种[答案] D [解析]如图所示,三个区域按参观的先后次序共有A 33种参观方法,对于每一种参观次序,每一个植物园都有2类参观路径,∴共有不同参观路线2×2×2×A 33=48种.二、填空题15.如果直线a 与b 异面,则称a 与b 为一对异面直线,六棱锥的侧棱与底边共12条棱所在的直线中,异面直线共有________对.[答案] 24[解析] 六棱锥的侧棱都相交,底面六条边所在直线都共面,故异面直线只可能是侧棱与底面上的边.考察PA 与底面六条边所在直线可用枚举法列出所有异面直线(PA ,BC ),(PA ,CD ),(PA ,DE ),(PA ,EF )共四对.同理与其他侧棱异面的底边也各有4条,故共有4×6=24对.16.有10幅画展出,其中1幅水彩画,4幅油画,5幅国画排成一排,要求同一品种的画必须连在一起,并且水彩画不放在两端,则不同的陈列方式有________种.[答案] 5760[解析] 第一步,水彩画可以在中间,油画、国画放在两端,有A 22种放法; 第二步,油画内部排列,有A 44种; 第三步,国画内部排列,有A 55种.由分步乘法计数原理,不同的陈列方式共有A 22A 55A 44=5 760(种). 三、解答题17.求和:12!+23!+34!+…+n n +!.[解析] ∵k k +!=k +1-1k +!=k +1k +!-1k +!=1k !-1k +!,∴原式=⎝ ⎛⎭⎪⎫11-12!+⎝ ⎛⎭⎪⎫12!-13!+⎝ ⎛⎭⎪⎫13!-14!+…+⎝ ⎛⎭⎪⎫1n !-1n +!=1-1n +!. 18.(2015·宝鸡市金台区高二期末)“渐降数”是指每一位数字比其左边的数字小的正整数(如632),那么比666小的三位渐降数共有多少个?[解析] 百位是6,十位是5比666小的渐降数有654,653,652,651,650共5个, 百位是6,十位是4比666小的渐降数有643,642,641,640共4个, 百位是6,十位是3比666小的渐降数有632,631,630共3个, 百位是6,十位是2比666小的渐降数有621,620共2个, 百位是6,十位是1比666小的渐降数有610,所以百位是6比666小的渐降数有1+2+3+4+5=15个, 同理:百位是5比666小的渐降数有1+2+3+4=10个, 百位是4比666小的渐降数有1+2+3=6个, 百位是3比666小的渐降数有1+2=3个, 百位是2比666小的渐降数有1个,所以比666小的三位渐降数共有15+10+6+3+1=35个.1.2.1第2课时 排列(二)课时作业一、选择题1.用1、2、3、4、5这五个数字,组成没有重复数字的三位数,其中奇数的个数为( ) A .36 B .30 C .40 D .60[答案] A[解析] 奇数的个位数字为1、3或5,偶数的个位数字为2、4.故奇数有35A 35=36个.2.(2014·辽宁理,6)6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为( )A .144B .120C .72D .24[答案] D[解析] 就座3人占据3张椅子,在其余3张椅子形成的四个空位中,任意选择3个,插入3张坐人的椅子,共有A 34=24种不同坐法,故选D .3.5个人排成一排,如果甲必须站在排头或排尾,而乙不能站在排头或排尾,那么不同站法总数为( )A.18 B.36C.48 D.60[答案] B[解析]甲在排头或排尾站法有A12种,再让乙在中间3个位置选一个,有A13种站法,其余3人有A33种站法,故共有A12·A13·A33=36种站法.4.某单位安排7位员工在10月1日至7日值班,每天安排1人,每人值班1天.若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有( )A.504种B.960种C.1008种D.1108种[答案] C[分析]甲、乙相邻看作一个元素与其它元素一块排,由于丙不排在第1天、丁不排在第7天,因此按甲、乙的排位进行分类.[解析]甲、乙相邻的所有方案有A22A66=1440种;其中丙排在10月1日的和丁排在10月7日的一样多,各有:A22A55=240种,其中丙排在10月1日且丁排在10月7日的有A22A44=48种,故符合题设要求的不同安排方案有:1440-2×240+48=1008种,故选C.[点评] 在解决某几个元素必须相邻问题时,可整体考虑将相邻元素视为一个元素参与排列.5.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面.不同的安排方法共有( ) A.20种B.30种C.40种D.60种[答案] A[解析]分三类:甲在周一,共有A24种排法;甲在周二,共有A23种排法;甲在周三,共有A22种排法;∴A24+A23+A22=20.6.由数字0、1、2、3、4、5可以组成能被5整除,且无重复数字的不同的五位数有( ) A.(2A45-A34)个B.(2A45-A35)个C.2A45个D.5A45个[答案] A[解析]能被5整除,则个位须为5或0,有2A45个,但其中个位是5的含有0在首位的排法有A34个,故共有(2A45-A34)个.[点评] 可用直接法求解:个位数字是0时有A45种;个位数字是5时,首位应用1、2、3、4中选1个,故有4A34种,∴共有A45+4A34个.二、填空题7.三个人坐在一排八个座位上,若每人的两边都要有空位,则不同的坐法种数为________.[答案]24[解析]“每人两边都有空位”是说三个人不相邻,且不能坐两头,可视作5个空位和3个人满足上述两要求的一个排列,只要将3个人插入5个空位形成的4个空档中即可.∴有A34=24种不同坐法.8.(2015·宝鸡市金台区高二期末)某一天上午的课程表要排入语文、数学、物理、体育共4节课,如果第一节不排体育,最后一节不排数学,那么共有不同排法________种.[答案]14[解析]解法1:若第一节排数学,共有A33=6种方法,若第一节不排数学,第一节有2种排法,最后一节有2种排法,中间两节任意排,有2×2×2=8种方法,根据分类计数原理,共有6+8=14种,故答案为14.解法2:间接法:4节课全部可能的排法有=24种,其中体育排第一节的有=6种,数学排最后一节的有=6种,体育排第一节且数学排最后一节的有=2种,故符合要求的排法种数为-+=14种.9.2014年某地举行博物展,某单位将展出5件艺术作品,其中不同书法作品2件、不同绘画作品2件、标志性建筑设计1件,在展台上将这5件作品排成一排,要求2件书法作品必须相邻,2件绘画作品不能相邻,则该单位展出这5件作品不同的方案有________种.(用数字作答)[答案]24[解析]将2件书法作品排列,方法数为2种,然后将其作为1件作品与标志性建筑设计作品共同排列有2种排法,对于其每一种排法,在其形成的3个空位中选2个插入2件绘画作品,故共有不同展出方案:2×2×A23=24种.三、解答题10.一场晚会有5个演唱节目和3个舞蹈节目,要求排出一个节目单.(1)3个舞蹈节目不排在开始和结尾,有多少种排法?(2)前四个节目要有舞蹈节目,有多少种排法?[解析](1)先从5个演唱节目中选两个排在首尾两个位置有A25种排法,再将剩余的3个演唱节目,3个舞蹈节目排在中间6个位置上有A66种排法,故共有不同排法A25A66=14400种.。
人教版高中数学选修23课后习题参考答案
新课程标准数学选修2—3第一章课后习题解答第一章 计数原理1.1分类加法计数原理与分步乘法计数原理 练习(P6)1、(1)要完成的“一件事情”是“选出1人完成工作”,不同的选法种数是5+4=9; (2)要完成的“一件事情”是“从A 村经B 村到C 村去”,不同路线条数是3×2=6.2、(1)要完成的“一件事情”是“选出1人参加活动”,不同的选法种数是3+5+4=12; (2)要完成的“一件事情”是“从3个年级的学生中各选1人参加活动”,不同选法种数是3×5×4=60.3、因为要确定的是这名同学的专业选择,并不要考虑学校的差异, 所以应当是6+4-1=9(种)可能的专业选择. 练习(P10)1、要完成的“一件事情”是“得到展开式的一项”.由于每一项都是i j k a b c 的形式,所以可以分三步完成:第一步,取i a ,有3种方法;第二步,取j b ,有3种方法;第三步,取k c ,有5种方法. 根据分步乘法计数原理,展开式共有3×3×5=45(项).2、要完成的“一件事情”是“确定一个电话号码的后四位”. 分四步完成,每一步都是从0~9这10个数字中取一个,共有10×10×10×10=10000(个).3、要完成的“一件事情”是“从5名同学中选出正、副组长各1名”. 第一步选正组长,有5种方法;第二步选副组长,有4种方法. 共有选法5×4=20(种).4、要完成的“一件事情”是“从6个门中的一个进入并从另一个门出去”. 分两步完成:先从6个门中选一个进入,再从其余5个门中选一个出去. 共有进出方法6×5=30(种). 习题1.1 A 组(P12)1、“一件事情”是“买一台某型号的电视机”. 不同的选法有4+7=11(种).2、“一件事情”是“从甲地经乙地或经丙地到丁地去”. 所以是“先分类,后分步”,不同的路线共有2×3+4×2=14(条).3、对于第一问,“一件事情”是“构成一个分数”. 由于1,5,9,13是奇数,4,8,12,16是偶数,所以1,5,9,13中任意一个为分子,都可以与4,8,12,16中的任意一个构成分数. 因此可以分两步来构成分数:第一步,选分子,有4种选法;第二步,选分母,也有4种选法. 共有不同的分数4×4=16(个).对于第二问,“一件事情”是“构成一个真分数”. 分四类:分子为1时,分母可以从4,8,12,16中任选一个,有4个;分子为5时,分母可以从8,12,16中选一个,有3个;分子为9时,分母从12,16中选一个,有2个;分子为13时,分母只能选16,有1个. 所以共有真分数4+3+2+1=10(个).4、“一件事情”是“接通线路”. 根据电路的有关知识,容易得到不同的接通线路有3+1+2×2=8(条).5、(1)“一件事情”是“用坐标确定一个点”. 由于横、纵坐标可以相同,因此可以分两步完成:第一步,从A中选横坐标,有6个选择;第二步,从A中选纵坐标,也有6个选择. 所以共有坐标6×6=36(个).(2)“一件事情”是“确定一条直线的方程”. 由于斜率不同截距不同、斜率不同截距相同、斜率相同截距不同的直线都是互不相同的,因此可分两步完成:第一步,取斜率,有4种取法;第二步,取截距,有4种取法. 所以共有直线4×4=16(条).习题1.1 B组(P13)1、“一件事情”是“组成一个四位数字号码”. 由于数字可以重复,最后一个只能在0~5这六个数字中拨,所以有号码10×10×10×6=6000(个).2、(1)“一件事情”是“4名学生分别参加3个运动队中的一个,每人限报一个,可以报同一个运动队”. 应该是人选运动队,所以不同报法种数是43.(2)“一件事情”是“3个班分别从5个风景点中选择一处游览”. 应该是人选风景点,故不同的选法种数是35. 1.2排列与组合 练习(P20)1、(1),,,,,,,,,,,ab ac ad ba bc bd ca cb cd da db dc ;(2),,,,,,,,,,,,,,,,,,,ab ac ad ae ba bc bd be ca cb cd ce da db dc de ea eb ec ed .2、(1)4151514131232760A =⨯⨯⨯=; (2)777!5040A ==; (3)4288287652871568A A -=⨯⨯⨯-⨯⨯=; (4)87121277121255A A A A ==.3、4、(1)略. (2)876777787677778788A A A A A A A -+=-+=.5、3560A =(种). 6、3424A =(种). 练习(P25)1、(1)甲、乙, 甲、丙, 甲、丁, 乙、丙, 乙、丁, 丙、丁; (2)2、ABC ∆,ABD ∆,ACD ∆,BCD ∆.3、3620C =(种). 4、246C =(个). 5、(1)26651512C ⨯==⨯; (2)3887656123C ⨯⨯==⨯⨯; (3)3276351520C C -=-=; (4)328532356210148C C -=⨯-⨯=.6、()1111(1)!!11(1)![(1)(1)]!!!m mn n m m n n C C n n m n m m n m +++++=⋅==++++-+- 习题1.2 A 组(P27)1、(1)325454*********A A +=⨯+⨯=; (2)12344444412242464A A A A +++=+++=. 2、(1)315455C =; (2)19732002001313400C C ==; (3)346827C C ÷=; (4)22211(1)(1)(1)22n n n n nn nn n n n CCCC n -++--⋅=⋅=+⋅=.3、(1)12111(1)n n n n n n n n n n n n A A n A A nA n A +-+--=+-==;(2)(1)!!(1)!!(1)!!(1)!!!n n n k n n k n k k k k ++-⋅-+-==-. 4、由于4列火车各不相同,所以停放的方法与顺序有关,有481680A =(种)不同的停法.5、4424A =. 6、由于书架是单层的,所以问题相当于20个元素的全排列,有2020A 种不同的排法.7、可以分三步完成:第一步,安排4个音乐节目,共有44A 种排法;第二步,安排舞蹈节目,共有33A 种排法;第三步,安排曲艺节目,共有22A 种排法. 所以不同的排法有432432288A A A ⋅⋅=(种).8、由于n 个不同元素的全排列共有!n 个,而!n n ≥,所以由n 个不同的数值可以以不同的顺序形成其余的每一行,并且任意两行的顺序都不同. 为使每一行都不重复,m 可以取的最大值是!n .9、(1)由于圆上的任意3点不共线,圆的弦的端点没有顺序,所以共可以画21045C =(条)不同的弦;(2)由于三角形的顶点没有顺序,所以可以画的圆内接三角形有310120C =(个). 10、(1)凸五边形有5个顶点,任意2个顶点的连线段中,除凸五边形的边外都是对角线,所以共有对角线2555C -=(条);(2)同(1)的理由,可得对角线为2(3)2n n n C n --=(条).说明:本题采用间接法更方便. 11、由于四张人民币的面值都不相同,组成的面值与顺序无关,所以可以分为四类面值,分别由1张、2张、3张、4张人民币组成,共有不同的面值1234444415C C C C +++=(种). 12、(1)由“三个不共线的点确定一个平面”,所确定的平面与点的顺序无关,所以共可确定的平面数是3856C =;(2)由于四面体由四个顶点唯一确定,而与四个点的顺序无关,所以共可确定的四面体个数是410210C =. 13、(1)由于选出的人没有地位差异,所以是组合问题,不同的方法数是3510C =. (2)由于礼物互不相同,与分送的顺序有关系,所以是排列问题,不同方法数是3560A =;(3)由于5个人中每个人都有3中选择,而且选择的时间对别人没有影响,所以是一个“可重复排列”问题,不同方法数是53243=;(4)由于只要取出元素,而不必考虑顺序,所以可以分两步取元素:第一步,从集合A 中取,有m 种取法;第二步,从集合B 中取,有n 种取法. 所以共有取法mn 种. 说明:第(3)题是“可重复排列”问题,但可以用分步乘法计数原理解决.14、由于只要选出要做的题目即可,所以是组合问题,另外,可以分三步分别从第1,2,3题中选题,不同的选法种数有32143224C C C ⋅⋅=. 15、由于选出的人的地位没有差异,所以是组合问题.(1)225460C C ⋅=; (2)其余2人可以从剩下的7人中任意选择,所以共有2721C =(种)选法;(3)用间接法,在9人选4人的选法中,把男甲和女乙都不在内的去掉,就得到符合条件的选法数为449791C C -=; 如果采用直接法,则可分为3类:只含男甲;只含女乙;同时含男甲女乙,得到符合条件的方法数为33277791C C C ++=;(4)用间接法,在9人选4人的选法中,把只有男生和只有女生的情况排除掉,得到选法总数为444954120C C C --=. 也可以用直接法,分别按照含男生1,2,3人分类,得到符合条件的选法数为132231545454120C C C C C C ++=.16、按照去的人数分类,去的人数分别为1,2,3,4,5,6,而去的人大家没有地位差异,所以不同的去法有12345666666663C C C C C C +++++=(种). 17、(1)31981274196C =; (2)142198124234110C C ⋅=; (3)51982410141734C =; (4)解法1:3141982198125508306C C C =⋅=. 解法2:55200198125508306C C -=. 说明:解答本题时,要注意区分“恰有”“至少有”等词. 习题1.2 B 组(P28)1、容易知道,在737C 注彩票中可以有一个一等奖.在解决第2问时,可分别计算37选6及37选8中的一等奖的中奖机会,它们分别是637112324784C =和8371138608020C =. 要将一等奖的机会提高到16000000以上且不超过1500000,即375000006000000nC ≤<, 用计算机可得,6n =,或31n =.所以可在37个数中取6个或31个.2、可以按照I ,II ,III ,IV 的顺序分别着色:分别有5,4,3,3种方法,所以着色种数有5×4×3×3=180(种).3、“先取元素后排列”,分三步完成:第一步,从1,3,5,7,9中取3个数,有35C 种取法;第二步,从2,4,6,8中取2个数,有24C 种取法;第三步,将取出的5个数全排列,有55A 种排法. 共有符合条件的五位数3255457200C C A ⋅⋅=(个). 4、由于甲和乙都没有得冠军,所以冠军是其余3人中的一个,有13A 种可能;乙不是最差的,所以是第2,3,4名中的一种有13A 种可能;上述位置确定后,甲连同其他2人可任意排列,有33A 种排法. 所以名次排列的可能情况的种数是11333354A A A ⋅⋅=. 5、等式两边都是两个数相乘,可以想到分步乘法计数原理,于是可得如下分步取组合的方法.在n 个人中选择m 个人搞卫生工作,其中k 个人擦窗,m k -个人拖地,共有多少种不同的选取人员的方法?解法1:利用分步计数原理,先从n 个人中选m 个人,然后从选出的m 个人中再选出k 个人擦窗,剩余的人拖地,这样有m knm C C 种不同的选取人员的方法; 解法2:直接从n 个人中选k 个人擦窗,然后在剩下的n k -个人中选m k -个人拖地,这样,由分步计数原理得,共有k m knn k C C --种不同的人员选择方法. 所以,k m k m knn k n m C C C C --=成立. 说明:经常引导学生从一个排列组合的运算结果或等式出发,构造一个实际问题加以解释,有助于学生对问题的深入理解,检查结果,纠正错误. 1.3二项式定理 练习(P31)1、7652433425677213535217p p q p q p q p q p q pq q +++++++.2、2424236(2)(3)2160T C a b a b =⋅=. 3、231(1)(2n rr r n rrr r nn r T C C x --+-=⋅=.4、D . 理由是5105555511010(1)T C x C x -+=-=-. 练习(P35)1、(1)当n 是偶数时,最大值2nn C ;当n 是奇数时,最大值12n nC-.(2)1311111111111210242C C C +++=⋅=. (3)12.2、∵0122knn nn n n n C C C C C ++++++=,2、∵0122knn nn n n n C C C C C ++++++=,0213nn n n C C C C ++=++∴012knnn n n n C C C C C ++++++0213()()n n n n C C C C =+++++022()2n n n C C =++=∴021222nn n nnnC C C -+++==. 3、略.习题1.3 A 组(P36)1、(1)011222(1)(1)(1)(1)n n n r n rr nn nn n n n C P C P P C P P C P P C P ---+-+-++-++-;(2)0122222nn n nn n n n n C C C C ++++.2、(1)9965432(9368412612684a a a a a b a a a b =+++23369a b ab b(2)27311357752222222172135(7016822412821283282x x x x x x x x ----=-+-+-+-.3、(1)552(1(122010x x ++=++; (2)11114412222(23)(23)192432x x x x x x ---+--=+. 4、(1)前4项分别是1,30x -,2420x ,33640x -; (2)91482099520T a b =-; (3)7924T =; (4)展开式的中间两项分别为8T ,9T ,其中78711815((6435T C x y =-=-87811915((6435T C x y =-=5、(1)含51x 的项是第6项,它的系数是5510163()28C -=-; (2)常数项是第6项,5105561012()2522T C -=⋅-=-.6、(1)2221221()(1)r n r r r r n rr n n T C x C xx --+=-=- 6、(1)2221221()(1)r n r r r r n rr n n T C x C xx--+=-=- 由220n r -=得r n =,即21()n x x-的展开式中常数项是12(1)n rn n T C +=-(2)!(1)!!nn n n =- 12345(21)2(1)!!n n nn n ⋅⋅⋅⋅⋅⋅-⋅=-…[135(21)][2462](1)!!n n n n n ⋅⋅⋅⋅-⋅⋅⋅⋅=-……[135(21)]2!(1)!!n nn n n n ⋅⋅⋅⋅-⋅⋅=-…135(21)(2)!nn n ⋅⋅⋅⋅-=-…(2)2(1)n x +的展开式共有21n +项,所以中间一项是12135(21)(2)!n nn n n n T C x x n +⋅⋅⋅⋅-==…7、略.8、展开式的第4项与第8项的二项式系数分别是3n C 与7n C , 由37n n n C C -=,得37n =-,即10n =.所以,这两个二项式系数分别是310C 与710C ,即120.习题1.3 B 组(P37)1、(1)∵1122221(1)111n n n n n n n n n n n n C n C n C n C n ----+-=++++++- 1122222n n n n nn n n C n C n C n n ---=+++++2213242(1)n n n n nn n n n C n C n C ----=+++++∴(1)1n n +-能被2n 整除; (2)∵1010991(1001)1-=--1019288291010101010010010010010011C C C C =-⋅+⋅++⋅-⋅+- 1019288210101010010010010010100C C C =-⋅+⋅++⋅-⨯1711521381010101000(101010101)C C C =-⋅+⋅++⋅-∴10991-能被1000整除.2、由0112211(21)222(1)2(1)n n n n n n n nnn n n n C C C C C -----=⋅-⋅+⋅++-⋅⋅+-,得112211222(1)2(1)1n n n n n n nn n C C C -----⋅+⋅++-⋅⋅+-=.第一章 复习参考题A 组(P40)1、(1)2n ;说明:这里的“一件事情”是“得到展开式中的一项”. 由于项的形式是i j a b ,而,i j 都有n 种取法.(2)3276525C C ⋅=; (3)1545480A A ⋅=,或2454480A A ⋅=; 说明:第一种方法是先考虑有限制的这名歌手的出场位置,第二种方法是先考虑有限制的两个位置. (4)45C ;说明:因为足球票无座,所以与顺序无关,是组合问题. (5)53;说明:对于每一名同学来说,有3种讲座选择,而且允许5名同学听同一个讲座,因此是一个“有重复排列”问题,可以用分步乘法原理解答. (6)54;说明:对角线的条数等于连接正十二边形中任意两个顶点的线段的条数212C ,减去其中的正十二边形的边12条:21212111212542C ⨯-=-=. (7)第1n +项.说明:展开式共有21n +项,且各系数与相应的二项式系数相同.2、(1)1234566666661956A A A A A A +++++=;说明:只要数字是1,2,3,4,5,6中的,而且数字是不重复的一位数、二位数、三位数、四位数、五位数和六位数都符合要求.(2)552240A =. 说明:只有首位数是6和5的六位数才符合要求.3、(1)3856C =; (2)1234555530C C C C +++=. 4、468898C C +=.说明:所请的人的地位没有差异,所以是组合问题. 按照“其中两位同学是否都请”为标准分为两类.5、(1)2(1)2n n n C -=; 说明:任意两条直线都有交点,而且交点各不相同. (2)2(1)2n n n C -=. 说明:任意两个平面都有一条交线,而且交线互不相同. 6、(1)59764446024C =; (2)23397442320C C ⋅=; (3)2332397397446976C C C C ⋅+⋅=. 7、34533453103680A A A A ⋅⋅⋅=. 说明:由于不同类型的书不能分开,所以可以将它们看成一个整体,相当于是3个元素的全排列. 但同类书之间可以交换顺序,所以可以分步对它们进行全排列. 8、(1)226x -;说明:第三项是含2x 的项,其系数是22112244553(23)(2)26C C C C ⋅+⋅-⨯+--. (2)18118(9)(rr r r T C x -+=,由题意有1802rr --= 解得12r =,1318564T =;(3)由题意得98102n n n C C C =+,即2!!!9!(9)!8!(8)!10!(10)!n n n n n n ⋅=+---化简得2373220n n -+=,解得14n =,23n =;(4)解法1:设1r T +'是10(1)x -展开式的第1r +项,由题意知,所求展开式中4x 的系数为41T +',31T +'与21T +'的系数之和.444110()T C x +'=-,333110()T C x +'=-,222110()T C x +'=-,因此,4x 的系数432101010135C C C =-+=. 解法2:原式39(1)(1)x x =--3223344999(1)(19)x x C x C x C x =--+-++因此,4x 的系数499135C =+=. 9、5555559(561)9+=-+5515454555556565619C C =-⋅++⋅-+ 551545455555656568C C =-⋅++⋅+由于551545455555656568C C -⋅++⋅+中各项都能被8整除,因此55559+也能被8整除.第一章 复习参考题B 组(P41)1、(1)121121n n n C C -++==,即1(1)212n n +⋅=,解得6n =; (2)1144244224192A A A ⋅⋅=⨯⨯=; 说明:先排有特殊要求的,再排其他的. (3)433333⨯⨯⨯=,34444⨯⨯=;说明:根据映射定义,只要集合A 中任意一个元素在集合B 中能够找到唯一对应的元素,(4)2426106500000A ⨯=; (5)481258C -=; 说明:在从正方体的8个顶点中任取4个的所有种数48C 中, 排除四点共面的12种情况,即正方体表面上的6种四点共 面的情况,以及如右图中ABC D ''这样的四点共面的其他 6种情况,因此三棱锥的个数为481258C -=(6)1或1-.说明:令1x =,这时(12)n x -的值就是展开式中各项系数的和,其值是1,(12)(1)1n n n n -⎧-=-=⎨⎩是奇数,是偶数2、(1)先从1,3,5中选1个数放在末位,有13A 种情况;再从除0以外的4个数中选1个数放在首位,有14A 种情况;然后将剩余的数进行全排列,有44A 种情况. 所以能组成的六位奇数个数为114344288A A A ⋅⋅=. (2)解法1:由0,1,2,3,4,5组成的所有没有重复数字的正整数的个数是1555A A ⋅,其中不大于201345的正整数的个数,当首位数字是2时,只有201345这1个;当首位数字是1时,有55A 个. 因此,所求的正整数的个数是155555(1)479A A A ⋅-+=. 解法2:由0,1,2,3,4,5组成的没有重复数字的正整数中,大于201345的数分为以下几种情况:前4位数字为2013,只有201354,个数为1;同理,前3位数字为201,个数为1222A A ⋅;前2位数字为20,个数为1333A A ⋅; 首位数字为2,个数为1444A A ⋅;首位数字为3,4,5中的一个,个数为1535A A ⋅; 根据分类计数原理,所求的正整数的个数是12131415223344351479A A A A A A A A +⋅+⋅+⋅+⋅=. 3、(1)分别从两组平行线中各取两条平行线,便可构成一个平行四边形,所以可以构成的平行四边形个数为221(1)(1)4m n C mn m n ⋅=--; (2)分别从三组平行平面中各取两个平行平面,便可构成一个平行六面体,所以可以构成的平行六面体个数为2221(1)(1)(1)8mn l C C C mnl m n l ⋅⋅=---. 4、(1)先排不能放在最后的那道工序,有14A 种排法;再排其余的4道工序,有44A 种排法. 根据分步乘法计数原理,排列加工顺序的方法共有144496A A ⋅=(种);(2)先排不能放在最前和最后的那两道工序,有23A 种排法;再排其余的3道工序,有33A 种排法,根据分步乘法计数原理,排列加工顺序的方法共有233336A A ⋅=(种).5、解法1:由等比数列求和公式得33342(1)(1)(1)(1)(1)n n x x x x x x+++-+++++++=,上述等式右边分子的两个二项式中含2x 项的系数分别是33n C +,33C ,因此它们的差23333(611)6n n n n CC +++-=,就是所求展开式中含2x 项的系数.解法2:原式中含2x 项的系数分别是23C ,24C ,…,22n C +,因此它们的和就是所求展开式中含2x 项的系数. 与复习参考题B 组第2题同理,可得22223334233(611)6n n n n n C C CCC +++++++=-=修2—3第二章课后习题解答第二章 随机变量及其分布 2.1离散型随机变量及其分布列 练习(P45)1、(1)能用离散型随机变量表示. 可能的取值为2,3,4,5,6,7,8,9,10,11,12. (2)能用离散型随机变量表示. 可能的取值为0,1,2,3,4,5. (3)不能用离散型随机变量表示.说明:本题的目的是检验学生是否理解离散型随机变量的含义. 在(3)中,实际值与规定值之差可能的取值是在0附近的实数,既不是有限个值,也不是可数个值. 2、可以举的例子很多,这里给出几个例子: 例1 某公共汽车站一分钟内等车的人数; 例2 某城市一年内下雨的天数;例3 一位跳水运动员在比赛时所得的分数;例4 某人的手机在1天内接收到电话的次数.说明:本题希望学生能观察生活中的随机现象,知道哪些量是随机变量,哪些随机变量又是离散型随机变量. 练习(P49)1、设该运动员一次罚球得分为X ,X 是一个离散型随机变量,其分布列为说明:这是一个两点分布的例子,投中看作试验成功,没投中看作试验失败. 通过这样的例子可以使学生理解两点分布是一个很常用的概率模型,实际中大量存在. 虽然离散型随机变量的分布列可以用解析式的形式表示,但当分布列中的各个概率是以数值的形式给出时,通常用列表的方式表示分布列更为方便.2、抛掷一枚质地均匀的硬币两次,其全部可能的结果为{正正,正反,反正,反反}. 正面向上次数X 是一个离散型随机变量,1(0)({})0.254P X P ====反反 2(1)({}{})0.54P X P ====正反反正1(2)({})0.25P X P ====正正因此X 的分布列为说明:这个离散型随机变量虽然简单,但却是帮助学生理解随机变量含义的一个很好的例子. 试验的全部可能的结果为{正正,正反,反正,反反},随机量X 的取值范围为{0,1,2},对应关系为正正→2 正反→1 反正→1 反反→0在这个例子中,对应于1的试验结果有两个,即“正反”和“反正”,因此用随机变量X 不能表示随机事件{正反}. 这说明对于一个具体的随机变量而言,有时它不能表示所有的随机事件.可以通过让学生们分析下面的推理过程存在的问题,进一步巩固古典概型的知识. 如果把X 所有取值看成是全体基本事件,即{0,1,2}Ω=.根据古典概型计算概率的公式有 1(1)({1})3P X P ===. 这与解答的结果相矛盾. 原因是这里的概率模型不是古典概型,因此上面式中的最后一个等号不成立. 详细解释下:虽然Ω中只含有3个基本事件,但是出现这3个基本事件不是等可能的,因此不能用古典概型计算概率的公式来计算事件发生的概率.3、设抽出的5张牌中包含A 牌的张数为X ,则X 服从超几何分布,其分布列为5448552()i iC C P X i C -==,i =0,1,2,3,4. 因此抽出的5张牌中至少3张A 的概率为(3)(3)(4)0.002P X P X P X ≥==+=≈.说明:从52张牌任意取出5张,这5张牌中包含A 的个数X 是一个离散型随机变量. 把52张牌看成是52件产品,把牌A 看成次品,则X 就成为从含有四件次品的52件产品中任意抽取5件中的次品数,因此X 服从超几何分布.本题的目的是让学生熟悉超几何分布模型,体会超几何分布在不同问题背景下的表现形式. 当让本题也可以用古典概型去解决,但不如直接用超几何分布简单. 另外,在解题中分布列是用解析式表达的,优点是书写简单,一目了然.4、两点分布的例子:掷一枚质地均匀的硬币出现正面的次数X 服从两点分布;射击一次命中目标的次数服从两点分布.超几何分布的例子:假设某鱼池中仅有鲤鱼和鲑鱼两种鱼,其中鲤鱼200条,鲑鱼40条,从鱼池中任意取出5条鱼,这5条鱼包含鲑鱼的条数X 服从超几何分布.说明:通过让学生举例子的方式,帮助学生理解这两个概率模型.习题2.1 A组(P49)1、(1)能用离散型随机变量表示.设能遇到的红灯个数为X,它可能的取值为0,1,2,3,4,5.事件{X=0}表示5个路口遇到的都不是红灯;事件{X=1}表示5个路口其中有1个路口遇到红灯,其他4个路口都不是红灯;事件{X=2}表示5个路口其中有2个路口遇到红灯,其他3个路口都不是红灯;事件{X=3}表示5个路口其中有3个路口遇到红灯,剩下2个路口都不是红灯;事件{X=4}表示5个路口其中有4个路口遇到红灯,另外1个路口都不是红灯;事件{X=5}表示5个路口全部都遇到红灯.(2)能用离散型随机变量表示.定义12345X⎧⎪⎪⎪=⎨⎪⎪⎪⎩,成绩不及格,成绩及格,成绩中,成绩良,成绩优则X是一个离散型随机变量,可能的取值为1,2,3,4,5.事件{X=1}表示该同学取得的成绩为不及格;事件{X=2}表示该同学取得的成绩为及格;事件{X=3}表示该同学取得的成绩为中;事件{X=4}表示该同学取得的成绩为良;事件{X=5}表示该同学取得的成绩为优.说明:本题是考查学生是否理解离散型随机变量的含义. 在(2)中,需要学生建立一个对应关系,因为随机变量的取值一定是实数,但这个对应关系不是唯一的,只要是从五个等级到实数的意义映射即可.2、某同学跑1 km所用时间X不是一个离散型随机变量. 如果我们只关心该同学是否能够取得优秀成绩,可以定义如下的随机变量:01km 4min 11km 4min Y >⎧=⎨≤⎩,跑所用的时间,跑所用的时间它是离散型随机变量,且仅取两个值:0或1.事件{1}Y =表示该同学跑1 km 所用时间小于等于4 min ,能够取得优秀成绩;事件{0}Y =表示该同学跑1 km 所用时间大于4 min ,不能够取得优秀成绩.说明:考查学生在一个随机现象中能否根据关心的问题不同定义不同的随机变量,以简化问题的解答. 可以与教科书中电灯泡的寿命的例子对比,基本思想是一致的.3、一般不能. 比如掷一枚质地均匀的硬币两次,用随机变量X 表示出现正面的次数,则不能用随机变量X 表示随机事件{第1次出现正面且第2次出现反面}和{第1次出现反面且第2次出现正面}. 因为{X =1}={第1次出现正面且第2次出现反面}∪{第1次出现反面且第2次出现正面},所以这两个事件不能分别用随机变量X 表示.说明:一个随机变量是与一个事件域相对应的,一个事件域一般是由部分事件组成,但要满足一定的条件. 对离散型随机变量,如果它取某个值是由几个随机变量组成,则这几个随机事件就不能用随机变量表示,比如从一批产品中依次取出几个产品,用X 表示取出的产品中次品的个数,这时我们不能用X 表示随机事件{第i 次取出次品,其他均为合格品}. 4、不正确,因为取所有值的概率和不等于1.说明:考查学生对分布列的两个条件的理解,每个概率不小于0,其和等于1,即 (1)0i p ≥,1,2,,i n =;(2)11ni i p ==∑.5、射击成绩优秀可以用事件{X ≥8}表示,因此射击优秀的概率为P {X ≥8}=(8)(9)(10)0.280.290.220.79P X P X P X =+=+==++=说明:本题知识点是用随机变量表示随机事件,并通过分布列计算随机事件的概率. 6、用X 表示该班被选中的人数,则X 服从超几何分布,其分布列为104261030()i i C C P X i C -==, i =0,1,2,3,4. 该班恰有2名同学被选到的概率为2842610304!26!1902!2!8!18!(2)0.31230!60910!20!C C P X C ⨯⨯⨯====≈⨯.说明:本题与49页练习的第3题类似,希望学生在不同背景下能看出超几何分布模型. 习题2.1 B 组(P49)1、(1)设随机抽出的3篇课文中该同学能背诵的 篇数为X ,则X 是一个离散型随机变量,它可能的 取值为0,1,2,3,且X 服从超几何分布,分布列 为即(2)该同学能及格表示他能背出2或3篇,故他能及格的概率为112(2)(2)(3)0.667263P X P X P X ≥==+==+==. 说明:本题是为了让学生熟悉超几何分布模型,并能用该模型解决实际问题.2、用X 表示所购买彩票上与选出的7个基本号码相同的号码的个数,则X 服从超几何分布,其分布列为7729736()i i C C P X i C -==, i =0,1,2,3,4,5,6,7. 至少中三等奖的概率为52617072972972977736363697(5)0.00192752C C C C C C P X C C C ≥=++=≈. 说明:与上题类似同样是用超几何分布解决实际问题,从此题的结算结果可以看出至少中三等奖的概率近似为1/1000. 2.2二项分布及其应用 练习(P54)1、设第1次抽到A 的事件为B ,第2次抽到A 的事件为C ,则第1次和第2次都抽到A 的事件为BC .解法1:在第1次抽到A 的条件下,扑克牌中仅剩下51张牌,其中有3张A ,所以在第1次抽到A 的条件下第2次也抽到A 的概率为3()51P C B =. 解法2:在第1次抽到A 的条件下第2次也抽到A 的概率为()433()()45151n BC P C B n B ⨯===⨯. 解法3:在第1次抽到A 的条件下第2次也抽到A 的概率为43()35251()451()515251P BC P C B P B ⨯⨯===⨯⨯.说明:解法1是利用缩小基本事件范围的方法计算条件概率,即分析在第1次抽到A 的条件下第2次抽取一张牌的随机试验的所有可能结果,利用古典概型计算概率的公式直接得到结果. 解法2实际上是在原来的基本事件范围内通过事件的计数来计算条件概率. 第3种方法是利用条件概率的定义来计算. 这里可以让学生体会从不同角度求解条件概率的特点.2、设第1次抽出次品的时间为B ,第2次抽出正品的事件为C ,则第1次抽出次品且第2次抽出正品的事件为BC .解法1:在第1次抽出次品的条件下,剩下的99件产品中有4件次品,所以在第1次抽出次品的条件下第2次抽出正品的概率为95()99P C B =. 解法2:在第1次抽出次品的条件下第2次抽出正品的概率为()59595()()59999n BC P C B n B ⨯===⨯. 解法3:在第1次抽出次品的条件下第2次抽出正品的概率为595()9510099()599()9910099P BC P C B P B ⨯⨯===⨯⨯. 说明:与上题类似,可以用不同方法计算条件概率.3、例1 箱中3张奖券中只有1张能中奖,现分别由3人无放回地任意抽取,在已知第一个人抽到奖券的条件下,第二个人抽到奖券的概率或第三个人抽到奖券的概率,均为条件概率,它们都是0.例2 某班有45名同学,其中20名男生,25名女生,依次从全班同学中任选两名同学代表班级参加知识竞赛,在第1名同学是女生的条件下,第2名同学也是女生的概率.说明:这样的例子很多,学生举例的过程可以帮助学生理解条件概率的含义.练习(P55)1、利用古典概型计算的公式,可以求得()0.5P A =,()0.5P B =,()0.5P C =,()0.25P AB =,()0.25P BC =,()0.25P AC =,可以验证()()()P AB P A P B =,()()()P BC P B P C =,()()()P AC P A P C =.所以根据事件相互独立的定义,有事件A 与B 相互独立,事件B 与C 相互独立,事件A 与C 相互独立.说明:本题中事件A 与B 相互独立比较显然,因为抛掷的两枚硬币之间是互不影响的. 但事件B 与C 相互独立,事件A 与C 相互独立不显然,需要利用定义验证, 从该习题可以看出,事件之间是否独立有时根据实际含义就可做出判断,但有时仅根据实际含义是不能判断,需要用独立性的定义判断.2、(1)先摸出1个白球不放回的条件下,口袋中剩下3个球,其中仅有1个白球,所以在先摸出1个白球不放回的条件下,再摸出1个白球的概率是1/3.(2)先摸出1个白球后放回的条件下,口袋中仍然有4个球,其中有2个白球,所以在先摸出1个白球后放回的条件下,再摸出1个白球的概率是1/2.说明:此题的目的是希望学生体会有放回摸球与无放回摸球的区别,在有放回摸球中第2次摸到白球的概率不受第1次摸球结果的影响,而在无放回摸球中第2次摸到白球的概率受第1次摸球结果的影响.3、设在元旦期间甲地降雨的事件为A ,乙地降雨的事件为B .(1)甲、乙两地都降雨的事件为AB ,所以甲、乙两地都降雨的概率为()()()0.20.30.06P AB P A P B ==⨯=(2)甲、乙两地都不降雨的事件为AB ,所以甲、乙两地都不降雨的概率为()()()0.80.70.56P AB P A P B ==⨯=(3)其中至少一个地方降雨的事件为()()()AB AB AB ,由于事件AB ,AB 和AB 两两互斥,根据概率加法公式和相互独立事件的定义,其中至少一个地方降雨的概率为()()()0.060.20.70.80.30.44P AB P AB P AB ++=+⨯+⨯=.说明:与例3类似,利用事件独立性和概率的性质计算事件的概率,需要学生复习《数学3(必修)》中学过的概率性质.4、因为()()A AB AB =,而事件AB 与事件AB 互斥,利用概率的性质得到()()()P A P AB P AB =+所以()()()P AB P A P AB =-.。
高中数学选修2-3(人教A版)第一章计数原理1.2知识点总结含同步练习及答案
1 6 7 12 C0 12 < C12 < ⋯ < C12 > C12 > ⋯ > C12 ,所以 2x − 3 ⩾ 5 且 2x ⩽ 12 解得 4 ⩽ x ⩽ 6.
高考不提分,赔付1万元,关注快乐学了解详情。
− A5 9
= =
8 × 7 × 6 × 5 × (8 + 7) 8 × 7 × 6 × 5 × (24 − 9) = 1.
2×8×7×6×5×4+7×8×7×6×5 8×7×6×5×4×3×2×1−9×8×7×6×5
(3)根据原方程,可得
3x(x − 1)(x − 2) = 2(x + 1)x + 6x(x − 1).
0 10 (1)计算:C5 10 ⋅ C10 − C10 ; m−1 (2)证明:mCm n = nCn−1 .
解:(1)原式= (2)证明:因为
10 × 9 × 8 × 7 × 6 × 1 − 1 = 252 − 1 = 251 ; 5×4×3×2×1
Cm n =
n! , m!(n − m)! (n − 1)! n(n − 1)! n m−1 n n! ⋅ = = . Cn−1 = m m (m − 1)!(n − m)! m ⋅ (m − 1)!(n − m)! m!(n − m)!
正整数 1 到 n 的连乘积,叫做 n 的阶乘,用 n! 表示.另外,我们规定 0! = 1 .所以排列数公 式还可以写成
Am n =
(n − m)!
n!
.
组合的定义 一般地,从 n 个不同元素中取出 m (m ⩽ n )个元素合成一组,叫做从 n 个不同元素中取出 m 个元素的一个组合(combination). 组合数及组合数的公式 从 n 个不同元素中取出 m (m ⩽ n )个元素的所有不同组合的个数,叫做从 n 个不同元素中取 出 m 个元素的组合数,用符号 Cm n 表示.
高中数学选修2-3(人教B版)第一章计数原理1.4知识点总结含同步练习题及答案
描述:例题:高中数学选修2-3(人教B版)知识点总结含同步练习题及答案第一章 计数原理 1.3计数模型(补充)一、学习任务掌握计数的几种模型,并能处理一些简单的实际问题.二、知识清单数字组成模型 条件排列模型 分组分配模型染色模型计数杂题三、知识讲解1.数字组成模型与顺序相关的数字问题,通常是计算满足某些特征的数字的个数.常见特征比如各个数位的数字不同、四位数、奇数、比某数大的数、某个数位满足某种条件的数等等,其中各个数位数字可以相同的问题通常借助乘法原理分步解决,各个数位数字不相同通常是与排列相关的问题.由 、、、、 这五个数字可组成多少个无重复数字的五位数?解:首位不能是 ,有 种,后四位数有 种排列,所以这五个数可以组成 个无重复的五位数.012340C 14A 44=96C 14A 44用数字 、 组成四位数,且数字 、 至少都出现一次,这样的四位数共有______个(用数字作答).解:因为四位数的每个数位上都有两种可能性,其中四个数字全是 或 的情况不合题意,所以符合题意的四位数有 个.23231423−2=1424从 , 中选一个数字,从 、、 中选两个数字,组成无重复数字的三位数,其中奇数的个数为( )A. B. C. D.解:B当选 时,先从 、、 中选 个数字有 种方法,然后从选中的 个数字中选 个排在末位有 种方法,剩余 个数字排在首位,共有 种方法;当选 时,先从 、、 中选 个数字有 种方法,然后从选中的 个数字中选 个排在末位有 种方法,其余 个数字全排列,共有 种方法.依分类加法计数原理知共有 个奇数.02135241812601352C 2321C 121=6C 23C 1221352C 2321C 122=12C 23C 12A 226+12=18用 , ,, , , 这 个数字,可以组成______个大于 且小于 的012345630005421描述:例题:2.条件排列模型计算满足某些限制条件的排列的个数,常见的如相邻问题、不相邻问题、某位置不能排某人、某人只能或不能排在某些位置的问题等等.不重复的四位数.解:分四类:①千位数字为 , 之一时,百十个位数只要不重复即可,有 (个);②千位数字为 ,百位数字为 ,,, 之一时,共有 (个);③千位数字是 ,百位数字是 ,十位数字是 , 之一时,共有 (个);④最后还有 也满足条件.所以,所求四位数共有 (个).175342=120A 3550123=48A 14A 245401=6A 12A 135420120+48+6+1=175 名男生, 名女生,按照不同的要求排队,求不同的排队方案的方法种数.(1)全体站成一排,其中甲只能在中间或两端;(2)全体站成一排,男生必须排在一起;(3)全体站成一排,甲、乙不能相邻.解:(1)先考虑甲的位置,有 种方法,再考虑其余 人的位置,有 种方法.故有种方法;(2)(捆绑法)男生必须站在一起,即把 名男生进行全排列,有 种排法,与 名女生组成 个元素全排列,故有 种不同的排法;(3)(插空法)甲、乙不能相邻,先把剩余的 名同学全排列,有 种排法,然后将甲、乙分别插到 个空中,有 种排法,故有 种不同的排法.34A 136A 66=2160A 13A 663A 3345=720A 33A 555A 556A 26=3600A 55A 26有甲、乙、丙在内的 个人排成一排照相,其中甲和乙必须相邻,丙不排在两头,则这样的排法共有______种.解:甲和乙必须相邻,可将甲、乙捆绑,看成一个元素,与丙除外的另三个元素构成四个元素,自由排列,有 种方法;丙不排在两头,可对丙插空,插四个元素生成的中间的三个空中的任何一个,有 种方法;最后甲、乙两人的排法有 种方法.综上,总共有 种排法.6144A 44A 13A 22=144A 44A 13A 22 把椅子摆成一排, 人随机就座,任何两人不相邻的坐法种数为( )A. B. C. D.解:D“不相邻”应该用“插空法”,三个空椅子,形成 个空,三个坐人的椅子插入空中,因为人不同,所以需排序,所以有 种不同坐法.6314412072244=24A 34某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同课程的排法?解:法一: 门课程总的排法是 种,其中不符合要求的可分为:体育排在第一节有 种排法,数学排在最后一节有 种排法,但这两种方法,都包括体育在第一节,数学排在最后一节,这种情况有 种排法,因此符合条件的排法应是: 种.法二:① 体育、数学即不排在第一节也不排在最后一节,这种情况有 种排法;② 数学6A 66A 55A 55A 44−2+=504A 66A 55A 44⋅A 24A 44⋅144种颜色可供选择,则不同的着色方法共有______种.(以数字作答)72种花,且相邻的96高考不提分,赔付1万元,关注快乐学了解详情。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选修2-3课本例题习题改编
1.原题(选修2-3第二十七页习题1.2A 组第四题)改编1 某节假日,附中校办公室要安排从一号至六号由指定的六位领导参加的值班表. 要求每一位领导值班一天,但校长甲与校长乙不能相邻且主任丙与主任丁
也
不
能
相
邻
,
则
共
有
多
少
种
不
同
的
安
排
方
法
( )A .336 B .408 C .240 D .264
解:方法数为:选
改编2 某地高考规定每一考场安排24名考生,编成六行四列就坐.若来自同一学校的甲、乙两名学生同
时排在“考点考场”,那么他们两人前后左右均不相邻的概率是 ( )A .
B .
C .
D .
解:若同学甲坐在四角的某一个位置,有种坐法,此时同学乙的选择有种;若同学甲坐在四边(不在角上)的某一个位置,有种坐法,此时同学乙的选择有种;若同学甲坐在中间(不在四边、角上)的某一个位置,有种坐法,此时同学乙的选择有种;故所求概率为答
案选
2.原题(选修2-3第二十七页习题 1.2A 组第九题)改编 1 在正方体
的各个顶点与各棱的中点共20个点中,任取2点连成
直线,在这些直线中任取一条,它与对角线垂直的概率为_________. 解:如图,分别为相应棱上的中点,容
易证明正六边形,此时在正六边形上有条,直
线与直线垂直;与直线垂直的平面还有平面、平面、
平面、平面,共有直线条.正方体的各个顶点与各棱的中点共20个点,任取2点连成直线数为条直线(每条棱上如直线其实
为一条),故对角线垂直的概率为
改编2 考察正方体6个面的中心,甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于
(A ) (B ) (C ) (D )
解:如图,甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意
625224
6252242336,A A A A A A -+=.A ⨯⨯⨯⨯276119272
119136119138119
42112208194211220819119
,2423138
⨯+⨯+⨯=⨯.D 1111ABCD A B C D -1BD ,,,,,,,,,,,E F G H I J K L M N P Q 1BD ⊥EFGHIJ 2
615C =1BD 1BD ACB NPQ KLM 11A C B 2
3412C ⨯=1111ABCD A B C D -22
20312(1)166C C -⨯-=,,AE ED AD 1BD 151227
.166166
+=1752753754
75
∙∙∙∙
∙B
C
D
E F 图4
选两个点连成直线,共有种不同取法,其中所得的两条直线相互平行但不重合有
共12对,
所以所求概率为,选. 3.原题(选修2-3第四十页复习参考题A 组第三题)改编1 设集合,定义集合对
中含有个元素,中至少含有个元素,且中最小的元素不小于中最大的
元素.记满足的集合对的总个数为,满足的集合对的总个数为,
则的值为
A.
B.
C.
D.
解:根据题意,的个数可以这样取:,故同样得的个数为
故选
改编2 把已知正整数表示为若干个正整数(至少3个,且可以相等)之和的形式,若这几个正整数可以按一定顺序构成等差数列,则称这些数为的一个等差分拆.将这些正整数的不同排列视为相同的分拆.如:与为12的相同等差分拆.问正整数30的不同等差分拆有 个.
解:分类讨论,当三个数时,有10个;四个数时,有2个;5个数时,有3个;6、10、15、30个数时,各有1个,共19个.
4.原题(选修2-3第四十一页复习参考题B 组第1题(3))改编 已知集合,定义映射,且点.若的外接圆圆心为D ,且
,则满足条件的映射有( ) A.12个; B.10个; C.6个; D.16
个;
解:设为的中点.由,知三点共线,结合题意知,于
是,这样满足条件的映射有种.
5.原题(选修2-3第九十五页例1)改编 甲乙两个学校高三年级分别有1100人,1000人,为了了解两个学校全体高三年级学生在该地区二模考试的数学成绩情况,采用分层抽样方法从两个学校一共抽取了 105名学生的数学成绩,并作出了如下的频数分布统计表,规定考试成绩在[120,150]内为优秀,甲校:
22
661515225C C =⨯=//,//,//,AC DB AD CB AE BF //,//,//AF BE CE FD CF ED 124
22575
P ==
D {1,2,3,4,5,6}S =(,):,,A B A S B S A ⊆⊆3B 2B A A
B S =(,)A B m A B ≠∅(,)A B n m
n m {1,2,3};{4,5,6},{3,4,5,6}A B ==2,m =n 22,.A n n (1,4,7)(7,4,1){
}{}1,2,3,1,2,3,4M N ==:f M N →()()()1,(1),2,(2),3,(3)A f B f C f ABC △()DA DC DB R λλ+=∈K AC ()DA DC DB R λλ+=∈,,D B K AB AC =(1)(3)(2)f f f =≠22
4212C A =
乙校:
(I )计算的值;
(II)由以上统计数据填写右面列联表,若按是否优秀来判断,是否有97.5% 的把握认为两个学校的数学成绩有差异.
(III)根据抽样结果分别估计甲校和乙校的优秀率;若把频率作为概率,现从乙校学生中任取3人,求优秀学生人数的分布列和数学期望;
附:
解 (I )
(II),故有
97.5% 的把握认为两个学校的数学成绩有差异.
(III)甲校优秀率为乙校优秀率为
,
分布列: 期望:
,x y 22⨯6,7x y ==2
2
105(10302045) 6.109 5.024********
K ⨯-⨯=≈>⨯⨯⨯2
,11
22,0,1,2,3,(3,)55B ξξ=00332227(0)()(1);55125
P C ξ==-=11
232254(1)()(1);55125P C ξ==-=22132236(2)()(1);55125P C ξ==-=33
03228(3)()(1);55125
P C ξ==-=26()3.55
E ξ=⨯
= 甲校 乙校 总计
优秀 10 20 30 非优秀 45 30 75 总计
55
50
105
0 1 2 3
ξP 27
12554125361258125。